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Abstract
When using functional brain imaging to study neuropsychiatric patients an important challenge is
determining whether the imaging task assesses individual differences with equal precision in
healthy control and impaired patient groups. Classical test theory (CTT) requires separate
reliability studies of patients and controls to determine equivalent measurement precision with
additional studies to determine measurement precision for different levels of disease severity.
Unlike CTT, item response theory (IRT) provides estimates of measurement error for different
levels of ability, without the need for separate studies, and can determine if different tests are
equivalently difficult when investigating differential deficits between groups. To determine the
potential value of IRT in functional brain imaging, IRT was applied to behavioral data obtained
during a multi-center functional MRI (fMRI) study of working memory (WM). Average item
difficulty was approximately one standard deviation below the ability scale mean, supporting the
task’s sensitivity to individual differences within the ability range of patients with WM
impairment, but not within the range of most controls. The correlation of IRT estimated ability
with fMRI activation during the task recognition period supported the linkage of the latent IRT
scale to brain activation data. IRT can meaningfully contribute to the design of fMRI tasks.

Keywords
Functional MRI; Item response theory; Bayesian analysis; Task design

*Corresponding author at: VA San Diego Healthcare System, Psychology Service (116B), 3350 La Jolla Village Dr., San Diego, CA
92161, United States. gbrown@ucsd.edu (G.G. Brown).

NIH Public Access
Author Manuscript
Psychiatry Res. Author manuscript; available in PMC 2014 June 30.

Published in final edited form as:
Psychiatry Res. 2013 June 30; 212(3): 167–174. doi:10.1016/j.pscychresns.2013.01.009.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
Over the past several decades, item response theory (IRT; Lord and Novick, 1968; Rasch,
1960) has become the preferred methodology for the study of test and item characteristics.
Yet, IRT has only rarely been applied in neuropsychological research, and almost never in
published functional brain imaging studies. In this paper, we discuss some of the practical
issues researchers are likely to confront when applying these techniques to functional brain
imaging studies. This demonstration is accomplished by applying IRT to behavioral data
obtained during a multi-center functional MRI (fMRI) study of working memory. Readers
wishing a more general discussion of IRT should consult introductory texts (e.g., de Ayala,
2009; Embretson and Reise, 2000), review papers (e.g., Reise and Waller, 2009; Thomas,
2011), and technical resources (e.g., Baker and Kim, 2004; van der Linden and Hambleton,
1997).

1.1. Motivation for using IRT in functional brain imaging
Although interesting fMRI studies are being performed under behaviorally unconstrained
conditions (Meda et al., 2012), most of the studies in the fMRI literature have used cognitive
challenge tasks to probe patterns of brain-activation. Behavioral contributions to the design
of fMRI tasks have focused almost exclusively on the validity of the task as an apparent
assessment of cognitive neuroscience domains of interest. Once the content validity of items
is determined, item properties such as difficulty and discriminating power are assumed,
often implicitly, to be equivalent across items. When item difficulty is considered, it
typically enters through the manipulation of independent variables, such as memory load or
stimulus visibility, that alter the marginal probability of a correct response over subgroups of
items (Huang et al., 2006; Potkin et al., 2009). However, item difficulty needs to be
considered when designing brain activation probes in order to avoid ceiling and floor
effects, especially when studying groups of subjects who perform at different ability levels
(Gur et al., 1992). Difficulty should be matched across cognitive challenge probes in order
to support the attribution of differential brain response to the different neurocognitive
systems that the probes were designed to evoke (Gur et al., 1992; Snyder et al., 2011;
Spitzer et al., 1996).

These initial applications of psychometric ideas to the design of brain activation tasks were
not developed within an explicit psychometric framework, although the principles of
classical test theory (CTT) often seem to be assumed. Today, IRT offers an accessible,
advanced set of tools for establishing the precision and accuracy of individual items (see
Embretson and Hershberger, 1999). IRT models involve both individual person parameters
and individual item parameters scaled along the same latent dimension. This focus results in
an explicit model of item and person characteristics that are differentiated while remaining
linked to each other through a parametric equation. Separation of person and item
parameters allows for invariance of item characteristics across groups and individuals that
differ in ability (Lord, 1980), and provides an explicit rationale for the use of different items
to assess the same neurocognitive system in diverse groups of patients (e.g., adaptive testing
methods). IRT also permits the assessment of item information (similar to the concept of
reliability) and standard error at specific points along the ability spectrum, whereas CTT
would require different reliability studies along arbitrarily quantitized intervals of ability.
Measurement precision can be determined independently for groups and individuals with
different ability levels, as often occurs in functional brain imaging studies of clinical groups
(e.g., Brown and Eyler, 2006).

The primary purpose of using IRT in imaging research is to evaluate item properties in order
to ensure that tests are measuring intended neurocognitive constructs with appropriate

Thomas et al. Page 2

Psychiatry Res. Author manuscript; available in PMC 2014 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



difficulty to detect individual differences in latent ability; a precise approach to the ideas
advocated by Gur et al. (1992). Unfortunately, there are several obstacles to using IRT in
imaging studies; most notably, the typically large subject samples required to estimate IRT
parameters and questions whether or not the latent abilities estimated in IRT are related to
brain activation. A test of IRT’s practical utility in imaging research is needed.

1.2. An application of IRT to an fMRI study of working memory
Data come from the East Coast Traveling Subjects (ECTS) study performed by the Function
Biomedical Informatics Research Network (FBIRN). The aim of the study was to assess the
multi-site reliability of functional imaging data before embarking on a larger multi-center
study of schizophrenia patients. Participants were administered a working memory task
(WMT) designed to detect differential patterns of brain activation of healthy volunteers and
schizophrenia patients with working memory impairment. The WMT is a forced-choice
delayed visual recognition memory test, permitting the separate detection of brain processes
involved in stimulus encoding, memory maintenance, and target recognition. The task was
presented in the magnet while images sensitive to blood oxygen level dependence (BOLD)
signals were acquired (see Buxton, 2002).

To model WMT item characteristics, we consider nested versions of a general IRT model
where N examinees respond to J items. Let Xij=xij denote the observed response for the ith

examinee to the jth item, where xij=1 if the response is correct and 0 otherwise.1 The
probability of a correct response is approximated by a logistic function of subject ability (θi),
item difficulty (βj), item discrimination (αj), and item guessing (γj) parameters

(1)

Eq. (1) is commonly referred to as a three-parameter logistic (3-PL; Birnbaum, 1968) model.
The θi parameter reflects the subject’s standing on the underlying ability that is required for
accurate item responding (e.g., memory). It is an unobservable characteristic of the
examinee that may also be referred to as a latent factor or trait. The βj or item difficulty
parameter makes it more or less probable that an examinee of a given ability level will
provide a correct response. The αj or discrimination parameter reflects the weight or
relevance of the underlying ability dimension to the probability of a correct response. The γj
or lower-asymptote parameter conveys the probability that an examinee with infinitely low
ability will correctly respond (often guessing).

IRT models range from simple to complex in both scope and ease of application. For
imaging researchers hoping to use IRT in their work, it is first necessary to consider what
combination of freely estimated item parameters can be viably attained from available data.
The answer is due, in part, to characteristics of items, but also practical issues related to
sample size. It is challenging to collect large samples in imaging research due to cost, time,
and access barriers associated with scanning equipment. In the current study, for instance,
item responses and imaging data were collected for 18 participants over nearly 6 months of
multisite collaboration at a cost of approximately $1000 per scanning session, per site. This
reduced number of examinees – which is common in cognitive and imaging research – can
annul the beneficial large sample properties of maximum likelihood estimators (see Baker
and Kim, 2004). It is well known, for example, that samples sizes should range from several
hundred to several thousand participants for simple to complex IRT models respectively (de

1A more complex model that included a site difficulty parameter was also investigated. The model poorly converged and did not fit
the data better than models excluding site effects. Consequently no site term was included in the model.
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Ayala, 2009; Reckase, 2009). Sample sizes of ≤ 50 can result in biased parameter estimates
or fail to converge, even for simple models (Lord, 1968). Unstable or biased estimates of
item characteristics associated with small sample sizes are especially troublesome for
maximum likelihood and least squares estimators. Later, we discuss the use of Bayesian
estimators with constraining prior information to improve model convergence and fit.

As with most imaging data sets, the WMT data structure is a transpose of the typical
psychometric data set. That is, whereas psychometric data are characterized by a greater
number of subjects than items, the current data are characterized by a greater number of
items than subjects. This is seen as a problem in IRT, because whereas subjects are typically
modeled with just a single parameter, items are modeled with multiple parameters. As the
ratio of subjects to items grows smaller, it becomes increasingly difficult to accurately
estimate item parameters.

Fortunately, there may be characteristics of items that, when combined with certain types of
estimation procedures, can overcome this challenge. It is generally known that traction in
parameter estimation can be gained by constraining item characteristics to single, group
values (see Wainer and Wright, 1980). This strategy works well when individual item
parameters show only minor deviations from the group average, and do not significantly
deteriorate model fit when held constant. A more general, less stringent framework for this
strategy comes from hierarchical Bayesian modeling, where individual items are assumed to
be drawn from common distributions (Levy, 2009). If the properties of these distributions
(e.g., shape, mean, and variance) are known, or can be assumed based on experimental
control and prior theory, limitations in the estimation of item properties from observed data
can be mitigated. The WMT, like most cognitive tasks used in imaging research, makes use
of highly controlled, relatively homogenous stimuli. As will be shown, this allows for
greater use of Bayesian concepts in parameter estimation, and facilitates IRT modeling of
behavioral data used in fMRI research.

1.3. Hypotheses and goals
This study’s aims were to: (a) determine how well IRT model parameters could be estimated
from an unusual, small subject sample, large item array, multi-site data set; (b) use IRT
derived test standard error functions to investigate the impact of shortening the WMT on the
precision of ability estimates; and (c) determine if the latent IRT scale linking ability and
item difficulty was related to brain activation.

2. Method
2.1. Participants

Nine male and nine female, right-handed volunteers were scanned five times at four magnet
sites while performing the WMT (mean [range], age: 34.44 [23–53] years; education: 17.06
[12–23] years). Data obtained from these volunteers were in compliance with the
requirements of each participating institution’s Institutional Review Board. Participants
were recruited across a wide educational range; however, most were better educated and
held higher occupation levels in comparison to the general public (Brown et al., 2011).
Additional enrollment and study requirements are found in Brown et al. (2011). All
participants were recruited at a single site where, with one exception, they were initially
scanned, then sent to a study site for repeated scans. Scan order was randomized across the
four sites. IRT analyses did not include data from the initial recruitment scan. Data from the
recruitment session were excluded in order to train out task learning effects consistent with
the analytic design of the complementary multi-site reliability study (Brown et al., 2011).
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That is, because subjects tended to develop more effective testing strategies after the initial
assessment, primary response data were excluded.

2.2. Task
Each 284-s WMT run was divided into passive viewing – fixation, passive viewing –
scrambled pictures, encode, maintain, and recognition periods. During the encode period,
participants were asked to memorize eight line drawings of common objects presented
serially at 2-s intervals. During the recognition period participants were presented every 2 s
with a screen containing two pictures: one from the previous encode set and one that had not
been presented to the subject during the session. During the maintain period, subjects were
asked to detect the presence/absence of a human face while neutral or negative valence
photographs from the International Affective Pictures System were presented in order to
ensure subject attention (Lang et al., 2008; Brown et al., 2011); however, data about the
impact of affective valence during the maintenance period on subsequent recognition were
not included in the IRT analyses due to concerns about model complexity.

WMT items came from a population of 515 line drawings randomly assigned to study lists.
In total, 256 items were presented at each site, and 1024 items were presented across all
sites. However, more than half of these were repetitions of the same items administrated
across multiple sites (most subjects were administered 467 total unique items).

2.3. Imaging methods
Detailed descriptions of the structural and functional imaging protocols are provided by

Greve et al. (2011). Time series of the  images were obtained while
participants performed eight runs of the WMT. A gradient echo, single shot echoplanar
image sequence, axial anterior commissure–posterior commissure aligned was acquired at
each site at 3.34 mm × 3.34 mm in-plane resolution and 4-mm slice thickness with 1-mm
skip. The fMRI time series analysis was performed using FSL’s FEAT routine to perform a

single-voxel general linear analysis of the  image time series
(www.fmrib.ox.ac.uk/fsl/feat5/ ). See Brown et al. (2011) for further description of the fMRI
processing stream. The imaging data presented below only compared the MR signal
amplitude during the recognition period against the MR signal acquired during the baseline
periods. A high resolution T1-weighted image was also collected.

2.4. Item and ability parameter estimation
We used Bayesian methods of parameter estimation using OpenBUGS statistical software
for Linux (Lunn et al., 2009) with Markov chain Monte Carlo methods (MCMC; for details
see Fox, 2010; Patz and Junker, 1999; Swaminathan et al., 2003). From the Bayesian
perspective, parameter estimates are viewed as weighted averages of information that comes
from data alone (likelihoods) and information that comes from prior knowledge (prior
distributions). Prior distributions can be weakly informative, in which case data have a large
impact on parameter estimates, or strongly informative, in which case data have a small
impact on parameter estimates. We considered three versions of the IRT model in Eq. (1);
each was estimated twice, once with weakly informative priors and once with strongly
informative priors. The models are listed in the left half of Table 1. Individual values for
subject ability parameters were estimated in all models; however, the models are
increasingly stringent with respect to the estimation of individual item parameters. The
purpose of comparing weakly and strongly informative prior distributions, as well as
individual versus group values for the item parameters, was to determine the degree to
which prior theory was needed to overcome the small sample size problem common to
fMRI.
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Ability parameters were specified with strongly informative priors in all models to identify
the scale of measurement: θ ~N(0,1), which is required, in some form, for all IRT models.
For item parameters, weakly informative priors were: β~uniform(−4, 4), α~uniform(0, 4),
γ~uniform(0, 1); and strongly informative priors were: β~N(−1, 1), α~logN(0, 0.25),
γ~beta(20, 20) I(0.40, 0.50). The choice of normal, lognormal, and beta distributions for
strongly informative priors on β, α, and γ respectively are conventions in IRT that tend to
accurately reflect observed data (see Fox, 2010). The hyperparameters of these priors
themselves should reflect theory or previous data observations. Note that mean item
difficulty was assigned a hyperparameter of negative one. This was meant to reflect the
WMT’s design, which was tailored for cognitively impaired individuals (i.e., low difficulty),
and the observation that participants in the study were generally well educated, which
suggests above average general ability (Wilson et al., 1979). The choice of hyperparameters
for discrimination simply reflects that WMT items are moderately correlated with overall
performance. Hyperparameters for lower-asymptote reflect the expectation of random
guessing (i.e., 0.50). However, the parameter had to be constrained to the interval between
0.40 and 0.60 to prevent improbable values.

Convergence was established by whether or not the Gibbs samplers could draw values and
by monitoring the traceplots and potential scale reduction factors (PSRFs; Brooks and
Gelman, 1998; Gelman and Rubin, 1992). PSRFs compare between-chain variation to
within-chain variation with values near 1.00 implying that simulated values are close to the
target distribution, and larger values implying poor convergence. Deviance information
criterion (DIC) values (Spiegelhalter et al., 2002) were used to compare models. Smaller
DIC values imply better fit. Analyses of residual item correlations (e.g., Yen, 1993) were
unreliable due to the small number of subjects.

3. Results
3.1. Estimation of IRT model parameters

Results of estimation for the six models are reported in Table 1. All models employing
strongly informative priors converged without difficulty. That is, the OpenBUGS software
successfully returned parameter estimates and none had PSRF values greater than 1.1,
suggesting good convergence. Among models with weakly informative priors, the
OpenBUGS software did not successfully return parameter estimates for the model allowing
individual differences in both item difficulty and item discrimination parameters (Model 1).

Average posterior standard deviation (PSD) values for the parameter estimates are also
reported in Table 1 (PSD values are interpreted similarly to standard error values). The mean
parameter estimates for the models are reported in Table 2. Parameter estimates are
generally consistent between models (note that the absolute difference between γ and β is
more important than the individual values); however, Model 3, where guessing was
estimated to be 0.84, is a clear exception. The guessing parameter appears to have been
overestimated in this model, causing distortion in all other parameters (a common problem
for the 3-PL; see Baker and Kim, 2004). For the other models, establishing prior restrictions
on guessing appears to have been sufficient to recover plausible parameter estimates.

Direct comparison of the models’ DIC values suggested that allowing individual differences
in item parameters consistently improved model fit. That is, Models 3 and 4, which allowed
for variation in difficulty, fit better than Models 5 and 6, and Model 2, which allowed for
variation in difficulty and discrimination, fit better than Models 3 and 4.
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3.2. Standard error analyses
Distributions of ability and item difficult estimates for Model 4 are plotted in the top left
panel of Fig. 1. The distributions are shown for a 256 item version of the WMT (the baseline
for this study). As can be seen, the mode of the distribution of item difficulty is
approximately 1.5 S.D.s lower than the mode of the distribution of examinee ability (the X-
axis is scaled in standard deviation units). This implies that the WMT is too easy for subjects
in the current sample, and is optimized for impaired examinees. This can also be seen in the
corresponding standard error function shown in the bottom left panel of Fig. 1, which
indicates standard error reaches a minimum near the mean of the distribution of item
difficulty; far below average ability in the sample. Nonetheless, due to the high number of
items administered (256), reliability2 remains high at ρθ =0.90 in the sample (usually
considered excellent).

Because of the expense of long fMRI sessions, investigators prefer to use brief activation
tasks. Shortening a task, however, can diminish the quality of behavioral data. To
demonstrate this, the center column in Fig. 1 shows the impact of reducing the total number
of items by 33% (171 total). At this level, reliability drops to ρθ =0.85 in the sample. This is
because measurement precision is not optimized for non-impaired groups, as is shown in the
bottom center panel of Fig. 1. However, by increasing average item difficulty (i.e., matching
difficulty to ability), it is possible to reduce the total number of items by 33% and yet retain
an overall reliability of ρθ =0.90 in the sample. This is because a hard version of the WMT
would be optimized for non-impaired groups, as is shown in the bottom right panel of Fig. 1.

3.3. Correlations with brain images
For the IRT model to be a useful guide to fMRI task design, the model’s ability domain
should be related to task activation. Because the ability parameter (θ) is an estimate derived
from the data, it is possible that the estimation process might introduce noise or bias into the
estimates, potentially corrupting the relationship between ability and brain activation. As
discussed above, accuracy of estimated parameters is a particular concern because functional
brain imaging studies typically involve much smaller samples than conventional item
response studies. Alternatively, because estimates of θ, unlike the observed percent correct
score, have been uncoupled from item difficulty, their correlation with brain activation
might be greater than correlations with percent correct scores. To investigate correlations
with brain activation we averaged across the four sites the %signal change maps generated
by the GLM for the recognition period in order to produce one brain activation map for each
subject. A map of the voxel-wise correlations of Model 4 θ estimates with %signal change is
presented in Fig. 2A for gray matter voxels where %signal change was significantly
different from zero. Fig. 2B presents correlations between percent correct with %signal
change. The two maps appear to be nearly identical. In both cases, moderate to large inverse
correlations (−0.65 to −0.75) between ability and activation are present in some dorsolateral
prefrontal cortex voxels. Alternatively, moderate to large direct correlations are observed in
some occipital and parietal voxels.

4. Discussion
4.1. Findings

IRT was applied to behavioral data obtained during a multi-center fMRI study of working
memory. Modified 3-PL models were fit to the data, each varying in the number of
parameters that were restricted versus freely estimated for all items. Several practical

2One minus the proportion of ability variance due to squared mean standard error.
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challenges were encountered in trying to fit the models to the data set. Most prominently, the
limited number of participants, large amounts of planned missing data, and relative low
difficulty of the items in comparison to subjects’ abilities complicated estimation of item
parameters. To mitigate these complications, parameters were estimated using a Bayesian
approach incorporating prior information into the final values. Results of estimation suggest
that strongly informative priors were necessary for all but the simplest versions of the IRT
model.

The study team had strong expectations about the abilities of participants, as well as item
difficulties. Participants were well educated and the majority worked in business, finance
and management jobs (Brown et al., 2011), which predicted above average general ability
(Wilson et al., 1979). Moreover, given the unusual multi-center aspect of the study, task
development was guided by the principle of tight experimental control over stimulus and
item content, which led task developers to create a test composed of very similar items.
Finally, because schizophrenia patients often perform about one standard deviation below
the mean on delayed response types of working memory tasks, the study team focused on
the development of relatively easy items (Lee and Park, 2005). The assumptions of easy
item difficulty and above average ability were systematically incorporated into model priors.
Given the Bayesian approach to the analysis, posterior values of these model parameters
would move away from their priors if the initial model fit the data poorly. The results,
however, converged with the investigators’ expectations for the selected Model 4. The mean
posterior ability value was 0.57 and the mean posterior item difficulty was −1.01, values
similar to the prior expectations, further validating this modeling approach.

Although not reported in this paper, adding a site parameter to the model did not improve fit.
This result might be unique to the current study, where considerable effort went into
avoiding site effects (e.g., removing task learning-contaminated data, avoiding repeated
administration of items, using highly standardized experimental procedures, and central
training of research assistants). The minimal contribution that site made to the modeling of
item performance across subjects is compatible with the finding that between subject
variance in fMRI data acquired during the same study was 10 or more times greater than site
variance for most regions of interest (Brown et al., 2011). As with the behavioral data,
minimization of site effects in the fMRI data was likely due to the standardization efforts
that went into this study’s implementation. A paper by Glover et al. (2012) discusses the
multiplicity of issues needing to be addressed when planning between-site fMRI studies.

Standard error functions provided guidance about the impact of altering test length and test
difficulty on the test’s sensitivity to individual differences in working memory ability.
Participants in the present study were administered approximately 256 items on the WMT
per scan session. The test standard error function for 256 items was relatively flat across a
range of approximately −2 to 1 on the ability spectrum. The 256 item task, as designed,
discriminates working memory ability among 82% of the general population over an ability
range where no standard error is greater than 0.25. This corresponded to an excellent
reliability value in the current sample (0.90). However, because item difficulty is shifted
towards the lower end of the ability distribution, the test discriminates the working memory
performance of mildly to moderately impaired individuals better than more able subjects,
complicating the interpretation of patient versus healthy control effects sizes and change due
to treatment.

The impact of reducing the total number of items administered on standard error was shown
for versions of the task with average item difficulty unmatched (easy) or matched (hard) to
the average ability of the current sample. While the unmatched version of the task was
associated with a drop in reliability (0.85), the matched version of the task retained the high
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reliability value of the full version (0.90) while reducing test administration by 33% of
items. This, of course, would result in a substantial time and cost savings in fMRI studies.
The results suggest that researchers should use different versions of cognitive tasks with
difficulties matched to the abilities of specific sub-populations of examinees. Indeed, the
optimal solution with respect to maximizing measurement precision would be to administer
each examinee a potentially unique set of items based on the principle of matching item
difficulty to specific ability levels through computerized adaptive testing (see van der
Linden and Glas, 2010).

The IRT estimate of ability correlated as well with brain activation during the recognition
period as did percent correct. The similar correlation of the IRT estimate of ability and
percent correct with brain activation linked the latent ability dimension to brain activation.
This linkage further implies that variations in item difficulty should be related to the
evocation of brain activity as well. Using an event-related design, Bedny et al. (2007) have
shown that meaningful BOLD signal responses can be detected at the individual item level.
A similar event-related design could be used to directly test the hypothesis that item
parameters provide meaningful information about the magnitude of brain activation.
Furthermore, it is well known that standard error attenuates regression coefficients (i.e.,
shrinks them towards zero). To the extent that item difficulty and brain activation are
directly linked, it can be assumed that regression coefficients relating brain activation to
other variables of interest will be attenuated in psychometric regions of high standard error.

4.2. Limitations
Small sample size is perhaps the most critical limitation of parameter estimates reported in
this study. The results provided guidance on the general distributions of ability and difficulty
parameters, but are not acceptable for test calibration. The goal of this study was not to
precisely calibrate individual WMT item parameters, but rather to show how IRT could be
used to quantify the overall properties of a task used in fMRI. Our results suggest that with
the addition of several constraints and prior theory, such quantifications can be achieved.
Also, IRT analyses were conducted under the assumption that examinees’ performances on
the behavioral task were due, primarily, to a single working memory dimension. The
unidimensional assumption is unlikely ever to be justified unambiguously for clinical
neuropsychological applications, where, even for simple tasks, lesions involving different
brain systems can impair performance by disrupting any of several neurocognitive processes
(Luria, 1966; Kaplan, 1988). Finally, it should again be noted that the IRT models evaluated
in this study do not account for site/repeated administration effects (for a similar model see
Spray, 1997). It is possible that subjects became better at the task due to repeated exposure
to the stimuli, or that item parameters were not invariant to different site/list contexts.
However, several analyses that attempted to incorporate or quantify site effects (not reported
here) suggested that site variability was very minimal (e.g., Brown et al., 2011).

4.3. Suggestions for future research
One apparent solution to the problem of applying IRT to fMRI studies with limited data is to
calibrate item parameters using larger samples in less expensive testing circumstances (e.g.,
participants not undergoing fMRI), and then to use these precalibrated items to estimate
examinees’ abilities in the experimental imaging studies. The application of precalibrated
items to samples different from those used to calibrate the items is justified by the assumed
invariance of item parameters in IRT models (Lord, 1980). Nonetheless, this study does
suggest that there is value to using IRT methodology in fMRI research even without
precalibrated items. Researchers can use Bayesian techniques with informative prior
estimates of subject and item characteristics to derive approximate parameter estimates.
These estimates allow for analyses that can ensure tests are appropriately difficult.
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IRT modeling can help improve precision in measurement, resulting in more robust
correlations with brain activation. However, complexities are bound to arise when modern
psychometric models are retroactively applied to preexisting behavioral tasks. Thorough
consideration of item characteristics prior to test administration can alleviate some of these
concerns. And, by combining the expertise of psychometricians with the expertise of
cognitive modelers, investigators can develop improved models capable of accounting for
the multifaceted aspects of brain activation tasks. This combined program of psychometric
and cognitive theory will be facilitated by the continued development of multidimensional
measurement models that can quantify diverse cognitive processes. Several theorists have
made progress in this respect (see Batchelder, 2010; Embretson, 2010).

4.4. Conclusion
Despite the challenges associated with the application of IRT to the small samples typical of
fMRI studies, the results of the present study indicated that such applications can be
informative. In the present application, IRT confirmed the sensitivity of task items to the
ability range targeted by task designers while producing reasonable ability estimates for the
individuals studied. The study results also suggested that the latent ability scale on which
item difficulty was calibrated was linked to brain activation. Together the results support the
view that IRT can meaningfully contribute to the design of tasks to be used in fMRI studies.
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Fig. 1.
Panels on the left are derived from acquired study data. The remaining panels are simulated
data. Top: Loess fit of histograms for Working Memory Task ability (solid lines) and item
difficulty (dashed lines) parameter estimates for Model 4. X-axis is scaled in standard
deviation units. Bottom: standard error function for Working Memory Task ability
parameter estimates in Model 4. Plots are shown for 256 easy items (left column), 171 easy
items (center column), and 171 hard items (right column).

Thomas et al. Page 13

Psychiatry Res. Author manuscript; available in PMC 2014 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(A) Voxel-wise correlations of θ with %signal change during the recognition period. (B)
Voxel-wise correlations of %correct with %signal change during the recognition period.
Data are presented for gray matter voxels where %signal change was greater than zero.
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