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ABSTRACT OF THE DISSERTATION
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Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Veronica J. Santos, Chair

To execute manipulation tasks in unstructured environments, robots use computer vision

and a priori information to locate and grasp objects of interest. However, once an object

has been grasped, cameras cannot perceive tactile- or force-based information about finger-

object interactions. To address this, tactile and proprioception data are used to develop

novel methodologies that aid in robotic manipulation once an object has been grasped.

In the first study, a method was developed for the perception of tactile directionality

using convolutional neural networks (CNNs). The deformation of a tactile sensor is used to

perceive the direction of a tangential stimulus acting on the fingerpad. A primary CNN was

used to estimate the direction of perturbations applied to a grasped object. A secondary

CNN provided a measure of uncertainty through the use of confidence intervals. Our CNN

models were able to perceive tactile directionality on par with humans, outperformed a

state-of-the-art force estimator network, and was demonstrated in real-time.
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In the second study, novel controllers were developed for model-free, tension-driven ma-

nipulation of deformable linear objects (DLOs) using force-based data. Prior works on DLO

manipulation have focused on geometric or topological state and used complex modeling and

computer vision approaches. In tasks such as wrapping a DLO around a structure, DLO

tension needs to be carefully controlled. Such tension control cannot be achieved using vision

alone once the DLO becomes taut. Two controllers were designed to regulate the tension of

a DLO and precede traditional motion controllers. The controllers could be used for tasks

in which maintaining DLO tension takes higher priority over exact DLO configuration. We

evaluate and demonstrate the controllers in real-time on real robots for two different utili-

tarian tasks: circular wrapping around a horizontal post and figure-eight wrapping around

a boat cleat.

In summary, methods were developed to effectively manipulate objects using tactile- and

force-based information. The model-free nature of the approaches allows the techniques to

be utilized without exact knowledge of object properties. Our methods that leverage tactile

sensation and proprioception for object manipulation can serve as a foundation for further

enhancement with complementary sensory feedback such as computer vision.
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CHAPTER 1

Introduction

1.1 Motivation

The confluence of the fields of robotics, machine learning, and artificial intelligence has

been on the rise since 2000. Experts have marked the time period between 2000 and the

present as the fourth industrial revolution where these technologies are entering multiple

fields and disciplines [2]. As society moves towards a more digital age, the reliance on

robots is increasing and society is demanding more functions and features out of robotic

hardware. This has opened the door for many research opportunities in robotics in pursuit

of implementing hardware that is semi-autonomous and efficient.

A robot’s ability to grasp and manipulate objects in unstructured environments is es-

sential for impact outside the laboratory setting. Grasping involves a multi-stage process of

perceiving the position and orientation of an object, calculating optimal grasp points, moving

the robot to the optimal position needed to grasp the object, and reactively adjusting finger-

tip forces, as needed. Traditionally, object localization has been performed using computer

vision in combination with machine learning, such as support vector machines, Adaboost,

and neural networks [3]. Grasping is outside the scope of this doctoral dissertation, which

is focused on sensor-driven techniques for manipulation.

Manipulation involves the changing of the state of an object through physical interactions
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with a robotic manipulator. By actively monitoring the state of an object, a model is

developed that couples the state of the object to the actions of the robot. Methods in this

area involve dynamic movement primitives (DMPs), reinforcement learning, and imitation

learning to capture the changes in state based on the actions of the robot [4]. In practice,

perfect models of objects and the environment are unavailable for unstructured environments.

As a result, grasp and manipulation are often approached in a model-free manner.

Due to the unpredictable nature of unstructured environments, many roboticists have

focused on developing models that allow the robot to perceive their local environment. Per-

ception is key to integrating robotic hardware into everyday society as it provides the foun-

dation for grasping and manipulation tasks. The state-of-the-art methods in this field are

usually based on data from a combination of optical and position-based sensors such as a

RGB-D cameras, LiDAR, GPS antennas, and much more. These sensors have been shown

to excel in grasping, especially when combined with learning for object pose estimation and

localization. However, these sensors are mostly used for computer vision-based approaches

to grasp and manipulation planning.

When it comes to manipulation, vision-based sensors are not sufficient for observing

tactile and force-based states that are necessary for object manipulation tasks [5]. Therefore,

tactile sensors are utilized to provide information about the contact state between the gripper

and the object. Examples of these sensors consist of tactile arrays, optical sensors, and

biomimetic sensors [6].

Tactile sensing is essential for optimizing the execution of object manipulation methods.

While computer vision-based techniques for object manipulation have advanced, the sense

of touch is needed to monitor physical contacts between the gripper and the object. Vision

alone does not provide the instantaneous feedback needed to react to contact events and plan

2



future end-effector movements. Visual feedback can be limited or absent due to occlusion

by the gripper digits, a lack of a direct line of sight, and a lack of visible effects of forces

being applied to the object by the fingertips. Thus, there is a need for new tactile perception

algorithms that can complement mature computer vision approaches to manipulation.
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1.2 Contributions

The work in this dissertation presents multiple methods for manipulating objects using

tactile sensing and force feedback. All of the methods developed are model-free, thus re-

quiring no a priori knowledge of exact object properties. Through machine learning, we

developed a technique to perceive tactile directionality through the tangential stimulation

of a deformable fingerpad. Controllers were designed for the manipulation of deformable

linear objects (DLOs) with a focus on regulating the tensile state of the DLO. The two de-

scribed techniques enable tactile perception in any robotic system. With tactile perception

capabilities, robots will be able to make context-based decisions during object manipulation

tasks.

Chapters 2 and 3 present methods for the perception of tactile directionality through

the use of deformable tactile sensors. The work presented in these chapters uses machine

learning to develop classification and regression models. These models estimate the direction

of perturbations being applied to a handheld object. In Chapter 2, Hidden Markov Models

(HMMs) were used to train classification models that provide a likelihood of perturbation

direction based on the pressure and skin deformation of a multimodal tactile sensor [7]. In

order to enhance the angular resolution of the tactile directionality estimates, HMMs were

exchanged for Convolutional Neural Networks (CNNs). In Chapter 3, CNN models were

developed using tactile images generated from the fingerpad deformation of the tactile sensor.

A CNN regression model was trained to produce a point estimate of tactile directionality

while another CNN model produced confidence intervals around the point estimate [8]. The

training and evaluation of each model is discussed along with a real-time demonstration on

a real robot.
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Chapter 4 describes the development of force controllers for use in the manipulation of

DLOs. Two novel controllers are developed to enable tension-driven manipulation of DLOs.

The controllers are designed to precede a traditional motion controller in any robotic system.

The stability of these controllers are discussed along with an analysis of the implementation

on real hardware during two utilitarian wrapping tasks. The first task explored in this

section is the wrapping of a deformable linear object around a horizontal post. Afterwards,

we utilized a controller for a figure-eight wrapping of a rope around a vertical boat cleat and

provided guidance for the practical implementation of these controllers on real robots.

Chapter 5 summarizes this dissertation work and presents potential avenues for appli-

cation and future work.
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CHAPTER 2

Perception of Tactile Directionality via Artificial

Fingerpad Deformation: Discrete Model Approach

This chapter was based on work presented at the 2017 RSS Workshop on Tactile Sensing for

Manipulation [7].

2.1 Introduction

Robots have moved out of structured factory environments into unstructured human

environments that are dynamic, unpredictable, and often contain unknown objects [1]. For

tasks requiring physical interaction between robots and their environment, tactile feedback

enables early detection and perception of forceful interactions between the hand (or handheld

objects) and the environment. While computer vision remains a viable option for performing

grasping [2], a parallel haptic system would complement the visual system and improve

overall performance by providing additional information that cannot be gleaned visually. In

this work, we develop capabilities for the haptic perception of tactile directionality, or the

“ability to tell the direction of an object’s motion across the skin” [3]. With proprioception

and knowledge of gravity, a robot that can perceive tactile directionality might be able to
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more efficiently perform an object handover or more gently place an object on a tabletop,

for example.

In this chapter, we used Hidden Markov Models (HMMs) to process a time-series of

multimodal tactile data for the perception of tactile directionality. In various fields such as

natural language processing, forecasting, and computational biology, HMMs are used to learn

probabilistic models for a time-series of data [9]. Through the use of a multimodal tactile

sensor with multivariate continuous output, we trained HMMs using the skin deformation

and internal pressure data during the perturbation of a handheld object. Through this

methodology, the temporal information of the tactile data was used to perceive the direction

of perturbation of a grasped object.

2.2 Methods

A table-mounted BarrettHand (Barrett Technology, Newton, MA) was equipped with

two BioTac multimodal tactile sensor fingertips (SynTouch, Los Angeles, CA) (Figure 2.1b).

The BioTac records information about internal fluid pressure, vibration, skin deformation of

the fingerpad, and temperature. The DC pressure and impedance signals from each tactile

sensor are sampled at 100 Hz. Each tactile sensor had a 50◦ contact angle with the surface

of a rigid, parallel-faced object.

The object was attached to the end of a 7DOF Barrett WAM (Barrett Technology,

Newton, MA), which was used to perturb the object within the plane perpendicular to the

grip axis (axis connecting the two BarrettHand fingertips) (Figure 2.1a). Each perturbation

was comprised of a 15 mm linear displacement of the grasped object in different directions

tangential to the fingertip (Figure 2.1c). The perturbations ranged from 0◦ − 360◦ in 10◦
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Figure 2.1: (a) A Barrett WAM perturbed an object grasped by a (b) BarrettHand equipped

with BioTac tactile sensors. (c) The grasped object was displaced linearly in different direc-

tions tangential to the fingertip.
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increments and were created through an inverse kinematic solver implemented in MATLAB

(MathWorks, Natick, MA). Additionally, perturbation speed (2 cm/s, 4 cm/s) and grip force

(low, high estimated from the BioTac fluid pressure) were varied similar to experiments on

human perception of movement direction [10].

Data were collected in separate sessions over the course of three days. This was done to

add variation to the training and test data and to prevent overfitting. Each experimental ses-

sion included 3 replicates of each possible perturbation. Five separate experimental sessions,

each consisting of 432 randomized trials (3 replicates x 2 forces x 2 speeds x 36 directions),

resulted in a total of 2160 trials. Baseline tactile sensor data from each initial, static grasp

of the object were subtracted from all subsequent data in each trial. The changes in tactile

sensor data during the initial 500 ms of perturbation movement were used to train Hidden

Markov Models (HMMs). HMMs are temporal probabilistic models that have been used

for signal processing and classifying continuous data [11]. The size of the input observation

matrix was 40 x 50 (1 pressure and 19 electrode changes for each of the two sensors in the

500 ms period with a sampling rate of 100 Hz) which contains a multivariate observation

vector xt for each time step.

xt = {eT1 , pdc1, eT2 , pdc2} (2.1)

Each HMM was associated with a bin created by dividing the 360◦ into separate sectors.

Based on a 30◦ angular resolution of human tactile direction sensibility [10], we divided the

360◦ circle into 12 distinct 30◦ sectors. For a review of the HMM training and parameter

optimization, please refer to Appendix A.
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2.3 Results and Discussion

2.3.0.1 5-Fold Cross Validation

A 5-fold cross validation was conducted to assess model performance; each fold was

comprised of a separate data collection session. The data were pooled for both training and

testing. To simulate a real-time scenario, all 12 HMM log likelihoods were calculated for

each time step in the 500 ms perturbation period. For each time step, the preceding 250 ms

of data (40 x 25 input observation matrix) was used for the log likelihood calculations.

Log likelihoods of the test trials were plotted over time for each HMM. Figure 2 shows

the average log likelihoods of all 12 HMMs for trials that belong to the sector associated

with a distal perturbation. In the initial 100 ms, all HMMs calculate relatively the same

log likelihood. Afterwards, the log likelihoods of the incorrect HMMs start to decrease

quickly compared to that of the correct HMM, for which the value remains consistent. The

log likelihood for the correct HMM will be significantly larger than those of the incorrect

HMMs. This trend is common to all 12 sector-specific HMMs.

The overall 5-fold cross validation error rate decreases as time elapses after the onset

of the perturbation (Figure 3). This could be due to the increase in tactile sensor skin

stretch as the displacement of the grasped object increases with time. Larger changes in

skin stretch from unperturbed baseline values are easier to distinguish from noise. The

mechanical deformation of the artificial fingerpad appears to encode directional information

about tangential skin displacement, similar in principle to the biological fingerpad [10]. For

each of the five folds, each sector had 36 test trials. The number of errors for each sector was

averaged across the five folds and the overall error rate is reported in Figure 2.2 at specific

time steps of interest. By 500 ms after the onset of perturbation, the maximum error rate
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Figure 2.2: (a) The tangential plane of motion was divided into 12 distinct 30◦ sectors. (b)

The 5 fold cross-validation results are shown at 500 ms after the start of the perturbation.

Averaged across five folds each having 36 test trials, the number of errors is reported for

each sector followed by the error rate in parentheses.
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is 23% for Sector 8 (Figure 2.2b). The error rate at 500 ms is less than or equal to 13% for

most sectors.

2.3.0.2 Real-Time Implementation

The trained HMMs were tested in a real-time hardware demonstration for an object

handover and placement task (Figure 2.3). As with the 5-fold cross validation, the preceding

250 ms of data are utilized to calculate the log-likelihoods in real time. The robot was

programmed to respond in a context-appropriate manner when a user-specified threshold

criterion was met. Inspired by the threshold criterion in [6], the maximum log likelihood of

a single HMM had to exceed all other log likelihoods by a minimum threshold β. There are

speed and accuracy trade-offs with the selection of β. If β is too small, the robot may make

a short latency, but incorrect response. If β is too large, the robot may wait too long to

make its context-appropriate response.

To mimic an object handover, an experimenter attempted to pull a box in a distal direc-

tion relative to the robot’s reference frame, and the robot perceived the resulting tangential

stimulus (green pie chart sector in Figure 2.3a). The robot then proceeded to an object

placement task. Upon contact between the handheld object and a horizontal platform, the

robot perceived tangential stimulation in the radial direction relative to its reference frame

(Figure 2.3b). The hand released the box once the β threshold was met. In this preliminary

demonstration, a β threshold of 10,000 was met within 700 ms of the start of an object

perturbation.
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Figure 2.3: Online perception of tactile directionality during a) mock object handover and

b) object placement.
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2.4 Conclusion

We have developed capabilities for the online perception of tactile directionality using

HMMs that can be used to complement visual feedback during grasp and manipulation.

In this work, we discretized movement into 30◦ sectors based on human tactile direction

sensibility [10], but this artificial angular resolution can be refined by using more precise

robot movements for model training and collecting more training data to capture variation

in the tactile sensor data. If a finer angular resolution is desired, a continuous model of

tactile directionality could be developed using Recurrent Neural Networks or other models

where regression can be utilized. Ongoing work includes the verification of HMM accuracy in

real-time, unstructured scenarios. The generalizability of the model to other conditions (e.g.

displacement rates) requires further investigation. Tasks could be performed more efficiently

and safely if physical interactions with other agents and the environment could be perceived

through handheld objects.
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CHAPTER 3

Perception of Tactile Directionality via Artificial

Fingerpad Deformation: Continuous Model Approach

This chapter was based on work published in the IEEE Transactions on Haptics [8].

3.1 Abstract

Humans can perceive tactile directionality with angular perception thresholds of 14−40◦

via fingerpad skin displacement. Using deformable, artificial tactile sensors, the ability to

perceive tactile directionality was developed for a robotic system to aid in object manipula-

tion tasks. Two convolutional neural networks (CNNs) were trained on tactile images created

from fingerpad deformation measurements during perturbations to a handheld object. A pri-

mary CNN regression model provided a point estimate of tactile directionality over a range

of grip forces, perturbation angles, and perturbation speeds. A secondary CNN model pro-

vided a variance estimate that was used to determine uncertainty about the point estimate.

A 5-fold cross-validation was performed to evaluate model performance. The primary CNN

produced tactile directionality point estimates with an error rate of 4.3% for a 20◦angular res-

olution and was benchmarked against an open-source force estimation network. The model

was implemented in real-time for interactions with an external agent and the environment
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with different object shapes and widths. The perception of tactile directionality could be

used to enhance the situational awareness of human operators of telerobotic systems and to

develop decision-making algorithms for context-appropriate responses by semi-autonomous

robots.

3.2 Background

Humans leverage multimodal feedback modalities (e.g. visual, tactile, proprioceptive)

during the execution of object manipulation tasks [12]. Visual feedback is especially useful

for planning how to make contact with an object of interest or how to move a handheld object

for completion of a task. When fingerpads make contact with an object, tactile feedback

becomes essential for providing information about the mechanical interactions between the

fingers and the object. For example, the task of lifting and replacing a box consists of phases

punctuated by contact events [13]. Proprioception (e.g. musculotendon length, joint angles,

musculotendon force) can also be used to provide information about the contact mechanics.

For example, the size of a handheld object can be estimated through proprioceptive signals

from joint afferents by signaling the distance between digits [14, 15]. However, proprioception

does not encode the local contact state between a hand and an object, due to the lower

sensitivity of non-digital mechanoreceptive afferents compared to those in fingertips [12, 16,

17, 18]. In this work, we focus on the use of tactile data, which are essential for tracking the

contact phases and key events of manipulation tasks.

Robots can be designed to leverage tactile data during the execution of manipulation

tasks. For tasks requiring physical interaction between robots and their environment, tactile

feedback enables the perception of forceful interactions directly between the hand and the
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environment or indirectly through a handheld object. While computer vision remains a

viable option for planning grasps [19], a parallel haptic system would complement the visual

system and improve overall performance by providing additional information that cannot be

gleaned visually. With proprioceptive and tactile data, a robot can draw inferences about

the physical interactions between itself and the environment or another agent.

Artificial tactile sensors have been utilized to complement other sensing modalities during

robot manipulation tasks. While tactile sensors come in many different forms [6], such sensors

are all typically used to perceive the contact state between a manipulator and an object.

Tactile arrays have been utilized to estimate and manage grip force during the grasp of fragile

objects [20]. A grip controller was developed that used the multimodal BioTac tactile sensor

(SynTouch, Inc.) to estimate contact forces, detect slip events during pick and place tasks,

and distinguish between linear and rotational slip [21].

Tactile information has, more recently, been incorporated into machine learning schemes.

Machine learning has grown in popularity as a method for processing tactile sensor data,

especially for scenarios in which models of tactile sensors do not exist or nonlinear rela-

tionships are sought between tactile stimuli and abstract features. Wettels et al. utilized

machine learning techniques and algorithms to extract a force vector, point of force appli-

cation, and object curvature using a BioTac sensor [22]. Multiple groups have also utilized

neural networks (NNs) to determine the force acting on the BioTac during operation of a

force feedback controller [21, 1].

Tactile sensor-based machine learning has been applied to slip classification tasks by

using NNs on data from bio-inspired sensors [21] and optical sensors [23]. Su et al. used an

NN on a time series of BioTac data for slip classification, but required 1 sec worth of tactile

data for classification, which precludes sub-second haptic perception [21]. A deep neural
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network was used to perceive whether an object was slipping from grasp using data from

the GelSight optical sensor along with a camera mounted on the gripper [23]. An NN for

the perception of slip direction was developed using BioTac data, but the model focused on

four discrete directions (north, south, east, and west) and did not account for contact force

magnitude [24].

The contributions of this chapter include the following novel items:

• A primary CNN that produces point estimates of tactile directionality

• A secondary network that provides variance estimates that can be used to determine

uncertainty about the point estimates.

• Real-time implementation of the primary network used in interactions with an external

agent with different objects shapes and widths.

While the tactile directionality model could be applied to situations in which a sensorized

fingertip makes direct contact with an object, the model was trained for scenarios in which

external stimuli perturb a handheld object, such as when a handheld object makes direct

contact with the environment. The model and the robot’s enhanced situational awareness

are demonstrated in real-time for perturbations to a handheld object.

3.3 Experimental Procedure and Evaluation

3.3.0.1 Robot Testbed

Tactile data were collected using a 7DOF Barrett WAM manipulator equipped with a

3-digit BarrettHand gripper (Barrett Technology, Newton, MA) (Figure 3.1a). Multimodal
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Figure 3.1: a) BarrettHand gripper grasps a parallel-faced object mounted on a low friction

slider; b) Top view of the two-digit grasp; c) BioTac tactile sensor contacts the object

(embedded with a load cell) at a 30◦ contact angle
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BioTac tactile sensors were attached to two opposing digits of the BarrettHand. Each BioTac

sensor enables the measurement of internal fluid pressure, vibration, electrode impedance

associated with fingerpad deformation, and temperature flux. The BarrettHand grasped a

4.75 in. wide parallel-faced object with a contact angle of 30◦ at each fingertip (Figure 3.1b).

A Nano17 6DOF force/torque sensor (ATI Industrial Automation, Apex, NC) was centered

beneath one face of the object (Figure 3.1c). The object was mounted to a low friction

slider whose single degree of freedom was parallel to the robot’s grip axis, which connects

the two fingertips. The slider automatically centered the object within the robot grasp and

distributed grip force equally across the two digits. The object’s 3 in. x 3 in. contact surface

was composed of polycarbonate plastic that was sanded with 80 grit sandpaper to ensure a

uniform texture.

3.3.1 Data Collection

Each trial began with the sensorized object in a stable two-digit grasp. Baseline electrode

impedance values were extracted from 3 sec of stable grasp. The grip posture was kept con-

stant throughout each trial, but the grip force ranged from 5-10 N. End-effector trajectories

were designed to move the gripper parallel to the object’s contact surfaces (Figure 3.1c).

Each linear trajectory had randomized parameters of perturbation angle and perturbation

speed. The perturbation angle θ (Figure 3.2) ranged from 0− 360◦ in 10◦ increments. The

end-effector movements were planned using MoveIt’s inverse kinematics solver [25]. Inspired

by human subject experiments [10, 26], perturbation speeds were varied between 2, 4, or 6

cm/s. Upon execution, each perturbation induced a 20 mm linear displacement of the gripper

with respect to the fixed grasped object. Although prior works showed that displacements

on the order of 0.2 to 0.5 mm were sufficient for tactile directionality perception by humans
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Figure 3.2: A representative set of tactile images. Light and dark pixels indicate areas

of fingerpad compression and bulging, respectively. The red line marks the outline of the

electrode array.
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[10, 27], we used a greater displacement in order to collect tactile sensor signals over a wider

range of fingerpad deformation. Upon completion of each perturbation, the gripper released

the object and reset its position for the next trial.

Tactile data were collected in three independent experiment sessions in order to add

variation to the training and test datasets. Each experiment session included 8 replicates

of each perturbation case. Although the 36 perturbation angles were commanded randomly

and with equal frequency, compliance in the manipulator led to imprecision in the actual

perturbation angle (verified by the force/torque sensor within the grasped object). As a

result, we undersampled the tactile dataset in order to minimize bias for any particular

direction. Our model trained on 1560 perturbation trials in which the perturbation angles

were equally distributed within the contact plane of fingertip travel. We divided the trials

into five folds for use in cross-validation testing; 80% of the data were used for training while

the remaining 20% were used to test the model.

3.3.2 Data Processing

It was hypothesized that tactile directionality information would be encoded in the Bio-

Tac electrode impedance values, which are directly affected by deformation of the soft BioTac

fingerpad. The impedance signals are not well-modeled in the literature; no analytical model

exists that captures the complex coupling of the deformation of the elastomer skin, mechan-

ics of the conductive fluid, and the electrical current pathways within the fluid. As such, we

mapped the nonlinear sensor data to tactile directionality by forming tactile images from

impedance values and leveraging well-established machine learning architectures developed

for image-based pattern recognition.

First, baseline electrode impedance values from the stable, pre-perturbation grasp were
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Figure 3.3: a) Exposed BioTac sensor core with 19 electrodes; b) Values for changes in

electrode impedance mapped and interpolated over a 20 x 20 pixel grid based on electrode

location; c) 2D grayscale tactile image generated from the 3D surface shown in b) in which

light and dark pixels indicate areas of compression and bulging, respectively. The red line

marks the outline of the electrode array.

subtracted from the post-perturbation values. The resulting changes in impedance for the

BioTac’s 19 electrodes were mapped onto a 2D spatial representation of the electrode layout

(as shown in [28]) in order to create a 3D surface. In order to create a tactile image at each

timestep, the changes in electrode impedance were mapped spatially using a triangle-based

cubic interpolation that was flattened across a square 20 x 20 pixel grid (Figure 3.3). Positive

and negative changes in electrode impedance indicated that the BioTac skin was compressed

toward or bulged away from the sensor’s core, respectively. The grayscale tactile images

were used as inputs to a CNN for use in supervised learning.

With electrode impedance values sampled at 100 Hz, each trial yielded a total of 41

tactile images from the last 410 ms of each perturbation. The total number of tactile images

was 63,960 (1560 samples x 41 timesteps). The tactile images were shuffled so that the CNN
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would not learn from temporal dynamics, but rather from a single tactile image snapshot.

While there may be information overlooked by not analyzing the temporal components of

the tactile data, we deliberately focused on spatial features for computational efficiency and

real-time implementation.

Based on the shear force measurements from the force/torque sensor, training labels

were assigned to each perturbation trial for supervised learning. The changes in the 2D

shear forces were used to calculate the perturbation angle (3.1).

θ = tan−1

(
∆Fy
∆Fx

)
(3.1)

where ∆Fx and ∆Fy were the changes in shear force along the distoproximal and radioulnar

axes of the BioTac, respectively. Given that the training data were collected by moving the

robot gripper relative to a fixed object, all tactile images were labeled with perturbation

angles that had been shifted by 180º in order to represent the perturbation of a handheld

object relative to a fixed gripper. In order to uniquely estimate tactile directionality angles

in the [0◦, 360◦] range, each trial was labeled with two continuous values, namely the sin and

cos values of the perturbation angle.

3.3.3 Point Estimates for Tactile Directionality

Traditionally, CNNs are used to classify images by analyzing spatial features within the

images. In this work, we leverage the CNN approach in order to analyze low-resolution

tactile images created from data from a deformable tactile sensor. We built our CNN upon a

Pytorch framework [29]. We based the network on a classifier that was used to discriminate

classes from the MNIST handwritten digit dataset [30], as the MNIST dataset consists of

low-resolution (28 x 28 pixel), grayscale images which are similar in size and resolution to
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our dataset of tactile images.

The CNN architecture was composed of three convolutional layers with a fully connected

(FCN) layer at the output. The input to the CNN was a 20 x 20 pixel, grayscale tactile image

whose pixel intensity values corresponded to changes in tactile sensor electrode impedance.

The first convolutional layer consisted of 64 filters, or feature maps, having a 4 x 4 pixel

kernel size with a 2 x 2 pixel stride. The number of filters used for the second and third

convolution layers were 128 and 256, respectively. Batch normalization was applied to the

output of the second and third convolutional layers in order to normalize the layer outputs,

allow for higher learning rates, and act as a regularizer to prevent overfitting [31]. A leaky

rectified linear unit (ReLU) was also applied after each convolutional layer. The output of the

third convolution layer was flattened onto 1024 nodes for input to the final fully connected

layer. The final FCN layer output consisted of two continuous values that represented the

sin and cos values of the perturbation angle. The sin and cos values were normalized in order

to constrain the perturbation direction vector to a unit vector.

The model was trained by optimizing the CNN weights to minimize the mean square

error cost function (3.2).

CMSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.2)

where yi is the target value, ŷi is the value estimated by the CNN, and n is the batch size

during training of the network. To check for overfitting, the MSE loss during training was

compared to that during testing. Training and testing MSE losses converged to a similar

value, suggesting that the model was not overfit to the training data (Figure 3.4).

The model hyperparameters that affect the training of the CNN were defined as follows.

The batch size is the number of random samples used in the loss function calculation before

performing backpropagation to determine changes to the CNN weights. We set the batch
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Figure 3.4: The MSE loss is shown for the CNN training batches (thin red line) and with

the trained CNN applied to the test data (thick blue line) for a representative fold of cross–

validation testing
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size to 256 in order to update the CNN weights over the course of 200 iterations per epoch.

The number of epochs defines the number of times that a forward pass is made through

all of the training tactile images after the batch-style iterations have been completed. That

is, one epoch would be completed after 200 iterations of backpropagation since the 51,168

training tactile images would be sampled in batches of 256 images per iteration. We chose 15

epochs, which were sufficient to ensure that the loss function converged. The optimizer type

also affects how CNN weights are updated after backpropagation is performed. The Adam

optimizer was used to update the CNN weights because it has been shown to be effective for

a wide range of machine learning methods such as logistic regression, deep fully-connected

layers, and deep convolutional neural networks by combining the advantages of two of the

most popular optimization methods: AdaGrad and RMSProp [32]. An adaptive learning

rate of 10-4 and a weight decay of 0.001 were selected based on manual tuning.

3.3.4 Variance Estimates for Determining Uncertainty about the Point Esti-

mates

Although regression models enable continuous outputs, regression models have disadvan-

tages that classification models do not exhibit. Trained classification models output discrete

state scores, which can be used for estimating probabilities of classifier outputs [33]. In con-

trast, trained regression models output point estimates that do not inherently provide any

information regarding uncertainty about the point estimates. To calculate the uncertainty

about a point estimate, the variance of the point estimate is first determined by observing

the estimate error. The uncertainty is, in turn, used to establish prediction intervals that

can be expressed as point estimate ± uncertainty or as (point estimate - uncertainty, point

estimate + uncertainty) [34]. The width of the prediction interval will be referred to as the
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angular resolution of the tactile directionality model.

The mean-variance estimate (MVE) method enables the calculation of a prediction in-

terval by training a secondary NN to estimate the variance of a point estimate produced by

a primary NN regression model [35, 36]. Our secondary NN had the same architecture and

hyperparameters as the primary NN. The only difference was that an exponential activation

function was applied at the output of the fully connected layer prior to the NN output in

order to ensure that variance estimates would be positive. The primary NN regression model

was trained prior to the secondary variance NN model. This was accomplished through three

training phases as suggested in [35].

The secondary NN model was trained by minimizing a cost function on the mean-variance

estimate.

CMVE =
1

2

n∑
i=1

[
ln(σ̂2

i ) +
(yi − ŷi)2

σ̂2
i

]
(3.3)

where σ̂2
i is the estimated variance of the ŷi point estimate from the primary NN regression

model. Unlike the point estimates from the primary regression model, the variance values

cannot be labeled a priori for supervised learning. To estimate the variance for each point

estimate, we used (3.3), which was derived from the log likelihood calculation and assumes

that the point estimates are normally distributed around the true value.

Uncertainty was calculated using the estimated variance of the point estimate in a two-

stage process. First, the estimated σ̂2
i values from the secondary NN model and a user-

assigned confidence level (1-α) were used to calculate the uncertainty for each of the two ŷi

point estimates (3.4).

ŷi ± z1−0.5α

√
σ̂2
i (3.4)

where z1−0.5α was the critical value associated with a (1-α) confidence level. Specifically, (3.4)
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produced upper and lower bounds on the estimated sin and cos values associated with the

original perturbation angle point estimate. Second, the inverse tangent function was applied

to the four combinations of prediction interval bounds for the normalized sin and cos values

in order to produce four unique angles. The offset between the original tactile directionality

point estimate and the angle furthest from the point estimate was conservatively reported

as uncertainty about the point estimate in degrees.

3.3.5 5-fold Cross-validation of the Trained CNN Regression Model

The tactile directionality model developed in this work was benchmarked against the

open-source force estimation model from Sundaralingam et al. [1]. The data used for our 5-

fold cross-validation were fed through the open-source network in order to produce 3D force

vector estimates. The 3D force vectors were then projected onto the planar contact surface

of our experimental set-up. The projected force vector directions were used to calculate

error with respect to the ground truth labels. Both models were compared in terms of

average error according to perturbation angle (Figure 3.5a) and overall error rate (Figure

3.5b). As shown in Figure 3.5a, the open-source force estimation model performed well for

perturbations in and around the proximal direction (180◦), but resulted in large average

errors for perturbations in the distal direction (0◦) and adjacent quadrants. The direction-

dependent average error of the open-source force estimation model led to a high overall error

rate as compared to our proposed CNN model (Figure 3.5b). One metric of performance is

the uncertainty about the point estimate, which enables the assessment of how well the CNN

performs by observing the percentage of test samples that fall outside of a range rather than

reporting a potentially misleading overall average error. Average error rates were calculated

across all five folds based on three different levels of uncertainty (5◦, 10◦, 15◦; Table 1). The
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Figure 3.5: (a) Average error in estimated perturbation angle according to stimulus direc-

tion for the proposed CNN regression model (solid blue line) and the Sundaralingam et al.

force estimation network [1] (dashed red line). (b) Error rates for both models assessed via

5-fold cross-validation. Thin and thick lines indicate the individual fold and average results,

respectively.

30



Uncertainty

5◦ 10◦ 15◦

F
o
ld

1 19.3% 2.2% 0.7%

2 29.7% 3.9% 0.7%

3 24.5% 4.6% 1.0%

4 24.9% 3.8% 0.6%

5 30.4% 7.2% 1.9%

Average Error Rate 25.8% 4.3% 1.0%

Table 3.1: Error rates based on a 5-fold cross-validation of the trained CNN regression model

Confidence (1− α)%

80% 90% 95% 99%

F
o
ld

1 6.2◦ 7.4◦ 8.3◦ 10.2◦

2 6.4◦ 7.5◦ 8.5◦ 10.4◦

3 7.5◦ 8.8◦ 9.8◦ 12.0◦

4 6.8◦ 7.9◦ 8.9◦ 10.7◦

5 7.0◦ 8.0◦ 8.9◦ 10.7◦

Average Uncertainty 6.8◦ 7.9◦ 8.9◦ 10.8◦

Table 3.2: Uncertainty about the point estimate based on a 5-fold cross-validation of the

trained CNN variance model

performance of our CNN regression model is comparable to human perceptual thresholds

for angular resolution of tactile directionality, which vary between 15 − 40◦ [37, 38, 39].

Depending on the level of uncertainty specified, the CNN estimation results varied. For an

uncertainty of 7.5◦ (15◦ angular resolution), the error rate was 10.2%. For an uncertainty of
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10◦ (20º angular resolution), the error rate dropped to 4.3% (Figure 3.5b, Table 3.1).

3.3.6 5-fold Cross-validation of the Trained CNN Variance Model

We evaluated the performance of our variance model by comparing the uncertainty as-

sociated with a specific error rate (Table 3.1, Figure 3.5b) with the estimated uncertainty

associated with a specific confidence level (Table 3.2). Using 5-fold cross-validation, the

average estimated uncertainty values were calculated using 80, 90, 95, and 99% confidence

levels (Table 3.2). As expected, the higher the confidence level, the larger the uncertainty.

An 80% confidence level resulted in an uncertainty of 6.8◦ or an angular resolution of 13.6º

(Table 3.2). By comparison, a 20% error rate corresponded with an uncertainty of 5.7◦, or an

angular resolution of 11.4◦ (Figure 3.5b). A 90% confidence level resulted in an uncertainty

of 7.9◦, or an angular resolution of 15.8◦ (Table 3.2), while a 10% error rate corresponded

with an uncertainty of 7.5º, or an angular resolution of 15.0◦ (Figure 3.5b).

When assessing the performance of the CNN regression model, the confidence level ap-

proach using the CNN variance model (Table 3.2) was always more conservative than the

error rate approach (Figure 3.5b; Table 3.1). Ideally, angular resolution calculated for a

90% confidence level should be equivalent to that for a 10% error rate. In practice, the

two-performance metrics are not equivalent, as the uncertainty estimation method assumes

that the errors around the true value follow a normal distribution. Nonetheless, the results

for both performance metrics are similar.
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Figure 3.6: The CNN regression model was implemented in real-time as a number of external

perturbations were imposed on a grasped object. The tactile directionality point estimates

are shown in the inset figures. a) A humand agent pushed on a grasped box toward the

robot’s palm. b) The robot placed a plastic wine glass on a table.

3.3.7 Real-time Implementation

The trained CNN regression model was implemented in real-time on the robot testbed.

The real-time BioTac data were fed through the trained CNN regression model using an

Intel Core i7-5930K CPU, 16 GB RAM, and two GeForce GTX 970 GPUs via an SLI

configuration. To highlight the real-time performance of the CNN regression model, we

selected two scenarios for which tactile directionality could be easily verified: (i) perturbation

of a grasped object caused by an external agent and (ii) placement of an object on a table.

For the first scenario, an experimenter applied a number of perturbations to the grasped

object (rectangular box). A push of the box towards the robot’s palm is shown in Figure

3.6a. A real-time series of perturbations can be viewed in the supplementary video. In

order to demonstrate a context-appropriate, or context-constrained response, the robot was

programmed to release the grasped object only when the perturbation by the experimenter
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was within ±15◦ of the distal direction of the fingertip (θ = 0◦, per Figure 3.2). That is,

the robot only released the box when the experimenter pulled the box directly away from

the robot’s palm. CNN tactile directionality estimates were only considered for real-time

visualization and context-appropriate behavioral responses if a user-defined threshold was

met. This was done to prevent robot responses when no perturbations were occurring. The

threshold was compared to the summation of electrode impedance derivative values across

the entire fingerpad over the prior 100 ms period.

For the second scenario, an object placement task was performed to highlight how in-

teractions between a handheld object (plastic wine glass) and the environment could be

perceived (Figure 3.6b). With a stable grasp of the glass, the manipulator moved the glass

downward towards a table. The robot was programmed to release the grasped object only

when the perturbation by the environment was within ±15◦ of the radial direction of the

fingertip (θ = 90◦, per 3.2). That is, the robot only released the glass when the presence of

a supportive horizontal surface was perceived.

In terms of computational efficiency, the proposed CNN model performed faster than our

previous work with Hidden Markov Models. The processing time for a single timestep of

BioTac data through the CNN architecture was approximately 1.8 ms, which was shorter than

the 10 ms wait time for each new BioTac sample. To compare with our prior work, Hidden

Markov Models that incorporated temporal information required approximately 50 ms to

process 250 ms worth of data before outputting its first tactile directionality estimate [7].

Additionally, the proposed CNN model offers improved angular resolution since it performs

regression over the entire continuous range of perturbation directions ([0◦, 360◦]) rather than

classifying perturbation angles using discrete 30° angular sectors.
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3.4 Discussion

3.4.1 Application of CNNs for tactile directionality estimation

Our CNN regression model provides a continuous estimate of tactile directionality. Prior

works, including our own, utilized classification in order to provide tactile directionality

estimates with fixed angular resolution values. Abd et al. applied NNs to BioTac data

in order to detect slip in four discrete directions, which yielded a 90° angular resolution

[24]. Our prior work using Hidden Markov Models estimated tactile directionality using

12 discrete states, each having an angular resolution of 30° [7]. Kim and Park reported a

similar directionality estimation capability (12 discrete states, 30° angular resolution) for

their deformable three-axis load cell design [40]. In this work, we provide an overall error

rate curve (Figure 3.5b) that enables the user to select the angular resolution appropriate

for the target application.

CNNs have been shown to enable highly accurate estimates of force magnitude with

deformable optical tactile sensors, such as the GelSight and TacTip. Yuen et al. applied

CNNs to GelSight data in order to perceive 3D force and 1D torque during contact with

objects of various curvatures, such as a planar surface, spheres, and cylinders [41]. The

GelSight uses an embedded 30 Hz camera to record the deformation of the inner surface of

an elastomer fingerpad. The input to the CNNs was the RGB difference between a current

image and an initial non-contact image. Polic et al. used a convolutional autoencoder,

a CNN designed to reduce the dimensionality of the input through unsupervised learning

feature selection, on data from the TacTip optical sensor [42]. The TacTip uses an embedded

camera to capture the movement of internal white-tipped pins against a black silicone skin.

The input to the convolutional autoencoder was an interpolated grayscale image. Although
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3D force magnitudes have been estimated using CNNs, neither Yuen et al. nor Polic et al.

reported performance metrics related to force direction or tactile directionality.

Some works that estimate force magnitude using the BioTac also report the accuracy

of force direction estimates. Su et al. uses NNs to determine the magnitude of a 3D force

vector applied to the BioTac sensor [21]. A 3-layer NN is used with input features consisting

of the BioTac’s 19 electrode impedance signals. Similarly, Sundaralingam et al. developed

a CNN for 3D force estimation using the BioTac sensor [1]. The Sundaralingam et al. work

differs from the Su et. al. work by adding an estimated surface contact point to a 7-layer

network input and formatting the input into voxels based on the electrode layout of the

BioTac. While Su et al. did not cite force direction error directly, Sundaralingam et al.

implemented the NN from Su et al. and reported the median angular error as 10◦ for the Su

et al. method and as 3.5◦ for their own CNN method. For comparison, our network yielded

a median angular error of 3.0. It should be noted that the force direction errors that are

reported in [1] are for 3D force vectors and are, thus, the opening angle of a cone.

In contrast, the tactile directionality errors we report were calculated within the contact

plane of a grasped object. In order to compare our model performance to the Sundaralingam

et al. benchmark, we had to project their 3D force vector estimates into the contact plane.

The benchmark model yielded an average error of 20◦ or less in the angle range of [125◦, 235◦],

spanning approximately 110◦ in the proximal direction (Figure 3.5a). Tactile directionality

error increased outside of the [125◦, 235◦] range, reaching a peak error of nearly 140◦ in the

distal direction of the fingertip.

We suspect that the direction-dependent nature of the average errors for the Sundar-

alingam et al. force estimation model (Figure 3.5a) is due to an unintended bias in the

training data for their network. Given that their model was aimed at estimating 3D force
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vectors applied to the fingertip, it may be that experimenter-applied forces were more often

directed proximally with respect to the BioTac’s reference frame. Understandably, there

may have been little motivation to collect training data for forces that were directed distally

and/or near the narrow distal end of the BioTac fingertip. In contrast, our training data

were collected specifically for the perception of tactile directionality and so we sought to

thoroughly canvas all perturbation directions in the [0◦, 360◦] range in the 2D contact plane.

Although our work conveniently estimates tactile directionality directly, one limitation of

our work is that our CNN does not estimate a 3D force vector.

While CNNs can be applied to data from a variety of deformable sensors [41, 42, 43], there

are benefits and limitations associated with different sensor designs. The data from optical

tactile sensors naturally lend themselves as inputs to CNNs since the tactile signal is an

image from a camera. Such sensors take full advantage of the CNN architecture, which was

developed mainly for image classification within the field of computer vision [44]. However,

optical tactile sensors are currently bulky and sampling rates can limit performance for real-

time tactile applications. For example, the GelSight and TacTip sensors sample images at

30 Hz [41] and 20 Hz [45], respectively. In contrast, the electrode impedance signals of the

BioTac sensor are sampled at 100 Hz, which enables faster tactile perception capabilities.

Camera images from optical tactile sensors are also large, which can be advantageous for

encoding visual details, but disadvantageous with regards to computational expense. The

resolution of the GelSight and TacTip are 640 x 480 pixels and 300 x 300 pixels, respectively.

Polic et al. downsample the TacTip data to 28 x 28 pixel images, incurring a slight increase

in processing time dur to the downsampling process [42]. Comparatively, our tactile images

generated from electrode impedance signals are constructed as 20 x 20 pixels and require

less pre-processing than the native camera images.
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3.4.2 Quantifying CNN Regression Model Uncertainty via Variance Estimates

While the CNN regression model performed well in estimating perturbation angle during

the 5-fold cross-validation testing (Table 3.1), the model provided no information about

uncertainty about the point estimates. Prediction intervals could be especially useful for

tasks in which trust in the point estimate is critical for decision-making, as for the remote

handling of high-consequence materials or safety-critical human-robot interactions.

Multiple methods have been developed to create prediction intervals for continuous NN

outputs. A review paper by Khosravi et al. summarizes four different methods for esti-

mating prediction intervals [36]. Out of the four methods surveyed, we selected the MVE

method for our application of real-time perception of tactile directionality. The Delta and

Bayesian methods were shown to be computationally expensive, reducing their appeal for

real-time use. The MVE and bootstrap methods resulted in a lower computational demand

through their use of NNs to predict the variance of a primary neural network. However,

the bootstrap method requires multiple NNs while the MVE method only requires a single

NN. The simplicity of the MVE method allows for fast calculation of a prediction interval,

making it a strong candidate for real-time implementation.

A high-level decision-making algorithm could incorporate user-defined thresholds on both

the point estimate and the uncertainty about the point estimate in order to execute context-

appropriate responses. If one were to assume that every point estimate produced by the

regression model were accurate, one would run the risk of enabling a robotic system to act

on misinformation and respond inappropriately. The width of the prediction interval could

be compared against a user-defined threshold to determine whether and how the real-time

point estimate should be acted upon.
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3.4.3 Model Robustness

This study focused on the perception of tactile directionality for a range of grip forces,

perturbation angles, and perturbation speeds. The grip forces in our study varied between

5–10 N while human studies involved the application of normal forces to subjects’ fingerpads

that varied from 0.25–1 N [10, 27]. The variation in grip force magnitude had no discernible

effects on model accuracy. We hypothesize that the fingerpad deformation and associated

change in electrode impedance during a tangential stimulus do not change drastically over

the 5-10 N force range. Lower grip forces were not explored, as grasp stability would have

been degraded.

As part of a post-hoc study, we assessed the effects of perturbation speeds on the accuracy

of tactile directionality estimates. We found that separating the data by perturbation speed

had no meaningful impact on estimate accuracy. This result is consistent with a study

with human subjects in which skin displacement rates faster than 2 mm/s had no impacts

on tangential directional perception for skin displacement greater than 1 mm [10]. Our

experiment employed tactile sensor skin displacements (20 mm) and perturbation speeds

(minimum of 2 cm/s) in excess of those used in human subject experiments.

The real-time implementation of the CNN regression model highlighted the model’s mod-

est robustness. First, the grasp was changed from a parallel grip (Figure 3.1b) to a tripod

grip (Figure 3.6). While we used a parallel grip during training in order to distribute the

contact forces evenly between two opposing tactile sensors, a tripod grip was used for a more

realistic real-time demonstration. Second, we substituted the object used in training (Figure

3.1) with two common objects (box and glass; Figure 3.6). The box had flat faces and paral-

lel sides, similar to the training object. However, the width of the box was 4”, compared to
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4.75” for the training object. As a result, the fingertip contact angle for the demonstration

with the box was slightly greater than that used during training (Figure 3.1c). The plastic

wine glass had an outer diameter of 3.2”, which required a much smaller grip width than the

box or training object. The glass also had a curved surface, for which the CNN regression

model was never trained. Given the reliance of the tactile perception model on tactile sensor

skin displacement, the robustness of the model to different object shapes, object widths,

and fingertip contact angles was a pleasant surprise. These results highlight that the tactile

directionality model can, to some extent, generalize to different handheld objects without

requiring retraining.

3.5 Conclusion

In this work, we developed a CNN regression model to perceive tactile directionality asso-

ciated with relative movements between a deformable fingerpad and a handheld object. We

additionally developed a secondary CNN regression model to estimate the uncertainty about

the tactile directionality point estimates. The tactile directionality model was implemented

in real-time for the perception of forceful interactions between a handheld object and an

external agent as well as the environment.

The perception of tactile directionality could be used to enhance situational awareness

and initiate context-appropriate behavioral responses by robotic agents. Leveraging a tactile

directionality model along with knowledge of a task, robots could more seamlessly manip-

ulate objects, use tools, and interact with other agents and the environment. While this

work focused on perception for action, such as object manipulation, one may also consider

exploiting our model for action for perception, such as the exploration of the environment
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(bare-fingered or with a handheld tool). Also, when using handheld tools to perform a task,

the haptic perception of tool-environment interactions is essential [46, 47, 48, 49, 50, 51]. An

interesting future direction would be the development of capabilities for a robot to distin-

guish between tactile stimuli induced by self-movement [52] as opposed to external agents

or the environment.

From a practical controls perspective, the real-time perception of tactile directionality

could be combined with the biological concept of an “efferent copy” [53] in order to verify

that robot movements and physical interactions are proceeding as expected. In the future,

the CNN variance model could be implemented in real-time and used to visualize uncertainty

about a tactile directionality point estimate for robot teleoperation (as in the Figure 4 insets)

or for decision-making by a semi-autonomous robotic system. With hand-crafted control

algorithms, the robot could use its estimate of the state of a handheld object to respond in

a context-appropriate manner.

41



CHAPTER 4

Controllers for Model-free, Tension-driven

Manipulation of Deformable Linear Objects

4.1 Abstract

Deformable linear objects (DLOs), such as ropes and cables, are difficult to manipulate

due to their infinite degrees-of-freedom. Prior works on DLO manipulation have focused

on geometric or topological state through complex modeling and computer vision. In some

tasks, the tensile state of the DLO needs to be controlled throughout the task. Tracking

different gradations of tension cannot be achieved using vision once the DLO becomes taut.

We present two novel controllers for use in model-free, tension-driven manipulation of DLOs:

the force trajectory (FT) and the force-velocity trajectory (FVT) controllers. The controllers

are designed for use on any robotic system that uses traditional motion control and is capable

of measuring end-effector forces. The controllers could be used for tasks in which the tensile

state of the DLO is more important than its configuration even if the elastic properties of

the DLO are unknown. We demonstrate the controllers in real-time on a real robotic system

for two utilitarian tasks: the circular wrapping of a DLO around a horizontal post and

the figure-eight wrapping of a DLO around a boat cleat. We evaluate the performance of

each controller and provide an open-source ROS package for implementation by the robotics
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community.

4.2 Introduction

Manipulation of deformable linear objects (DLOs) is an essential skill needed in robotic

systems. DLOs are manipulated in numerous applications spanning many fields such as

tele-surgery, automotive assembly, and food processing [54]. State-of-the art techniques,

such as computer vision [55], deep neural networks [56], and reinforcement learning [57] are

used to learn policies for modeling and manipulating DLOs. However, these techniques are

driven by the geometric state of the DLO rather than internal forces generated by physical

interactions with the environment. Work has been limited to pick-and-place and knot-tying

tasks, highlighting the difficulty of manipulating DLOs. Robotic manipulations that control

both the DLO tension and movement while maintaining stability during interactions with

an uncertain environment are required in many tasks.

This manuscript introduces two novel controllers for use in tension-driven manipulation

tasks in 3D space: the force trajectory (FT) controller and the force-velocity trajectory

(FVT) controller. Our controllers regulate the tensile state of the DLO using feedback

from a wrist-mounted, 6-DOF force/torque transducer. The controllers prioritize control

of DLO tension while following a reference motion rather than control of the exact DLO

configuration.

The contributions of this manuscript include:

• Design of two controllers for manipulating DLOs in 3D space while controlling the

tensile state and closely matching the desired end-effector motion.
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• Implementation and evaluation of these controllers on real robot hardware without

requiring explicit modeling, simulation, or a priori knowledge of the elastic properties

of the DLO. Also, the controllers use robot joint position commands without needing

to access the motor torques for force control.

• Open-source ROS package to facilitate implementation of the FT and FVT controllers

by the robotics community.

The manuscript is organized as follows. Section II is a literature review of state-of-the-art

techniques for DLO manipulation. Section III details the two novel controllers. Section IV

describes the experimental evaluation of each controller on a real robotic system. Section V

summarizes novel contributions, limitations of the work, and future work.

4.3 Related Work

Many works on the manipulation of DLOs focus on modeling DLO dynamics. Simulating

the elasticity of a DLO is typically accomplished in one of two ways: adopt a simple mass-

spring model or use the more complex Finite Element Method (FEM). Both techniques

have been used to model a variety of deformable objects, including 1D ropes [58], 2D cloth

sheets [59], and 3D shapes [60]. While mass-spring models have a low computational cost

and enable the visualization of simulated DLOs in real-time [61, 62], the accuracy of the

estimated internal forces is limited. FEM allows for a more accurate simulation of object

deformation, which can be run in a real-time manner, such as in simulating a suturing

procedure [63]. In both cases, the physical properties of a DLO, such as mass, damping

coefficient, and elasticity, must be known or estimated in order to simulate the state of the

DLO [64].
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Other state-of-the-art approaches for modeling DLOs involve computer vision and ma-

chine learning techniques. Wang et al. used RGB-D images to track the geometric state of

partially-occluded DLOs using convex geometric constraints [65]. Nair et. al. used Convo-

lutional Neural Networks (CNNs) with human demonstration to develop a predictive model

that relates robot actions to a DLO’s geometric state [56]. Song et al. used CNNs to build

a model for a DLO’s topological state [66]. Han et al. used a sample-efficient, model-based

reinforcement learning method to learn a policy for manipulating a DLO into a target state

[57]. Such computer vision and machine learning techniques are effective at generating an

inverse model and tracking the pose of a DLO in real-time. However, all aforementioned tech-

niques focus on the geometric and/or topological state of the DLO as opposed to its internal

state (e.g. tensile state) or forceful interactions between the DLO and the environment.

In some works, contact between the DLO and the environment is explicitly addressed

and exploited during motion planning and the tuning of control parameters for manipula-

tion. Zhu et. al developed a motion planning framework that purposely causes the DLO

to contact the environment in order to reach a desired geometric state [55]. Bretl and Mc-

Carthy used the constraint of a DLO being held on both ends to suggest a motion-planning

methodology for geometric equilibrium configurations [67]. When using indirect force con-

trol for the manipulation of DLOs, control parameters are often tuned in order to adapt to

the deformable environment. Kautic et. al used a neural network to classify the deformable

environment and to adjust the parameters of a compliance controller in simulation [68]. Lee

et. al used impedance control with time-varying gains in order to achieve different levels

of robot compliance at each stage of a knot-tying task [69]. The adaptive compliance was

used only at the end of the task in order to tighten the knot. Tasks that require a precise

DLO tension level would suffer from such an indirect tension control approach; for example,
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breakage of delicate DLOs. In this paper, we present methods for direct tension control.

For DLO manipulation, force transducers provide information about the current force

state of the DLO and enable model-free force control. Through a force transducer, Yue et. al

used end-effector adjustment motions [70] while Ding et. al used sliding mode control [71] to

suppress the vibration occurring at the free-end of a DLO without an explicit model. Hybrid

position/force controllers that simultaneously regulate end-effector motion and contact force

have been developed for surgical tools for skin harvesting [72] and to regulate the contact

force of a tool tip during a cardiac ablation procedure [73]. However, these controllers require

an accurate model of the medical tool and knowledge of the elasticity of the tissue.

This paper introduces novel, model-free controllers for use in tension-driven manipulation

of DLOs. Our controller can generalize to different DLOs and environments without having

to tune mass-spring model parameters or run computationally expensive FEMs in real-

time. To the best of our knowledge, this is the first implementation of 3D force and motion

control for tension-driven manipulation of deformable linear objects in a model-free manner.

Manipulation of DLOs has been addressed using geometric or topological states for scenarios

in which the DLO lies in a 2D plane. Previous work has been done to develop strategies

for the manipulation of DLOs that interact with the environment, but there was no direct

force feedback involved [55, 74]. Unlike the referenced works, our approach actively uses force

feedback throughout the real-time manipulation of DLOs that interact with the environment.

4.4 Methods

In this section, we describe the design of two controllers that enable the tension-driven

manipulation of DLOs. Our controllers are designed to determine an end-effector velocity

46



trajectory that enables the control of the tensile force state of a DLO and serves as the input

to a traditional robot motion controller. The DLO controllers are aptly named based on the

reference input needed to enact each controller: Force Trajectory (FT) and Force-Velocity

Trajectory (FVT) controllers. A force transducer, as would be commonly mounted on a

robot wrist, is required for the real-time measurement of 3D forces on the end-effector. The

FT and FVT controllers can be used for tasks, such as reeling in or redirecting rope. We will

demonstrate the controllers in the context of wrapping a DLO about another object. The

wrapping task involves moving one end of a DLO with respect to an object while keeping

the DLO taut, with a nonzero, internal tensile force state.

We observe that the tension-driven control of a DLO lies in the class of robot control

under geometric constraints. The problem of moving a robot end-effector along a rigid

surface while maintaining contact has been studied, resulting in the conclusion that force

control is necessary [75]. Such force control generally takes the form of impedance control

or hybrid force/position control.

The present problem of wrapping a DLO around an object differs from the classical con-

tact problem in important ways. Specifically, the problem of wrapping involves different

geometric constraints and representations and different motion requirements for completing

tasks. The tension of the DLO cannot be observed visually, which makes grasp and manipu-

lation planning difficult. Indirect force control methods are infeasible for the tension-driven

manipulation of DLOs because robot pose alone cannot be used to estimate tensile forces

when the nonlinear stiffness of the DLO is unknown.
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4.4.1 Force Trajectory Control

The Force Trajectory (FT) controller determines the end-effector velocity required to

maintain a desired tensile, 3D force of the DLO. Tension-driven manipulation of a DLO is

accomplished by prescribing a 3D force vector reference trajectory as expressed by a desired

force magnitude f ∗ and desired 3D force direction in unit vector form f̂
∗
. By design, the

end-effector’s motion is not explicitly prescribed. From this point forward, we will refer to

the internal tensile force of the DLO as simply the force state of the DLO.

The FT controller decomposes the desired 3D force vector reference signal into three

orthogonal components and simultaneously regulates the force magnitude along each or-

thogonal direction. The error between the desired and actual 3D force vector, as measured

directly by a force transducer, drives the motion of the end-effector in order to reduce error

in the 3D force vector trajectory.

Consider a scenario in which one end of a DLO is tethered to an object and a manipulator

has grasped the free end of the DLO at a location that we refer to as the grasp point g (Fig.

4.1a). As g moves in 3D space, the fixed end of the DLO will pivot around the tether point.

We will refer to the tether point as the proximal contact point p because it is the closest point

to the end-effector, when tracing the DLO away from the end-effector, that is making contact

with an object in the environment. In the example shown in Fig. 4.1a, p is fixed in space,

but we will see in Sections 4.4.2 and 4.5.2 that p(t) can be dynamic and is often unknown.

We assume that the free portion of a DLO effectively has a ball joint degree-of-freedom at p.

Here, we point out a minor advantage of our controls problem over the classical problem of

moving an end-effector along a rigid surface. Specifically, when considering the manipulation

of the free end of a DLO in an open air environment, the end-effector does not experience
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Figure 4.1: (a) A 7-DOF manipulator outfitted with a 6-DOF force/torque transducer is

shown grasping a tethered DLO. The grasp point g, proximal contact point p, actual force

vector f , and actual velocity vector ẋ are shown. (b) Experimental set-up for a figure-eight

wrap of a rope around a boat cleat.
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friction.

In this work, we assume that the DLO is nearly inextensible, although this property

is not strictly required. We refer to the length of the DLO between p and g as the free

length L(t). Assuming that the DLO is close to inextensible and that p is fixed in space,

any movement of the end-effector just outside a sphere of radius L will cause the DLO to

transition from a slack configuration to a taut configuration. In a taut configuration, the 3D

force vector for the DLO will have a force magnitude f and unit vector direction f̂ that is

coincident with the vector that points from an origin at the grasp point g to the proximal

contact point p (Fig. 4.2a). For the scenario in which the proximal contact point p and free

length L are known, the location of the end-effector can be used to determine f̂ . In practice,

a force transducer can be used to directly measure f and f̂ without knowledge of p or L.

Due to the decomposition of the reference 3D force vector into three orthogonal compo-

nents, the FT controller is comprised of three PD controllers that influence the end-effector

velocity output. As shown in Fig. 4.3, the FT controller precedes a traditional PD motion

controller and utilizes a force transducer in its feedback loop.

In real-time, the force vector error ef is calculated as

ef = f ∗ − f (4.1)

where f ∗ is the desired force vector and f is the measured force vector. Since the FT

controller is based on PD control, (4.1) is used to calculate the FT controller output u

u = KP ef +KDėf (4.2)

where ėf is the rate of change in force vector error as calculated by differences between

current and previous timesteps. The diagonal matrices KP and KD contain the proportional

50



Figure 4.2: (a) The FT controller takes as input a reference 3D force vector f ∗. (b) The FVT

controller takes as input a reference force magnitude f ∗ and feedforward velocity trajectory

ẋ∗. Note that underlined variables are vectors, ˆ indicates a unit vector, and ∗ indicates a

desired variable.
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Figure 4.3: Block diagram of a complete robot control system with the FT controller high-

lighted by the dashed red line. The FT controller takes as input a reference 3D force vector

trajectory f ∗ and produces a velocity command to be used as the input to a traditional

motion controller.

and derivative gains, respectively, for the PD control of each orthogonal component of the

force unit vector ûf .

The controller output in (4.2) is directly translated to end-effector velocity in operational

space ẋ.

u = ẋ = [vx, vy, vz]
T (4.3)

where vx, vy, and vz comprise the orthogonal components of 3D end-effector linear velocity

expressed in operational space. Equation (4.3) serves as the input to a traditional, opera-

tional space PD motion controller that follows the FT controller.

We refer the reader to Section 4.4.3 for details on the stability of the FT controller, which

is based on PD control. We show that the closed loop feedback system will be asymptotically

stable using PD gain tuning even when the nonlinear stiffness of a DLO is unknown.
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Figure 4.4: Block diagram of the feedback control system with the FVT controller highlighted

by the dashed red line. The FVT controller takes as input a reference force magnitude f ∗

and feedforward velocity trajectory ẋ∗ and produces a velocity command to be used as the

input to a traditional motion controller.

4.4.2 Force-Velocity Trajectory Control

While the FT controller uses a 3D force vector trajectory as its reference input, the Force-

Velocity Trajectory (FVT) controller takes as time-varying inputs a force magnitude f ∗ and

a 3D velocity ẋ∗ for the end-effector. The FVT controller enables the user to regulate the

end-effector’s motion in addition to the tension magnitude of the DLO. The FVT controller

also has the advantage that the reference inputs are more intuitive for the user to design;

end-effector motion is easier to prescribe than unit vector directions for a dynamic 3D force

vector. As with the FT controller, the FVT controller precedes a traditional robot motion

controller (Fig. 4.4).
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The goal of the FVT controller is to maintain a desired tension of the DLO while following

a desired end-effector motion. This is achieved by (i) moving the end-effector along the

measured direction f̂ in order to regulate the tensile force of the DLO, and (ii) moving the

end-effector along ˆ̇x
∗
, the unit vector direction of the desired end-effector velocity ẋ∗. The

FVT controller requires a nonzero tension, which can be achieved by increasing the distance

between the proximal contact point and the DLO grasp point.

In the case that the reference force magnitude and 3D velocity of the end-effector cannot

be simultaneously satisfied, the FVT controller is designed to prioritize the regulation of

tension in the DLO over the strict tracking of the 3D velocity trajectory. This is useful when

the tensile state of the DLO is critical for task completion and specific end-effector movements

are not. In Section IV, we will demonstrate the effectiveness of the FVT controller when

end-effector movement is driven by a human demonstration.

The FVT controller utilizes a single PD controller to regulate the magnitude of the tensile

force of the DLO. The force magnitude error ef is calculated as the L2 norm of the force

vector error ef , as defined in (4.1).

ef = ‖ef‖2 (4.4)

The force magnitude error in (4.4) is used to determine the force magnitude controller

output uf based on PD control.

uf = kP ef + kDėf (4.5)

where ėf is the rate of change in force magnitude error as calculated by differences between

current and previous timesteps. The scalar kP and kD are the PD controller’s proportional

and derivative gains, respectively.
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The controller output uf from (4.5) drives the unit vector direction of the end-effector

velocity ˆ̇x as follows.

ˆ̇x =
ˆ̇x
∗ − uf f̂

‖ˆ̇x∗ − uf f̂‖2
(4.6)

where ˆ̇x
∗

is the unit vector direction of the desired 3D velocity ẋ∗ and f̂ is the unit vector

direction of the measured 3D force f . Equation (4.6) provides a unit vector direction for

end-effector movement that is directly influenced by the measured force direction and desired

end-effector velocity. Note that (4.6) prioritizes measured force direction due to the absence

of a control gain for the desired velocity term.

The complete end-effector velocity command u is calculated for operational space as ẋ

using the unit vector direction ˆ̇x from (4.6) and the L2 norm magnitude of the desired 3D

velocity ẋ∗ for the end-effector.

u = ẋ = ‖ẋ∗‖2 ˆ̇x (4.7)

When the DLO is slack, rather than using (4.6), we specify the end-effector velocity as

follows.

ˆ̇x ≈ −f̂ (4.8)

The approximation in (4.8) results from the large gain uf produced in (4.5) when there is

no tensile force in the slack DLO. Once the DLO becomes taut and the error in the force

magnitude decreases, the desired velocity term begins to influence the end-effector motion

(4.6). Effectively, the force and velocity direction terms compete with one another in order
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to determine the end-effector motion, with priority given to the regulation of the tensile force

of the DLO.

Specifying reference trajectories is a more intuitive process for the FVT controller than

the FT controller. This is because the 3D force vector trajectory cannot always be simply

defined for the FT controller, whereas 3D end-effector motion can be roughly approximated

via computer simulation or human demonstration. Additionally, it is challenging to specify

a 3D force vector trajectory when the position of the proximal contact point p is dynamic

and unknown.

4.4.2.1 Generating a Reference 3D Velocity Trajectory via Human Demonstra-

tion

For tasks in which the motion of the DLO is complex, as in performing a figure-eight wrap

around a boat cleat, it is difficult to specify a 3D force vector trajectory for an FT controller.

Instead, we use human demonstration to generate a reference 3D velocity trajectory in

operational space for an FVT controller and additionally specify a reference force magnitude.

As shown in Algorithm 1, synthesizing a feedforward velocity profile for the FVT con-

troller involves smoothing a human-guided Cartesian path of the end-effector X, mapping

the path at the specified robot control frequency and end-effector velocity, differentiating the

path into a motion profile, and scaling the profile temporally in order to generate a reference

3D velocity trajectory in operational space Ẋ∗.

Depending on the quality of the human demonstration, the nominal velocity profile may

be insufficient for successful execution of the FVT controller, which prioritizes force magni-

tude over motion. Thus, we use a temporal scaling factor γ to modify the nominal velocity
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Algorithm 1: Velocity Profile Generation

Input: Cartesian poses X = {x0, ..., xN}, subsampling timestep tSUB, robot control

frequency fR, moving average filter window size n, desired end-effector

speed ẋ∗, temporal scaling factor γ

Output: Ẋ∗

1 Subsample X at every tSUB to yield XSUB =
{
x0, xtSUB

, x2∗tSUB
, ..., xT

}
2 Smooth XSUB with a moving average filter having a window size n to yield XFILT

3 Calculate the total time T needed to travel the total length of smoothed XFILT at

ẋ∗

4 Perform cubic spline of XFILT onto time scale incremented at fs up to T to yield

XOUT

5 Differentiate and normalize XOUT to yield ˆ̇X∗
o

6 Multiply the total time T by γ to yield the scaled total time Tγ

7 Perform cubic spline of ˆ̇X∗
o onto time scale with total time Tγ to yield

˙̂
X∗

8 return Ẋ∗ = ẋ∗ ˆ̇X∗

profile. A γ value greater than one serves to increase the total time that the manipulator

has to perform the velocity trajectory. Subsequently, this expands the position trajectory

in space, which allows the manipulator to make larger movements in order to achieve the

desired force magnitude. From preliminary experiments, the user-defined γ value can lie in

the range of one to four, but the actual value will depend on the robotic task and desired

end-effector speed.
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4.4.3 Closed loop Stability of the FT and FVT Controllers

We used a simplified model of an end-effector interacting with a DLO in order to facilitate

the stability analysis of our proposed FT and FVT controllers. Both controllers operate in

3D Cartesian space. However, the FT controller uses PD control to simultaneously regulate

each of three, orthogonal, scalar force magnitude components. Thus, we can reduce the

dimensions of our stability analysis of the FT controller from a 3D force vector to a 1D force

component. We make the same simplification for the analysis of the FVT controller, but for

the reason that the FVT controller regulates the scalar force magnitude directly.

First, we consider the stability of the FT controller. The force feedback control loop is

shown in Fig. 4.5 for a standard robotic system. Note that the stability analysis is performed

in joint space in order to explicitly account for the properties of the driving motors. The FT

controller, simply represented by compensator Cf (s), is applied to a robotic system actuated

by a driving motor under PI control Cv(s). The mechanical properties of the driving motors

are represented by motor torque constant Km, motor inertia J , and viscous friction B.

High gear reductions are assumed. Joint position and velocity are represented by q and q̇,

respectively.

The force feedback control loop can be separated into a linear time-invariant (LTI) block

H(s) and a separate memoryless nonlinear block K that represents the DLO’s unknown

displacement-force relation in the Cartesian domain. This 3-by-3 K matrix includes the

directional cosine transformation, which is defined by the vector formed by the proximal

contact point p and grasp point g. The scalar DLO stiffness elements in K are bounded by

0 when in the slack state and kmax when in a taut state.

To simplify the system for a stability analysis, we further assume diagonal dominance,
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Figure 4.5: Force feedback control loop for a standard robotic system, represented with

driving motors in joint space. Bold variables indicate vector and matrix quantities.

which is appropriate for industrial robots with high gear reductions, and commute the geo-

metric Jacobian transformation J and CF , which is appropriate for a slowly varying J and

diagonal CF . The nonlinear block, including the switching between the DLO’s slack and

taut states, the semi-positive directional cosine of the DLO tensile force, and the positive

definite configuration-dependent transformation JJT , may be considered an arbitrary static

nonlinearity sector bounded between 0 and kmax:

FQ = f(q) = k(q)q (4.9)

where 0 ≤ k < kmax.

Thus, the absolute stability condition based on the circle criterion is

Re(H(jω)) > − 1

kmax
(4.10)

where

H(s) =
KmCv(s)Cf (s) + 1

(Js+B) +KmCv(s)

(
1

s

)
(4.11)

Fig. 4.6 shows that an FT controller based on PD control always results in an absolutely
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stable closed loop system while an FT controller based on PID control does not. For the

Nyquist plot, we used motor properties based on the four proximal joints of the Barrett

WAM. The estimated upper limit of DLO stiffness kmax was calculated based on the axial

stiffness of a 3.2 cm braided nylon rope. The PID force controller gains were based on a

pilot study while the PI velocity controller gains were set for stability of the closed loop

motor velocity. Even when the stiffness K of the DLO is unknown, a set of proportional

and derivative control gains can be identified for the FT controller that results in asymptotic

stability of the closed loop system.

Gain tuning becomes especially important for ensuring closed loop stability if the com-

pensator Cf (s) is based on PID control since absolute stability is no longer guaranteed.

Nonetheless, the integrator in H(s) ensures a zero steady-state error for constant force com-

mands if the closed loop system is stable, even if Cf (s) is based on PD control.

Now, we consider the stability of the FVT controller. The representation of the FVT

controller as Cf (s) is similar to that for the FT controller, but is influenced by a feedforward

joint velocity magnitude q̇∗ (feedforward velocity input, but represented in joint space for

this stability analysis). The feedforward velocity input is treated as a disturbance to the PD

force controller CF (s). The introduction of the feedforward velocity disturbance does not

affect the stability of the closed loop system, which implies that the FVT controller with

embedded PD force control is also absolutely stable.

4.5 Experimental Procedure and Evaluation

We demonstrated our FT and FVT controllers for two utilitarian tasks: (i) wrapping a

DLO around a horizontal post and (ii) performing a figure-eight wrap around a boat cleat.
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Figure 4.6: For the FT controller, Nyquist plots for the embedded PD (blue) and PID (green)

controllers are shown alongside the non-linearity stiffness of the DLO (red). The embedded

PD controller is absolutely stable while the embedded PID controller is not.
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The post-wrapping task was used for the direct comparison of the FT and FVT controllers

and to assess their performance for two different DLO types. The figure-eight task was used to

show the versatility of the FVT controller for complex DLO manipulations that can leverage

human demonstrations. For both tasks, the proximal contact point p of the DLO was both

unknown and dynamic. Although a constant force magnitude was commanded throughout

both tasks, the reference force magnitude could easily be defined as time-varying.

The robotic system was comprised of a 7-DOF manipulator, 4-DOF end-effector, and

6-DOF Force/Torque transducer (Barrett WAM, BarretHand; Barrett Technology, MA; Fig.

4.1). The manipulator was configured to mimic the orientation of a human arm with respect

to gravity. A custom urethane rubber palm was added to the BarrettHand in order to

improve form-closure during grasping. The FT sensor was calibrated using an established

least-squares calibration procedure [76] and more than 100 different poses spanning the

manipulator workspace. Our computer utilized the Xenomai real-time framework to ensure

a communication rate fs of 500 Hz.

The experimental setup consisted of a 3.8 cm square, rigid post that was cantilevered

horizontally by a length of 10.2 cm from a fixed structure directly in front of the robot

manipulator (Fig. 4.7). The experiment was performed with two different DLOs having dif-

ferent masses and diameters: a lightweight fishing line and a heavy rope. The monofilament

nylon fishing line had a diameter of 0.33 mm and a mass per unit length of 0.08 g/m. The

braided nylon rope had a diameter of 3.2 cm and a mass per unit length of 0.7 kg/m. Both

DLOs were interweaved with the rigid post structure in order to provide an initial proximal

contact point. As seen in Fig. 4.7, the fishing line was tied to a roll of tape for grasp and

manipulation while the rope was grasped directly by the end-effector.
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Figure 4.7: Experimental setup for the task of wrapping a DLO around a rigid, cantilevered

post using (a) lightweight, monofilament nylon fishing line or a (b) heavy, braided nylon

rope.

4.5.1 Circular Wrapping of DLOs Around a Horizontal Post

The first task was the wrapping of each DLO around a horizontal post while regulating

tension throughout the motion. This task, trivial for humans, is difficult to implement on

a robotic system using analytical or simulation-based methods without having an accurate

model of the DLO. In addition, this task involves physical interactions between the DLO and

another object, which is difficult to simulate. As a result, the robot controller must regulate

tension throughout the manipulation of the DLO in a model-free manner using real-time

force feedback alone.

For both controllers, a circular motion was used to create the reference trajectories for

the wrapping task. To accomplish the circular motion, the initial configuration of the ma-
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nipulator featured a bent elbow, which allowed the manipulator to perform a circular motion

of its end-effector without colliding with the cantilevered post. The 3D circular motion was

converted to a 3D force vector trajectory for the FT controller and was used directly as the

3D velocity vector trajectory for the FVT controller.

4.5.1.1 FT trajectory design

To obtain the 3D force vector reference trajectory for the FT controller (Fig. 4.2a), we

considered a scenario in which the proximal contact point and free length of the DLO were

constant. The grasp point of the DLO was moved along a circular path, and a constant

tension was maintained. In that case, the DLO would be taut and would trace out the

lateral, conical surface of a right cone. The 3D force vector reference trajectory would be

comprised of 3D force vectors that lie along the the lateral surface.

Using spherical coordinates, the 3D force vector trajectory was defined using a desired

force magnitude f ∗, the initial DLO free length L0 as the slant height of the cone, a desired

opening angle α of the cone calculated from the radius of the circular motion of the grasp

point g, the initial proximal contact point p as the vertex of the cone, and a desired angular

velocity ω around the axis of the cone.

The vector set S = {s1, s2, ..., sN} was defined for a series of timesteps t ∈ {0,∆t, 2∆t, · · · ,

T}, where N is the total number of timesteps, ∆t is the robot control publishing time, and

T is the total runtime respectively. The vector set establishing the cone’s lateral surface in

(4.12) was defined using the polar angle θ(t) and azimuth angle φ(t) in (4.13) along with the
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cone parameters previously described.

s(t) =


L0 sin(θ(t))

L0 cos(α)

L0 sin(φ(t))

 (4.12)

where θ(t)
φ(t)

 =

 α sin(ωt)

−α cos(ωt)

 (4.13)

Each individual vector from (4.12) comprising the vector set S was normalized to yield

a unit vector that pointed away from the proximal contact point p.

ŝ =
s

‖s‖2
(4.14)

Each unit vector from (4.14) was converted to f̂
∗

by reversing the direction of ŝ such that

each desired force vector would point away from an origin at g and towards p.

f̂
∗

= −ŝ (4.15)

The final 3D force vector reference trajectory f ∗ was determined as follows.

f ∗ = f ∗f̂
∗

(4.16)

The 3D force vectors comprising the reference trajectory were decomposed into three

orthogonal components according to a Cartesian coordinate system whose origin was coin-

cident with the grasp point (Fig. 4.7b). Finally, each of the three reference trajectories of

orthogonal force components were used as inputs to a traditional PD motion controller.
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Table 4.1: For each controller and DLO, we report the mean±standard deviation for the

error in force magnitude and offset angle of the 3D force vector, as well as the 95% rise time

tr for the force magnitude.

Controller DLO Error in force

mag.* (N)

Offset angle of

3D force vector

(◦)

tr for force

mag. (s)

FT
Fishing line 0.09± 0.20 3.95± 2.25 0.36

Rope 0.14± 0.14 3.36± 2.17 0.42

FVT
Fishing line 0.01± 0.30 - 0.62

Rope -0.22± 0.31 - 0.68

*The reference force magnitude was 12.5 N for the task of wrapping a DLO around a hori-

zontal post.
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4.5.1.2 FVT trajectory design

To obtain the 3D velocity vector reference trajectory for the FVT controller (Fig. 4.2b),

we considered the same scenario as for the FT controller. However, the reference trajectory

for the FVT controller was defined in the Cartesian velocity space. The FVT reference

trajectory was based on the velocity profile for movement of the grasp point g along the

circumference of the base of the right cone.

For a given sampling period ∆t, a set of 3D velocity vectors was defined with a desired

angular velocity ω. The end-effector velocity magnitude ẋ∗ was derived based on the user-

defined ω and the circumference of the base of the cone.

ẋ∗(t) = ẋ∗


cos(ωt)

0

sin(ωt)


(4.17)

where t ∈ {0,∆t, 2∆t, · · · , T}.

For both the FT and FVT controllers, the reference force magnitude f ∗ was 12.5 N and

the angular velocity ω around the axis of the cone was 8◦/s. We set ∆t to 2 ms and T to

30 s. For safety purposes, a 20 cm/s limit was set for the maximum end-effector velocity.

The reference end-effector velocity magnitude ẋ∗ was set to 4 cm/s. The PD gains for both

controllers were tuned from initial values calculated according to the Ziegler-Nichols tuning

method.
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4.5.1.3 Performance of FT and FVT controllers

The FT controller tracked the desired force trajectory for all three orthogonal components

of 3D force (defined in Fig. 4.7b) with low errors having a mean ± standard deviation of

−0.03± 0.5 N and −0.1± 0.5 N in the y-direction for the fishing line and rope, respectively.

For the x-component of force, the error was 0.2± 0.8 N and 0.1± 0.7 N for the fishing line

and rope, respectively. Although the z-direction had the highest error of −0.3 ± 0.8 N and

−0.3± 0.7 N for the fishing line and the rope, respectively, the FT controller was still able

to regulate the overall force magnitude to within a 2% margin of the desired value. The low

overall error in force magnitude for the FT controller is shown in Table 4.1.

One can also assess the performance of the FT controller by evaluating the angular offset

of the 3D force vector from the reference direction. A dot product was used to report the

angular offset between the actual and reference 3D force vectors (Fig. 4.8, blue). The FT

controller regulated the direction of the 3D force vector to within 1.6◦ − 8.5◦ for the fishing

line and to within 0.9◦ − 7.3◦ for the nylon rope.

A slow frequency oscillation was observed in the angular offset for both the lightweight

fishing line and heavy nylon rope (Fig. 4.8). This phenomenon is attributed to the cyclic

change in manipulability as the manipulator performed the commanded circular trajectory.

To assess the effects of manipulator configuration on controller performance, a singular value

decomposition was performed on the manipulator’s geometric Jacobian. The inverse of the

condition number of the Jacobian is commonly used to assess how close the manipulator

is to approaching a singular configuration [77]. We overlaid the time history of the inverse

of the condition number (red) onto that of the angular offset (blue) in Fig. 4.8. The

slow oscillatory change in the inverse of the condition number corresponds with the slow
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Figure 4.8: The angular offset of the the 3D force vector from the reference direction is shown

in blue when using the FT controller for the task of wrapping fishing line (dotted) and rope

(solid) around a horizontal post. The inverse of the condition number of the geometric

Jacobian during the FT controller implementation is shown in red.
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Figure 4.9: (a) Output of the embedded PD force controller uf . (b) The angle between the

actual force unit vector f̂ and commanded velocity unit vector ˆ̇x is shown in blue. The angle

between the desired movement direction ˆ̇x∗ and the commanded movement direction ˆ̇x is

shown in red.

oscillatory change in angular offset. Decreases in the inverse of the condition number and

manipulability correspond with increases in high frequency oscillations in the angular offset.

To assess the performance of the FVT controller, we analyzed the output of the embedded

PD force controller. Results are shown for the manipulation of the monofilament fishing line

(Fig. 4.9); trends are similar for the manipulation of the braided rope. When the error

in force magnitude ef was near zero, the PD force controller output uf was near zero, as

expected (Fig. 4.9a). The FVT controller prioritized tracking of the reference 3D velocity

trajectory ẋd and moved the end-effector along the desired feedforward velocity direction. As
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a result, the angle between the desired movement direction ˆ̇x
∗

and commanded movement

direction ˆ̇x was near-0◦ (Fig. 4.9b, red). Also, the end-effector was commanded to move

perpendicularly relative to the actual force vector, as shown by the near-90◦ angle between

the actual force unit vector f̂ and commanded velocity unit vector ˆ̇x (Fig. 4.9b, blue).

When the error in force magnitude increased, the PD force controller output uf increased.

The FVT controller then prioritized the correction of the force magnitude over the tracking

of the reference 3D velocity trajectory. Accordingly, the angle between the force and ve-

locity vector decreased away from 90◦, and the angle between the desired and commanded

movement directions increased away from 0◦. Thus, the FVT controller prioritizes DLO

force magnitude over the tracking of the reference 3D velocity trajectory, by design of the

embedded PD force controller. This capability is useful for tasks in which DLO tension is

more important than the precise tracking of a human-demonstrated movement.

One can also assess the performance of the FVT controller by evaluating the force mag-

nitude throughout the wrapping task (Fig. 4.10). The FVT controller regulated force mag-

nitude throughout the wrapping task with low errors having a mean ± standard deviation

of 0.01 ± 0.30 N and −0.22 ± 0.31 N for the fishing line and rope, respectively (Table 4.1).

Upon closer inspection of experimental videos, it was observed that the transient drops in

force for the fishing line were caused by abrupt movements of the proximal contact point as

the smooth fishing line slipped against the square, rigid horizontal post.

As with the angular offset for the FT controller (Fig. 4.8, blue), a slow frequency oscil-

lation was observed in the force response for the FVT controller (Fig. 4.10, blue) that was

related to fluctuations in the inverse of the condition number and manipulability. Oscilla-

tions in the force response increased in frequency and magnitude near the end of the task,

when manipulability degraded (Fig. 4.10, red).
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Figure 4.10: (a) The force response is shown in blue when using the FVT controller for the

task of wrapping fishing line (dotted) and rope (solid) around a horizontal post. The desired

force magnitude is shown by the green dashed line. (b) The inverse of the condition number

of the geometric Jacobian during the FVT controller implementation is shown in red.
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The performance of the FT and FVT controllers are directly compared in Fig. 4.11 and

Table 4.1. The error in force magnitude averaged across both DLO types, and expressed as

mean ± standard deviation, was 0.1 N ± 0.2 N for the FT controller and 0.1 N ± 0.3 N for

the FVT controller. Both controllers regulated the DLO force magnitude well (mean error

was < 1% of the reference force magnitude), although the force response produced by the

FVT controller was slightly noisier than that produced by the FT controller (Table 4.1).

Fig. 4.11 shows the step response behavior for both controllers. The FT controller had

a faster 95% rise time tr than the FVT controller for both DLO types, although the rise

times for all cases were less than 0.7 sec. The rise times were faster for the lightweight

fishing line than the heavy rope (Fig. 4.11, Table 4.1). The rise times were 16.5% and

8.8% greater for the FT and FVT controllers, respectively, for the heavy rope as compared

to those for the lightweight fishing line. This could be attributed to the lower mass and

inertia of the fishing line as compared to the rope. Another contributing factor could be

that the monofilament fishing line is stiffer than the braided rope. The Young’s modulus

of the monofilament nylon fishing line is 2.7 GPa [78]. For the rope, the Young’s modulus

was derived from the experimental axial stiffness value for fiber ropes [79]. The Young’s

modulus of the braided nylon rope was computed as 150.2 MPa based on the experimental

axial stiffness and the cross-sectional area of the rope. While bending stiffness can affect

the force response, the force component related to axial stiffness is likely to dominate that

related to bending stiffness. Torsional stiffness was assumed to be zero as there was no

deliberate twisting of either DLO during the wrapping task.

While Fig. 4.11 and Table 4.1 suggest that the FT controller is superior to the FVT

controller in terms of performance, the FT controller is difficult to implement. The reference

trajectory for the FT controller must be defined in 3D force space while the references for
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Figure 4.11: The step response for force is shown for the FT controller (red) and FVT

controller (blue) for the task of wrapping fishing line (dotted line, open dots) and rope (solid

line, solid dots) around a horizontal post. The desired force magnitude is shown by the green

dashed line.
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the FVT controller are comprised of an intuitive 3D Cartesian space motion trajectory and

a force magnitude trajectory. As demonstrated in Section IV-B, the FVT controller has

a distinct advantage over the FT controller for more complex tasks, such as performing a

figure-eight motion when wrapping a DLO around a boat cleat.

4.5.2 Figure-eight Wrapping of Rope Around a Boat Cleat

Wrapping of DLOs using circular motions of the end-effector can be defined relatively

easily in 3D force vector space. Although the length of the DLO decreases as the wrapping

task progresses, the proximal contact point for the DLO does not change drastically. How-

ever, the proximal contact point can move in complex ways when a task requires multiple

anchor points. For example, there are numerous anchor points to consider when routing

bundles of DLOs through multiple clamp locations within an aircraft fuselage [80] or routing

a single DLO through a cable harness [55].

When the proximal contact point moves in complex ways, it can be difficult to define

reference 3D force vector trajectories for the FT controller. In such cases, the FVT controller

has an advantage because one only needs to provide as references a force magnitude trajec-

tory and 3D velocity vector trajectory. The 3D velocity vector trajectory can be created

using a human demonstration. Simply put, it is easier and more intuitive to define a 3D

velocity vector trajectory for the FVT controller than a 3D force vector trajectory for the

FT controller for tasks that require complex manipulations of the DLO.

To demonstrate the effectiveness of the FVT controller, we performed a figure-eight wrap

of a rope around a boat cleat. First a human demonstration was recorded. Algorithm 1 was

then used to produce the smooth reference 3D velocity vector trajectory to be used in the

feedforward portion of the FVT controller. Based on preliminary tests, the subsampling
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timestep tSUB was set to 0.5 s with a moving average filter window size n of 72.

Unlike the prior demonstrations of wrapping DLOs around a horizontal post, the boat

cleat wrapping task was achieved using the multiphase process shown in Fig. 4.12. The robot

began the task with a firm grasp of the rope, which dangled loosely below the bottom horn

of the boat cleat. In Phase 1, the 1st stage of FVT control was activated, after exceeding

a tension threshold of 9 N, in order to regulate tension as the rope was hooked around

the bottom horn and then wrapped around the top horn of the boat cleat. The temporal

scaling factor γ was set to 2.5 such that the feedforward velocity trajectory would be 2.5x

the duration of the human-demonstrated motion trajectory. In Phase 2, the end-effector

loosened its grasp on the DLO, slid down the DLO to gain a longer free length L of rope, and

regrasped the rope. This step was necessary because the length of rope needed to complete

the figure-eight movement was longer than the outstretched length of the manipulator. In

Phase 3, the DLO was wrapped a second time around the bottom horn of the boat cleat.

Since the FVT controller was not implemented in Phases 2 or 3, the temporal scaling factor

was set to 1.0 for the feedforward velocity trajectories. In the final Phase 4, the 2nd stage

of FVT control was activated in order to tighten the rope and complete the figure-eight

wrapping task. The temporal scaling factor was set to 1.5 for this final feedforward velocity

trajectory.

For the final demonstration of the figure-eight wrapping task shown in Supplemental

Video 1, we used an end-effector speed of 16 cm/s, which yielded a good balance between

overall time to task completion and performance of the FVT controller. Fig. 4.12 shows the

force magnitude as a function of time throughout the multiphase task. All four phases of the

task are shown in order to highlight the force regulation results during Phases 1 and 4, when

the 1st and 2nd stages of the FVT controller were activated, respectively. The reference
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Figure 4.12: The force response is shown in blue for the FVT controller during the multiphase

task of wrapping rope around a boat cleat. The FVT controller was activated during Phases

1 and 4 only. The desired force magnitude is shown by the green dashed line. Distinct phases

are separated by red dotted lines.

77



force magnitude f ∗ was 12.5 N. The error in force magnitude, expressed as mean ± standard

deviation, was −0.6 ± 0.5 N for the 1st stage of FVT control and 0.7 ± 0.5 N for the 2nd

stage of FVT control.

For the FVT controller, the error in force magnitude was slightly larger for the task of

wrapping the rope around a boat cleat (Fig. 4.12) as compared to wrapping the rope around

a horizontal post (Fig. 4.10). However, the figure-eight wrapping task required a complex

motion that was driven by a single, smoothed human demonstration. One could improve the

performance of the FVT controller by using a slower end-effector speed, tuning the PD gains

of the embedded force PD controller, and ensuring that the DLO is taut during the human

demonstration. An FT controller might be capable of outperforming the FVT controller

for such a complex manipulation task as figure-eight wrapping, but one would need a priori

knowledge of the complex movement of the proximal contact point and a reference 3D force

vector trajectory.

4.6 Conclusion

We developed and implemented model-free controllers that can be used to augment ex-

isting motion-based robot controllers for tasks involving the tension-driven manipulation of

DLOs. Our controllers used PD force control to achieve closed loop stability despite the

unknown stiffness properties of a DLO. On a real robot system, we demonstrated the FT

and FVT controllers for two different wrapping tasks with DLOs. These controllers provide

a foundation for developing more advanced tension-driven manipulation strategies for DLOs.
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4.6.1 Summary of Contributions

This work introduces two novel controllers for the tension-driven manipulation of DLOs

in 3D space: a force trajectory (FT) controller and a force-velocity trajectory (FVT) con-

troller. Both controllers are model-free, making them easier to implement in scenarios where

the properties of the DLO are unknown. Through the circle criterion, we show that our

embedded PD force controller design can be tuned for stability without knowledge of the

elastic properties of the DLO. Additionally, the feedforward velocity component of the FVT

controller can leverage human demonstrations for complex manipulation tasks.

In contrast to prior works that control the geometric or topological state of the DLO

using computer vision, our controllers prioritize the tensile state of the DLO using force

transducers. The FT and FVT controllers were demonstrated for the circular wrapping of

two types of DLOs (monofilament nylon fishing line, braided nylon rope) around a horizontal

post. The FVT controller was demonstrated for a more complex task of wrapping of the

braided rope around a boat cleat.

While the controllers were demonstrated on a single robotic system, the modular design of

the controllers enable their implementation on any other robotic system that uses traditional

motion control and is capable of measuring end-effector forces. We have published an open-

source ROS package to facilitate implementation of the FT and FVT controllers on other

robotic systems at https://github.com/BiomechatronicsLab/dlo-tension-control.

While the goals of FVT control are similar to those of hybrid force/motion control, it is

important to differentiate the two approaches. Hybrid force/motion controllers regulate end-

effector contact force and velocity by decoupling the two regimes and accounting for natural

and artificial constraints. A hybrid force/motion controller tracks force by moving the end-
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effector in directions constrained by contact and controls velocity by moving in unimpeded

directions. Force and velocity are tracked in parallel using embedded PD and PI controllers,

respectively. In contrast, FVT control uses a PD force control loop and feedforward veloc-

ity term to determine the end-effector velocity vector output of the controller. The FVT

controller is placed in series with and upstream of a traditional PD motion controller.

With hybrid force/motion control, the satisfaction of both force and velocity setpoints

is not guaranteed because the dynamic coupling between the manipulator and environment

are not considered during implementation [81]. With FVT control, feedback control is used

for regulating force magnitude only and the feedforward velocity trajectory is used as a

guide. Perfect tracking of the velocity trajectory is not guaranteed, as force regulation takes

precedence by design.

4.6.2 Limitations and Future Work

While the FT and FVT controllers are able to regulate tension during the manipulation

of DLOs, there is room for improvement. For example, the controllers do not account for

singular manipulator configurations. A manipulability analysis could be conducted a priori

in order to constrain the controller outputs and avoid singular configurations.

The current robotic system does not account for obstacles in the environment that might

impede the motion of the DLO or the manipulator itself. An a priori model of the envi-

ronment and/or computer vision could be used to integrate obstacle avoidance capabilities.

Furthermore, if computer vision could be used to track the 3D location of a dynamic proxi-

mal contact point, one could more easily specify the 3D force vector trajectory inputs to an

FT controller.
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Computer vision could also be used to track the geometric or topological state of the DLO

in parallel with the tensile state provided by a force/torque transducer. Our demonstration

of the wrapping of a rope around a boat cleat benefitted from a human demonstration. If

a robot encountered a novel post or cleat in an unstructured field environment, computer

vision would be critical for planning changes in the DLO’s geometric state as well as its

tensile state.

We present novel FT and FVT control structures that can serve as a foundation for

additional fine-tuning depending on one’s application. For example, one could incorporate

weighting terms into the FVT controller structure to encode the importance of tracking force

magnitude relative to following a velocity trajectory. Reinforcement learning could also be

used to autonomously tune controller gains while considering disturbances, sensor noise, and

uncertainty in DLO characteristics [82]. By enabling the direct control of the tensile state of

a DLO, our FT and FVT controllers expand the capabilities for robotic systems to perform

complex manipulation tasks with deformable linear objects.
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CHAPTER 5

Summary and Conclusion

The work presented in this dissertation has provided new methodologies for object ma-

nipulation through artificial tactile sensing and proprioception. While computer vision re-

mains the most common modality for sensory feedback in robotics, the work in this paper

addresses gaps in object manipulation research that can only be executed with a sense of

touch. Through the use of machine learning, we utilized tactile data to perceive tactile

directionality during the grasp of a handheld object. Novel controllers were developed to

enable tension-driven control during deformable linear object manipulation through the use

of a force transducer. These methodologies can be used to improve object manipulation.

5.1 Contributions

Development of perceptual capabilities for tactile directionality: Using the skin

deformation features of a multimodal tactile sensor, we can perceive the direction of pertur-

bations being applied to a handheld object. Through both discrete (HMM) and continuous

(CNN) models, we can estimate a tactile state for the finger-object interaction that includes

directional context for the perturbation. In addition, we introduce the use of confidence

intervals through our CNN implementation as a measure of uncertainty. The uncertainty

estimate can be used by the robot or a remote teleoperator to make decisions based on
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confidence in the point estimate and the risk associated with the manipulation task.

Real-time implementation of tactile directionality perception on a real robot:

A CNN regression model is implemented in real-time on robot hardware for a pick-and-

place task and for unpredictable perturbations by an external human agent. We show that

the perception model works with objects having different shapes and sizes than the object

used for model training. Perception of tactile directionality can be used in decision-making

algorithms to enable robotic systems to make context-appropriate actions.

Novel controllers for use in model-free, tension-driven manipulation of de-

formable linear objects: To tackle the challenge of manipulating dynamic and complex

deformable linear objects having unknown physical properties, we developed two novel con-

trollers to enable tension-driven manipulation in a model-free manner. The FT controller

regulates the direction and magnitude of the measured DLO tension through a defined tra-

jectory of 3D force vectors. The FVT controller regulates the magnitude of tension through

a desired force magnitude and feedforward 3D motion profile. These controllers have been

published online in the form of an open-source ROS package for use by the robotics commu-

nity: https://github.com/BiomechatronicsLab/dlo-tension-control.

Implementation of novel controllers on a real robot: We show that two novel

controllers for model-free, tension-driven manipulation can be implemented in real-time on

robot hardware. In particular, we implement these controllers for two utilitarian tasks: the

circular wrapping of a DLO around a horizontal post and the figure-eight wrapping of a rope

around a boat cleat. Both controllers are able to control the tensile state of the DLO, as

desired.
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5.2 Future Work

5.2.1 Improve generalizability and training efficiency for tactile directionality

perception

The work presented in Chapters 2 and 3 provides methodologies for perceiving tactile

directionality of external perturbations being applied to an object held in parallel grasp. As

seen in Figure 3.1, the tactile sensor was fixed at a single contact angle and area of contact

on the deformable fingerpad. This covers only a small portion of possible grasps when it

comes to object manipulation. The ability to perceive tactile directionality regardless of the

contact location on the fingertip would be especially useful.

However, to enable this level of generalizability, a vast amount of training data is needed

for multiple contact points. Unlike data from images and videos that are relatively simple

to collect, tactile data from physical interactions are limited due to the need for experiments

on real robot systems. Such physical experiments can be difficult to conduct and time-

consuming, and can induce wear on the hardware.

One solution is to develop accurate models of tactile sensors that can be used to simulate

innumerable finger-object contacts and the associated tactile sensor readings. Unfortunately,

the creation of such accurate models of tactile sensors and contact mechanics has remained

a long-standing problem in the field of robotics. Recently, a research group has developed

a finite element, neural network-based model of a multimodal, deformable tactile sensor

[83]. Another solution is to develop a generative model that can be used to simulate tactile

images for lateral perturbations against the tactile sensor. This can significantly reduce the

amount of real tactile sensor data needed to build a more generalizable tactile directionality

perception network.
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5.2.2 Complement the approach to tension-driven manipulation of DLOs with

additional sensors

Tactile sensors can be added to the fingers and palm of the end-effector to improve the

implementation of tension-driven control. The distribution of forces on sensorized fingertips

can be monitored to estimate the direction of the taut DLO. A sensorized palm in combina-

tion with the fingers can be used to estimate the DLO grip quality, enabling active loosening

and tightening of the grasp throughout the task. With known finger configurations, a 3D

tension vector can be estimated without a wrist force transducer. While finger configura-

tion was fixed in Chapter 4, tactile sensors could be used to regrasp a DLO in a manner

that distributes the tension reaction forces across all digits. Localized tactile sensing on the

end-effector can enable new methods of estimating and regulating DLO tension.

Computer vision could be used to complement the controllers in Chapter 4 for the tension-

driven manipulation of DLOs. While computer vision is initially used to locate and grasp

the DLO, computer vision could also be used during the regulation of the tensile state of the

DLO to provide additional information about the geometric state of the DLO. With visual

feedback, one might also be able to track the dynamic movement of the proximal contact

point and the grasp point along the length of the DLO. With the proximal contact point

and grasp point tracked in real-time, the system can actively monitor the free length of the

DLO or if DLO starts sliding from the desired wrapping location.

Obstacle avoidance can also be automated through the incorporation of computer vision.

Large arm movements are often needed during the tension-driven manipulation of DLOs.

This creates a large volume in which the manipulator or the DLO might undesirably collide

with the environment. With visual feedback, the location and size of obstacles can be
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provided to the robotic system. Through programs like MoveIt!, an alternative joint path

can be found through inverse kinematics that would prevent the manipulator or the DLO

from colliding with an obstacle.

5.2.3 Automate gain and parameter tuning for the tension-driven manipulation

of DLOs

Chapter 4 presents novel controllers for manipulating deformable linear objects. While

these controllers are able to regulate the tensile state of the DLO, the operator must provide

a reference motion and manually tune the temporal scale of the feedforward motion profile.

Both the FT and FVT controllers also require gain tuning of the embedded PD controllers.

The temporal scale and PD gain tuning can be optimized through the use of gain schedul-

ing, for example. The temporal scale and gains can be changed dynamically based on infor-

mation such as force error or remaining rope length. Many gain scheduling techniques exist

such as fuzzy gain scheduling, which varies the values based on an operating range and a

defined set of fuzzy logic rules [84]. The temporal scale of the feedforward motion profile

can be modified according to the distance between the end-effector and the nominal human

demonstration trajectory. The gains of the embedded PD controller can be modified based

on error in the tension magnitude.
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APPENDIX A

Hidden Markov Models

HMMs are used as a black-box density model to estimate the likelihood of a given time-

series sequence. Through the use of discrete-time and non-observable discrete-states, HMMs

use Markov chains to determine the joint distribution for a time-series of data x1:T and its

hidden latent states z1:T where T is the number of total number of timesteps. Through

use of these joint distributions, the observation probability p(x1:T ) is estimated and used to

optimize the HMM parameters θ.

For continuous non-discrete observations, the observation model probability p(xt|zt),

where t represents one timestep, is defined using a conditional Gaussian.

p(xt|zt = k, θ) = N (xt|µk,Σk) (A.1)

Using the observation models calculated at each time-step, the joint distribution p(x1:T , z1:T )

can be determined for the time-series.

p(x1:T , z1:T ) = p(z1:T )p(x1:T |z1:T ) =

[
p(z1)

T∏
t=2

p(zt|zt−1)

][
T∏
t=1

p(xt|zt)

]
(A.2)

where p(z1) is derived from initial state distribution π and p(zt|zt−1) can be derived from

state transition matrix A. p(x1:T , z1:T ) can then be used to determine the probability of the

sequence p(x1:T ) by summing the all the joint distributions among all the possible hidden
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state sequences.

p(x1:T ) =
∑
z1:T

p(x1:T , z1:T ) (A.3)

(A.3) is used to optimize the parameters for the HMM.

Optimizing the parameters for each HMM is accomplished through a supervised learning

process. Each model is composed of parameters θ = (π,A,B) where π is the initial state

distribution containing p(z1), A is the state transition matrix containing values for p(zt|zt−1),

and B contains the distributions for the emission probabilities p(xt|zt) as defined in (A.1).

The number of hidden states K are defined by the user either through optimization tech-

niques, such as cross-validation or maximizing a objective function. The goal of the training

is to optimize the parameters in such a manner that maximizes the Maximum Likelihood

Estimate (MLE)

`(x1:T |θ) = log p(x1:T |θ) = log
∑
z1:T

p(x1:T , z1:T |θ) (A.4)

where `(x1:T |θ) is the log of the sum of the observation probabilities over all the latent states.

The process of optimizing these parameters is known as the Baum-Welch or the Expect-

ation-Maximization (EM) algorithm, a gradient-based method for maximizing the MLE

through parameter optimization [85], summarized in Table A. To start the learning, the

probabilities in π and A are randomized. Emission probabilities in B is initialized through the

conditional Gaussian in (A.1) with the µ and Σ statistics computed based on a randomized

sampling of the training data along all hidden states. The algorithm is composed of two steps:

E-step (Expectation), and M-step (Maximization). The E-step calculates the expected log-

likelihood of the data based on the current θ. The M-step maximizes the log-likelihood from

the E-step by modifying parameters π, A, and B based on the expected statistics.

The E-step computes the expected log-likelihood value based on the current θ and suf-
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Algorithm 2: Baum-Welch Parameter Optimization

Input: Initial State Transition Matrix A0, Initial Emission Probabilities B0,

Initial State Distribution π, Time Sequence Dataset X = {x0, ..., xN}

Output: Θ = {A,B, π}

1 for n = 0 to N do

2 Calculate iteratively forward variable αt for all hidden states (A.6)

3 Calculate observation probability through summation of αt for all hidden states

(A.7)

4 Calculate backwards variable βt for each hidden state through a backwards

iterative process (A.9)

5 Calculate γ at each each time step for all hidden states (A.11

6 Calculate ξ at each time-step for all possible hidden state transitions (A.13)

7 Update parameters π (A.14), A (A.15), B (A.16-A.17)

8 end for

9 return Θ = {A,B, π}
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ficient statistics. The forwards-backwards algorithm is used to compute these sufficient

statistics through a two-step process. The forward part of this algorithm involves defining a

forward variable αt

αt(i) = p(x1:t, zi|θ), 1 ≤ i ≤ K (A.5)

which represents the joint probability of a partial observation sequence at time t and being

in the hidden state zi with the given model parameters θ. α1 is initialized through current

model parameters π and B. Through an iterative process, αt is calculated at each time-step

in the observation sequence x1:T .

αt+1(j) =

[
K∑
i=1

αt(i)aij

]
bj(xt+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ K; (A.6)

where aij is a component of A and bj is the emission probability of hidden state zj. After the

alpha terms are computed for each hidden state, they are summed to provide the probability

of observation sequence x1:T .

p(x1:T |θ) =
K∑
i=1

αT (i); (A.7)

which also can be converted into a log-probability. In a similar iterative process, a backwards

variable βt(i) is defined as the probability of the partial observation from t+ 1 to the end T

given the hidden state zt and the current model parameters.

βt(i) = p(xt+1:T |zt, θ), 1 ≤ i ≤ K (A.8)

βT is initialized at 1 for all the hidden states. The iteration process is performed in reverse

to determine all the backwards βt values.

βt(i) =
K∑
j=1

aijb(xt+1)βt+1(j), 1 ≤ j ≤ K (A.9)

Using the statistics calculated in the E-step, the M-step maximizes the probability ex-

pectation by incriminating model parameters in θ. Two new variables γt(i) and ξt(i, j) are
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defined to optimize the parameters π, A, and B. γt(j) is defined as the probability of being

in state zj at time-step t based on the observation sequence and current model parameters.

γt(i) = p(zi|x1:T , θ) (A.10)

Using (A.5) and (A.8), γt can be calculated at each time-step for each hidden state zi.

γt(i) =
αt(i)βt(i)

p(x1:T |θ)
=

αt(i)βt(i)∑K
i=1 αt(i)βt(i)

(A.11)

ξt(i, j) is defined as the probability of being in state zi at time t and being in state zj at

time t+ 1 given the observation sequence and the current parameters.

ξt(i, j) = p(zt = zi, zt+1 = zj|x1:T , θ) (A.12)

ξ can also be computed using the model parameters as well as the forward and backward

variables.

ξt(i, j) =
αt(i)ai,jbj(xt+1)βt+1(j)

p(x1:T |θ)
=

αt(i)ai,jbj(xt+1)βt+1)(j)∑K
i=1

∑K
j=1 αt(i)ai,jbj(xt+1)βt+1(j)

(A.13)

With all the γ and ξ terms computed for all time-steps and hiddens states, the model

parameters can be updated. The initial probability distribution π is updated using the

computed γ.

π̄i = γ1(i) (A.14)

where π̄i is the initial probability for state zi. The state transition matrix is updated using

both γ and ξ.

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(A.15)

The mean and variance of Gaussian emission probability B is also updated for each obser-

vation type using γ.

µ̄i =

∑T
t=1 γt(i) · x1:t∑T

t=1 γt(i)
(A.16)
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Σ̄i =

∑T
t=1 γt(i) · (x1:t − µi)(x1:t − µi)

T∑T
t=1 γt(i)

(A.17)

92



REFERENCES

[1] B. Sundaralingam, A. S. Lambert, A. Handa, B. Boots, T. Hermans, S. Birchfield,
N. Ratliff, and D. Fox, “Robust Learning of Tactile Force Estimation through Robot
Interaction,” in 2019 International Conference on Robotics and Automation (ICRA),
May 2019, pp. 9035–9042, iSSN: 2577-087X.

[2] W. Wang and K. Siau, “Artificial Intelligence, Machine Learning, Automation,
Robotics, Future of Work and Future of Humanity: A Review and Research Agenda,”
Journal of Database Management, vol. 30, no. 1, pp. 61–79, Jan. 2019. [Online].
Available: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2
019010104

[3] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based Robotic Grasping From Object
Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: A
Review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, Mar. 2021, arXiv:
1905.06658. [Online]. Available: http://arxiv.org/abs/1905.06658

[4] O. Kroemer, S. Niekum, and G. Konidaris, “A Review of Robot Learning for
Manipulation: Challenges, Representations, and Algorithms,” arXiv:1907.03146 [cs],
Nov. 2020, arXiv: 1907.03146. [Online]. Available: http://arxiv.org/abs/1907.03146

[5] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,”
Science, vol. 364, no. 6446, p. eaat8414, Jun. 2019. [Online]. Available:
https://www.sciencemag.org/lookup/doi/10.1126/science.aat8414

[6] R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing – From Humans to
Humanoids,” IEEE Transactions on Robotics, vol. PP, no. 99, pp. 20, 1, Nov. 2010.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2009.2033627

[7] K. Gutierrez and V. J. Santos, “Online perception of tactile directionality using Hidden
Markov Models,” in Proc. Robotics: Science and Systems Workshop on “Tactile Sensing
for Manipulation: Hardware, Modeling, and Learning”, Boston, MA, Jul. 2017.

[8] K. Gutierrez and V. Santos, “Perception of Tactile Directionality via Artificial
Fingerpad Deformation and Convolutional Neural Networks,” IEEE Transactions
on Haptics, vol. 13, no. 4, pp. 831–839, Oct. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9007491/

[9] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[10] B. T. Gleeson, S. K. Horschel, and W. R. Provancher, “Perception of Direction for Ap-
plied Tangential Skin Displacement: Effects of Speed, Displacement, and Repetition,”
IEEE Transactions on Haptics, vol. 3, no. 3, pp. 177–188, Jul. 2010.

93

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2019010104
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2019010104
http://arxiv.org/abs/1905.06658
http://arxiv.org/abs/1907.03146
https://www.sciencemag.org/lookup/doi/10.1126/science.aat8414
http://dx.doi.org/10.1109/TRO.2009.2033627
https://ieeexplore.ieee.org/document/9007491/


[11] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[12] R. S. Johansson and J. R. Flanagan, “Coding and Use of Tactile Signals from the
Fingertips in Object Manipulation Tasks,” Nature Reviews Neuroscience, 2009.

[13] I. Birznieks, Tactile Sensory Control of Dexterous Manipulation in Humans. Ume̊a
University, 2003.

[14] L. J. Berryman, J. M. Yau, and S. S. Hsiao, “Representation of Object Size in the
Somatosensory System,” Journal of Neurophysiology, vol. 96, no. 1, pp. 27–39, Jul.
2006. [Online]. Available: http://jn.physiology.org/content/96/1/27

[15] D. Burke, S. C. Gandevia, and G. Macefield, “Responses to passive movement
of receptors in joint, skin and muscle of the human hand.” The Journal
of Physiology, vol. 402, no. 1, pp. 347–361, Aug. 1988. [Online]. Available:
http://doi.wiley.com/10.1113/jphysiol.1988.sp017208

[16] V. G. Macefield, C. Hager-Ross, and R. S. Johansson, “Control of grip force during
restraint of an object held between finger and thumb: responses of cutaneous afferents
from the digits,” Experimental Brain Research, vol. 108, no. 1, pp. 155–171, 1996.

[17] C. Hager-Ross and R. S. Johansson, “Nondigital afferent input in reactive control of
fingertip forces during precision grip,” Exp Brain Res, vol. 110, no. 1, pp. 131–141,
1996.

[18] V. G. Macefield and R. S. Johansson, “Control of grip force during restraint of an
object held between finger and thumb: responses of muscle and joint afferents from the
digits,” Experimental Brain Research, vol. 108, no. 1, pp. 172–184, Feb. 1996. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/8721165

[19] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic Grasping of Novel Objects using
Vision,” International Journal of Robotics Research, vol. 27, no. 2, pp. 157–173, Feb.
2008.

[20] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, “Human-
Inspired Robotic Grasp Control With Tactile Sensing,” IEEE Transactions on Robotics,
vol. PP, no. 99, pp. 1–13, Aug. 2011.

[21] Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb, G. S. Sukhatme, and
S. Schaal, “Force estimation and slip detection/classification for grip control using a
biomimetic tactile sensor,” in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th
International Conference on. IEEE, 2015, pp. 297–303.

94

http://jn.physiology.org/content/96/1/27
http://doi.wiley.com/10.1113/jphysiol.1988.sp017208
http://www.ncbi.nlm.nih.gov/pubmed/8721165


[22] N. Wettels and G. Loeb, “Haptic feature extraction from a biomimetic tactile sen-
sor: Force, contact location and curvature,” in 2011 IEEE International Conference on
Robotics and Biomimetics (ROBIO), Phuket, Thailand, Dec. 2011, pp. 2471 –2478.

[23] J. Li, S. Dong, and E. Adelson, “Slip Detection with Combined Tactile and Visual Infor-
mation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 7772–7777.

[24] M. A. Abd, I. J. Gonzalez, T. C. Colestock, B. A. Kent, and E. D. Engeberg, “Direction
of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand,”
in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Jul. 2018, pp. 21–27.

[25] I. A. Sucan and S. Chitta, ““MoveIt!”,” Oct. 2015. [Online]. Available:
http://moveit.ros.org

[26] C. D. Mah and F. A. Mussa-Ivaldi, “Evidence for a specific internal representation of
motion-force relationships during object manipulation,” Biological Cybernetics, vol. 88,
no. 1, pp. 60–72, Jan. 2003. [Online]. Available: http://link.springer.com/10.1007/s004
22-002-0347-9

[27] G. Placencia, M. Rahimi, and B. Khoshnevis, “Sensing directionality in tangential hap-
tic stimulation,” in Engineering Psychology and Cognitive Ergonomics. Berlin, Heidel-
berg: Springer, 2009, pp. 253–261.

[28] C.-H. Lin, J. Fishel, and G. E. Loeb, “Estimating Point of Contact, Force and Torque
in a Biomimetic Tactile Sensor with Deformable Skin,” 2013. [Online]. Available:
http://www.syntouchllc.com/Technology/ publications/201 Lin Analytical.pdf

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS-W, 2017.

[30] Dixee Kimball, C. Huang, and K. Yang, “Generative Adversarial Networks for
Multiclass Image Generation,” Stanford Computer Science, 2016. [Online]. Available:
https://web.stanford.edu/class/cs221//r2017estricted/p-final/dkimball/final.pdf

[31] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Feb. 2015, arXiv:
1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in
International Conference for Learning Representations, San Diego, CA, USA, 2015, pp.
1–13. [Online]. Available: https://dblp.org/db/conf/iclr/iclr2015.html

95

http://moveit.ros.org
http://link.springer.com/10.1007/s00422-002-0347-9
http://link.springer.com/10.1007/s00422-002-0347-9
http://www.syntouchllc.com/Technology/_publications/201_Lin_Analytical.pdf
https://web.stanford.edu/class/cs221//r2017estricted/p-final/dkimball/final.pdf
http://arxiv.org/abs/1502.03167
https://dblp.org/db/conf/iclr/iclr2015.html


[33] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural
Networks,” arXiv:1706.04599 [cs], Jun. 2017, arXiv: 1706.04599. [Online]. Available:
http://arxiv.org/abs/1706.04599

[34] “Random Errors and Prediction | STAT 462,” 2018. [Online]. Available: https:
//newonlinecourses.science.psu.edu/stat462/node/254/

[35] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target prob-
ability distribution,” in Proceedings of 1994 IEEE International Conference on Neural
Networks (ICNN’94), vol. 1, Jun. 1994, pp. 55–60 vol.1.

[36] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Comprehensive Review of
Neural Network-Based Prediction Intervals and New Advances,” IEEE Transactions on
Neural Networks, vol. 22, no. 9, pp. 1341–1356, Sep. 2011.

[37] K. Drewing, M. Fritschi, R. Zopf, M. O. Ernst, and M. Buss, “First evaluation of a
novel tactile display exerting shear force via lateral displacement,” ACM Transactions
on Applied Perception (TAP), vol. 2, no. 2, pp. 118–131, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1060586

[38] M. P. Vitello, M. O. Ernst, and M. Fritschi, “An instance of tactile suppression: Ac-
tive exploration impairs tactile sensitivity for the direction of lateral movement,” in
Proceedings of EuroHaptics, 2006, pp. 351–355.

[39] D. V. Keyson and A. J. M. Houtsma, “Directional sensitivity to a tactile point
stimulus moving across the fingerpad,” Perception & Psychophysics, vol. 57, no. 5, pp.
738–744, Jul. 1995. [Online]. Available: http://www.springerlink.com/index/10.3758
/BF03213278

[40] T. Kim and Y.-L. Park, “A Soft Three-Axis Load Cell Using Liquid-Filled
Three-Dimensional Microchannels in a Highly Deformable Elastomer,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 881–887, Apr. 2018. [Online]. Available:
http://ieeexplore.ieee.org/document/8255581/

[41] W. Yuan, S. Dong, and E. Adelson, “GelSight: High-Resolution Robot Tactile Sensors
for Estimating Geometry and Force,” Sensors, vol. 17, no. 12, 2762, pp. 1–21, Nov.
2017. [Online]. Available: http://www.mdpi.com/1424-8220/17/12/2762

[42] M. Polic, I. Krajacic, N. Lepora, and M. Orsag, “Convolutional autoencoder for feature
extraction in tactile sensing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
3671–3678, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8758942/

[43] W. Yuan, M. A. Srinivasan, and E. H. Adelson, “Estimating object hardness with
a GelSight touch sensor,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2016, pp. 208–215.

96

http://arxiv.org/abs/1706.04599
https://newonlinecourses.science.psu.edu/stat462/node/254/
https://newonlinecourses.science.psu.edu/stat462/node/254/
http://dl.acm.org/citation.cfm?id=1060586
http://www.springerlink.com/index/10.3758/BF03213278
http://www.springerlink.com/index/10.3758/BF03213278
http://ieeexplore.ieee.org/document/8255581/
http://www.mdpi.com/1424-8220/17/12/2762
https://ieeexplore.ieee.org/document/8758942/


[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[45] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini,
J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft Optical Tactile Sensors with
3D-Printed Biomimetic Morphologies,” Soft Robotics, vol. 5, no. 2, pp. 216–227, Apr.
2018. [Online]. Available: https://www.liebertpub.com/doi/10.1089/soro.2017.0052

[46] R. L. Klatzky and S. J. Lederman, “Tactile roughness perception with a rigid link
interposed between skin and surface,” Perception & Psychophysics, vol. 61, no. 4, pp.
591–607, Jan. 1999. [Online]. Available: http://www.springerlink.com/index/10.3758
/BF03205532

[47] R. L. Klatzky, S. J. Lederman, C. Hamilton, M. Grindley, and R. H. Swendsen,
“Feeling textures through a probe: Effects of probe and surface geometry and
exploratory factors,” Perception & Psychophysics, vol. 65, no. 4, pp. 613–631, May
2003. [Online]. Available: http://www.springerlink.com/index/10.3758/BF03194587

[48] H. Culbertson, J. Unwin, and K. J. Kuchenbecker, “Modeling and Rendering Real-
istic Textures from Unconstrained Tool-Surface Interactions,” IEEE Transactions on
Haptics, vol. 7, no. 3, pp. 381–393, Jul. 2014.

[49] K. J. Kuchenbecker, R. C. Parajon, and M. P. Maggio, “Evaluation of a Vibrotactile
Simulator for Dental Caries Detection,” Simulation in Healthcare, vol. 12, no. 3, p. 148,
Jun. 2017.

[50] N. Zamani and H. Culbertson, “Effects of Dental Glove Thickness on Tactile Perception
Through a Tool,” in 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan, Jul.
2019, pp. 187–192.

[51] Y. Chebotar, O. Kroemer, and J. Peters, “Learning robot tactile sensing for object
manipulation,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on. IEEE, 2014, pp. 3368–3375. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/6943031/
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