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EXECUTIVE SUMMARY 

In this study, modeling was performed to represent the complex hydrogeological and 
geochemical conditions in a heterogeneous aquifer by using two separate ROMs. The first ROM 
is derived from a high-fidelity model that accounts for the heterogeneous flow and transport 
conditions in the presence of multiple leakage wells. This ROM, developed by Lawrence 
Livermore National Laboratory (LLNL) takes into account uncertainties related to flow, 
transport, and leakage parameters, but this ROM has a simplified representation of chemical 
reactions. The second ROM is obtained from models that feature greatly simplified flow and 
transport conditions, but allow for a more complex representation of all relevant geochemical 
reactions. This ROM, developed by Lawrence Berkeley National Laboratory (LBNL) takes into 
account uncertainties related to chemical parameters and reactions. Both ROMs specifically 
address the physical and chemical properties of the High Plains Aquifer (Becker et al., 2002).  

Neither ROM can separately provide an accurate prediction of the risk profile volume, because 
of the simplifications inherent in these models. Accurate prediction could be achieved with a 
very complex 3-D reactive transport model this model would be too demanding computationally. 
Therefore, development of an alternative approach that allows linking of the two ROMs and, in 
particular, a correction of the risk profile volumes estimated by the two separate ROMs, was 
conducted.  

The development of a linking function was accomplished by: (1) the establishment of two simple 
models— a 1-D model with homogenous flow and transport field and single leakage point, but 
including as many chemical reactions as possible—and a 2-D model considering aquifer 
heterogeneity but no reactions; (2) the development of a complex model that incorporates all the 
parameters and physical and chemical processes of both simple models;  (3) multiple runs of 
both simple and complex models; and (4) estimation of the linking functions based on those runs.   

 

This report describes the development and usage of the ROMs and linking function. 
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1. INTRODUCTION 

CO2 geologic storage is being considered as a possible measure to curb the anthropogenic 
emissions of greenhouse gases. A careful assessment of the risk associated with CO2 geologic 
storage is critical to deployment of large-scale CO2 geological storage. One of the potential risks 
is the impact of potential CO2 leakage from deep subsurface reservoirs on overlying groundwater 
aquifers. The leakage of CO2 could affect such aquifers in several ways. First, the dissolution of 
CO2 in water increases the concentration of dissolved carbonic acid, and thus the pH of the 
groundwater drops. Second, trace elements could be mobilized through mineral dissolution, 
desorption reactions, and/or exchange reactions involving H+ and other mobilized constituents 
(e.g., Aiuppa et al., 2005; Zheng et al., 2009; Kharaka et al., 2010; Little and Jackson, 2010; 
Wilkin and Digiulio, 2010; Zheng et al., 2012a; Trautz et al., 2012). Third, because supercritical 
CO2 (SCC) is also an excellent solvent for organic compounds (Anitescu and Tavlarides, 2006; 
Kharaka et al., 2009), concerns have been raised about the potential mobilization of organic 
constituents from depth and subsequent transport to shallow drinking water bodies via leakage 
pathways (Zheng et al. 2010; 2013).  

This particular risk is one of the major risks considered in risk profiles developed by the National 
Risk Assessment Partnership (NRAP). NRAP is a multi-laboratory research program aiming to 
provide the scientific underpinning for risk assessment with respect to the long-term storage of 
CO2. Numerical models are the primary tools employed in the development of risk profiles. 
Because numerical models for evaluating the impact of CO2 leakage on groundwater are very 
complicated and also involve large uncertainties, more efficient models are needed during the 
development of risk profiles. Reduced-order models (ROM) were therefore proposed to act as 
surrogates for the complex process-based numerical models.  

So far, two generations of ROM have been developed for the NRAP project. The first-generation 
ROM uses pH and total dissolved solids (TDS) as the risk-monitoring metrics and focuses on the 
temporal and spatial evolution of pH and TDS in response to CO2 and/or brine intrusion into a 
shallow aquifer.  The second-generation ROM includes the temporal and spatial evolution of 
trace metals, such as lead (Pb), arsenic (As), and cadmium (Cd), that might be mobilized from 
the aquifer sediments as a result of leakage. This document describes the development of a 
second-generation ROMs to investigate the impact of brine and CO2 leakage on groundwater in 
the High Plain Aquifer System, in fulfillment of NRAP milestones D2.3.5.3.  

The development of ROMs generally relies on conducting a limited number of high-fidelity 
numerical simulations that consider all relevant flow, transport, and chemical processes that 
could potentially have an impact on CO2 and brine leakage into groundwater.  These high-
fidelity simulations are then used to “train” simpler ROMs (e.g., look-up tables, functional 
relationships) that sufficiently represent their results for a wide range of uncertain input 
parameters.  Developing such high-fidelity numerical models that incorporate 3-D heterogeneous 
flow, and transport fields, and all relevant chemical reactions is very challenging. For our 
purpose, with currently available codes, such a model would be too computationally demanding 
to make the derivation of ROMs practically feasible.  

In this study, we make an attempt to represent the complex hydrogeological and geochemical 
conditions in a heterogeneous aquifer by using two separate ROMs. The first ROM is derived 
from a high-fidelity model that accounts for the heterogeneous flow and transport conditions in 
the presence of multiple leakage wells. This ROM, developed by Lawrence Livermore National 
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Laboratory (LLNL) and referred to as LLNL ROM, takes into account uncertainties related to 
flow, transport, and leakage parameters, but this ROM has a simplified representation of 
chemical reactions. The second ROM is obtained from models that feature greatly simplified 
flow and transport conditions, but allow for a more complex representation of all relevant 
geochemical reactions. This ROM, developed by Lawrence Berkeley National Laboratory 
(LBNL) and referred to as LBNL ROM, takes into account uncertainties related to chemical 
parameters and reactions. (See Section 3 for development of the LBNL ROM.)  Both ROMs 
specifically address the physical and chemical properties of the High Plains Aquifer (Becker et 
al., 2002). A parallel effort is conducted for the Edwards Aquifer example by NRAP groups 
based at the Pacific Northwest National Laboratory (PNNL) and Los Alamos National 
Laboratory (LANL) (Bacon, 2013).  

NRAP system-level model results describe the environmental risk of geological CO2 storage for 
so-called risk metrics. Regarding possible impacts to groundwater aquifers, the currently defined 
risk metrics are the aquifer volume in which the water quality of the aquifer may have been 
affected by an underlying CO2 storage projects. Examples of risk profiles include the volume in 
which pH is reduced and the volume in which arsenic concentrations are elevated above a 
threshold value. Clearly, neither the LLNL ROM nor the LBNL ROM can separately provide an 
accurate prediction of the risk profile volume, because of the simplifications inherent in these 
models. Accurate prediction could be achieved with a very complex 3-D reactive transport 
model, but, as mentioned above, this model would be too demanding computationally. 
Therefore, we seek to develop an alternative approach that allows linking of the two ROMs and, 
in particular, a correction of the risk profile volumes estimated by the two separate ROMs. This 
approach, defined here as the linking function method, is described in Section 4 of this report.  

As discussed in Section 3, the reactive transport ROM is based on a 1-D reactive transport model 
of a representative flow path of the High Plains Aquifer. The model considers aqueous 
complexation, mineral dissolution/precipitation, and adsorption/desorption via surface 
complexation. This basic geochemical model draws on lessons learned from detailed 
mineralogical and experimental studies on groundwater sediments exposed to elevated levels of 
dissolved CO2 (Zheng et al., 2012a; Trautz et al., 2012). The second-generation ROM was 
thereafter developed based on results from the 1-D flow-path model. Outputs from the ROM 
include the aquifer volume with pH reduced to below 6.5, the aquifer volume with total 
dissolved solid (TDS) elevated above 500 mg/L, the aquifer volume with concentration of As 
above the maximum contaminant level (MCL), the aquifer volume with concentration of Pb 
above the MCL, and the aquifer volume with concentration of Cd above the MCL. The inputs to 
the ROM are several parameters related to chemical reactions. In Section 4, we applied the 
linking function method to combine the LBNL ROM and the LLNL ROM, so that the 
uncertainties of all relevant physical and chemical parameters are taken into account in the 
estimation of the impacted aquifer volume. The linking function method is tested and verified by 
comparing the predictions of the developed functions against the output of a detailed high-
fidelity model. 
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2. SECOND-GENERATION ROM FOR REACTIVE TRANSPORT PROCESSES  

2.1 THE BASE MODEL  

2.1.1 Model setup 

The base 1-D model attempts to mimic a stream line in the 3-D flow field within the LLNL 
model of the High Plains Aquifer. The simulation domain is 10,000-m long and discretized into 
1000 equidistant gridblocks 10-m wide and 10-m high. A hydraulic gradient of 0.003 is applied 
by fixing the pressure at gridblocks on the left and right boundaries. A single leaking point is 
assigned at x = 1000 m, with CO2 and brine leakage rates shown in Figure 1. These rates 
represent a hypothetical leakage pathway related to a deep leaky well connecting a deep geologic 
reservoir for CO2 storage with a shallow groundwater resource. The temporal evolution and 
magnitude of leakage is based on the first-generation ROM for wellbore leakage.   

 
Figure 1. The leakage rate of CO2 and brine as a function of time. 

In the geochemical model, the chemical reactions considered are aqueous complexation, mineral 
dissolution/precipitation, cation exchange, and adsorption/desorption via surface complexation. 
Details of these reactions are given in NRAP deliverables 3.5.1d, 3.5.1e (Zheng et al., 2012b) 
and 3.5.1f (Zheng et al., 2012c). In the current model, the dissolution of calcite and surface 
protonation reactions are the main pH buffering processes. Surface complexation reactions on 
goethite, illite, kaolinite, and smectite are the dominant reactions that control the release of As, 
Pb and Cd.  

In 1999, water samples from 74 randomly selected domestic water-supply wells completed in the 
Ogallala Formation of the central High Plains area were collected as part of the High Plains Regional 
Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment 
Program (Becker et al., 2002). The samples were analyzed for about 170 water-quality constituents 
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that included physical parameters, total dissolved solids and major ion concentrations, nutrients and 
dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. In 2010, 
30 of 74 wells wereresampled. The initial concentration of major and trace elements in the model 
are the arithmetic average of concentration data from both 1999 and 2010, which are listed in 
Table 1. 

 

Table 1. Initial chemical composition of groundwater in the model. Concentrations are in 
molal units (except for pH and Eh). Note that the concentration of Cl was somewhat 
modified from the original data to maintain charge balance. The Fe+3 concentration is 
calculated by assuming equilibrium with goethite.  

Primary 
Species 

Total 
Concentration 

(molal) 

Ca+2  1.37E‐03 

Mg+2  8.74E‐04 

Na+  1.60E‐03 

K+  1.13E‐04 

Cl‐  1.85E‐03 

HS‐  6.48E‐04 

SO4
‐2  5.77E‐05 

HCO3
‐  3.95E‐03 

H4SiO4(aq)  5.33E‐04 

Fe+2  1.01E‐06 

Fe+3  8.97E‐16 

AlO2
‐  1.57E‐07 

Sb(OH)3(aq)  5.59E‐10 

H3AsO3(aq)  2.33E‐08 

Ba+2  8.10E‐07 

Cd+2  6.91E‐10 

Pb+2  1.57E‐09 

HSe‐  5.34E‐08 

Eh  ‐0.26 volts 

pH  7.4 

 

The concentration of Cl, Pb, Cd, and As in the leaking brine are four of the six variables for 
uncertainty quantifications, as described below. Their concentrations in the base case are listed in 
Table 2. The pH and concentration of dissolved CO2 are obtained by saturating the initial water 
with CO2 at the hydraulic pressure of the aquifer. For the rest of species in the leaking brine, 
their concentrations are assumed to be the same as in the initial water.  
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Table 2. Concentration of contaminants in the leaking brine (in molal units). The 
concentrations of other brine constituents are the same as in Table 1.  

 

 

2.1.2 Model results 

Simulations were conducted with TOUGHREACT (Xu et al., 2012). The leakage of CO2 into the 
aquifer leads to an increase in concentrations of dissolved CO2 (Figure 2) and a subsequent drop 
in pH (Figure 3). The drop in pH induces desorption reactions, as illustrated by the concentration 
changes of montmorillonite 2Pb, a surface Pb species on smectite (Figure 4). Consequently, Pb is 
released into to groundwater and the concentration of Pb increases (see Figure 5). Similarly, the 
concentrations of Cd and As increase in groundwater, as shown in Figure 6 and 7.  

 

 
Figure 2. Spatial distribution of total dissolved CO2 at 50, 100, 200 years. 
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Figure 3.  Spatial distribution of total dissolved CO2 at 50, 100, 200 years. 

 
Figure 4. Spatial distribution of sorbed Pb (as (mon_)2Pb, a surface Pb species on smectite) 
at 50, 100, 200 years.  
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Figure 5. Spatial distribution of dissolved Pb concentration at 50, 100, 200 years. 

 

 
Figure 6. Spatial distribution of dissolved Cd concentration at 50, 100, 200 years. 
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Figure 7. Spatial distribution of dissolved As concentration at 50, 100, 200 years. 

The increase in trace metal concentrations within the aquifer is caused by two contamination 
sources: the leaking brine, which contains trace metals, and mobilization of trace metals within 
the aquifer itself via desorption from mineral surfaces. One interesting question is, which one of 
these two sources plays the major role? Figure 8 shows model results for As in a sensitivity run, 
which does not consider any reactions. In this run, concentration increase in the aquifer is 
controlled exclusively by the concentrations of trace metal in the leaking brine. The 
concentration of As predicted in this sensitivity run is very low in comparison with that in the 
base-case run (Figure 8). Another sensitivity run inherits all the chemical reactions of the base-
case run, but with As concentration in the leaking brine as high as 10-5. In this case, the predicted 
As concentration is still the same as in the base-case run (Figure 9). Similarly, as shown in 
Figures 10 and 11, increasing the concentration of Pb and Cd in the leaking brine does not make 
any difference to the concentration of Pb and Cd predicted in the aquifer. These results suggest 
that the leaking brine does not contribute significantly to the rise in concentrations of trace 
metals in the aquifer.  

There are two reasons for this behavior. First, the leaking brine is significantly diluted by the 
upstream uncontaminated water. Second, the desorption/adsorption reactions act as a buffer.  If 
the concentration of trace metals in the leaking brine is higher than in the aquifer, the desorption 
by pH decrease will be impeded to some extent. On the other hand, if the concentration of the 
trace metal in the brine is lower than that in the aquifer, the effect of pH on desorption will be 
increased. In either case, however, the ultimate concentration is controlled by sorption/desorption 
reactions rather than the concentration of leaking brine (because sorption sites on aquifer 
sediments are not fully saturated). Note that this observation is only valid for the scenario used in 
this report. If in some particular cases, the quantity of leaking brine is large enough and the 
concentration of trace metal is high enough to surpass the buffer by surface complexation (i.e., 
high enough to saturate sorption sites), the leaking brine could play a major role in determining 
the resulting trace metal concentration in the aquifer.  
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Figure 8. Spatial distribution of dissolved As concentration at 200 years in the base-case run 
and a sensitivity run that does not consider any chemical reactions.  

 

 
Figure 9. Spatial distribution of dissolved As concentration at 200 years in the base-case run 
and a sensitivity run that inherits all the chemical reactions of the base-case run but with As 
concentration in the leaking brine at 10-5 mol/kg, about 1.5 order of magnitude higher than 
that in the base-case run.  
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Figure 10. Spatial distribution of dissolved Cd concentration at 200 years in the base-case 
run and a sensitivity run that inherits all the chemical reactions in the base-case run but 
with Cd concentration in the leaking brine at 10-6 mol/kg, about 1.5 order of magnitude 
higher than that in the base run.  

 

 

Figure 11. Spatial distribution of dissolved Pb concentration at 200 years in the base-case 
run and a sensitivity run that inherits all the chemical reactions in the base-case run but 
with Pb concentration in the leaking brine at 10-5 mol/kg, about 1.75 order of magnitude 
higher than that in the base run.  
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2.2 GLOBAL SENSITIVITY ANALYSIS 

We performed a relatively simple assessment of the sensitivity of some input parameters, as 
described in the previous section. Here, for a better understanding of the controlling processes, 
we discuss a more rigorous global sensitivity analysis of the parameters associated with the 
chemical processes. The performance measures for the global sensitivity analysis are as follows, 
for 10 simulated time periods (20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 years):  

 Volume of aquifer reaching pH < 6.5 

 Volume of aquifer reaching TDS > 500 mg/L 

 Volume of aquifer reaching concentrations of As > MCL  (established by the U.S. 
Environmental Protection Agency [EPA], 1.33e-7 mol/kg) 

 Volume of aquifer reaching concentrations of Cd > MCL ( 4.05e-8 mol/kg) 

 Volume of aquifer reaching concentrations of Pb > MCL (7.24e-8 mol/kg) 

The global sensitivity analysis of the 1-D model was performed using PSUADE (Tong, 2010) in 
combination with TOUGHREACT version 2 (Xu et al., 2012). PSUADE (Problem Solving 
environment for Uncertainty Analysis and Design Exploration) is a software package for various 
uncertainty quantification (UQ) activities, such as uncertainty assessment (UA), sensitivity 
analysis (SA), parameter study, and numerical optimization.  

2.2.1 Sampling 

By design, the 1-D model is rather simple in terms of characterization of flow and transport 
processes, and focuses largely on the geochemical reactions, for the purpose of conducting 
global sensitivity analysis only on geochemical parameters. Table 3 lists the considered input 
variables for global sensitivity analysis and their ranges. Note that the sorption factor is a 
generalized parameter for characterizing the sorption capacity of the aquifer relative to the base 
case for the High Plain Aquifer model, which considers (as sorbing minerals) 2.85 vol.% illite, 
1.36 vol.% smectite, 1.7 vol.% kaolinite, 0.6 vol.% iron hydroxide in the aquifer sediments. A 
Latin hypercube sampling method was adopted, and a total of 1000 samples were generated 
corresponding to 1000 simulations of the 1-D numerical model. 

2.2.2 Sensitivity analyses 

In this section, we discuss the sensitivity of performance measures to those parameters listed in 
Table 3. Note that if the concentrations of trace metal do not exceed their perspective MCL, the 
volume of aquifer with concentration > MCL will be zero. Simulation results showed that this 
was the case for Pb and Cd in most simulations. In 1,000 simulations, we obtained only 4 non-
zero volumes for Cd and 81 non-zeros for Pb. Such small numbers of non-zero values prevent us 
from performing meaningful UQ for Pb and Cd. Therefore, we limit our analyses to the volume 
of aquifer with pH < 6.5, the volume of aquifer with TDS > 500 mg/L, and the volume of aquifer 
with concentration of As > MCL.  
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Table 3: Input variables and ranges for global sensitivity analysis 

Number  Name  Description  Minimum  Maximum  Distribution 

1  Pbbrine  Pb concentration in the 
leaking brine 

‐8.5  ‐5  Log‐ uniform 

2  Cdbrine  Cd concentration in the 
leaking brine 

‐9.0  ‐6.0  Log‐uniform 

3  Asbrine  As concentration in the 
leaking brine 

‐9.0  ‐5.0  Log‐uniform 

4  Clbrine  Cl concentration in the 
leaking brine 

‐2  1  Log‐uniform 

5  calcitevol  Calcite volume fraction   0  0.2  Log‐uniform 

6  sorptionfactor  The variation in the sorption 
capacity of the aquifer 

‐2  2  Log‐uniform 

 

Figure 12 shows the global sensitivity indexes for the volume of aquifer with pH<6.5, indicating 
that the sorption factor is the most sensitive parameter. It is not surprising that the volume of 
aquifer with pH<6.5 is not sensitive to the concentrations of As and Cl in the leaking brine. It 
should be noticed that the calcite volume might have an effect on the resultant lowest pH, but it 
appears that it does not affect the volume of aquifer with pH<6.5. The volume of aquifer with 
TDS > 500 mg/L is also most sensitive to the sorption factor (Figure 13), because this parameter 
greatly affects the area with low pH where dissolved CO2 is elevated and the dissolution of 
minerals occurs from the depressed pH. This process can easily cause the TDS to increase above 
500 mg/L because the initial water already has a TDS of 430 mg/L. The volume of aquifer with 
TDS > 500 mg/L is also sensitive to the concentration of Cl in the leaking brine. Figure 14 shows 
that the volume of aquifer with concentration of As > MCL is exclusively sensitive to the 
sorption factor, because the As concentration in the aquifer is controlled by 
adsorption/desorption via surface complexation. It is not sensitive to the As concentration in 
leaking brine, which is consistent with the results shown in Figure 9. As discussed earlier, the 
effect of the concentration of As in leaking brine on the resulting As concentration in the aquifer 
is largely overshadowed by adsorption/desorption.  
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Figure 12. The Sobol global sensitivity index for the volume of aquifer with pH<6.5. 

 

 
Figure 13. The Sobol global sensitivity index for the volume of aquifer with TDS>500 mg/L. 
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Figure 14. The Sobol global sensitivity index for the volume of aquifer with concentration of 
As > MCL.  

2.3 ROM DEVELOPMENT 

As mentioned in the previous section, out of 1,000 simulations, we obtained only 4 non-zero 
groundwater volumes affected by Cd and 81 non-zero results for Pb. This limited number of 
significant results does not allow us to derive a ROM for the volume of aquifer with Pb and Cd 
concentration higher than their perspective MCLs. We therefore developed ROMs to estimate 
the volume of aquifer with pH < 6.5, the volume of aquifer with TDS > 500 mg/L, and the 
volume of aquifer with concentration of As > MCL.  

The input parameters for the ROM are variable #3, #4, #5, #6 in Table 3. For each output 
variable (i.e., volume of groundwater affected by pH, TDS, and As), the ROM is composed of 20 
quadratic polynomial functions, each one representing a time spot from 10 to 200 years with 
equal 10-year increments. Those polynomial functions are derived by regression of the volumes 
calculated in the 1,000 simulations. Figure 15 shows the R2 for each ROM. In general, the 
estimated R2 values are acceptable, as most of them are higher than 0.8. However, values 
significantly below 0.8 were found for the ROM of the volume of aquifer with TDS>500 mg/L 
for times close to 200 years (Figure 15). The main reason for this finding is that 500 mg/L is 
such a low threshold value that different combinations of input parameters often lead to the same 
predicted impacted groundwater volume, which decreases the accuracy of the regression analysis 
on which the derivation of the ROM is based. Figures 16 and 17 show the comparison between 
emulated volumes of aquifer with TDS>500 mg/Lmg/L with ROM and simulated ones with 
numerical models for 70 and 200 years, respectively. Note that for 200 years, the range of 
volume is very small, and simulated results have only three different values, which make 
emulation very difficult. Figure 16 and 17 show the comparison of emulated and simulated 
volumes of aquifer with pH<6.6 and As concentration >MCL respectively. Emulated results 
match closely with simulated results, indicating that the derived ROM is reliable.  
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Figure 15. The R2 of ROMs for the volume for aquifer with pH<6.5, TDS>500 mg/kg, and As 
concentration >MCL.  

 

 
Figure 16. Comparison of emulated volumes of aquifer with TDS>500 mg/L with ROM and 
simulated ones with numerical models for the 70 years. The solid line represents a one-to-one 
match between emulated and simulated. 
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Figure 17. Comparison of emulated volumes of aquifer with TDS>500 mg/L with ROM and 
simulated ones with numerical models for the 200 years. The solid line represents a one-to-
one match between emulated and simulated. 

 

 

 
Figure 18. Comparison of emulated volumes of aquifer with pH<6.5 with ROM and 
simulated ones with numerical models for the 70 years. The solid line represents a one-to-one 
match between emulated and simulated. 
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Figure 19. Comparison of emulated volumes of aquifer with As concentration >MCL with 
ROM and simulated ones with numerical models for the 70 years. The solid line represents a 
one-to-one match between emulated and simulated. 
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3. LINKING FUNCTION 

3.1 INTRODUCTION AND BACKGROUND 

Computer simulations of physical systems are widely used for natural resource management and 
for supporting the design and implementation of environmental policies and decisions. These 
simulations are essential when laboratory or field experiments are too time consuming, 
expensive, or practically impossible to conduct. This last case is not uncommon, especially when 
the spatial and/or the time scales of the natural system are large. Computer simulations rely upon 
a mathematical model, a set of mathematical expressions describing the behavior of the physical 
system, implemented in a computer code. Despite the constant advance in computational 
resources, modern computer simulations applied to solve problems in the natural sciences and 
engineering disciplines still require a great computational effort,in part because progress in 
computational power goes hand-in-hand with the ability to model higher degrees of complexity. 
Complexity is in fact necessary to take into account various physical and chemical processes, 
often coupled, in large heterogeneous environmental systems. Computational power is 
particularly demanding for numerical experiments requiring multiple runs of the same computer 
simulation with various combinations of input parameters over a range of interest. Such 
numerical experiments are essential for model calibration, optimization, sensitivity, and 
uncertainty analysis, as well as for risk assessment. 

Since the introduction of computer modeling, there has been a constant discussion about the 
dilemma between complexity and simplicity. In the field of groundwater modeling, for example, 
this is still a debated topic (Haitjema, 2006; Hill, 2006; Gómez-Hernández, 2006; Clement, 
2011; Doherty, 2011). Arguments in favor of simple models include computational efficiency, 
numerical stability, and the fact that their outputs are easily understandable and interpretable 
(e.g., Lee, 1973; Grimm et al., 1999). However, oversimplification caused by neglecting 
important aspects, such as spatial heterogeneity or the effects of relevant physical and chemical 
processes, may result in only a partial or inaccurate representation of the real system. On the 
other hand, complex models overcome this limitation, allowing us to simulate complex processes 
as well as to include spatial heterogeneity and a larger number of input parameters. Stochastic 
variability is needed for estimating the uncertainty associated with model predictions and their 
sensitivity to the different input parameters. The counterpart of improving the realism of the 
simulation is the computational effort, which, in some cases, can become prohibitively large. 
Moreover complex models may be numerically unstable, and model calibration, which requires 
the adjustment of the input parameters to match experimental observations, may be very difficult 
due to the higher number of input parameters. A more comprehensive discussion on issues 
related to simple versus complex models can be found in Van Nes and Scheffer (2005). 

In recent years, a new simulation approach has emerged, which combines both complex and 
simple models in the same analysis, so as to benefit from the advantages of both. Van Nes and 
Scheffer (2005), for example, proposed a method for understanding the role of different 
parameters of an ecological model based on the comparison of the outputs of complex and 
simplified models. Combining complex and simple models is also effective for reducing the 
computational time of parameter estimation problems in calibrating reservoir simulation models 
to dynamic data (e.g., Aanonsen and Eydinov, 2006; Lødøen and Tjeelmeland, 2010; Scheidt et 
al., 2011). With this approach, known as the multiscale parameter-estimation method, a series of 
models with different resolutions are developed through upscaling of an initial fine-scale, 
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complex model. Significant reduction of computational effort and increase in accuracy is 
achieved when the coarse models are initially used for estimating large-scale corrections of the 
input parameters, and then their calibrated values are adopted as initial estimates for final 
adjustment at the fine scale. 

Pairing of complex and simple models is also widely used in the surrogate modeling practice, 
which refers to the development and use of simplified and fast models, also known as ROMs, in 
lieu of the original simulation models. The two broad categories of ROMs include response 
surface models, which empirically approximate the original model response, and low-fidelity 
models, which are physically based (Razavi et al., 2012). The ROM described in the previous 
sections of this report is an example of the first category. Low-fidelity models represent a 
simplified but faster-to-run alternative to a more detailed complex model, which is usually 
designated as a “high-fidelity” model, since it is assumed to provide the most faithful 
representation of the real system. Different approaches can be taken for the simplification of a 
high-fidelity model—such as the use of a coarser spatial or temporal discretization, parameter 
upscaling, a lower dimensional representation (i.e., two-dimensional instead of three-
dimensional), the introduction lumped parameters, and the exclusion of certain physical or 
chemical processes. High-fidelity models can be efficiently used in conjunction with lower-
fidelity models to increase the computational efficiency of optimization problems. In this 
approach, known as “multi-fidelity” or “variable-fidelity” optimization (e.g., Gano et al., 2006; 
Forrester et al., 2007; Sun et al., 2010; Berci et al., 2011), the discrepancies between high-fidelity 
and low-fidelity models are most commonly addressed by correction functions. They are usually 
linear functions or second-order polynomials (e.g., Madsen and Langthjem, 2001; Viana et al., 
2009; Sun et al., 2010), but more complicated and flexible relationships, such as kriging and 
neural networks, have been applied (Gano et al., 2006; Forrester et al., 2007).  

In this report, we propose a methodology to couple simple and complex models to approximate 
the response of a complex model using the responses of two or more simple models. By 
exploiting the advantages of both complex and simple models, this methodology significantly 
reduces the computational time without compromising the realism and the accuracy of the 
simulations. Particularly relevant for the development of the proposed approach are the work of 
Kennedy and O’Hagan (2000) and Doherty and Christensen (2011). Kennedy and O’Hagan used 
Bayesian analysis and proposed a first-order autoregressive model to link the output of a 
complex code to the correspondent output of a simplified version. On the other hand, the recently 
proposed method by Doherty and Christensen (2011) used the subspace concept to develop a 
paired complex/simple model approach, in which the predictive bias of the simple model is 
corrected through a function, assumed to be linear for simplicity, which describes the best fit of 
the simple model outputs to those of the complex model.  

The proposed methodology can be viewed as an extension of these two approaches; the 
similarity lies in the fact that, as with the previous authors, we propose a mathematical function, 
hereafter referred to as the linking function (LF), to “link” the outputs of models with different 
levels of complexity. However, our methodology is more flexible, since it does not require any 
particular shape or dimensionality of the linking function, so that it can handle complex and 
nonlinear relationships. For this reason, neither simple nor complex models are required to have 
the degree of smoothness required in the method proposed by Kennedy and O’Hagan (2000). In 
short, our methodology is more general, can be applied to different simplification strategies, and 
allows the use of multiple simple models, each of which are able to focus on a specific aspect of 



Reduced Order Models for Prediction of Groundwater Quality Impacts from CO2 and Brine Leakage—Application 
to the High Plains Aquifer 

 21 

the real system. Moreover, these simple models do not need to be physically based, but rather 
can be a response surface surrogate. As described in Section 6.4, the linking functions developed 
to combine the responses of two ROMs that were developed to investigate the impact of CO2 and 
brine leakage from a single wellbore on groundwater quality in the High Plain Aquifer.  Each of 
these two ROMs represents a simplified representation of a high-fidelity model. The LBNL 
ROM considers all relevant chemical parameters, but it is rather simple in terms of flow and 
transport behavior, whereas the LLNL ROM considers parameters related to heterogeneous 
multiphase flow and transport, but neglects important geochemical processes. Applying the 
linking function approach allows us to approximate the output of the high-fidelity model by 
combining the outputs from these two ROMs. 

3.2 THE LINKING FUNCTION METHOD 

The following description is the methodology used for development of the linking function. Let 
Zc be a complex model considering all the known processes acting in a real-world system and the 
explanatory parameters. For a specific set of input parameters x, its output Yc can be calculated 
by running the complex model such that 	 	 . Also, let 	 	 , , … ,  be a 
vector of outputs from a number N of simple models zsi, each of which represent a lower-fidelity 
approximation of the same system. If we assume that (1) each of the simple models shares some 
basic features with the complex model, meaning that the input parameters for the simple models 
are a subset of those of the complex model, and that (2) the outputs of all modes are scalar and 
not multivariate time series responses, similar to Kennedy and O’Hagan (2000), the output from 
the complex model Zc can be defined as follows: 

 

	 , 																 	 	1,2, … ,  (1) 

 

where g is a mathematical function, hereafter referred to as the linking function,  is a vector of 
unknown parameters of the linking function, and  is a random errors vector. As previously 
stated, the function ,  can take various mathematical forms, which must be defined on a 
case-by-case basis.  

The linking function methodology can be implemented through the following steps: 

1) Develop a complex model Zc for the considered system 

2) Develop the simple models zsi 

3) Design a numerical experiment to perform multiple runs of the complex model with 
different sets of input parameters and calculate a vector of outputs Yc 

4) Perform multiple runs of the models zsi and calculate, for each run, a vector ys. To ensure 
the correspondence between the outputs from the complex and simple models, the input 
parameters of the simple models must be a subset of those of the complex model. For 
instance, if the j-th run for the complex model of the numerical experiment was 
performed with a set of n-input parameters xi (i = 1, n), then the set of m-input parameters 
(m < n) for the j-th run of simple model zs1 is xi (i = 1, m<n). If another simple model zs2 
is considered, which takes into account the processes and parameters omitted in zs1, the 
set of input parameters for the j-th run of zs2 is xi (i = m+1, n).  
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5) Identify the mathematical function that represents the best fit between outputs from the 
simple and the complex outputs. This mathematical function is the linking function, and it 
is the core to this proposed methodology. This step consists of a regression analysis in 
which the dependent variable is the output from the complex model Yc, and the 
independent variables are corresponding outputs ysi of the simple models. The shape and 
the coefficients of the linking function can be estimated with the least-square-regression 
method or other fitting procedures (e.g., kriging). 

6) Run the simple models with a specific set of input parameters for the problem of interest, 
and use the linking function to emulate the response of the complex model 

This methodology can significantly decrease the computational time as well as provide accurate 
results. By addressing the discrepancies between simple and complex models, the linking 
function is in fact an effective way to retain the level of realism and detailed information 
associated with complex models, while at the same time avoiding the long computational times 
usually associated with running such models. Although the implementation of the methodology 
requires some computational cost, the development and application of the linking function can be 
still more advantageous for some types of numerical analysis, such as uncertainty quantification 
of the complex model output and sensitivity analysis of its several input parameters. The 
traditional way to perform these analyses requires many runs of the complex model, which can 
be time consuming and computationally intensive. Instead, since the number of simple models is 
expected to be much smaller than the number of parameters in the complex model, a relatively 
small number of complex model runs are required to develop the linking function. Once the 
linking function is developed, uncertainty quantification and sensitivity analysis can be 
performed by running only the faster simple models.  

Another fundamental advantage of this methodology is that the simple models do not need to be 
physically based. They can be surrogate models, such as a previously developed response surface 
models. With more computational effort, polynomial response surface surrogates of the 
physically-based simple models can even be developed at the same time as the linking function. 
This will translate to even faster prediction of the complex model response with the linking 
function. However, note that when surrogate models are used as input in the linking function, a 
further source of error is introduced, related to the accuracy of the surrogate models in emulating 
the outputs of simple models.  

3.3 DEVELOPMENT OF LINKING FUNCTION  

In NRAP, to develop a ROM for estimating the impact of CO2 and brine leakage in shallow 
aquifers that can account for all the relevant parameters, we needed to develop a very complex 
model that considers all flow, transport, and chemical processes. However, such a model would 
be so computationally expensive that it would be practically impossible to generate a ROM 
based on a number of simulations of it. Therefore two ROMs were developed on the basis of the 
hydrogeological and geochemical conditions of the High Plain Aquifer. The first ROM was 
derived from a model that assumed heterogeneous flow and transport with a very complex 
leakage scenario while the second ROM was based on models that were very simple in terms of 
characterization of flow and transport, but very complex in terms of taking into account realistic 
chemical reactions in the aquifer (Section 3.1).  
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In this section, we will discuss the development of a linking function intended to link these two 
ROMs. First, we developed two simple models: a 1-D model with homogenous flow and 
transport and a single leakage point, but including as many chemical reactions as possible; and a 
2-D model considering aquifer heterogeneity but no reactions. Second, a complex model that 
incorporates all the parameters and physical and chemical processes of both simple models was 
developed. Third, according to the procedure illustrated in the previous section, multiple runs of 
simple and complex models were conducted, and a linking function was finally developed based 
on simulation results.  

3.3.1 Simple 1-D model  

The simple model used for developing the linking function is exactly the same as the model 
described in Section 3.1. The input parameters are also the same as those described in Section 
3.2.  

3.3.2 Simple 2-D model  

Hydrogeological setting 

The cross-sectional 2-D model targets the potential impact of CO2 injected into an aquifer with 
lithological, hydrogeological, and geochemical properties based on the High Plain Aquifer. 
Specifically, the lithological characterization is based on the lithological descriptions of 48 wells 
located in Haskell County, in southwest Kansas. The source of these data is the Water Well 
Completion Records (WWC5) Database (Kansas Geological Survey, 2012).  These data are the 
same as those on which the LLNL 3-D model was developed, providing the link between our 
model and that of LLNL. The lithologies include different types of unconsolidated sediments 
with a highly heterogeneous granulometric distribution, typical of a fluvial depositional 
environment. For simplicity, the original lithological descriptions were classified into two 
hydrostratigraphic units on the basis of grain size (coarse/fine) and permeability (high/low) as 
reported in the scientific literature (e.g., Bear, 1972). The lithologies included in each of these 
units are provided in Table 4. 

Table 4. Lithologies associated with the hydrostratigraphic units of the synthetic aquifer 

Hydrostratigraphic 
Unit 

Lithologies as in the WWC5 
Mean Length 
(horizontal 
direction) 

Mean Length 
(vertical 
direction) 

Volumetric 
Proportion 

Unit 1 

Sand, coarse sand, medium sand, 
sand with gravel, gravel with sand, 
medium gravel, gravel, coarse 
gravel 

717.7 m  8.3 m  0.60 

Unit 2 

Fine sand, very fine sand, silty sand, 
silt, silty clay, shale, sandstone, 
caliche, gypsum rock, clay, 
limestone. 

478.5 m  5.6 m  0.40 

The distribution of these two units was simulated with the transition probability method (T-
PROGS; Carle, 1999), which was also used for the development of the LLNL 3-D model. 
Heterogeneous fields generated with T-PROGS are based on the transition probabilities between 
different categories and on a single Markov Chain equation in each direction. Transition 
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probabilities are defined as the probability that a certain category j occurs at the location u+h 
conditioned to the occurrence of another category i at the location u. Here u and h are a location 
and a movement vector, respectively. One advantage of this methodology is the increased 
realism of the simulations, making it thereby possible to account for observable geological 
features such as mean lengths and juxtapositional tendencies. A thorough description of the 
algorithm can be found in Carle and Fogg (1996, 1997), Carle et al. (1998), and Carle (1999). T-
PROGS simulations of the aquifer heterogeneity were conducted with mean lengths and 
volumetric proportions for the two different hydrostratigraphic units estimated from the analysis 
of their spatial distributions in the 48 wells. Values for these two parameters are given in Table 
4.  

The aquifer is assumed to be confined, and the mean groundwater flow is from east to west with 
a hydraulic gradient of 0.003. Aquifer thickness is uniform and equal to 240 m, which 
corresponds to the average thickness of the High Plain Aquifer in Heskell County. In this model, 
chemical species are treated as conservative species, and their initial concentrations in the aquifer 
and in the leaking brine are listed in Tables 1 and 2.  

The simulated domain is rectangular, representing a cross section of the aquifer (oriented in the 
E-W direction) of length equal to 10,000 m and thickness equal to 240 m. The spatial distribution 
of the two hydrostratigraphic units (Table 4) corresponds to one unconditional realization of the 
T-PROGS geostatistical model. The interpolation grid is composed of rectangular cells with 
constant dimensions equal to 100 m and 5 m in the x-direction and z-direction, respectively 
(Figure 20a). In the implementation of the multiphase and transport models described in the next 
sections, different hydrological parameters (i.e., permeability, porosity, etc.) were assigned to 
each unit. 

 
Figure 20. Heterogeneous distribution of two hydrostratigraphic units generated with T-
PROGS (a). Numerical model mesh used for the TOUGHREACT simulations (b). The black 
circle indicates the location of the CO2 and brine leakage point.  
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Model implementation and base-case results 

Multiphase flow and reactive transport were simulated with the TOUGHREACT 2.0 code (Xu et 
al., 2012). The numerical mesh and the T-PROGS interpolation grid are identical in more than 
70% of the simulated domain, with some differences in proximity of the boundaries, where the 
numerical mesh is coarser (Figure 20b). The coarsening of the mesh, to save computational time, 
was done by multiplying element dimensions by a factor of 1.2, starting from the coordinates x = 
1500 m toward the left boundary, and from z = -80 m toward the top of the domain. The 
resulting mesh is composed of a total of 3,549 elements. Before choosing this mesh design, trial 
runs were also performed with a regular mesh composed of elements with the same dimensions 
as in the interpolation grid, to ensure that coarsening the mesh at the boundaries does not affect 
simulation results in the area where leakage occurs and where the CO2 and brine plume move.  

Initial pressure and boundary conditions for flow are shown in Figure 21. We imposed Dirichlet 
conditions (constant hydraulic head) at the left and right boundaries, while no-flow boundary 
conditions were applied at the top and bottom of the domain. A preliminary gravity equilibration 
run, without CO2 and brine injection, was run long enough to reach quasi-steady-state conditions 
(Figure 21). The resulting flow field was used as the initial flow field for the CO2 and brine 
leakage simulations. These runs were conducted at constant temperature 17°C.  

 
Figure 21. Initial and boundary conditions for the simple 2-D model. The same applies for 
the complex model. 

Leakage of CO2 and brine from the wellbore was simulated by assuming a point source at the 
point of coordinates (2200 m, -190 m) and a duration of 200 years with variable leakage rates. 
The maximum values of these leakage rates are plotted as a function of simulation time in Figure 
22. These maximum values were then multiplied by a factor during the development of the 
linking function. The CO2 rates sharply increase during the initial 5 years and then oscillate, with 
variations ranging from 0.039 kg/s to 0.046 kg/s. The brine leakage rates are more stable, with 
very little variation around an average of 0.012 kg/s. Leakage rates are derived from the first-
generation ROM developed for wellbore leakage.  
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Figure 22. Maximum CO2 and brine leakage rates over time. 

Input parameters for the base case are reported in Table 5. The results for a base-case run of the 
simple 2-D model are shown in Figure 23. The base-case simulation results were used to 
understand the system behavior and to manually test the sensitivity of the model to the different 
input parameters. After 200 years of continuous release of brine and CO2 from the leakage point, 
the area with lowered pH values and the plumes of three considered metals (As, Pb, and Cd) 
moved about 7 km downgradient. As expected, the major role in determining the shape of these 
plumes is played by the heterogeneous distribution of the two hydrostratigraphic units, with the 
plume following preferential flow paths to the location of the highest permeable unit. 
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Table 5. Input parameters for the simple 2-D model base case 

Parameter  Base Case Value 

Porosity (unit 1)  0.250 

Porosity (unit 2)  0.330 

Rock density (unit 1)  2400 kg/m3 

Rock density (unit 2)  2400 kg/m3 

Permeability (unit 1)  3.162x10‐11 m2 

Permeability (unit 2)  3.162x10‐17 m2 

Van Genuchten parameter m (unit 1)  0.655 

Van Genuchten parameter m (unit 2)  0.190 

Van Genuchten parameter alpha (unit 1)  5.62x10‐5 m‐1 

Van Genuchten parameter alpha (unit 2)  1.51x10‐5 m‐1 

3.3.3 Complex model 

The complex model for simulating the impact of CO2 and brine leakage on the aquifer consists of 
a combination of the two simple models described in Sections 4.3.1 and 4.3.2. While inheriting 
the model setup, hydrogeological parameterization, and leakage function of CO2 and brine in the 
simple 2-D model, the complex model also incorporates all the chemical reactions that were used 
in the simple 1-D models. This model is expected to provide the most accurate representation of 
the natural system, taking into account uncertainties in flow, transport, and chemical processes. 
Figure 24 shows the plumes of pH, As, Pb, and Cd for the base-case simulation. Input parameters 
are reported in Tables 2 and 5. 
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Figure 23. Simple 2-D model base-case simulation results after 200 years of continuous 
leakage (unreactive transport). pH distribution (a), AsO3 concentration (b), Pb2+ 
concentration (c), Cd2+ concentration (d).  The leakage point is at X=2200 and Z=-190 m.  
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Figure 24. Complex 2-D model base-case simulation results after 200 years of continuous 
leakage (reactive transport). pH distribution (a), AsO3 concentration (b), Pb2+ concentration 
(c), Cd2+ concentration (d).  The leakage point is at X=2200 and Z=-190 m. 
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3.4 LINKING FUNCTIONS AND RESULTS 

To develop the linking functions between the simple and complex models, we considered the 
following output variables for 20 simulated time periods (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 
110, 120, 130, 140, 150, 160, 170, 180, 190, and 200 years): 

 Volume of aquifer reaching pH < 6.5 

 Volume of aquifer reaching TDS > 500 mg/L 

 Volume of aquifer reaching As concentrations > MCL (established by the EPA, 1.33e-7 
mol/kg) 

 Volume of aquifer reaching Cd concentrations > MCL (4.05e-8 mol/kg) 

 Volume of aquifer reaching Pb concentrations > MCL (7.24e-8 mol/kg) 

Details of the work conducted for each of the steps described in Section 4.2 are summarized 
below. The entire procedure was implemented in a GNU Octave v.3.6.1 script that was written 
for this purpose. 

 Steps 1 and 2. Development of the complex and simple models as described in Section 
4.3. 

 Steps 3 and 4. Design of a numerical experiment and perform multiple runs of the simple 
and complex models. The numerical experiment involving multiple runs of the simple 
and complex models with different sets of input parameters was designed by using a 
quasi-random sequence (LPτ , Shukhman, 1994) to generate 450 sample points in the 
input parameter space. The statistical distributions of the input parameters are assumed to 
be uniform. Details on parameter ranges are given in Table 6. Parameter distributions 
correspond to the distributions used for the generation of the LNLN and LBNL ROMs. 

 Step 5. Estimate the linking functions for each output variable and for 20 simulation 
times. The linking functions are estimated through a least-squares regression analysis in 
which the outputs from the simple 1-D and 2-D models are used as independent variables 
in order to fit the outputs from the complex model. For all the output variables and for all 
the simulation times, a second order polynomial was found to provide a close match 
between the simple and complex model outputs. An example of the shape of this 
polynomial function is shown in Figure 25. The coefficients of all the generated linking 
functions are reported in Appendix A. The goodness of fit for the developed linking 
functions is analyzed by calculating the coefficient of determination (R2). Taking into 
account all the linking functions, the calculated R2 values are between 0.701 and 0.998, 
with the majority of values higher than 0.900. In general the highest R2 values, indicating 
higher degree of correlation, are calculated for the linking functions that predict the 
volume of TDS > 500 mg/l. A lower correlation is associated with the linking functions 
for estimating the volume of aquifers contaminated with As. We also built scatter plots of 
the responses estimated with the linking function and those of the complex model (Figure 
6). In general, the cloud of points is distributed along a y = x line, showing the accuracy 
of the fitting. The best correlation is for smaller simulations times. 

 Step 6. Application of the linking function to approximate the output of the complex 
model from the outputs of two simple models. For the NRAP evaluations, the outputs 
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from the simple models will be the volumes of impacted aquifer estimated with two 
second-generation ROMs developed on the basis of the hydrogeological and geochemical 
conditions of the High Plain Aquifer (Section 2). In practice, once the outputs from 
ROMs for a particular objective variable (e.g., TDS, pH, As, Cd, or Pb) and simulation 
time are calculated, the estimated values will be directly used as input in the linking 
functions to estimate the impacted aquifer volume, considering both the hydrogeological 
and geochemical uncertainties. This “final” volume is expected to represent a reasonable 
approximation of the output from a time consuming and computationally expensive 
computer model. The work flow for the application of the linking function methodology 
is shown in Figure 27.  

 

Table 6: Input parameters of the numerical experiment. 

Parameter  Range (min – max)  Model 

Porosity (unit 1)  0.25 – 0.50  Complex model, Simple model 2‐D 

Porosity (unit 2)  0.33 – 0.60  Complex model, Simple model 2‐D 

Rock density (unit 1)  2400 ‐ 2800 kg/m3  Complex model, Simple model 2‐D 

Rock density (unit 2)  2400 ‐ 2800 kg/m3  Complex model, Simple model 2‐D 

Permeability (unit 1)  ‐13.5 – ‐10.5* log(m2)  Complex model, Simple model 2‐D 

Permeability (unit 2)  ‐15.0 – ‐18.0* log(m2)  Complex model, Simple model 2‐D 

Van Genuchten parameter m (unit 
1) 

0.52 – 0.79 
Complex model, Simple model 2‐D 

Van Genuchten parameter m (unit 
2) 

0.06 – 0.32 
Complex model, Simple model 2‐D 

Van Genuchten parameter alpha 
(unit 1) 

‐4.69 – ‐3.81* log(m‐1) 
Complex model, Simple model 2‐D 

Van Genuchten parameter alpha 
(unit 2) 

‐5.50 – ‐4.14* log(m‐1) 
Complex model, Simple model 2‐D 

CO2 leakage rate scaling parameter1  0.1 – 1.0  Complex model, Simple model 2‐D 

Brine leakage rate scaling 
parameter2 

0.1 – 1.0 
Complex model, Simple model 2‐D 

Chloride concentration in brine  ‐2.0 – 1.0* log(mol/L)  Complex model, Simple model 1‐D 

Arsenic concentration in brine  ‐9.0 – ‐5.0* log(mol/L)  Complex model, Simple model 1‐D 

Calcite initial volume fraction  0 – 0.2  Complex model, Simple model 1‐D 

Sorption scaling parameter3  ‐2.0 – 2.0*  Complex model, Simple model 1‐D 

*Indicates log10 values. 
1This factor was applied to the maximum CO2 leakage rate. 
2This factor was applied to the maximum brine leakage rate. 
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3This factor was applied to the adsorption capacity of different mineral phases. 

 
 

 

 
Figure 25. Second order polynomial linking function for estimating the volume (m3) of pH < 
6.5 after 180 days of leakage. Points represent the calculated responses from the simple and 
complex models.  
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Figure 26. Comparison between complex model responses and those of the linking functions. 
The simulation time is 200 years. As (a); pH (b); TDS (c). The solid line represents output 
volumes that linking function estimates are the same as complex model output.  
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Figure 27. Flow chart for applying the linking function approach. 
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4. SUMMARY AND DISCUSSION 

This report documents two activities carried out at LBNL by the NRAP Groundwater Protection 
Working Group: the second-generation ROM and the development and application of a linking 
approach. The description provided here regarding how the second-generation ROM and linking 
function were developed is intended to assist the NRAP team in applying this method for 
generating risk profiles. 

In the first-generation profiles, pH and TDS are used as risk-monitoring metrics to measure the 
impact of potential CO2 and brine leakage on the groundwater quality in a shallow aquifer. The 
second-generation risk profile includes trace metals such as Pb, As, and Cd. The spatial and 
temporal evolution of these metals are strongly affected by coupled flow, transport, and chemical 
processes. Developing one ROM directly from a model that considers all the physical and 
chemical processes and spatial heterogeneity remains very challenging. Until a ROM for such a 
complex model can be developed in a computationally efficient manner, the development of 
several ROMs based on simplified models and the linkage of these ROMs with a linking 
function would seem to be an attractive alternative.  

We have developed two separate ROMs using physical and chemical properties based on the 
High Plains Aquifer. The first ROM, called the hydrological ROM, is derived from a model that 
considers 3-D heterogeneous flow and transport fields and multiple leakage wells, but is 
simplified in terms of chemical reactions. It considers the uncertainties of model input 
parameters related to flow, transport, and leakage scenarios. The second ROM, developed by 
LBNL, was derived from a 1-D model considering simplified flow and transport 
parameterization, but complex geochemical reactions. This ROM incorporates the uncertainties 
of model input parameters related to chemical reactions. A linking function method was applied 
to combine the outputs estimated by the hydrological ROM with the outputs from the LBNL 
ROM, allowing the combined analysis of uncertainties related to hydrological and geochemical 
parameters.  

The development of a linking function was accomplished by: (1) the establishment of two simple 
models— a 1-D model with homogenous flow and transport field and single leakage point, but 
including as many chemical reactions as possible—and a 2-D model considering aquifer 
heterogeneity but no reactions; (2) the development of a complex model that incorporates all the 
parameters and physical and chemical processes of both simple models;  (3) multiple runs of 
both simple and complex models; and (4) estimation of the linking functions based on those runs.  
The latter are expressed as a series of second order polynomials, through a least-squares 
regression analysis in which the outputs from the simple 1-D and 2-D models are used as 
independent variables to fit the outputs from the complex model. It should be noted that the 
complex model used here to “train” the linking function is only 2-D. Therefore, the linking 
function can only be applied to the hydrological ROM with the assumption that the linking 
function remains valid, even though the model domain increases from 2-D to 3-D.  
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APPENDIX A: LINKING FUNCTIONS PARAMETERS 

The notation used for the coefficients of the second order polynomials are as follows: 

	 	 1 1 1 2

2 2  

 

Linking functions parameters for estimating the volume of aquifer (m3) with AsO3 > MCL 

Time  10  20  30  40  50  60  70  80  90  100 

x1  NaN  1.12E+02  1.02E+02  1.91E+02  1.46E+02  9.57E+01  1.07E+02  7.73E+01  5.39E+01  3.26E+01 

x2  NaN  4.20E‐01  2.10E‐01  ‐6.03E‐02  ‐1.15E‐01  ‐1.14E‐01  ‐1.35E‐01  ‐1.03E‐01  ‐6.73E‐02  ‐3.65E‐02 

x1x1  NaN  1.06E‐02  ‐3.41E‐02  ‐1.93E‐02  ‐7.16E‐03  ‐3.42E‐03  ‐3.00E‐03  ‐1.89E‐03  ‐1.14E‐03  ‐6.96E‐04 

x1x2  NaN  5.78E‐05  8.73E‐05  6.24E‐05  3.45E‐05  2.44E‐05  1.98E‐05  1.62E‐05  1.36E‐05  1.18E‐05 

x2x2  NaN  ‐2.89E‐10  ‐4.95E‐09  ‐2.74E‐09  ‐1.57E‐09  ‐2.19E‐09  ‐2.17E‐09  ‐2.46E‐09  ‐2.52E‐09  ‐2.56E‐09 

 

Time  110  120  130  140  150  160  170  180  190  200 

x1  3.610E+01  5.050E+01  7.851E+01  1.084E+02  1.252E+02  1.326E+02  1.370E+02  1.446E+02  1.464E+02  1.522E+02 

x2  ‐1.103E‐02  ‐2.118E‐02  ‐3.186E‐02  ‐3.257E‐02  ‐9.299E‐03  1.255E‐02  1.503E‐02  2.021E‐02  2.614E‐02  2.650E‐02 

x1x1  ‐6.603E‐04  ‐7.231E‐04  ‐9.747E‐04  ‐1.196E‐03  ‐1.262E‐03  ‐1.213E‐03  ‐1.143E‐03  ‐1.123E‐03  ‐1.070E‐03  ‐1.046E‐03 

x1x2  9.909E‐06  8.745E‐06  7.922E‐06  7.094E‐06  6.177E‐06  5.396E‐06  4.832E‐06  4.402E‐06  4.085E‐06  3.797E‐06 

x2x2  ‐2.266E‐09  ‐1.964E‐09  ‐1.780E‐09  ‐1.573E‐09  ‐1.413E‐09  ‐1.272E‐09  ‐1.099E‐09  ‐9.969E‐10  ‐9.242E‐10  ‐8.582E‐10 

 

Linking functions parameters for estimating the volume of aquifer (m3) with pH < 6.5 

Time  10  20  30  40  50  60  70  80  90  100 

x1  NaN  NaN  1.464E+02  ‐1.453E+01  ‐1.305E+02  7.326E+01  7.407E+01  5.471E+01  1.822E+01  ‐1.718E+01 

x2  NaN  NaN  1.006E‐01  ‐5.709E‐02  ‐1.461E‐01  ‐8.411E‐02  ‐1.281E‐01  ‐1.088E‐01  ‐8.083E‐02  ‐4.080E‐02 

x1x1  NaN  NaN  ‐7.197E‐02  ‐7.046E‐03  1.922E‐03  ‐2.229E‐03  ‐1.736E‐03  ‐9.980E‐04  ‐2.435E‐04  3.084E‐04 

x1x2  NaN  NaN  1.050E‐04  5.589E‐05  3.356E‐05  2.005E‐05  1.653E‐05  1.320E‐05  1.145E‐05  9.916E‐06 

x2x2  NaN  NaN  ‐1.549E‐09  ‐5.363E‐10  ‐1.318E‐09  ‐1.363E‐09  ‐1.212E‐09  ‐1.401E‐09  ‐1.710E‐09  ‐2.038E‐09 
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Time  110  120  130  140  150  160  170  180  190  200 

x1  ‐2.489E+01  ‐3.918E+01  ‐5.831E+01  ‐5.849E+01  ‐5.164E+01  ‐4.337E+01  ‐3.952E+01  ‐3.381E+01  ‐2.806E+01  ‐3.094E+01 

x2  ‐3.287E‐02  ‐2.522E‐02  ‐1.529E‐03  1.157E‐02  1.702E‐02  1.312E‐02  1.425E‐02  1.212E‐02  6.895E‐03  1.150E‐02 

x1x1  3.867E‐04  5.725E‐04  7.718E‐04  7.109E‐04  5.921E‐04  5.011E‐04  4.345E‐04  3.622E‐04  3.027E‐04  3.015E‐04 

x1x2  8.645E‐06  7.650E‐06  6.565E‐06  5.875E‐06  5.306E‐06  4.819E‐06  4.436E‐06  4.153E‐06  3.900E‐06  3.651E‐06 

x2x2  ‐1.881E‐09  ‐1.767E‐09  ‐1.626E‐09  ‐1.544E‐09  ‐1.414E‐09  ‐1.234E‐09  ‐1.126E‐09  ‐1.041E‐09  ‐9.325E‐10  ‐8.853E‐10 

 

Linking functions parameters for estimating the volume of aquifer (m3) with TDS > 500 mg/l 

 

Time  10  20  30  40  50  60  70  80  90  100 

x1  ‐1.875E+02  1.989E+01  1.825E+02  1.062E+02  1.501E+02  2.818E+02  2.836E+02  3.976E+02  2.378E+02  3.843E+02 

x2  1.325E+00  1.205E+00  7.389E‐01  4.377E‐02  ‐1.017E+00  ‐2.214E+00  ‐2.419E+00  ‐3.117E+00  ‐2.008E+00  ‐3.226E+00 

x1x1  8.935E‐02  1.251E‐02  ‐2.118E‐02  ‐7.130E‐03  ‐5.030E‐03  ‐7.004E‐03  ‐5.611E‐03  ‐6.606E‐03  ‐3.565E‐03  ‐5.199E‐03 

x1x2  ‐2.315E‐05  ‐9.244E‐06  5.607E‐05  7.979E‐05  8.139E‐05  8.692E‐05  7.247E‐05  7.170E‐05  4.737E‐05  5.886E‐05 

x2x2  ‐2.022E‐08  ‐5.443E‐09  ‐8.938E‐10  ‐1.762E‐09  6.491E‐10  1.486E‐09  2.016E‐09  1.807E‐09  5.646E‐10  3.893E‐10 

 

Time  10  20  30  40  50  60  70  80  90  100 

x1  2.551E+02  2.551E+02  1.837E+02  2.663E+01  1.826E+02  2.928E+02  5.500E+02  1.646E+02  1.750E+02  6.599E+02 

x2  ‐3.909E+00  ‐3.909E+00  ‐3.776E+00  ‐3.557E+00  ‐4.072E+00  ‐4.874E+00  ‐7.927E+00  ‐8.415E+00  ‐9.986E+00  ‐1.428E+01 

x1x1  ‐2.939E‐03  ‐2.939E‐03  ‐1.963E‐03  ‐3.435E‐04  ‐1.725E‐03  ‐2.550E‐03  ‐4.410E‐03  ‐1.253E‐03  ‐1.237E‐03  ‐4.420E‐03 

x1x2  5.663E‐05  5.663E‐05  5.094E‐05  4.552E‐05  4.734E‐05  5.132E‐05  7.236E‐05  7.182E‐05  7.906E‐05  1.036E‐04 

x2x2  ‐4.756E‐10  ‐4.756E‐10  ‐3.923E‐10  ‐4.749E‐10  ‐4.097E‐10  ‐3.588E‐10  ‐1.481E‐10  ‐1.373E‐10  ‐2.948E‐12  1.149E‐10 
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