UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Relative Arbitrage Opportunities in $N$ Investors and Mean-Field Regimes

Permalink
https://escholarship.org/uc/item/4xq7n913

Authors

Ichiba, Tomoyuki
Yang, Tianjiao

Publication Date
2020-06-26

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4xg7n913
https://escholarship.org
http://www.cdlib.org/

2006.15158v1 [g-fin.MF] 26 Jun 2020

arXiv

Relative Arbitrage Opportunities in N Investors and Mean-Field
Regimes

Tomoyuki Ichiba* Tianjiao Yang'
June 30, 2020

Abstract

This paper analyzes the market behavior and optimal investment strategies to attain relative arbitrage
both in the IV investors and mean field regimes. An investor competes with a benchmark of market and peer
investors, expecting to outperform the benchmark and minimizing the initial capital.

With market price of risk processes depending on the stock market and investors respectively, the minimal
initial capital required is the optimal cost in the N-player games and mean field games. It can be characterized
as the smallest nonnegative continuous solution of a Cauchy problem. The measure flow of wealth appears
in the cost, while the joint flow of wealth and strategy is in state processes. We modify the extended mean
field game with common noise and its notion of the uniqueness of Nash equilibrium. There is a unique
equilibrium in N-player games and mean field games with mild conditions on the equity market.

1 Introduction

This paper discusses a differential game system of relative arbitrage problems where investors aim to outperform
not only the market index but also peer investors.

The relative arbitrage problem is defined in stochastic portfolio theory, see Fernholz [9], in the sense that
a strategy outperforms a benchmark portfolio at the end of a certain time span. It shows in [11] that relative
arbitrage can exist in equity markets that resemble actual markets, and that the relative arbitrage results
from market diversity, a condition that prevents the concentration of all the market capital into a single stock.
Specific examples of market including the stabilized volatility model, in which relative arbitrage exists, are
introduced in [10]. Our model arises from the pioneering work of Fernholz and Karatzas [7], which characterizes
the best possible relative arbitrage with respect to the market portfolio, and derives nonanticipative investment
strategies of the best arbitrage in a Markovian setting. The best arbitrage opportunity is further analyzed in [8]
in a market with Knightian uncertainty. The smallest proportion of the initial market capitalization is described
as the min-max value of a zero-sum stochastic game between the investor and the market. Further investigation
of exploiting relative arbitrage opportunities has been done in [1, 12, 26, 27]. The papers [24] and [29] connect
relative arbitrage with information theory and optimal transport problems.

However, most of the literature on relative arbitrage uses an absolute benchmark such as market portfo-
lio. To the best of our knowledge, this is the first paper that discusses relative arbitrage with respect to a
relative benchmark — matching the performances of a group of investors in a stochastic differential game. Our
paper modifies the original relative arbitrage problem to provide a general structure of the market and optimal
portfolios that allows the interaction among investors.

This paper first considers N investors in an equity market M over a time horizon [0, 7]. We consider N is big
so that the equity trading of this group as a whole contributes to the evolution of the market; whereas individuals
among the group are too “small” to bring changes to the market. These investors interact with the market
through a joint distribution of their wealth and strategies, particularly for example, through the total investments
of this group to the assets. There are n stocks with prices-per-share driven by n independent Brownian motions
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W = (Wi,...,W,). The n-dimensional price process XV = (X, ..., X) follows a nonlinear stochastic
differential equation

dxN(t) = xN @)t XN (), vN)dt + XN (t)a(t, XN (t), v )dW; (1)

in which its drift 5 and diffusion o coefficients depend on the joint empirical measure

N
1
= D et (2)
=1

of portfolio strategy and wealth of N investors. To emphasize the dependence of wealth on the initial capital-
ization and portfolio, we write V¢ = Vo for £ = 1,...,N. We show the market model is well-posed through
a finite dynamical system.

To specify what we mean by relative arbitrage opportunities in this problem set-up, we first define a bench-
mark process VY by the weighted average performance of the market and the investors

VN(t)=5~XN(t)+(15)~%1§;Vl(t)/ve, 0<t<T,

with a fixed weight ¢ € [0,1]. An investor achieves the relative arbitrage if his/her terminal wealth can out-
perform this benchmark by ¢y, a constant personal index for the investor £, given at time 0. Furthermore, AN
denotes all admissible, self-financing long-only portfolios for /N investors.

The first question raised in this paper is: What is the best strateqy one can take, so that the arbitrage relative
to the above benchmark can be attained? Specifically, every investor we study aims to outperform the market
and their competitors, starting with as little proportion of the benchmark capital as possible. Mathematically,
given the other (N — 1) investors’ portfolios 77¢ € AN~1  the objective of investor £, £ = 1,..., N, is formulated
as

uf(T) = inf {wz € (0, 0) ’ Int(-) € A such that v* = W VN (0), yi (T) > e“VN(T)}

Since the interactions of a large group of investors are through stocks, portfolios and wealth, the next question
arises is: Is it possible for every investor to take the optimal strategy in the market M % We characterize the
optimal wealth one can achieve by the unique Nash equilibrium of the finite population game. Here we denote the
objective as @%_, to emphasize the time homogeneity in the coefficients of the market model, see Assumption 6.
Using open loop or closed loop controls arrives at the same expression of ﬁf}_t, which is the smallest nonnegative
solution of a Cauchy problem

ou(r,x",y)

= = Ai'(7,x",y),  (r,x",y) € (0,T] x (0,00)" x (0,0)",

at(0,xN,y) = e, (xN,y) € (0,0)" x (0,0)",

wherein A is an operator defined in (27), Y(t) is the empirical mean of v}V, see (7). The resulting strategy we

consider is
7 =my(t) + XN () Dio(t) + i (t) o (t) Dy, o(t),

where
~ ~ ¢ 1=6 1 <he,
o(t) =logup_, + XN N ;11/; log i _.

It turns out that wf* and f/Tft are proportional to ¢,. We show the existence of relative arbitrage through
modified portfolio generating functions and the Fichera drift.

After the discussion of N-player games of relative arbitrage, this paper applies the philosophy of mean field
games from [4] and [15] to search for approximate Nash equilibrium when N — oo. It is expected to be more
tractable than the N-player games and might give us more information of the finite investors situation. This
approach of comparing N-player game and the corresponding mean field game is also discussed in [20], where
the Merton problems with constant equilibrium strategies are studied. General results on limits of N-player
game are first developed in [16] and [21]. The large population system in these papers are reformulated by [3]



into the stochastic version to accommodate with the common noise. With the notion of weak MFG, [18] and
[5] study mean field game with common noise in open loop equilibrium.

The relative arbitrage problem provide a new application and some modifications in mean field games.
Because of the special problem set-up, there are two mean field measures evolve in different directions, while the
uniqueness of Nash equilibrium depend on one of the measures. In particular, the objective relies on a weighted
average of stock prices and the distribution of wealth

J¥ (1) = inf{w >0 v =wV(0), VO (T) > ¢ - V(T)},
where the mean field benchmark is given by
V(T)=6-X(T)+ (1 —36)-mp, m:=E[V|FP].

On the other hand, the state processes depend on the conditional law of wealth and strategies v := Law(V, 7| F?)
with respect to the Brownian motion B. This yields the McKean-Vlasov SDEs of stock prices and a represen-
tative player’s wealth
dXt = B(Xt,l/t,mt)dt-f'S(Xt,Vt,mt)dBt, X(O) = X;
d‘/t = W(t)B(Xt, Vt, mt)dt + W(t)U(Xt, Vg, mt)dBt, V(O) = ’a(T)V(O)
A modified extended mean field game model is introduced. Both open and closed loop equilibrium are con-

sidered here regarding the well-posedness of mean field system and the approximation of games. We summarize
these results in the following diagram.

Market dynamics Relative arbitrage of N investors

| |

Theorem 4.1

N-particle dynamics N-player Nash Equilibrium

Proposition D.2 Proposition 6.1 Proposition 6.2

| | |

. . Theorem D.1
co-particle dynamics

Mean Field Equilibrium

Main Contributions

From the perspective of portfolio theory, we construct a general framework for multi-player portfolio opti-
mization problem with no assumption on the equivalent martingale measure. We propose an interactive market
model and introduce a relative arbitrage benchmark including peers and the market. The model is characterized
as N-player games and mean field games in both open and closed loop, Markovian and non-Markovian case.
Additionally, the portfolio generated functionals in SPT are defined accordingly in the multi-player settings. To
our knowledge, this is the first paper to study Stochastic Portfolio Theory with market-investors interactions.

From the perspective of stochastic games, this paper contributes to mean field vs N-player game approach
and its applications. Firstly, we establish a modified extended mean field game and accommodate a scheme to
seek the mean field equilibrium: The infinite-player system involves two different fixed point conditions about
the cost functional and the state processes, whereas only one of them is required to be unique. Secondly, we use
a stochastic cost function instead of deterministic functions of states and controls, and demonstrate a Cauchy
problem path to solve N-player and mean field games instead of the typical HJB or FBSDEs approaches.

Organization of this Paper

The organization of this paper is as follows. Section 2 introduces the market with N investors as a well-
posed interacting particles system. Section 3 discusses the relative arbitrage problem and market price of risk
processes. In Section 4, the existence and optimization of relative arbitrage is derived in N-player games.
The functional generated portfolios in N-player set-up are constructed. Section 5 presents the problem under
extended mean field games. We show in Section 6 that mean field game limit is indeed a nice approximation to
the N-players game. Finally, we include theoretical supports of the model in Appendix.



2 The Market Model

We consider an equity market and focus on the market behavior and a group of investors in this market. The
number of investors is large enough to affect the market. Nevertheless, there are other investors apart from this
very group we consider.

2.1 Capitalizations

For a given time horizon [0,7], an admissible market model M we use in this paper is consisted of a given
n dimensional Brownian motion W (-) = (Wy(-),...,W,(:)) on the probability space (2, F,P). Filtration F
represents the “fow of information” in the market, where F = {F(¢)}o<i<oo = {o(w(s));0 < s < t} with F(0) =
{7, 0}, mod P. W(-) is adapted to the P-augmentation of F. All the local martingales and supermartingales
are with respect to the filtration [ if not written out specifically.

Thus, there are n risky assets (stocks) with prices-per-share XN (-) = (X (-),..., XN (")) driven by n
independent Brownian motions as follows: for t € [0,T], w € Q,

dXN(t) = XN()(Bi(t,w)dt + i o (t,w)dWi(t), i=1,...,n, (3)
k=1

Xl-N(t)za:fveXp{Lt (Bi(s,w) %Zﬁ] oik(s,w) dt+2j ok (s,w)dWy (s )}

with initial condition XV (0) = 2. We assume in this paper that dim(W(t)) = dim(X™ (t)) = n, that is, we
have exactly as many sources of randomness as there are stocks in the market M. The market M is hence a
complete market. The dimension n is chosen to be large enough to avoid unnecessary dependencies among the
stocks we define.

Here, B(-) = (B1(-);-.-,Bn(*)) : [0,T] x @ — R™ as the mean rates of return for n stocks and o(-) =
(i ())nxn : [0,T] x @ — GL(n) as volatilities are assumed to be invertible, F-progressively measurable in
which GL(n) is the space of n x n invertible real matrices. Then W (-) is adapted to the P-augmentation of the
filtration F. To satisfy the integrability condition, we assume

gf <|ﬁi(t,w)| + aii(t,w)) it < oo, @)

where a(-) := o(-)o’(-), a; is the covariance process of X7V.

2.2 Wealth and Portfolios

In the above market model, there are N small investors, “small” is in the sense that each individual of these
N investors has very little influence on the overall system. An investor ¢ uses the proportion 7¢(¢) of current
wealth V¥(t) to invest in the stock i at each time ¢ for £ = 1,..., N. The wealth process V* of an individual
investor £ is

WA _ Sy X8O ey 2o, (5)

Since equity prices move according to the supply and demand for stock shares, we consider the average capital
invested as a factor in the price processes.

Definition 2.1 (Investment strategy, long only portfolio and average capital invested). (1) An F-progressively
measurable and adapted process ©° : [0,00) x Q — R™ is called an investment strategy if

JT(|7T€/(t,w)ﬁ(t,w)| + 7Y (t,w)a(t,w)r(t,w))dt < o, Te(0,0),weQ, a.s. (6)
0

The strategy here is self-financing, since the wealth at any point of time is obtained by trading the initial
wealth according to the strategy ().



(2) ©() = (7f("),...,75()) is a long-only portfolio if it is a portfolio that takes values in the set
Ay i={r=(m,..,mn) €ER"m =20,...,m, = 0;m1 + ...+ 7, = 1}.

An investment strategy that takes value in A, is called an admissible strategy, and we denote the admissible
setas A. If t* € A, for all0 =1,..., N, then (', ..., 7)€ AN. In the rest of the paper, we only consider
strategies in the admissible set A.

(3) Each investor { uses the proportion wt(t) of current wealth V*(t) to invest in the ith stock at each time t.
The average amount Y;(t) invested by N players on stock i is assumed to satisfy

1

Vi(t) = N Vl(t)ﬂ'f(t) = L ~i(r, w)dr +L Z Tik (ryw)dWy(r), te (0,00)
k=1

D= 7 M=

VE0)m{ (0) = yo.i,

=zl =

4

where y(+) and 7(-) follow

1

i JT <|% (t,w)| + i, w)) dt < o (8)

i=1+0
for every T € [0,0), () :=7(-)7'(-).
)

In fact, the average capitalization Y(t) is depending entirely upon XV (¢) and m(t). The process in Defini-
tion 2.1(3 ) is defined for simplicity.

2.3 General finite dynamical system

The interaction between the players is of the mean field type, in that whenever an individual player has to make
a decision, he or she sees the average of functions of the private states of the other players. Here we use mean
field interaction particle models from statistical physics to describe the market - We model the IV investors as
N particles, for fixed N.

For any metric space (X, d), P(X) denotes the space of probability measures on X endowed with the topology
of weak convergence. Pp(X) is the subspace of P(X) of the probability measures of order p. Then u € P,(X)
holds §y d(z, zo)?pu(dx) < oo, where 29 € X is an arbitrary reference point. For p > 1, p, v € Py(X), The
p-Wasserstein metric on P,(X) is defined by

Wy(v1,12)P = inf f d(z,y)Pk(dz, dy),
mell(v1,v2) JxxX

where d is the underlying metric on the space. II(r1,15) is the set of Borel probability measures 7 on X x X

with first marginal 141 and second marginal vo. Precisely, k(A x X) = v1(A) and k(X x A) = v,(A) for every

Borel set A < X.

Also, denote by C([0,T]; R%) the space of continuous functions from [0,77] to R%. In this paper, we often
take X = R% when considering a real-valued random variable or take X as the path space X = C([0,T]; R%)
for a process, where a fixed number do will be specified later. P,(R%) equipped with the Wasserstein distance
W, is a complete separable metric space, since R% is complete and separable.

Definition 2.2 (Empirical measure in the finite N-particle system). Consider (V¢ 7%) € C([0,T];Ry) x
C([0, T]; A) that are F-measurable random wvariables, for every investor £ = 1,...,N. We define empirical
measures v € P2(C([0,T],R) x C([0,T],A)) = P%(C([0,T],R4 x A)) of the random vectors (VE(t),n*(t)) as

Z V@(t ﬂ-lt)), Vf=1,...,N,

where 8, is the Dirac delta mass at v € Ry x A. Thus for any Borel set A c R, x A,

13 1
v (A) = N Z (e () mtey) = N #{U< N (VE(1), 7)) € A},
=1



The admissible strategies m(¢) might have different structures given the accessible information at time ¢.

Definition 2.3. A control w(t) € A is an open loop control if it is a function of time t and initial states vg.
It is called a closed loop feedback control if w(t) € A is a function of time t and states of every controller
V(t). It is specified by feedback functions ¢° : [0,T] x @ x R? — A, for £ =1,..., N, to be evaluated along the
path of the state process.

Denote XN = (X1(t),...,Xn(t)), Vi = (V(t),...,VN(t)). For a fixed N, with v/ in definition 2.2 that
generalizes Y(t), we can generalize the N-particle system as

dxyN = xNpt, XN vyt + xNo(t, XN v Yawy;  ad = x{Y (9)

and
avit = Vi p(t, X{¥ v )dt + Virio(t, XN, v )dWy; - Vi = o (10)

A strong solution of the conditional Mckean-Vlasov system (9)-(10) is a triplet (X, V, "), with XV taking
values in C([0,T],R%), V in C([0,T],RY), v~ € P(C([0,T],Ry) x C([0,T],A)) = P*C([0,T],R; x A)).
The following assumptions on the triplet ensure that the system is well-posed.

Assumption 1. The initial wealth and strategies of the N players are i.i.d samples from v{¥ the distribution
of (v, o). The stock prices at time 0, xo, has a finite second moment, E|xg|?> < o0, and is independent of
Brownian motion {W4}.

Assumption 2. The following Lipschitz conditions are satisfied with Borel measurable mappings 5, o from
[0,T] x C([0,T],R;) x P2(C([0,T],R+ x A)) to R", i.e., there exists a constant L € (0,0), such that

lzB(t, z,v) — 2’ B(t, 2", V)| + |zo(t,z,v) — 2'o(t, ', V)| < L[|z — 2| + Wa(v, V)]
[vB(t, x,v) — V' B(t, 2", V)| + |vo(t,z,v) —v'o(t, 2, V)| < L[|(x,v) — (2',0")] + Wa(v,V)]
and the growth conditions for a constant C% € (0, 0),
2Bt z,v)| + |zo(t,z,v)| < C9(1 + |a] + Ma(v)),

0Bt @, V)| + [vo(t,z,v)| < CF(1 + o] + o] + Ma(v)),
for every t € [0,T], e R}, v e Pa(C([0,T],Ry x A), where

1/2
My(v) = (J |a:|2d1/(x)) ;o veP(C([0,T], Ry x A)).
C([0,T],R xA)
Assumption 3. For a closed loop feedback control, we assume w° is Lipschitz on v, i.e., there exists a mapping
o' R x RY x P2(C([0,T],Ry x A)) — A such that wf = ¢*(Vy).
|¢€($7 v, V) - (bg(x/v ’Ulv V/)l < L[|(I, U) - (CL'/, ’U,)| + W2(V7 1/)]
for every z, ' e R, v,v' e R, v,/ € P?(C([0,T], Ry x A))

Proposition 2.1. Under Assumption 2 and 3, the N-particle SDE system (9)-(10) admits a unique strong
solution, for each N.

Proof. For simplicity, we discuss the time homogeneous case, whereas the inhomogeneous case can be proved in
the same fashion. Rewrite the system as a n + N-dimension SDE system:

XY ()1 (XY vl )dt + X1 () 2y o1n (XY v ) AWk (t)

N N N N (5 N N
d(Xt ) | e L i ) = F(N Vv )dt+g(XN, Vi, v )aws,

Vi Vitmy BN vl )dt + Vi o (X, v ) dw,

VAT BN vl )dt + Vo (XN, v )dWy



where f(XtNuvtal/t) = (fl(')v"'afn+N('))7 fz() = XzN(t)ﬁl() for i = 1,...,n, f]() = Fg_nﬁ() for j =
n+1,...,n+ N. Similiarly, g(XN, Vi, 1) = (g1(), -+, gnin (), (1) = XN (#)oi(+) for i = 1,...,n, g;
VI (XN ) for j=n+1,...,n+ N.

Let us consider a closed loop strategy 7f = ¢*(V;). Open loop strategies case can be show in the same way.
Define a mapping Ly : RY — P2(C([0,T], R x A)),

N
1
LN(Vt) = N Z 5(W£7¢e(vt)) = I/gv.
=1

Define F: RY ™" — RN*n G RYT™ — RN*" x R", with

F(X:, Vi) = f(X, Vi, Ln(Vy)); G(&, Vi) = g( X, Vi, L (V).
Let (z,v) = (z1,..., 20,0, ..., 0N) and (y,u) = (y1,. .., Yn,u', ..., u’) be two pairs of values of (X(-), V(-)).
By the inequality (a + b)? < 2(a? + b?), uniformly boundedness and Lipschitz condition of ¢,

|F(2,0) = F(y,u)]?

n N
< ) lwiBi(x, L (v) = iBi(y, L (w))[* + ;1 0% (v)B(@, L (v)) — u'é* (u) By, L (w))[*

=1

<2L?[|z —y)® + |v — u|* + NW2Z(Ln(v), Ly (u)].

Denote the empirical measure induced by the joint distribution of random variable u and v by

)
T=—= é(uewe).
N3
It is a coupling of the function Ly (v) and Ly (u). By the definition of Wasserstein distance,

1
|v — u|?7 (dv, du) < N|’U —ul?

W2(Ln(v), Ly () < f

RN xRN
We treat G(-) in the same fashion, and consequently,
|F(z,0) = F(y,u)|* <AL?[Jz — y[* + [v —u*], |G(z,v) = G(y,u)]* < AL*[|x — y[* + Jo — ul?].

Then according to the existence and uniqueness conditions of multi-dimensional SDEs, the system (9)-(10)
admits a unique strong solution. O

3 Optimization of relative arbitrage in finite systems

3.1 Arbitrage relative to the market and investors
We first recall the definition of relative arbitrage in Stochastic Portfolio Theory.

Definition 3.1 (Relative Arbitrage). Given two investment strategies w(-) and p(-), with the same initial capital
V™(0) = VP(0) = 1, we shall say that w(-) represents an arbitrage opportunity relative to p(-) over the time
horizon [0, T, with a given T > 0, if

P(V™(T) > V*(T)) =1 and P(V™(T)> V*(T)) >0,

The market portfolio m is used to describe the behavior of the market: By investing in proportion to the
market weight of each stock,
XN
2 ( ) T XN(t)a

it amounts to the ownership of the entire market - the total capitalization

i=1,...,n, t=0, (11)

XNty = XNt +...+ XV,



for t > 0, since

de dXN dXN (¢
Zﬂ XN dxN

XN - XN t=0; V™(0)=x"0). (12)

The performance of a portfolio is measured withh respect to the market portfolio and other factors. For
example, asset managers improves not only absolute performance comparing to the market index, but also
relative performance with respect to all collegial managers - they try to exploit strategies that achieve an
arbitrage relative to market and peer investors. We next define the benchmark of the overall performance.

Definition 3.2 (Benchmark). Relative arbitrage benchmark VN (T), which is the weighted average of perfor-
mances of the market portfolio and the average portfolio of N investors, is defined as,

VN(T) = 5. XN(T) + (1—3) - % i VAT) e (0.00). (13)
(=1

with a given constant weight 0 < § < 1.

We assume each investor measures the logarithmic ratio of their own wealth at time 7" to the benchmark
n (13), and searches for a strategy with which the logarithmic ratio is above a personal level of preference
almost surely. For £ =1,..., N, we denote the investment preference of investor £ by ¢, a real number given at
t = 0. Note that ¢, is investor-specific constant, and so it might be different among individuals ¢ = 1,..., N.
An arbitrary investor ¢ tries to achieve

Vi)
V(T)

log >¢g,  as.  orequivalently, VT)=e“VN(T), as. (14)

Thus VY (T) is the benchmark and an investor £ aims to match e“ V¥ (T') based on their preferences.

Assumption 4. Assume that the preferences of investors ¢y are statistically identical and independent samples
from a common distribution Law(c).

Assumption 5. We assume the existence of a market price of risk processes 6, A : [0,00) x Qx P2(C([0, T], R4 x
A)) — R"™, an F-progressively measurable process such that for any (t,w,v) € [0,0) x Q2 x P2(C([0,T],Ry x A)),

o(t,w,V)0(t,w,v) = B(t,w,v), 7(t,w, V)\t,w,v) =v(t,w,v); (15)

T
P(f 1100, w0, )12 + [|A(t,w, )] |2dt < 00, VT € (O,oo)) ~1.
0

The new price of risk process A(t) is from the fact that the market is simultaneously defined by the stocks
and the investors. In future sections, We shall see A\(t) is a key entity for more tractable and practical results
in game formations. Next we define the deflator based on the market price of risk processes.

Definition 3.3. We define a local martingale L(t),

dL(t) = ©(t)L(t)dW;, where =102 + ||A@®)]]2.
Equivalently,
! / / 1 ! 2 2
L(t) = exp | —L(e (s) + N(s))dW (s) — 5L(||9(s)|| FIAEI)s), o<t <.

Thus under Assumption 5, the market is endowed with the existence of a local martingale L with E[L(T)] < 1.
We denote the discounted processes V*(-) := V*(-)L(-), and X (-) := X(-)L(-). V*(-) admits

AV (t) = V)" (8) (B(t) — o(1)O(t))dt + V(1) (x" (t)o(t) — O'(t))dW (t);  V*(0) = Ty (16)
Proposition 3.1. We have the following properties of ¢y and 9.

1. In [7] a special case is considered, when ¢y = ¢ for every { =1,...,N, and 6 = 1;



2. If every investor achieves relative arbitrage opportunity in the sense of (14), then
X e
Z — < (17)

3. Relative arbitrage is guaranteed, if (c1,...,cn) satisfies that

VH(T)
& (min{XN(T), VI(T), ..., VN(T)})

ce <lo a.s.

; (18)

4. When ¢; = logvy — log(dv + 1 —9), if L(T) is a martingale, then no arbitrage relative to the market and
investors is possible.

We already know from [7] and [8] that any ¢, < 0 is a valid level of satisfaction. (17) in Proposition 3 tells
us that ¢, can be a small positive number. Investors pursuing relative arbitrage should follow the condition (17)
for c¢y.

Now, we shall answer the questions posed in the introduction - Given the portfolios

W—Z(_) = (ﬂ-l(')v e aﬂ-g_l(')a 7T€+1(')7 s 77TN('))a

of all but investor ¢, what is the best strategy to achieve relative arbitrage for investor £ = 1,..., N, and if there
exists such optimal strategy, is it possible for all N investors to follow it? We first utilize an idea in the same
vein of optimal relative arbitrage in [7], i.e., using the optimal strategy 7'*, the investor ¢ will start with the
least amount of the initial capital (or initial cost) relative to V¥ (0), in order to match or exceed the benchmark
e“VN(T) at the terminal time 7', that is, given 7~¢(-), each investor £ optimizes

uf(T) = inf {wz € (0, ) ’ Int(-) € A such that v* = w*VN(0), yot (T) > e - VN(T)}. (19)

To use martingale representation results in a complete market, we assume F = F~ Y o F W where FX My
is {o(AXN(s),Y(s));0 < s < t}. The following proposition is essential to allow a PDE characterization of the

objective u*(T). This result follows from the supermartingale property of XA/Z(-) and martingale representation
theorem, see Appendix B for the details of the proof.

Proposition 3.2. u*(T) in (19) can be derived as e“*VN (T')’s discounted expected values over P.

u'(T) = E[e“VN(T)L(T)] / VN (0), (20)

3.2 PDE characterization of the control problem

Starting from this section, we consider XV (¢) and Y(¢) are time homogeneous processes.

Assumption 6. 5(t), o(t), v(t) and 7(t) are time-homogeneous, i.e.,
XN0)Bit) = b (XN, V), XN (Do (t) = s (XN, D), Z sk (t) = a (XN, ),

Vi(t) ='7i(XN7y)7 Ti(t) =Ti(XN7y)'

where by, Sik, @ij, Vi, Ti : (0,00)" x (0,00)" — R are Hélder continuous and Y := (V1([0,T7]),...,Vn([0,T])) is the
total trading volume defined in (7). Market price of risk is ©(xV,y) := o~ (xV,y)b(x",y), for each T € (0, 0).

We define @ : (0,00) x (0,00)" x (0,00)" — (0,00) from the processes (X™V(-),)(-)) starting at (x,y) €
(0,00)™ x (0,00)™, and write the terminal values

a'(T) = a*(T,x",y); £=1,...N. (21)



3.2.1 Open loop and closed loop control problem

We use the notation D; and D;; for the partial and second partial derivative with respect to the ith or the ith
and jth variables in XV (¢), respectively; D, and D,, for the first and second partial derivative in Y(t).

Assumption 7. There exist two functions H, I : R" — R of class C?, such that
b(x",y) = a(xV,y)DH(x), ~(x",y) =4(x",y)DI(y),
ie, bi(1) = 20 aij(-)DyH(-), %i() = X7_y ¥ij (1) D;I(:) in component wise fori=1,...,n.
Hence the infinitesimal operator can be written as

Lf= 2 Z aij(XN7Y)[%Dijf + DiijH(XN7Y)] + Z Z 1b;Dq(XN Y)[%quf + DprqI(XNaY)]a
p=1g=1

i=1j=1
and by the definition of 6(-) and A(+) in (15),
0(x",y) + A(x",y) = s(x",y) DH(x) + 7(x",y) DI(y). (22)

Then it follows from Ito’s lemma applying on H(-) and I(-) that
’ / ! 1 ' 2 2
L{t) = expq — | 0(s) + N (s)dW(s) — 5 | |l6(s)II” + [|A(s)l["ds
0 0

= exp { — H@&N () — I(Y(1) + H(x) + I(y) — J (XN (s)) + /5(37(5))615},

0
where S
k(x) = — Z Z %[D%H(x) + D;H(x)D; H(x)],
Fy) o= = ) ) Y02, I(y) + Dy I(9) Dy (3]
Denote

g (N, y, 1) i= VN (0)e HOTI®) - GUT XN, y) i= X [g/ (AN (T), V(T))e So HXT )R] - (23)

Based on [14] Section 6.4, we have the following assumptions of make sure the solvability of the Cauchy
problem.

Assumption 8. Assume EF|g¢(X™N (t),V(t))e™ i k(XN(t))”;(y(t))dﬂ < . The functions b;(+), 0u(-) are of class
CL((0,00)™ x (0,00)™) and satisfy the linear growth condition

G I+ ™, ¥l < CA+ Ixl[ + [lyll), (=", y) e R} x RY.
a;j(-) satisfy the nondegeneracy condition, i.e., if there exists a number € > 0 such that
ai; (x",y) = e(|Ix]]* + [lyl]*), (x",y) e R} x R,

g*(-) is Hélder continuous, uniformly on compact subsets of Rt xR", £ =1,...,N. k(-) and k() are continuous
and lower bounded, G*(-) is continuous on (0,0) x (0,0)" x (0,90)", of class C?((0,0) x (0,00)" x (0,00)").
Under Assumption 8, (20) becomes

G xNy)

aé(Tv xva) - gl(xN,y) (24)

where @‘(7,x",y) € C?((0,00) x (0,00)" x (0,00)") is bounded on K x (0,00)" x (0,00)" for each compact
K < (0,0). By Feynman-Kac formula, the function G*(-) solves

00%(7, xN,y) = EGZ(T, xN,y) — (k(x) + /;(y))GZ(T, xN,y)7 t € (0,00), (xN,y) € (0,00)" x (0,00)",
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G0, xN,y) = g(xN,y), (xN,y) € (0,00)" x (0,00)".
This yields a Cauchy problem

ou’ (r,xN,y)

= = Ai'(r,xN,y), 71€(0,0), (xV,y)e (0,0)" x (0,0)", (25)
ﬁl(O,xN,y) = e, (XN,y) € (0,00)™ x (0,00)", (26)
where
Al ( %Z Z Vo) (D3 xN ) + 20D (r. N y) - N O] ) + % Z Z g (5N
0 o (27)

We emphasize that (25) is determined entirely from the volatility structure of X™V(-) and )(-). Moreover, c;
enters into the initial condition (26). Assumption 6 ensures that the Cauchy problem is solvable.

Remark 1. If the market price of risk process depended solely on 6(-) in Assumption 5, then the Cauchy problem

~0 N
gu (T x"yy) _ Ail(r,

% xNy) involves a terminal term @' (T) which would largely increase the intractability.

Theorem 3.1. Under Assumption 6, the function @° : [0,00) x (0,00)" x (0,00)" — (0,1] is the smallest
nonnegative continuous function, of class C? on (0,00) x (0,00)", that satisfies i*(0, ) = e and

~ L N
XY o it (r.xV, ), (28)

where A(-) follows (27).

3.3 Existence of Relative Arbitrage

The Cauchy problem (25)-(26) admits a trivial solution @*(7,x,y) = . Meanwhile, We use portfolio generating
functionals, as shown in Section 4, to construct relative arbitrage portfolios for a certain time span. This result
indicates that a(7,x,y) could take values less than 1, that is, the uniqueness of Cauchy problem fails.

Through the Féllmer exit measure [13] we can relate the solution of Cauchy problem u‘(-) to the maximal
probability of a supermartingale process staying in the interior of the positive orthant through [0, 7]. Following
the route suggested by [7] and [26], there exists a probability measure Q on (€2, F), such that P is locally
absolutely continuous with respect to Q: P << Q, A*(T) is a Q-martingale, and dP = A*(T)dQ holds on each
Fr, T € (0,0). We can characterize @‘(t) by an auxiliary diffusion which takes values in the nonnegative
orthant [0, 00)%"/{0}.

Definition 3.4 (Auxiliary process and the Fichera drift). We define the following

1. The auziliary process ¢ = (¢}, ..., (%)) is defined as

¢t () = bi(C())dt + 6a(C())dWy,  ¢H(0)=¢, i=1,...,2n,

where
0 ifi =n+1, ..., 2n,
ai; (xN)y) ifij=1,...,n,
ai; (xN,y) = Vi (xN)y) ifig =n+1, ..., 2n,
0 otherwise.

2. The Fichera drift is defined as

Il
s

fi()

1 n
52 a”Lj Y a
i=1,...,2n, (xN,y) € (0,0)" x (0,00)".
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Assumption 9. The system of (‘(-) admits a unique-in-distribution weak solution with values in [0,00)" x
[0, 00)"/{0}.

We set T* := {t = 0[¢’(t) € O?"} as the first hitting time of auxiliary process ¢*() to ©?", the boundary of
[0, 00)2"

Proposition 3.3. With the nondegeneracy condition of a;;, suppose that the functions 6, (-) are continuously
differentiable on (0,00)*"; that the matriz a(-) degenerates on O*"; and that the Fichera drifts for the process
C4(+) can be extended by continuity on [0,0)2™. For an investor £, if fi(-) = 0 holds on each face of the orthant,
then @*(-,-) = 1, and no arbitrage with respect to the market portfolio exists on any time-horizon. If fi(-) < 0
on each face {x; =0},i=1,....n and {y; = 0}, i =n+1,...,2n of the orthant, then @(-,-) < 1 and arbitrage
with respect to the market portfolio exists, on every time-horizon [0,T] with T € (0, o).

Proof. With the nondegeneracy condition of covariance (a;;)1<i,j<n, Theorem 2 in [7] suggests that
(T, xN,y) =Q[T*>T], (T,x",y)e[0,0)x [0,00)" x [0,00)".

For the first claim, we only need to show the probability Q[7* > T = 1, for (T,x",y) € [0,0) x [0,0)" x
[0,00)". Denote a bounded and connected C3 boundary Gr := {z € R?",z; < 0,||z]] < R}, and R can be
arbitrarily large. Then the claim follows from Theorem 9.4.1 (or Corollary 9.4.2) of [14], since

3 (-1 i

=1

in which n = (nj,...,ny,) is the outward normal vector at (xV,y) to O?", the boundary O?" is an obstacle
from outside of Gg, i.e., G := Bgr(0)/Gr. The Fichera vector field points toward the domain interior at the
boundary. Let R — oo, the boundary is not attainable almost surely for (xV,y) € [0, )"

If fi() <0 on each face {z; =0},7=1,...,2n, then

i( i aw Yy )ni>0,

i=1
and the Fichera drift at O?" points toward the exterior of [0, 00)2". Tt is equivalent to show that Q[7T* > T] < 1,
for (T,xN,y) € [0,00) x [0,00)" x [0,00)", we only need to show Q[7T* < T] > 0, i.e., the boundary {z; = 0},
i=1,...,2n, is attainable by ¢*(-).
From Chapter 11 and 13 in [14], every point in 0G is a regular point, and thus

[\D|’—‘

lim  Q.(m9 < oo, ||C€(Tq —zl] <) =1,

z—20,2€6G

where 79 is the exit time from G. Therefore, if 29 € ¥ := U?" {z € R?" : z; = 0} n G, for a fixed § such that
By (z0) :== n?"{z € R?" : 2; > 0} n Bs(zp) is a proper subset of G, we have

o If [[¢f — 20|l <7
Q(t9 <, Y (r9)e ) >0

o If|[¢) — 2ol >, )
inﬁ@z(cl(Tg) € Bs(z9), 77 < w0) > =
zEe

27
where 2
A= [z eR™: 2 >0,z — 2| = n}.
i=1

Now take r € A and a continuous sample path w, such that w.(0) = 2o, wa(7e) = 7, and w.(s) ¢ A for
0 < s < 7y, where 7, := inf{t > 0 : (*(t) € A}. Consider an e-neighborhood N, ,, of w, € C(G),

New, ={weC(9): w(0) = f, [lw—wil| <€ wirn) =rtc{we: CE(T*,(U) € A},
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then the support theorem in [28] shows that
Q¢t(Neyw,) > 0,

where ¢ : [0,00) — R?" is continuously differentiable, and || - [|5 is the supremum norm [jw; — we|| =
SUPg<s<r, |W1 — w2l, w1, wo € C(G). Hence

Q2 (New,) < Qu (1w <0, ((1u) € A).
Therefore
@Cfo(gl(#’) €X, 79 <) >Q CH(r9) e X, 19 < )
Qs (CH(r%) € 2,79 < 0) - 1(¢* (), T < 0)|F,]

B

= B [Qee(ry (C°(79) € 8,79 < 0) - 1(¢H (1) € A, 7o < 0)]
B
1

—

celinf Qu(¢*(r9) € 2,79 < @) - 1(¢" () € A, 71 < )]

= —@qf(d(ﬂ) €A T, <©).

The equality in the above expressions is from the strong Markov property of ¢(-).
In conclusion, the process ¢¢(-) attain the set U?",{z; = 0} with positive probability, so @‘(-,-) < 1 when
Fichera drift f;(-) <O0. O

Therefore investor £ can find relative arbitrage opportunities with a unique @, the minimal solution of (28)
given f;(-) < 0 on each face of O?".

4 N player game

As we have seen in the previous sections, the stock prices and investors’ wealth are coupled. Variation of
one investor’s strategies contributes to the change of the trading volume of each stock, and thus the change
of stock prices. Consequently, the wealth of others is affected by this investor. In addition, all the investors
considered here are competitive. They attempt to not only behave better than the market index but also beat
the performance of peers exploiting similar opportunities - everyone simultaneously wishes to optimize their
initial wealth to achieve a relative arbitrage.

Investors interact with each other, adopt a plan of actions after analyzing other people’s options, and finally,
make decisions. This motivates us to model the investors as participants in a N-player game.

4.1 Construction of Nash equilibrium

The solution concept of this N-player game is Nash equilibrium. In this spirit, assuming that the others have
already chosen their own strategies, a typical player computes the best response to all the other players, which
amounts to the solution of an optimal control problem to minimize the expected cost @‘. Specifically, when
investor ¢ assumes the wealth of other players are fixed, they wish to take the solution of (25) and (26) as their
wealth to begin with so that

1 VYT
VHT) = e VN(T) = 6 - e XN(T) + (1 - 9) - € ;1 v(l ).
We articulate the definition of Nash equilibrium in this problem.
Definition 4.1 (Nash Equilibrium). A wvector 7% = (7f*,...,7%%) of admissible strategies in Definition 2.1 is
a Nash Equilibrium, if for all wf eMAandi=1,...,n,
T ) < I ), (29)

where the cost to investor £ yields

J4(r) = inf {wf >0 [V eV O () > ecevN(T)},
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inf J¢(m) = u®(T). (30)

mleA

Since v* = WV (0), the infimum is attained, and

N
JH(m;0,20) = ech (T) exp ! {

VN (0) fT 7 (B — %atwf)dt + JT ot )th} <wh. (31)

0

Each individual aims to minimize the relative amount of initial capital, beginning with which one can match or
exceed the benchmark.

Definition 4.2. With the same conditions in Definition 2.2, we define empirical measures of the random vectors

(vat))le,...,N e RY, given the initial measure plf € P*(R,),

1 N
= N Z 6(\/[/1}15).
=1

Subsequently, we clarify the notion of unique Nash equilibrium we will apply in this paper. Investors pay
more attention to the change of the wealth processes than the change of the strategies, since two different strategy
processes may result in the same wealth at time 7. Therefore we investigate the uniqueness in distribution of
wealth, and we use the strong uniqueness here because it satisfies the nature of the investment goal in this

paper.

Definition 4.3. We say that the uniqueness holds for Nash equilibrium if any two solutions pl, Y, defined
n (Q, F,F,P), with the same initial law pl) € P?(Ry),

Plug = m'] =1,
where p is the empirical distribution of wealth processes as in definition 4.2.

We construct the fixed point condition on the control space. Suppose we start from a control 7, then solve
the equation of wealth processes (5) and trading volume (7) with the equation of optimal cost function (28).
If the corresponding optimal strategy 7* agree with m, then the associated u” is the Nash equilibrium. We
specify the pathodology below.

Searching Nash equilibrium in N-player game

1. Suppose we start with a given set of control processes 7 := (7!,..., 7). With the empirical distribution
N

p™ and vV solve the N-particle system (9) and (10).
2. We get J¢(-) from pv and vVV. Solve @*(T') := infrep J*(7) and the corresponding optimal control 7*. We
find a function ® so that 7 = & (7).

3. If there exists #, such that # = ®(#), then pN* := & Zévzl O (yutxt ey is the Nash equilibrium.

4.2 Open-loop and closed loop Nash equilibrium

We recall the information structure and the types of actions that players take in a game. It is an open loop Nash
equilibrium if the admissible strategies satisfy the conditions of Definition 4.1, with the control *(¢) given by
the form
T (t) = ¢ (t, v, Wio.4)5 (32)
for every t = 0, v := (v!,...,o"), vf = @ (T)VN(0), W, [0,+] is the path of the Wiener process between time
0 and time ¢ deterministic functions (;52 [0, T] x Q — A, £ =1,...,N. Here, 7% is the process with the
same trajectories as the (7'* ... 7%, 7N*), even after player K changes strategy from 7'* to w¢. Thus the
strategies 7 for k # £ of the other players are not affected from the deviation of player /.
However, in closed loop equilibria, the trajectory of the state of the system enters the strategies, then when
¢ change 7%*(t) to 7(t), other players is likely to be affected. Players at time ¢ have complete information of

the states of all the other players at time ¢, or in other words we allow feedback strategies. As a special case in
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closed loop equilibria, a Markovian equilibrium is the admissible strategies profile 7* = (71*,... 7%, ... |«
of the form
m(s) = ¢(s, VL"), (33)

for each (t,x), where ¢* : [0,T] x @ x R? — A, VL= := (V1(s),...,VN(s))*, and (V*(s))i<s<r is the unique
solution of

dvf 2": dXN XN (s)

= ) ’

We have the following result of Nash equ1l1br1urn strategies.

Theorem 4.1. Nash equilibrium is attained when the strategies yield

i =my(t) + XN () Do (t) + 7i(t)o (t) Dy, 5N (t). (34)

£
for £ =1,...,N, where o™ (t) = loga*(T — t, X[()J\{t],y[oyt]) + (%)% é\/:l vat) log @ (T — t,X[]g_’t],y[o_’t]). The

corresponding Nash equilibrium p™* is unique in the sense of Definition 4.3 when the first exit time from the
compact set K is greater than T, i.e., 7% > T where

Nx*

N—(1=8)XN  ewa(T - 1))
K= [o, (v~ - ) Sz @I 1)) ] —inf{t = 0; XV (1) € K. (35)
Né&| >, e D at (T — t)]
Proof. For a given choice of m € A, @’ := inf ey J*() is uniquely determined by the smallest nonnegative

solution of (28). For simplicity we denote ‘(T — t, X[](Y)t],y[o_’t]). Assuming that all controls 7% (-), k # £ are

chosen, player ¢ will choose the optimal strategy 7* that achieves V*(-) = e VN (#)a’(T —t). Suppose every
player ¢ follows V**(-), we have a fixed point problem that yields

. N Cy ~0 . 4

V() = e a (T — )5 XN (1) (1 T Chl) D /S i el > (36)

N —(1—=206)>,_,eca’(T —t)/v*

equivalently,
coe~l t t
log V() =log OT¢ ]1\L/ @ + J m (5, — 1Cvsms)dS + J mjo;(s)dW

1—(1—68)% >, e«a(T /vf 2 0 37)
37

+log (T —t) —log (1 — (1 — Z et at (T —t) vY).

With a fixed set of control processes 7, we solve i _,, and expect that the 7* will coincide with the fixed
7. Thus we can find the Nash equilibrium strategy by comparing V* in (37) and V* defined in (10). By Ito’s
formula on @‘(-) as a function of X[]g_ . and Yo 4], we obtain

out

m)(T —t)dt + Z Ri(T — t, X5 g, Vo, ) dWi (),

k=1

di* (T —t) = (La* —

where £ is the infinitesimal generator of (xV,y) € (0,00)" x (0,90)", i.e.,
Lat(r) =b(xN,y) - d,a'(r) + y(xN,y) - d,a(r)
+ %tr[a(xN,y) : aixﬂ’g(T) + ¢(XN,y) . 337[/(7) + (ST/ + TS )( 7y) 82 ~6(7')]

and

R ZO’Zk ,yl'lDu +i7—pk ,yDU()

Thus the volatility term in (37) is

Lo to i L=0WN@) (t & ecr &
L m,(s)a;(s)dW (s) +J TT 8 R(T — 5)dWy(s) + (N5+N(t§)f Z — Z RL(T — 5)dWp(s).

0 k=1
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By comparing the drift and volatility of (10) and (37), we arrive at (34).
Next, to investigate the uniqueness of Nash equilibrium, we consider a fixed point mapping ® : R, — R, of
the empirical mean of wealth m¥ from (36),

OXN () 3oL ecri (md) o
N —(1=08) 3, eceiit(m]) /vt

B(mf) -

Denote D,, as the partial derivative with respect to m.¥, then the derivative of ®(m¥) is

NOXN () S, e D, (T —t) /v’
(N = (1= 8) S, e (T — 1)/0*)"

' (my") =

We denote Ay = N —(1—38) Y, e“*a! (T —t)/v’. In the above derivative, Dy, i’ (T—t) = Y, Dyt (T —t)¢" for
open loop controls, and D, @ (mi") = Z;V:l Dyt (T —1)(¢' + ¢* V*) when 7 is of a closed loop form. In addition

0 < @' (T —t) <1, ¢; < e for a positive €, 0¢°/0V* is bounded by Lipschitz coefficient L under Assumption 3.
Hence |®'(m)| < 1 is satisfied when

A

0< XNt < — .
NG| S, et Dyt (T —t) /v

(38)

For simplicity, we set Dy = NJ| Zévzl e D, it (T — t)/v*|, and K := |0, g—z). By mean value theorem, ® is a
contraction of m{¥. The first exit time for the compact set K is 75 = inf{t > 0; XV (¢t) € K}. If 7% > T then
Nash equilibrium generated by (34) is unique.

By (12), log XV (t) is of the same distribution as log V™(t). Thus, X (¢) is a log-normal distribution where

log XN (t) ~ N(log 2+ (m(t)B(t) — %m/(t)a(t)m(t))t, m’(t)a(t)m(t)t).

As a result, with the solution @ of (28), the probability of attaining the unique Nash equilibrium is

2

log mbr
PXN(t)e K) = N( 2 Do

— (m(H)B(t) - ém’(tw)m(t))t)

m’(t)a(t)m(t)t
where A\ is the cumulative distribution function of a standard Gaussian distribution. O

The end of Section 3.2 suggests that optimal strategies are linearly dependent on e“, ¢ = 1,...,N. To
illustrate, the investors pursuing relative arbitrage end up with the terminal wealth V*(T) proportional to e
if starting from a same initial wealth. However, at every time ¢, the information of every V*(t), £ = 1,...,N
is required to pinpoint the optimal strategy. Therefore, a mean field regime is discussed in the next chapter to
resolve the complexity in N-player game.

As a special case when investment decisions are based upon the current market environment only, we consider
the Markovian dynamics so that we write u*(T — t, XN (t), Y(t)). We can obtain the optimal strategies in a
different way. This approach will be useful when we derive the mean field equilibriums in the next section.

Assumption 10. In addtion to Assumption 6, we assume [(t), o(t), ¥(t) and 7(t) take values in R7 x R,
and are Markovian, i.e.,

XN (0)Bi() = bi(XN (1), Y1), XY (D)ou(t) = (X7 (1), V(1)), i sin()sjn (1) = ai (XN (1), Y(1)),
k=1

i(t) = (AN (1), (1), 7ilt) = (XN (1), V(1))

Proposition 4.1. Under Assumption 10, when controls of a closed loop Markovian form (33), or an open loop
o(t,v, W) are adopted, there is a Nash equilibrium ©* = (7'* ..., 7N*), where for £ = 1,...,N, 7 follows

() = my(t) + XN () DioN (t) + 1 (t)o " (8) Dy, 0N (1),
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where

15 N
~N (5 _ ~0m N R N
o (t) = loga" (T — t,x",y) + (5XN(t )N :E logu —t,x"y), (39)

and @*(t) is the smallest nonnegative solution in (28).

Proof. The Markov property of VV(-) gives

E°[VV(T)L(T)|F(t)]  E[VN(T —t)L(T —1)]
VN(t)L(t) - VN(t)L(t)

where @‘(-) is the minimal nonnegative solution of (28). Again we use the property for 0 < t < T that
VEt) = VN @)al (T —t, XN (t), V(t)), the deflated wealth process

Vi) = VE(t)L(t) = EF[VN(T)L(T)|F ]

= (T —t, XN (1), V(1))

is a martingale. As a result, the dt terms in dVZ(t) will vanish, namely,

Vi) = V4(0) + Zn: Jt V() Bi(T — 5, X(s), V(s))dWi(s), 0 <t <T, (40)
k=10
where
k(t,x,m) ZUZ’“ N y)z;Dilog a“ (T — t,xN +i7’mk Dy loga(T —t,xN,y)
m=1
5XN i (1-96)/N Vi) , Vf(t) N
+ ok (t) — + ok (t) — Or(x",y) ).
X iy (et = 0w ) + <2;< 0= ous)

Thus we have the fixed point problem
() = XN(t)DilogaY (T — t,xV,y) + i(xN,y)o L (x,y) Dy log a*(T — t,xV,y)

SXN(t) (1-68) S ve@w) . (41)
VN (2) NVN (1) 2~ (),

m; (t) +

=1

where V% (t) is generated from 7 ().

Next, we check the consistency condition of 7* in (41) and 7 we start with. Define a map p : A —> A, we
want to find a fixed point so that p(w) = w. By Brouwer’s fixed-point theorem, since A is a compact convex set,
there exists a fixed point for the mapping p. In Nash equilibrium, we assume that all players follow the strategy
7* - if we multiply both sides by V* and then summing over £ = 1,...,n in (41), and after some computations

we conclude
it = my(t) + Xi () D™ (1) + ()0~ () D™ (1), (42)

where 9V (t) satisfies (39). O

4.3 Equilibrium with functional generated portfolios

I is the identity matrix of size n, and 1 is a n-dimension column of ones. Now we want to show M contains
strong arbitrage opportunities relative to the performance benchmark, at least for sufficiently large real numbers
T > 0. We illustrate this path by example 4.1. We employ the idea of functional generated portfolios [9] to seek
optimal strategies. By doing so, we may reduce the intractability of the N-player game problem.

The market portfolio follows the dynamic

dm;(t) = my(t) ['y{”dt + ) T;;g(t)dwk(t)], i=1,...,n. (43)
k=1

Here 7 (t) is the matrix with entries 7/;'(t) := o (t) — 27 m;(t)o;x(t), €; is the ith unit vector in R™ and
the vector 4™ (t) is with the entries y/"(t) := (e; — m(¢))"(5(t) — a(t)m(t)).
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Theorem 4.2. Let G1, Gy : U — (0,0) be positive C? functions defined on a neighborhood U of A such that
for all i, x;D;log Gi(x), x;D;log Ga(x) are bounded on A. Fort e [0,T], G1, Ga generate the portfolio

7l (t) = G1(t) + Ga(t) + R(t) (44)

SXN@) +(1-8)Y(@)

G1(t) = (Dylog Gy (m(t))my (1)) (I— 1m(t)); Ga(t) = Dlog Go(V(1))7(t)o " (1); R(t) =

VN (t)
The process
dl V(i) =dlogG t dlog G d=;,te [0, T 45
Ogm— 0g G2(V(1)) + dlog G1(m(t)) + d=¢,t € [0,T], a.s. (45)
is with a drift process Z(-) such that a.s., for t € [0,T7],
dE(t) _é é V4 71 é 2 é 2 b2
o —C1®)at)m(t) + Ga(t)a(t)r(t) 1G1(B)a|]” + [|G2(t)o]|” — |||
2G1 Z ngGl Z TZ 2G2 Z DUG2 1%( )

4,j=1 k=1 4,j=1

More importantly, the notion of optimal strategies (42) can be treated through Theorem 4.2. Let G1, Gg :=
U — (0,00) be positive C? functions defined on a neighborhood U of A such that for all i, x;D;log G1(x),
7;D;log Ga(x) are bounded on A. We write @‘(¢,x,y) = w’(¢, (m;)i=1.._n, (Vi)i=1....n), then by taking deriva-
tives of XN (¢), V(t), it follows

XN (t)Dilog @ (T —t, XN (1), V(t)) = [Di log G1(m(t)) — i D;log Gl(m(t)))mi(t)]mi(t);

7(xN,y)o L (XN, y) Dy, log @ (T — t, XN (1), V(1)) = (Dilog Go(V(1)))n7(t)o (t)e;.
Furthermore, we can use portfolio generating functions to find conditions on investment strategies by
Smi(t) =1,te[0,T]. We get
‘
N5XN Z V; wt = wt,

where wf = X;(t)D;loga’(t) + 7i(t)o 1 (t)Dy, logu’(t). Hence Zévzl VEBwh(t) = 0 or XN(@E) = (1 —

J) Z%V Zévzl VE(t). The latter indicates that the market is exactly consisted of the N investors we considered. If
w’(t) = 0, then every investor is the same, and their strategy follows the market portfolio. If w*(t) # 0, then

1G5 (t) = 0, and
Z 2 i log Go(t)(T(t)o (1)) i = 0. (46)

Example 4.1. Suppose that M is nondegenerate, weakly diverse in [0,T], and has bounded variance, see Ap-
pendiz A for the definitions. We assume for t € [0,T], there exists constants co, N., My > 0 such that

VA V) = coX N (1) L(t);

| 23 7%@®)] < My
i=1

Consider the function G1 and G are defined by
| | x;, Go(z) = 1 ”E 2
19 2 4 7"
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G1 and Go generate the portfolio

0 A—ot) [ ()
S )+ *(

Then ©* strictly dominates V™ (t) in (13) if

y=1—=(n ,T o tte, i=1,...,n.
w6y =1 (n+ ))) (o (e, i=1,..., (47)

nN? —2n? — 2
2 T :
—2en + 2M n? — —?ﬁg’ + Mn? (n(n —1)+ 2, ymax () )

P —
e 1= 5 X (o)

T >

The notations of constants and details of the proof can be found in Appendixz C.

5 Mean Field Games

We have observed that it is unlikely to get a tractable equilibrium from N-player game, especially when N is
large. In this section, we study relative arbitrage for the infinite limit population of players. With propagation
of chaos results provided, a player in a large game limit should feel the presence of other players through the
statistical distribution of states and actions. Then they make decisions through a modified objective involves
mean field as N — oo. For this reason, we expect MFG framework to be more tractable than N-player games.

5.1 Formulation of Extended Mean Field Games

We formulate the model on (2, F,F = (F;)ieqo,r],P) which support Brownian motion B, a n-dimensional
common noise B, equally distributed as W. The systemic effect of random noises towards the market might be
different when we consider a finite or infinite group of investors interacting with the market. B is adapted to the
P-augmentation of F and can explain the limit random noises in the market M when N — o0. The admissible
strategies 7(-) € AMF follow similiar conditions as (6) and is FZ-progressively measurable.

In general, the stock prices and state processes depend on the joint distribution of (Ve, wf), ¢{=1,...,N,
while the cost function is related to the empirical distribution of the private states. With a given initial condition
wo € PA(C([0,T];Ry)) as a degenerate distribution of value 1, we define the conditional law of V (t)/vg given
FB as

V(t)

] (48)

g := Law(
and the conditional law of (V (t),7(t)) given FZ, with a given initial condition vg € P?(C([0,T]; Ry x A)), is
v = Law(V(t),x(t)| FP).
Assumption 11. Assume x € L*(Q, Fo, P;R%), and E[supy<, < ||[(V (t), X (t))[|*] < .

Under Assumption 11, the mean field game model contains McKean-Vlasov SDEs of stock prices and wealth

dX(t) = X(O)BX (L), ve)dt + X (o (X (), 1)dB:,  Xo = x;

V) V(t) = Z i (8)dX; () /X (¢). (49)

From Proposition D.1-D.3, we show that the above McKean-Vlasov problem admits a unique solution,
where v, := Law(V (t), 7(t)|F2). Furthermore, the weak limit of v’V in Definition 2.2 is exactly vy, V*(t) is
asymptotically identical independent copies given the common noise B when ¢ = 1,..., N, N — c0. Hence we
consider a representative player which is randomly selected from the infinite number of investors in mean field
set-up. Small deviations of a single player would not influence the entire system given the common noise B.

The player competes with the market and the entire group with respect to the benchmark

V() =6-X(T)+ (1-0) - pr,

and they try to minimize the relative amount of initial capital. The objective is

JY (130, 3g) := inf {w >0 [yeeVOm(T) > eCV(T)}. (50)
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5.2 Mean Field Equilibrium

Specifically, if the mean field interaction is through the expected investments of an investor on assets - the
conditional expectation of the product of wealth and controls, a representative player’s wealth is

dZ, = dE(V ()7(8)|FB) = v(X(t), Zo)dt + 7(X (), Z)dB,, Zo = 2o, (51)

with
dXi(t) = Xz(t)ﬁ()((t), Zt))dt + Xi(t)O'(X(t), Zt)dBt, XZ(O) = X;,0-

Mean field equilibrium appears as a fixed point of best response function.

Definition 5.1. (Mean Field Equilibrium) Let 7*(-) € AME be an admissible strategy, then it gives mean field
equilibrium (MFE) if J*Y in (50) satisfies

JWY(r*) = inf  JMY(7).

TeEAMF

In particular, A= arginf ep JHV(m) denotes the set of optimal controls. In the control problem, the flow
of measure (mr, Z(T)) is frozen conditional on the common noise. (mr,Z(T)) is an equilibrium if there exists
7* € A such that the fived point of the mean field measure exists, i.e., mp = E[VA|FE]; Z(T) = E[Z}| FE].

Definition 5.2. We say that uniqueness holds for the MFG equilibrium if any two solutions p®, u®, defined on
filtered probabilistic set-ups (Q, F,F,P), with the same initial law pg € P*(R,),

Plu® = p'] =1,
where p is the distribution of wealth processes as in (48).

When F = FX:Z = FB_ the representative agent’s optimal initial proportion to achieve relative arbitrage can

be characterized as
w(T):= inf J*Y(m)=E[eV(T)L(T)]/V(0), (52)

TeAME

and it solves a single Cauchy problem as opposed to the N-dimensional PDEs system in N-player game,

ou(r,x,z,m)

3 > Au(r,x,z,m), u(0,x,z,m)= e, (53)
-
where Au(r,x,2z,m) :l Z Z < (T, x, 2z, m) + 20D;u(T,x, z, m))

24 j=1 V(0)

% Z Z (x,2 <D a(r, x,z,m)) + LT, x,2,m),

for 7 € (0,0), (xV,y) € (0,00)" x (0,00)".

Note that Z* = E[V*7*|F?] is not expected to be unique. Moreover, since the diffusion process of Z(T)
is given by Definition 2.1(3) and (51), we consider the fixed point over the control space when it comes to
Z(T) = E[Z}|FE]. The steps of searching equilibrium for extended mean field game with joint measure of
state and control is formulated in [4]. The paper [6] manifests an example of extended mean field games with
application in price anarchy. They use two different measures as law of the state processes and the law of control.
The equilibrium approaching steps we introduce is different in that a modified version of extended mean field
game is discussed, where the state processes and cost functional depend on different measures, and uniqueness
of Nash equilibrium is specified here. In the following, we show the steps to attain a unique equilibrium in open
loop or closed loop Markovian form.

Steps of Solving Mean Field Game

(i) Start with a fixed ¢ such that 7 = (7(t))o<t<r = ¢(v, Bo,r7) or ¢(V(t)), the open loop and feedback
function respectively, and solve

AV (t) = 7()B(X(L), Z)dt + 7)o (X (1), Z:)dBy,  V(0) = @(T)V(0) := vo,
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AX;(t) = X;(8)B; (X (1), Zy)dt + Xt i oin(X(t), Z)dBi(t), i=1,...,n,
k=1

where Z; = E[V (t)7(t)|FP] for 0 <t < T.

(ii) For each arbitrary stochastic process m = (m)o<t<r on R, adapted to the filtration generated by the
random measure B, solve

;}Qfm J™2 (m) = u(T) = E[e“(6X(T) + (1 — §)my) L(T)] / V(0)
using X (T') from step (i). The corresponding ¢* := arginf cpvr J#V (1) = arginf comr J™Z (7). Define
the mapping ¢* = ®(¢).

(iii) If there exists ¢ such that ¢* = ®(¢), find m so that for all 0 < t < T, m; = E[V;*|FF], where V* is the
optimal path with ¢* as a minimizer of J"%(¢).
Here the fixed point is formulated on both the control space and the flows of measure.

Theorem 5.1. Under Assumption 2,3, 10 and 11, there exists a unique Mean Field Equilibrium p*.The corre-
sponding Nash equilibrium p* is umque in the sense of Definition 4.3 when the first exit time from the compact
set K is greater than T, i.e., 7% > T where

i [07 (1— (1 - 6)E[ea(T — t)|}'tB])2] |

h= SEleeDoni(T — D FP]| P = imf{t > 0, X (1) e K, (54)

Proof. For simplicity we denote (T — ¢,x,z,m) = u(T —t). We fix the process m solve the optimal control
problem for V*. Suppose every player follows V*(t) = V*(t)a(T — t), we solve a fixed point problem which
yields

e“OX Up—_y
1— (1= 0)E[eca(T —t)/vol FF]’
As in Theorem 4.1, after comparing log V*(¢) in (49) and (55), this yields

VE(t) = (55)

i (t) = my(t) + X; () D;o(t) + 7 (t) o~ (t) Dy (t),

where 0(t) = log ir—+ + éXfE[ Y1) 1og tip_4| F£], and @g_, is the smallest nonnegative solution in (53).

We can further derive the expression of 7* when @ is Markovian. We restrict m, in the form of E(V|F7),
for each i. From now on, we use vol to represent the volatility of a process, as we are not given the explicit
form of m;. By Ito’s formula we have

N

V(t) = V(0)+ i f V(s)Bi(T — 5, X(s), Z(s))dWi(s), 0<t < T, (56)
k=1v0

where
By(r,x,z) = Z oir(x,2)x; D log i (7, %, 2,m) + Ty (X, 2) Dy, log @ (7, %, 2, m)
i=1
n 6X(t)/$0 ( €T;
+ T olk( ) — Ok(x,2) | + vol(dLymy).
; Vi) \ M V(t) o
By comparing (16) and (56), the strategy used for V* should be

7 (t) = X} (t)D;log @(T — t) + 7i(x,2)0~ *(x,2) Dy log @(T — t)

5X*(1) (1-6)
Ve O

(57)

vol(dLymy¢)o .

The derivation of 7* ensures that it generates a wealth process V*, thus 7* € AMF,

21



Next, we show the equilibrium is unique. Denote ®(m;) := E[V (¢)|B], it is equivalent to show that there is
the unique fixed point mapping ®(m;) = m;. We have

SX*(H)E[e“a(T — t,m)/vol F]

e = P = S Rleea (T — £, m) ol FP]

SX*(t)E[e° DT — t,m) /vo| FP]
(1— (1 — O)E[eca(T — t, m) /ool FF])*

First, ® : Ry — R, is a continuous function, since from Appendix D we have

@/(mt) =

B[V = V#)=l[FIF°] < (2t + 2)L2E[JO W3 (v1, v2)dr], (58)

for any fixed m; € Ry, ®(my) = E[V (t)|FF] € R;. Furthermore, we set Ay = 1—(1=0)E[eca(T —t, m)/vo| F£,
Dy = 0|E[e“Dpa(T — t,m)/vo|FF]|. By mean value theorem, ® is a contraction of my if 75 > T, where
K = inf{t > 0;X(t) € K}, K := [0, g—f). As a result, the mean field equilibrium generated by (57) is unique

when the first exit time from K is less than 7. The probability of attaining the unique mean field equilibrium
is

_(log At — (m(t)A(1) — dm(a(t)m(t))t
PO i) = ( ! (Dm0 )

where N is the cumulative distribution function of a standard Gaussian distribution, x is initial value of total
capitalization X (-). O

It is clear from (57) that the mean field strategy actually depends on (X(t), Z(t),m:), which means the
optimal strategies are driven by stock prices, trading volumes and relative arbitrage benchmark. Similiarly to
N-player game, 7 is independent of preference ¢, meaning that the representative player’s preference level c is
not a crucial factor when determining strategies.

5.3 Example

Next, we encompass a simplified class of market models to shed some light on mean field regimes, where the
models exhibit selected characteristics of real equity markets and provide a tractable mean field equilibrium.
The class of models is inspired by the volatility-stabilized markets introduced in [10].

Example 5.1. In real markets, the smaller stocks tend to have greater volatility than the larger stocks. Mean-
while, the higher the trading volume of a stock, the larger the volatility of the trading. The parameters 3, o, 7,
T in M are set to the following specific forms which agree with these market behaviors. For 1 < i,j < n, with

infinite number of investors,
Zi(t)

Bill) = (L4 Qgiss aiy = Xu(y;

Yi(t) = Bi(t);  ij(t) = Zi(t)dyy.

We can check that the Fichera drift f;(-) < 0. Similiarly to Proposition 3.3, we can get a(-) < 1.
By Theorem 5.1, the optimal strategy ©t* of investor £ in a mean field game is

7 (t) =X, (t)D;log tp_y + Ti(t)o; Lt ) Dy, log tp_, + vol(my)o; “L(t)D,, log i,
OX (t)m;(t) 1-6

SX0) 1 (1—0)ym; vol(dLmq)o™ (1) SX () + (1—0)my

We denote p; as the conditional density of V (t) given By, which follows

dpy = —(1+¢)d, Z )dt— 1) > mi(t)(Xi(t))2 0upedBy.
i=1 =1

Next, plug 7! (t) into the equation of py, and let m; = Svpt )dv, i.e., the consistency condition, we get
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1 1

dmy = —(1+¢) Jmt 5 %(t)(?vvol(mt)mi - X, 2 (t)z ? (t)%vol(mt)(%mt
t ¢

26(1 — 8) X (t)z(t)
(26X (t) + 2(1 — 0)my)?
_ QJmt(ﬁvvol(mt)mit — mi%vol(mt)(?vmt (62{( )(:)_)(( (t)z ( )) 2, mt)dvdBt
o (1 —6)(Ordymy + dyvol(my)) (1 —6)%(Opmy + vol(mt))
2f . 0X(t) + (1 —0)my TTOX® + (= oyme)

avmt) dvdt

3
2

0 mt) dvdt,

where \ )
S(L—8)X72 ()22 () 5 16 § - 0,mydv 4]

vol(mt) = J (OX () + (1 —0)my)? vmtd’U[ 33— 4S T g medo) + 3|

With the explicit my expression, we can obtain closed form solution of 7*(t) in terms of X(t), Z(t), Ur—_¢.
If 6 = 0, meaning a investor intend to achieve relative arbitrage with respect to peer competitors, and

TXZ

ZX VD% i(x, 2) 22: Du:vz) (59)

We separate the variables T, x1, T2, 21, and zo. We denote S*(z) as the function for x1, xo, z1, and 2,
when k = 1,2,3,4, repsectively. T(1) = e“t¢7. A general solution can be found as

Sk(:zr) = x%[clJ1(2(—C'k:17k)%) + eY1(2(— Okfﬂk)%)]

where Zi:l Cr =&, J1 and Y1 are order 1 Bessel function of first and second kind, respectively. It concludes

U = ectem Hi:l Sk (1), which is the smallest amount of initial capital proportion that a generic investor need
to outperform the others, given it is the minimal nonnegative solution of (59). Thus we can get an explicit
equilibrium if we have the information on X(t) and Z(t) and initial condition X, zy. A numerical scheme for
the relative arbitrage problem will be considered elsewhere.

6 The relationship of N-player game and mean field game

In this last section we justify if mean field game is an appropriate generalization of N-player relative arbitrage
problem.

6.1 From finite games to mean field games

We conclude in the following proposition that the MFE we obtain agrees with the limit of the finite equilibrium,
and that the optimal arbitrage in the sense of (19) strongly converges to optimal arbitrage in the mean field
game setting (52).

Proposition 6.1. Suppose (8, 0,v,T)(t,x,z) take values in R™ x GL(n) xR™ x GL(n) is bounded and continuous
in every variable. If 7(-) is Markovian, and min{r® 7K} > T then w(T) = limn_,oo u*(T) a.s, for T € (0, 0).
Proof. 1t follows from Appendix D, P o (XY, V, vV W) is tight on the space C([0,T];R?) x C([0,T];RY) x
P2(C([0,T]; Ry x A)) x C([0,T]; R") and the weak limit exists. We proved in Proposition D.2 that the equilib-
rium g is the weak limit of 4V conditional on B. What left here to show is that the optimal cost in finite game

converges to the mean field optimal cost, since © and 7 are both bounded. By using the Markovian property of
7(+), b(-) and o(-), we would have

EF[ec VN (T — t)L(T — t)]
VN (t)L(t)

Then by the bounded convergence theorem and Proposition D.2, the deflator L(X (t), Z(t)) = limy o L(XN (t), Y(t))
a.s., and V(T) = limy_,o VY (T) in the weak sense. ¢, is i.i.d samples from Law(c).

T/(T —t) =

23



Therefore as N — o0,
uf(T) := inf J*(z%*) - inf J*Y(7*) = u(T)

TEA TEAMFE

almost surely, and u(T — t) is the weak limit of ‘(T — ¢) when ¢ > 0. O

6.2 From mean field games to finite games

We show here that MFE can be used to construct an approximate Nash equilibrium for the N-player game.
Since we derive strong equilibrium in both N-player and mean field game, x4V and p are measurable with respect
to the information generated by W and B, respectively.

From (57), the mean field control in general is of the form

m (t) = (Xi(t), X (t), pue, ve, Ur—t). (60)
Definition 6.1. For ey = 0, an open-loop € -equilibrium is a tuple of admissible controls
(bN = ((ZSN)l(t)? s 7¢N7N(t))0<t<T7 ¢N7é(t) eAc An7

for every £, such that
JH@") < inf T (p, 6™ ) + en,
pe

where p € A is an open loop control, and ¢ is of the form in (60). An closed-loop €x-equilibrium is a tuple ¢™
such that
T4 ON) < inf J'(O) + e,
peA

where each component in ¢ is defined in (60); p := (p(Up.4), & *(Uo,y)), in which Uy is the N -vector
of wealth processes generated by this strategy, p : [0,T] x C([0,T]; RY) — A is of the form (p(t,Ujg,))o<t<rs
o=t is defined in (60). For any £ =1,...,N, ¢"* and p are F-progressively measurable functions.

Proposition 6.2. Under Assumption 2, 3, and 12, assume tr—_¢ s Lipschitz in (X (t), ut,ve), there exists a
sequence of positive real numbers (en)n=1 converging to 0, such that any admissible strategy 7wt = (Wf)te[o,T]
for the first player

INE ¥ TN > —ey, £=1,...,N.

Proof. We look into the approximate open and closed loop Nash equilibrium. Without loss of generality, by the
symmetry of the game, we focus on player 1. For a fixed number of players IV, each player utilizes the optimal
strategy 7* from the associated mean field game, i.e., the strategy set is 7 := (77,...,7}) as in (60). The
rest part of the proof is mainly adapted to the general method on [4]. We articulate the different part from

general method: when 7V deviates to (p, 7—1), the state processes are V(t) and V*(t), £ # 1, and the empirical

measures are
1 N 1 N
pr = =i + Y 0veery ), v = = (80 m T DL Sty )
N £=2 N =2

We can show (ul,v¥) — (u,v4) in open loop, and (U}, u¥,v]N) — (VF, s, ) in closed loop in the similiar
vein of Proposition D.1 and D.2.

udy £ o, xV £ X, By Ito’s isometry and Ly convergence we get

lim JN((p,771);0,xY) = J*(p; 0,%).
N—w
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Appendices

A Market dynamics and conditions

This section recalls some properties of the market which are used to show the existence of relative arbitrage.

Definition A.1 (Non-degeneracy and bounded variance). A market is a family M = {X1,...,X,,} of n stocks,
each of which is defined as in (3), such that the matriz a(t) is nonsingular for every t € [0,00), a.s. The market
M is called nondegenerate if there exists a number e > 0 such that for r € R™

P(za(t)z” = €|z||?, Vt € [0,0)) = 1,

The market M has bounded variance from above, if there exists a number M > 0 such that for v € R"
P(za(t)z” < M||z|| Vt € [0,0)) = 1,

Remark 2. Let w be a portfolio in a nondegenerate market. Then there exists an € > 0 such that fori =1,...,n,

Tﬁ(t) = 6(1 - 7"—rnbxx(t))27Vt € [07 OO) (61)

3

almost surely. Indeed, this is directly from definition A.1, and T (t) = i (t) — 20x () + arr (t), where aqg(t) =
' ()a(t)w(t). Details of the proof can be found in [9].

Intuitively, no single company can ever be allowed to dominate the entire market in terms of relative capi-
talization.

Definition A.2 (Diversity of market). The model M of (3), (4) is diverse on the time-horizon [0,T], with
T > 0 a given real number, if there exists a number n € (0,1) such that

max my := m,) <1-mVO0<t<T (62)

almost surely and M is weakly diverse if there exists a number n € (0,1) such that
1 (T
0

almost surely.
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¢ c
Proof of Proposition 3.1. For (2), Since everyone follows VU(ZT) > ev—fVN (T'), we sum up this expression for

¢=1,...,N to get an inequality of Zgzl VE(t)/N. (17) follows immediately. Next, (3) can be easily derived
from Definition 3.1 that
VAT) >

cp < log <
SXN(t) + (1—0)% S0, Y

B Relative arbitrage and Cauchy problem
Proof of Proposition 3.2. From Ito’s formula, discounted process ‘A/e(~) admits
AV (t) = VT (t) (B(t) — o(1)O(t))dt + V(1) (x" (t)a(t) — ©'(£))dW (t);  V(0) = Ty,

and V/(.) is a supermartingale. For this reason, we get from (19) that for an arbitrary w’,

Hence, u‘(T) = p*.
To prove the opposite direction u*(T) < p’, we use martingale representation theorem (Theorem 4.3.4, [23])
to find

N
WYV (0) = E[VY] = { (T)ée + L(T) Z

U'(t) == E[e“VN(T)L(T)|F] = Jt P (s)dWs +p', 0<t<T, (64)
0

where p : [0, 7] x Q — R¥ is F-progressively measurable and almost surely square integrable. Next, construct a
wealth process Vi (-) = U(-)/L(-), it satisfies Vi (0) = p*, Vi(T) = e VN (T). If we plug a trading strategy

L
L(VEC)

into (16), further calculations imply Vi(:) = VPM(-) > 0 as. VPP(.) is the wealth process from hy(-).
Therefore, hy(-) € A with exact replication property V" (T) = e VN (T) a.s. Consequently, p* = u*(T) for

ha(-) = a (o ()[B() + U (O ()],

4

P © L= 0B € Asgiven /() € AN st VO S ey V()
Thus, we proved u’(T) = E[e* V™ (T)L(T)]/ V¥(0). 0

Proof of Theorem 3.1. Suppose a solution of (28) and (26) is @’ : C?((0,00) x (0,00)" x (0,00)") — (0,0).
Define N(t) := 0(T — t, Xy 5, Vjo,)e“ VN ()L(t), 0 < t < T.

By calculating d]y(t)/N(t) and using the inequality (28), we get that the dt terms in dN(t)/N(t) is always
no greater than 0. N(t) is a local supermartingale. And since N(t) = w*(T —t, Xjo 1, Yjo,1)e“ VN (£)L(t) > 0,
N (t)is a supermartingale

Hence N(0) = o'(T,x, y)VN( ) > EP[N(t)] = EP[e“VN(T)L(T)] holds for every (T,x,y) € (0,%0) x
(0,00)™ x (0,00)". Then @ (T, x,y) = EF[e«VN(T)L(T)]/VN(0) = a*(T, x,y). O
C Function Generated Portfolios
Proof of Theorem 4.2. By Ito’s lemma,

¢ o
dlog et = [0 - “Pa(0) - R 050 + IR Oo@IPldt + [5() - R O)odw (0. (63
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Since G; and G are twice continuously differentiable function, it follows

D;;log G1(m(t)) = %@;S)) — D, log G1(m(t))D; log G1(m(t)),
Dy;G2(Y(1)) (66)
Dijlog Go(Y(t)) = GO0 Dilog G2(Y(t))D; log G2(V(t))

Then using (66) and Ito’s lemma, the right hand side of (45) becomes

dlog G (m(t)) + dlog Ga(¥( ZD log G1 (m(t))dm; (t)
2G1 21 Di;G1(m g
13 DiloxGi(mit)D; o G m(@)m (m, (Y T )7l
3,7=1 E—1
+ ) Dilog GaONAV(0) + 5 3] DuGa(V(O)sy (1)
i=1 ij=1
-5 Z D;log Go(Y(#))Dj log G2 (Y(t))hi; (t)dt
o (67)
The local martingale part of (65) and (67) are the same, and this leads to
¥(t) = [(Dilog G (m(t))my (1)), (I — 1m'(t)) + (Dilog G2 (V(1))nr(t)o ™ (t)] + R(1),
for t € [0,T], and for each k. Substitute this result into (65),
Vé
log V(D) =dlog G2(Y(t)) + dlog G1(m(t))
- {él(t)(*a(t)m(t)) + Ga(t)(—a()r" () + %(llGl( JolI” + G2 (o> — (17 o]|)
2G1 JZ:IDUGI m; (t)m j(lt)(];1 ik ()75 (1)
T
O

Lemma C.1. A matriz A is semi-definite if and only if (xAy')? < (zAx")(yAy') for all z, y in R™. The equality
holds if and only if xA and yA are linearly dependent.

Lemma C.2. If A = (a;j) is positive semi-definite matriz, then there is an index k such that agr = a;j, for
any i and j. In other words, the largest entry of the matrix A appears on the diagonal.

We show here the derivation in Example 4.1.

Proof of Example 4.1. Let M be a market without dividends. Suppose that M is nondegerate and has bounded
variance. Suppose M is weakly diverse in [0,T]. Consider the function G; and Go are defined as in example 4.1.

n . n
[, m; < Zi:ﬁ < ﬁ implies that

1 NZ2 N2
O<G1(m)<ﬁ, 1—7<G2(y(t))<17%
then
2 1 N2
1—— <logGi(m) +logG2(YV(t)) < = + —



The portfolio (47) generated by Gy and G implies

‘ N N -Y() >/ -1

m; > max{0,1 — (n+ X" )V )1l —n)+ | === | 7(t)o” " (t)e;}; 68
(0.1 ( DY)+ (g ) 00 e (65)

, 1-6 —)(t) )’ N

¢ Lo\ (b N 1
7 <min{l + ——(V*(¢ (t VY + | =——— t t)e;, 1}. 69
< minfl + VO OV + (G0 ) 0o Ben 1) (69)
Denote max;—1,.. ,m; = m), min—i . ,m; = Mmy,), MaXi=1,..n T = T(1), ming—q,.. 7 = T(n)s and the

eigenvalues of a(t): max;=1,.n A\i = A1), MiNi=1,..n Ai = A(n). Mpax := (M1, M), ..., m)).

We'll use the following results to simplify Z(T):

(i) M is nondegenerate, weakly diverse and has bounded variation;

(i) £ <>, m? <1 implies that 0 < [|(1 — nm)|| < y/n(n — 1);

. . N _ N — Amaz
Sy ()2 < 1 implies | S50, 7 () ro |l < (|55, 7 @)ll2 - [17ll2 - [lo™!la < Ny/322=t8, where the

norm for 7 and ¢~ ! is matrix induced norm. For a matrix A € R™*" ,/Trace(AA4’) = ||Al|r < /n||A]|2,
where || - ||2 is the matrix induced norm. Trace(r7™) = 37", SV 7£ = ne > (1 — wfl))Q, then ||7]|2 =
N
€21 (1— 7Tfl))2§
(iii) |3;] and |a;| for any ¢ and j is bounded by lemma C.2, thus we could easily get Y(¢)7(t)o =" (t)3(t) > Mo;

By lemma C.1, ea(t)m(t) < (ea(t)e;)(m’(t)a(t)m(t)) < MM'|lm(t)|]> < MM’, where ea(t)e; <
Mlei]|?, m'(t)a(t)m(t) < M'|[m(t)||*.

T _ a

=(T) = L {(ei —m(t)) a(t)m(t) + GQ();(Z)) (Y"(t) — oL (t)B(t)) + dl(t)%dl’(t)}dt

(Z) g 2 1 < m/ T 1

< { aOmn (1~ i + g 317070 7™ 50)

M 1 al , _ €
+ 5 |l =2+ Gow) T P - §||wf||2}dt
i i e M, My M N2 MG () e (7
< T[MM - + - NT2 - ZV—: + 7(11(11— 1)+ - N72)2 /\%n()()al))] — §L m?x|7rf|2dt
where
d“(t) := 1 — nm — 7(t) + L@)Ta_l
' G2 V(1)
N :
mae [/ [? > [max{0,1 (n + czs";(g))a ) — %T(t)a-l(t)ei}]?

Hence, for t € [0,T],

VE
log VN =log G2(Y(t)) + log G1(m(t)) + =,

1 N? , € M, M, N2 N2 (T
<1+§—%+T[MM SRt 7?2\,_; +7(n(n—1)+ 1NT2)\?nin(o(.z))]'
Then 7 strictly dominates the weighted average V¥ (t) if
nN? —2n? — 2

T>

—2en + 2Mpn? — 220 4 M2 (n(n — 1) + 25y el )

TNZTNZ. (=T
- 1- 22 Anin(o™h)
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D Limiting behavior of finite games vs mean field games

Differentiating from the usual Mckean-Vlasov SDEs of the form that the coefficients of the diffusion depend
on the distribution of the solution itself, we here consider the joint distribution of the state processes and the
control, and show the propagation of chaos holds.

In this section we attempt to show that in the limit N — o0, a vector of stock prices X (t) := (X1 (t), ..., X, (1))
and the wealth of a representative player will satisfy Mckean-Vlasov SDEs. Namely,

dX(t) = X()B(X(t), vi)dt + X () (X (1), v)dB;,  Xo = x; (70)
AV (t) = n(t)B(X(t),v)dt + w(t)o (X (t),v)dB, V(0) = vp, (71)
where B, = (By, ..., B,) is n-dimensional Brownian motion, v := Law(V,7|FF). v is with the same law as

v, and it is supported on (Q, F,F,P).

Remark 3. In this section, we analyze a Mckean-Vlasov system with initial states given, but we shall see in
mean field games sections that it is given in the form as vy = a(T)V(0).

The following proposition shows that vV has a weak limit v € P2(C([0, T]; R™ x A)) with Wy distance. We
denote C™" = C([0,T]; R™ x A) for simplicity.

Proposition D.1. Under Assumption 2, 3, and 11, there exists a unique strong solution of the Mckean-Viasov
system (70)-(71).

Proof. Define the truncated supremum norm ||z||; and the truncated Wasserstein distance on P?(C™") as in
[19]. [|z][? := supp< <t |75,
By =t [ e yle(dn,dy).
well(p,v) Jon xcn

Define a map ® : P2(C™Y) — P2(C™") so that ®(v) = Law(V¥, 7| FP). Fix v, solve (70) and (71). Since
solutions of (70) and (71) are equivalent to fixed points of ®, we begin by proving that ® is a contraction
mapping in a complete space C™.

We take two arbitrary measures v, v € P2 (C™N), and denote the wealth involving measure v as V¥, and
stock price vector involving v as X¥. By Cauchy-Schwartz and Jensen’s inequality, Lipschitz conditions in
Assumption 2 and 3, it follows

v v VP vb
E[||(V"", &) = (V7 X)) F]

<2ﬂEUO V7 () (0)Bx, ) — VY () (1) B(x, P2 + |b(x, %) — b(x, v*)|2dr

FB ]

S
b

+ ZIE[ sup | 174 (T)ﬂ'”a (r)o(x,v*) — v (r)ym”
0<s<t 0 0<s<t 0

t
<@+ 2>L2E[ [ —ve e - e e Wi i EB]
0

By Gronwall’s inequality,
t
@ b @ v® VP VP a
E[|V" = VY IRIFP] <E[(V7,27) = (V7 27| [FIFS] < (2f+2)L2]E[JO Wi (v v))dr]. (72)
If 7 is open loop control, i.e., 7(t) = ¢(vo, v, Bio, 1),

v VP v vb v v? a a
E[||7" —a" [[}|FP] < 2L?E[lvy — o8 1> + [Bfo.g — Blogl* + Wi (v )| FF] < 2L2EWS (v, )] (73)

If 7 is closed loop Markovian, i.e., w(t) = &(t, V (t), vt),

t
Bl|ln" — " |PIFP) < 2LV - V| - WRGE ) < A+ DLBL| WEGR D). ()
0
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Then the coupling of ®(11), P(2) gives the following inequality
a v® _v® A
4 (@), 2(W")) <E[[|(VV", 7)) = (V7 7)1 FF)

T
< C:rIE[f0 Wa (v, vy)dr] (75)

T
< J a2 (v, V) dr,
0

where Cr = 2(T + 2)L? + 4(T + 1)L* for closed loop Markovian controls, and Cr = 2(T + 2)L? for open loop
controls.
Following Picard iteration scheme, choose an arbitrary vV € P?(C™%),

VZJrl _ (I)(I/e),

® has been proved as an contraction mapping when 0 < 7T < ﬁ -2, L < % and thus ® has a unique fixed point

and v converges to v by the contraction mapping principle. For T > ﬁ — 2, we prove the above argument for

[T,2T], [2T, 3T1, etc. O

Subsequently, we show in the following proposition that MFE strategies coincide with the limit of optimal
empirical measure in the weak sense.

Proposition D.2. There exists limits for measure flows v € P2(C™N), uN e P2(C([0,T];Ry)), i.e., the
limits vy = limy_ oo VtN, e = limpy o u,{v exist in the weak sense for t € [0,T] with respect to the 2-Wasserstein
distance.

Proof. Let (U*) be the solution of closed loop Markovian dynamics ¢* : [0, 7] x Ry — A,
dU*(t) = U (t)o" (¢, U (1) B(Xe, vy)dt + UL ()" (t, U (t))o (X, 11)d By,  U*(0) = 2,
or of open loop dynamics
dU*(t) = U*(t)¢" (v", Bjo.1)B(X¢, m)dt + U ()" (v°, Bjo.11)o(Xe, vi)dBy, U (0) = o".
for £ = 1,...,N. The initial states v’ are i.i.d copies of v. We assume the initial value of U*(0) is of the same

law with V4(0).

t ¢
BV, (V) - (U, (UDIF) < Ca] | WhwY,w)dr] < Co | 27 v)ar] (76)
0 0
for t € [0,T], Cr is defined in Proposition D.1. For simplicity, let us discuss in the case of closed loop dynamics,
the result of which can be generalized to open loop dynamics.
N are the empirical measure of N i.i.d samples U*. We follow the coupling arguments in [4], the empirical
measure of (V¢ U*) is a coupling of the N-player empirical measure vV defined in Definition 2.2 and 7.

N
d; (N, 7)< % DVES V) = (U UNIE as. (77)

(=1

By the triangle inequality and (76), (77),
t
Eld; (VN ,v)dr] < 2E[d; (7", v)] + 2CTIE[J 2N, v)dr],
0
and then by Gronwall’s inequality and set ¢ = T, it follows

EW; (N, v)] < 262 TTE[WE (7Y, v)].

Since (U €t ), £=1,..., N is independent given the noise B, use conditional law of large numbers (Theorem
3.5 in [22]),

N
P(Jim >, f(U,7") ~E[f(U",n")| FF]) =1, for everyf € Cy(R")
=1
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N

We then use Theorem 6.6 in [25], which states that on a separable metric space, v — v weakly.

lim d(z,z0)?vN (dx) = J d(z,x0)*v(dx) as.,
RN

N—w0 RN

which lead us to

EW3 (7N, v)] — 0.
Therefore E[WZ(v™,v)] — 0. We can use similiar methods to derive E[W2(u®, )] — 0. O

Assumption 12. There are the following bounds on 8 and o:

1+B8

t
jwz-(r,wndm nw, )|t — 5|5

148

t
f 102, (1 w)|dr < E(w, )|t — 5]

where t,s € [0,T], a and  are positive constants, and n,§ being F-measurable random variables with values in
(0,00) x Q x C™N such that there is € > 0 with E[n(w,v)?] < w0, E[¢(w,v)?] < .

Proposition D.3. If Assumption 12 holds, then there exist n dimensional continuous process X defined on the
probability space (2, F,P), such that X(t) = imy_,o XN (t) ezists a.s. for all t € [0,T].

Proof. First we show that {P¥"} is tight. By [17], a sequence of measures 1V on P2(C([0,T];Ry)) is tight if
and only if

e there exist positive constants M, and ~ such that E{|x" |7} < M, for every N = 1,2,...,

e there exist positive constants M}, and &y, d2 such that E{| XN (t) — XN (s)[%} < M|t — s|'*+°2 for every
N=1,2...,1s€e[0,T]

Apparently, the first condition holds. Then,

AN (1) = AN (s)[* < NP(XY () = XV (8)[* + o+ [X0T(1) = XY (5)]),

t

XY () - XN (s IJ XN (r)Bir d?”er XN (o (r)dWi(r)|* < (1) (n(w, v)*t=s[* P+ ) IJ oir(r)dWi(r)|*).

k=1 v$

Then let o« = 2 in Assumption 12, by Ito’s isometry,

EuxN(t)XN<s>|2]<Na/2<n+1>a<E[n< i+ 4 Y S E j o (1) [2A Wi (r >]>

i=1k=1

< NG+ 12 (B )?] + Bl 7] ) 117

where E[n(w, v)?] + E[¢(w,v)?] < o0,k € (0,T]. Thus the second condition follows.
By Prokhorov theorem [2], tightness implies relative compactness, which means here that each subsequence
of XN contains a further subsequence converging weakly on the space C([0,T]; R?). As a result, a subsequence

exists such that X' (¢) = limy_,o XV (#) a.s.. Then if every finite dimensional distribution of {P* N} converges,
then the limit of {P* N} is unique and hence {P* N} converges weakly to P as N — c0. O

Proposition D.4. Under Assumption 2, X(t) = limy_,o XN (t) exists in the weak sense, and the limit X (t)
match the solution of the Mckean-Viasov SDE

Xm(t) = Xl(t)ﬁl()((t), I/t)dt + Xi(t)O'i(X(t), I/t)dBt

32



Proof. Since vy = limy_,o v}, it is equivalent to show that the drift and volatility of v; matches the weak limit
of that of v}V, i.e.,

BX(1),m) = lim BN (1), (1), o(X(t), 1) = Jim o(X™ (), (2)).

in the weak sense.
By Lebesgue dominated convergence theorem

t
||f BN 0N) — B(Xeyva)ds] 22 <j BN, ) — B(Xs, 1) [2ads
0
t t
<LE[I |XSN—XS|2ds+f Wa (v vg)?ds]
0 0

By Ito’s isometry and Assumption 2, we have

s S

IIJ (&N, N dw, J (X, v5)dB,|[}: = E flo (A1) = o (X, vs)[*ds]
E[ f AN — X P+ W5l v )ds).
0

Hence it follows from the fact that X'(t) = limy_o XV (¢) a.s., 14 weakly convergent to vV (t) with Wa, we
get X (t) satisfies
dX(t) = X(t)B(X(t), v )dt + X(t)o (X (t),v)dBy

O

Finally, under Assumption 6 we conclude that when N — oo, the limiting system is driven by X; and
vy := Law(V (t),w(t)). The stock market follows

dXy = X(t)B(Xe, v| FP))dt + X (t)o(Xy, ve| FP)dB:, Xo = x,
and a generic player’s wealth is
dV (t) = n(t)B(X(t), ve| FB))dt + n(t)o(X(t), ;| FEYdB:, V(0) = vp. (78)

With the notations in Definition 2.1 (3), if we consider the mean Z(t) of the measure Law(V (t), 7 (t)|FF), we
can get Z(t) = limy_,o Y (t) exists in the weak sense, and the limit Z(¢) match the solution of the Mckean-Vlasov
SDE

dZ(t) = v(X, Z(t))dt + (X, Z(t))dB,. (79)

This is used primarily in Section 5 and 6.
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