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Abstract

The epidermis and its appendage, the hair follicle, represent an elegant developmental system in 

which cells are replenished with regularity because of controlled proliferation, lineage 

specification, and terminal differentiation. While transcriptome data exists for human epidermal 

and dermal cells, the hair follicle remains poorly characterized. Through single-cell resolution 

profiling of the epidermis and anagen hair follicle, we characterized the anatomical, 

transcriptional, functional, and pathological profiles of distinct epidermal, hair follicle, and hair 

follicle-associated cell subpopulations including melanocytes, endothelial cells, and immune cells. 

We additionally traced the differentiation trajectory of interfollicular and matrix cell progenitors 

and explored association of specific cell subpopulations to known molecular signatures of 
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common skin conditions. These data simultaneously corroborate prior preliminary murine and 

human investigations while offering new insights into epidermal and hair follicle differentiation 

and pathogenesis.

INTRODUCTION

Skin has been the subject of extensive characterization at the pathological and molecular 

level in humans and mice for decades (Fuchs, 1998). During that time, numerous cell types 

within the epidermis and its appendages, the hair follicle, and sweat glands have been 

identified via immunohistochemical and array-based bulk gene expression analyses in each 

species. The characterization of epidermal, dermal, and hair follicles cells at a single cell 

resolution has lagged compared to other tissues, largely owing to limited sample sizes and 

the limitations of early single cell technologies. Previous single cell transcriptional methods 

(e.g. Fluidigm) required labor-intensive manual sorting of cells for array hybridization or 

sequencing, which necessitated significant sample sizes to overcome processing losses for 

reliable downstream application. Newer methods (e.g., Drop-seq, 10X Genomics), however, 

employ multiplex barcoding and microfluidics that enable the rapid parallel processing of 

thousands of cells at a lower cost with significantly improved sensitivity (Klein and 

Macosko, 2017; Picelli, 2017; Ziegenhain, Vieth et al., 2017).

The first single cell mapping of murine epidermal and hair follicle cells yielded 1422 unique 

transcriptome profiles, clustering into 25 unique subpopulations (Acosta, Joost et al., 2017; 

Joost, Zeisel et al., 2016). These human studies focused primarily on elucidation of 

interfollicular epidermal and dermal cell types and differential transcriptional programs 

activated by pathological processes such as psoriasis and wound healing (Cheng, Sedgewick 

et al., 2018; Philippeos, Telerman et al., 2018). Comparable characterization of human hair 

follicle cell types and differentiation states is currently lacking as profiling of human hair 

follicles is difficult due to their relative scarcity within the skin compared to mice.

In the current study, we gained access to follicular-enriched fractions of human skin that 

were discarded from hair transplant procedures and subjected them to high throughput sc-

RNA procedures to gain single cell transcriptomes for many of the cells associated with 

human follicles. This allowed for the generation of single cell transcriptomes of numerous 

cell states within the follicle as well as epidermal keratinocytes, endothelial cells, 

mesenchymal populations, immune cells, and melanocytes. With these data, cell fate 

trajectories can be generated, and patterns of gene expression in skin diseases can be probed 

to find individual cell types that are targets of disease.

RESULTS

Single cell profiling of follicle-enriched human skin grafts

Prior human single cell investigations used fractions from total epidermis, resulting in a high 

ratio of epidermal to follicular cells (Cheng, Sedgewick et al., 2018). To improve single cell 

resolution of follicular cell types, anagen hair follicles were obtained from discarded human 

scalp micrografts collected for transplantation (Figure 1A). Micrografts are composed of 
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several hair follicles, the hair bulbs, and variable amounts of surrounding tissues, including 

interfollicular epidermis, dermis, sebaceous/apocrine, among others. Micrografts were 

collected from five patients for single cell analysis and immunohistochemistry. Anagen 

phase was confirmed by H&E-labeled sections of adjacent graft samples. Following 

enzymatic and physical dissociation, single cell suspensions underwent fluorescence-

activated cell sorted to remove dead cells and debris. Libraries were generated and 

sequenced using the Drop-seq (n=2) and commercial 10X Genomics (n=2) platforms (Klein 

and Macosko, 2017; Weisenfeld, Kumar et al., 2017). The 10X method identified more 

transcripts and genes compared to Drop-seq (Figure S1). Dataset integration was 

accomplishing using the Seurat integration method (Butler, Hoffman et al., 2018).

Unsupervised clustering and cell type identification

Unsupervised, graph-based clustering revealed 23 primary clusters of cells, visualized by t-

distributed stochastic neighbor embedding (Figure 1B). Overlaid t-SNE projections of the 

Drop-seq and 10X sample and calculated cell counts from each technique were reviewed 

(Figure S1C–D). Differentially expressed genes (DEGs) between clusters, expression values 

of keratin isoforms, as well as MKI-67 expression were employed to identify the individual 

subpopulations. The Gene Expression Deconvolution Interactive Tool (GEDIT) was 

additionally employed for cell type identification using the Skin Signatures database to 

assess cluster DEGs (Figure S2A) (Swindell, Johnston et al., 2013).

Hierarchical clustering of significant differentially expressed gene (DEGs, logFC>1, 

adjusted p-value <0.01) showed that distinct transcriptional profiles define each cell type 

(Figure 1C). The majority of the dataset (49.9%%, Figure 1D) consisted of hair follicle 

subpopulations present during Anagen (e.g., bulge, lower bulge, outer root sheath, inner root 

sheath, matrix, medulla, cortex, isthmus, infundibulum), indicative of a successful 

enrichment procedure. Note that lower bulge, matrix, medulla, and cortex are not present in 

Telogen follicles. Interfollicular epidermal cells constituted the next most prevalent cell type 

(39%); and T-cells, Langerhans cells, endothelial cells, apocrine/eccrine gland cells, 

melanocytes, and sebocytes were additionally identified (~11.1%). One cluster appeared to 

represent mesenchymal cell types potentially including dermal papillae (DP), dermal sheath 

(DS), smooth muscle, and fibroblasts (Figure S2B–C), but the cell number and the diversity 

within this cluster precluded definitive judgement. Highly differentially expressed keratin 

and non-keratin gene expression profiles are shown in Figure 2A–C to demonstrate 

specificity of expression. The epidermal transcriptional profiles largely reproduced the 

findings of (Cheng, Sedgewick et al., 2018). The full list of identified cell type makers 

arepresented in Table S1.

Immunostaining to confirm scRNA-seq-identified expression patterns

Melanocyte and Langerhans cell subpopulations were confirmed by langerin and CD74 

labeling, respectively, in hair follicle sections (Figure 3A). To confirm the utility of scRNA-

seq analysis in identifying previously undescribed subpopulation markers, we looked for 

enrichment of immunostaining with markers such as CXCL14 through immunostaining of 

hair follicle sections alongside known bulge marker, CD200, demonstrating co-localization 

(Figure 3B). Gene ontology analysis indicated enrichment of ECM protein synthesis 
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associated with the bulge (Figure S3), confirmed by co-localization of ECM markers TNC 

and EFEMP1 (Figure 3B and lower magnification images in Figure S4A). These three 

secreted ECM components were indeed found at the protein level in the bulge compartment 

of the follicle in a pattern suggestive of their secretion. While these markers were not 

completely exclusive to the bulge in either the RNA-seq or immunostaining analyses, the 

presence of these proteins in the bulge was confirmatory for the sc-RNA-seq procedures.

We additionally analyzed the expression patterns of a subset of other putative markers 

identified by cluster differential gene expression analysis using an independently derived 

resource, the Human Tissue Atlas (Uhlen, Fagerberg et al., 2015), demonstrating the 

particular fidelity of this subset for hair follicle layers (Figure 3C, Figure S4B). Specifically, 

DAPL1 was predicted to be expressed in the cortex/medulla; DCD in sweat gland; DSC1 in 

IRS; DSG4 in cortex/medulla; CD74 in Langerhans cells; ELOVL5 in sebaceous glands; 

FABP9 in IRS; S100A3 in cuticle; and CD59 in melanocytes.

Lineage trajectory of epidermal and follicular cell progenitors

To examine the differentiation of the interfollicular epidermis (IFE), IFE cells were placed in 

pseudotemporal order (Figure 4A). Cells deriving from the basal IFE were predicted from 

this analysis to differentiate into the spinous and later granular layers, as would be predicted 

by decades of research on both human and murine skin (Figure 4B). Consistent with that 

reported in Cheng et. al 2018, there additionally exists a highly mitotically active subset of 

basal IFE cells which do not follow the traditional IFE differentiation pattern. As a result, we 

are confident in both the data and the methods employed to generate lineage trajectories. 

Also, as predicted, progressive loss of basal markers, KRT5, KRT14, and COL17A1 is 

observed coincident with a gain of spinous markers KRT10 and granular markers CALML5 

expression as differentiation progresses (Figure 4C). The top genes driving differentiation 

are shown in Figure 4D.

Probing for lineage trajectories in the hair follicle, we ordered data from the cortex/medulla/

matrix, IRS Huxley’s/Henle’s layers, and ORS CL (Figure 5A–D). When placed in 

pseudotemporal order, the cortex/medulla/matrix population branches off, terminating in 

ORS companion layer cells as well as a further differentiated subset of cells, likely 

representing hair shaft medulla and cortex components. Additionally, the cortex/medulla/

matrix subpopulation additionally gives rise to the IRS Huxley’s/Henle’s layers. These data 

are consistent with a prior report by Mesler et al 2017, in which early matrix progenitors 

give rise to the companion layer and later matrix progenitors give rise to IRS and lower hair 

shaft components (Mesler, Veniaminova et al., 2017).

Cell-type enrichment of pathological signatures

Another potential utility of these datasets is to link disease states to particular cell types in 

human skin. Numerous databases have been generated to describe the gene expression 

patterns associated with the onset or progression of skin diseases. In particular, DermDB2 

(http://chlamy.mcdb.ucla.edu/NewDermDB/NewDermDB.html) provided a deep resource of 

data on gene expression patterns induced by various injuries, skin infections, cancers etc. 

The limitation of these databases is the fact that the analyses were performed on bulk tissue 
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samples, so information about the effect on particular cell types is obscured. Here, we 

probed the expression of groups of genes associated with various skin syndromes across our 

scRNA datasets. As shown in Figure 6, 14 disease or injury states showed distinct patterns 

of expression in each of the clusters identified by within the scRNA datasets. Of note, some 

of the diseases known to be particularly related to immune responses showed a strong 

pattern of regulation in Langerhans and immune/T-cells (leprosy, SJS, MFNG). As expected, 

the three cancer expression patterns were most linked to cell types that have been described 

pathologically to be most similar to the indicated cancer type (IFE granular for Squamous 

Cell Carcinoma; bulge, ORS and matrixfor BCC; melanocytes for Melanoma). These results 

demonstrate that gene expression patterns of skin diseases can be linked to particular target 

cells through correlational analysis with scRNA-seq.

DISCUSSION

Our use of follicle-enriched subsamples permitted single cell deconvolution of the 

transcriptomes of several layers of the human interfollicular epidermis, infundibulum, and 

hair follicle as well as a wide variety of follicle associated cells (e.g., immune, glandular, 

pigment). Furthermore, we demonstrated the feasibility of integrated datasets generated from 

different technologies while maintaining clear cell type resolutions. We utilized a multi-

dimensional identification and validation strategy, examining known keratin and 

proliferative markers, ontological enrichment of differentially expressed genes, 

immunohistochemical labeling, as well as examination of the literature regarding newly 

identified, but less well-characterized putative markers. Overall, the strategy proved highly 

effective in discerning most of the known hair follicle cell types, and several cell types 

known to be associated with the follicle such as immune cells and melanocytes. The physical 

isolation of the hair follicles still allowed for the capture of cells from endothelial lineages 

and sweat gland cells allowing for the additional characterization of these important cell 

types in the skin.

We used expression of keratins to first establish cell identities, as this has proven useful in 

the past. In addition, we also used an existing database to confirm identities based on the 

entire profile of each cell cluster (Figure S2). These identities and cell type specificity of 

expression patterns were confirmed at the protein level using both immunostaining of 

follicles in our own lab (Figure 3 and Figure S4), as well as a database of immunostaining 

patterns freely available (Figure S4, Human Protein Atlas).

By performing ontological molecular overrepresentation analysis on each cell type’s 

differentially expressed genes, we uncovered some interesting patterns that further 

confirmed cell identities and revealed previously undescribed biological pathways (Figure 

S3). For instance, the epidermal subpopulations displayed enrichment for genes related to 

cell-cell adhesion and epidermal development, as would be expected for cells from stratified 

epithelia for whom barrier formation is a paramount activity; immune cells in the follicle 

preps showed enrichment for peptide antigen binding; the dermal sheath/papillae population 

showed enrichment for collagen binding, ECM organization etc.; and cells of the IRS 

showed enrichment for genes related to keratinization.
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Enrichment profiling of identified cell types for known skin condition gene expression 

signatures permitted identification of previously undescribed epidermal and follicular 

constituents of skin pathogenesis. As expected, hyperactivation of immune response 

associated with conditions such as leprosy, SJS, and MFNG revealed enrichment of 

signatures in Langerhans and T-cells. Additionally, the three neoplastic signatures (SCC, 

BCC, melanoma) were linked to known pathological identification, i.e. epidermis/

infundibulum for SCC, bulge/lower bulge for BCC, and melanocytes for melanoma.

The primary limitation of scRNA-seq is depth of coverage. While the current study 

permitted expanded coverage through integration of Drop-seq and 10X platforms from five 

distinct samples, deconvolution of highly related or sparse tissue populations (e.g., cortex vs. 

medulla vs. matrix) was not possible with the current sample size. However, together these 

data represent an important advance in the investigation of hair follicle biology. We 

anticipate these data will be borne out by others to supplement a variety of analyses and 

comparisons with other datasets to further elucidate critical components and mechanisms in 

epidermal and follicular cell development and differentiation.

METHODS

Sample harvest and preparation

Hair grafts were obtained from patients undergoing hair transplantation. Written, informed 

consent was obtained from each patient and the study protocol was approved through the 

Institutional Review Board (IRB#16–000681-AM-00002). Single cell suspensions were 

generated from the micrografts as previously described (Ohyama, Vogel JCI 2006). Briefly, 

the grafts were flushed with PBS and incubated in dispase overnight at 4°C. The following 

day, the grafts were incubated in the same dispase solution at 37°C for 30 minutes. Hair 

grafts were gently dissociated with a P1000 pipette then incubated for 10 minutes in trypsin 

0.05% solution diluted with PBS. The grafts were again gently dissociated with P1000 

pipette and placed back in 37°C for 10 minutes. Trypsin was deactivated with 5% FBS. 

Fibrous tissue and debris were filtered out with a 40um strainer. Single cells were visualized 

and counted with a hemocytometer and washed with PBS. Live cells were preferentially 

sorted using a FACS Aria III High-speed Cell Sorter and submitted for single cell 

sequencing.

Immunostaining

Hair grafts were embedded in OCT compound, frozen, and sectioned for immunostaining as 

previously described (Flores et al 2014). Frozen sections were fixed in acetone and labelled 

with the following primary antibodies: CD59 (Abcam ab69084 1:50), Melan A (Santa Cruz 

sc-20032 1:50), CD200 (Biorad MCA1960, 1:75), CD74 (Santa Cruz sc-6262 1:50), Keratin 

14 (Covance PRB-155P 1:500), Keratin 15 (Covance PCK-153P 1:500), CXCL14 (Abcam 

ab36622 1:50), EFEMP1 (Abcam ab106429 1:50), Langerin (Santa Cruz sc-271272 1:50). 

Samples were imaged using a Leica TCS SP8 Digital Light Sheet Microscope at the UCLA 

CNSI Advanced Light Microscopy/Spectroscopy Shared Resource Facility.
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scRNA-seq

The raw drop-seq data was processed using the Drop-seq tools v1.12 pipeline from the 

McCaroll lab, utilizing the standard parameters as shown in the documentation (https://

github.com/broadinstitute/Drop-seq/releases/tag/v1.12). In brief, cell and molecular 

barcodes were extracted from raw sequencing data based on bases 1–12 for cell and 13–20 

for molecular barcodes, whilst filtering out reads with poor quality bases 

TagBamWithReadSequenceExtended). Subsequently reads were trimmed to remove 

SMART adapter sequences as well as PolyA tails (FilterBAM, TrimStartingsequence & 

PolyATrimmer). HiSat2 was used to align these filtered reads to the human reference 

genome, hg38. Aligned reads were then merged with the unaligned reads to recapture 

molecular/cell BAM tags and subsequently reads were tagged with ‘GE’ if they overlapped 

with gene exons (MergeBamAlignment & TagReadWithGeneExon). Bead synthesis errors 

were then corrected and uMIs merged (DetectBeadSynthesisErrors). Finally, DGEs were 

generated using standard parameters (DigitalExpression). We performed all downstream 

analysis on these DGEs after filtering out cells with fewer than 250 genes. For 10X data, 

CellRanger2.2 pipelines were used to generate expression matrices with all standard 

parameters. Raw fastq files were processed and aligned to the human GrCh38 genome and 

the CellRanger cell detection algorithm was utilized to determine the numbers of GEMs per 

run. No other parameters were changed.

Computational Methods

All analyses were performed in R. Gene expression analysis and cell type identification were 

performed using the Seurat package (Butler, Hoffman et al., 2018; Satija, Farrell et al., 
2015). Seurat objects were created for each sample. Only those genes that were expressed in 

more than five cells and cells that expressed more than 200 genes were retained (22000 

cells). Cells with a high proportion (>5%) mitochondrial expression were filtered out as 

these typically represent cells damaged during isolation. Filtering was also performed on the 

number of detected transcripts within each sample to eliminate partial cells and doublets, 

respectively. Datasets were normalized and scaled according to default settings with 

regression against cell number and mitochondrial content, following by variable gene 

expression calculation (FindVariableGenes, × low cutoff = 0.03, × high cutoff = 3, y cutoff = 

1). The union of the top 2000 variables genes were used to perform canonical correlation 

analysis (CCA) across the different samples and align the subspaces 

(FindIntegrationAnchors, IntegrateData), followed by integrated t-SNE visualization of all 

cells. A total of 5270 remaining cells were used in the final analysis. Gene expression 

markers were calculated for each subpopulation (FindAllMarkers, method = t-test). Average, 

log-normalized expression profiles were calculated for each gene using the 

AverageExpression function. Gene ontology and pathway enrichment analyses were 

executed in clusterProfiler. Heatmaps were generated with the pheatmap package. 

Pseudotime calculations were performed in Monocle 2 as previously described using the 

clusters and differentially expressed genes identified in Seurat using default settings (Qiu, 

Hill et al., 2017). Cell subpopulations were identified as described in the primary text.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of unique cell types from follicular-enriched scalp grafts by scRNA-seq.
(A) Experimental workflow schematic. Grafts were collected from human scalp, examined 

microscopically to confirm anagen phase, dissociated, then sorted to remove dead cells and 

other debris prior to Drop-seq or 10X sc-RNA-seq. (B) T-distributed stochastic neighbor 

embedding (t-SNE) visualization of clusters generated by unsupervised, graph-based 

clustering of the integrated dataset. (C) left, Illustration of the primary epidermal and 

follicular compartments present during Telogen identified; and right, depiction of the layers 

and cell types found in the bulb of anagen follicle (bulb not present during Telogen). (D) 
Percentage of epidermal, follicular, and other cell types identified. Abbreviations: IRS H/H 

= inner root sheath Huxley’s/Henley’s layers. ORS CL = outer root sheath companion layer. 

ORS SB/S = outer root sheath suprabasal/basal layer.
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Figure 2. Cell type identification and gene expression profiles.
(A) Heatmap of genes differentially expressed at a logFC>1, adjusted p-value <0.01 by 

cluster. (B) Clustered heatmap of the top cluster-specific markers of each cluster by fold 

change. (C) Clustered heatmap of keratin isoform expression across identified clusters. (D) 
t-SNE visualization of known and previously undescribed markers of cell type. 

Abbreviations: IRS H/H = inner root sheath Huxley’s/Henley’s layers. ORS CL = outer root 

sheath companion layer. ORS SB/S = outer root sheath suprabasal/basal layer.
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Figure 3. Validation of enrichment of gene expression at the protein level.
(A) Immunostaining of serial sections of frozen hair follicle samples labeled with CD74 and 

Langerin (green) highlight Langerhans cells in the basal interfollicular epidermis (KRT14+, 

red). Nuclei labeled with DAPI. (B) Immunostaining of serial sections of frozen hair follicle 

samples labeled with antibodies against CXCL14, TNC, EFEMP1 (red) compared to 

canonical bulge markers CD200 (green) and KRT15 (blue). Nuclei labeled with DAPI. Note 

that scale bars for (A) and (B) indicate 50uM. (C) Immunohistochemistry the indicated 

epitopes derived from the Human Tissue Atlas for markers identified by scRNA-seq as 

specific to particular cell types.
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Figure 4. Trajectory analysis of interfollicular progenitor cells.
(A) Pseudotemporal trajectory of analyzed interfollicular subpopulations. (B) Basal, 

spinous, and granular subpopulations in pseudotemporal order. (C) Expression of known 

critical keratin markers in pseudotime (branchpoint variations in expression not indicated). 

(D) Heatmap of top-scoring targets with differential expression across pseudotime.
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Figure 5. Trajectory analysis of matrix progenitor cells.
(A) Pseudotemporal trajectory of analyzed interfollicular subpopulations. (B) Matrix, IRS 

Huxley’s/Henle’s layers, IRS cuticle, cuticle subpopulations in pseudotemporal order. (C) 
Expression of critical differentiation markers in pseudotime (branchpoint variations in 

expression not indicated). (D) Heatmap of top-scoring targets with differential expression 

across pseudotime.
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Figure 6. Cell type-specific enrichment of disease signatures.
Heatmaps of the average expression of skin pathology signatures across identified cell types. 

This analysis looks at the pattern of previously established gene expression differences 

specific to the indicated skin disorders to determine whether individual cell types show 

enrichment for the patterns found in these syndromes (Developed by Matteo Pellegrini and 

available at: http://chlamy.mcdb.ucla.edu/NewDermDB/NewDermDB.html).
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