
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Frame selection systems and languages for medical applications

Permalink
https://escholarship.org/uc/item/4xg5f14g

Author
LeBeux, Pierre Joseph

Publication Date
1974

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xg5f14g
https://escholarship.org
http://www.cdlib.org/

FRAME SELECTION SYSTEMS AND LANGUAGES
FOR MEDICAL APPLICATIONS

by

Pierre J. LeBeux

Ingenieur, Ecole Centrale des Arts et Manufactures, 1968
Doctorate, 3rd Cycle, University of Paris, 1971

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MEDICAL INFORMATION SCIENCE

in the

GRADUATE DIVISION

(San Francisco)

of the

UNIVERSITY OF CALIFORNIA

Approved:

. º. fºeka.
• * * *

Committee in Charge

Deposited in the Library, San Francisco Medical Center:

... &. & //zz. ….ºcc
C’Date Librarian

Degree Conferred: . . . 22 JU N 1974
- - - - - - - - - - -

*:

W■ º 0 V y \{\
***!º * * *

Nùù"A" #. awmac. 3

ii

Acknowledgments

This research was done in the Office of Medical Information Systems

at the University of California Medical Center at San Francisco, under

the patient guidance and supervision of Dr. Marsden S. Blois and

Dr. Ronald R. Henley. I was honored to have Dr. George Brecher on my

Thesis Committee. Dr. Richard de Leon and Dr. Don Carlos Hines contributed

substantially and advised me during the design of the pharmacy application.

The teaching of Professor John Rhodes in Berkeley gave me valuable

insights into the theories of abstract machines.

Mr. Larry E. Selmer contributed to the programming of the pharmacy

application and Mr. Sinclair Lai performed the entering and checking of the

drug formulary.

I would like to acknowledge the valuable discussions with

Mr. Martin Epstein, Mr. Giovanni Wiederhold, Mr. David Steingart, and

Mr. Lance Carnes.

A special acknowledgment is due to Marina Mancia and Tina Walters

for their patience, their spirit, and dedication during the typing of the

many drafts of the dissertation.

Finally, I would like to thank Professor Laugier and Professor Gremy

from the University of Paris for their advice and help in my coming to

the United States.

This research was partially supported by a NATO Fellowship during

the first year, and by an IRIA (Institut de Recherche Informatique et

Automatique) Fellowship during the last year.

- -

- -

-

- * -

- -

* - -

-

* - - º

- * -

- - s - * -
-

- -

s ** -

- - * -

iii

Abstract

A frame selection system and a frame programming language have been

implemented to support medical information system applications.

A frame selection system is an interactive computer system which

enables the user to enter data via a CRT terminal, by using a selection

device to point at items or phrases displayed on the screen. A frame

is a set of choices representing the alternatives available to the user

at each stage of a selection process. A model has been developed to

study the capabilities of frame selection systems. The simplest type

of frame selection system can be modelled by a finite state machine

called the selecton. A selecton is characterized by selection inputs

and a set of frames organized in lattice or digraph structures. A

selecton can be used to generate output strings or sentences of a right

linear grammar encoded in the frame structure. This type of system

enables the user to generate syntactically correct sentences of the

language whose grammar is represented by the frame structure. Pursuing

this property of frame selection systems, the addition of a pushdown

store enables the model to become a generator of syntactically correct

sentences of any context free language. A universal frame selection

system is defined as a system which enables the execution of procedures

as a result of a selection. This feature allows the generation of

sentences of context sensitive languages. It also becomes possible to

generate semantically correct sentences by defining semantic relations

between choices of different frames.

The concept of frame programming languages arises from the need to

have a tool to build frame selection systems. A frame programming lan

guage is a language which enables the definition of the actions to be

iv.

taken as a result of a selection. A frame programming language (FPL) is

presented and has been implemented as a frame selection system. It is

supported by a real-time operating system built on a minicomputer es

pecially designed for the support of CRT's and selection devices.

The concepts of frame programming language and frame selection sys

tems are useful in a medical environment because they can be used to

develop interactive medical information systems which are not rigidly

constructed but can be extended and developed incrementally.

To illustrate the capability of such systems and languages, a

pharmacy ordering system is presented. It is used to capture all the

medication orders generated within the hospital and keep a patient's

profile accessible and modifiable in real-time. Various reports are

generated, a data base of all medications orders is retained, the in

ventory control is achieved and the billing information is captured

automatically. This application shows that dedicated stand-alone frame

selection applications can be developed with minimum hardware and ade

quate response time.

TABLE OF CONTENTS

l. INTRODUCTION

2. REVIEW OF MEDICAL INFORMATION SYSTEMS

2.1 CARD-ORIENTED SYSTEMS

2. 2 COMPUTER TIME-SHARING SYSTEMS

2.3 THE MENU-TREE SYSTEMS

2. l. FRAME SELECTION SYSTEMS

3. THEORIES OF INFORMATION AND THEIR APPLICABILITY TO MEDICAL DATA

3. l INFORMATION, COMMUNICATION AND DATA

3. l. l INFORMATION

3. L. 2 COMMUNICATION

3. l. 3 DATA

3.2 SEMANTICS AND INFORMATION

3.3 SYNTAX AND INFORMATION

3.1, MEDICAL INFORMATION

3. l. l SOURCES OF MEDICAL INFORMATION

3. l.2 THE NATURE OF MEDICAL INFORMATION

3. li. 3 THE QUALITY OF MEDICAL INFORMATION

3. l. l. COMMUNICATION OF MEDICAL INFORMATION

3. l. .5 MEDICAL INFORMATION AND ALGORITHMIC PROCESSES

l, . FORMAL DESCRIPTION OF FRAME SELECTION SYSTEMS

l,.l SELECTION PROCESSES AND FORMULAS

l,..l.l. THE SELECTION OPERATOR AND THE FREE SEQUENTIAL SELECTION
PROCESS

l; ..l.2 PROPERTIES OF THE SELECTION OPERATOR

l, .l. 3 SELECTION FORMULAS AND SELECTION SENTENCES

--

vi

l, .2 SELECTION FRAMES

l; .2.l HORIZONTAL OR SERIAL DECOMPOSITION

l; .2.2 VERTICAL OR PARALLEL DECOMPOSITION

l; .3 RELATIONS BETWEEN SELECTION FRAMES

l, .3.1 BINARY RELATION

l. 3.2 EQUIVALENCE CLASSES AND PARTITIONS

l. 3.3 ORDER RELATIONS AND SELECTION FRAMES

l, .3.1, LINGUISTICS RELATIONS AND SELECTION FRAMES

l; ..l. SEMANTIC COMPLEXES AND FRAME STRUCTURES

l■ .5 FRAME SELECTION SYSTEMS AND FINITE STATE MACHINES

l; .5.1 FRAME INPUT CODES AND SELECTION STRINGS

l; .5.2 FRAME SEQUENTIAL SYSTEMS AND ABSTRACT MACHINES

l; .5.3 SEQUENTIAL SELECTION CIRCUIT OR SELECTON

l,. 5. l. OPERATION ON SELECTONS

l; .5. l. l HOMOMORPHISM AND TRIVIAL CODES

l; .5. l.2 UNION OF SELECTONS

l!. 5. li. 3 CONCATENATION OF SELECTONS

l, .5. l. l ITERATION SELECTON

l; .5. l. 5 REGULAR SET AND EXPRESSIONS

l, . 5. li. 6 CASCADE COMPOSITION OF SELECTONS

l, .6 FORMAL LANGUAGES GENERATED BY SELECTONS

li. 7 PUSHDOWN SELECTON AND CONTEXT FREE LANGUAGE

l; .8 COMPUTATION AND FRAME SELECTION SYSTEM

5. A FRAME PROGRAMMING LANGUAGE

5.l. PREVIOUS FRAME PROGRAMMING LANGUAGES

5.l.l. SETRAN-HIP

5.1.2 FOPS

5.2 A FRAME PROGRAMMING LANGUAGE (FPL)

5.3

5.2.l. BUILDING AND FILING OF FRAMES

5.2.2 GENERATION OF SELECTION INSTRUCTIONS

SOME EXTENSIONS TO THE FRAME PROGRAMMING LANGUAGE

5.3.1 STRING PUSHDOWN STACK

5.3.2 PROCEDURE STACK INSTRUCTION

5.3.3 THE SEMANTIC RELATION BETWEEN FRAMES

5.3. l. DUPLICATION INSTRUCTION

5.3.5 DATA BASE DESCRIPTION INSTRUCTION

6. IMPLEMENTATION OF A FRAME SELECTION SYSTEM

6.l

6.2

6.3

BASIC OPERATING SYSTEM CONCEPTS

6.l.l SEQUENTIAL PROCESSES

6.l. 2 PARALLEL SEQUENTIAL PROCESSES

6.l. 3 COOPERATING SEQUENTIAL PROCESSES

6.l.. l; SYNCHRONIZATION AND MUTUAL EXCLUSION

6.l.l..l SEMAPHORE

6.l.. l.2 SYNCHRONIZING PRIMITIVES

6.1.5 INTERACTION AND DEADLOCK PROBLEMS

A TRANSACTIONAL OPERATING SYSTEM

6.2.1 OBJECTIVES

6.2.2 TRANSACTIONAL PROCESSES

THE ABSTRACTIONS AND LAYERS OF THE OPERATING SYSTEM

6.3.l. INTERRUPT PROCESSES

6.3.2 INPUT-OUTPUT TRANSACTIONAL PROCESSES

6.3.3 SCHEDULING AND MULTIPROGRAMMING

6.3. l. THE FRAME SELECTION LAYER

6.3. l. l THE EDITING MODE AND THE SELECTION MODE

6.3. l.2 THE SELECTION EXECUTOR

viii

8.

6. l; THE FILE SYSTEM

A PHARMACY APPLICATION, UTILIZING THE FRAME SELECTION SYSTEM

T. l

7.2

7.3

7. l;

7.5

7.6

7.7

REVIEW OF PHARMACY COMPUTERIZED SYSTEMS

THE REQUIREMENTS AND THE CONSTRAINTS OF THE PHARMACY APPLICATION

7.2.l OBJECTIVES

7.2.2 CONSTRAINTS ON SYSTEM DESIGN

7.2.3 HARDWARE SELECTION

THE DATA FILES IN THE PHARMACY APPLICATION

7.3. l THE FRAMES

7.3.2 THE FORMULARY

7.3.3 THE PATIENT PROFILE

BACK UP AND RECOVERY PROCEDURES

THE DIFFERENT FUNCTIONS AND PROCEDURES OF THE PHARMACY
APPLICATION

7.5.1 THE LOG IN PROCEDURE, THE MAN INDEX AND FUNCTION BUTTONS

7.5.2 PATIENT'S PROFILE

7.5.3 THE DRUG ORDER INDEX

7.5.1, CREATION OF A NEW DRUG ORDER

7.5.5 INTRAVENOUS ORDER

7.5.6 PREOPERATIVE DRUG ORDER

7.5.7 NON-FORMULARY DRUG ORDER

7.5.8 MODIFICATION OF A DRUG ORDER

7.5.9 THE BLOCK TIME FILLING PROCEDURES

THE WARD STOCK ORDERING

THE MEDICATION ADMINISTRATION SCHEDULES

CONCLUSION

ix

APPENDIX

l.

2.

3.

BNF SYNTAX SPECIFICATION OF THE FRAME PROGRAMMING LANGUAGE

OPERATING SYSTEM PRIMITIVES FORMATS

MEDICATION ADMINISTRATION SCHEDULE SAMPLE

Chapter l

Introduction

" Ce n'est point de l'espace que je
dois chercher ma dignite', mais
c'est du reglement de ma penseé .
Je n'aurais pas davantage en
possedant des terres. Par l'espace
l'univers me comprend et m'engloutit
comme un point , par la penseé je le
comprends . "

Blaise PASCAL Penseès

l. INTRODUCTION

The advancement and usefulness of technology can frequently be mea

sured by the success of its medical applications: chemistry gave drugs

and more insight into the biological processes; physics gave x-ray and

nuclear medicine; mechanics gave motors and engines for dialysis, trans

fusion, reanimation, etc.; electronics gave pacemakers and the monitoring

of acutely ill patients.

It would be incorrect to say that computer science and data proces

sing did not contribute to the medical field, but it is also true that

their impact is not as yet as important as other branches of technology.

The reason for this can be explained partially by the immaturity of the

field, but also by a fact which is often overlooked: data processing

did not start with the existence of computers and therefore there is no

immediate need for their use in the medical environment as long as the

function of data processing can be achieved by other means in a more

satisfactory fashion.

Following the examples of other technologies: an x-ray machine can

not be replaced by human vision or a camera, penicillin cannot be re

placed by a good meal, a cardiac pacemaker cannot be replaced by auto

suggestion, etc. It seems therefore that a technology becomes useful

for the medical field when it provides a service that cannot be obtained

by other means and which is necessary or useful for the diagnosis and

treatment of patients or the administration of the health care system.

It follows from these remarks that computers will be recognized as

necessary and useful in the medical field if and only if they can pro

vide information that could not be as effectively produced by other means

and which is useful in the treatment and diagnosis of diseases.

* *

-

-

- - -

-

• *

* * *

. - - - - * -

- - - -
- s

-
-

- -- -

- - -* ~ sº

If this statement is true then there is no doubt that in the long

run this goal will be achieved and that computers will provide "a service"

that nothing else could supply namely: speed, accuracy and consistency.

The issue is now to show that these services are "worth their price" and

can be achieved (at a worthwile level) with this technology. However,

the analysis of cost effectiveness is even more difficult than for other

technologies:

- a dialysis machine can be immediately justified by counting the

number of persons which cannot survive without it

- a computer system will not directly save lives but it will in

directly provide a service that may prevent some deaths or ill

neSS eS,

The previous statement should therefore be reformulated: computer tech

nology is becoming cheap enough so that it should be possible to demon

strate to medical professionals and administrators that a computer sys

tem could provide services that cannot be obtained otherwise. The

challenge is therefore to build systems which are sophisticated enough

to help the physician without being too costly to develop and to support.

The purpose of the following dissertation is to study frame selec

tion systems and languages, and their applicability to the medical field.

From a user's standpoint, a frame selection system is an interactive

system using cathode-ray tubes (CRT), equipped with selection devices

such as, light pen, joystick, etc., used as a primary input mechanism.

In such a system the CRT images presented to the user are called frames

and different frame structures can be built for specific applications.

Chapter 2 presents a short review of medical information systems

(MIS) and looks at the different approaches already taken to build

~

*

-

y

medical applications. The most comprehensive and most recent systems

have used a method similar to the frame selection approach, but very

little is known about the capabilities of such systems. Hence our in

terest in the subject is motivated by the need for an analysis and a

more formal study of such systems and their linguistic capabilities.

Since the area of medical information science is not yet a well

delimited field with well defined boundaries, Chapter 3 is devoted to

the concepts of information from different points of view: information

theory, semantic theory, and linguistic theory. This is done by empha

sizing the fact that all connotations of information are related to the

selection power of an object from a class of possible objects. A brief

study of the particulars of medical information follows.

The first section of Chapter l is a study of the static properties

of the frame selection systems; some new concepts are introduced: sel

ection process, selection formulas, frame decomposition, frame struc

tures (lattice or digraph). The next section of Chapter l; defines a mo

del applicable to the concept of frame selection system: the model is

a finite state machine called selecton which directly mimics the behavior

of frame system and generates regular strings. However, the selecton

model is not used as a recognizer of strings, but like a grammar, it is

used to generate strings resulting from selections inputs. The frame

structure is used to encode the grammar of a regular language. Similarly,

the addition of a pushdown stack enables the model to generate sentences

of a context free grammar encoded in the frame structure. Finally, the

introduction of procedures, which can be executed as a result of a sel

ection gives to the model the capability of generating some transforma

tion on strings and allows the generation of sentences of context sen

sitive languages.

In Chapter 5 this type of frame selection system which has the ca

pability of generating syntactically correct sentences of any language

is used to define the concept of a frame programming language. A frame

programming language is a language used to build frame selection appli

cations, and can be, itself, a frame selection application. This method

enables the immediate parsing of the sentences generated and the com—

pilation process can start directly at the code generation.

An implementation of a frame programming language is presented and

a real-time operating system designed for the support of frame selection

system applications is described in Chapter 6.

The last chapter is a description of a pharmacy ordering system,

developed as a frame selection system at the Medical Center of the Uni

versity of California at San Francisco.

Throughout the text, the pharmacy application will be used as a con

crete example to show the usefulness of the concepts. Conversely, the

more abstract concepts will show that the same methods can be used suc

cessfully for other applications in the medical information field.

Chapter 2

Review of Medical Information Systems

"The modified offspring from the later
and more highly improved branches will,
it is probable, often take the place of,
and so destroy, the earlier and less
improved branches."

Charles Darwin

The Origin of Species

* *'s sº

ºv. - * v-2 ~~ : ."

- a a w, ºn nºt r, 12" " , , ■ = { * : rs, sº sº."
| , ; v = ~ a , , ; ■ º a v . . v. lºw f \ . . . n 1 , | < , , sº ■ º e

* { * > * r * * * * * , , ... = . . . e.t. --rºl ºn 1 + º= , = , ,
... . . . ", " : * ~ * ºr 11c - ... : J ºr 2 r ºr t ...”

" * > ~~, 32, i

*tº 1 tº of 1 o – ' , o, .

…” * , , , , ; ºn -- -----

2. REVIEW OF MEDICAL INFORMATION SYSTEMS

The concept of a medical information system refers to the data

handling and communications taking place in a medical facility (hospital

or clinics.) Several studies have shown [COL70] that approximately one

fourth of total hospital costs are related to information processing.

The primary source of information is still the patient, but with the

growth of medical knowledge and advance of technology, the production

of clinical data relating to the patient has been split into several

specialized production centers (nursing wards, admissions, clinical lab,

pharmacy, pathology lab, microbiology, radiology, etc.) which are geo

graphically separated. Therefore, medical information is processed and

aggregated by a complex system which includes several types of profes

sionals: physicians, pharmacists, nurses and technicians. Such a sys

tem can be viewed as a communication network with several processing

centers [BLO71].

In the last decade several attempts have been made to automate such

systems, but very few seem to be recognized as successful. In the USA

the principal reasons for adoption of such systems are cost savings, and

improved information processing: the first argument is purely economic

and managerial, the second is frequently limited by the problem of man/

machine interaction.

A great variety of approaches have been taken, but so far the most

successful systems seems to be those which have a limited scope such

as clinical laboratory systems [BRE71, JOHTl), pharmacy systems [COH72,

GOUTl), and medical history systems (SLA66]. Among the more comprehen

sive systems are those research projects or commercial systems which

were designed to be used by more than one department.

The following review will not be exhaustive but we will look at the

better known and representative types of system. For a more complete

survey see [BAL71;) which reviews the existing systems.

2. l CARD-ORIENTED SYSTEMS

It is not our intention to consider the early billing and accounting

systems as medical information systems. However, among the commercial

systems which use punched cards as data input medium one of them deserves

some attention: the MEDELCO total hospital information system. Although

it is not a highly sophisticated system it is one of the few systems

that became operational and has been duplicated at more than a few sites.

The analysis of this commercial success seems to be due to two

factors:

- the first is the recognition of the communication aspects of

medical information systems

- the second is that it does not try to solve the particularly

difficult medical record problem

It is a communication system of medical orders originating on the

wards and it transmits orders and requests to and from the nursing

stations. The data entry is done by pre-punched cards for each order,

service, or product available in the hospital, and each order card is

accompanied by a patient's card which has been typed and punched at the

time of admission of the patient. When the cards are read, the data is

also printed at the originating station and will be inserted in the

patient's chart.

The system does not have to face the problem of man/machine inter

action because it replaces paper requisitions by pre-punched cards and

teletype printers. Since the system appears to be cost-effective and

accepted by the nursing personnel, it can be considered a success and

|-·

*|-
·

·

·

|-

·*·•--------|-•----
·*

|-*
.

•■

*

~·

,----
·

|-

it may be considered as a first step toward the development of more

sophisticated medical information system. The system has been partially

emulated by several small vendors (Metric) and IBM using programmable mes

sage switchers and newer card readers.

2.2 COMPUTER TIME SHARING SYSTEMS

More sophisticated systems are offered by computer time-sharing

systems. The advent of computer time-sharing has greatly affected the

data-processing field and can be characterized by two main advantages

over the batch-systems:

- easy accessibility and possibility of man/machine interactions

- development of conversational system and languages

A good example of such type of systems is MUMPS (Massachussetts Utility

Multiprogramming Systems) developed at the Massachussetts General

Hospital [BAR67].

MUMPS is both a time-sharing system built on medium-size computers

and a high-level programming language [BAR70] for the development of

medical applications. The MUMPS system made a major impact in the field

of MIS because it demonstrated the validity of the following hypotheses:

- necessity of a new software tool: language designed for medical

applications

- feasibility of implementation on medium and small computers

- importance of the files and data-base structures

However, at the same time, MUMPS design suffers from its historical past:

- the interpretative nature of the language certainly offers more

flexibility for the development of programs, but it becomes a

serious hindrance in a production environment. The ease of

debugging and development of programs should not be paid by the

l()

constant overhead of interpretation when the programs are opera

tional and used on a routine basis.

- The language itself suffers from a lack of structuring features

which is worsened by the necessity of sparing disc and core me

mory space by using abbreviated source code (which has the con

sequence of reducing the internal documentation to a minimum.)

- The data base file system although quite flexible suffers from

the high overhead necessary to access the data elements which are

stored in the "leaves" of tree-like structure. (There is a high

input-output demand from the secondary storage to the main memory

when a data element is needed.) Furthermore the modern techniques

of data-base management have shown the necessity of separating

the data from its structure and description in order to avoid a

unique binding of the data.

- Another historical feature of the MUMPS system is the fact that

it was designed for teletypewriter interactions. This is accept—

able for motivated users in a research environment but becomes

unacceptable for a production environment where physicians and

nurses are not accustomed to and resent using typewriters. The

replacement of such terminals by CRT terminals does not solve

this particular problem because the structure of the dialogue

remains the same: a question is followed by an answer which has

to be typed in.

—Finally, although MUMPS systems can be built in a modular fashion

[BAR71;), it is difficult to link different systems in an efficient

manner to insure the fast communication of data from one module

to another.

ll

Nevertheless, MUMPS applications are among the best known systems which

are truly medically oriented. This is certainly due to the inherent

concern of the designers to build a tool which was adapted to the need

of the medical field and to develop applications with the participation

of the future users.

In this sense, MUMPS must be considered a success because it meets

the original requirements of specificity and adaptation to the medical

field. However, if we consider the field as an applied research area in

which some progress is to be made, the question to be asked is: given

the existence of such systems and the present technology, is it possible

to keep the positive attributes of earlier systems and to remedy as much

as possible their recognized shortcomings?

Following the analysis of MUMPS, another time-sharing system should

be mentioned for its relevance to the field; it is the ACME system

(Advanced Computer for Medical Research) developed at Stanford [CRO69,

WIE69]. Here also the project is based on the recognized need for a

high level programming language which allows an interaction between the

user and the machine.

The language developed on a PL/I subset called PL/ACME [BREI68] is

also an interpreter, but here the overhead problem associated with the

interpretative execution was solved by using a medium size computer with

an extensive main memory capacity. The ACME language has, in many res

pects, more modern features than MUMPS (possibility of structuring pro

grams, extensive arithmetic capabilities as well as string manipulation,

extensive file structuring capabilities) [WIE70], and is also adapted

to the development of interactive and real-time medical applications.

However, ACME was more intended for research purposes than for

l2

production purposes and a good example is the pharmacy drug-drug inter

action project [COH72] which was initially developed on ACME and then

transferred to a MUMPS system when it was decided to use it in a pro

duction environment. Although many interesting research applications

have been developed on ACME it has never been used as a basis for a pro

duction of a total medical information system.

The most interesting results from ACME may not be the language

itself, but the data-base concepts that have emerged from the actual use

of the language and system. The concept of time oriented data bank (TOD)

[FRIT2] and the formal approach to data base design which separates the

data from the structure in the form of data-base schemas [WIE72] is the

most interesting and promising fall-out of the ACME project.

Unlike MUMPS, ACME has not been exported because of its major cost

but it is most likely that the data-base approach will have to be con

sidered in the design of new medical information systems. The new

generation of powerful mini-computers makes it reasonable and possible

to implement such data base concepts on rather small systems therefore

reducing the cost of the hardware for supporting such a system.

Another interesting operational medical application developed with

computer time-sharing techniques is the system developed at the Texas

Institute for Rehabilitation and Research [WAL68].

The system was designed on a medium size computer with CRT terminals

through which data is entered and retrieved via keyboard entered codes

and was programmed in a high-level programming language (PL/I].

Although the system was developed in a specialized environment,

several applications have been implemented; admission and bed census,

patient treatment scheduling laboratory reports and hospital management.

••

l3

At the same time, the system allows for clinical data processing for

research purpose and assists the physician in the decision-making for

patient management. The system also provides the functions necessary

for general acute care hospitals (physiological monitoring.) However,

despite the fact that the system was successfully implemented and is

still operational, it has not been transported to other institutions

because most of the application programs were specifically related to

the specialties of that particular institution.

2.3 THE MENU-TREE SYSTEMS

At the same time, that MUMPS and ACME were pursuing the route of

conversational languages and time-sharing, several commercial attempts

were made to build real-time and interactive medical information systems.

The best known of which are REACH, LOCKHEED (later TECHNICON), SANDERS

(KAISER), CONTROL DATA, SPECTRA MEDICAL. [BALTh, SCHW72]. These systems

were designed for the input of medical orders generated on the wards and

their communication to the different departments (laboratory, x-ray,

pharmacy, etc.) In return these orders generate responses or results,

and the data is stored in a computerized record created at the admission

of a patient. These record files will serve as a data base for the

generation of a variety of CRT displays and printed reports. At the

same time the data can be used for the patient's billing and for ac

counting purposes.

The most striking commonality of these systems is the way they

approach the problem of man/machine interaction. Every one of them

differs in the implementation but the common basic concept is a "menu

tree" type of system. They are called menu-tree systems because the

input is accomplished by reproducing the technique used to order a menu

**

º

º

ll,

in a restaurant: one may first select an "hors-d'oeuvre" from the list

provided, then a main dish from the list of meat or fish, a beverage

from the list of beverages, etc. The method allows the composition of

a multitude of meals from a finite list of items.

Since a major portion of the medical information being processed

is in the form of messages which have to be transmitted from one point

to another (communication) this approach is in fact adapted for the

building and transmission of messages (medical orders, results, requests,

etc.) It can be implemented with a CRT associated with a selecting

device such as light pen, sidescreen buttons, joystick, touch screen,

etc.

The main advantage of the method is that typing is not required

for most of the messages and by selecting phrases to build the messages

the process of data entry is accelerated. The user has the impression

of having a "phrase typewriter."

Besides the fact that a menu-tree method avoids the necessity of

typing, it is interesting because of the exponential ramification of

trees: if each CRT image contains n choices, at the second level there

2are nº possible different choices and n3 at the third level and so on.

n3

Figure 2.l – Generalized "Menu-tree"

lS

This type of tree is called a generalized menu-tree (it can have as

many levels as desired.) Example: for n=30, the third level gives

303= 27,000 choices. With four levels one could access 810,000 items

which is certainly enough to access all the words contained in Websters

dictionary plus all the medical vocabulary.

Another advantage of the method is that it does not require any

computation (a selection is the expression of one's freedom of choice on

a given set) as opposed to a typed or punched word which must be looked

up in a dictionary to be validated.

However, most of these systems have been restricted to simple trees

and do not allow loops and more general graph structure. It is there

fore difficult to encode the complexity of some medical orders or sen

tence constructs. Despite the fact that this type of man/machine inter

action was more readily acceptable than a typewriter keyboard, these

commercial systems failed to be widely accepted because they were too

costly or did not meet the expectations of the medical professionals.

These failures can usually be traced to three factors:

i) the designers deliberately or unconciously ignored the modular

approach and had to use complex and expensive equipment.

ii) the designers did not have a clear appreciation of the complexity

of the medical record.

iii) the reliability and acceptability to the users (especially the

convenience of the terminals and an adequate response time) were

difficult to meet.

The first error can clearly be corrected by using a modular approach

but the second one is more difficult to prevent because of the variety

of schools concerning the medical record and the engineering tendency

l6

to believe that everything can be quantified, planned, and standardized

in a rigid fashion.

The third factor is more related to the engineering design. The

usual assumption is that a MIS is just an application system that can

be built on any standard operating system. On one hand, there exists

the standard real-time operating systems which allows a fast switching

between tasks and users but do not support sophisticated data base sys

tems, and on the other hand, there are the standard multiprogramming or

time-sharing systems which may have suitable data base features but do

not have the efficiency to give quick response time for urgent requests.

The result is that if one chooses the first type of system ("stan

dard real-time") a great deal of system work has to be done on the file

and data base structuring; if one chooses the second type of system, it

becomes a "fight for adequate response time" which is either solved by

programming tricks or by switching to a larger machine. This in turn

accounts for the fact that many of these projects have been delayed and

had unexpected development costs.

The conclusions from these attempts to build comprehensive medical

information systems are that most seem to agree on the suitability of

the CRT menu-tree interface, but difficulties arise because the hospital

wide approach is intimately related to the medical record problem. In

addition, this total approach represents a gigantic effort which requires

not only technical skills but also an explicit and detailed knowledge

of the hospital processes. The main part of this knowledge is not ne

cessarily represented by the routine functions but also by all the

special cases, the exceptions and emergencies and the parallel data paths

developed to shunt the regular paths. This knowledge can only be

lT

obtained by working in full cooperation with the hospital personnel

(not only physicians, but also pharmacists, nurses, technicians, clerks,

etc.) To be successful, the personnel must be prepared technically and

psychologically to use new techniques and machines.

2. l. FRAME SELECTION SYSTEMS

Another type of system which is closely related to menu-tree sys

tems is the frame selection system. A frame selection system differs

from a pure menu-tree system by allowing a more general structure

between the CRT displays (frames.) Instead of being a tree the struc

ture can be any graph.

The mechanism of man-machine interaction can be identical to the

ones used for the menu-tree systems and therefore all the advantages of

such devices can be applied to a frame selection system.

Although the term frame selection system was not used the first

system of this type was developed at the Western Reserve University in

cooperation with Control Data Corporation and then pursued at the

University of Vermont [WEE69]. Such a system has been used for the im—

plementation of a prototype computerized Problem-oriented Medical Record

[SCH71]. It uses a touch-screen device for the selection of items on a

display. This work is particularly interesting because unlike the pre

vious commercial systems, the subject of medical information systems was

approached through a careful analysis of the medical record and a clear

philosophy of organization of the medical record.

For the reader not familiar with the Problem-oriented Medical

Record [WEE68] it is a record which is organized by defining, enumera

ting and following the problems of the patient. These problems may or

may not be associated with a diagnosis depending on the completeness of

18

the data and the ability of the physician, but each problem must be

followed, and each action taken to get more data or to treat the patient

must be related to a given problem. Each result and progress note is

also related to the problem list. The advantage of the method is that

it requires a systematic approach to the treatment of patients which is

useful for teaching and also for record-structuring purposes. In a con

ventional medical record, where the data is source-oriented, the orga

nization tends to be diffuse and the interpretation of the data by a

reading physician is more difficult.

Among all the systems operational or in a prototype stage Weed's

system is certainly the most comprehensive, the most medically-oriented

and the most useful for its users and patients. However, in regard to

the design concepts already mentioned, at least one concept is clearly

missing: modularity and low cost.

This may account for the fact that this system which has a great

potential in educational institutions has not been exported because of

the major cost associated with the support of a large time-shared sys

tem. A computerized problem-oriented medical record system could be

used as a teaching tool if it was available on a mini-computer which

could work alternatively on a medical ward, surgical ward, pediatric

ward, etc., by simply moving the terminals from one place to another.

Not only could this method serve a teaching purpose, but it would help

the progressive improvements of the system and the smooth introduction of

computers in the daily routine of patient care.

Weed's computer system is also associated with a language called

SETRAN (selectable element translator) which is used to build the bran

ching logic of the display frame structure.

19

Although this language allows the building of a more general struc

ture than a regular menu-tree (it allows multiple selection and loops on

frames,) it is still rudimentary in many respects because it uses fixed

format fields and octal codes to specify the different fields. When the

number of frames becomes as high as H0,000 as it is in Weed's prototype

implementation of the P.O. M.R., it is certain that the use of octal

codes to link these frames becomes cumbersome if not unrealistic.

The problem of frame languages will be studied later and a more

thorough analysis of SETRAN will be done, but it is fair to say that at

the time it was conceived, the nature of frame selection systems was not

well understood.

20

Chapter 3

Theories of Information and their Applicability to Medical Data

"The importance of originality is self
evident. Selective emphasis on one par
ticular aspect of reality, with its con
commitant exaggerations and simplifica
tions, is the essence of model - making
and plays almost as great a part in the
changing fashions and schools in science
as in art."

Arthur Koestler

The Act of Creation

J. L. ºf . » frn

** * * *-a *** *

-

■ º, † - fºr -, +

2l

3. THEORIES OF INFORMATION AND THEIR APPLICABILITY TO MEDICAL DATA

The study of languages and signs, also referred to as semiotics,

can be studied [CHE66] at three differents levels of abstractions: syn

tactics (signs and relation between signs,) semantics (relation between

the signs and their designator,) and pragmatics (aspects which involve

the sign users.) It could be extented to include the notion of lexical

level.

These four levels can be represented by the following schema:

Semantics

Syntactics

Lexical
Level

Cherry [CHE66] remarks that "information in most, if not all of its con

notations, seems to rest upon the notion of selection power."

Information theory regards the information source as exerting a se

lective power upon a collection of lexemes. A lexeme is the orderly se—

lection of the signs, but not the physical signs that are word-tokens or

utterances themselves.

At the syntactic level, the generation of sentences is done by the

selection of production rules constituting the grammar.

In the semantic theory of Carnap, the information content of state

ments relates to the selective power they exert upon a set of states.

- - -

* - • * ,

-

- - * . -

*

-

º

-

*-

- - - -

- -

- -
-

º - - - - - -

22

At present, no formal theory has been published for the pragmatic

level, but to a certain extent the information associated with the prag

matic level depends also on a selective power exerted on the environment,

the culture, the knowledge and the experience of the individual.

In the following, we present briefly the existing theories corres

ponding to these different levels: information theory, semantic theory,

and syntactic theory.

3. l INFORMATION, COMMUNICATION AND DATA

Before starting to use the terms information, communication and

data, it is necessary to define their meanings precisely. Brillouin

[BRI62] states that "science begins when the meaning of the words is

strictly defined." The Third Webster's Unabridged Dictionary defines

the word information as follows:

"the communication or reception of knowledge or intelligence...know

ledge communicated by others or obtained from investigation, study

or instruction. ... knowledge of a particular event or situation: in

telligence, news, advice... facts or figures ready for communica

tion or use as distinguished from those incorporated in a formally

organized branch of knowledge: data... a signal purposely impressed

upon the input of a communication system or calculating machine..."

Although this definition might be sufficient for the common use of the

term information, it is imprecise and does not tell how the words, infor

mation, communication and data are related. In fact, this definition

suggests that these terms are analogous.

It is therefore not surprising that these terms are easily misunder

stood and confused unless we restrict their use to the same precise

meanings that they have in areas such as information theory, computer

23

sciences and linguistics, where their formal definitions may differ from

one area to the other.

3. l. l INFORMATION

In L. Brillouin's book Science and Information Theory, [BRI62], he

distinguishes two types of information:

i) live information - which is transmitted with the energy required

for its detection (speaking, radio broadcasting.)

ii) dead information - this type of information is involved in the

process of writing and reading. The information is stored and

unconnected with either energy or negentropy but an additional

source of energy is necessary for the reading (light.)

information and entropy - the theory of information shows that

information and physical entropy are of the same nature, and

entropy can be viewed as a measure of the lack of detailed infor

mation about a physical system. Conversely, information repre

sents a negative term in the entropy of a system (negentropy.)

This is due to the fact that from a purely thermodynamic point of

view, no observation can be made on a system without increasing the

entropy in the physical system itself or in the equipment used for the

experiment.

If an observation yields a certain amount of information AI and the

entropy increase is AS during the experiment, the negentropy principle of

information states that: AS2AI or AI + AN KO where AS* AE/T (or AQ/T)

and AN= - AS (N is the negentropy) E is the amount of energy that must

be degraded.

The purpose of an observation is to obtain some information about

the system, and information can be viewed as the ratio of number of

2l,

possible system—states before and after the measurement.

If po is the number of equally probable states before the measure

ment, and p1 the number of such states after the observation, the infor

mation gain is defined by:

AI= k log (po■ p1)= k log po - k log pl
This definition of information is related to the freedom of choice

that one has to select a given representation of a system.

Shannon's theory of communication [SHAh9] defines the amount of in

formation as the logarithm of the number of choices available. If one

considers the process of producing a message by successively selecting

discrete symbols (letters, words, musical notes, etc.,) the information

associated with the message constructed corresponds to the freedom of

choice one has in constructing the message. Shannon extends this to the

case of n independent symbols whose probabilities of choices are po, pi,

• * - Pn (they represent the constraints on the freedom of choice). The

corresponding information is defined as:

I=- Epi log pi

If all the pi are equal that is, pi- l/n. Then I= - 2 l/n log l/n= -log

l/n= log n which is consistent with the previous definition in the case

of equiprobable choices. It results from this that every type of cons

traint, every additional condition imposed on the possible freedom of

choice immediately results in a decrease of information and I is maximum

when all the choices are equiprobable.

Shannon defines a relative entropy as the ratio of the actual entropy

to the maximum entropy and the redundancy as equal to l – relative entropy.

For example, the maximum information which corresponds to the maximum

entropy of a character selected from a set of 27 symbols (26 characters +

25

blank) would be log2 27 = 4.76 bits per letter. If one computes the

frequencies of words and letters in English, the information (actual

entropy) carried by a letter would be 2.ll, bits [BRI62] so that the

redundancy and relative entropy of English is approximately 50%. There

fore, when one writes English (or any natural language), half of the

text is chosen freely and the other half is determined by the structure

of the language. The consequence of this statistical definition of in

formation is that:

- information is related only to the freedom of choice

– information is distinct from meaning and from knowledge

– it ignores the human value of information (i.e. a text of l,000

letters selected at random carries more information than a poem

consisting of the same number of letters)

– information cannot be used to predict the next choice

- information must be paid for by an amount of negentropy greater

than or equal to the information obtained.

3. l.2 COMMUNICATION

Information as defined by Shannon is concerned with the technical

problem of communication of live information created by a source. In the

process of communication, an emitter transmits energy (power) and negen

tropy which are propagated together with information on a communication

channel and a receiver absorbs the energy and negentropy in the same

operation by which information is received. In the process of trans

mission some energy is degraded, some negentropy is lost and some

information is lost.

The capacity of a channel C is defined as the number of bits, it can

transmit per unit of time (second). In order to transmit information,

*

26

the emitter (source) generates a message which is then encoded by a

transmitter which sends a signal on the channel and the receiver decodes

the signal into a message which cannot carry more information than the

message emmitted. If the source emits symbols carrying an information

of I bits per symbol, the fundamental theorem established by Shannon

states: if the channel has a capacity of C in bits/second, it is not

possible to transmit at an average rate greater than C/I symbols/second.

If the channel is noisy, the uncertainty is increased and the received

signal contains paradoxically more information than the emitted signal.

However, one has to separate this information into two parts: the

useful information and the noise information. In this case, there are

two statistical processes at work: the source and the noise. Let I (s)

be the information of the source and I (r) the information of the

received signal. Ir (s) is then defined as the information contained in

the input when the output is known and Is(r) (noise information) is the

information contained in the output signal when the input is known.

Ir(s) is called the equivocation and measures the ambiguity of the

received signal or the uncertainty in the message source when the signal

is known. The total information carried by the system of communication

is:

I(s;r)= I(s) + I,(r)= I(r) + I,(s)
and the useful information transmitted in spite of the noise is:

I(r) - I,(r)= I(s) - Ir(s).
Therefore, the capacity of a noisy channel will be defined as C= max

[I(s) - Ir(s)], the maximum being taken on all the possible sources of

input to the channel.

The fundamental theorem [SHAh9] states that given I(s), I(r) and

27

C in bits per second, such that C2I(s), then by an appropriate coding

the message emitted by the source can be transmitted over the channel

with an arbitrarily small error rate. Stated in other words, this im–

portant result shows that it is possible to transmit a message on a

noisy channel by adding some redundancy in the coding process so that

the receiver will be able to reconstruct the original message despite

the noise created on the channel.

Since human communication is imperfect and subject to errors and

noise, any message must be transmitted with some redundancy to be reliably

interpreted by the receiver. The degree of redundancy depends on the

desired reliability and the technical medium used. In human communica

tion, it is probable that the 50% redundancy of natural languages is

necessary to enable the recognition of messages transmitted verbally.

3. l. 3 DATA

From an information theoretical approach, data can be viewed as

Jead information which has been written on a memory medium (stone, metal,

paper, magnetic tape, film, electronic memory, molecular structure.)

This data has usually been collected from observations of the real world.

It must be emphasized that the concept of information exists in

dependently of any memory concept, but the concept of datum is tied with

the existence of a memory medium. Conversely, data can become information

only if it is associated with the energy (light, electricity, etc.)

necessary to read the memory medium. Data is always associated with a

given state of the physical world, and as such is subject to the general

law of decay according to the second law of thermodynamics. Therefore,

if data is to be conserved as a source of potential information, it must

be stored with a certain amount of redundancy.

:-

28

Computing and Data: It is often believed that computing generates

new information from data. This is not really true. Although it

may seem that a computer program creates new results that did not

exist before the execution of the program, no new information is

created, and the computation only gives a set of data which is

redundant with the original data. At best, this data set contains

as much information as the original set.

Usually the effect of computation is to reduce and transform the

information contained in the input data into a more useful representation

of information contained in the output data. The usefulness can refer

to either the meaning, or the most salient features contained in the

data. The role of computing is either to translate or to aggregate.

Data can be reformatted and displayed in a more convenient representa

tion for viewing and analyzing the most salient aspects of these data.

For example, given a set of data measurements in the metric system, a

computation can give the value of the measurements in the British system

(no new information is created, it is merely a translation.) Another

case is the case where the computation will, for instance, give the mean

and the variance of a set of values (the information is reduced and

aggregated into new results which are possibly more meaningful for the

reader.)

Therefore, the task performed by a computer is to translate or to

summarize the information contained in the data. Computing only adds a

utility value to the information and this utility value may vary among

the users. The recent development of data bases [COD70] shows that

common data can be treated by different types of users to provide

different types of analyses and results.

29

3.2 SEMANTICS AND INFORMATION

The preceding definition of information is based exclusively on the

mathematical theory of communication. It was already mentioned that it

did not take into account the value of information. The problem of

understanding the meaning of the messages is not considered and the

receiver is supposed to know the structure of the language used in the

communication process.

From a communication point of view, information is a scalar measure

of the information carried by the message when the redundancy due to the

internal structure of the language has been removed. This structure can

be physical, logical, syntactical, and/or semantic, but in order to be

able to give a meaning to a message the receptor must have the physical,

logical, syntactical and/or semantic structure encoded in its own memory.

(The sender and the receiver must share a universe of discourse – if

human.)

It is therefore important to consider the information contained in

these structures. A physical structure such as the geometrical structure

of an object is always more difficult to code than the word that represent

the object. It requires more information to describe the object in the

three dimensional space than to define the word in a given alphabet.

This is how any language is able to perform its functions. By

associating words with complex objects it can convey much more informa

tion than is in reality given by the free choice of the word in a given

language or the letters of a given alphabet. This kind of information

is referred to as semantic information and it must be learned by ex

perience. Semantic information seems to be related to experience as

opposed to the previous which was more related to observation.

30

In a first approximation semantic information is related to the

complexity of objects (shape, structure, etc.) and to the description

of time relations (verbs.) The introduction of logic is the next step

which enables the building of new concepts by defining sentences using

words already defined and the basic logical connectives:

Tl not negation

V or disjunction

/N and conjunction

-) if ... then implication

E if and only if equivalence
(also called iff)

According to logical rules every sentence can be evaluated as logically

TRUE or FALSE. From a pure information theoretic approach, it would

seem that such sentences always carry an information equal to unity.

However, a sentence such that: "IF John is sick THEN John is sick."

while logically TRUE, actually carries no semantic information because

it is a tautology.

It is not our intention to pursue further the consideration of this

part of logic known as the propositional calculus but the point is that

even in natural languages the introduction of logic is essential to study

the semantics of sentences.

The introduction of two other operators known as the universal

operator (W for all) and the existential operator (3 : for some, there

exists) enables the definition of sentences which can be decomposed in a

structure of the type "subject/predicate." The subject is an individual

taken from a set of possible "values" and the predicate is a proposition

where the subject is replaced by a variable: "x is a sick man" is a pre

dicate and "John" is a possible subject among the set of men.

31

The predicate carries the semantic information and the subject re

presents the "freedom of choice" of an element among the finite set and

can be considered as giving a certain amount of information in the sense

of information theory. Thus semantic and statistical information are

interrelated: a certain freedom of choice is allowed in some "empty

space" of a given predicate which specifies the semantic of the sentence.

The semantic theory [CAR56] defines truth and L-truth (logical

truth) of sentences as follows:

In a system S an atomic sentence consisting of a predicate and a

subject is true if and only if the individual to which the subject refers

possesses the property to which the predicate refers.

A class of sentences in S, which contains for every atomic sentence

either this sentence or its negation, but not both, and no other sen

tences, is called a state description in S because it gives a complete

description of a possible state of the universe of individuals with

respect to all properties and relations expressed by predicates of the

system.

A sentence is L-true if it holds in all state descriptions. Two

sentences are equivalent if both have the same truth value, that is

both are true or both are false. Two sentences are L-equivalent if they

hold in the same state description.

In this semantic theory the meaning of any expression is decom—

posed into two meaning components: the intension and the extension.

Two sentences have the same extension if they are equivalent in S

and have the same intension, if they are L-equivalent in S. The exten

sion of a sentence is its truth value and the intension of a sentence is

the preposition expressed by it.

32

For example, the extension of the sentence "John is ill" may be

true or false and the intension expresses the fact that John is ill.

The extension is clearly related to the freedom of choice in the

description (John may be ill or well.) The determination of the exten

sion can be done by a scientific investigation and as such may be subject

to uncertainty and error.

The intension of a predicate Q for a speaker X is the general con

dition which an object y must fulfill in order for X to be willing to

ascribe the predicate Q to y.
-

Once the extension has been determined, the assigment of an inten

sion to a sentence can also be considered as a matter of choice: in our

previous example, assuming that somebody ignorant of the English language

is told that the sentence "John is ill" is true, then the intension of

the sentence might be chosen from all the propositions that are true for

John.

The theory was later extended by Bar Hillel and Carnap into a se

mantic theory which conceptually parallels the statistical theory of

communication [BARH61, J.

The important point is the fact that semantic information is also

related to a certain freedom of choice within the state description of a

semantic system.

33

3.3 SYNTAX AND INFORMATION

Another type of structure is necessary to support the "content" of

a sentence, namely the syntactic structure. The syntax is defined as a set

of rules (grammar) that characterize the structure of the language.

These rules are used to generate sentences in a determined fashion which

involves the order of the elements in the sentences and the use of

modifiers to indicate semantic nuances (plural, gender, tense, etc.)

A generative grammar is a system of rules that assigns structural

descriptions to sentences. This system of rules is iterative and can

generate an infinite number of structures.

According to Chomsky's syntactic theory [CHO65], the syntactic com—

ponent of a grammar must specify a deep structure that determines its

semantic interpretation and a surface structure that determines its

phonetic interpretation. The surface structure is determined by repeated

application of grammatical transformations applied to elementary objects

contained in the base. The base is a system of rules that generates a

highly restricted set of basic strings.

The deep structure can be represented by a tree diagram such as:

S

O2^
| rºlDet N

The doctor heals the patient

where the nodes of the tree contains either formatives symbols (the,

patient...) and category symbols (S, NP, VP, V and N.)

3!,

The following set of rewriting rules can be used to generate the

tree:

S → NP WP

WP + W. NP

NP + Det N

Det -- the

W -- heals

N -> doctor

N + patient

Such an unordered set of rewriting rules is called a constituent struc

ture grammar or phrase structure grammar. Despite the simplicity of the

example, it can be seen that the set corresponding to the first three

rules enables the construction of a large number of sentences, hence the

generative properties of such grammar. Therefore, here also the genera

tion of syntactically correct sentences is a matter of selection of the

rules to be applied.

However, some of the syntactically correct sentences may be inaccu

rate or meaningless; i.e. the sentence, "The patient heals the doctor"

is not true in this situation and the sentence "The table heals the

patient" is a nonsense statement.

Although a lot more is known about syntax than about semantics, it

is very rare to see the word information associated with syntax and yet

it would be impossible to translate (or understand) a language by using

a dictionary without knowning anything about the syntax of the language.

It is therefore obvious that a syntactic structure carries information:

in a statistical sense by representing a particular configuration among

several others allowed by the rules and in a semantic sense by giving

35

the relations existing between the elements of the sentence and the

particular modifiers to be applied to the semantic concepts of the sen

tence.

It must be noted that syntactic structure also carries redundancies.

For example, the semantic content of the sentence "The men are mortal"

could be rendered as well by "The men (is) mortal" or "The (man) are

mortal" where only one of either the subject or the verb indicates the

plural instead of both in the correct sentence.

The fact that the syntax rules of programming languages are usually

not redundant may explain the fact that a program may easily be misinter

preted by the compiler and is difficult to understand for someone who

reads it for the first time. The so-called structured programming

approach [DAH72] can be viewed as an attempt to add some "super-structure"

to the existing syntactic structures in order to make programs under

standable by adding some redundant structural information.

Finally, another type of structure relating to information is known

as "data structures" and is used to define structural entities in which

data will be stored. This type of structure is to data what syntax is to

the semantics of a language - it supports the informational content of

data. Examples of such structures are linear lists, tree, arrays, files,

[KNU68], etc.

There also the structure may be redundant (two way linked lists) in

order to provide for a possible reconstruction of the structure in case

of its destruction. Now it should be clear that information has several

facets which are statistical (communication theory) semantic and struc

tural (syntax.)

To conclude we may draw an analogy with the basic process of mole

cular biology. The DNA can be considered as the data base for the

36

genetic information: a DNA molecule carries "free choice" information

in the sequence of nucleotides but it also contains structural informa

tion necessary for its replication (geometric as well as "syntactic:"

pairs G–C, A-T.) The communication of this data involves the I■ leSSEDESE

RNA which assumes the role of a "channel" which transmits coded informa

tion between the nucleus and the cytoplasm. Then the information will

be processed by the transfer RNA which can be viewed as a machine that

transforms the input codes of the RNA into outputs of polypeptide chains

of aminoacids. This phase involves the processing of the "semantic" in

formation contained in the RNA codon (a sequence of three nucleotides

that code for an aminoacid) to generate the corresponding protein.

3. l. MEDICAL INFORMATION

In view of the previous chapter, this section will try to delineate

the particular characteristics that information may have in the field of

medicine. Hopefully, the recognition of these characteristics might help

in designing systems adapted to the processing of this information.

Although some purists will argue that medical information is not different

from any other type of information, an attempt will be made to define and

describe the peculiarities of "medical information."

3. l. l SOURCES OF MEDICAL INFORMATION

It was previously noticed that information could not be obtained

without observation (freedom of choice) or experience (semantics and

pragmatics of language.) It follows that the principal sources of me

dical information will be the "patient" and the medical professionals

(physicians, nurses, technicians, etc.) There is a qualitative difference

between observation made on a human being and observation made on a

physical system: observations on both physical (mechanical) and bio

:

37

logical systems may be impeded by inaccessibility, the striking differ

ence is the complexity of the latter which means that the analytic des—

cription of a biological system involves an enormous number of degrees

of freedom, not all of which are recognized or known.

3. l.2 THE NATURE OF MEDICAL INFORMATION

The fact that quantitive data is difficult to obtain is compensated

by a descriptive vocabulary which helps either to locate the observations

(anatomy), to describe the abnormalities (pathology), and to define

normal and abnormal states of a patient (diseases) or a population

(epidemiology).

The complexity of the subject has a multiplying effect which gives

to the field of medicine the widest specialized vocabulary. In addition,

all the common vocabulary is available for the report of verbal inter

views with the patient (history, complaints, etc.) as well as for pro

gress notes, visual observation, etc.

Despite the increasing number of laboratory tests which give results

in the form of quantitative data (numbers), most of the medical data is

in the form of language data. This explains the important role played

by the medical record in processing medical information. To our knowledge

there is no study which gives the percentage of language data versus

numerical data in a typical medical record but it is probably about 90%.

Therefore, most of medical information belongs to the pragmatic

level of information; it is non-numeric, complex ana enselorate. The

medical record is a document used to record observations, problems, facts

and historical data about the patient, progress notes containing the most

salient aspect of the treatment given, test results and reports. The

archival nature of the medical record requires an unlimited memory medium.

38

3. li. 3 THE QUALITY OF MEDICAL INFORMATION

By quality we mean "accuracy" in the transcription of live informa—

tion into data on a memory medium. With the current manual record, not

only the quality may vary with the professional's experience and know

ledge, but also with his ability to and willingness to write legibly.

Even with all the redundancy of natural language, there is normally a

non-negligible loss of information due to incompleteness and illegibility.

On the other hand, the 50% redundancy of a natural language is quite

often a luxury when the object is to record useful data.

Some effort has been made in the direction of systemization and

coding of nomenclature in pathology (SNOP) and it shows that the informa

tion (in the semantic sense) present in pathology diagnosis can be re

presented using the systematized nomenclature of pathology (SNOP) and

exercising the necessary selection within four structured lists:

- Topography (T)

- Morphology (M)

- Etiology (E)

- Function (F)

The advantages of such an approach are immediately evident: structuring

of the semantic data into a much simpler structure than the normal

English grammar, reducing of the redundancy, possibility of direct

coding for computer manipulation, etc.

It is certainly conceivable to create such systematic nomenclature

for other specialities of medicine. By looking at a medical record, it

is striking to see the number of abbreviations (often improvised and non

standard) used to reduce the writing overhead and the number of stereo

typed sentences which shows a natural tendency to use the same phraseology.

39

Some efforts in this direction have already been made by using the

International Classification of Diseases Adapted code (ICDA) for dis

charge summaries.

However, despite the fact that such a trend is visible and even if

it were proved that the same semantic information could be carried by

such languages, it will be impossible to enforce their use in the daily

activity of an hospital because, with a manual data entry system, it

would be too constraining to look up terms in lexicons and to follow

rigid syntactic rules. Given the human constraints of the medical en

vironment, the key factors are the quality of the information and the

ease of transcription of information.

The problem is how to obtain quality medical information with a

minimum of constraints, and a minimum of effort. Stated in the language

of operations research, the question is: how to maximize quality given

the existing set of economic and psychological constraints.

3. l. l. COMMUNICATION OF MEDICAL INFORMATION

The quality of medical information is clearly related to the means

by which it is transmitted from one point to another (from the medical

observer at the bedside to the different active centers necessary for

the collection or transcription of data and vice-versa.) This is a pure

communication problem and it accounts for an important part of the

clinical information handled within a hospital (BLOTl]. (We avoid the

term processing because communication is not a processing of information

but rather a transmission of information between the different processing

centers.) The processing (i.e., translation and aggregation) of medical

information is for the most part done by medical professionals (however,

for numerical results, an ever growing part is done by machines.)

l,0

If one considers the communication problem, each processing center
i -

can be viewed as a black box Mi with some input values al", *...*
i i i

(numeric or linguistic) and some output values bl, b2 •- - -bm •
i i M. L.b i b i—al ...*.*FT- l - - - fº->

If the reliability of each Mi is Gi (Gisl) the overall reliability of

the system is defined as G= #, Gi for k components. It is clear that

as the number of processing centers increases the total reliability can

only decrease if the reliability of each component does not increase.

(This is usually done by adding more redundancy in the system.)

Following Hsieh [HSI66], we can define a measure of quality of a

communication process by:

Q = conditional probability of right output, given the right

input

l-Q = conditional probability of wrong output, given the right

input

and a measure of the correction capability of an element by:

R = conditional probability of right output given the wrong

input

l-R = conditional probability of wrong output given the wrong

input

R is related to the redundancy because a given wrong input can be recti

fied into a right output.

Now if we consider the following example of a clinical medication

system where the medication order is generated by a physician and trans

mitted to a pharmacist by a nurse:

■ º al—H MI H bi= as M2 Hºba- *Hººk- *3– Ml, Hº

t Physician Nursel Pharmacist Nurse 2

-

-

- -

- *

-

* * - s

- - - -

--

lil

The reliability of M, (physician) is: G = Q1.

The reliability of M2 (nurse) is: G2 = Q102 + (1-Q1)R2. (l-Q1)R2 is the

correction capability of M2 (wrong output from M1 is rectified.)

The reliability of M3 (pharmacist) is:

G3 - 3,8283 : 31(1-32)R3 (1-81)R.R, + (1-01) (1-52)Rs
Q1(1-02)R3 is an error correcting term for a right output from M1, arl

error by M2, rectified by M3. (1-Q1)R203 corresponds to an error from

M, transmitted by M2 and corrected by Ms. (1-01)(1-R2)Rs is an error

from Mi transmitted by M2 and corrected by M3. . .

The last element of the chain (the nurse giving the medication to

the patient) is therefore the one that has to do the most checking if

quality of information is to be preserved. She is dependent on the errors

made by the first three elements. This shows that in a communication

system, the information can only be degreded by going from the source to

the destination. However, if some redundancy is carried by the data and

if the processors of information are intelligent, then it is possible

to restore the original information.

With a computer system, it is possible to eliminate some of the

communication errors by direct transmission of orders from the physician

to the pharmacist.

3. l. .5 MEDICAL INFORMATION AND ALGORITHMIC PROCESS

"I ran up against an absolute blank wall...you cannot do that because

computers can only do arithmetic, they cannot write programs." Well, I

got mad at this and arbitrarily stated that, "I could make a computer do

anything which I could define." Grace Murray Hopper in Computer, October

1973.

l;2

Although it was pointed out that medical data is mainly linguistic,

it should not be concluded that medical information cannot be processed

by computing machines. It may be true that it will be more difficult

to process medical information than numerical information because the

machines and the programming languages are usually more adapted to

numeric computation. However, computers can also perform non-numeric

operations and memorize facts with perfect accuracy.

To a certain extent, the term computer is an unfortunate name for

machines that are essentially algorithmic machines. An algorithm is

defined by Knuth [KNU68] as a set of rules which give a sequence of

operations for solving a problem and which has the following features:

it is finite (it must terminate after a finite number of steps), it is

definite (each step must be precisely defined), it has zero or more in

puts, and one or more outputs, it must be effective (all the operations

can be done in a finite length of time). According to this definition,

a medical diagnostic process is fundamentally algorithmic (it may be sub

ject to uncertainty, but the uncertainty reflects only the incomplete

ness of the data or the insufficient development of the medical sciences).

It is a fact, however, that computers and programming languages

have been tailored to implement numerical algorithms (every computer

has an instruction to perform the addition algorithm, but very few

havee instructions to compare or move strings). This may explain part

of the difficulty to build medical information systems: one has either

to use the inadequate tools available (current instruction sets,

languages, operating systems, etc.) or to invest time and effort in the

building of more appropriate tools.

- --

- * -
- - *

- -

- s - - * - -
- -

- * *

- - -

-

- - - - - - -

l. 3

In summary, it is not because medical information is mainly lin

buistics that it is difficult to implement the basic algorithms which

are used in medical information processing, but because most of the

current computer technology and software are not adapted to the efficient

realization of such algorithms.

It is true that some modern machines have partially resolved the

gap in the hardware instruction set, but the inadequacy of the operating

systems and present day languages is still a reality. It would be false,

however, to state that medical information cannot be processed efficiently

by present day computers, but it is important to recognize their in

adequacies and the necessity of building new software tools to realize

the abstract machine that is more adapted to the user's problems.

Finally, it is desirable to get away from the concept that the

medical care processes are an "art" that cannot be aided or handled in

part by machines. It is certainly true that a machine will not yield a

better diagnosis than a good physician if it is programmed by a less than

average physician. However, if a good physician is willing to explain

the rational process that he follows when doing his work in such a way

that it can be algorithmically described, then a machine could give a

better diagnosis than the average physician or at least help the average

diagnostician to become a better one.

This may sound too simplistic because a machine can only reproduce

known algorithms and the flexibility and creativity of a human being is

certainly irreplacable. On the other hand, human memory and ability

(accuracy and speed) to compute and remember accurately is certainly

more limited than that of a computer. The point is that it is possible

to build algorithmic models [GOR67] for most of the standard diagnoses

lil,

and treatments. It will be seen later how the concept of frame

selection system, where the algorithm is a pragmatic set of rules and

can be fuzzy, (in the sense of Zadeh [ZAD73]) could be used to allow

flexibility in the decision process involved in medical data processing.

In conclusion, since medical information is strongly related to

language, the main problems in medical information processing will be

related to that peculiarity. The medical language currently used is a

collection of specialized subsets of semantic terms (anatomy, physiology,

pathology, pharmacology, etc.) which are related to each other by a

syntactic structure which is usually the syntax of a natural language.

However, it is possible that although medical information is mainly

"linguistic", the same semantic information could be carried by a much

simpler syntax. Such a syntax could not be enforced or even desirable

with a traditional type of medical record, but the development of com—

puterized medical records might be the occasion to define more system

atized languages to be used for computer manipulation of medical infor

mation.

l,5

Chapter l;

Formal Description of Frame Selection Systems

"A new scientific truth does not triumph
by convincing its opponents and making
them see the light, but rather because
its opponents eventually die, and a new
generation grows up that is familiar
with it."

Max Planck

i
• 3.- … ar

r - - * -.- * * * * * ~ *-- ", r,

\
-

l,6

lº. FORMAL DESCRIPTION OF FRAME SELECTION SYSTEMS

In the previous chapter it was noted that the information I, as

defined by Shannon, was intimately related to the freedom of choice one

has when presented with a given situation: if there is no choice (cer

tainty) the information I is zero; if the choice is binary (YES or NO)

the information I is equal to unity. For a language described by an

alphabet, the information carried by the messages or words built from

this alphabet can be measured by the freedom of choosing a sequence of

letters or symbols contained in the alphabet. In other words the

accumulation of information is done by selection of an individual object

(a letter, a word, etc.) from a given set of possible objects or the

selection of an alternative among a set of possible choices.

l,. l SELECTIONS PROCESSES AND FORMULAS

A selection process generates information each time it operates in

a situation where the number of choices or alternatives is at least two.

We exclude the case where the number of alternatives is infinite for

practical purposes, but there is no definite upper bound on the number

of alternatives.

li. l. l THE SELECTION OPERATOR AND THE FREE SEQUENTIAL SELECTION PROCESS

A selection is a monadic operation on a finite set or a collection

of sets. A free sequential selection process is defined as the process

of choosing an element from a set or a collection of sets where there is

no semantic restriction on the choices made at each successive time

interval.

A set A is defined as: A= {xeA: x is ill) which denotes the set of

sick persons. The order of a set is the number of elements in the set

and noted |A|. The selection operation will be denoted by the symbol El

l;7

It must be emphasized that selection is a function operating on a

set or a collection of sets. Therefore, it is not an operator on ele

ments of a set, nor is it an operation of the type union, intersection

or complement defined on sets.

If A is a set, D A will denote the selection of an individual ele

ment of the set. If CA is a collection of sets, D CA will denote the

selection of one set from CA. A free sequential selection process can

therefore be described by:

D Al P A2... D Ci ...d Ak D ca...D Az
where the Ai are sets and the Ci represents collection of sets.

If Ai- (ei...º.º.º. then the selection of the element a;
from the set Ai will be denoted by D. Ai- a! and if CK is a collection of

l 2 P j
- - -

j
sets CK, CK. -- “CK then D CK= C& will indicate that the set CK has been

selected.

li. 1.2 PROPERTIES OF THE SELECTION OPERATOR

The selection operation is associative; that is,

(DADB)D C=DA (D BDC)

If we consider the union of sets AUB, the selection of an element of

A UB is equivalent to the selection of an element of A or an element of

B. Therefore, D (AUB)= D A ord B.

More generally, d(AUB Uc...UZ)= d A or dB...or D Z.

The cartesian product of the two sets is defined by:

A X B- {(a,b): a in A and b in B}.

This is equivalent to a double selection: one element from set A, and

one element from set B. Therefore, D(A x B)= DADB.

If a selection process operates only on sets, a sequential selec

tion process is equivalent to a generalized cartesian product. If a

h 8

selection process operates successively on the same set or collection

of sets, then D*A= P. A...D.A. If the number of selections that can

be made on the same set "is unknown, then Cl*A= d A...D.A. If f is a

bijective function operating on a set A, then f(DA)= Df(A).

When a sequence of selections is repeated n times during a selec

tion process, the notation (D Ald A2 ...D Am)” will be used. If the

number of iteractions is unknown before starting the selection process,

(D. Alt■ A2...[I Am)” will be used. It can be shown that D*A= (dA)” and

D*A= (DA)*. (If A= (a1, a2...am) then for il, i2...ine{l,...m.)

D*A= ail aia...ain= (ail) (af2)... (ain)= (DA) (DA)... (dA)= (DA)*
l. 1.3 SELECTION FORMULAS AND SELECTION SENTENCES

- A selection formula is defined as a repeated application of the

previous rules using the properties of the selection operator.

- A selection sentence is represented by the sequence of objects or

alternatives chosen during a sequential selection process.

An example of a selection formula is:

S= DA1...D. An(n Ap...d Ar)"d As"...D A2
Selection formulas are a concise and precise way of describing sequential

selection processes just as arithmetic or algebraic formulas are concise

representations of sequential computational processes. A selection sen

tence is a particular result of a selection formula when the sequential

selection process is carried out.

If Ai- {ali, azi,ami} a selection sentence corresponding to

DA1...D. An can be ajlak2 - - - azn

Examples: Besides the simple example of menu selection, more sophisticated

sequential selection processes are given by:

– decision making processes (including the diagnostic process.)

- multiple answers questionnaire

l;9

- strategies and games

- evolution

If D= {0,1,2,3,... } then:

i) D“D will denote the selection of a succession of n positive

ii)

iii)

iiii)

integers and the corresponding selection sentences represent all

the positive integers of n digits.

Cl*D will generate any positive integer.

Let A,N,V denote the sets of articles, nouns, and verbs res

pectively:

A= {x : x is an article)

N= {x : x is a noun)

W= {x : x is a verb)

Then D AD Ndy DAE N can generate simple sentences of a natural

language (we are not concerned here with their meaning.)

If T- {x : x is a topographic term)

M= {x : x is a morphologic term}

E= (x: x is an etiologic term)

F= {x : x is a function term)

Then DTDMDEDF is the selection formula which generates all

the sentences of the systematized nomenclature of pathology

[SNOP] .

50

l,.2 SELECTION FRAMES

So far we have not considered the problem of the feasibility of

selecting an item from a given set. In practice, we will define subsets

with a maximum of selectable elements (corresponding to a given imple

mentation.)

A frame will be defined as a set of semantic or pragmatic terms si

such that FR= {s1...sk) with |FRI-MAX where MAX is the maximum possible
number of selection points on a CRT.

A finite set A can always be decomposed into a set of frames by

breaking down A into subsets which have less than MAX elements. This

decomposition can be achieved using the following two methods.

l;.2.1 HORIZONTAL OR SERIAL DECOMPOSITION

This method divides a set A into K frames such that K= |A|/MAX-l

and each of these frames introduces an artificial choice that can be

selected to indicate that the desired item is in the complementary set

of the set represented on the frame.

If F. denotes the complement of the frame Fk in the set A, then A

can be represented by a linear list of frames linked together by a

default selectable item corresponding to F.

Fl º
-> - - -

F. H.
This is called the horizontal extension of A and is denoted A*. It can

also be called serial decomposition.

l■ .2.2 VERTICAL OR PARALLEL DECOMPOSITION

Another method of decomposition can be defined by breaking the set

into K frames such that K= |A|/MAX and then create an "index" frame

which will be used to select the proper frame or subset. The structure

used is a tree:

5l

Index

A NFl
A NF2

NFk

AV

Fl F2
- - - - -

Fk

Figure l;.l Wertical Decomposition

The index is a frame which indicates the names of the subsequent frames:

NF1 is the name of F1, NF2 is the name of F2 and NFK is the name of Fk.

To select an element of the frame Fi, one selects the corresponding

NFi in the index and then the desired element within the frame Fi.

The decomposition can have more than one index level if necessary.

This is called the vertical extension of A and noted A".

52

l. 3 RELATIONS BETWEEN SELECTION FRAMES

lº. 3. l BINARY RELATION

Selection processes where some constraints are imposed on the se—

lections are now considered. This can be done by introducing the concept

of binary relation. Formally a relation is a set R of ordered pairs:

(a,b) eR also written aFb where aeA, beb.

Thus, the selection of elements in A and B are constrained by the

relation R. This defines a constrained selection process under the

relation R. The image of an element aer is the subset of a defined by

R (a)= {y: every y EB such that a R y}. The inverse image of beb is the

subset of A defined by R*(b)= {x: every xeA such that x R b), if DA= a,

then D B must be restricted to D R(a); or conversely, if D B= b, then

DA must have been restricted to D R-4(b). The domain of a relation R

is defined as the set of all first elements x of the ordered pair (x,y).

The range of the relation R is defined as the set of all second elements

y of the ordered pair (x,y). These concepts are important for the

semantic relation between sets of semantic terms.

For example, two frames, Fl and F2, may be related by using a matrix

of semantic compatibility defined as follows: if the element a! of the

matrix is zero, the term cj of F2 cannot be selected after the selection

of ci in Fl; if a; is not zero, then the two elements ci and c) can be

selected during a selection process.

53

l. 3.2 EQUIVALENCE CLASSES AND PARTITIONS

A binary relation R is called equivalence relation on a set A iff

R is reflexive, symmetric and transitive that is:

xRx (reflexive)

xRy implies yRX (symmetric)

xRy and yRz implies xRz (transitive)

The subsets Px of A such that Ex= {y: y Rx} are called R- equivalence

classes.

The collection of equivalence classes under an equivalence relation

RE is called the quotient of A with respect to RE: A/RE. Equivalence

classes of x under RE are sometimes noted [x]/RE. Equivalence relations

partition a set into disjoint subsets which are the equivalence classes a

Conversely, by defining a partition P of a set as a collection of

non-empty disjoint subsets of A whose union is A, then the relation

induced by P written A/P is defined by: XA/Py if x and y belong to the

same partition. It can be easily verified that it is an equivalence

relation. Therefore, partitioning a set is equivalent to defining an

equivalence relation on the set and conversely.

This makes it possible to select an element of a set by first se

lecting the equivalence class containing the element x and then the

element inside the equivalence class by a two step selection process.

DA-D (ca■ t, E.J. C.,IDE, 1,...,C...[D E.]]
This is called an imbedded selection formula. The brackets [] are in

troduced to indicate that the selection of a class in A/RE (Cx is a class
defined by a partition of A) is followed by a selection inside the class

*x if the class of x was selected in the first step.

This introduces the notion of depth in a selection process. The

5||

depth is the maximum of imbedded bracket pairs encountered in a devel

oped selection formula.

Example: Suppose A= {x : x is a living organism)

A partition of A is given by the fauna (F1) and flora (F2) and the

corresponding classes are CF1, CP2. Fl can then be partitioned into two

new classes, Cy and CI for vertebrates (V) and invertebrates (I).

V can be decomposed into fish (F), amphibians (A), reptiles (R),

birds (B), mammals (M) and the corresponding classes CF, CA, CR, CB, CM

The selection of any living organism can be done by using the following

developed formula.

DA-D (CF1|D(CyID(CFDF), CATIA),CRIDR],CBDB),C,DM)}],cI■ LI]}], cra■ ºfa)}

Although CI and CF2 could also be partitioned the selection process

as defined by this formula has depth 3.

Therefore, a selection process can be decomposed into a sequence of

selections steps operating on classes or partitions of the original sets.

The construction of these classes is usually done on a semantic or

pragmatic basis so that the partitioning reflects the semantic relations

or differences between the elements and subsets of the original set. So

by exerting the freedom of choice on such subsets or collection of sets,

one can introduce a certain amount of semantic information which is

contained in the relation defined by the partitioning.

Although this type of information has never been quantified, it can

be measured by the depth of the selection process necessary to identify

the object selected. Starting with a semantic information content of

unity for the universe, one can define classes of objects (abstract or

real) and by using the partitioning method one ends up with a measure of

semantic information for the elements contained in those classes. For

example, the terms used in the systematized nomenclature of pathology

55

[SNOP] could be associated with such a measure.

li. 3. 3 ORDER RELATIONS AND SELECTION FRAMES

Another type of relation defined on sets is the order relation.

A reflexive partial order on a set A is defined by a relation R

such that: for every x,y,z in A

- x R x (reflexive)

- x R y and y R x implies x = y (antisymmetric)

- x R y and yRz implies xRz (transitive)

A reflexive total order is such that for every x and y in A then either

xRy or yFx. An ordered set can be decomposed in a series or parallel

collection of frame F1...F. containing elements such that *iyFykl for

all Xiyin F; and all yklin Fk.i

- a serial decomposition verifying this order relation will be

called a frame chain and noted Fr where I= {0,1...k}.

- a parallel decomposition verifying this property will be called

a frame fork and will be noted fr where I= (0,...k}. If k-MAX
then I can itself be decomposed in a frame fork or frame chain.

In order to select an element of a frame chain or a frame fork, one

has to select the frame which contains the elements and then the element.

In a frame chain if co represents the choice that the element is not in

the current frame then : D F1= coºDF, if the element selected is in the

kth frame of the chain. In a frame fork D fre D cr[D Fk] where CF re

presents the collection of ordered frames obtained by the fork decom—

position. The frame fork is more appropriate when the number of elements

in the set is great. The frame chain is appropriate when the number of

frames in the chain is low or when the chain itself is ordered so that

the most likely selections are contained in the first frame and the

56

following frames contain the elements with a low expected frequency of

selection. Example: Suppose D= {x : x is a drug name) and D is ordered

lexicographically, then it is possible to decompose D into a collection

of frames which can be accessed by selecting the alphabetical range

corresponding to the elements contained in a given frame or by "paging"

through the frame chain.

In practice, if the list to be searched is small (2 or 3 frames) a

chain will be used, but if one wants to access a formulary of 2000 items,

a fork decomposition is more suitable.

57

l. 3. l; LINGUISTICS RELATIONS AND SELECTION FRAMES

The previous approach may seem too rigid because it dealt with the

mathematical concepts of sets, equivalence classes and relations.

Since it was previously emphasized that medical information was

mainly linguistic it is useful to see how this characteristic can be

related to the concept of linguistic variables. The concept of a lin

guistic variable was introduced by Zadeh [ZAD73] and relates to variables

whose values are not numbers but words or sentences of a language. For

example, the temperature of a patient may be qualified by the terms, high,

low, normal, very low, very high, etc. which may be called the linguistic

values of the linguistic variable temperature (although, in this case,

the temperature could also be measured by numbers.) The value of a

linguistic variable is called its term-set. For example: temperature=

{low, high, normal, almost normal, above normal, very low, very high, ... }

It can be seen that the selection operator can be applied to the term—set

of a linguistic variable. For example: D temperature - will select a

particular value from the term-set temperature as defined above. There

fore, all the concepts already defined: selection process, selection

formulas, frames, can be applied to linguistic variables and term-sets.

A term-set can be considered as a fuzzy partition of the linguistic

concept represented by the linguistic variable. Closely related to this

notion is the concept of fuzzy set also introduced by Zadeh [ZAD65] and

defined as a set of objects A with a membership function fA Which

associates with each object a real number in the interval [0,1]. An

example of fuzzy set can be given by the "set of dangerous drugs." Such

a definition leads to fuzzy boundaries where a given drug might be con

sidered not dangerous at a low dose and clearly dangerous at a higher

x -

58

dose, not dangerous for a well person but dangerous for a given patient.

A function fp might give the membership of each drug in this fuzzy set.

The idea introduced by fuzzy set is that despite the fuzziness of lin

guistic concepts, it is possible to associate a number which quantifies

the membership of an element to a class.

For instance, a poisonous substance may have a membership function

ra- l in the set of dangerous drugs and aspirin may have a membership of

0.0l. This membership function can be a discrete function associating

a number which quantifies the toxicity of a drug which can be considered

as a linguistic variable.

It is also possible to introduce fuzzy relations and ordering of

elements of fuzzy sets in the same way as for simple sets. Although

much of the concern of the theory developed by Zadeh is to introduce a

calculus in the context of fuzzy sets [ZAD73], fuzzy relations, etc.,

our concern is to point out that a practical way to implement linguistic

variables and fuzzy sets is via the use of the frame concept. Each of

the concepts defined previously in the context of set theory is applicable

to fuzzy sets. The membership function of a fuzzy set can be used as

an ordering relation of elements within the fuzzy set therefore, making

it possible to decompose fuzzy sets into a collection of ordered frames

containing the elements of the fuzzy sets.

In a medical information system, whenever a linguistic variable or

a fuzzy set is selected from a collection of other linguistic variables

or fuzzy sets the user could be asked to select the particular instance

of the term-set or the particular element of the fuzzy set. If L is a

set of linguistics variables L1, L2...L. and Ti is the term-set of Li,

DL[DTil will denote the selection of a linguistic variable and a par

*

59

ticular value of its term-set T.

A fuzzy set can be decomposed in frame chains or forks by using the

membership function to order the elements. For instance, the set of

dangerous drugs can be decomposed into frames whose membership function

will be between 0 and 0.1, 0.1 and 0.2, ... 0.9 and l. In that case, the

access to these frames could be done by using an index frame representing

fuzzy partitions of toxicity such as: poisonous, very very dangerous,

very dangerous, dangerous, not dangerous, etc. Furthermore, the in

troduction of selection processes to select linguistic variables enables

the introduction of a semantic context between the variables; the

toxicity of a drug can be modified by the patient's allergies or the

other drugs he might have taken recently so that the selection of an

item might modify the membership function of a given drug to the fuzzy

set of dangerous drugs for a given situation.

60

lº. l. SEMANTIC COMPLEXES AND FRAME STRUCTURES

Now that the intuitive ideas have been introduced, the concept of

frame will be defined more axiomatically. It is assumed that the

universe of discourse U is composed of a finite set of semantic and

pragmatic terms or phrases of a given language. For instance, this

universe of discourse can be the medical language or a subset of it

such as the language of pathology, anatomy, physiology, etc.

Certain finite subsets of U are called frames if they satisfy the

following conditions:

- each frames contains at least one element and at most MAX elements

- every subset of a frame is a frame

- every frame defines a new object called the semantic simplex

spanned by that frame (it can be associated either with a set, a

fuzzy set or a linguistic variable.) The semantic simplex

corresponds to the intension of the frame.

The semantic simplexes associated with sub-frames are called semantic

facets of the simplex. The dimension of a simplex is equal to the number

of its elements minus one. A simplex containing one item has a dimension

of zero because there is no freedom of choice. A simplex with two

elements has a dimension of one and so on.

The introduction of the selection operator enables the selections

of elements or facets of a semantic simplex. Information-wise this

operation separates clearly the semantic information within the semantic

simplex and the information related to the freedom of choice in the

semantic simplex which is only related to the dimension of the simplex.

A finite system of semantic simplexes is called a semantic complex of

the universe of discourse. Such complexes can be represented as lattices

6l

or directed graphs.

Considering a set of frames F, a partial order can be introduced

on the set of frames such that fºg if f precedes g in a sequential se—

lection process involving the semantic simplexes of f and g.

An element t of F is said to be an upper bound for a subset A of F

if tº a for every a in A. t is a least upper bound if t is an upper

bound and ºtsu for any upper bound u of A. A similar definition will

define the greatest lower bound.

Definition: A lattice structure is a partially ordered set in

which any two elements have a least upper bound and a greatest lower

bound. The join of f and g is the least upper bound of f and g noted

fug, and the meet of f and g is the greatest lower bound noted f ■ lg.

A lattice can be represented by diagrams such as:

Example: Considering a typical drug order represented by the following

selection formula:

DfID DF]D RDF where f is the frame fork corresponding to the set

of drug names. DF is the set of frames for the dose forms. F is the

frame for frequency of administration for the drug. R is the frame for

route of administration for the drug.

62

Index frame

Drug names frames D

Dose forms frame DF

Route of administration R

Frequency of administration Y F

Figure l;.2 Frame Structure for a Drug Order

This frame structure is a lattice with a least upper bound repre

sented by F and whose greatest lower bound is represented by the index

frame to access the drug names. It can be seen that this structure is

more general than a tree structure. Such a lattice represents the

semantic complex referred to generally as drug order in the medical

language. A lattice structure can represent any selection process where

there is no need for loops on some sequence of frames. Therefore, the

frame lattice structure can be considered as the basic building block

of semantic frame complexes.

The use of loops can be introduced by a feedback mechanism in the

lattice structure. For example:

63

| Figure l;.3 Frame Digraph

The feedback loop is important for its repetitive function but it does

not add any depth in the selection process, its only purpose is to use

a structure that already existed to obtain some new semantic informa

tion.

More generally, the introduction of loops in frame structure can

be studied by using the concept of directed graph or digraph [HAR65]

that is a collection of ordered pairs (a,b) of elements of a set of

nodes N .

Up to this point, the frame concept was studied from a static point

of view. It was seen that semantic complexes can be broken down into

semantic simplexes called frames. Conversely, the structure to build

the complexes from the simplexes can be lattice structures which can be

extended to digraph structure by the use of loops.

The following is a study of the dynamics of frame selection systems,

their relation to finite state machines and how they can be used to

generate well formed sentences of a language.

6l,

l,.5 FRAME SELECTION SYSTEMS AND FINITE STATE MACHINES

l,.5.1 FRAME INPUT CODES AND SELECTION STRINGS

A frame has been defined as a finite set of items (choices or al

ternatives in U) with an upper bound on the number of selectable ele

ments.

The frame items can therefore be described by a finite alphabet of

symbols

. . . c---)
C= {co, el, C2 Ina X

where max is the maximum number of selection points on a CRT. This

alphabet is used to code each possible selection on a frame; these se

lections can be considered as input codes which are associated with the

selectable elements on the frame. A sequential selection process can

therefore be represented by a sequence of letters from the alphabet C.

SELECTION STRING (OR WORD)

If C* represents the set of all the strings over the alphabet C,

then the execution of a selection process can be represented by a string

of symbols of C, each symbol representing the choice which has been se

lected in each semantic simplex (frame) during the selection process:

cil, ci2 cik ik e (0, ... max}

this string can be considered as having a meaning in the semantic complex

associated with the selection process. Another way to look at such a

string is to consider it as a particular representation of the selection

formula representing the selection process (just as 2° + 3 x 2 is a
2

particular representation of the formula X + 3x).

- a -

-

- -

- -

- - - -

* - -

- - - - - - - -

- - - -

65

CONCATENATION OF SELECTION STRINGS

Given two strings s and t in C*, we define the operation of concat

enation noted * by associating the string st to s”t.

If s Cil Cia. . . cip

and t cjl °32' “ja

then s”t - eil °i2. “ip °jl °32' “ja
such an operation satisfies the property of associativity

(sºt)*u = sº (t+u)

A semigroup is defined as an ordered pair (S,.) where S is a set

and . is a mapping of SxS into S such that (si-sa).53
-

sl. (sas 3) for

all sl, s2, s.3 £S. A monoid is a semigroup containing an identity element.

Then, by definition, C* is a semigroup under the operation of con

catenation. If one includes in C* the empty string e, then e”s = s”e = s,

e is an identity and C* is a monoid.

l; .5.2 FRAME SELECTION SYSTEMS AND ABSTRACT MACHINES

Algebraic machine theory [ARB68] has usually been used to model the

action of logical hardware rather than programs or computerº systems.

However, it does not model the action of such devices directly, but only

through the movements of abstract "states".

This chapter will show that the theory is directly suited to the

description of frame structured systems in terms of their software

capabilities as well as for a model to describe the behavior of such

systems.

The following is a definition of an abstract machine called the

selecton which directly mimics the behavior of frame selection systems.

It must be emphasized that this theoretical approach is not just an

attempt to "re-discover" automata theory, but rather to show how well

66

the models that have been conceived abstractly are really a direct re

presentation of the behavior of frame selection systems which have been

conceived from a pragmatic point of view. It is even more striking to

see that the "selecton" model is closer to the real implementation of

frame selection system than the automaton model is to logical hardware

design.

THE INTUITIVE APPROACH

A machine is considered as a black-box with inputs and outputs.

Finite
Number

of States
Inputs Outputs

Figure H. l. Finite State Machine

The "inside" of the black-box is characterized by a finite number

of states and the behavior of the machine is described by two functions:

- the action function gives the next state knowing the current

input and the current state

– the output function gives the output knowing the current state

and the current input. (If the output depends only on the state,

it is called "state-output").

These functions can be deterministic or non-deterministic, but in the

following it is assumed that they are deterministic.

ABSTRACT MACHINES

Following the notation used by Rhodes [RHO73) adapted to this pro

blem a frame complex is considered as a black-box with inputs (selections)

taken in C and outputs taken in the finite set consisting of objects in X.

67

Then by definition, the function:

m: C* + X

is called a machine

According to this definition, a selection process can be viewed as

a machine which generates output in X from an input sequence in C*.

The natural extension of m is defined by the function:

m*: cº -> x*

such that:

m* (c 1... •en)= (m(c1), m(cl.c2),...m(cl.cn))
this will apply to a selection process which generates strings in X* from

input sequences in C*.

The length of a string

Cl, cn is L (c1, ... cn)= n

if the string contains n symbols. A mapping m: A* → B* is length pre

serving if and only if:

L(m(a1,an))= L(a1,an)= n

the length of a string is the same after the mapping.

A causal mapping is a mapping where the output at time t depends

only on the inputs up to time t. In the following all the mappings are

supposed to be causal.

l,.5.3 SEQUENTIAL SELECTION CIRCUIT OR SELECTON

The previous definition of a machine is quite general and it is now

necessary to define an abstract object which relates more directly to

the frame selection concept.

Besides the set C and X, we consider a set of frames, F.

We consider the frames as the states of an abstract machine called

a selecton defined as follows:

* - e.

- - - -

68

Definition:

A selecton (also sequential selection circuit) is a 5-tuple

S= (C, X, F, r, p)

C is a non-empty set of codes or letters representing the choices

selected (inputs to the selecton). X is a non-empty set of

basic outputs (which may be also described by an alphabet.)

r is a mapping r. F x C + F which is the action function associating

with a given input and frame, another frame (this function is

called the route of the selection process.)

p is a mapping p. F x C → X called the present output function

which associates with an input code and a frame f an output from

X.

This definition is related to the previous definition of a machine by

the following correspondence:

let foe F, then

Sfor C* + x

is the machine corresponding to the selecton S starting with the frame

fo

*fo is defined by:

°ro (c.1)= p (f, ci) for all cle C and f eF

Sfo (c1,ca)= Sri (c2, ..., en)
with fºs r (f, c.1) for all n >2 and c1, ...,en e C*

A machine m of the form *ro= m is said to be realized by the selecton S

starting with the frame fo.

* * *

69

A selecton can be represented by a diagram where the frames are re

presented with their selection points (squares), the route function is

represented by the arrows going from one selection point to another

frame, and the output can be represented by a string next to the selec

tion point.

flExample:

Figure l;.5

where wi. xi, yi , zi, E. X.

This diagram can be called the frame transition diagram of the selecton.

The route and output functions are defined by:

p(fl.c.1)= x1
p(fl. c.2)= x2
p(fl.c.3)= x3

r(fl. c.1)= fl,
r(fl. c.2)= fº
r(fl. c.3)= f3
r(f2, c1)= fi p(f2, c1)= y1
r(f2, c2)= f\, p(f2,c2)= y2

r(f2, c2)= f; p(f2,c3)= Y3
r(f3, c.1)= fl p(f2, c1)= wl

r(f2, c2)= fl; p(f$, ca)= wa

r(f2, c3)= fa p(f2,cs)= wi
r(fl. c.1)= fl p(fl.c.1)= xl.
r(fl. c.2)= f° p(f), , c2)= x2

r(fl. c.3)= fa p(fl. c.3)= x3

70

A selecton will be called reduced if and only if starting S with

different frames

fl # fo, there exists s– Cl* - - - , Cn

such that Sfl(s) # Sf2(s). The selecton is reduced if the same input

applied to Sfl and Sf2 gives different outputs.

An important result of automata theory is that there exists a unique

reduced circuit [RHO73] for any finite state machine. Therefore, it is

possible for a given selection process (machine) to be realized by a

selecton (circuit) which uses a minimal number of frames and is unique.

For a proof of this result, see [RHO73] or [GIN68]. This shows that

given a selection process or a selecton operating on a given semantic

complex, there exists a unique frame structure which is minimal and which

will produce the same outputs.

This is important because there is no such equivalent result for

computer programs. (There is not a minimal program for a given algorithm

for instance.)

Therefore, given a semantic complex, all the implementations of the

complex by a selecton are equivalent to a reduced selecton and there

exists algorithms to find the reduced representation [RHO73,0IN68].

Before proceeding, some new definitions are needed:

Definition:

If S is a selection string (or word) (f, s) in F x C* is called a

configuration of the selecton S.

A move by S is a binary relation denoted as H. , and defined by the

following:

if the present frame of S is f, and the choice selected on

the frame is c, and if the next frame is f*, then S makes a

lmove from f to f" noted:

71

(f,cs) H. (f1,s)

If there is a sequence of moves corresponding to a selection pro

cess, such that:

(fo-cicz. •cks) H. (fl. c2 ... eks) H (f2, e3. ..cks)-. H (fk,s)
then :

(fo,cle?...cks) H-(fl.,s)
If the number of moves is indeterminate, (f, s) H- (fl.,sl) means that

there exists a finite number of moves which brings the selection from

frame f to frame fl.

A frame f" will be accessible from fo if there is a selection string

s such that (fo,s) Hº- (fl.,e).

If there is foeFss called the initial frame, and a set {fe) eFss
called the final set of frames such a selecton will be called a start

stop selecton

A selection string is said to be generated by a start-stop selecton

if:

(fo,s) H- (fe,e) for some fe in {fe?

The start-stop selecton is deterministic if r (f, c) gives no more

than one frame for any f in F and c in C. It is said to be completely

specified if r(f, c) gives exactly one frame.

Transposing the corresponding result obtained in automata theory

[AHO72], it can be shown that the class of completely specified deter

ministic selecton has the same capability as the class of non-deter

ministic start-stop selecton. Therefore, in the following we can assume

that all start-stop selectons are completely specified.

* -

* *

:

72

l, .5. l. OPERATION ON SELECTONS

l; .5. li.l HOMOMORPHISM AND TRIVIAL CODES

Given two semigroup (S1,...) and (S2,”), h:S1 + S2 is a homomorphism
if and only if:

h(s1.s2) = h(sl)*h (s2) *1,52 e Sl

If C1 and C2 are two sets, then h:c," + C2* is a trivial code if

h is a homomorphism; h is a trivial length preserving code iff h is a

trivial code and h is length preserving.

Therefore, if two selectons are defined on different sets Ci, Xi,

it is possible to compare their intrinsic structure or capability by

using trivial code or trivial length preserving code by defining:

hi:c,” + C# o, ix,” -> X*

h3: C2" - C# 02:X,” → X*

The homomorphism operation means that one selecton can be simulated

by (or simulates) another homomorphic selecton.

An application of this is important if one considers the operation

of translation of output strings from one natural language to another

(English or Spanish, for example, will require two different alphabets).

In this process of translation, the basic structure of the selectons will

not have to be modified, thus the name "frame" is well justified because

it really represents a frame of alternatives that can be filled by

words or phrases of any language.

In the following, we suppose that C and X are identical for all

selectons.

73

l,. l. l.2 UNION OF SELECTONS

Given two start-stop selectons

SA= (0,x, Fssa, FA, PA)

SE= (0,x, FssB.FB-PB)

SAUB is defined as the union selecton which will have the same out

puts as SA and SB given the same input string:

SAUR" (0,x, FssA X Fash;PAB)
- the new set of frames is the cartesian product of Fss A and FssB.

- the route funtion is defined as follows:

rab■ (fA,fb), cla (f"A.f"B)
iffra[fa,c)= f'A

rB(fB,c)= f'B

- the output function is:

PABL (fA, fE), cle (XA, XB)
iffy A■ fa,c]= xa

PBIfe, c]+ xB

This new selecton is equivalent to SA and SB since, for each input

c it outputs the pair of outputs that would have been produced by SA and

SB separately. Furthermore, the next frame is the cartesian product of

the two frames that would have been brought by the corresponding move

in SA and SB.

More concretely, this can be applied to model frame selection sys

tems which operate simultaneously on a different set of frames or applica

tions.

We can also view this operation as the parallel composition of the

two selectons SA and SB.

7|,

l,.5. h. 3 CONCATENATION OF SELECTONS

Given the two start-stop selectons SA and SB, a concatenation of

SA and SB is a selecton which gives output strings which are the conca–

tenation of the outputs given by SA and SB.

It is defined as follows:

SAB+[C, X,*ssAUFssh,r, Pl

– the frame set is the union of frame Fss A and FssB

- the route and output functions are defined by:

- r(f,c)= ra(f,c) for all f in Fssa-(fe)A

p(f,c)= pa (f, c) for all f in Fss A-(fe}A

- r(f,c)= foe for all f in (fe}A

p(f,c)= e for all f in (fe)A

- r(f,c)= rB(f,c) for all f in FssB

p(f,c)= pB(f,c) for all f in FssB

where {fe)A is the set of final frames of SA and fos is the starting

frame of B, e is the empty string.

SAE can be viewed as the serialisation of the two selectons SA and

SB where the mapping frame the final frames (fe)A is to the initial frame

of SB. Therefore, the "tail" of SA is directly mapped into the "head"

of SB. It is easy to verify that such a selecton will produce outputs

strings that are concatenation of outputs of SA and SB. This operation

can also be viewed as the serial composition of the two selectons SA

and SB. Such composition can be generalized to n selectons.

75

lº. 5. l. l. ITERATION SELECTON

Given a selecton SA, an iteration selecton (also called star se—

lecton) is defined by the following:

SA*= (C,X, Fssau (Fe}, r,p)
where Fe is a new frame such that:

r(Fe,c)= {}}U{foa)

p(Fe, c)= e

the route and output functions are given by:

r(f,c)= ra(f,c) for all f in Fasa- (fe)ASSA

p(f,c)= pa (f, c) for all f in Fssa- (fe)A
r(f,c)= Fe for f in {fe)A

p(f,c)= pa for f in (fe)A
The frame Fe is created to enable the selecton to loop back to the

initial frame foa.

The same result could be obtained by concatenation of SA to itself

as many times as required. The loop is introduced as was noticed pre

viously to reuse the capability of the already existing selecton.

This operation is important from a practical point of view because

it enables the indefinite use of loops in frame complexes by the intro

duction of procedural frames whose purpose is to give to the user the

alternative to loop back to a previous node in the frame complex.

l■ . 5. l. 5 REGULAR SET AND EXPRESSIONS

The previous operations on selectons are in fact equivalent to the

definition of regular sets and expressions.

If A,B,CC* are subsets of strings in C*, then by defining:

3.

b.

de

Cº.

76

A. B = {a.b: a EA and be B}

A* = (al. . . ak: kål and ajeA} or
cº->A* = U A" where A* = A and An” = A^.A

n=l

A* is also called the transitive closure of A.

Then regular sets and expressions are recursively defined [AHO72] by:

the regular sets over C and the regular expressions associated with

those sets are:

i) ■ º (empty set) is a regular set and Ø is a regular expression

ii) {e}(identity) is a regular set and e is a regular expression

iii) {x} is a regular set over C for all c in C and x is a regular

expression

iv) if A and B are regular sets over C, then so are AUB, A.B and

A* and the corresponding regular expressions are:

(a+b), (ab), (a)*

v) nothing else is a regular set or expression

According to this definition, it follows that the operations defined

previously on selectons (SAUB. *A.B.' SA*) are precisely identical to the

definition of regular sets or equivalently the set of selection strings

accepted by a start-stop selecton is a regular set.

Therefore, a selection process will be called regular if it can be

built by composition of selectons according to the rules previously

defined.

The selection formula associated with a regular selection process

can be represented by a regular expression.

º

77

lº. 5. li. 6 CASCADE COMPOSITION OF SELECTONS

Given 2 selectons S1 and S2

Si- (Ci,Xi,Fi, ri, pi) is l,2

the cascade composition of S1 and S2 is defined by:

8. (C,Xl x X2, Fl x F2, r,p)
- the route function is given by:

r■ (f2, fl),c]= (r2|[fe,M2(c.,x1)], r1 [fl,M1(c)])

with M1 and M2 being mappings:

M1: C →Cl

M2: CXXi+ C2

xl can also be written as pl [fl,M1(c)]
- the output function is defined by:

p■ (f2, fl),c]= (p2(f2,M2(c.,xi)], pl[fl,M1(c)])
-

schematically S can be represented by the following diagram:

Xl

Figure l;.6 Cascade of Selectons

by generalization, one can define the cascade of selectons: Si i- l,n
*N.

als S= (C,X1XX2x.
º • XXn, FlxF2x. . .xºn, r,p)

with the mappings

M1: C -> Cl
M2: CXX12 C2
M3: CXX1XX2 + C3
Mn: CXX1XX2. . .xxn-l -> Cn

- - -

º *

--

- -

-

-

- -

-- - - - * - - -

*

78

and

rt (fn.... , fl), c]=(Fn■ fn MA(c.,x1,...ºn)], rn-i (fa-1,Mn-1]... ,ri■ ri,M1(c)])
p■ (fn.fi.),c]=■ pn■ fn MA(c.,x1, ...xn)],...pl (fl.M. (c)]]

It can be shown (ARB68] that a cascade composition is equivalent

to any series—parallel composition.

The main advantage of such a composition is the "triangular" action

introduced by the Mi:

– a selection c input can be modified by a mapping depending on the

outputs (Xi) of the previous components of the cascade.

In particular, this can be used to specify semantic relations between

component selectons in the cascade:

given the outputs sequence

x1, x2, ...*p-1, the mapping Mr. Cxxix. . .xxp—l -> Cp

can express the semantic relation existing between the Xi up to Xp and

the next set of choices or alternatives that can be selected in °p.
Example:

- Given a dose form and strength of a drug, one can restrict the

choices of routes and frequency of administration to the only ones

that are appropriate for the previous items selected.

- The same mechanism could be applied for potential drug allergies

or drug-drug interactions.

The cascade composition of selectons is therefore more than a

series—composition or a concatenation of selectons, it is a way to

construct a selecton in which the parts are interdependent of each other

and this can be used to introduce semantic constraints between the parts.

The cascade composition is also interesting from a mathematical

point of view because it can be viewed as a product of components and

bé

Cº

be

88

CO

§:

79

conversely, one can find a decomposition of a given machine into component

machines which "divides" the original one.

The theory of Krohn and Rhodes [RHO73) is a study of these properties

of machines from an algebraic point of view and it shows that the cascade

composition is equivalent to the "wreath product" defined on semigroups

[RHO73].

The most important result of the theory is that a given machine can

be decomposed into a product of "prime" machines (just as a given integer

can be decomposed into a product of prime numbers).

The prime decomposition theorem [RHOT3] states that any machine can

be decomposed into a cascade of combinatorial machines and group machines.

In this application, a group selecton will be a selecton for which

each selection permutes the frames of the selecton.

A combinatorial selecton will be one for which each selection is a

constant map on the frames or the identity. It can be shown that com—

binatorial selecton can be built from flip-flop selectons.

Examples:

– a group selecton (or cyclic selecton)

Yl sy2 sys
21, z2,23

with the following mappings:

S =
*::::: , (f1, f2,fa), r,p)

r(fi, c.1) = fi ie (l,2,3} p(fl.c.;)
- Xi

r(fl.c2) - fo p■ f:\,ci)
- Yi

r(f2, e3) = f; p(f■ , ci) = z:
rºfº, c.2)

= fi
r(fi, c.3) E. f:
r(f2, c5) - fl

it can be represented by the following diagram:

80

Figure H.7 Group Selecton

A group selecton can be used to build repetitive messages or portions of

phrases. An example of a combinational selecton is:

{x1,x2, x }
S = ({cl.c2,cs}, yi ,Y3,y■) (fl. ,fe.f3,f),r,p)

21,22,23}

with r(fi, ci) = f, p(fl.,ei) = xi., p(f2, ci) = yi, p(f2,ci) = ziriº = f, p(f,ci) = .* 2 **i. i.ii.3%)

fl f2 f3

Xl D-y1 AE *,
V2 VE 22

DN: P ■ 3 Al Z3

D END

f

Figure l;.8 Combinatorial Selecton

81

The flip-flop selecton is:

S ({e1,62), (x1,x2),(fl. fºr,p)
- - - Xr(fl.c.1) fl, p(fl. c.1) = e r(f2, c1) fl. p(f2,c) = x,

- er(fl. c.2) - f2., p(fl. c.2) = x2 r(f2,ca) = f°, p(f2,ca) =

Hoºk—■ a.
D. 32 D-xx-H

fl Figure l; .9 f2
Such a selecton can be used to confirm a binary selection by

allowing it to modify the previous answer or to do a cross-examination

(two operations that should lead to the same answer).

Remarks:

Although the previous results are not new to a mathematician, it is

the author's belief that this is the first time that it has been rec

ognized that a frame selection system, which is a software concept, can

be implemented by a composition of abstract machines which directly

model the actual system.

Furthermore, the use of regular expressions for the selection for

mulas is a very satisfying and condensed way to represent the selection

process.

Finally, it is important to point out that the approach taken by

defining the selecton model is somewhat the converse approach of the

automaton model because the purpose of a selecton is not to recognize

correct strings, but to restrict the choices or alternatives to only

those which are syntactically and semantically correct and makes sense

(i.e., regular strings).

82

The selecton model can be viewed as a model for software machines;

it runs according to "soft wires" (route of the selection process) and

"soft states" (semantic simplex represented by the frame.) Furthermore,

selectons are real-time machines which can interact with a human operator.

Such a machine is not driven by clock cycles in a synchronous manner,

but asynchronously by selections of alternatives which can be done in

real-time.

It is a characteristic of medical information systems, that they

should be able to respond in real-time, in most instances. Frame se

lection systems are software machines which are precisely designed to

meet this requirement in the most natural way.

The next section is a study of the power of the languages generated

by selectons.

83

l,.6 FORMAL LANGUAGES GENERATED BY SELECTONS

Definition:

Let A be a set of letters called the alphabet, then L is a language

with alphabet A if and only if L G A*.

According to this definition, any set of strings over A* is a lan

guage. Another way of defining a language is through a set of generative

rules (also called productions) which tells how to operate on symbols

to obtain a string which belongs to the language.

Such a system is called a grammar, and the symbols on which the

productions or rules operate are composed of two sets: the terminal

symbols which are the alphabet A of the language, and the non-terminals

symbols which are syntactic categories. For example, a simple sentence

of English could be generated by the production S + NP. VP where NP is a

noun phrase and WP a verb phrase, NP and WP are examples of nonterminal

symbols.

More Formally:

Definition:

A grammar is a l-tuple

G= (N,A,P,No)

where:

- N is a finite set of non-terminal symbols

- A is the alphabet of the language or the set of terminal symbols

- P is a set of productions (p,q) also denoted by p + q

where p has the form an 8 with a, Be (NUA)*, neN and qe (NUA)*

p is the left member of the production and must contain at least

one non-terminal symbol.

q is the right member of the production and may or may not con

tain non-terminal symbols.

8||

- No is a distinguished non-terminal symbol called the start

symbol.

- No is a sentential form and if opB is a sentential form, and

p → q a production then aq8 is a sentencial form.

- A sentence is a sentencial form without non-terminal symbol.

- The language L (G) is the set of sentences generated by G.

Theorem:

The grammar G= (F, X, P, fo) generates the same language as the se—

lecton Sro- (C,X,F,r,p) fo eF

where r(fi,ck)= f; and p(fi,ck)= xik

fi.fjeF, cke C, xikeX

corresponds to the productions of G defined by:

fi + xikfj

fe + e if fee (fe)

By definition, the grammar will reproduce the same strings that the

selecton does, each production corresponding to the move of the selecton.

Starting with

fo + f k= l, . . . , Max*ok ºl

fl º Xlm fa m= l, . . . , Max

The strings generated are *ok*lmºa with:= l. . . Max

- if fa e (fe) then all the strings generated by G are the same,

than those generated by Sto

- if fee (fe) the prefix xok xlm is identical to the selection

sentence already generated by the selecton composed of frames

{fo, fl)

Since the grammar is built according to the moves and output of the

selecton, the sentential form of G will be always of the form:

×ok Xim. • Xnr fm#l

85

and the prefixes generated xok...xnr will be identical to the output

selection sentence generated by the selecton composed of the frame

(fo, fl.fn}

Therefore, if the prefix string has length £(s)= n either fac{fe)

and all the strings generated by G are identical to those generated by

Sfo or fa + xntfnºl and then all the prefix string of length n + 1 ge

nerated by G are identical to the output selection sentences generated

by Sfo.

This shows that a selecton has the same power as a grammar which

has productions characterized by:

- one non-terminal symbol in the left-hand side of the production

- at least one terminal symbol in the right-hand side of the pro

duction

Such a grammar is known as belonging to the class 3 in the Chomsky

hierarchy [HOP69], and is called a right linear grammar. This result

is important because it shows that a regular frame selection system im—

plemented as a combination of regular selectons will only be capable of

dealing with problems which can be stated in terms of right linear

grammars.

It must also be pointed out that menu tree systems have less ca

pabilities than the regular frame selection system because they do not

have the loop capability. Therefore, menu tree systems generate lan

guages that are even less powerful than those generated by a right

linear grammar.

86

l.T PUSHDOWN SELECTON AND CONTEXT-FREE LANGUAGE

The next question is how the capability of selecton languages may

be enhanced without losing the basic concepts of frame selection sys

tems. The most natural improvement is to try to "jump" to the next class

of language in the Chomsky hierarchy; i.e., class 2, or context free

languages. In the following, it is shown that by introducing a stack

associated with a regular selecton, such a jump from regular language

to context-free language can be made.

Definition:

A pushdown selecton is a six-tuple

S.- (C,X,F,2,r,p)
where C, X, F are the respectively the input, output, and frames

sets

Z in the finite set of pushdown symbols

r is the action function that maps C x F x Z* into F x Z”

p is the output function C x F + X

The essential difference between a regular selecton and a pushdown

selecton is the introduction of a pushdown stack and a pushdown alphabet.

The action function or next state function operates on the stack

either by pushing objects on the stack or by removing objects from the

stack as a result of a selection.

Applications:

The introduction of a stack is very important in a frame structure

because it enables the use of conditional branching in the structure and

in fact allows conditional statement such that

If selection i was selected, then the route will be route j.

**

+·

87

This can be done by using the stack for temporary storage of strings or

conditional variables when selection i is made and by checking later if

the condition is met.

More precisely, the pushdown stack can be used to do conditional

branching on the frames: supposing that a common regular selecton Sc is

needed for several different selection processes such that the paths

before and after the use of the common part of the selecton are different

as represented by the following diagram:

Sl S2
- - - - - - Sn

Sc

t t t

Sl S2
- - - - - - Sn

Figure li.l.0
Such a case can be implemented by pushdown selectons Sl, . . . , Sn, which

will push respectively *i...º. on the stack and at the end of se the

debranching will be done by "popping" the path (or selecton) to be taken

after the execution of Sc- Thus more complicated structures can be

implemented with the aid of the pushdown stack.

It can be shown that the pushdown selecton generates the class of

languages known as context-free languages. Before proceeding, the defini

tions of context-free languages and normal form for a context-free lan

guage are necessary.

88

Definition:

A grammar G= (N, A, P, No) is said to be context-free if the produc

tion rules have the following form:

n + a where n e N and a e (NUA)*

In other words, the left side contains one non-terminal symbol and

the right side of the production may or may not contain a single terminal

symbol. It can be proved that every context-free language can be reduced

to a normal form called Chomsky normal from (CNF) where all the produc

tions are in one of the two forms [AHO73]:

P → QR P,Q, R e N

P + a PeN, aeA

Theorem:

The pushdown selecton

PSro- (C,X,F, Z, r,p)

with the following r and p functions:

push action r (c1,fi,z)= (fy, fka)
p (c1,fi)= e

or

pop action r (c2,fi, fyz)= (r3,2)
p (c2,fi)= xi

generates the same language as the context free grammar G= (F, X, P, fo)

with the following production types:

fi + f; fk

fi → Xi

Since every context-free language can be represented in Chomsky

normal form:

fi + fj fk
fi + xi

89

are normal form productions and therefore generates a context-free lan

guage.

Conversely, if fi → f, fk is a production of G, it can be imple
l j ‘k

mented by a pushdown selecton which "pushes" fl. and goes to f;. If the

production is of the type fi + x i > then we use the second action function

which "pops" the stack and outputs xi.

The following is an informal proof of the theorem stated before:

i)

ii)

assuming that the grammar has one production

fo + x

L (G)= x

it is equivalent to the selecton PSfo- (c.,x, fo,z,r,p)
with:

r (c., fo,e)= (e.,e)

p (c., fo)= x

L (G)= L (PSro)= x
If the grammar is in normal form, the next CNF grammar must have

three productions because the addition of a new production of the

type fi + x, cannot be useful without a reference in another

production, therefore, it must be of the form:

fo + f1 f2

fl + xi L (G)= x1 x2

f2 + ×2

In the following e represents the empty frame or string:

r (c1, fo,e)= (f1, f2)
p (c1, fo)= e

r (c2, fl, f2)= (f2,e)
p (c2, fl)= xl
r (c2, f2.,e)= (e.,e)
p (c2,fa)= x2

-
-

-- - -

- -

* -

- -

*

-

*

-

-

.

--

90

it follows that:

L (PSr.)= x1 x2
and

L (PSro)= L (G)
iii) Reasoning by induction:

supposing La(G)= In(PSro) when the grammar has n useful produc

tions. Then to obtain a grammar with more useful productions

a production of the type fi + xi must be replaced by three pro

ductions of the type:

fi + fj fk

f; -* ×3

fk * xk

This is equivalent to say that Ln+2 (G) is obtained from In (G)

by replacing every xi in the previous language by ×3 xk in the

new language. Therefore, since La (PSro)= L., (G), it is trueIl

that Ln+2 (PSro)= Ln+2 (G). This proves the induction step
and therefore every pushdown selecton with any number of frames

is equivalent to a context-free grammar.

Discussion of results:

This theorem is also very important because it shows that frame se

lection systems with the addition of a stack operation have the same

capabilities as the class of context-free language.

In regard to the fact that usual computer programming languages are

basically context-free (ALGOL-like languages in particular) this shows

that frame selection systems are theoretically as powerful as any con

ventional programming language.

In practice, frame selection systems may not be convenient for genera

91

ting computational formulas (although it is possible), but they are

more adapted to deal with generation of sentences using English-like

phrases using a context-free grammar.

This is what was meant by approximation of a natural grammar by a

formal grammar. Such a grammar might be more restrictive but it is

easier to handle by computer.

Furthermore, the frame selection approach does not require that

the user learn the underlying grammar as is the case for the usual pro

gramming languages. The grammar is encoded in the structure of the frame

complex, therefore, preventing the user from committing syntactical or

lexical mistakes. The only thing that the user is required to do is to

select the items of the semantic simplexes represented on the frames.

The argument of inflexibility is not really valid because with this

software approach it is possible to improve and adapt each application

to the particular needs of the user.

In many respects, it is in fact more flexible than regular time

sharing systems which will refuse an answer if it is not in the proper

form (misspellings, punctuation, codes, etc.) Instead, with this approach

the possible answers are listed on a frame and need only to be selected.

Frame selection systems are also more extensible because the in

troduction of new frames and selections can be done without re-pro

gramming if one has available a frame programming language (see next

chapter.)

Finally, the question of possible ambiguity of the sentences ge

nerated is irrelevant because the messages can always be accompanied by

the selection strings corresponding to the message generated.

92

lº. 8 COMPUTATION AND FRAME SELECTION SYSTEMS

It has been shown that a frame selection can be used to generate

regular or context-free languages designated as classes three and two

in the Chomsky hierarchy.

The classes one and zero are known as context-sensitive and re

cursively enumerable sets and are associated with Túring machines.

A Túring machine is characterized by a tape and a finite control

Tape cell

Finite Control

Figure li.ll Túring Machine

The tape is of indefinite length, and is divided into cells which are

either blank (0) or not blank (l), and the tape can move either to the

right or the left. The tape can run through the reading head of the

finite control so that it can examine one cell at a time.

The operations that can be performed by the machine are:

0 - it can erase the cell (makes it blank)

l - it can write on the cell (non-blank)

2 - it can move to the cell on the right

3 - it can move to the cell on the left

If I= {0,1} represents the condition of the tape, and X= {0,1,2,3} re

presents the operations as defined above.

93

If Q is a set of states of the finite control, then the machine is

a mapping:

Q x I → Q x X

and the behavior of the machine is determined by the quadruple

qi Tk Xe qj

- q; : the initial state

■ k is the input taken in I (i.e., the condition of the tape

cell: blank or not)

Xe is the output taken in X (i.e., the operations defined

above)

qj is the state after the operation is performed.

Despite its apparent simplicity, such a device is theoretically in

teresting because it can carry out any computation. A sequence of

quadruples qi Ik Xe qj is called a program, and a program computable by

a Túring machine is also called a procedure.

The new element in the Túring machine model is the fact that the

tape can be moved left or right with respect to the reading head. Applied

to the selecton model, this would mean that instead of a pushdown store,

we would have to consider two pushdown stores. This is true because

there is a theorem which states [HOP69) that "an arbitrary single tape

Túring machine can be simulated by a deterministic two-pushdown tape

machine." A deterministic two pushdown tape machine is a deterministic

Túring machine with a read-only input and two storage tapes. If either

tape moves right with respect to the head a blank is printed on that tape.

This shows that if a regular selecton is associated with two pushdown

stores, it becomes a two pushdown selecton which has the same capability

as a Túring machine.

9||

The corresponding theory will not be developed here, but some re

marks will be made:

- First, it shows that selecton models are capable of generating

any language from class 3 to class 0, in the Chomsky hierarchy.

- Second, it shows that with the adjunction of a second pushdown

store, the model can generate context-sensitive language. Indeed

this can be practically done by allowing after each generation

of a phrase, to look back at the previous words or phrases (the

context) to modify the present output in the correct context.

- Third, the second pushdown store can be used in order to "reverse"

the selection process and enables the erasure of the phrases

already emitted up to a certain point (the phrase already emitted

can be considered as the second tape.)

- The introduction of procedures can help in generating more power

ful languages with context-sensitive features as shown below,

APPLICATION TO TRANSFORMATIONAL GRAMMARS:

The linguistic theory developed by Chomsky [CHO65] for the syntax

of natural language is based on a model which allows the basic phrase

structure of a sentence to be modified by transformation rules applied

to the terminal strings obtained by a phrase structure grammar (usually

a context-free grammar.)

An example of such a rule is given by the passive versus the active

form:

NPl-W-NP2 + NP2 - be + en –W– by NPl

For example, "The physician examines the patient" can be transformed to

"the patient is examined by the physician." It must be emphasized that

such a transformation can be done automatically by a procedure.

95

There is no information created by going from the active to the

passive form, it is just a computation on the elements already existing.

Returning to the selecton model such transformation rules can be

implemented as frames representing the alternatives transformations that

may be applied to a given phrase structure. The example presented

before could be implemented by the selection formula:

D NP, D v D NP, D AP
where AP will be a frame to select the alternative active or passive.

This suggests that a given selection might be associated with a pro

cedure in order to carry out a computation on the string already gene

rated.

It would be too constraining and unrealistic to carry out these

computations by a Túring machine (here the computation is stable and the

only freedom of choice is given by the data representing the string

already produced and the program of the Túring machine is predetermined

by the transformation to accomplish.) Therefore, instead of defining a

selecton which will have the same capability as a Túring machine, the

same result can be obtained by a set of procedures T (transformation or

computations) which can be executed as a result of a selection.

A frame selection system is defined as follows:

Definition:

A frame selection system is the eight-tuple:

FSS= (C,X,F, Z, T, r, p, m)

where C, X, F, Z are the input, outputs, frames and pushdown sets.

- T is a set of computational procedures or transformations

operating on the string already produced by the underlying selecton.

- m is a mapping from C x F to T such that m (c,f)= t, t e T, t can
be the empty or null procedure also denoted "NOP."

96

Such a device will work like a pushdown selecton for producing strings

but occasionally a selection will trigger a procedure which will be

executed as a result of the selection.

Thus, the device called a frame selection system is basically com—

posed of two parts: a pushdown selecton or a regular selecton and a

set of procedures which can be executed as a result of a selection.

Such a device has the same capability as any computing device because

one can consider the sequence of procedures t- til to...tn corresponding

to the selection string sl...s.n. In this case, t is a concatenation of

procedures; i.e., a collection of procedures which has the effect of

executing ti, t2,...tn successively. The procedures t1...tn can be con

sidered as a program which is a sequence of subroutines call such as:

CALL SUBl

CALL SUB2

CALL SUBn

Each of these subroutines can be written in any standard computer pro

gramming languages.

This corresponds to standard programming techniques and it should

pointed out that this approach is in fact similar to the structured pro

gramming approach: [DAH72]

Each frame can be associated with a set of procedures which can be

viewed as the alternative instructions of a CASE statement (WIR66]

Similarly, a two choices alternative will correspond to an IF

statement. For instance, if each choice is associated with a

procedure (possibly NOP), the frame would be equivalent to the

following statement:

97

CASE OF CHOICE

CHOICE l; CALL SUB 1

CHOICE 2: CALL SUB 2

choice n: CALL SUB n

A frame selection system can be viewed as a sequence of CASE statements

and each particular selection string corresponds to a string of pro

cedures in the sequence of CASE statements. It is clear that if a pro

blem is décomposed and analyzed in order to be implemented as a frame

selection system, each large task will be decomposed into smaller tasks

in a top-down fashion and each alternative would have to be clearly

specified on frames. The end result is a sequence of frames associated

with procedures that can be easily implemented, modified and maintained.

The frame structure becomes a super structure that "holds the parts

together" and furthermore, this superstructure is understandable by

non-programmers.

Therefore, the frame structure becomes the common language between

the user and the designer-programmer and this is very important in an

environment where the applications must be user-oriented.

In conclusion, the next figure summarizes the different aspects of

frame selection systems in relation to the theory of automata and the

theory of formal languages. It can be seen that the frame selection

model encompasses some capabilities that are particular to each

theoretical model with the addition of a pragmatic capability which is

absent in the other models.

:

.*.

98

Theory of Automata Theory of formal
grammars

Selecton and frame

selection system

Application Modeling of hard- || Study of language |Real-time inter
ware and string syntax active systems
recognizers

Structure States + next Production rules Frames + route
state function functions

Freedom of
choice in the

inputs

Inputs from
alphabet

Selection of

productions
Selection inputs

Lexical Recognition of words. Generation of Generation of
capability or tokens words or terminall choices item or

symbols phrases

Syntactic Recognition of Generation of Generation of
capability sentences or string | sentences and sentences + execu

transformations tion of procedures

Output Accept or reject Syntactically Syntactically
input correct sentences loorrect sentences

Semantic Execution of pro- No Semantic restric
capability cedures to recognize tion and execution

semantically correct of procedures to
sentences produce semantically

correct sentences

Pragmatic No No User interaction
and selection of
alternatives

Figure l; .lz

99

Chapter 5

A Frame Programming Language (FPL)

"It seems to me that all my creation is
an effort to weave a web of connection

with the world; I am always weaving it
because it was once broken. But as I
want these webs to be always truthful,
I do not know how to break the false
ones..."

Anais Nin

Diary Wol. 3

lCO

5. FRAME PROGRAMMING LANGUAGES

In order to build application systems utilizing the frame selection

process, a frame programming language (FPL) was found necessary in order

to conveniently define the frame structure and the actions to be taken

following each selection from a frame. In order to illustrate the dis

tinctiveness of FPL, this Chapter contains a brief introduction to the

frame selection language SETRAN-HIP, used in the development of the

medical information system of the University of Vermont [WEE69] and the

language FOPS employed in the frame selection system built by the Sanders

Corporation for the Kaiser Hospitals [WAN70, SINTO].

5.1 PREVIOUS FRAME PROGRAMMING LANGUAGFS

5. l. l SETRAN-HIP

SETRAN (Selectable Element TRANslator) was designed by Control Data

Corporation in order to develop a frame system using a touchscreen de

vice as the selection mechanism. HIP (Human Interface Program) is the

frame selection application as it appears to the user.

SETRAN is described as a "keyboard program by which pages are built

into branching displays...; SETRAN pages differ from HIP displays by the

presence of code letters and numbers within which lie the directions for

the branching displays" [WEE69].

SETRAN gives the user the capability to read, write, erase pages

(frames) on the mass storage device. The implementation distinguishes

different type of pages:

- T pages which do not have a paragraph segment (message area.)

They are used to initiate and terminate paragraphs.

- I pages (intermediate) have a paragraph segment and have

branching capabilities.

- - - -

- - - -
* s

-
: - t

* * - -

e- - , -

- 1.

* - -

* -- -
- -

1Ol

- G pages which are used for descriptive information where the

branching capabilities of I displays are not needed.

A typical command would be: RIl363 which means: read I page

number 1363 where 1363 is an octal number.

It must be noted that in SETRAN every page (frame) is referenced

by an octal number. This feature implies that for a medium or large

system (above 100 frames), a highly organized documentation scheme must

exist to keep track of the page ID number.

Similarly, the branching system is entirely based on an octal code

system. Each displayed selectable element is associated with a fixed

format field which contains:

- page ID numbers (absolute or relative to the current page.) They

indicate the next page to be brought (lower order display) or the

page starting a loop (high order display) which will be put on a

stack.

- letter codes are used to indicate flags for message inclusion of

the selectable element or multiple choice frames.

5. l.2 FOPS

FOPS (File Oriented Programming System) was developed by Sanders Co.

[SINTO] for the Kaiser Foundation Hospitals.

FOPS is a statement oriented interpretative language including

commands, operators, modifiers, and system variables. FOPS has direct

statements executed immediately and indirect statements to be executed

at a later time. A program is a sequence of indirect statements which

execute a specified task.

Frames can be build by using an operator called FORM. The FORM

operator enables the user to define page displays which contains elements

*

102

selectable by a light pen. A FORM can be divided into PARTS which are

fields to be filled in and when a form is constructed the user may

designate these parts to be selectable.

Rather than present a formal description of FOPS, an example is

given below which illustrates its capabilities:

DATE: DR.

PATIENT NAME ROOM

DRUG :

DOSE: ROUTE:

PHENERGAN 25 MG

PHENOBARBITAL 50 MG

ORAL

IV

Example of a form in FOPS

This form could be used to build drug orders. A drug order will be

built by selecting a given drug name which will be moved in the part

DRUG: , a dose to be moved in the part DOSE: , and similarly a route in the

part ROUTE:.

This type of selection process is static because all the elements

to build the drug order must be on the same display and no procedure can

be executed after a selection.

This reduces the message building capabilities, and it does not allow

for semantic restrictions that can be applied as a result of previous se

lection (in this example, the two drugs must have the same possible dose

forms as well as the same possible route of administration.)

lC3

5.2 A FRAME PROGRAMMING LANGUAGE (FPL)

In Chapter l;, it was shown that a frame selection system can ge

nerate regular or context-free languages. The approach taken in the

following is that this capability should be used to design the frame

programming language itself.

Instead of defining a grammar abstractly and then build a compiler

which will recognize the correct sentences, a frame selection system can

be constructed as an interactive system which will generate only syn

tactically correct sentences of the abstract grammar. It is, in fact,

the converse approach of classical programming languages: instead of

having a syntax-directed compiling [DONT2], it can be viewed as a syntax

directed programming approach.

A classical compiler can be represented schematically as follows:
Semantic . Errors

-

Syntactic - Errors

Lexical Errors

Lexical Syntactical Semantic Object Code
Analyser alyser Analyser Generation

Input
Strings

(Source Code)
-

Symbol Matrix
Table

Figure 5.l

The input strings are submitted to several successive types of

analyses:

- the lexical analyser detects lexical errors such that mis-spellings,

punctuation errors and determine the tokens to build a symbol table.

- the syntactical analyser (parser) detects syntactic errors according

to the grammar of the language and generate a matrix of syntactic

units recognized.

- the semantic analyser detects the semantic errors and provides

lol,

interpretations to statements which are syntactically correct

but may be interpreted differently depending on the semantics of

the language. In this scheme, some other possible steps of a com

piler system, such as the optimization and storage assignment, are

ignored for the sake of simplicity. The point is to notice the

existence of several feedback icer. which take place in case of

errors.

All these types of errors generate several corrections and compila

tion passes until the program is error-free (as far as the compiler is

concerned.) The major difficulty in compiler design is that they must

detect all these errors before running time.

The approach taken in FPL is to restrict the freedom of choice of

the user by preventing him from generating syntactically-incorrect sen

tences. The lexical errors are avoided by providing frames with choices

representing correctly spelled words or phrases, and by generating the

punctuations and indentation as necessary. The syntactical errors are

avoided by encoding the grammar (regular or context-free) in the frame

branching structure.

Furthermore, context sensitive features can be handled by invoking

computational procedures associated with a given selection, or by re

stricting the choices on future frames to be referenced. The following

schema represents the FPL approach:

Image Code

Selections l FPL

Object Code

Figure 5.2

loS

The image code represents the strings and sentences produced by FPL

as a result of the selection and execution of semantic routines applied

to the output strings. The selection strings (i.e., the successive se–

lections made to generate an output string) represent the parsing of the

image code from which computational routines can generate the object

code.

It must be noted here that the problem of ambiguity and avoidance

of key-words becomes irrelevant because the selection strings associated

with the image code indicate which particular path of the parse tree was

meant by the user.

The precedence relations can naturally be handled by the structure

of the frame sequences. Although it is possible to encode any programming

language grammar in such a way, the approach is more appropriate for de

veloping interactive problem-oriented language where the users have little

knowledge of algorithmic languages and want to develop their applications

in terms familiar to them.

Due to the extensible nature of a frame programming language, it is

possible to start the language with a minimal number of features and

then extend the capability of the language by adding new frames. In

effect, a frame programming language can be bootstrapped from a minimal

syntax which corresponds to a regular grammar.

A minimal frame language is characterized by the possibility of

defining frame displays, writing, reading and erasing frames from a

mass-storage device. It must also allow the possibility of linking frames

and output strings or execute procedures as a result of a selection.

lC6

5.2.1 BUILDING AND FILING OF FRAMES

This aspect of the language corresponds to the définition of the

declarations of classical programming languages. It involves the defini

tion of the frames' content and is followed by the filing of frames on

a secondary storage.

IMPLEMENTATION OF THE FRAME CONCEPT: SELECTION FRAMES, EDITING

FRAMES AND MIXED FRAMES

In this implementation, a CRT screen is composed of 2h lines of l;8

characters (llS2 characters).

Three types of frames are distinguished: editing frames, selection

frames and mixed frames. An Editing Frame (Fig. 5.3) contains message

prompts and empty fields to be entered from the keyboard by typing. A

Selection Frame (Fig. 5.l.), contains a maximum of thirty selectable items

arranged in a grid of lo lines by 3 columns. A third type of frame is

called a Mixed Frame (Fig. 5.5) because it is a selection frame which

allows the definition of a selectable item by entering it, on a keyboard.

Examples of such frames are given below:

Hºme 4 [Lºist. First . In i + j :
--

-
|

Hºsp #: Bed: Birthdat g : - -

5.2× . Race: Jº : Kg Adm: – – PHTH: £

MD: Last Surg: –

Hºlm Prolº :

[1%:

Die : Lou, Fl L id: IAQ:

Spec Orchers:

Figure 5.3 Editing Frame

lo'■

T. HEETøf." IHIPHE}} - D IFHE}|H'('TH ||c. Il PENTH2OCN Cl

I ■ ºl LTIPLIR. If |T|L H [][]53 El PENT■ iz[][N Lºc

I ºf P ICIL TE IHD El Fe SD4 USP Il PENTUEFRB ||d

£15P IR IN El FLUEFAZEPH■ 1 C 1 El PHEHTIEHRB ITAL

| EE|{{DRY'L El LDI-IIT IL tº PDT Cl

H E ISHIUD'Y'L Ei ■ ºlº HLOX [T PRED}|IGITHE

ºT. CHLCR'■ AL H'Y'D A METHYLDTIP■) T FROTLORER ED

a DEXAMETHAGONE H ti■ t■ Fi PRIFI}}{PHEN Cl

I I I■ zEFAft I fºll JLT I WITS UC E R IDF'■ N

a DIGOxIt a PEN PHENOx K R SECUBARB tº

Figure 5.1, Selection Frame

FRETILIENCY OF EDI 1 IN ISTREATION

■ º qa El q1h T. cic

[...] bid Il q2h II pc

t id Il q3h Ll LJi th medl s

I did H q4h El His

3T3T a qGh In prin

E. g3H

II a 12h [T]: *-

Figure 5.5 Mixed Frame

Both selection and mixed frames do not use the four upper lines of the

screen which are reserved for a message window for the sentences to be

build during a selection process. The building of frames starts with the

presentation to the user of an index (FPL index) which indicates the

108

alternatives available. The type of frame is specified by selecting one

of the alternatives on the FPL index and this brings either a frame

skeleton representing the grid which can be filled in by selectable items

(selection and mixed frames) or a full screen available for prompts and

fields (editing frame.)

When the display is filled with the text to be shown on a frame, a

function key will trigger the storage of the frame in a temporary storage

area. This operation will bring back the FPL index and then a name can

be given to the frame by selecting the laternative "identification of

frame;" a mixed frame will be displayed in order to type the name ot the

frame built previously. Then by selecting the choice "WRITE," the frame

will be stored permanently on the secondary storage medium and the frame

directory will be updated. If the name given was already used for

another frame a warning message will be given to the user and he will

reenter a new name.

The frame used to enter the name can also be used to read, rewrite

or delete a named frame by executing the corresponding procedures as a

result of a selection.

The following figure represents the different frames and selections

used in this phase of a frame construction:

log

FPL Index

D Editing Frame

Selection Frame

%
Mixed Frame

[...]
-

Identification

Interpre
tation T

Frame Skeleton Identification of
Frames

Da [] []

[...] D [...] Enter Name:

D. Write Ed Read

D Rewrite D Delete

Figure 5.6 Creation of a Frame

Once a set of frames corresponding to an application or a subset of

an application has been defined, one can proceed to the definition of

the executable selection instructions to be followed as a result of a

selection in the actual application.

5.2.2 GENERATION OF SELECTION INSTRUCTIONS

A selection frame is associated with a set of selection instruc

tions contained in a selection interpretation table. A selection in

struction corresponding to a given selection is composed of the following

sub-instructions:

- a string instruction

- a procedure instruction

- a route instruction

- a mask instruction

110

The syntactic specification of the selection instruction in Backus

Naur Form (BNF) is as follows:

<selection instruction>= <string instruction><procedure instruction»

<route instruction» «mask instruction.”

i) String Instruction

The string instruction specifies what will be the output of the

selection. If the selection is not used for message building, no string

will be moved. If the string on the frame represents a phrase for the

message building, it will be moved as a result of the corresponding se

lection.

If the string on the frame is an abbreviation of a more explicit

phrase or associate string representing the full text, it will be moved

(also an abbreviation of the string on the frame can be moved instead

of the full text.)

A string may be associated with a positioning format which will

indicate where to move the string in the message area. The following

choices are available:

- concatenation

- line feed/carriage return

- indentation

- tabulation

The corresponding instruction can be represented as follows:

S A F | Address of string

S is a boolean variable indicating the presence or absence of a

string

A indicates if there is an associated string

F is a code for the format

s

- º

- -

lll

The remaining part of the instruction is for the address of the string

(either relative to the beginning of the frame or relative to the as

sociate string area.)

This instruction can be built by selecting the corresponding at

ributes from the two following frames:

String Output in Message

D Empty String

D Output Choice String

D Associate String:

Figure 5.7 "String" Frame

the associate string can be entered on the frame just after the colon

following the choice "associate string." If the moving of strings is

requested, the next step will be to select the format from the following

frame:

Positioning Format

D Concatenate

D Carriage Return-Line Feed

tº Identation

[T] Tabulation

Figure 5.8 "Format" Frame

ll2

The address of the string is computed by a procedure executed after the

selection of the string parameters and at that time the corresponding

string instruction is compiled and stored in the selection interpretation

table.

ii) Procedure Instruction

Following the string instruction, the next step will be the building

of a procedure instruction to be executed as a result of a selection.

The procedures which can be selected are listed by name in a procedure

library. A procedure can be selected to be executed at a given level

of priority: foreground, middleground or background.

Only foreground procedures will be executed immediately (between

two frames), therefore, they must require a short execution time (no more

than a few hundred machine instructions that is a few milliseconds.)

A middleground or background procedure will be executed as parallel pro

cesses while the selections proceed in the foreground. The procedure

code may be either resident in main memory or brought into an overlay

area from the disc storage.

The following represents the procedure instruction:

| P | PR O | Address of procedure

P is a boolean variable to indicate the presence or absence of a

procedure

PR is a variable giving the priority at which the procedure should

be executed

O is a boolean variable indicating if it is an overlay procedure or

not

* ,

ll3

The address of the procedure refers either to a table of resident

procedures or to a disc address if it is an overlay procedure. The

corresponding instruction can be built by selections from the following

frames:

Procedure to be Executed

D. No Procedure (NOP)

D Execute Procedure (Resident)

D Execute Procedure (Overlay)

Figure 5.9 "Procedure" Frame

Priority of Execution

D. Foreground

D Mi ddleground

D Background

Procedure Name:

Figure 5.10 "Priority" Frame

ll!

iii) Route Instruction

The route instruction defines the next frame to be invoked after a

given selection is made. If it is a multiple choice frame, the route

is invoked. For a selection frame, a selection will result in linking

a new frames

A given selection may also push a given frame on a pushdown store

for future reference or pop a frame from the stack as shown in Chapter l;.

The following is a representation of a route instruction:

R Pop Frame Address Push Frame Address

R is a boolean variable indicating the presence or absence of route

The variable "Pop" indicates the next frame to be fetched. Two

cases are distinguished:

i) If Pop is not zero and if the next field is not zero, it

indicates the next frame address to be fetched; if the

field "frame address" is null, the frame on the top of

the stack is removed and fetched.

ii) If Pop is null no frame is fetched (multiple choice frames.)

The variable "Push' indicates if a frame is to be pushed on the

stack and the next field gives the address of the frame to be

pushed.

* * * *

ll 5

The following frame is used for the route instruction:

Route Instruction

D No Route

D Bring Frame:

D Push Frame:

D Pop Frame Stack

Figure 5.ll "Route" Frame

iv) The Semantic Restriction Relation

Associated with a given route there is a vector which specifies

which choices may be selected on the next frame. This feature allows

for semantic relations between frames, this is implemented by a vector

mask which is applied against the subsequent frame when a given selection

is made. The syntactic specification of this process is as follows:

<VECTOR MASK»º SELECTION BOOLEAN»º

<SELECTION BOOLEAN» is TRUE|FALSE

This mask is built by bringing the next frame specified in the route, and

selecting the choices which are to appear on the frame.

For example, this technique is used in the pharmacy application to

restrict the route of administration to those which are semantically com

patible with a given dose form.

The complete syntactic specifications of the frame programming

language is given in the Appendix.

º

*

a

- - * , , - e ** * * .
* y - -

: - . . - • *
-- -

- - - -

i *

- - -

- * * ** -

º

º -

ll6

In this implementation, a selection statement corresponding to a

selection instruction will look like:

FRAME * FRANAM."

CHOICE * CHOICE PHRASE X"

OUTPUT CHOICE STRING AND CONCATENATE

EXECUTE PROCEDURE * PROCDU ' FOREGROUND

BRING NEXTFR." AND PUSH "FRANAM."

NO MASK ON 'NEXTER."

This example tells that, for the choice 'CHOICE PHRASE X", the choice

string will be moved and concatenated in the message area, a foreground

procedure will be executed and the next frame will be 'NEXTFR' while

the frame 'FRANAM' will be pushed on the frame stack. It must be noted

that the keywords CHOICE, OUTPUT, AND, BRING... are automatically generated

by the selection implementing the language FPL when the corresponding

selection are made.

Although this minimal version of FPL provides all the features

required to build the pharmacy application, new features can be added to

the basic language by using the extensibility of the language. By de

signing new frames and new procedures, it is possible to give a greater

flexibility to the language by introducing more stacks and more general

semantic relations between frames elements.

-

ll 7

5.3 SOME EXTENSIONS TO FRAME PROGRAMMING LANGUAGE

The existence of procedures to be executed as a result of a selec

tion provides the capability to extend the language by simply replacing

or adding new selections, new frames and new procedures.

In the following some improvements are suggested and can be imple

mented easily.

5.3.1 STRING PUSHDOWN STACK

A selection may invoke a string which will not be output immediately,

but at some later point in the selection process. For instance when se

lecting a drug name one could invoke a string, which later will indicate

the possible adverse reactions or side effect of the drug.

The string stack can also be used to output delineator or punctua

tion sign to be generated inside a statement or at the end of the state

ment (for instance a semicolon at the end of a statement can be pushed

on the stack at the beggining of a new statement and removed from the

stack when the statement is complete, the same is true for parentheses

in nested expressions.)

This can be implemented by a new syntactic unit in the string in

struction:

<stack string instruction» := <PUSH: “Stringaddress.><String length: <POP2

where PUSH and POP are booleans, which indicate if a string is to be

pushed on the stack or popped from the stack. If PUSH and POP are true

then it is equivalent to an immediate output of the string. If POP only

is true then the string address and the length are null.

5.3.2 PROCEDURE STACK INSTRUCTION

Similarly a procedure stack can be implemented to invoke a procedure

which may be executed at a later point in the selection process. For

* *

--

ll 8

instance, a procedure might be executed only if two particular selec

tions are made during the selection process: the first selection will

push the procedure on the stack, and the second will remove it from the

stack and execute the procedure. If the second selection is not made,

the procedure will be removed from the stack without executing it.

The corresponding additional syntactic unit is:

<procedure stack instruction>:= <PUSH-K Procedure address.><POPS

PUSH and POP have the same meaning as for the string stack instruction.

This mechanism could be used for executing procedures which will check

for drug-drug interactions or drug allergies.

5.3.3 THE SEMANTIC RELATIONS BETWEEN FRAMES

It was mentioned in Chapter l;, that it was possible to define re

lations between any pair of frames. Each frame fi is considered as a

linear vector of n elements cik k= 1,n representing the choices on that

frame.

cil cio cis-cik.cin

l l O l | c.ji

Mij- l *jm

O O l l c.jn

Each row indicates if there is a relation between all the elements of

fi (eik, k= l,n) and the elements in fj (cjm,m= l, n). A zero indicates

no relation and a one indicates a relation.

ll.9

If one considers the columns, each choice of fi (cik) is associated

with a vector specifying the relation with each choice of fj (c.jm).
This is generalization of the vector mask defined before.

A semantic relation can be defined between any two frames by using

a selection mask instruction:

<selection mask instruction» := <selection mask vector» «Frame IDX

Since a given frame may have several masks, the mask vector must

be associated with a frame ID and when a given frame is called, all the

mask vectors referring to that frame are logically "ored" to give all the

semantic restrictions imposed by the previous selections.

5.3.1, DUPLICATION INSTRUCTION

For a given set of selections on a given frame or for a given set

of frames of a given application, it is frequent to have to repeat the

same selection instruction several times.

In the first implementation of the frame programming language, an

ad hoc solution to this problem has been obtained by inserting a new

frame which permits the duplication of the previous selection instruction

for the next selection choice.

A more general solution can be obtained by defining a set of selec

tion instructions as a named entity which can be referred to as a selec

tion block such that:

<selection block: := <block name><selection instruction»”

<block name> t = <character-"

then a new type of instruction can be defined to enable the duplication

of previously defined selection blocks. The syntax specifications could

be as follows:

--> *

120

<duplicate instruction>:= FROM-choice field-DUPLICATE-selection block

<choice field: := <choice index-TO-choice index

<choice index: := CHOICE&number

Such an instruction could also be extended to the duplication of selec

tion blocks from one frame to another.

This type of instruction will be particularly useful in frames

structures where a large number of selections have the same function and

therefore have a large number of identical selection instructions.

5.3.5 DATA BASE DESCRIPTION INSTRUCTIONS

Finally, a more elaborate frame programming language would include

features to allow for the data base description of the content of each

field and each message. For instance, each field of an editing frame

would be associated with a variable name and a data type according to

the following syntax:

<FIELD DESCRIPTOR: ; = <WARIABLE NAMEX & DATA TYPEX.

<DATA TYPE := INTEGER ALPHANUMERIC|REAL

Similarly a message to be built as a result of a selection process might

be described by a message descriptor according to the following specifica

tions:

<MESSAGE DESCRIPTOR: := <PHRASE COMPONENTx *

<PHRASE COMPONENTx := <COMPONENT NAME: <DATA TYPEX

Such an addition to the frame programming language would allow for a

total description of the content of the data base resulting from the use

of the corresponding frame selection system. Furthermore, this formal

description would permit the building of a query language which could

also be designed as a frame selection system thus enabling the genera

tion of query statements to interrogate the data base.

*-

l2l

To conclude this chapter, it is important to emphasize again the

advantages of a frame programming language as opposed to a more classical

approach (compilation or interpretation.) A frame programming language

allows for a direct deterministic parsing of the statements generated,

therefore, it eliminates the backtracking and indeterminacy encountered

in a compiled approach. A frame programming language is not an inter

preter, but a real-time generator of syntactically correct sentences.

The statements generated by a frame programming language can be compiled

for later execution, but the introduction of procedures in the selection

instruction allow the extensibility of the language by modifying the

procedures. Although, any programming language can be implemented as a

frame selection system it is believed that such an approach is better

suited to implement problem-oriented languages such as question-answering

system, query languages, job control languages, computer assisted in

struction, etc.

The next chapter will present a real-time operating system designed

to support frame selection systems and the frame programming language as

presented in the section 5.2.

122

Chapter 6

Implementation of a Frame Selection System

"An activity has to be understood in terms
of the experience from which it emerges -
these arabesques that mysteriously embody
mathematical truths only glimpsed by a
very few - how beautiful, how exquisite -
no matter that they were the threshing
and thrashing of a drowning man."

R. D. Laing

l23

6. IMPLEMENTATION OF A FRAME SELECTION SYSTEM

This chapter will describe the implementation of a frame selection

system on a minicomputer (Four Phase Model B).

Although the implementation has been done on a machine particularly

well-suited for the support of multiple CRT terminals (see Section 6.3.l.),

the design is not specific to a given machine. Because of the particular

requirements of frame systems (selection mechanism, response time) no

useful software was available, and thus it was necessary to design a com

plete operating system to support the frame selection system application.

This chapter deals with the basic operating system design and with

the implementation of a frame selection system as an external layer of

the basic operating system.

The design of the frame selection system is related to the applica

tion systems and, in particular, to the implementation of a frame lan

guage which is implemented as a frame selection system application.

This chapter is more concerned with the programming techniques and

tools used to implement the system.

6.l. BASIC OPERATING SYSTEM CONCEPTS

This section describes the overall organization of the operating

system which is used for the frame selection system. The general features

of the system are a real-time, multiprogramming system, with three hard

ware levels of processing. It is a system which allows the use of

parallel processes. Before describing the implementation it is necessary

to define some operating system concepts.

The object of the operating system is to handle all the tasks needed

by the application processes. Since much emphasis is put on the use of

CRT's, it is oriented towards a real-time interactive mode using a se

*

+

-

- -

* * *

12h

lecting device which can be simulated by a keyboard. Rather than being

developed for a specific application, the operating system has been

developed to support a variety of applications.

The purpose of an operating system is twofold:

i) provide the potential user more flexibility than he would have

by using the bare hardware machine

ii) provide for a management of the resources available on a given

machine (memory, CPU, disc files, peripheral, etc.)

Although the term "flexibility" is hardly quantifiable, one can de

fine a hierarchy of conceptual levels or layers at which the user becomes

less and less dependent on the particular hardware structure of the

machine. The ultimate goal is to transform the hardware machine which is

fundamentally an undeterministic automaton (undeterminacy of the ex

ternal interrupts) into a deterministic device where the system controls

all the information coming in and out of the system in a predictable

fashion.

The concept of resources is also very broad; a resource can be a

memory word, a buffer, the central processing unit (CPU), a file, a pro

cessor, or a peripheral device. Pursuing the concept of resource mana

gement, the purpose of the operating system is to provide the user with

the capability to work with more and more sophisticated entities which

usually correspond to the abstractions defined at each successive level

of the operating system.

From the users' standpoint, he would like to consider the machine

as if it was working for him alone. The major problem of an operating

system is not so much to build a deterministic machine for a particular

user, as to be able to manage harmoniously the sharing of the resources

by all the potential users of the machine. To precisely describe the

problem, the concept of sequential process will be used.

125

6. l. l SEQUENTIAL PROCESSES

This concept has been defined in a broad sense by Dijkstra [DIJ68].

It means that the rules of behavior of a process must be interpreted

sequentially in time rather than simultaneously in space. These rules

constitute an algorithm and the realization of this algorithm in a given

language on a particular machine is a program. The events happening

during the execution of a program constitute the sequential process.

An application programmer usually thinks of his problem as a unique,

sequential process and thus does not want to know about the other pro

cesses that might interfere with his program if it runs in a multipro

gramming environment.

It is the job of the operating system to insure that these inter

ferences do not affect the results of other sequential process.

6.l.2 PARALLEL SEQUENTIAL PROCESSES

When more than one sequential process runs at the same time, they

are called parallel sequential processes. A multiprocessor computer

allows this feature for programs, but it should be pointed out that even

for a monoprocessor computer, there might be several sequential processes

running (I/O channels) simultaneously with the CPU.

In both cases, several sequential processes may have to cooperate

with each other to perform a given task.

The usual high level programming languages do not allow one to de

fine parallel processing because they were designed to describe single

sequential processes for applications programs.

:

t

126

Dijkstra proposes to extend this feature to ALGOL 60 by the use of

a special block "parbegin parend." Thus a block:

- parbegin Sl; S2; S3 parend

will indicate that the statements Sl, S2, S3 will be

executed in parallel.

6.l. 3 COOPERATING SEQUENTIAL PROCESSES

When two or more parallel sequential processes have to cooperate

with each other, they must interact in order to exchange information.

Each of the individual processes are independent of each other except

during those phases of interaction where they must access the same common

variables.

Whenever two or more parallel processes need to use the same re

source (resource being taken in a broad sense,) they will have to make

sure that the resource is available. If the resource is to be shared

effectively by several processes, the operating system must provide a

mechanism which insures harmonious cooperation of the processes. The

part of the processes where this can happen is called a critical section,

and at any moment, at most one process is allowed to be executed in this

critical section.

In order to carry out this mutual exclusion, the parallel processes

have to access the same common variables. To avoid the same problem of

critical section in the process of intercommunication, the operation of

testing and changing each common variable must be indivisible: in some

computers, it can be executed in one instruction such as the "TEST AND

SET" instruction, more generally it can be implemented by preventing the

interruption of the processor when processes are inspecting or modifying

shared variables so that two processes can never do it simultaneously,

l27

but only in sequence.) Another type of interaction is given in the case

of processes which produce data which are consumed by other parallel

processes.

6.l.. l. SYNCHRONIZATION AND MUTUAL EXCLUSION

The mutual exclusion problem has been studied and solved by a team

of Dutch scientists and applied to the computer field by Dijkstra (DIJ68].

Although the concept of mutual exclusion is simple, it should be pointed

out that a correct and general solution to this problem is not trivial.

The advantage of using it is that one can be sure that if competition

for a resource arises the conflict will be resolved properly.

6.l. hel SEMAPHORES

In the solution given by Dijkstra [DIJ68], the common variables used

in the synchronization or mutual exclusion of parallel sequential pro

cesses are called semaphores. The semaphores are integer valued vari

ables which will be modified by the processes in an indivisible operation

before and after a process enters a critical section.

6. l. l.2 SYNCHRONIZING PRIMITIVES

The indivisible operations used to modify the semaphore are called

synchronizing primitives. They are symmetric operations on the semaphores

which provide a mechanism to signal either the entering and leaving of

a critical section or the synchronization of a consumer process and a

producer process. In both cases, they usually are implemented by incre

menting and decrementing a semaphore variable.

The solution to these problems is described in details in the

corresponding literature [DIJ68, HAN72].

128

6.1.5 INTERACTIONS AND DEADLOCK PROBLEMS

The solution is satisfactory if each process respects the following

rules:

- Each process must not enter a critical section without setting

and checking the semaphore. If another process is already using

the same resource, it must wait until the other one leaves its

critical section. If a process is waiting for an event to happen,

it must not proceed until the event occurs.

- Each process has to signal when it leaves a critical section in

order to clear the way for other processes. If it is a synchro

nization problem, it must signal the event by modifying the

semaphore accordingly.

- Each modification of the semaphores variables must be uninter

ruptible.

The problem becomes more complicated if processes are allowed to

have nested critical sections. For instance, suppose that process l has

entered critical section l corresponding to resource l (associated with

semaphore l,) and inside this critical section, it needs to access another

resource which is accessible through a second critical section with

semaphore 2. If, at the same time, another process 2 has already set

semaphore 2 and wants to access resource l via semaphore l, the resulting

situation is a deadlock (or "deadly embrace.") Each process is waiting

for the other to proceed but none of them can go ahead unless some ex

ternal process is willing to resolve the conflict. This situation might

result in a local deadlock or a complete deadlock of the system if the

corresponding resources are needed by most of the processes (such as a

disc or a file system for instance.)

* *

•"

*----
-,

-|-|-•:----|-·*
·

*

*«»|-■ |-----|-|-**,|--|-*
·

•

··
*

··

|-→
·

•

129

It has been shown [COF7l) that deadlock situations occur when all

the following conditions are true:

i) Processes claim exclusive control of the resources they require

(mutual exclusive condition.)

ii) Processes hold the resource allocated to them while requesting

and waiting for additional resources.

iii) There is no preemption of resources held by a process until the

resource is used to completion by the process.

iv) A circular chain of processes exists such that each process

holds one or more resources that are being requested by the next

process in the chain.

If one of these necessary conditions is not satisfied then a dead

lock can be avoided.

In the following, it is supposed that condition (2) is never sa

tisfied for the processes. This is possible because nested critical

sections are not allowed. In other words, a process cannot have the

exclusive use of more than one resource at a time. This is not unreal

istic since for a given application most of the users are sharing the

same set of programs and therefore most of the programs are re-entrant.

In some cases where there is a unique resource (such as a line printer)

shared by several users, the deadlock is avoided by having a first-in,

first-out queue at the resource. If it is an interactive program, the

system signals the terminal user that he might have to wait so that he

may optionally abort the desired task to pursue another type of activity.

* * * -

- - - -

- -- - * * : * * -

- - "e * - - - - * *

- -- ".
-

* * * *

- - - - ,- - - *

- - - - . . . - *

- - - - - - - - - - - s

* * --. - - * * -

- • * *

- - - - • * * - - - - - -
- - … - * * * * * *

- º, .. - * . . .
- - -

- , - 4 - *

** - - º ** w - -

- *
- - - -

- - - -

, - - - * * * * .

" - - - * * * -- * -
- - - * - - *- -

- -

* * * - - -, - * - * º -

* -º - - - - - - - - - - * .
- - - * -

- -
. - - -

- “... .

- - - - - - - * -

- - n , - * - . … -

- * * - - -- : - * ‘. . . -

- * ~ * - - - - - - - - , * . -

- * * - - - - * * * *. -

- * . . - ... r - - * -

- - - - - - - --- º

- * . . * - * - º ... --

130

6.2 A TRANSACTIONAL OPERATING SYSTEM

In this section, a real-time transactional system is presented and

has been implemented to support frame selection applications.

6.2.l OBJECTIVES

The objectives of the system can be defined as:

– multi-user capability and multi-access to the resources

- CRT oriented system

- fast response time for CRT display

- multi-access to patient's file

- support of a selection mechanism for data entry

- low cost implementation

None of the known existing commercial or experimental operating systems

met all these requirements at the time the project was initiated.

Among the real-time operating systems developed by minicomputer

manufacturers, the multi-tasked systems are well adapted for industrial

real-time process control where most of the interactions of the system

are with other machines but not with humans. However, these systems are

not multi-user oriented and even less CRT oriented. Most of them have

used designs oriented toward the use of a single teletypewriter for the

interaction between the user and the system. In these systems, multi

access to the files are usually not provided because in most applications,

each task has its own files which are not accessible by other tasks at

the same time. The directories are usually sequentially organized and

accessed, which results in an unacceptable access time when there are a

large number of files. Therefore, the conventional real-time operating

system was not an appropriate model for our goals.

The other existing models are the more classical type of operating

systems (batch-oriented or time-sharing.) Their common characteristics

l31

is that they are based on the concept of "job", the task of the system

being to allocate the resources to a given job, and to make sure that

the integrity of the data is protected within a given job.

In a system where most of the files are common and shared by se—

veral users working simultaneously in real-time, the concept of job

becomes useless and must be replaced by the concept of transaction

because the integrity of the data base is more important than the in

tegrity of individual jobs.

A transaction can be defined as an action which requires at least

one access to the data base (either reading or writing.) A transactional

operating system is a system which is built around the concept of tran

saction and its major task is to preserve the integrity of the data base.

It must be emphasized here, that a job-oriented system is usually

very cumbersome to use for multiple, real-time access to a common data

base. Even a time-sharing system, which may have shared files, usually

provides a locking system which is too constraining for the real-time

use of the data base.

In practice, a transaction may be characterized by the following

parameters:

- a user number (identifying the originator of the transaction)

- a message (the content of the transaction)

- a time of origin (data and hour)

- a priority

These four parameters define what is ealled a transaction descriptor:

User # priority time pointer to message

- - - -

- * - -

- - - * - " -
- -

- - *

- ... • -
- *

- -

- -

- * * *

* - r s

* * * - - * -

* * * * * - -

*
- - º

* *
- º

- -

- -

- - * -

- , - * * * - - . - .
*

- - - - - -
- - - -

-

- - -

- -

* - -

- - - - - - - -

- -

132

The concept of transaction can be extended to request for the use of

any resource: in this case the pointer to the message can be considered

as a pointer to a parameter list or table describing the way the resource

should be used. For instance, an input-output request can be considered

as a transaction dealing with a particular peripheral device. Therefore,

the concept of transaction can be used uniformly as the basic entity of

the operating system. If the transaction is generated by an interactive

user, it will be called an external transaction which may in turn generate

internal transactions to the data base by means of an internal transac

tion to the disc I/O driver. The importance of this unified concept is

that only one mechanism will be needed to deal with any type of trans

action (internal or external.) In particular, selections can be con

sidered as external transactions which generate internal transactions in

the form of messages to the data base.

To conclude this section, it is clear that a real-time, transactional

system must be a multiprogrammed system, but instead of managing jobs,

the system manages transactions using a common data base.

6.2.2 TRANSACTIONAL PROCESSES

Each transaction is associated with a transactional process, which

represents the actions to be performed by the transaction. These pro

cesses are implemented by procedures or programs which perform the

actions defined by the transactions.

In order to insure the sharing of a procedure by several transactional

processes, the procedure must be either re-entrant or a queuing mechanism

must be provided. If the procedure is not re-entrant, it is associated

with a semaphore (in this case, it is equivalent to consider a non-re

entrant procedure as involving a critical section.)

l33

If the procedure is re-entrant, it can be associated with a general

ized semaphore [DIJ68] which indicates the number of transactions using

the procedure at a given time.

The following figure represents the basic structure of a software

module implementing the concept of a transactional process:

Transaction l

Transaction 2
Queue

Transaction 3

Semaphore

Procedure

Data

Figure 6.l

If the procedure is re-entrant, the procedure is called "pure" and the

data area (impure section) must be divided into as many areas as there

are users (each data zone being accessed via an index register.)

In the case of synchronization between two parallel processes, the

procedures will be associated with a common semaphore as shown in the

figure below:

Transactions I

Procedure I

\ Semaphore

Transactions II

Procedure II

Data I Common Data Data II

With these two basic software structures, a transactional operating

system can be built so that several parallel processes can share common

resources,

A process can be in one of three states:

Figure 6.2

running (it is currently using the CPU)

or message from another process.)

When a process is initiated, it enters a queue of processes ready

to run. When the CPU becomes available, the process becomes running.

When a process is running, it may encounter a situation where it must

wait for a signal or for the leaving of a critical section by another

process.

ready (the process can proceed as soon as the CPU is available)

waiting (the process cannot proceed until it receives a signal

l3||

as

135

In the case of mutual exclusion, a critical section is preceeded

and followed by the two primitives:

- DECSEM (SEMAPHORE) (Decrement by l the semaphore variable)

- INRSEM (SEMAPHORE) (Increment by l the semaphore variable)

When no process is inside the critical section, the value of the sema

phore is +l. If, after executing DECSEM, the semaphore has a negative

value, then it means that one process is inside the critical section

and the incoming process must wait. This is done by using the primitive

QUEUE (process.) Before leaving the critical section each process must

execute an INRSEM primitive.

If INRSEM is executed and the semaphore value is non-positive, then

the primitive DEQUEUE (process) will be executed and the first waiting

process in the queue will become ready and will be run if it has the

highest priority.

The same primitives can be used for the synchronization problem.

6.3 THE ABSTRACTIONS AND LAYERS OF THE OPERATING SYSTEM

Following the hierarchical approach, defined by Dijkstra (DIJ71],

the operating system has been designed by defining several abstractions

which correspond to different layers of the operating system.

Each abstraction is intended to give to the user or the programmer

a more flexible way to handle the machine.

For instance, a file system gives the user a flexible way to handle

data records, items, keys, etc. but the operating system must perform

the tasks of looking up the key in the directories, searching the indexes,

issuing the I/O instructions to read disc sectors, etc.

l36

Therefore, the operating system can be viewed as a set of concentric

layers going from the hardware machine to the machine actually available

to the end-users.

Hardware
Machine

Interrupt
Processes

I/O Processes

File and Frame Handling

Applications

Figure 6.3

Each layer can communicate to the others by way of well defined primi

tives or macroinstructions.

l37

6.3. l INTERRUPT PROCESSES

The first layer, closest to the hardware, corresponds to the inter

rupt processes.

In the case of the machine used for the implementation described

later (Four Phase,) the interrupt processes are:

- the clock

- the disc controllers

- the keyboards entry mechanism (including the selection mechanism.)

- the line printer controller

These processes recognize the nature and origin of the interrupts, save

the context of the interrupted process (registers and program counter,)

and take the appropriate action corresponding to the type of interrupt

(increment the clock count, read a character, read or write a disc

sector or output a line on the printer.) These processes are executed

according to a hierarchical hardware priority which enables the pre

emption of the processes with a low priority (see Appendix). In addi

tion, two levels of programmable interrupts are used for the execution

of foreground and middleground tasks.

6.3.2 INPUT-OUTPUT TRANSACTIONAL PROCESSES

The next layer corresponds to the I/O transactional processes.

An input-output transaction is defined as:

- the input of a character string (the end of the string in the

character EOM)

- the input or output of contiguous sectors on a given disc drive

- the output of a continuous string of characters on a given line

printer.

With each of these type of transactions is associated a transactional

process as defined above.

r

**

-
-

' ' ' " -
-

-

- - > - - ". .

: -
.

º * .

-- - - - - -

- - * - - - - - -

-- - ... -- * * * - “. . .

- - -- - - ** * . . .

- - - .
-

-

. -- - -
. . * -

-
º ."

* *. * . . - * , - • * * * -- - - - -

- - s - - “ . . ■ … " : , " . - - , , --*

- - - - * * - - * - * * *s - - -

- * * * - - * * : * -

- --.
- - * - -

º - - - * * --- -- - -

* , * ". . .

- -
. - * * -

-- * * * * * *

-

- -
º - * . -

-

138

The format of the primitives and the tables used to access the pro

cedures and queues implementing these processes are given in the Appendix.

These processes are, in fact, the front-end of the interrupt pro

cesses as far as the I/O functions are concerned. At this level, the

user ignores the indeterminacy of the interrupts and the real hardware

I/O instructions.

This layer also accomplishes the sharing of the I/O devices by

multiple users in a way that is not apparent to the user. This is done

by a queue associated with each input output procedure. The disc input

output procedure can be accessed from the three priority levels (fore

ground, middleground, background.)

6.3.3 SCHEDULING AND MULTIPROGRAMMING

Before defining the next layer, it is necessary to describe the

scheduling and multiprogramming mechanisms. According to HANSEN [HAN72],

a monitor should be considered as an extension of the hardware to give

a multiprogramming machine. Following this view, the priority scheduling

function has been delegated to the hardware by using programmable

interrupt levels.

There are three levels of priority:

- the foregorund (activated by programmable interrupt)

- the middleground (second programmable interrupt)

- the background (normal level of execution)

A transaction can be originated from any interrupt level and can be

passed to any priority level by using a re-entrant procedure called

STAPRO. Each priority level has a scheduling (first in, first out) queue

for processes which are candidates for activation (either because they

have been called by another process or because they are ready after a

l39

wait for an I/O request.) The multiprogramming is done by switching

from one user to another when a user process makes an I/O request. This

is reasonable because the frames and files are stored on the disc, and

therefore, each user transactional process is composed of one to several

disc accesses for frames or files. This access time allows adequate

CPU cycles to insure the multiprogramming between users and the frequency

of frames accesses is such that the multiprogramming is effective.

Further assumption is made that if there is a longer computation to

be carried out without an I/O request, then such a procedure is executed

in the middleground or the background. So each type of transaction will

be executed at different levels of priority depending on their expected

execution time, the urgency of the response required, and the I/O pattern

of the transactional process.

Since the priority scheduling is done at different hardware levels,

the overhead required to switch from a task at a given level to another

more urgent task is minimal. In the implementation of the frame selec

tion system, the frame handling is done in the foreground in order to

achieve a good response time, independently of the nature of the middle

ground and background transactions. In some cases, the need arises to

communicate data between these levels and this is done by using a common

message area (mailbox,) which can be filled or emptied, by two processes

executed at different levels.

The following diagram represent the general architecture of the

operating system:

-*.

ll.0

T

Disc Keyboard Line Printer
Interrupt Interrupt Interrupt
Process Process Process

Foreground Foreground/ !---
"I Scheduling Queue Background F- !

Foreground Message Area ; :
Processes ! .

; :

| I
Transactions Transactions Transactions | 1

|
; I

Procedure Procedure Procedure 1 I
! I
|

l i ! I

º t
º I
3. t

Middleground º:
Scheduling Queue ldd Leground F--

Middleground ng Q Message Area] :
Processes : I

I
1 I
! I
t

Transactions Transactions Transactions ! : !

Procedure Procedure Procedure ; :
; :

T T T I I

1. --- --H - - - - - *
r". | -:

|

Background ddleground .
Scheduling Queue Background H---,

Background Message Area !

Processes :
º

;
D

Transactions Transactions Transactions ! .
º

Procedure Procedure Procedure
:

J* -

Figure 6.l.

llil

6.3. l. THE FRAME SELECTION LAYER

The previous layers described were not specifically designed for

the frame selection system and could have been used to develop any type

of multiprogramming system.

The next layer implements the abstraction of frame selection sys

tems. Although in this layer the structure of the hardware machine is

hidden by the previous layers, one characteristic of the Four Phase

minicomputer has been extensively used in the design of this layer, namely

the fact that dedicated portions of the main memory are directly dis

played on the CRT terminals. This characteristic is particularly well

suited to the implementation of a frame selection system because it

eliminates all the overhead necessary to support the CRT's. A frame can

be read directly from the disc into the main memory display areas, and

the frame image will appear automatically on the screen. From a system's

viewpoint, a frame is composed of two contiguous disc sectors (768 charac

ters each;) the first sector contains the text to be displayed and the

second sector contains the selection interpretation table and the semantic

restriction table.

The text of the frame is compacted in the first sector by ignoring

the blank lines and conversely by using a decompaction mask the total

screen image (llS2 characters) can be displayed on the CRT. If it is an

editing frame, the maximum number of text lines is l2, and the remaining

of the sector is used to store field descriptors which indicate the

starting address and the length of each field. If it is a selection or

mixed frame, the maximum number of lines is ten, arranged in a 3 x 10

choice matrix. The selection interpretation table is the compiled version

of the selection instructions generated by the frame programming language

described in the previous chapter.

lh2

The next figure shows the content of two sectors composing a frame:

Compacted Frame Text

Sector 1

Field Descriptors

Decompaction Mask

Selection Interpretation Table
(SIT)

Sector 2
Semantic Restriction Table

Function Button Mask

Figure 6.5
The function button mask is a variable associated with each frame and is

used to specify the function keys which are permitted with a given frame.

When a frame is demanded by the frame selection system, it is read

into a two sector buffer (512 words) corresponding to a screen area.

Then the field descriptors and the selection interpretation table are

moved into some other internal buffers and the frame text is decompacted

according to the decompaction mask.

ll.3

After decompaction, the frame content is structured as follows:

Message Window

Screen Area

Decompacted Frame (llS2 characters)

Semantic Restriction Table 128 words

Function Button Mask

Selection Interpretation Table l28 words

Message Area 381 bytes

History Stack l28 words

Field Descriptor Area 6l words

Figure 6.6
Users' Buffers and Tables used by the Frame Selection System

In addition to the content of the frame as stored on the disc, some

other memory buffers are necessary to store the dynamic data generated

by the frame selection system. These buffers are: the message area in

which the text of the string generated by the successive selections will

be stored and the history stack which keeps track of the previous frames

and pointers referring to the message already generated so that it is

ll l;

possible to reverse the selection process. Some other miscellaneous

stacks and variables necessary for the operation of the frame selection

system are not presented on the figure because they take only a few

memory locations.

The message window seen on the top of the screen area is a duplica

tion of a portion of the message area which corresponds to the last four

lines (l; x 1.8 characters) generated by the selection process.

6.3. l. l THE EDITING MODE AND THE SELECTION MODE

In the previous chapter, three types of frames were defined: editing

frames, selection frames and mixed frames. Accordingly, there are two

possible modes of operation associated with each type of frame:

- the editing mode or the selection mode.

With each of these modes is associated a number of function buttons and

keyboard activated editing functions. When in the editing mode, a simple

editor can be executed in the middleground. All the editing functions

are programmed and special keys on the keyboard are used to move the

cursor (one character left or right, one line up or down, at the begin

ning of a line or the top of screen,) to insert and delete characters,

to erase a line or the total screen, to move to the next tabulation

position, etc.

In addition, a protection mechanism is implemented for the editing

frames in order to avoid the erasure of the text representing the prompts.

The editor is activated by a function button (Fl) and the end of

typing is signaled by the EOM (end of message) key.

The selection mode is the normal mode of operation, but as far as

the software is concerned, a selection is received as an input of a

character from the keyboard. This allows for the simulation of a selec

ll;5

tion device (light pen, touch-screen, magnetic wand, etc.) by a normal

keyboard so that the addition of several type of selection devices does

not require any reprogramming.

An alternative back-up mechanism is provided by using the normal

keyboard to move a solid cursor on each selection square represented on

a frame. This is done by using the key island represented below:

ATTN

|

<- ->

W
Figure 6.7

the ATTN key brings the cursor at the first selection point and the other

keys move the cursor in the direction specified by the arrows. When the

cursor is positioned on the desired selection point, the EOM key is used

to confirm the selection.

The selection mode is associated with a set of procedures executed

in the foreground level and which constitute the selection executor.

6.3.1, .2 THE SELECTION_EXECUTOR

Following a selection, the executor will decode the instruction con

tained in the selection interpretation table relative to the frame

currently displayed.

Each frame is associated with such a table which indicates the opera

tion to be accomplished as a result of a selection:

- The string next to the selection point may be moved into a message

8.I"ea e

ll,6

- An associate string (full text or abbreviation not displayed on

the screen) may be moved into the message area.

A string may be placed on a pushdown store and moved later into

the message area.

A procedure (resident or overlay) may be executed as a result of

the selection (a foreground task.)

- A middleground or background process (resident or overlay) may be

invoked and executed later in the corresponding priority level.

A new frame might be called as a result of the selection.

- A frame address may be placed on a pushdown store and may be

removed later.

All these actions corresponds to the application designed as a frame

selection system: the executor function is to move strings, which can

be used for building sentences of an application language or to call pro

cedures and processes which perform some eomputation for the application.

l'h'■

The structure of the selection interpretation table used by the se

lection executor is presented below:

String Table

Message Area

String Instruction

String Pushdown Store

-.

Procedure Table Procedure Table

Procedure Instruction 2. l

Applications Procedures

Route Table
Frame Pushdown Store

Route Instruction Disk

Frame

Storage
Area

Selection Interpretation Table
Figure 6.8

Each time a selection is made, the executor keeps track of the pre

vious frame address, together with the corresponding semantic restriction

mask and the pointer to the last string moved to the message area. These

data are stored into the history stack and constitute a history vector

shown below:

frame address semantic restriction mask pointer to message area

History Wector

.

ll,8

This vector can be used in relation with a special function button

which enables the user to execute the selection process in the backward

direction. This feature can be used to investigate some selection paths

and then go back to a previous branching point or to make a correction

in the message and then proceed forward again.

Some other function buttons are used to review the message already

generated, to erase the total message and to store the data entered on

an editing frame.

In order to avoid the misuse of the functions buttons, the mask

associated with each frame will prevent the indiscriminate activation of

functions which are not desired with a given frame.

The selection executor is the most important part of the operating

system because it is directly related to the response time.

In order to maintain a good response time, it is desirable to limit

the procedures invoked between two frames to an execution time not greater

than the average seek time of the disc drive. The processes executed in

the middleground or background levels do not cause a degradation of the

response time because such tasks are pre-empted by the foreground level

(the selection executor and function buttons.) Therefore, the response

time on the CRT's depends only on the number of users actively involved

in a selection process at a given time. Experiments have shown that with

a rate of twenty selections per second involving the reading of a new

frame , the response time was about half a second.

6. l. THE FILE SYSTEM

The frames are stored under a simple filing system, enabling the

creation and deletion of frames via a hash coded directory (PRITI].

The name of the frame is used to generate a number taken as a sector

ll.9

address in which the frame's name and address will be stored.)

Each frame is composed of two contiguous sectors; the first sector

contains the compacted text of the frame, and the second sector contains

the selection interpretation table (SIT.) Since the frames are the most

frequently accessed files, they are stored in the middle of the disc

area in order to minimize the seek time from one frame to another. ,

The application's filing system (patient's file) is characterized

by a dynamic allocation of disc space with a quantum equal to one sector

(768 bytes.) There is no limit on the length of a given file. The sys

tem maintains a triple directory access; by name, by medical record num

ber, and by location (bed location.)

Each file is divided into pages and the pages are linked forward

and backward. A page is itself divided into items which represent either

a field entered on an editing frame or a message built by the frame

selection system.

*
0.
º

Directory Directory Directory
by by by

Name Hospital No. Bed Location

Page 0

Item Index

Page l

r; Item Index

Last Page

Item Index

Figure 6.9 - Structure of the Patients' Files

lSO

The data items are retrieved within a page by a set of pointers

called the item index which gives the position of the item within the

page.

To conclude this Chapter a general overview of the system is shown

below. From left to right, the different modules are:

- KEYB: the keyboard and selection device interrupt drivers.

- FQUEUE, MQUEUE, BQUEUE: are respectively the queues for the fore

ground, middleground, and background ready processes.

- SCH: is the scheduler which utilizes these queues

- SELEX: is the "selection executor"

- FUNC: is the "function button" handler for eleven function buttons.

- EDIT: is the CRT editor

- LINEPT: is the line printer and label printer drivers.

- DIR, FIL, ALLOC: are the modules of the file system and stand

for directory handling, file handling and dynamic allocation of

disc space.

-

Disc; is the moving head disc routine (accessible by the three
levels: foreground, middleground and background.)

lSl

CRT

CRT

CRT

:

FUNC — DIR -> FIL

-
Foreground

- Fºt■ füß º Processes ALLOC

SELEX

T
|-

! E:º
* - Middleground I

-UEUE —||
MQ

º SCH Processes S
C

EDIT

Background
– BQUEUE L º Processes

LINEPT

Line Label
Printer Printer

Figure 6.10 - Software System Block Diagram

152

Chapter 7

A Pharmacy Application, Utilizing the Frame Selection System

"Let us present our duties with some humility
as it gets dark now. In case there is no
paradise, we will not have soiled the curtain
with our tugging, but actually I'd rather
take a nothing I loved to my grave than a
something I have every reason to hate."

Kenneth Patchen

153

7. A PHARMACY APPLICATION, UTILIZING THE FRAME SELECTION SYSTEM

This Chapter describes an inpatient pharmacy system developed as

part of this research. It was implemented to prove the feasibility of

the proposed language, operating system and the low cost modular concept.

Previous attempts to build automated pharmacy systems [GOUV69] have

shown that one of the problems was the detection of typing errors due

to the multiplicity and complex spelling of drug names; if one allows

the use of completely free text typing, much computation and many file

accesses must be done in order to check the validity of the order; on

the other hand, if abbreviations or codes are used for drugs, the data

entry cannot be done by medical professionals without awkward reference

to manuals or lists. To document this assertion, the first section of

the Chapter reviews the different types of automated pharmacy systems

developed in the past, as well as those current systems under development.

7.1 REVIEW OF PHARMACY COMPUTERIZED SYSTEM

Comprehensive reviews of the literature concerning the use of com—

puters in the hospital pharmacy, are found in [KNIT3,COUTl). In the

following, only a few of the most significant systems are presented

briefly.

The first type of systems implemented were off-line computerized

cost accounting systems [DEE60], where coded pharmacy requisitions were

keypunched, a tabulation of drug expenses was produced and, in some cases,

statistics on drug usage were generated in monthly reports.

Other similar types of systems were designed to improve the manage

ment of the pharmacy department by automating administrative tasks such

as inventory control, purchasing and patient billing. A paper by Winters

and Hermandez [WIN72] describes an on-line inventory control system where

CRT terminals were used to enter purchasing and inventory data while

-
*.

- - -
º º

15||

purchase orders were automatically generated when the minimum re-order

level was reached. Those systems were successful because they improved

the management of the pharmacy and were easy to implement and econo

mically justify. Such systems had the beneficial effect of standardizing

and unitizing the drug items dispensed by the pharmacy.

At the same time the development of manual unit dose drug distribu

tion systems was initiated. In such a system, a package containing a

predetermined amount of drug (or supply) for one usual dose, application,

or use, is prepared by the pharmacy service and presented, as such, to

the nurse for direct administration. The advantages and disadvantages

of unit dose systems are suggested in a paper by Miller and deLeon

[MIL72]. Among the attempts to automate such systems (which are referred

to as drug distribution and medication systems), Simon [SIM72] describes

a semi-automated approach where each drug item is keypunched with patient

data and used by technicians to fill unit dose carts and to generate

patients' profiles. A similar technique was described by Johnston

[JOHN70] where drug orders were transcribed on cards which were sorted

four times daily and used in filling unit dose carts. The cards were

then duplicated and used to tabulate the pharmacy charges for each patient.

The first attempt to build a totally automated and on-line medica

tion system was described by Gouveia [GOU68]. The system was developed

as a prototype on a time-sharing computer, using CRT's and teletype

writers as terminals. The drug orders were entered by typing and there

fore, much of the programming effort was expended in writing programs

that would check the accuracy and rationalness of the medication orders.

In a later paper [GOUTl] Gouveia gives a comprehensive analysis of the

difficulties encountered.

“,

155

The Automated Medication Order System (AMOS) is described by Melrose

[MEL70]. This system is used by pharmacists who enter coded orders at

the terminal and, in return, the decoded items are presented to the user

for verification and validation. If the displayed data is confirmed, a

label is printed automatically.

The system developed at the University of Southern California and

described by Maronde [MAR72], was also designed for on-line data entry

of coded drug orders. Each order was decomposed in five fields which

were decoded and displayed for verification and a label was printed.

The system is operational but due to the size of the computer used

(IBM 360/1.0), the operating costs are high.

Another type of system which is operational at the Johns Hopkins

Hospital in Baltimore is described by Zellers [ZEL73]. It uses the

central computing facility of the hospital (IBM 370, Model 135 computer)

and special terminals with matrix keyboards. The matrix keyboards hold

"mats" which can be interchanged, thus changing the information which

a particular key represents. An automatic sensing device distinguishes

which mat is being used. This is used as a "drug selection keyboard"

which offers a set of one-hundred selections on each mat (the most com—

monly used drugs are on a single mat.) Together with this matrix key

board, an acknowledgement keyboard is used to enter the drug administra

tion information into the patient's record.

A more elaborate system is the MEDIPHOR System (Monitoring and

Evaluation of Drug Interactions by a Pharmacy-Oriented Reporting System),

developed at Stanford University [COH72]. The system has been developed

as a MUMPS application system and the entry of data is performed by res

ponding to a series of prompts on the screen. A coding mechanism is

used to enter the drug name. The pharmacist then enters the dosage

*

* -

º - - * - - º

º - .* *

* - -

-

º

r

. -

- *

º * * -

º

- - *

-

- - - -

º - --

-
-

- - - -

* - - * - - - • * * * *

- - -
* *, -

*

- * * * * -

- * - - - - * ,-

- - - *

.."

- - - ."

- - -

- - -
t - * -

-

- - - *

156

regimen. The most interesting aspect of the system is the automatic

checking of drug-drug interactions by the programs developed for that

purpose. The system is currently operating on a rather powerful computer

(PDP ll/l,5 backed up by another PDP ll.) The cost effectiveness of the

system has yet to be determined.

In addition, other pharmacy systems have been developed as part of

overall hospital information systems which were described in Chapter 2.

Usually in these sytems, the method used to generate the drug orders

was the menu-tree selection or frame selection approach.

To conclude this brief overview of the literature concerning auto

mated systems, it seems that most of the on-line systems are faced with

the problem of avoiding the use of free text typing to enter the drug

orders. Two alternatives seem to be used: the utilization of codes or a

menu-tree selection approach. This survey shows that no stand-alone

pharmacy system has yet used the frame selection approach. In the

following pages a stand alone pharmacy system is presented; its imple

mentation shows the feasibility of building such a system on a small

dedicated computer.

7.2 THE REQUIREMENTS AND THE CONSTRAINTS OF THE PHARMACY APPLICATION

Since the pharmacy system was designed to be used in a real produc

tion environment, a certain number of requirements and constraints were

to be considered.

7.2.l OBJECTIVES

The pharmacy information system is designed to accomplish the

following specific objectives:

i) Inpatient drug ordering system: the system provides a data entry

mechanism to capture all types of drug orders generated in the

hospital.

*

157

ii) Generation of a patient drug list for each hospital inpatient:

for each hospital inpatient, this system records drugs names as

they are ordered, together with the starting date, the stopping

date, the route of administration, the dose and the dosing schedule.

Various other patient data such as sex, age, weight, medical

service, bed location, allergies, and diagnosis. . . etc. are

captured and stored in the profile.

iii) Capture of drug billing items: the system automatically captures

the drug information necessary for the preparation of the

patient's drug bill.

iv) Pharmacy inventory maintenance: the system records inventory

changes necessary for inventory update and maintenance, as well

as assistance in placing orders for drug supplies.

v) Generation of medication schedules for Nursing service: the in

formation system prints out medication schedules by room and bed

number for each shift of the nursing service indicating the drug

dose, route, and administration schedule for each patient.

vi) To provide a data base adequate to support drug allergy and drug

drug interaction warning systems: the initial system will in

volve clinical pharmacists who will check for possible allergies

and drug-drug interactions, but as suitable drug allergy and

drug-drug interaction programs become available, they can be in

corporated into the system.

7.2.2 CONSTRAINTS ON SYSTEM DESIGN

The conception and design of the system was constrained by a number

of factors:

i) the operation of the system, in particular, data entry, was to

be performed by hospital pharmacy personnel. The existing data

l;8

source and formats in use in the pharmacy were to remain un

changed. At a later time, the entry of drug orders into the

system may be performed by nurses or nursing clerks from the

wards, and at this point, entry by physicians would be possible.

These requirements in turn imposed some terminal constraints

on the pharmacy system, since a homogeneous system was desired

due to economic and backup factors.

ii) Terminal selection was to be made primarily on the basis of

human factor considerations.

iii) Although our hospital was committed to the eventual use of a

unit-dose drug dispensing method, this system had been only

partially implemented. Approximately 170 beds were serviced

by a unit-dose system and the remaining 380 beds continued under

the more conventional individual patient order dispensing

system.

iv) The economic requirements were such that the system must have

the potential of realizing operational and development costs

associated with the system. These constraints, or variations

of them, result from the realities of hospital operations and

are faced by most designers of hospital information systems.

7.2.3 HARDWARE SELECTION

The hardware was selected in an attempt to optimize the operations

and performance of the major portions of a hospital information system,

rather than the single pharmacy module alone. The hardware selection

criteria reflected these constraints and other considerations which

included:

* -

º

w - -

* *

- -

* - - - -

- ".

- * - * * * *

:

159

i) Terminal and system flexibility

ii) Economy for modules having 8 to 16 CRT terminals apiece

iii) Reliability

iv) Ease of repair and/or replacement

v) Low power consumption in order to avoid the need for air condi

tioning and to make feasible emergency battery power

vi) State of the art design so that obsolescence would not be a

factor during a development period of 3 to l years.

The system must be capable of supporting a CRT frame display system,

and a selection mode of operation with a response time for frame replace

ment of less than one second. The reliability must reflect itself in a

mean-time—between-failure of the hardware system of at least 5,000 hours.

In order to facilitate rapid repair, the system components should be

small and of light weight so as to be manually replaceable by a spare

unit in approximately thirty minutes. The diagnostics should be adequate

to allow identification and replacement of malfunctioning circuit boards

in about lº minutes.

The cost that could be justified for any given hospital subsystem

varies, but the major applications (i.e., admitting, clinical laboratory,

pharmacy, radiology, central supply, and ward systems) must all be cost

effective in toto. The most likely cost savings in the administrative

areas are the capture of lost charges, keypunch cost recovery, and

reduction of professional labor costs. The medical benefits of the

system, although large and of major concern in the design, were not

counted in the cost justification of the system due to the difficulty of

quantitative economic evaluation of increases in the quality of patient

Care,

The Four Phase Systems, Model IV/70, an all LSI (large scale inte

l60

grated) CPU-terminal controller was selected for the implementation.

This system is an integrated CPU and CRT system, which allows the direct

and CPU independent refresh of video monitors from as many as 32 banks

of LSI memory. The direct viewing of the memory does not in any way sub

tract cycles from the relatively slow 2k bit CPU which controls keyboard

inputs and all other normal computer peripherals (i.e., printers, discs,

tapes and communications controllers.) The CRT monitors connected by

coaxial cables) can be located up to 2000 feet from the CPU controller,

and could display li■ characters x 2k lines, as well as smaller subdivi

sions. The 132 symbol character set includes upper and lower case

letters, and symbols providing for limited graphics. The unit is elec

tronically well suited for the integration of a selection device, (i.e.,

8. touchscreen, joystick, magnetic wand or special keyboard.) The unit

is physically small, requires no special power supply (800 watts) and no

air conditioning. Multiple discs from 2-l/2 million bytes to 58M bytes/

drive are available, as well as a range of standard tape drives, printers

and communications equipment. For the pharmacy system, eight terminals

are supported by lºéK bytes of memory, and two 2-1/2 million byte disc

drives and a spare 2-l/2 million byte disc unit for backup. A 500 line

per minute electrostatic, ls2 column, ll-l/2 inch wide, printer is

attached to provide fast silent printed output. Several (l to 5) label

printers can be used on the unit for labelling drug containers.

The light weight of the total electronics package and the manner in

which connections were made, allows complete system replacement in a

short time. The vendors diagnostic software was sufficient to isolate

single card failure quickly.

-r

** *

l61

7.3 THE DATA FILES IN THE PHARMACY APPLICATION

The data bases used in the pharmacy application are:

- the frames which provide the selection system

- the drug formulary

- the patient profiles

These data bases are stored on a unique disc cartridge of 2.5 million

bytes. The cartridge is composed of 200 cylinders of l6 sectors and a

sector contains 768 bytes.

7.3.1 THE FRAMES

The number of frames used in the pharmacy application is about 200

frames. Each frame, including the selection interpretation table, is

stored in a two sector contiguous area. A frame directory gives the

address of the first sector of each frame. Since most of the disc accesses

will be for reading frames, the frame area has been placed in the central

area of the cartridge in order to minimize the movement of the disc

drive arm.

The total space required for the frames is about 1,00 sectors (25

cylinders.)

7.3.2 THE FORMULARY

The formulary contains the following data:

- an item name (usually a drug) associated with some code to be used

for drug-drug interaction, drug utilization review and adverse

reaction warning

- a set of dose forms and strength followed by the real cost and a

price to be charged for a unit (if the dose is not unitized, the

unit is either the volume unit (ml) or the weight (re or g)

- a minimum inventory level to be maintained and the current in

ventory level

- - +

- - - -

- -

º

-

- -

- . . .e-
- .*

: --
- s

** * -
- -

- -
* * - -

- --

- - - - - ~ * * * -

- - - * *. º

• tº J -- * * * * * , . . .

. . " . *

* - - - - -

- * - -

- ... *

. . . • * * * * *

- - - -
-

... • * -
a y

- • ** - - - -

-

- - -

-
• *

* *

- - - -

l62

The formulary file is organized as an indexed sequential file and is

also stored in the central area of the disc cartridge. The total number

of name entries in the formulary is about l200 with a total number of

2600 billing items.

The total formulary list occupies about 256 sectors on the disc.

The formulary inventory is not updated in real-time, but on a daily

basis when the billing program is executed.

7.3.3 THE PATIENT PROFILE

The patient profile is the only non-static file of the application.

As previously described, the data is stored as a two-way linked sequen

tial file with three ways to access the file: by the name of the patient,

by the patient's hospital identification number, or by the patient's bed

location.

The pharmacy profile is composed of two typed pages, entered via

keyboard and associated with editing frames. The first page contains all

the admission data: names, birthdate, sex, admission problem, physician

name, admission diagnosis. The second page contains notes, to be entered

by a clinical pharmacist, on allergies or adverse reaction to drugs.

The following pages are composed of the drug orders prescribed for

the patient during his hospital stay. These pages are filled as a result

of a message building selection process using the frame selection system

approach. The directories which are updated in real time are stored next

to the frame storage area in order to minimize the seek time.

According to the historical statistics kept by the hospital pharmacy,

a typical patient's drug profile contains an average of 10 to ll: drug

orders for a stay of 7 days. This amounts to an average of 3 disc sectors

to store a typical patient profile.

l63

For the University of California Medical Center, containing

550 beds, the total space required for the patient profiles is:

A 500 x 3= 1500 sectors

The following scheme details the organization of a disc cartridge:

Patients' Profiles

Directories

Patients' Profiles

Figure 7. l

The Pharmacy Data Base Organization on the Disk

l6h

7. l; BACK-UP AND RECOVERY PROCEDURES

It has been already mentioned that a hardware failure may be located

quickly and that the corresponding failing parts can be replaced by new

identical spare parts in a short time. However, the most serious break

down is the destruction of a disc cartridge and it is of the utmost im

portance to prevent the data contained on the cartridge from being lost.

The only dynamic files are the patient's profile and the ward stock order

files. This data can only be recovered if there are redundant versions

of the data. This redundancy can be introduced by two methods: complete

duplication of the dynamic files or maintenance of a log of the modifica

tions to the dynamic files.

The first method requires a double copy of the data which implies

three disc drives (two independent drives to support separate copies of

the dynamic data and a third drive to use as back-up in case one of the

others fails.)

The advantages of this first method is that the normal operations

can continue with a minimal interruption (the time to switch to the two

remaining drives.)

The inconvenience associated with this method is the overhead ne

cessary to keep a double copy of the data. However, with a small system,

this is acceptable because writing of data occurs only when a new order

is stored in the file; on the average, there are one or two new orders

per patient per day which amounts to approximately 500-1000 updates

during the day (in fact, it is less because usually several orders are

entered simultaneously and require only one update.)

In addition to the double copy a complete copy of the cartridge is

made before every shift and kept on a shelf in case of a major breakdown

of the system.

l65

The second back-up method is a constant monitoring of the transac

tions generated during an eight hour shift. In this case, the third

disc drive might be replaced by a tape drive (either a regular tape or

a cassette drive.) To be completely secure, the tape drive should be

backed-up by a second one, so that the economics of the two methods are

just about equivalent. This method has been implemented during the

testing period by using a disc cartridge as recording medium.

Since all the transactions are generated at the keyboard (or equi

valently by the selection mechanism), a record of all the keystrokes is

sufficient to enable the regeneration of the patient profiles.

The data is recorded as a triplet containing the keystroke, the

user # and the time between two successive keystrokes.

User # Time between events key code

Since the keyboard interrupts are treated sequentially, the log of

keystrokes can be considered as a time series:

k? where i is the index corresponding to the keystrokel

and u is the user index.

Each k. can be associated with a time to event (real-time) ti or the

time between events Att- ti - ti-1.

The ti can be found from the Ati and to by the formula:
i-l

ti= *o + E Ath
n= |l

The time between events can be measured in basic clock cycles (1/10

of a second in our case) and are, therefore, more advantageous in terms

of memory space required for storage than the full-time in hours, minutes,

and l/10 second. Furthermore, by changing the unit of the clock cycles

- - - - -

- as a - -

- e

-

- º

- *

... f* --

- - - - -

- - -, ºr

-

-

- - - -

- - - -

166

the time series can be played back at an increased speed.

In case of the destruction of the data base, a monitored version

of the time series can be played back by generating internally the key

stroke interrupts and driving the software as if it was externally

activated.

An experimental play back version was implemented with a speed in

creased by a factor of six (1/60 s), but even if the clock is speeded

up, the playback is limited by the rate of disc accesses from the drive

(with an average seek time of 70 ms, only lº accesses per second can be

made). Therefore, if the data base is to be generated by direct play

back, it must be started with the previous back-up version and it may take

several hours to reconstruct the data base depending on the length of the

time series. The advantage of this method is a slightly smaller overhead

for storing the keystroke series (as opposed to the double copy.) How

ever, the introduction of a new device (magnetic tape or cassette tape)

to be supported in real-time introduces more complexity in the software.

The main advantage of the second method is the potential use of the

keystroke time series to study the statistical behaviour of the system

for research purposes. During a testing phase the availability of mo

nitored time-series would be adventageous since a malfunction of the

software could be reproduced by playing back the monitored time series.

Thus, the problem which caused the malfunction could be repetitively

re-examined.

The disadventages of the method as a back up alternative are the

time required to play back the keystroke series to regenerate the data

base and the cost and eomplexity as previously mentioned.

Both methods have been implemented and the conclusion reached was

that in a production environment, the double copy was preferable because

it requires less down time and insures a quick recovery procedure.

167

A combination of the two methods would be ideal since both a quick

recovery and a recording of the time series would be available for

research purposes and for debugging.

7.5 THE DIFFERENT FUNCTIONS AND PROCEDURES OF THE PHARMACY APPLICATION

The remaining part of the Chapter describes the major procedures

implemented for the pharmacy system.

7.5.l THE LOG-IN PROCEDURE, THE MAIN INDEX, AND FUNCTION BUTTONS

The user activates the system by a special log-in procedure as

follows: he must activate the editor (function button Fl) and enter a

password which is masked on the screen (see figure below.)

ENTER OF ERATOR ID: kºkºk *-

E PROCEED

Figure 7.2 "Log-in" Frame

When the password is entered, the "Proceed" selection will trigger a

procedure to check the validity of the password. If it is recognized as

valid, the next frame will be the "main index" presented below. Together

l68

with the selection items on the screen, the operator has the choice of

using one of the special purpose programmed function buttons which are:

Fl:

F2:

F3:

F5:

F6:

F7:

F8:

F9:

Flo :

activate the editor (bring blinking cursor)

store a typed page in a file

reverse the selection process

advance forward one page in the patient's profile

back-up one page in the patient's profile

review the message already built

back to the selection process after F7

erase all the message area

bring the main index

The main index frame is displayed below:

P■ , TIENT FRUF ILE BLOCK TIME FILLING

T. Wiga. Pro f il p Il Dispense-Cred

a Modi fu Profil a

E. Cred tº Profil a Li Fi l l Specials

ELICK FR INT ING

I. Print All Pat ignts’ Prof i les

Bhr Medication Schedule

Jº RD STUCK ORDER ING

T. Jard i + cam from L is H-K

Tº llard i + em from L i = + L-Z T S I CH [IFF

Figure 7. 3 Main Index

F. Chock I) is-Cred

----·
*

*…|-
-

…|-|-*…--------
•*----*-

l69

When this index is displayed, the frame selection system is in a

neutral state; no message is in process, no file is open, and no pro

cedure or process is in execution.

The index is divided into five types of actions:

- access to the patient's profile

- block printing processes: patient's medication profile and the

eight hour medication schedule for each nursing shift

- block time filling: crediting and dispensing of unit dose drugs

- ward stock items ordering

- signing off

7.5.2 PATIENT'S PROFILE ACCESS

If a new drug order or a modification of the drug profile is desired,

the first step is to display the existing profile ("View profile.")

A new profile is created by filling in the editing frame presented

in Figure 5.3 and the use of the function button F2 will generate the

updating of the directories and the storage of the first page of the

profile on the disc.

The access to a profile is done via a frame fork to access the al

phabetized directory. The alphabet has been broken down into twenty-nine

categories presented below:

170

r - -

—

* {{`■ }-\R I El GDL–HCR T. Pº■ –FOR

El HRJ-EEC º HHS-HDL Pos-ric
| EED-ER'■ I, HCN4–JER T RID–Gº!

T. EFE—Cºlfº T. JES-K If | | SHU-SHR

E. CAQ–CLA Il KIO-LED Ed SH3–3 TE

T CLB-CRU | LEE-LUM I. STF-THO

T. CRW-III) | LLJN–MCE | THP-W It

& DTE-EWE E MCC–MIT
-

| WID-1, IL

EWF-FRE In ■ º I U-NEW | LJIM—ZZZ

a FRF-GDK HEL-PAL H BY HISP. MD

Figure 7.1,

Alphabetical Categories to Access Patient's Name

The thirtieth alternative is the access by hospital number which can

be entered by typing. The selection of a category will bring the cor

responding list of patients on a selectable frame.

Once a name has been selected, the first page of the profile is dis

played. An example of the patients' profiles pages is given below:

lTl

NC mº (LC's t . First . In i + , : T■ IE JOH}{ {}. *-

Hosp #: ØØØ■ º 1 - Bed: 524/1 - Birthdate: 03–06–23–

Sex: 1-Race: C-J : 72Kg-Adm: 35–33–74-PhCh: ;

| |I| : [R Gil ITH - Last Surg: 38-55

Adm Prob: Back pc in

D%: Hernig ted 1 Umbar disc

Diet : regul crº- Lou Fluid: - I/O : -

Spec Orders:

Figure 7.5 First Page of Patient's Profile

Function button F5 displays the following page: it is

text page for notes and allergies concerning the patient.

DTT 'T' || | g .
-

ØØØØØ 1 E24A 1

lot as : complete bed rest, traction.

All erq igs. Adº Recc (Date. Drug. Tupe. Sever it u}

: Horne known.

Figure 7.6 Second Page of Patient's Profile

The modification of these two pages can be done by selecting the al

ternative "modifying profile" on the main index and retyping the modi

fication when the corresponding page is displayed.

another free

172

NOTE:

The next pages represent the drug profile of the patient:

DOE JOHN Q. ØØØØØ 1 G24/1

Ø 1 35/35 35A 13 QSP IR IN THE 325mg 2 po did:

22 (15/35 35/13 PHEHUBARBITAL THE 15mg 1 po q id:

33 35/35 (35/37 [[][EIHE THE Gºmg 1 po prin Pain:

Figure 7.7 Medication Profile

7.5.3 THE DRUG ORDER INDEX

The top of the screen represents a message window from the message
area and the first line contains the patient's name, hospital iden
tification number, and location.
reached the use of function button F5 will bring the drug order

When the end of the profile is

The drug order index indicates a state where a patient's profile has

been selected and allows for new drug orders to be generated. The drug

order index is the root of several selection processes represented in the

following frame:
T■ IE JOHN Q. ■ º

NE, DRUG DRDER + Big Common

Full 1 is + 8. T. H. K.

2Specials El L

| IW In f Usion/Hød i + i ve

º Preoperative Drugs

A Change Duration/Use

Print Pat ign + 's Prof il g

Il Discharge (Close Profile)

– *

■ agg■ , 1 524/1

30 II Bu CUDA List

Il Non L is ted

Il Mcircot i ce

II Pharmacu Index

a SIGN OFF____

Figure 7-8 Drug Order Index

173

7.5.3 CREATION OF A NEW DRUG ORDER

A drug order can be represented by the following selection formula

(see Chapter l;):

D.O. = D bºre [[] DOSE FORMDUNIT PER DOSE(D ROUTE) JD FREQUENCY

A frame fork is used to access the list of drug names, a dose form

related to the drug name is selected, then a route of administration is

chosen and finally a frequency of administration is specified.

In the order generation, several different paths can be taken as the

starting point:

a list of the most common thirty drugs

a list of unit dose drugs for the Central Unit Dose Area (CUDA)

a list of narcotic drugs

- the full list of drugs and items available in the pharmacy

The different paths have been created in order to shorten the selec

tion process to make an order:

- for instance, the pharmacy statistics have shown that a large per

centage of all drug orders can be taken from a list of 30 names

which have been displayed as a separate frame providing rapid access

- the unit dose drugs are a subset of the full list for which every

dose is unitized and distributed on a daily basis. This procedure

is followed on approximately a third of the wards in the hospital.

If a drug is experimental and not yet in the formulary, it will be

entered by selecting the "non-listed" option which will allow for the

free text entry of the order. The full list is accessed by two indices

(A-L, M-Z.)

The following is an example of the creation of a drug order from the

list of the most common 30 drugs:

17|,

I.G. JGH! A.
Ø4 []EA 17 FIBA 24

F. HCETH■ 1 If JPHEN H

I. : LLLPLIR. If TL Fl

ºf PIC IL TR IHD ºl

3. HºPIR. If º

| EE|{{TFº'L

E ISHIUI'■ 'L H

. I CH_UPHL - Y |) t

| DEX ºf ETH ACTHE Tº

H D) If ZFP ■ ºft M

a DIGLXIH º

ØØ■][12, 1

D [FHENHYTN hºld T.

D■ 55 H

To CG4 UEP º

FLURH2EFº■ t [...] [T]

LÜf 1UTIL [...]

|HALUX T

|-|ETHYLTDPH El

fºLIM Fl

MULTI WITG ||[.

PEN PHEND%. K. El

Figure 7.9 "Most Common Thirty Drugs" Frame

Between the drug index and the present frame, a procedure has been exe

cuted to compute the drug sequence number and the start and stop date.

A drug order is valid for seven days unless otherwise specified.

DOE JOH}} p . ØØØØØ 1
Ø 24 ºz 17 ºf 3/24 £5P IR IN

* TAB 325mg m LAF 325mg

-

E SUP E5Amg

CHP 550mg m SUP 55mg

E.24/ 1

PE|{TH2UCH Cl

FEHTH2OCN LCIC .

PE|{TUBAFE NC;

PHEf{[IBHRE ITHL

F[]T Cl

FREDE: ISDNE

FRUCLOPER ED

FRUPTIXPHE}} Cl

R IDP■ tº

SECTIE■ RB Nº.

524/1

E THE 500mg pink

E SUP 325mg

Figure 7.10 Dose Forms Available for Aspirin

175

Only dose forms corresponding to ASPIRIN can be selected.

The next frame is multiple selection frame to select the number of

units to be given as a dose:
DOE JOHN Q. ØØ■ º■ º |

Ø4 g5/17 GE/24 ASPIRIN TAB 325mg

LIN ITS PIR DITSE I: 1 :k 2

T. 3 El 4 In 5

T. E. 1/2 Il: *-Figure 7. ll

ROUTE OF ADttit u po

524/1 t

II ng

The selective mask for the route of administration permits the display of

only those routes that are appropriate for the selected dose form. For

example, only po (oral) and n, (nasogastric tube)g are displayed for a

dose form such as TAB (tablet) as these are the only appropriate routes

for this dose form.

The next frame represents the set of standard frequencies at which

a dose can be given during the day:
DOE JOHH ■ y. ØØØØØ 1

34 36/17 35/24 ASPIRIN TAB 325mg

FFE[]|JEHCY OF ADMIH ISTRATION

a qd m q1H H

bid II c.2h T

- ■ id I gåh T
Figure 7. 12

* did d gºn ||

El GTHT In qGh E.

B q8h

II c. 12h []:

524/1

2 po

Cic

pc

Lji th mºd l =

176

With the extended FPL version it would be possible to eliminate the

frequencies for which the cumulative dose may be dangerous by executing

a procedure and applying a mask pushed on the stack when the dose and

number of units were selected. These safeguards could be established by

medical staff regulations, but would contain provision for over ride if

the attending physician specifically authorizes it.

The next frame is a procedural frame that allows the user to specify

if the drug has been dispensed or to modify the start and stop dates:

-

Doe John a
- -

agena: 52.42 1

Ø4 @5/17 (35/24 ASPIRIN TAB 325mg 2 po q id

CHECK EHT IRE DRUG CEDER

F7 roº i guys cºll orders. F8 rot Urns

Change START and/or STOP Dates

I. YES El ND

llas Drug Dispensed

In YES F. ND

Do you Jºrt c. Label ?

º, YES F. ND
*

- -- --

Figure 7.13 Procedural Frame at end of Drug Order

If the start or stop dates require modification, the following

frame will be displayed:

177

DOE JITHN fl. ØØØØØ 1 5242. I

34 05/17 15/24 ASPIRIN TAB 325mg 2 po did

3D Wºlf CE H 3T■ RT II■ TE IT STOP DøTE

EET ECCK a START DATE H STOP DATE

Figure 7.ll.

NB =

II 7 tº 3 T 9

º 4 a 5 E. 5

| 1 In 2 || 3

T 3 II ERASE D PROCEED__

The frame providing for the modification of start and stop dates is

a good example of the concept of the software machine underlying the frame

selection approach: the frame appears to be identical to a calculator

keyboard (N= is the zone where the digits selected are displayed), and

once a number is displayed, it can either add (advance) a chosen number

of days to the date or subtract (set back) a chosen number from the dates

displayed in the message. It is easy to see from this example, that a

frame selection system can simulate any keyboard machine by changing the

name and function of the keys.

**

178

7.5.5 INTRAVENOUS ORDER

Very few automatic pharmacy ordering system includes the intravenous

solution orders (SOUT3] because they have a complex structure.

The selection process involved for an intravenous (I.W.) order can

be represented by following the selection formula:

D BOTTLE NB D FLUID D VOLUME D FLOWRATE (D ADDITIVE DAMOUNT)*

A bottle number is selected, a fluid and a volume must be specified

together with a flow rate and then an unspecified number of additives

may be added to the fluid (star operator.)

At the end of the selection process, a label for the I.W. bottle is

printed automatically. A sample label print out is given below:

DOE JOHN A.

0 90% ºl 624/1
s D5W 1I,
º

100 ml/hr

KC 1 30 mEo
Vit B col—C 1 ºml

-
DISPE NS ED J 6/17
EX PIRES AT 12h 0.1
BOTTLE # 1

Figure 7.15 Example of I.W. Label

lT9

7.5.6 PREOPERATIVE DRUG ORDER

A separate path is also taken for preoperative drug order. A pre

operative drug order is characterized by the following formula:

(D PREOP DRUG D STRENGTH)* D ROUTED TIME

A preoperative order may contain several drugs, the frequency is re

placed by a time of administration since a preoperative order is given

only once. A label is also printed for preoperative orders and a sample

is given below:

º DOE JOHN A.
Ö () () () 01 624/l
A tropine SO4 Ø. 4 mg
Meper idine C1 75mg
IM 6 h () (9 am

t

Figure 7.16 Preoperative Drug Order Label

7.5. T NON-FORMULARY DRUG ORDER

When a new drug not listed in the present formulary is ordered the

pharmacist will enter the order manually by using the following editing

frame:

DOE JOHN p. ØØØØØ 1 E24, 1
34 35/17 (35/24

MºbiLIHL. IRFUT OF HON LISTED DRUG

Drug Hame:
*-

Dosage form-size : -

Ho of Un its per Dºse : *-

RQU te: *-

Frequency of administration: -
i

El PROCEED

Figure 7.17 Frame for Entry of Non Listed Drugs

l80

7.5.8 MODIFICATION OF A DRUG ORDER

A given drug order may not be deleted from the patient's profile -

it becomes part of the drug history of the patient. However, a drug

order may be discontinued, temporarily stopped, reinstated and the stop

date may be extended.

This operation is performed by selecting the drug order to be mo

dified from the page of the profile. Then the modification is selected

on a frame specifying the action to be taken. The corresponding frame

is given below:

DOE JOHN ■ º. ØØØØØ 1 E.24/1
31 AE/EE GE/13 ■ .SFIRIN TAB 325mg 2 po q id:

DISCUNTIFILIE L TEMPIR£R', STUP

T. CHENGE ||GF|[E E REINSTATE

In EXTEND STOP DATE bu■

F. CRED IT (Dg:59:5) || I] ISPENSE (Iloses)

NE =

| 7 H 3 H 9

4 E. 5 F. E.

T. 1 II 2 E 3

■ º F. ERCSE II PROCEED

Figure 7.18 Modification of a Drug Order

l8l

7, 5.9 THE BLOCK TIME FILLING PROCEDURES

The block time filling is a procedure which takes place daily and

is part of the unit-dose pharmacy delivery system. The unit-dose system

employs the concept of a twenty-four hour dosing period. A duplicate

set of medication drawers is maintained so that one set contains suf

ficient doses of drugs for a twenty-four hour period and is in use on

the floor, while the second set is being filled in CUDA by a pharmacy

assistant. Daily at 7:00 P.M., after the pharmacist has checked the

medication drawers, a pharmacy assistant exchanges the depleted drawers

for newly-stocked drawers. The contents of the returned drawers are

checked and any doses left may be credited to the patient. This work is

done by pharmacy technicians, and the crediting and dispensing of drugs

is a batch operation done ward by ward. A separate filling procedure

takes place for special drug orders involving a longer preparation time

and more complex preparations. ("Fill specials")

The block time filling procedure is interesting because it shows an

example of a batch process being implemented in real time.

The selection process involved in the crediting and dispensing is

described by the following selection formula:

D WARD ([] CREDIT D DISPENSE)*

and the following frame is used for the selection of a ward:

182

* - ------- --- - -

| EN FCS

E. FN

3N

F. GK

13||

T. 1 1 N

14||

| 1 TH

a 1EE

a 15,

33

133

1 13

* HDNE

E■ E

7E

EE

13E

1 1 E

1 4E

15E

UC HIISPITAL

Figure 7.19 List of Wards in the Hospital

At the completion of the block filling or checking of a ward, the

corresponding selection is flagged by a letter F (filled,) S (specials)

or C (checked.)

Once a ward is selected, a procedure will automatically look up the

bed location directory and display the first patient file. Within each

file only the active drug orders are presented to the user in sequence.

The following frame is used for the crediting:
T■]E J■ . Hi■ ■ º.

U/Dau=33 D/Dag=34

■ ig■ ºn 1

01 AS/35 35.13 as PIR IN THE 325mg 2 po did:
E242. 1 ■ º

Sal ºr number of Uri i + = re Urried

Figure 7.20

| 7

4

■ º

ºf 3

In 5

II 2

5 ERASE PRICEED

183

With each block-filled order, a dispense and credit zone is updated and

is used as the basis for the billing program. For each order, a pro

cedure computes the number of doses and the number of units to be dis

pensed.
- - - -

-—t
I■ E JITHN Q. 2000■ , 1 E242° 1 ■ º

31 GE/CE 35/13 AEP IR IN TAB 325mg 2 po q id:

U2'■ au=F13 D/Dau=34

Gol G c + n_mber of Uri i + = d.dded or rºmokº Cl

T. Hºld Ln i t = =3 3

Ramoº■ e un i t =-

NB =3

T. 7 | E ºn 3

º 4 In 5 H 5

1 E 2 ºn 3

A E ER. H.GE H PROCEED

Figure 7.2.1 "Dispense" Frame

On this frame the number of units to be added is displayed so that the

technician may select the number required from the drug stock. The "pro

ceed" selection will bring the process back to the crediting frame with

the next order to be filled. The filling of specials orders follows the

same procedure, but only the special orders are displayed. The checking

of the dispensing is done after the filling and the pharmacist may modify

the number of doses dispensed by entering a new number.

--

18||

DOE Jr.

UAI ºr’—■ , 3 [.

CHECK Lºº T

If incºrrºc■ an ºr

| Hau■ clºse ºdd g :

| |E} =

a 7 º

| 4 º

1 º

| 2 T

Figure 7.22

7.6 THE WARD STOCK ORDERING

This type of ordering is

wards.

The ordering of an item is done from the full list and the orders

are stored in a temporary sequential file which is deleted after the

billing program has been run.

The selection process for this type of order is simpler than a

patient's drug order, because it does not involve the individual patients

and there is no need for a route and frequency of administration.

5

2
-

E

a bulk dispensing of pharmacy items to the

ØØØØØ 1 G2.42 12Hº Q.

º ºg ■ ø/13 ASF IR IN TAB 325mg 2 pp qid:

AIG'■ '=■ +4

DCGE DIEFENCED

neu, nb of dose to dispense

H 3

PASE is PROCEED

"Checking" Frame

The selection formula is as follows:

D WARD (D ENTRY NAME [D ITEM) D ITEM NB)

The entry name refers to an entry in the full list (it may be a drug or

sundry item) and the item refers to the particular form or size within

l85

that entry. The next selection specifies the number of items dispensed

to the ward. This type of ordering is identical to a classical inventory

system, therefore the replacement of the pharmacy inventory list by

another list (for instance, central supply) will not require any repro

gramming.

It should be noted that a real time inventory could be maintained

easily if the system was built as a pure inventory system. In the phar

macy application this was not necessary because the billing charges are

computed on a daily basis and at the same time the inventory level can be

updated.

7.7 THE MEDICATION ADMINISTRATION SCHEDULES

Every eight hours a medication administration schedule is generated

for the nursing personnel. This task is executed as a background process

and reviews every file; every active order is listed with the corresponding

times at which a dose must be given to a patient. The program is table

driven, so that a given frequency may be interpreted differently for a

given ward.

This process is executed as a background task and does not interfere

with the foreground and middleground processes. An example of a medication

schedule is given in the Appendix.

Discussion:

The pharmacy application as described in this Chapter has several

features not available in previous pharmacy systems:

i) The generalized frame selection approach allows flexibility in

the system design (it was possible to implement a unit dose dis

tribution system as well a classical system.)

ii) The existence of the frame programming language enables the easy

186

iii)

iv)

modification of frames and procedures which will allow for future

expansions into a system for automatic drug-drug interaction

checking.

The use of a new technology adapted to the frame selection

approach gives a better response time than a more conventional

systems (from less than l/10s to 1/2s depending on the load and

type of operation executed.)

The low cost of the hardware used to support the application can

be economically justified.

187

Chapter 8

Conclusion

"When Earth's last picture is painted and the tubes are twisted and dried,
When the oldest colours have faded and the youngest critic has died
We shall rest, and faith, we shall need it - liedown for an aeon or two
Till the Master of all Good Workmen shall put us to work anew."

R. Kipling

188

CONCLUSION

The previous experiences of developing medical information systems

have shown that it is wise to avoid the use of text typing, and this is

made possible by the use of a frame selection system. This is partic–

ularly important because of the nature of medical language, which is

descriptive and encyclopedic and therefore, must be expressed by lin

guistic terms.

This dissertation has included an attempt to study such systems in a

more formal way by relating them to the theory of information, the theory

of automata, and the theory of formal languages. This was done by the

definition of a model called the selecton which can be viewed as a finite

state machine where inputs are selections displayed on a CRT, and organ

ized as frames. Instead of considering the model as an acceptor of

strings, it was used for its generative properties of output strings to

build messages by the concatenation and manipulation of phrases and

choices selected. From this perspective, the selecton model is more like

a formal grammar, and a regular selecton generates regular expressions

while a pushdown selecton generates sentences of a context-free grammar.

By introducing the possibility of executing procedures as a result

of a selection, the model becomes more powerful, and can in particular

allow the introduction of context-sensitive rules and use transformations

on the strings already generated.

These results show that a frame selection system can be as powerful

and flexible as any other software approach, but instead of parsing or

interpreting strings, the frame structure and the procedures are designed

to generate syntactically correct strings. This is useful, not only for

building application systems where the user may generate orders or observa

l69

tions by selecting phrases from frames, but it is also useful for generat

ing statements of a programming language.

In particular, the concept of a frame programming language was

developed and implemented as a frame selection system. A frame programming

language is a high level language which enables the construction of frame

selection systems: for each frame and each selection on a frame, a statement

can be generated to indicate what will be the result of the selection (out

put of string, execution of a procedure, storage on a pushdown store, or

branching to a new frame). A particular example of a frame programming

language was described, and used to build a pharmacy ordering system.

A real-time operating system was developed on a minicomputer (Four Phase

Model 70) to support frame selection system applications.

Although the system as developed meets the expectations of a rapid

response time (less than ls for 8 CRT's working simultaneously), some

improvements are suggested, which could be implemented as an external layer

on the current system or by extension of the frame programming language.

First, the procedures invoked as a result of a selection were written

in assembly language and it would be helpful if a higher level language

were available to write applications procedures, which might be linked

by using the frame language approach.

Second, the file system could have an external layer realizing the

concepts of data base schema, and a simple data base query language could

be implemented by means of the frame selection system.

Third, the implementation of a more comprehensive frame programming

language would allow for more complex semantic relations to be specified

when other applications are designed. This could be useful in patholog

ical or radiological descriptive statements.

l90

Finally, with respect to the modular approach advocated previously, a

communication software could be developed. A simple protocol should be

devised to insure the local communication of data and messages between the

modules constituting the nodes of the communication network. In particular,

the use of identical hardware modules connected to a central communication

processor will greatly simplify the task of communicating data between

modules representing activities in different hospital department.

In conclusion, other avenues of research are opened: a further

analysis of the frame selection approach for the implementation of inter

active programming language designed for specific applications. For

instance, a simulation language like GPSS (general purpose simulation

system) would definitely be easier to use with such an approach, the

command and control languages used in time sharing systems will also

benefit from such an approach, especially for small systems. It is even

possible that a COBOL equivalent language could be implemented as a frame

selection system for small applications. It is also likely that a frame

selection approach would be a good teaching tool to learn programming

languages by enabling the user to build syntactically correct sentences

instead of compiling the statement to see if it is correct. A frame

selection approach can be used to remove all the syntactical idiosyncrasies

of programming languages, and the automatic parsing will considerably reduce

the effort to produce a multiple user incremental compiler. Furthermore,

the standardization of a language will no longer require the use of specific

keywords; only the grammar will be standardized and the frames could be

translated in any language.

In the medical information field, frame selection systems are well

suited for applications such as history taking, aids to diagnosis, medical

;

191

order generating, report generation, inventory systems, ward systems, and

computer assisted instruction. Most of the research needed is to discover

the logic and the appropriate grammars to express the medical language and

practice. This is not a simple task and no unique solution exists, but if

progress is to be made, one must start with the simple, well defined

problems first and then undertake the more difficult problems later.

The advantages of the frame selection system approach are its ex

tensibility, and the direct and intuitive understanding it offers to

medical professionals as well as computer specialists.

192

References and Bibliography

193

[AHO72]

[ARB68]

[BAC59]

[BALT1]

[BAL71;)

[BAR67]

[BARTO]

[BAR71)

[BART l;)

[BARH61;)

[BEK72]

A.W. AHO and J.D. ULLMAN

"The Theory of Parsing, Translation and Compiling"
Prentice Hall, l972

M. ARBIB

"Algebraic Theory of Machine Languages and Semigroups"
Academic Press, 1968

J. C. BACKUS

"The syntax and semantics of the proposed international
algebraic language"
Proceedings of IFIP Congress, Paris, 1959, pp 125–131

M. J. BALL
"An overview of total medical information systems"
Methods of Information in Medicine, Wolume 10, No. 2, 197l

M. J. BALL

"Medical data processing in the United States"
Proceedings of AFIPS National Computer Conference, 1971,
Volume 1,3

-

G.O. BARNETT and P. A. CASTLEMAN
"A time-sharing computer system for patient care activities"
Computers and Biomedical Research, Volume l, (March) 1967,
pp h1–5l

G.O. BARNETT and R. A. GREENES
"High level programming languages"
Proceedings of Conference on Medical Information Systems,
San Francisco, l970

G. O. BARNETT

"The use of computers in clinical data management: the ten
commandments"
American Medical Association Conference, Las Vegas,
(February) 1971

G. O. BARNETT

"The modular hospital information system"
Chapter ll, Computers and Biomedical Research, Fourth Edition,
Stacy and Waxman (Editors), Academic Press, 1971,

Y. BAR–HILLEL

"Language and information"
Selected essays on their theory and application
Addison-Wesley, 1961,

G. A. BEKEY and M. D. SCHWARTZ
"Hospital information systems"
Biomedical Engineering Monograph,
Marcel Dekker, l972

**

… - -
- º - - -

r º

- -
* -

-
-

- ** - -

-

- - * * - -

- - - --- -

- - -

- * -
- - --

-

*

-

- -

19||

[BLOTl]

[BRE71]

[BREI68]

[BRI62]

[BRUTl]

[CAR56]

[CHE66]

[CHO58]

[CHO65]

[COD70]

[COF71]

[COF73]

M. S. BLOIS and R. R. HENLEY

"Strategies in the planning of hospital information systems"
Proceedings of Journees d'Informatique Medicale,
IRIA, St. Lary, France, l97l

G. BRECHER and H. LOKEN
"The laboratory computer – is it worth its price?"
American Journal of Clinical Pathology, Volume 55, No. 5,
l97l

G. Y. BREITBARD and G. WIEDERHOLD
"The ACME compiler"
Information Processing 68, North-Holland Publishing Co.,
Amsterdam

L. BRILLOUIN
"Science and Information Theory"
Second Edition, Academic Press, 1962

S. BRUNJES
"An anamnestic matrix toward a medical language"
Computers and Biomedical Research, Volume 1, 1971,
pp 571-586

R. CARNAF

"Meaning and Necessity"
University of Chicago Press, 1956

C. CHERRY
"On Human Communication"
MIT Press, 1966

N. CHOMSKY and G. A. MILLER
"Finite state languages"
Information and Control, Volume l, 1958, pp. 91—ll2

N. CHOMSKY

"Aspects of the Theory of Syntax"
MIT Press, Cambridge, Massachusetts, 1965

E. CODD
"A relational model for large, shared data banks"
Comm. ACM, Volume 13, No. 6 (June) 1970, pp. 377–387

E. G. COFFMAN, M.J. ELPHICK, and A. SHOSHANI
"System deadlocks"
Computing Surveys, Volume 3, No. 2, (June) 1971

E.G. COFFMAN, Jr., and P. DENNING
"Operating systems theory"
Prentice Hall series in Automatic Computation, l973

lg5

[COH72]

[COL70]

[CRO69]

[DAH72]

[DAV69]

[DAV73]

[DIJ68]

[DIJ7l]

[DEE60]

[FEL68]

S.N. COHEN, M. F. ARMSTRONG, L. CROUSE, and G. HUM
"A computer based system for prospective detection and
prevention of drug interaction"
Drug Information Journal, (January/June) 1972

M. F. COLLEN

"General requirements for a medical information system"
Computers and Biomedical Research, Wolume 3, 1970,
pp 393–l,06

L. CROUSE and G. WIEDERHOLD
"An advanced computer system for real-time medical
applications"
Computers and Biomedical Research, Volume 2, No. 6,
(December) 1969, pp 582-592

O. J. DAHL, E.W. DIJKSTRA, and C.A.R. HOARE
"Structured Programming"
Academic Press, l072

L.S. DAVIS, M. F. COLLEN, L. RUBIN, and E. E. WAN BRUNT
"Computer stored medical record"
Computers and Biomedical Research, Volume 1, 1968,
pp l;52–l,69

L. S. DAVIS
"A system approach to medical information"
Methods of Information in Medicine, Wolume l?, No. 1, 1973

E. W. DIJKSTRA

"A constructive approach to the problem of program
correctness"
BIT 8, 1968, pp 171-186

"The strucutre of THE multiprogramming system"
Comm. ACM, Volume ll, No. 5, (May) l968

"Cooperating sequential processes"
Programming Languages
edited by F. Genuys
Academic Press

"Hierarchical ordering of sequential process"
Acta Informatica, Volume 1, 1971, pp llS-138

A. E. DEEB

"Electronic data processing system for a hospital pharmacy"
Amer. Jour. Hosp. Pharm., Volume 17, (December) 1960,
pp 715–7119

J. FELDMAN and D. GRIES

"Translator writing systems"
Comm. ACM, Volume ll, No. 2, (February) 1968

--

lg6

[FRIT2]

[GIN68]

[GOU68]

[GOU69]

[GOUTl]

[GOR67]

[GPSS]

[GRE69]

[GRITl)

[HAB72]

[HANTO)

[HAN73]

J. FRIES

"Time oriented patient records and a computer databank"
JAMA, Volume 222, No. 12, (December 18) 1972, pp 1536–1512

A. GINZBURG

"Algebraic theory of automata"
Academic Press, 1968

W.A. GOUVEIA, P. B. HOFMAN, and G.O. BARNETT
"Computers – basic principles and hospital pharmacy
implications"
Amer. Jour. Hosp. Pharm. , Volume 25, (January) 1968,
pp l—ll

W.A. GOUVELA, C. DIAMANTIS, and G.O. BARNETT
"Computer applications in the hospital medication system"
Amer. Jour. Hosp. Pharm., Volume 26, (March) 1969

W. A. GOUWEIA

"Computer applications in the hospital pharmacy
Hospitals J. A.H.A., Volume b5, (January) 1971

G. A. CORRY
"A system for computer-aided diagnosis"
Project MAC, Technical Report MAC-lil, MIT, Cambridge,
Massachusetts, l967

"General purpose simulation system", 360 Users' Manual,
IBM Manual (H20–0326)

R. A. GREENES, A.N. PAPPALARDO, C.W. MARBLE, and G.O. BARNETT
"Design and implementation of a clinical data management
system"
Computers and Biomedical Research, Volume 2, 1969,
pp l;69–l,85

D. GRIES

"Compiler Construction for Digital Computers"
John Wiley & Sons, New York

A. N. HABERMANN

"Synchronization of communicating processes"
Comm. ACM, Volume 15, No. 3, (March) 1972

P. BRINCH HANSEN
"The nucleus of a multiprogramming system"
Comm. ACM, Volume 13, (April) 1970, pp l;

P. BRINCH HANSEN

"Operating system principles"
Automatic Computation
Prentice Hall, l973

lç7

[HAR65]

[HOP69]

[ICDA68]

[ISN72]

[JOHTl]

[JOHNTO)

[KNU68]

[KNIT3]

[KRO68]

[LED69)

[LINTO]

[MAR72]

F. HARARY, R.Z. NORMAN, and D. CARTWRIGHT
"Structural Models: An Introduction to the Theory of
Directed Graphs"

J. E. HOPCROFT and J. D. ULLMAN
"Formal Languages and Their Relation to Automata"
Addison Wesley, 1969

"International Classification of Disease - Adapted"
D. H. E.W., Wolume l, U.S. Public Health Service, l968

D. W. ISNER

"An inferential processor for interacting with biomedical
data using restricted natural language"
Proceedings of AFIPS Spring Joint Computer Conference, 1972

J. L. JOHNSON
"Clinical Laboratory Computer Systems - A Comprehensive
Evaluation"
J. L. Johnson Associates, l97l

L. J. JOHNSTON

"Problems of implementation of unit-dose dispensing"
Amer. Jour. Hosp. Pharm. , Volume 27, (October) l970,
pp 815–821

D. E. KNUTH

"The Art of Computer Programming"
Volume l, Addison Wesley, l968

J. R. KNIGHT and W. F. CONRAD

"A literature review of computer oriented pharmacy services
in hospitals"
Jour. Clin. Computing, Volume 3, No. 3, (November) l973

K. KROHN, J. R. RHODES, and B. R. TILSON
"The prime decomposition theorem of the algebraic theory of
machines"
Algebraic Theory of Machines, edited by Arbib,
Academic Press, 1968

R. S. LEDLEY

"Practical problems in the use of computers in medical
diagnosis"
Proceedings of IEEE, Volume 57, No. 2, (November) 1969

D. A. LINDBERG
"A statewide medical information system"
Proceedings of Conference on Medical Information Systems,
January, l970

R. F. MARONDE and S. SEIBERT

"Electronic data processing of prescriptions in hospital
information systems"
Biomedical Engineering Monograph, Marcel Dekker Inc., l972

l98

[MEL70]

[MIL72]

[NAU60]

[PRA69]

[PIE6l]

[PRITl|]

[RHO73]

[SCHTl)

[SCHWT2]

[SHAh9]

J. P. MELROSE

"Automated Medication Order System - Hospitals"
J.A. H.A., Volume lili, (September) 1970, pp 68-73

R. A. MILLER, R. F. DELEON, E.T. HERFINDAL, and J. L. HIRSCHMAN
"The frame system: a second generation unit—dose distribution
system"
Hospital Progress, (February) 1972

R. A. MILLER and R. F. DELEON

"Development of a computerized pharmacy control system"
Amer. Jour. Hosp. Pharm. , Volume 29, (November) 1972,
pp. 963–966

P. NAUR et al.
"ALGOL 60 Report"
Comm. ACM, (May) 1960

A. W. PRATT and M. G. PACAK
"Automatic processing of medical English"
International Conference on Computational Linguistics,
September, l969, Stockholm

J. R. PIERCE

"Symbols, Signals, and Noise: The Nature and Process of
Communication"
Harper & Bros., 1961

C. E. PRICE

"Table look-up techniques"
Computing Surveys, Volume 3, No. 2, (January) 1971

J. RHODES
Class Notes, "Automata Theory" (Course 226 B/C)
Department of Mathematics, University of California,
Berkeley, l973

J. R. SCHULTZ, S.W. CANTRILL, and K. G. MORGAN
"An initial operational problem-oriented medical record
system for storage manipulation and retrieval of medical
data"
Proceedings of AFIPS Spring Joint Computer Conference, l97l

M. D. SCHWARTZ

"Status of hospital information systems"
Hospital Information Systems, edited by Bekey and Schwartz,
Marcel Dekker, Co., l972

C. E. SHANNON and W. WEAWER
"The Mathematical Theory of Communication"
University of Illinois Press, 1919

l99

[SHU63]

[SHUTO]

[SIB73]

[SIM72]

[SINTO]

[SLA66]

[SNOP65]

[SOUT3]

[WANTO)

[VAL68]

[WEE68]

[WEE69]

M. P. SCHUTZENBERGER
"On context-free languages and push-down automata"
Information and Control, 1963

S.A. SHUMAN and P. JORAND
"Definition mechanisms in extensible programming language"
Proceedings of AFIPS Fall Joint Computer Conference, l070

E. H. SIBLEY and R.W. TAYLOR
"A data definition and mapping language"
Comm. ACM, Volume 16, No. 12, (December) 1973

G.I. SIMON, H. M. SILVERMAN, T.G. WETTER, and G. WOLPERT
"A semi-automated approach to unit-dose dispensing"
Amer. Jour. Hosp. Pharm., Volume 29, (June) 1972,
pp l;91–1,95

S.J. SINGER
"Visual display terminals in a hospital information system"
Conference on Medical Information Systems, January 1970,
San Francisco

W. N. SLACK, G.P. HICKS, C.E. REED, and L. J. WAN CURA
"A computer based medical history system"
New England Journal of Medicine, Volume 27, 1966,
pp 196–198

"Systematized Nomenclature of Pathology"
College of American Pathologists,
American Medical Association, Chicago, 1965

D. E. SOUNDER, W.A. GOUVELA, D. SHERERTZ, R. ZIELSTORFF,
F. E. JONES and G. O. BARNETT
"A computer-assisted intraveinous admixture system"
Amer. Jour. Hosp. Pharm., Volume 30, (November) 1973,
pp lolj-l920

E. E. WAN BRUNT

"The Kaiser-Permanente medical information system"
Proceedings of Conference on Medical Information Systems,
January lº'70, San Francisco

C. WALLBONA et al.
"An on-line computer system for a rehabilitation hospital"
Methods of Information in Medicine, Volume 7, No. 1, 1968

L. L. WEED

"Medical records that guide and teach"
New England Journal of Medicine, Volume 278, 1968,
pp 593-600 and 652–657

L. L. WEED

"Medical Records, Medical Education and Patient Care"
Case Western Reserve University Press, Cleveland, 1969

200

[WIE69]

[WIETO]

[WIE72]

[WIR66]

[WIR69]

[WIN72]

[ZAD65]

[ZAD7l]

[ZAD73]

[ZEL73]

G. WIEDERHOLD

"An advanced computer system for medical research"
Proceedings of the IBM Japan Computer Science Symposium,
Research and Development, and Computer Systems, Tokyo,
November 1969, pp Bl-Blj

G. WIEDERHOLD, R. FREY, and S. GIRARDI
"A filing system for medical research"
Proceedings of Journees d'Informatique Medicale,
IRIA, St. Lary, France, l970

G. WIEDERHOLD
"A choice of language to support medical research"
ACM Conference, Boston, l972

N. WIRTH, and C. A. R. HOARE
"A contribution to the development of ALGOL"
Comm. ACM, Volume 9, No. 6, (June) 1966

N. WIRTH

"A basic eourse on compiler principles"
BIT 9, 1969, pp. 362-386

B. H. WINTERS and L. HERNANDEZ

"A computerized drug inventory control system"
Amer. Jour. Hosp. Pharm., Volume 29, (September) 1972,
pp 780–785

L.A. Z.ADEH

"Fuzzy sets"
Information and Control, 1965, pp 338–353

L.A. Z.ADEH

"Quantitative fuzzy semantics"
Information Sciences 3, 1971, pp 159–176

"Similarity relations and fuzzy ordering"
Information Sciences 3, 1971, pp 177–200

L.A. Z.ADEH
"Outline of a new approach to the analysis of complex
system and decision processes"
IEEE Transactions on Systems, Man and Cybernetics
Volume SMC 3, No. 1, (January) 1973

D. D. ZELLERS

"A computer based medication system utilizing unit-dose
distribution and medication administration"
Jour Clin. Computing, Volume 3, No. 3, (November) 1973

* - -

-- - - -

- - - - -

- * - - * *

*

- -

-- - * -

- s

. " " -

- * *

- - -

- * * -

*. - - * * - -

201

Appendices

2O2

APPENDIX 1.

Syntax Description of the Frame Programming Language

The following is a description of the frame programming language

using the Backus-Naur Form [BAC59, NAU60]. Since the language was im

plemented as a frame selection system, the following description is not

meant to be used by an automatic parser:

<FRAMEX:= <EDITING FRAME-|<SELECTION FRAME: I <MIXED FRAME

<EDITING FRAMEX:= <EDITING HEADER: <EDITING FRAME BODY >

<EDITING HEADER: := EDITING FRAME-FRAME NAMEX

<SELECTION FRAME: := <SELECTION HEADER: <SELECTION FRAME BODY >

<SELECTION HEADERS := SELECTION FRAME-FRAME NAMEX

<MIXED FRAMEX: = <MIXED HEADER: <MIXED FRAME BODY >

<MIXED HEADER: := MIXED FRAME-FRAME NAMEX

<FRAME NAME: := <CHARACTER2+

<EDITING FRAME BODY > t = <DATA ENTRY ITEMxº

<DATA ENTRY ITEM-: = <PROMPT: : «EDITING FIELD »

<SELECTION FRAME BODY > := <SELECTION ITEMS."

<MIXED FRAME BODY >:= (<SELECTION ITEM-) = <DATA ENTRY ITEM

<SELECTION ITEM2 := <SELECTION CHOICE: <SELECTION INSTRUCTION >

<PROMPT: ; = <STRING >

<EDITING FIELDx := <BLANK»”

<SELECTION CHOICE: := <SELECTION POINT × <CHOICE STRING >

<CHOICE STRING > := <STRING >

<SELECTION INSTRUCTION: := <STRING INSTRUCTION: <PROCEDURE INSTRUCTION >

<ROUTE INSTRUCTION > <SEMANTIC RESTRICTION >

<STRING INSTRUCTION > := CHOICE * <CHOICE STRING > * <CHOICE OUTPUT:.

<CHOICE OUTPUT: := OUTPUT (<EMPTY STRING >|<CHOICE STRING > AND zoUTPUT FORMAT: }

•*•

••

203

<OUTPUT FORMATS := CONCATENATION |CARRIAGE-RETURN LINEFEED |IDENTATION

TABULATION

<PROCEDURE INSTRUCTION: := EXECUTE & PROCEDURE IDENTIFIER

<PROCEDURE CHARACTERISTICS: <PROCEDURE BODY >

<PROCEDURE IDENTIFIERS := <CHARACTERS.”

<PROCEDURE CHARACTERISTICS: ; = <LOCATION STATUS: <PRIORITY: <PARAMETER LISTP

<LOCATION STATUS: ; = RESIDENT <BOOLEAN»lovERLAY-BOOLEAN»

<PRIORITY”:= FOREGROUND|MIDDLEGROUND |BACKGROUND

<PARAMETER LIST2 := <WARIABLE IDENTIFIERP”

<WARIABLE IDENTIFIERP := <CHARACTERP■

<PROCEDURE BODY > := <STATEMENT+-PROCEDURE BODY > <STATEMENT ×

<STATEMENT*:= <LABEL2 <assembly language instruction ><OPERAND

<OPERANDX = <WARIABLE OPERAND-I-REGISTER OPERAND2

<WARIABLE OPERANDX = <WARIABLE IDENTIFIER2|<VARIABLE IDENTIFIERP

<INDEX REGISTERP

<REGISTER OPERAND2 := <REGISTER -REGISTERS-REGISTER’

<LABEL2 := <CHARACTER2+

<ROUTE INSTRUCTION P := <EMPTY ROUTE2 BRING * <FRAME NAME? " AND

<STACK INSTRUCTION >

<STACK INSTRUCTION > := <POP2 <EMPTY ROUTE|FRAME NAME-|<PUSH2-EMPTY ROUTE!

FRAME NAMEX|<EMPTY STACK INSTRUCTION >

“EMPTY STACK INSTRUCTION >:= NO STACK OPERATION

<EMPTY ROUTEP := NO ROUTE

<POP2 := POP “BOOLEAN >

<PUSH > t = PUSH “BOOLEAN >

<SEMANTIC RESTRICTION > := <EMPTY RESTRICTION |<CHOICE SEMANTIC RELATION > *

<CHOICE SEMANTIC RELATION > t = <CHOICE STRING > <SEMANTIC RELATION >

2Ol,

<EMPTY RESTRICTION: : NO MASK

<SEMANTIC RELATIONS: <BOOLEAN >

<BOOLEAN» := TRUE FALSE

<STRING > := <CHARACTER: I <CHARACTER2-punctuation sign><CHARACTERS

<CHARACTER = <letter» |<digit-l-blank

<BLANK»: = <blank

<SELECTION POINT* := []

<REGISTER: ;= RO |R1||RA|RB |xl|X2|X3

<INDEX REGISTER: ;= x1 x2 x3

<letter» := A|BlclD...|X|Y|z|a|b|cl... |x||y|z

<blank”:

<digit? := 0 |1|2|3||||5|6||7|8|9

<punctuation sign>:= : |, |*|"|*|. () l ;

<assembly language instruction>:= <FOUR PHASE instruction set? (l)

(l) See FOUR PHASE User's Manual

205

APPENDIX 2

OPERATING SYSTEM PRIMITIVES

The primitives used in the operating system are written in assembly

language. In the following, they are described by the calling sequence and

the set of parameters necessary for the primitives to operate.

The mnemonic "BAL" refers to a branch and link instruction which keeps

the program counter in a register so that it can be used to access re-entrant

procedures.

The mnemonic "DCN" is a data definition pseudo-instruction.

The mnemonic "PZE" is used for pointers.

The memonic "BSS" is used to reserve a memory location.

The mnemonic "BRA" refers to a branch instruction.

l. Primitives QUEUE and DEQUEUE

Since the Four Phase computer"has instructions to push and pop elements

from a stack and instructions to move blocks of words, the queues are

implemented by using the stack mechanism but instead of removing the

element on the top of the stack, the element on the bottom of the stack

is removed first. This is acceptable because the maximum size of the

queue is equal to the maximum number of users which will never exceed l6

on this machine.

A queue can, therefore, be described by three pointers as follows:

QUEUE
TOP

QUEUE
POINTER

QUEUE
3Cºrom

The current pointer indicates the position where a new item can be

;
inserted in the queue.

l
For more details, see Four Phase Systems, System IV/70 Reference Manual,
Document No. SIV/70–ll-lC

*

--

2O6

The primitive queue is implemented by:

BAL QUEUE
PZE QUEUE. POINTER
DCN QUEUE CONTENT
BRA QUEUE FULL

NORMAL RETURN

The primitive DEQUEUE is implemented by:

2. Primitive STAPRO

BAL DEQUEUE
PZE QUEUE.TOP
BSS l RETURN CONTENT OF QUEUE
BRA QUEUE EMPTY

NORMAL RETURN

This primitive is used to put a process on the queue of ready processes

from any hardware level to any priority level (foreground, middleground,

background).

DESCRIPTOR

It has the following format:

BAL STAPRO
PZE POINTER TO DESCRIPTOR
BRA ERROR RETURN

NORMAL RETURN

DCN LEVEL OF CALL

DCN LEVEL OF EXECUTION (foreground,
PZE QUEUE. POINTER middleground,
DCN PROCEDURE ADDRESS background)

3. Primitives INRSEM and DECSEM

These primitives are used for incrementing and decrementing a sema

phore variable and have the following format: if the variable SEMAPHORE

is zero after the decrement instruction, skip the next instruction.

DEC
BRA

SEMAPHORE
QUEUE. PROCESS (SEMAPHORE. QUEUE)

CRITICAL SECTION

INR SEMAPHORE
NOP

BAL DEQUEUE (SEMAPHORE. QUEUE)

2O7

lº. Input/Output Primitives

l, .l Disk Primitive

The disk I/O can be requested from the three primary levels (fore

ground, middleground and background).

BAL

PZE

BRA

DISK REQUEST BSS
DCN
DCN
DCN

*.2 Keyboard Primitive

$DISCF (foreground)
$DISCM (middleground)
$DISCB (background)
DISK REQUEST
ERROR RETURN
NORMAL RETURN

1 STATUS WORD
DRIVE #
MEMORY ADDRESS
Bit O = READ/WRITE + SECTOR COUNT +

DISK ADDRESS

When a message is requested from the keyboard, the following

primitive is used:

BAL

PZE

KEY. REQUEST DCN
DCN
DCN

DCN

l, .3 Printer Primitive

KEYIN

KEY. REQUEST
NORMAL RETURN

KEYBOARD #
RELATIVE STARTING ADDRESS ON SCREEN
ADDRESS OF BUFFER
MAXIMUM LENGTH OF MESSAGE

The printer driver includes the medium speed line printer (500 lines

per minute) as well as the low speed label printers (60 characters per

second). The primitives are identical for all the devices so that it is

possible to use temporarily any of the low speed printers in case the

others fail.

BAL
PZE

OUTPUT REQUEST DCN
DCN

LINEPT
OUTPUT REQUEST
NORMAL RETURN

LINE LENGTH + INCREMENT + DEVICE NUMBER
BUFFER

2O8

The device number refers to the printer device normally used. If it

is not available, it can be replaced by another device number. The variable

BUFFER refers to the starting address of the message to be printed. The

line length divides this buffer into lines and the increment refers to the

gap between lines (if a screen image is to be printed). The end of buffer

is characterized by a zero marker.

5. File Handling Primitives

5.1 Allocation of Disk Space

Two primitives can be used which are either the allocation of one

sector (256 words) or the allocation of two contiguous sectors:

BAL ALLOCI (or ALLOC2)
DCN DRIVE #
BSS 1 SECTOR ADDRESS
BRA DISK FULL

NORMAL RETURN

Before the execution of the primitive, the sector address can be

filled by a disk address at which the look-up for a sector should start

in order to avoid unnecessary look-ups on already allocated zones on the

disk. At the return of the allocation routine, this word contains the

actual sector allocated.

The deallocation of disk space is done by:

BAL DELOCI
DCN DRIVE #
DCN DISK ADDRESS
BRA ERROR

NORMAL RETURN

209

5.2 Directory Look-up

A general look-up subroutine is available for look-up of entries in

a table :

DCN
PZE
PZE
PZE

RESULT BSS
BSS

LOOKTB

END OF TABLE CHARACTER + ENTRY LENGTH +
TABLE ADDRESS INCREMENT
ADDRESS OF STRING TO COMPARE
POINTER TO RESULT OF LOOK-UP
NORMAL RETURN

l POINTER TO MATCHING STRING
l NUMBER OF NON-MATCHING CHARACTER

(0 if complete match)

A standard directory (frames, hospital number, bed location) can be

examined by using the following primitive:

BAL
DCN
PZE

PZE
BRA

DRFND 1
DRIVE #
POINTER TO ENTRY NAME
POINTER TO ENTRY VALUE
ERROR
NORMAL RETURN

The entry name refers to a six character name and the value contains

the returned disk address of the file being looked-up.

tive :

A new entry can be created or deleted by using the following primi

BAL
DCN
PZE
PZE
BRA

CREATI (DELETI)
DRIVE #
PNAME
PWALUE
ERROR RETURN (NO ROOM OR NON-EXISTANT)
NORMAL RETURN

210

5.3 File Page Descriptors

When a new page is created for a patient's profile, the following

primitive is used to create a page descriptor:

BAL SETPAG
PZE PAGE DESCRIPTOR

PAGE DESCRIPTOR DCN PAGE ID + FRAME FORMAT ADDRESS
DCN ITEM INDEX LENGTH AND RETATIVE ADDRESS
DCN DATA STARTING ADDRESS
DCN PAGE DESCRIPTOR ADDRESS WITHIN SECTOR

The look-up of a page within a file is done by using:

BAL LOKPAG
PZE PAGE DESCRIPTOR

5.1, Data Item Handling within a Page

Within a page, an item can be inserted or retrieved by an item index

which can be accessed via the following primitive:

BAL ITEM
PZE ITEM DESCRIPTOR

ITEM DESCRIPTOR DCN ITEM # + READ/WRITE BOOLEAN
DCN ADDRESS OF ITEM INDEX
DCN ADDRESS OF ITEM BUFFER
DCN LENGTH OF ITEM

In the case of a write operation, this primitive updates the item

index and stores the data in the file. In the case of a read operation,

the primitive searches the item index and moves the item in the buffer

area specified.

§

TºSHIFTE!! E24.21DITFJOHNQ.

HSF
IRIN

PHEHTIEHREITCL CODEIFE 524.2.2D■■ .JºtLE
t1.

METHYLLIFE FERCUI
■ ºlº fºLPIRII,IHECl []|

|
I].IIINE504 TETRHL FLUFHZEP

ºf1Cl I.
IGTIX.It

25.237,27.4 ØØØØØ
1 IAR325mg TAB15mg TABEgmg ØØØØØ2

TAB250mg Tºº INJ75mg/ml THE330mg THE tº30mg THB3.25mg

E.24/3JOHESJDHNF.
pa■■ a■■ i: T'■LENUL Compazine

|

1RHLOX IECHLRUN CHLTIRHLHº'■ flûf
1

TFE325mg Inj10mg/2ml SLIS TAB1.5mg CHP500mg SUS

E.24/4JONES.
I

lºº■ 'J.
ØØØØØ4 TYLFHIL

3'■HTHRTII. DHL■ ºlºE ■ ºl■ ||1 TIGE

THE325mg THB3.1mg CHF3.0mg GLIS CHF240mg

po po po po pº II'■ po po po po pº IM po po po po pº po po po po

skMEDICATIONSCHEDULE
+

did did prr.
c
12h q3h q3h q8h c.4h H= qd q4h q4h q4h did

H= H=
q4h His prr. prr.

Ø9:33 Ø9:33 39:■ º ØØ
:
ØØ Ø9:33 33:23 99

:
99 Ø9:33 39:32 Ø3

:
33 39:£1.3

13: 13:

12:ØØ 12:33

13: 13: 13: 13: 13: 13:
ØØ ØØ ØØ ØØ ØØ ØØ ØØ ØØ

14:ØØ

15:ØØ 15:ØØ

NOT TO BE TAKEN FROM THE ROOM
-º --

-

