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An Individual-Centered Approach for1

Geodemographic Classification2

Joseph V. Tuccillo @ ORCID3

Oak Ridge National Laboratory, United States4

Abstract5

Geodemographic classifications are an important tool to support public-service decision making.6

While people are the focal point of geodemographics, classifications are often built on variables that7

describe populations rather than individuals. Synthetic populations, model-based approximations of8

the individual makeup of small census areas, remain largely unused for geodemographic classification,9

yet they can provide a more direct and holistic understanding of localized resource needs than existing10

approaches. This paper develops a new method for performing individual-centered geodemographic11

classifications using synthetic populations. The building blocks of this approach are abstractions of12

the synthetic population attributed to each small census area via affinity matrices computed from13

similarities in both the size and attributes among individuals. Using a rank-1 spectral decomposition14

of an area’s affinity matrix enables rapid computation of a dissimilarity metric which is compatible15

with cluster analysis techniques used in traditional geodemographic classifications. Using data from16

the American Community Survey (ACS), an example classification is developed for the Knoxville,17

TN, USA Public-Use Microdata Area (PUMA) to illustrate how distinctions can be drawn among18

small census areas in terms of specific types of representative individuals, providing a more tailored19

view of the groups that serve to benefit from spatial policy interventions. Beyond improving20

traditional public-domain geodemographic classifications, this approach provides a novel open-source21

alternative to commercial neighborhood segmentation products with added flexibility for custom22

research applications.23

1 Introduction24

Geodemographics is the study of spatial heterogeneity in demographics across social areas (i.e.,25

neighborhoods, communities) comprising an urban, regional, or national system. Understanding who26

people are in the context of where they live is essential to support public service allocation in areas27

including health, education, and public safety (8; 6). To manage the complex task of measuring28

social composition, a practice known as geodemographic classification is used to group social areas29

based on their emergent properties. Each geodemographic class features a profile of population30

characteristics that distinguish it from others, providing tailored information about the groups31

expected to benefit from spatial policy interventions.32

While geodemographics fundamentally involves the attributes of people, public-use geodemo-33

graphic classifications seldom directly assess the central problem of “who people are”. Instead, they34

rely on aggregate population statistics (i.e., median age, percent in poverty) to explain differences35

among social areas (16; 15; 6). Aggregating individual attributes makes it impossible to directly36

characterize the different types of people comprising in an area. Substantial information loss can37

result from aggregation, leading to a distorted representation of population characteristics (2; 13).38

This cross-level or ecological inference problem (1; 5) affects the soundness of decision support that39

a geodemographic classification can provide planners and administrators.40

The cross-level inference problem in geodemographic assessments can be overcome with synthetic41

populations, realistic recreations of the makeup of small census areas consisting of geolocated42

individuals from public-use census microdata samples. Given that individual-level and aggregate43

data are simply different ways of measuring the same population, data fusion techniques like iterative44

proportional fitting and combinatorial optimization are used to bridge these two scales (7). The45

result extends a wide swath of individual attributes related to demographics, socioeconomic status,46

housing, and health to high spatial resolutions, providing a complete representation of individual47

attributes within an area unattainable via observational analysis, while also maintaining the privacy48

of census survey respondents (10; 9).49
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Figure 1 Conceptual illustration of representing and comparing synthetic populations by indi-
vidual profiles.

While synthetic populations are often applied to study human activity through agent-based50

models (microsimulation) (4), their use toward characterizing the social fabric remains less explored.51

Synthetic populations are unwieldy, consisting of both individual and collective attributes, which52

poses a challenge for directly describing and comparing them. This paper develops an individual-53

centered approach for geodemographic classification, centered on a novel metric for efficiently54

comparing synthetic populations based on their latent properties. This metric can be used to55

compute dissimilarities and perform cluster analysis in a way that is compatible with traditional56

geodemographic techniques, enabling the creation of classifications tailored to a variety of planning57

needs.58

2 A New Method for Comparing Synthetic Populations59

Synthetic populations are more complicated to analyze than area-level population attributes because60

they are multidimensional and multiscalar. A synthetic population is simultaneously characterized61

by the attributes of people and the attributes of the collective. Counts of unique types of people62

belonging to an area’s synthetic population (i.e., age over 60, in poverty, living alone; university63

student, employed in an unskilled job and living close to work) can be thought of as area-level64

attributes. Given a large number of study variables, thousands of unique types of people, or individual65

profiles, can characterize an area, leading to a highly fragmented view of its population. This in turn66

poses a challenge for geodemographic classification because measuring similarity and dissimilarity67

among social areas becomes less straightforward than traditional approaches.68

The approach developed in this paper resolves this problem by abstracting the characteristics69

of synthetic populations in a way that facilitates more efficient comparison among them. This70

lower-dimensional representation is based not only on estimated sizes of individual profiles within a71

synthetic population, but also how alike they are.72

2.1 Illustration73

Figure 1 provides a simplified illustration of how conceptual (attribute) similarities and similarities74

in prevalence can be combined to characterize a community’s synthetic population and compare75
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it to others. The grid cells represent individual profiles organized by conceptual similarity in two76

hypothetical dimensions. (In practice, measuring conceptual similarity involves attribute matching77

across many dimensions. For example, individual profiles describing employed, highly-educated78

family-aged adults in married couple families who differ only in terms of commute length might79

be considered “conceptually similar” to one another yet “conceptually distinct” from seniors living80

alone and on a fixed income below the poverty line.) The symbol sizes represent estimates of the81

number of individual types in the synthetic population. Combining these factors results in a measure82

of “embeddedness” of a given individual type within the synthetic population. An individual profile83

that is both conceptually similar and similar in prevalence to a large number of other individual84

profiles belongs to a latent segment of the synthetic population with like characteristics.85

Comparing the embeddedness of all individual profiles within a study area from its synthetic86

populations results in a dissimilarity metric useful for geodemographic classification. Figure 187

compares three hypothetical communities based on this approach. Individual profile 3-3 is highlighted88

as an example. In Synthetic Population A, individuals of type 3-3 are strongly embedded in the89

population. They and several their nearest neighbors in terms of conceptual similarity (3-4, 4-3,90

4-4) among the most prevalent in the population. The converse exists for Synthetic Population C.91

Individual type 3-3 is not well embedded, being relatively small in size and conceptually distant92

from the most prevalent individual profiles in the community (1-1, 1-2). Along these lines, Synthetic93

Populations A and B are more similar to one another than they are to Synthetic Population C as94

individual profiles like 3-3 are highly embedded in each. As such, A and B would be more likely to95

be grouped together in a geodemographic typology, whereas C might be assigned a distinct class.96

2.2 Abstracting Synthetic Populations97

An area’s synthetic population is represented by an affinity matrix scored among all individual98

profiles in the study population that combines a matrix of pairwise conceptual similarities C with99

another consisting of prevalence similarities P as100

A = C × (1 + P )

When individual attributes have binary representation, the conceptual similarity matrix C101

consists of pairwise affinities (i.e., Hamming or Jaccard distances). For mixed type representation,102

Gower distance may be used.103

The prevalence similarity matrix P is computed as104

P = 1 − (D/max(D))

where D is a matrix of pairwise Manhattan distances among the count estimates of all individual105

profiles within study population.106

The affinity matrix A is computed by upweighting the conceptual similarities by the local107

prevalence similarities among individual profiles. When Aij is high, individual profiles i and j are108

characteristically similar to one another and exist in comparable measure within the population.109

Conversely, a low value of Aij occurs when individuals are distinct from one another and mismatched110

in size.111

To facilitate comparison among synthetic populations, a rank-1 approximation of the affinity112

matrix A is generated using spectral decomposition to the compute eigenvector centrality for the113

individual profiles. The results of this procedure are such that each individual profile is assigned an114

“embeddedness” score measuring the degree to which it represents the area’s population. Higher115

values denote highly representative individual profiles, whereas lower ones indicate an those that116

are distinct from the area’s population at large. Converting each synthetic population to a vector117

enables computation of area-level dissimilarities that can then be converted to a geodemographic118

classification using cluster analysis techniques.119
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3 Proof of Concept120

A proof of concept for the individual-centered geodemographic approach introduced in Section 2 was121

performed on a sample dataset for Knoxville, Tennessee obtained from the American Community122

Survey’s (ACS) Public-Use Microdata Sample (PUMS), containing the majority of the city’s123

incorporated area (roughly 180,000 residents).124

3.1 Data125

Microdata and summary statistics for population synthesis were obtained from the ACS 2014 - 2019126

5-year PUMS and Summary File across topics including basic demographics (age 60+, age under127

18, marital status), socioeconomic status (race, employment, poverty, college education or higher,128

professional occupation), school enrollment (in school, K-12 student, post-secondary student), and129

worker mobility (living within 30 minutes of work). Synthetic populations were created at the block130

group level (census units of roughly 600 - 3000 people).131

3.2 Methods132

Population synthesis was performed using UrbanPop, an open-source spatial microsimulation133

framework developed by Oak Ridge National Laboratory (ORNL) (11; 3). UrbanPop relies on134

Penalized Maximum-Entropy Dasymetric Modeling (P-MEDM) an iterative proportional fitting135

(IPF) method specialized for uncertain census datasets like the ACS (12). UrbanPop generated 30136

residential simulations from the P-MEDM occurrence probabilities, and synthetic populations based137

on unique individual profiles were computed from the median of the simulation estimates.138

With the synthetic populations in hand, the 113 block group synthetic populations for Knoxville139

were then compared using the approach from Section 2. To handle the large number of unique140

individual profiles (n = 253), a fast spectral decomposition method provided by the Sparse Eigenvalue141

Computation Toolkit as a Redesigned ARPACK (Spectra) library was used (14). Dissimilarities were142

then organized into a dendrogram using the single-linkage (nearest neighbor) method. A suitable143

number of block group clusters was found by evaluating dendrogram cuts between k = 2 and k144

= 10 clusters based on a combination of internal consistency (percentage explained inertia) and145

distinctness (average silhouette width).146

3.3 Results147

The geodemographic classification shown in Figure 2 reveals key differences in the individual profiles148

distinguishing each block group cluster. For example, Clusters 1, 2, and 6 each represent areas149

with increased prevalence of K-12 students. While Clusters 1 and 2 feature a common exemplar of150

white K-12 students in married couple families, Cluster 6 differs in that it features more minority151

K-12 students not in married-couple families and in poverty. Cluster 1 also tends to feature more152

employed people in professional occupations who are in married-couple families than Clusters 2153

and 6. Clusters 3 and 5, meanwhile, describe the University of Tennessee campus and adjacent154

neighborhoods, with exemplars characterized by adult post-secondary education students living155

in poverty (employed and unemployed/full-time students). Cluster 4 differs most clearly from the156

others by aging populations, both married and unmarried.157

4 Discussion and Conclusion158

Using synthetic populations to represent the social structure of small census areas produces new159

geodemographic classifications that more directly capture differences among individual residents of160

those areas. Representing small areas based on centrality or “embeddedness” of individual profiles161

within each synthetic population enables the identification of cluster-specific exemplar segments162

that can help to tailor policy and public service provision within a wider administrative area (city,163
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Figure 2 Individual-centered geodemographic classification for Knoxville, TN. Profiles consist of
two exemplar segments distinguishing each cluster. The “average profile score” compares the mean
proportion of the segment within the cluster (x̄) to its mean proportion across all block groups in
Knoxville (µ).

county, region). The proof of concept shown for Knoxville, TN (Section 3) reveals sections of the164

city with underserved K-12 students (Cluster 6), university undergraduates dependent upon outside165

employment for financial support (Clusters 3 and 5), and aging residents (Cluster 4), each of which166

corresponds to a distinct set of public service priorities.167

In addition to overcoming the cross-level inference problem affecting open-source classifications168

built on aggregate data, this approach provides greater support for custom geographies/social169

variables than proprietary geodemographic products like ESRI Tapestry and Claritas PRIZM, which170

leverage individual data but often apply a “one size fits all” approach toward neighborhood targeting.171

This enables evaluation of the outcomes of spatial policy interventions at analytic scales and with172

features most appropriate toward specific planning applications (i.e., transportation, hazards, health).173

Though for expository purposes the example in this paper was carried out for a single small174

study area (PUMA), this approach is also scalable to larger study extents. Future work will focus on175
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developing regional and national-level classifications to understand spatial heterogeneity among large176

numbers small census areas. Scaling efforts will increase the computational and analytic intensity177

of this approach, particularly in terms of scoring similarities among larger volumes of individual178

profiles and characterizing the geodemographic classes. To address such challenges, these efforts will179

explore incorporating techniques including distributed processing, feature agglomeration (to handle180

increased numbers of individual profiles), and multilevel classification (to generate global/local181

geodemographic profiles).182
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