
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Securing the Standards: Bringing Cryptographic Security Proofs Closer to the Real World

Permalink
https://escholarship.org/uc/item/4xj738b1

Author
Davis, Hannah E

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xj738b1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Securing the Standards: Bringing Cryptographic Security Proofs Closer to the Real World

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Hannah Elizabeth Davis

Committee in charge:

Professor Mihir Bellare, Chair
Professor Farinaz Koushanfar
Professor Daniele Micciancio
Professor Stefan Savage
Professor Deian Stefan

2023

Copyright

Hannah Elizabeth Davis, 2023

All rights reserved.

The Dissertation of Hannah Elizabeth Davis is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . xii

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xvii

Introduction . 1

Chapter 1 Separate Your Domains . 6
1.1 Introduction . 6
1.2 Oracle Cloning in NIST PQC Candidates . 14

1.2.1 Design process . 14
1.2.2 The base KEM . 15
1.2.3 Submissions we break . 17
1.2.4 Submissions with unclear security . 20
1.2.5 Submissions with provable security but ambiguous specification 20
1.2.6 Submissions with clear provable security . 22

1.3 Preliminaries . 23
1.4 Read-only indifferentiability of translating functors . 24

1.4.1 Functors and read-only indifferentiability . 25
1.4.2 Translating functors . 27
1.4.3 Rd-indiff of translating functors . 30

1.5 Analysis of cloning functors . 36
1.6 Oracle Cloning in KEMs . 42

Chapter 2 Tighter Bounds for TLS 1.3 and SIGMA . 49
2.1 Introduction . 49

2.1.1 Qualitative and Quantitative Bounds . 49
2.1.2 Contributions . 52
2.1.3 Optimizations, Limitations, and Possible Extensions 54
2.1.4 Concurrent Work . 55

2.2 AKE Security Model . 56
2.2.1 Key Exchange Protocols . 57
2.2.2 Key Exchange Security . 58
2.2.3 Security Properties . 61

2.3 Assumptions, Building Blocks, and Multi-User Security . 62
2.3.1 Decisional and Strong Diffie–Hellman . 62
2.3.2 Multi-User PRF Security . 63

iv

2.3.3 Multi-User Unforgeability with Adaptive Corruptions of Signatures and
MACs . 64

2.3.4 Hash Function Collision Resistance . 67
2.4 Proof of the Strong Diffie–Hellman GGM Bound (Theorem 2.1) 67
2.5 The SIGMA Protocol . 72
2.6 Tighter Security Proof for SIGMA-I . 75
2.7 The TLS 1.3 Handshake Protocol . 89

2.7.1 Protocol Description . 90
2.7.2 Handling the TLS 1.3 Key Schedule . 92

2.8 Tighter Security Proof for the TLS 1.3 Handshake . 93
2.9 Evaluation . 106
2.10 Evaluation Details . 111

2.10.1 Fully-quantitative CK SIGMA Bound . 111
2.10.2 Fully-quantitative DFGS TLS 1.3 Bound . 112

Chapter 3 On the concrete security of TLS 1.3 PSK Mode . 115
3.1 Introduction . 115
3.2 The TLS 1.3 Pre-shared Key Handshake Protocol . 121
3.3 Code-based MSKE Model for PSK Modes . 127

3.3.1 Key Exchange Syntax . 127
3.3.2 Key Exchange Security . 128
3.3.3 The indifferentiability framework . 134

3.4 Key-Schedule Indifferentiability . 137
3.4.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps 140

3.5 Modularizing Handshake Encryption . 153
3.5.1 Handshake Encryption as a Modular Transformation 156

3.6 Tight Security of the TLS 1.3 PSK Modes . 160
3.6.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol 160
3.6.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE . 162
3.6.3 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only 190

3.7 Evaluation . 193
3.7.1 Evaluation Details . 194

3.8 A Careful Discussion of Domain Separation . 196
3.8.1 PSK-only mode with SHA256 . 203
3.8.2 Pre-shared key with Diffie–Hellmann mode with SHA256 204
3.8.3 Pre-shared key with Diffie–Hellmann mode with SHA384 205
3.8.4 PSK-only mode with SHA384 . 207
3.8.5 Repairing Domain Separation for TLS 1.3-like Protocols 209

Chapter 4 Derive-then-Derandomize: Stronger Security Proofs for EdDSA Signatures . 213
4.1 Introduction . 213
4.2 Preliminaries . 220
4.3 Functor framework . 222
4.4 The soundness of Derive-then-Derandomize . 225
4.5 Security of EdDSA . 230
4.6 Indifferentiability of the shrink-MD class of functors . 239
4.7 The unique order-p subgroup of G . 250

v

Chapter 5 Verifiable Distributed Aggregation Functions . 252
5.1 Introduction . 252
5.2 Preliminaries . 260
5.3 Security Model . 265

5.3.1 Syntax . 265
5.3.2 Security . 267

5.4 Prio3 . 272
5.5 Doplar . 277

5.5.1 Verifiable IDPF . 278
5.5.2 Delayed-Input FLPs . 280
5.5.3 Construction . 282
5.5.4 Performance Evaluation . 285

5.6 Conclusion and Future Work . 288
5.7 Instantiating VIDPF . 290
5.8 Instantiating Delayed-Input FLP . 297
5.9 Proofs of Theorems . 302

5.9.1 Prio3 Robustness (Theorem 5.1) . 302
5.9.2 Prio3 Privacy (Theorem 5.2) . 308
5.9.3 Doplar Robustness (Theorem 5.3) . 320
5.9.4 Doplar Privacy (Theorem 5.4) . 328

Bibliography . 335

vi

LIST OF FIGURES

Figure 1.1. Generic encapsulation algorithm and specific parameter choices for NIST
PQC KEM submissions . 16

Figure 1.2. Game defining read-only indifferentiability. 26

Figure 1.3. Game defining translation indistinguishability. 30

Figure 1.4. Simulators for Theorem 1.1 and Theorem 1.2. 31

Figure 1.5. Games and adversary for proof of Theorem 1.1. 31

Figure 1.6. Game to define PRF security of (SS,ES)-oracle aided PRF G. 33

Figure 1.7. Games for proof of Theorem 1.2 . 34

Figure 1.8. Adversaries for proof of Theorem 1.2. 35

Figure 1.9. Adversary against the rd-indiff security of FNewHope. 41

Figure 1.10. KEM security game for indistinguishability under chosen-ciphertext attacks. 44

Figure 1.11. Game to determine the working domain W of a KEM KE. 45

Figure 1.12. Games for the proof of Theorem 1.3. 46

Figure 1.13. Adversaries for the proof of Theorem 1.3. 47

Figure 2.1. Key exchange security game. 60

Figure 2.2. Multi-user PRF security of a pseudorandom function PRF. 64

Figure 2.3. Multi-user existential unforgeability (mu-EUF-CMA) of digital signature and
MAC schemes. 66

Figure 2.4. Game G0 for the proof of Theorem 2.1. 68

Figure 2.5. Game G1 for the proof of Theorem 2.1. 69

Figure 2.6. Games G2 through G6 for the proof of Theorem 2.1. 71

Figure 2.7. The SIGMA/SIGMA-I protocol flow diagram. 73

Figure 2.8. The formalized SIGMA/SIGMA-I key exchange protocols. 74

Figure 2.9. Games G1 and G2 for the proof of Theorem 2.2. 76

Figure 2.10. Games G3 and G4 for the proof of Theorem 2.2. 79

vii

Figure 2.11. Games G5 and G6 for the proof of Theorem 2.2. 81

Figure 2.12. Reduction B1 to the strong Diffie–Hellman assumption for the proof of
Theorem protect2.2. 82

Figure 2.13. Game G7 and PRF reduction B2 for the proof of Theorem 2.2. 84

Figure 2.14. Games G8 through G11 for the proof of Theorem 2.2. 86

Figure 2.15. The simplified TLS 1.3 main Diffie–Hellman handshake protocol and key
schedule. 91

Figure 2.16. Elliptic curve group order required to achieve 128-bit and 192-bit AKE
security for SIGMA and TLS 1.3 based on the CK SIGMA, DFGS TLS 1.3,
and our bounds. 109

Figure 3.1. TLS 1.3 PSK and PSK-(EC)DHE handshake modes with optional 0-RTT
keys . 123

Figure 3.2. Definition of TKDFfinS
, deriving the ServerFinished MAC. 126

Figure 3.3. Multi-stage key exchange (MSKE) security game for a key exchange proto-
col KE with pre-shared keys. 129

Figure 3.4. Predicates Fresh, ExplicitAuth, and Sound for the MSKE pre-shared key
model. 130

Figure 3.5. The game Gindiff
C,Sim,SS,ES measuring indifferentiability of a construct C that

transforms function space SS into ES. The game is parameterized by a
simulator Sim. 136

Figure 3.6. Simulator Sim used in the proof of Lemma 3.5. 150

Figure 3.7. Indiff game instantiated with simulator Sim, also Game G0 for the proof of
Lemma 3.5. 154

Figure 3.8. Game G1 for the proof of Lemma 3.5. 155

Figure 3.9. Games G2 and G3 for the proof of Lemma 3.5. 155

Figure 3.10. Games G4, G5, and G6 for the proof of Lemma 3.5. 156

Figure 3.11. Key exchange KE1 built by transforming protocol messages of KE2. 212

Figure 3.12. Domain separation in PSK-only mode with SHA256. 212

Figure 3.13. Domain separation in PSK-(EC)DHE mode with SHA384. 212

Figure 3.14. Failing domain separation in PSK-only mode with SHA384 212

viii

Figure 4.1. Games defining UF security of signature scheme DS and PRF/PRG security
of functor P. 224

Figure 4.2. Signature schemes constructed by the DR and JCl transforms. 225

Figure 4.3. Games for the proof of Theorem 4.1. A line annotated with names of games
is included only in those games. 227

Figure 4.4. The Schnorr and EdDSA signature schemes. 231

Figure 4.5. The arity-3 functor S for EdDSA. 233

Figure 4.6. Games G0 and G1 for the proof of Lemma 4.4. Boxed code is only in G1. . . 234

Figure 4.7. The game Gindiff
F,Sim measuring indifferentiability of a functor F with respect to

simulator Sim. 240

Figure 4.8. An indifferentiability simulator used by the proof of Theorem 4.8 (left). The
ideal-world game Gindiff

F,Sim measuring indifferentiability of a functor F with
respect to an arbitrary simulator Sim (right). 243

Figure 4.9. Game G1 in the proof of Theorem 4.8. 245

Figure 4.10. Games G2, G3, and G4 in the proof of Theorem 4.8. 246

Figure 4.11. Left: Game G5 in the proof of Theorem 4.8. Right: Game G6 in the proof
of Theorem 4.8. Highlighted code is changed from the previous game, and
algorithms not shown are unchanged from the previous game. 247

Figure 4.12. Left: Game G7 in the proof of Theorem 4.8. Right: Game G8 in the proof
of Theorem 4.8. Highlighted code is changed from the previous game, and
algorithms not shown are unchanged from the previous game. 249

Figure 5.1. Illustration of (left) sharding and preparation of a single measurement and
(right) aggregation and unsharding of a set of measurements. All parameters
are defined in Section 5.3. 254

Figure 5.2. Procedures for defining security of FLPs. 263

Figure 5.3. Procedures for defining completeness and robustness of r-round, s-party
VDAF Π. 270

Figure 5.4. Game for defining privacy of a complete, s-party VDAF Π for corruption
threshold ≥ 0. Let F denote the aggregation function for which Π is complete
and let QInit its set of initial states. Let T = [s]\V. 271

Figure 5.5. Definition of 1-round, s-party VDAF Prio3[FLP,PRG]. Let `1, . . . , `7 be
arbitrary, distinct bitstrings. 273

ix

Figure 5.6. Games for defining extractability (top-left), and privacy (bottom-left) of
VIDPFs and privacy of delayed-input FLP (right). 281

Figure 5.7. Definition of 1-round, 2-party VDAF Doplar. 283

Figure 5.8. Bandwidth (top) and runtime (bottom) for Doplar and Poplar1. 286

Figure 5.9. VIDPF construction based on any IDPF. 293

Figure 5.10. Extractor for the proof of Lemma 5.5. 295

Figure 5.11. Simulator and hybrids used in the proof of privacy for the VIDPF construction. 297

Figure 5.12. Delayed-2-input FLP construction DFLP∗[FLP]. The construction should be
instantiated where FLP is the FLP for arithmetic circuits from [60]. 298

Figure 5.13. Hybrids for zero-knowledge property of the delayed-2-input FLP construction. 302

Figure 5.14. Left: Definition of game G1 for the proof of Theorem 5.1. Also shown is the
robustness game for Π and adversary A with some simplifications applied.
Right: Adversary B. 303

Figure 5.15. Game G2 (left) and game G3 (right) for the proof of Theorem 5.1. 305

Figure 5.16. Fourth and fifth intermediate games for the proof of Theorem 5.1. 307

Figure 5.17. Malicious prover P ∗ for the proof of Theorem 5.1. 308

Figure 5.18. Games G0 and G1 for the proof of Theorem 5.2. 309

Figure 5.19. Wrapper adversary B for the proof of Theorem 5.2. 311

Figure 5.20. Game G2 for the proof of Theorem 5.2. 313

Figure 5.21. Games G3 (left), G4 (top-right), and G5 (bottom-right) for the proof of
Theorem 5.2. Only the Shard is shown, as this is the only object that changes
in each game hop. 315

Figure 5.22. Game G6 for the proof of Theorem 5.2. 316

Figure 5.23. Game G7 (right) for the proof of Theorem 5.2. 317

Figure 5.24. Game G8 (left) and game G9 for the proof of Theorem 5.2. 318

Figure 5.25. Games G0, G1, and G2 for the proof of Theorem 5.3. Let Y denote the
co-domain of the random oracle used by VIDPF. 321

Figure 5.26. Games G3 and G4 for the proof of Theorem 5.3. Let X = {0,1} denote the
delayed-input set for DFLP. 323

x

Figure 5.27. Malicious prover P ∗ against the soundness of DFLP for the proof of Theo-
rem 5.3. 325

Figure 5.28. Games G0 and G1 for the proof of Theorem 5.4. 327

Figure 5.29. Game G2 for the proof of Theorem 5.4. 329

Figure 5.30. Game G3 for the proof of Theorem 5.4. 330

Figure 5.31. Games G4 and G5 for the proof of Theorem 5.4. 332

xi

LIST OF TABLES

Table 2.1. Concrete advantages of a key exchange adversary based on prior bounds by
Canetti-Krawczyk [72] resp. Dowling et al. [103], and the bounds we establish
(Theorem 2.2 and 2.3. 51

Table 2.2. Advantages of a key exchange adversary in breaking the security of the SIGMA
and TLS 1.3 protocols, based on the prior bounds by Canetti-Krawczyk [72]
resp. Dowling et al. [103], and the bounds we establish (Theorem 2.2 and 2.3). 108

Table 3.1. Definitions of the short labels used in the protocol description of the TLS 1.3
handshake. 124

Table 3.2. Concrete advantages of a key exchange adversary in breaking the security
of the TLS 1.3 PSK-only handshake protocol with a ciphersuite targeting
128-bit security. 196

Table 3.3. Concrete advantages of a key exchange adversary in breaking the security of
the TLS 1.3 PSK-(EC)DHE handshake protocol. 197

Table 3.4. Table displaying the standardized groups for use with TLS 1.3, their encodings
in the NamedGroup enum, and the length of an encoded group element in bytes. 202

Table 3.5. Table showing input lengths for hash function calls made by TLS 1.3 in
PSK-only mode with SHA256. 203

Table 3.6. Table showing input lengths for hash function calls made by TLS 1.3 in PSK-
(EC)DHE mode with SHA256. For transcript hashes, the encoding lengths
|G|/8 can be found in Table 3.4. 205

Table 3.7. Table showing input lengths for hash function calls made by TLS 1.3 in
PSK-(EC)DHE mode with SHA384. 205

xii

ACKNOWLEDGEMENTS

Thanks to my advisor, Mihir Bellare. I can’t even start to quantify how much I’ve learned

from you over the last five years, so I can only thank you for showing me how to become a

cryptographer and look forward to many more opportunities to learn from you in the future. To

Felix Günther, thank you for introducing me to the incomparable world of key exchange, for all

your guidance and encouragement to a very new PhD student, and for many joyful collaborations

in California and Zürich and all the Zoom meetings in between. Thanks to Kenny Patterson for

facilitating those research visits and the collaborations there that have led to so much exciting

past, present, and future work. Thanks to my University of Minnesota mentors: Julie Rana for

first encouraging me to pursue research, Nick Hopper for a solid foundation in cryptography, and

Steve Jensen for making me fall in love with computer science in the first place. Thanks to Chris

Patton, Esha Ghosh, Melissa Chase, and Kim Laine, for giving me the chance to branch out and

work on fascinating new problems, and for your mentorship during my internships and beyond.

Thanks to all the co-authors I have had the privilege to work with over the years, particularly

Denis Diemert for helping to build the most complex models and proofs I’ve ever grappled with,

and Joseph Jaeger, for giving me advice about compiling pseudocode I’ve never forgotten and

for granting my proof an asterisk.

I’ve been so lucky as to belong to a broad and vibrant computer science community, all

the members of whom I cannot possibly name, so I’ll limit myself here to the original occupants of

4240 and 4244 who filled my first two years at UCSD with delightful conversations both academic

and less-academic: Ruth Ng, Igors Stepanovs, Vivek Arte, Joseph Jaeger, Mark Schultz, Wei Dai,

Jessica Sorrell, Jiahao Sun. I could never have accomplished this without the generous assistance

of my committee, Daniele Micciancio, Steven Savage, Deian Stefan, and Farinaz Koushanfar.

Thank you.

It takes a village to raise a... thesis, and I want to highlight the members of my own

village on whose shoulders I stand. My parents, who have always believed in me and supported

me. Linnea Peterson, Sam Schauvaney, and Adam Ludvik for love, laughter, and friendship all

the way through. Gena McElwain, for helping to literally keep me sane. Everyone with whom

I’ve shared a smile, a song, a meal, or a dance these past five years. I couldn’t have done this

xiii

without you. And to all others whose names I have not mentioned, thank you. You are deeply

appreciated.

The following results, like much research, were the result of highly collaborative joint

work with many wonderful colleagues. Most significant ideas and changes were produced during

discussion and iteration by all authors. As such, it quickly becomes difficult to tease apart

individual contributions; however, I have below attempted to give some accounting of my own

input to the work presented here.

Chapter 1, in full, is a reprint of the material as it appears in the proceedings of the 39th

Annual International Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), 2020. - CRYPTO 2017. Bellare, Mihir; Davis, Hannah; Günther, Felix. This

paper had two sections: the case study of NIST PQC KEMs, and the foundational theory. The

former was mainly my own contribution, including attack generation and implementation; the

latter was joint work between all three authors. I helped to author the game-based proofs with

much helpful guidance from Mihir and Felix.

Chapter 2, in full, is a reprint of the material as it appears in the proceedings of

International Conference on Applied Cryptography and Network Security (ACNS), 2021. Davis,

Hannah; Günther, Felix. This was joint work between Felix and I based on his original notion of

achieving tight security for both SIGMA and TLS 1.3 by extending the work of Cohn-Gordon et

al. While he initially focused on the syntax and security definitions and I the proofs, the latter

two were sufficiently intertwined as to eventually consist of significant contributions from both

authors throughout. I was primarily responsible for the concrete generic group model proofs on

the strong Diffie–Hellman, following the suggestions of Mihir Bellare. Similar bounds for the

TLS 1.3 handshake were also shown concurrently by Denis Diemert and Tibor Jager.

Chapter 3, in full, is a reprint of the material as it appears in the proceedings of the 41st

Annual International Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), 2022. Davis, Hannah; Diemert, Denis; Günther, Felix; Jager, Tibor. This

project was designed to fulfill a joint vision extending the work of Chapter 2 and the concurrent

work of Diemert and Jager to the pre-shared key mode of the TLS 1.3 handshake. All four

authors jointly decided to give a formally justified abstraction of the key schedule; the use of the

xiv

indifferentiability framework to do so and the structure of its application were the contributions

of this author. Part of this formal justification was a careful domain-separation argument, which

was first compiled by this author and later updated for better accuracy by Denis Diemert in

accordance with comments from Robert Merget. The pseudocode multi-stage key exchange

model was due to Felix Günther, in discussion with all authors, while the bulk of the game-based

proof was contributed by Denis Diemert with some assistance from Tibor Jager and myself.

The idea to modularize handshake encryption was that of Felix Günther; the formal result was

written by this author under his supervision.

Chapter 4 is a reprint, in full, of material as it appears in the proceedings of the 26th

IACR International Conference on Practice and Theory of Public-Key Cryptography (PKC), 2023.

Bellare, Mihir; Davis, Hannah; Di, Zijing. The overall structure of the tight proof of security for

EdDSA is due to anonymous reviewers at CRYPTO and ASIACRYPT; we thank them. The

Derive-then-Derandomize transform was designed by Mihir, and the details of its security were

worked out by Zijing Di, with guidance from Mihir. This author’s primary contribution was the

new proof of indifferentiability of the chop-MD construction and other members of its class.

Chapter 5 is a reprint of the full version of a paper appearing in the proceedings of Privacy

Enhancing Technology Symposium (PETS), 2023. Davis, Hannah; Patton, Christopher; Rosulek,

Mike; Schoppmann, Phillipp. This author’s main contributions consist of the game-based privacy

and robustness definitions, security proofs for Prio3, and some of the design of our delayed input

fully linear proofs as an element of Doplar. These contributions would not have been possible

without the careful supervision and feedback of Chris, who also wrote the bulk of the security

proofs for Doplar, provided the initial vision for the project and led its application to the draft

standards. Thanks also to Mike and Phillipp for their extensive work on the paper and Doplar’s

design and analysis, especially the verifiable IDPFs.

xv

VITA

2018 Bachelor of Science in Mathematics, University of Minnesota, Twin Cities

2018 Bachelor of Science in Computer Science, University of Minnesota, Twin Cities

2020 Master of Science in Computer Science, University of California San Diego

2023 Doctor of Philosophy in Computer Science, University of California San Diego

PUBLICATIONS

“Power Dissipation in Fractal AC Circuits” Chen J., Rogers J., Anderson L., Andrews U., Brzoska
A., Coffey A., Davis H., Fisher L., Hansalik M., Loew S., Teplyaev A. Journal of Physics A:
Mathematical and Theoretical vol. 50, num. 32, 2017.
“Separate Your Domains: NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”
Bellare M., Davis H., Günther F. Proceedings of 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2020.
“Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols” Davis H., Günther F.
Proceedings of International Conference on Applied Cryptography and Network Security (ACNS),
2021.
“On the Concrete Security of TLS 1.3 PSK Mode” Davis H., Diemert D., Günther F., Jager
T. Proceedings of 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2022.
“Hardening Signature Schemes via Derive-then-Derandomize: Stronger Security Proofs for

EdDSA.” Bellare M., Davis H., Di Z. Proceedings of 26th IACR International Conference
on Practice and Theory of Public-Key Cryptography (PKC), 2023.
“Verifiable Distributed Aggregation Functions” Davis H., Patton C., Rosulek M., Schoppmann P.
Proceedings of Privacy Enhancing Technology Symposium (PETS), 2023.

xvi

ABSTRACT OF THE DISSERTATION

Securing the Standards: Bringing Cryptographic Security Proofs Closer to the Real World

by

Hannah Elizabeth Davis

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Mihir Bellare, Chair

Cryptographic standards published by organizations like NIST, ISO, and the IETF

provide guidance for developers choosing and implementing cryptographic algorithms for their

applications. In recent years, formal proofs of security have become an important part of validation

for standardized algorithms; however, these proofs rely on abstractions which sometimes differ

significantly from the schemes and protocols used in practice.

In this work, I will begin with a study of the ongoing NIST standardization process of

post-quantum key-encapsulation mechanisms and highlight vulnerabilities in several (former)

candidate algorithms which arise from a systematic mismatch between abstract primitives used

in cryptographic models and their actual instantiation in implementations. I will then present a

library of secure instantiation techniques and a way to extend schemes’ existing proofs to their

xvii

instantiations. Next, I will address the Transport Layer Security (TLS 1.3) Handshake Protocol

and demonstrate by a concrete evaluation that prior work fails to prove practical security levels

for many of the standardized parameter sets. I will then show tighter proofs that do justify these

parameter sets and which additionally give the first fully justified abstraction of the TLS 1.3 key

schedule in the random oracle model, and I will explain how certain parts of the TLS 1.3 design

hinder the application of useful abstractions.

I will also explain how inaccurate portrayals of hash functions in the random oracle

model impact the security analysis of the standardized EdDSA signature scheme and present an

improved proof of security with better tightness and modularity. I conclude by introducing my

work on the proposed standard for privacy-preserving measurement, including a new security

model for Verifiable Distributed Aggregation Functions. Within this model, I discuss results for

Prio3, an optimized version of the massively scalable, widely used Prio construction for private

data collection, and Doplar, a new construction for private histogram generation.

xviii

Introduction

The cryptographic algorithms that protect our data in the Internet age are not, by and

large, developed by cryptographers. Instead, many Internet applications rely on cryptographic

standards for guidance. These standards documents are published by organizations like the

National Institute of Standards and Technology (NIST) and the Internet Engineering Task Force

(IETF) as authoritative references on how to implement secure cryptography. Standards ensure

interoperability between Internet applications, and give developers a trusted source for their

cryptographic needs. Standardized algorithms like the Transport Layer Security protocol (TLS

1.3) currently protect roughly to 85 percent of all Internet traffic [211].

Because standardized cryptography is often used at large scale, any vulnerabilities have

significant consequences. Furthermore, adopting a new standard is a slow, expensive process, so

updates and patches are relatively rare. Before standards are published, they therefore undergo

a vigorous vetting process, complete with extensive public scrutiny. In recent years, this process

often includes formal proofs of security among other validation methods. In this work, we provide

new and improved proofs of security for several current and future cryptographic standards.

Security proofs establish bounds on the success probability of an adversary interacting

with a target scheme in an abstract model that defines the attack surface. The exact limit on this

probability depends both on the resources of the adversary and on the security of any underlying

cryptographic primitives or mathematical assumptions. If a scheme’s security is close to that of

its components’ security for all resource levels, we say that the bounds are “tight”. Tight bounds

can be used to help select parameter sizes for cryptographic components; other bounds may

provide heuristic guarantees about a scheme’s security. Once a scheme has a valid security proof,

an attacker can only successfully attack it with high probability by violating the assumptions

made by the proof or model, or by using enough resources to vacate the bounds.

1

We consider the existing proofs for current and future standards, and identify certain

ways they do not rule out attacks: loose bounds and gaps between abstract threat models and

implementations. Wherever possible, we seek to repair the existing proofs or leverage prior work

in a modular way, rather than replace them entirely.

Hash functions, indifferentiability and the ROM.

One place where many proofs break down is in their treatment of hash functions. The

random oracle model (ROM) of Bellare and Rogaway [40] is a powerful model in which hash

functions are treated as publicly accessible random functions, often with infinite domains. Of

course, such functions are unrealizable, and thus proofs in the ROM offer only heuristic evidence

of security. However, the ROM is a commonly used assumption, relied on by security proofs for

many standards [99, 198, 65, 53, 80] and other widely-used cryptographic primitives, and there

are few natural examples of schemes which are secure in the ROM but insecure in practice.

Not all hash functions can be suitably modeled as random oracles. The standardized

hash functions are constructed by iterating an underlying compression function or random

permutation, and it is essential to make sure that this underlying structure does not admit

additional vulnerabilities. Maurer et al. developed the indifferentiability framework, which can

be used to evaluate whether a particular construction can be used to securely instantiate a

random oracle [171]. They proved a powerful composition theorem. If a scheme is proven secure

(for most common definitions of security) in the random oracle model, and it is instantiated with

an indifferentiable construction from some compression function, then the scheme is also secure

when only the compression function is modeled as a random oracle.

Key encapsulation mechanisms.

We begin in Chapter 1 with a case study of the ongoing NIST standardization process for

post-quantum key encapsulation mechanisms (KEMs). Of the initial, now-eliminated, candidates,

we identify highly efficient key recovery attacks on three schemes. These attacks fall in a gap

between a security model with three independent random oracles, and implementations which

instantiate them using a single (indifferentiable) hash function. Because our attacks circumvent

the candidates’ security proofs rather contradicting them, they went unnoticed for more than a

2

year of intense public scrutiny as proposed standards.

The failure of the attacked schemes was in a task we call oracle cloning: constructing

multiple independent random oracles given access to a single RO. We highlight thirteen other

candidate KEM schemes which do not approach oracle cloning with care and whose proofs also

exhibit gaps, and ten schemes that performed oracle cloning well. We then collect a library of

simple and secure oracle cloning techniques, including domain separation, and validate them in a

new framework called read-only indifferentiability. Using these results, we extend the existing

proofs of twelve of the thirteen questionable schemes to cover their oracle cloning methods, thus

closing the gap. The thirteenth scheme was updated in a subsequent round of the standardization

process to use one of our techniques [11].

Authenticated key exchange.

Over the next two chapters, we study the Transport Layer Security 1.3 Handshake

Protocol [201]. This protocol is used establish secret, pseudorandom session keys for billions of

Internet connections per day. As part of its standardization process, the handshake protocol

received its first proof of security from Dowling et al. [104] in 2015. Although this proof

provides heuristic evidence of security for the handshake protocol, we empirically demonstrate in

Chapters 2 and 3 (for the full handshake and pre-shared key modes respectively) that its bounds

are too loose to justify the standardized parameter sets for global usage scales.

The quadratic loss in the number of sessions in the Dowling bound is common to many

contemporary proofs for authenticated key exchange protocols based on the Diffie–Hellman (DH)

problem. The first fully tight bounds for this style of key exchange were given by Cohn-Gordon

et al. [78] for a custom-designed key exchange protocol. The cost of this advancement was a

change in assumption: the Cohn-Gordon proof relied on the interactive Strong DH assumption

rather than more standard noninteractive DH assumptions.

In Chapter 2, we apply the Cohn-Gordon technique to the full TLS 1.3 handshake protocol

and to the SIGMA key exchange protocol [152] and achieve a full justification of standardized

parameter sets. We also justify the change of assumption in two ways: by evaluating the hardness

of Strong DH in the generic group model, and by highlighting that the proof of Dowling et al.

also assumes Strong DH implicitly. Diemert and Jager [98] gave a concurrent and independent

3

analysis of the TLS 1.3 handshake with similar final bounds.

In Chapter 3, we build on the work of Chapter 2 and that of Diemert and Jager to

tightly prove security for the pre-shared key modes of the TLS 1.3 handshake protocol. As

an intermediate step, we establish the first justification of the TLS 1.3 key schedule in the

indifferentiability framework. This approach is not only more rigorous than previous abstractions;

it also simplifies the remaining proof and helps establish independence for the derived keys.

However, we also highlight an obstacle in the poor domain separation of the key schedule that

prevents an indifferentiability proof for one choice of mode and hash function (PSK-only mode

with SHA384). Finally, we treat handshake encryption as a modular transform applied to a

generic key exchange protocol and provide general results on the composition of such a transform.

EdDSA signatures. We address the EdDSA signature scheme [51] in Chapter 4. EdDSA is a

tweaked variant of the Schnorr signature scheme [206] that hardens it against randomness reuse

and certain side-channel attacks. It’s a standardized signature algorithm for TLS 1.3, and is also

used by many blockchain applications and encrypted messaging services, including WhatsApp

and Signal.

Over the years, Schnorr signatures have received several proofs of security [199], including

some recent tighter proofs from non-standard assumptions [33, 115]. Ed25519, however, was

first proven secure in 2020 by Brendel et al. [65]. Like the initial proofs of Schnorr signatures,

their reduction is not tight and models its hash function as a random oracle. The latter quality

presents a concern because Ed25519 uses SHA512, an MD-style hash function which is known to

be differentiable from a random oracle [80] and subject to length-extension attacks.

We define a generic transform called Derive-then-Derandomize, that captures the hard-

ening tweaks applied by Bernstein et al. for EdDSA. We prove that it works from standard

assumptions. We then give a general lemma showing indifferentiability of Shrink-MD, a class of

constructions that apply a shrinking output transform to an Merkle-Damgard-style hash function.

The particular usage of SHA512 within Ed25519 falls within this class. Using these, we give a

direct, fully tight reduction from EdDSA signatures to Schnorr signatures. Our proof enables

tighter bounds for EdDSA that leverage both historic trust and recent analysis of Schnorr; it

also captures the use of SHA512 as a hash function and includes length-extension attacks in its

4

threat model.

Verifiable Distributed Aggregation Functions.

Finally in chapter 5, we make the first provable security contribution to an ongoing

standardization process. The IETF’s working group on privacy preserving measurement (PPM) [1],

in their draft standard, defines a class of cryptographic primitives called “Verifiable Distributed

Aggregation Functions (VDAFs)” [26]. VDAFs are a class of multi-party computation protocols

that enable a collector, with the help of several third-party aggregators, to learn an aggregate

statistic about a population of clients without compromising the privacy of individual client

measurements. The Prio protocol by Corrigan-Gibbs and Boneh [81], an example of the VDAF

paradigm has already been used at global scale as part of the Exposure Notification Private

Analytics (ENPA) program during the Covid-19 pandemic [13].

We give the first provable security treatment for VDAFs, This includes a formal framework

of syntax and game-based definitions capturing privacy, robustness, and correctness, and analysis

of two constructions within this framework. The first is Prio3, a variant of Prio incorporating

optimizations by Boneh et al. [60] and a candidate for standardization within the PPM draft.

The second, called Doplar, we introduce as a way to reduce the round complexity of the Poplar

system of Boneh et al. [61], itself a candidate for standardization. To achieve this improvement,

Doplar requires slightly greater overall bandwidth and computation.

5

Chapter 1

Separate Your Domains

1.1 Introduction

Theoretical works giving, and proving secure, schemes in the random oracle (RO)

model [41], often, for convenience, assume access to multiple, independent ROs. Implemen-

tations, however, like to implement them all via a single hash function like SHA256 that is

assumed to be a RO.

The transition from one RO to many is, in principle, easy. One can use a method

suggested by BR [41] and usually called “domain separation.” For example to build three random

oracles H1,H2,H3 from a single one, H, define

H1(x) = H(〈1〉‖x), H2(x) = H(〈2〉‖x) and H3(x) = H(〈3〉‖x) , (1.1)

where 〈i〉 is the representation of integer i as a bit-string of some fixed length, say one byte. One

might ask if there is justifying theory: a proof that the above “works,” and a definition of what

“works” means. A likely response is that it is obvious it works, and theory would be pedantic.

If it were merely a question of the specific domain-separation method of Equation (1.1),

we’d be inclined to agree. But we have found some good reasons to revisit the question and look

into theoretical foundations. They arise from the NIST Post-Quantum Cryptography (PQC)

standardization process [191].

We analyzed the KEM submissions. We found attacks, breaking some of them, that

arise from incorrect ways of turning one random oracle into many, indicating that the process is

error-prone. We found other KEMs where methods other than Equation (1.1) were used and

6

whether or not they work is unclear. In some submissions, instantiations for multiple ROs were

left unspecified. In others, they differed between the specification and reference implementation.

Domain separation as per Equation (1.1) is a method, not a goal. We identify and name

the underlying goal, calling it oracle cloning— given one RO, build many, independent ones.

(More generally, given m ROs, build n > m ROs.) We give a definition of what is an “oracle cloning

method” and what it means for such a method to “work,” in a framework we call read-only

indifferentiability, a simple variant of classical indifferentiability [171]. We specify and study many

oracle cloning methods, giving some general results to justify (prove read-only indifferentiability

of) certain classes of them. The intent is not only to validate as many NIST PQC KEMs as

possible (which we do) but to specify and validate methods that will be useful beyond that.

Below we begin by discussing the NIST PQC KEMs and our findings on them, and then

turn to our theoretical treatment and results.

NIST PQC KEMs. In late 2016, NIST put out a call for post-quantum cryptographic algo-

rithms [191]. In the first round they received 28 submissions targeting IND-CCA-secure KEMs,

of which 17 remain in the second round [193].

Recall that in a KEM (Key Encapsulation Mechanism) KE, the encapsulation algorithm

KE.E takes the public key pk (but no message) to return a symmetric key K and a ciphertext

C∗ encapsulating it, (C∗,K)←$ KE.E(pk). Given an IND-CCA KEM, one can easily build an

IND-CCA PKE scheme by hybrid encryption [82], explaining the focus of standardization on the

KEMs.

Most of the KEM submissions (23 in the first round, 15 in the second round) are

constructed from a weak (OW-CPA, IND-CPA, ...) PKE scheme using either a method from

Hofheinz, Hövelmanns and Kiltz (HHK) [133] or a related method from [95, 205, 146]. This

results in a KEM KE4, the subscript to indicate that it uses up to four ROs that we’ll denote

H1,H2,H3,H4. Results of [133, 95, 205, 146] imply that KE4 is provably IND-CCA, assuming the

ROs H1,H2,H3,H4 are independent.

Next, the step of interest for us, the oracle cloning: they build the multiple random oracles

via a single RO H , replacing Hi with an oracle F[H](i, ·), where we refer to the construction F as

a “cloning functor,” and F[H] means that F gets oracle access to H . This turns KE4 into a KEM

7

KE1 that uses only a single RO H , allowing an implementation to instantiate the latter with a

single NIST-recommended primitive like SHA3-512 or SHAKE256 [192]. (In some cases, KE1 uses

a number of ROs that is more than one but less than the number used by KE4, which is still

oracle cloning, but we’ll ignore this for now.)

Often the oracle cloning method (cloning functor) is not specified in the submission

document; we obtained it from the reference implementation. Our concern is the security of

this method and the security of the final, single-RO-using KEM KE1. (As above we assume the

starting KE4 is secure if its four ROs are independent.)

Oracle cloning in submissions. We surveyed the relevant (first- and second-round) NIST

PQC KEM submissions, looking in particular at the reference code, to determine what choices of

cloning functor F was made, and how it impacted security of KE1. Based on our findings, we

classify the submissions into groups as follows.

First is a group of successfully attacked submissions. We discover and specify attacks,

enabled through erroneous RO cloning, on three (first-round) submissions: BIG QUAKE [25],

DAGS [24] and Round2 [116]. (Throughout the paper, first-round submissions are in gray, second-

round submissions in bold.) Our attacks on BIG QUAKE and Round2 recover the symmetric key

K from the ciphertext C∗ and public key. Our attack on DAGS succeeds in partial key recovery,

recovering 192 bits of the symmetric key. These attacks are very fast, taking at most about the

same time as taken by the (secret-key equipped, prescribed) decryption algorithm to recover the

key. None of our attacks needs access to a decryption oracle, meaning we violate much more

than IND-CCA.

Next is submissions with questionable oracle cloning. We put just one in this group,

namely NewHope [11]. Here we do not have proof of security in the ROM for the final instantiated

scheme KE1. We do show that the cloning methods used here do not achieve our formal notion

of rd-indiff security, but this does not result in an attack on KE1, so we do not have a practical

attack either. We recommend changes in the cloning methods that permit proofs.

Next is a group of ten submissions that use ad-hoc oracle cloning methods —as opposed,

say, to conventional domain separation as per Equation (1.1)— but for which our results (to

be discussed below) are able to prove security of the final single-RO scheme. In this group are

8

BIKE [14], KCL [217], LAC [169], Lizard [76], LOCKER [15], Odd Manhattan [197], ROLLO-II [172],

Round5 [20], SABER [86] and Titanium [214]. Still, the security of these oracle cloning methods

remains brittle and prone to vulnerabilities under slight changes.

A final group of twelve submissions did well, employing something like Equation (1.1). In

particular our results can prove these methods secure. In this group are Classic McEliece [48],

CRYSTALS-Kyber [18], EMBLEM [210], FrodoKEM [185], HQC [174], LIMA [213], NTRU-HRSS-KEM [135],

NTRU Prime [49], NTS-KEM [10], RQC [173], SIKE [144] and ThreeBears [129].

This classification omits 14 KEM schemes that do not fit the above framework. (For

example they do not target IND-CCA KEMs, do not use HHK-style transforms, or do not use

multiple random oracles.)

Lessons and response. We see that oracle cloning is error-prone, and that it is sometimes

done in ad-hoc ways whose validity is not clear. We suggest that oracle cloning not be left to

implementations. Rather, scheme designers should give proof-validated oracle cloning methods

for their schemes. To enable this, we initiate a theoretical treatment of oracle cloning. We

formalize oracle cloning methods, define what it means for one to be secure, and specify a

library of proven-secure methods from which designers can draw. We are able to justify the

oracle cloning methods of many of the unbroken NIST PQC KEMs. The framework of read-only

indifferentiability we introduce and use for this purpose may be of independent interest.

The NIST PQC KEMs we break are first-round candidates, not second-round ones, and

in some cases other attacks on the same candidates exist, so one may say the breaks are no longer

interesting. We suggest reasons they are. Their value is illustrative, showing not only that errors

in oracle cloning occur in practice, but that they can be devastating for security. In particular,

the extensive and long review process for the first-round NIST PQC submissions seems to have

missed these simple attacks, perhaps due to lack of recognition of the importance of good oracle

cloning.

Indifferentiability background. Let SS,ES be sets of functions. (We will call them the

starting and ending function spaces, respectively.) A functor F: SS→ ES is a deterministic

algorithm that, given as oracle a function s ∈ SS, defines a function F[s] ∈ ES. Indifferentiability

9

of F is a way of defining what it means for F[s] to emulate e when s,e are randomly chosen from

SS,ES, respectively. It permits a “composition theorem” saying that if F is indifferentiable then

use of e in a scheme can be securely replaced by use of F[s].

Maurer, Renner and Holenstein (MRH) [171] gave the first definition of indifferentia-

bility and corresponding composition theorem. However, Ristenpart, Shacham and Shrimpton

(RSS) [202] pointed out a limitation, namely that it only applies to single-stage games. MRH-

indiff fails to guarantee security in multi-stage games, a setting that includes many goals of

interest including security under related-key attack, deterministic public-key encryption and

encryption of key-dependent messages. Variants of MRH-indiff [80, 202, 94, 179] tried to address

this, with limited success.

Rd-indiff. Indifferentiability is the natural way to treat oracle cloning. A cloning of one function

into n functions (n = 4 above) can be captured as a functor (we call it a cloning functor) F that

takes the single RO s and for each i ∈ [1..n] defines a function F[s](i, ·) that is meant to emulate

a RO. We will specify many oracle cloning methods in this way.

We define in Section 1.4 a variant of indifferentiability we call read-only indifferentiability

(rd-indiff). The simulator —unlike for reset-indiff [202]— has access to a game-maintained state

st, but —unlike MRH-indiff [171]— that state is read-only, meaning the simulator cannot alter it

across invocations. Rd-indiff is a stronger requirement than MRH-indiff (if F is rd-indiff then it

is MRH-indiff) but a weaker one than reset-indiff (if F is reset-indiff then it is rd-indiff). Despite

the latter, rd-indiff, like reset-indiff, admits a composition theorem showing that an rd-indiff F

may securely substitute a RO even in multi-stage games. (The proof of RSS [202] for reset-indiff

extends to show this.) We do not use reset-indiff because some of our cloning functors do not

meet it, but they do meet rd-indiff, and the composition benefit is preserved.

General results. In Section 1.4, we define translating functors. These are simply ones whose

oracle queries are non-adaptive. (In more detail, a translating functor determines from its input

W a list of queries, makes them to its oracle and, from the responses and W , determines its

output.) We then define a condition on a translating functor F that we call invertibility and

show that if F is an invertible translating functor then it is rd-indiff. This is done in two parts,

10

Theorems 1.1 and 1.2, that differ in the degree of invertibility assumed. The first, assuming

the greater degree of invertibility, allows a simpler proof with a simulator that does not need

the read-only state allowed in rd-indiff. The second, assuming the lesser degree of invertibility,

depends on a simulator that makes crucial use of the read-only state. It sets the latter to a

key for a PRF that is then used to answer queries that fall outside the set of ones that can be

trivially answered under the invertibility condition. This use of a computational primitive (a

PRF) in the indifferentiability context may be novel and may seem odd, but it works.

We apply this framework to analyze particular, practical cloning functors, showing that

these are translating and invertible, and then deducing their rd-indiff security. But the above-

mentioned results are stronger and more general than we need for the application to oracle

cloning. The intent is to enable further, future applications.

Analysis of oracle cloning methods. We formalize oracle cloning as the task of designing

a functor (we call it a cloning functor) F that takes as oracle a function s ∈ SS in the starting

space and returns a two-input function e = F[s] ∈ ES, where e(i, ·) represents the i-th RO for

i ∈ [1..n]. Section 1.5 presents the cloning functors corresponding to some popular and practical

oracle cloning methods (in particular ones used in the NIST PQC KEMs), and shows that they

are translating and invertible. Our above-mentioned results allow us to then deduce they are

rd-indiff, which means they are safe to use in most applications, even ones involving multi-stage

games. This gives formal justification for some common oracle cloning methods. We now discuss

some specific cloning functors that we treat in this way.

The prefix (cloning) functor Fpf(p) is parameterized by a fixed, public vector p such that

no entry of p is a prefix of any other entry of p. Receiving function s as an oracle, it defines

function e = Fpf(p)[s] by e(i,X) = s(p[i]‖X), where p[i] is the ith element of vector p. When p[i]

is a fixed-length bitstring representing the integer i, this formalizes Equation (1.1).

Some NIST PQC submissions use a method we call output splitting. The simplest case

is that we want e(i, ·), . . . ,ε(n, ·) to all have the same output length L. We then define e(i,X) as

bits (i−1)L+1 through iL of the given function s applied to X . That is, receiving function s

as an oracle, the splitting (cloning) functor Fspl returns function e = Fspl[s] defined by e(i,X) =

s(X)[(i−1)L+1..iL].

11

An interesting case, present in some NIST PQC submissions, is trivial cloning: just

set e(i,X) = s(X) for all X . We formalize this as the identity (cloning) functor Fid defined by

Fid[s](i,X) = s(X). Clearly, this is not always secure. It can be secure, however, for usages that

restrict queries in some way. One such restriction, used in several NIST PQC KEMs, is length

differentiation: e(i, ·) is queried only on inputs of some length li, where l1, . . . , ln are chosen to be

distinct. We are able to treat this in our framework using the concept of working domains that

we discuss next, but we warn that this method is brittle and prone to misuse.

Working domains. One could capture trivial cloning with length differentiation as a restriction

on the domains of the ending functions, but this seems artificial and dangerous because the

implementations do not enforce any such restriction; the functions there are defined on their full

domains and it is, apparently, left up to applications to use the functions in a way that does

not get them into trouble. The approach we take is to leave the functions defined on their full

domains, but define and ask for security over a subdomain, which we called the working domain.

A choice of working domain W accordingly parameterizes our definition of rd-indiff for a functor,

and also the definition of invertibility of a translating functor. Our result says that the identity

functor is rd-indiff for certain choices of working domains that include the length differentiation

one.

Making the working domain explicit will, hopefully, force the application designer to

think about, and specify, what it is, increasing the possibility of staying out of trouble. Working

domains also provide flexibility and versatility under which different applications can make

different choices of the domain.

Working domains not being present in prior indifferentiability formalizations, the com-

parisons, above, of rd-indiff with these prior formalizations assume the working domain is the

full domain of the ending functions. Working domains alter the comparison picture; a cloning

functor which is rd-indiff on a working domain may not be even MRH-indiff on its full domain.

Application to KEMs. The framework above is broad, staying in the land of ROs and not

speaking of the usage of these ROs in any particular cryptographic primitive or scheme. As such,

it can be applied to analyze RO instantiation in many primitives and schemes. In Section 1.6,

12

we exemplify its application in the realm of KEMs as the target of the NIST PQC designs.

This may seem redundant, since an indifferentiability composition theorem says exactly

that once indifferentiability of a functor has been shown, “all” uses of it are secure. However,

prior indifferentiability frameworks do not consider working domains, so the known composition

theorems apply only when the working domain is the full one. (Thus the reset-indiff composition

theorem of [202] extends to rd-indiff so that we have security for applications whose security

definitions are underlain by either single or multi-stage games, but only for full working domains.)

To give a composition theorem that is conscious of working domains, we must first ask

what they are, or mean, in the application. We give a definition of the working domain of a

KEM KE. This is the set of all points that the scheme algorithms query to the ending functions

in usage, captured by a certain game we give. (Queries of the adversary may fall outside the

working domain.) Then we give a working-domain-conscious composition theorem for KEMs

(Theorem 1.3) that says the following. Say we are given an IND-CCA KEM KE whose oracles

are drawn from a function space KE.FS. Let F: SS→ KE.FS be a functor, and let KE be the

KEM obtained by implementing the oracles of the KE via F. (So the oracles of this second

KEM are drawn from the function space KE.FS = SS.) Let W be the working domain of KE,

and assume F is rd-indiff over W . Then KE is also IND-CCA. Combining this with our rd-indiff

results on particular cloning functors justifies not only conventional domain separation as an

instantiation technique for KEMs, but also more broadly the instantiations in some NIST PQC

submissions that do not use domain separation, yet whose cloning functors are rd-diff over the

working domain of their KEMs. The most important example is the identity cloning functor

used with length differentiation.

A key definitional element of our treatment that allows the above is, following [30], to

embellish the syntax of a scheme (here a KEM KE) by having it name a function space KE.FS

from which it wants its oracles drawn. Thus, the scheme specification must say how many ROs

it wants, and of what domains and ranges. In contrast, in the formal version of the ROM in [41],

there is a single, scheme-independent RO that has some fixed domain and range, for example

mapping {0,1}∗ to {0,1}. This leaves a gap, between the object a scheme wants and what the

model provides, that can lead to error. We suggest that, to reduce such errors, schemes specified

13

in standards include a specification of their function space.

1.2 Oracle Cloning in NIST PQC Candidates

Notation. A KEM scheme KE specifies an encapsulation KE.E that, on input a pub-

lic encryption key pk returns a session key K, and a ciphertext C∗ encapsulating it, written

(C∗,K)←$ KE.E(pk). A PKE scheme PKE specifies an encryption algorithm PKE.E that, on

input pk, message M ∈ {0,1}PKE.ml and randomness R, deterministically returns ciphertext

C ← PKE.E(pk,M;R). For neither primitive will we, in this section, be concerned with the

key generation or decapsulation / decryption algorithm. We might write KE[X1,X2, . . .] to indi-

cate that the scheme has oracle access to functions X1,X2, . . ., and correspondingly then write

KE.E[X1,X2, . . .], and similarly for PKE.

1.2.1 Design process

The literature [133, 95, 205, 146] provides many transforms that take a public-key

encryption scheme PKE, assumed to meet some weaker-than-IND-CCA notion of security we

denote Spke (for example, OW-CPA, OW-PCA or IND-CPA), and, with the aid of some number

of random oracles, turn PKE into a KEM that is guaranteed (proven) to be IND-CCA assuming

the ROs are independent. We’ll refer to such transforms as sound. Many (most) KEMs submitted

to the NIST Post-Quantum Cryptography standardization process were accordingly designed as

follows:

(1) First, they specify a Spke-secure public-key encryption scheme PKE.

(2) Second, they pick a sound transform T and obtain KEM scheme KE4[H1,H2,H3,H4] =

T[PKE,H2,H3,H4]. (The notation is from [133]. The transforms use up to three random

oracles that we are denoting H2,H3,H4, reserving H1 for possible use by the PKE scheme.)

We refer to KE4 (the subscript refers to its using 4 oracles) as the base KEM, and, as we

will see, it differs across the transforms.

(3) Finally —the under-the-radar step that is our concern— the ROs H1, . . . ,H4 are constructed

from cryptographic hash functions to yield what we call the final KEM KE1. In more detail,

the submissions make various choices of cryptographic hash functions F1, . . . ,Fm that we call

14

the base functions, and, for i = 1,2,3,4, specify constructions Ci that, with oracle access to

the base functions, define the Hi, which we write as Hi←Ci[F1, . . . ,Fm]. We call this process

oracle cloning, and we call Hi the final functions. (Common values of m are 1,2.) The

actual, submitted KEM KE1 (the subscript because m is usually 1) uses the final functions,

so that its encapsulation algorithm can be written as:

KE1.E[F1, . . . ,Fm](pk)

For i = 1,2,3,4 do Hi←Ci[F1, . . . ,Fm]

(C∗,K)←$ KE4.E[H1,H2,H3,H4](pk)

Return (C∗,K)

The question now is whether the final KE1 is secure. We will show that, for some submissions,

it is not. This is true for the choices of base functions F1, . . . ,Fm made in the submission, but

also if these are assumed to be ROs. It is true despite the soundness of the transform, meaning

insecurity arises from poor oracle cloning, meaning choices of the constructions Ci. We will then

consider submissions for which we have not found an attack. In the latter analysis, we are willing

to assume (as the submissions implicitly do) that F1, . . . ,Fm are ROs, and we then ask whether

the final functions are “close” to independent ROs.

1.2.2 The base KEM

We need first to specify the base KE4 (the result of the sound transform, from step (2)

above). The NIST PQC submissions typically cite one of HHK [133], Dent [95], SXY [205] or

JZCWM [146] for the sound transform they use, but our examinations show that the submissions

have embellished, combined or modified the original transforms. The changes do not (to best

of our knowledge) violate soundness (meaning the used transforms still yield an IND-CCA KE4

if H2,H3,H4 are independent ROs and PKE is Spke-secure) but they make a succinct exposition

challenging. We address this with a framework to unify the designs via a single, but parameterized,

transform, capturing the submission transforms by different parameter choices.

Figure 1.1 (top) shows the encapsulation algorithm KE4.E of the KEM that our parame-

terized transform associates to PKE and H1,H2,H3,H4. The parameters are the variables X ,Y,Z

(they will be functions of other quantities in the algorithms), a boolean D, and an integer k∗.

15

Algorithm KE4.E[H1,H2,H3,H4](pk):
1 M←${0,1}PKE.ml ; R← ε

2 If (D= true) then R‖K′←H2(X) // |K′|= k∗

3 C← PKE.E[H1](pk,M;R)

4 C∗←C‖Y
5 K←H4(Z) ; Return (C∗,K)

D k∗ X Y Z Used in

T1 true 0 M ε M
LIMA,

Odd Manhattan
T2 true 0 pk‖M ε pk‖M ThreeBears

T3 true 0 M ε M‖C BIKE-1-CCA
BIKE-3-CCA, LAC

T4 true 0 M‖pk ε M‖C SIKE
T5 true 0 M H3(X) M‖C HQC, RQC, ROLLO-II, LOCKER
T6 true > 0 M‖H3(pk) ε K′‖C SABER
T7 true > 0 H3(pk)‖H3(M) ε K′‖H3(C) CRYSTALS-Kyber
T8 true 0 M H3(X) M DAGS, NTRU-HRSS-KEM

T9 true 0 M H3(X) M‖C‖Y BIG QUAKE, EMBLEM,
Lizard, Titanium

T10 true > 0 H4(M)‖H4(pk) H3(X) K′‖H4(C‖Y) NewHope

T11 true > 0 M‖pk H3(X) K′‖C‖Y FrodoKEM, Round2
Round5

T12 true > 0 pk‖M H3(X) K′‖C KCL
T13 true > 0 H3(pk)‖M ε C‖K′ FrodoKEM
T14 false 0 ⊥ H3(M) M‖C‖Y Classic McEliece
T15 true 0 M ε R‖M NTS-KEM
T16 false 0 ⊥ H3(M‖pk) M‖C‖Y Streamlined NTRU Prime
T17 true 0 M H3(M‖pk) M‖C‖Y NTRU LPRime

Figure 1.1. Top: Encapsulation algorithm of the base KEM scheme produced by our parameter-
ized transform. Bottom: Choices of parameters X ,Y,Z,D,k∗ resulting in specific transforms used
by the NIST PQC submissions. Second-round submissions are in bold, first-round submissions
in gray. Submissions using different transforms in the two rounds appear twice.

When choices of these are made, one gets a fully-specified transform and corresponding base

KEM KE4. Each row in the table in the same Figure shows one such choice of parameters,

resulting in 15 fully-specified transforms. The final column shows the submissions that use the

transform.

The encapsulation algorithm at the top of Figure 1.1 takes input a public key pk and

has oracle access to functions H1,H2,H3,H4. At line 1, it picks a random seed M of length the

16

message length of the given PKE scheme. Boolean D being true (as it is except in two cases)

means PKE.E is randomized. In that case, line 2 applies H2 to X (the latter, determined as

per the table, depends on M and possibly also on pk) and parses the output to get coins R for

PKE.E and possibly (if the parameter k∗ 6= 0) an additional string K′. At line 3, a ciphertext C

is produced by encrypting the seed M using PKE.E with public key pk and coins R. In some

schemes, a second portion of the ciphertext, Y , often called the “confirmation", is derived from X

or M, using H3, as shown in the table, and line 4 then defines C∗. Finally, H4 is used as a key

derivation function to extract a symmetric key K from the parameter Z, which varies widely

among transforms.

In total, 26 of the 39 NIST PQC submissions which target KEMs in either the first or

second round use transforms which fall into our framework. The remaining schemes do not use

more than one random oracle, construct KEMs without transforming PKE schemes, or target

security definitions other than IND-CCA.

1.2.3 Submissions we break

We present attacks on BIG QUAKE [25], DAGS [24], and Round2 [116]. These attacks succeed

in full or partial recovery of the encapsulated KEM key from a ciphertext, and are extremely

fast. We have implemented the attacks to verify them.

Although none of these schemes progressed to Round 2 of the competition without

significant modification, to the best of our knowledge, none of the attacks we described were

pointed out during the review process. Given the attacks’ superficiality, this is surprising

and suggests to us that more attention should be paid to oracle cloning methods and their

vulnerabilities during review.

Randomness-based decryption. The PKE schemes used by BIG QUAKE and Round2 have the

property that given a ciphertext C← PKE.E(pk,M;R) and also given the coins R, it is easy to

recover M, even without knowledge of the secret key. We formalize this property, saying PKE

allows randomness-based decryption, if there is an (efficient) algorithm PKE.DecR such that

PKE.DecR(pk,PKE.E(pk,M;R),R) = M for any public key pk, coins R and message m. This will

be used in our attacks.

17

Attack on BIG QUAKE. The base KEM KE1[H1,H2,H3,H4] is given by the transform T9 in the

table of Figure 1.1. The final KEM KE2[F] uses a single function F to instantiate the random

oracles, which it does as follows. It sets H3 = H4 = F and H2 =W [F]◦F for a certain function

W (the rejection sampling algorithm) whose details will not matter for us. The notation W [F]

meaning that W has oracle access to F . The following attack (explanations after the pseudocode)

recovers the encapsulated KEM key K from ciphertext C∗←$ KE1.E[F](pk)—

Adversary A[F](pk,C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ←C∗ // Parse C∗ to get PKE ciphertext C and Y = H3(M)

2. R←W [F](Y) // Apply function W [F] to Y to recover coins R

3. M← PKE.DecR(pk,C,R) // Use randomness-based decryption for PKE

4. K← F(M) ; Return K

As per T9 we have Y = H3(M) = F(M). The coins for PKE.E are R = H2(M) = (W [F]◦F)(M) =

W [F](F(M)) = W [F](Y). Since Y is in the ciphertext, the coins R can be recovered as shown

at line 2. The PKE scheme allows randomness-based decryption, so at line 3 we can recover

the message M underlying C using algorithm PKE.DecR. But K = H4(M) = F(M), so K can now

be recovered as well. In conclusion, the specific cloning method chosen by BIG QUAKE leads to

complete recovery of the encapsulated key from the ciphertext.

Attack on Round2. The base KEM KE1[H2,H3,H4] is given by the transform T11 in the

table of Figure 1.1. The final KEM KE2[F] uses a single base function F to instantiate the final

functions, which it does as follows. It sets H4 = F . The specification and reference implementation

differ in how H2,H3 are defined: In the former, H2(x) = F(F(x))‖F(x) and H3(x) = F(F(F(x))),

while, in the latter, H2(x) = F(F(F(x)))‖F(x) and H3(x) = F(F(X)). These differences arise from

differences in the way the output of a certain function W [F] is parsed.

Our attack is on the reference-implementation version of the scheme. We need to also

know that the scheme sets k∗ so that R‖K′← H2(X) with H2(X) = F(F(F(X)))‖F(X) results in

R = F(F(F(X))). But Y = H3(X) = F(F(X)), so R = F(Y) can be recovered from the ciphertext.

Again exploiting the fact that the PKE scheme allows randomness-based decryption, we obtain the

following attack that recovers the encapsulated KEM key K from ciphertext C∗←$ KE1.E[F](pk)—

18

Adversary A[F](pk,C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ←C∗; R← F(Y)

2. M← PKE.DecR(pk,C,R) ; K← F(M) ; Return K

This attack exploits the difference between the way H2,H3 are defined across the specification

and implementation, which may be a bug in the implementation with regard to the parsing of

W [F](x). However, the attack also exploits dependencies between H2 and H3, which ought not to

exist when instantiating what are required to be distinct random oracles.

Round2 was incorporated into the second-round submission Round5, which specifies a

different base function and cloning functor (the latter of which uses the secure method we call

“output splitting") to instantiate oracles H2 and H3. This attack therefore does not apply to

Round5.

Attack on DAGS. If x is a byte string we let x[i] be its i-th byte, and if x is a bit string we let

xi be its i-th bit. We say that a function V is an extendable output function if it takes input a

string x and an integer ` to return an `-byte output, and `1 ≤ `2 implies that V (x, `1) is a prefix

of V (x, `2). If v = v1v2v3v4v5v6v7v8 is a byte then let Z(v) = 00v3v4v5v6v7v8 be obtained by zeroing

out the first two bits. If y is a string of ` bytes then let Z′(y) = Z(y[1])‖· · ·‖Z(y[`]). Now let

V ′(x, `) = Z′(V (x, `)).

The base KEM KE1[H1,H2,H3,H4] is given by the transform T8 in the table of Figure 1.1.

The final KEM KE2[V] uses an extendable output function V to instantiate the random oracles,

which it does as follows. It sets H2(x) =V ′(x,512) and H3(x) =V ′(x,32). It sets H4(x) =V (x,64).

As per T8 we have K = H4(M) and Y = H3(M). Let L be the first 32 bytes of the 64-byte

K. Then Y = Z′(L). So Y reveals 32 ·6 = 192 bits of K. Since Y is in the ciphertext, this results

in a partial encapsulated-key recovery attack. The attack reduces the effective length of K from

64 · 8 = 512 bits to 512− 192 = 320 bits, meaning 37.5% of the encapsulated key is recovered.

Also R = H2(M), so Y , as part of the ciphertext, reveals 32 bytes of R, which does not seem

desirable, even though it is not clear how to exploit it for an attack.

19

1.2.4 Submissions with unclear security

For the scheme NewHope [11], we can give neither an attack nor a proof of security.

However, we can show that the final functions H2,H3,H4 produced by the cloning functor FNewHope

with oracle access to a single extendable-output function V are differentiable from independent

random oracles. The cloning functor FNewHope sets H1(x) = V (x,128) and H4 = V (x,32). It

computes H2 and H3 from V using the output splitting cloning functor. Concretely, KE2 parses

V (x,96) as H2(x)‖H3(x), where H2 has output length 64 bytes and H3 has output length 32 bytes.

Because V is an extendable-output function, H4(x) will be a prefix of H2(x) for any string x.

We do not know how to exploit this correlation to attack the IND-CCA security of the

final KEM scheme KE2[V], and we conjecture that, due to the structure of T10, no efficient attack

exists. We can, however, attack the rd-indiff security of functor FNewHope, showing that that the

security proof for the base KEM KE1[H2,H3,H4] does not naturally transfer to KE2[V]. Therefore,

in order to generically extend the provable security results for KE1 to KE2, it seems advisable to

instead apply appropriate oracle cloning methods.

1.2.5 Submissions with provable security but ambiguous specification

In their reference implementations, these submissions use cloning functors which we can

and do validate via our framework, providing provable security in the random oracle model

for the final KEM schemes. However, the submission documents do not clearly specify a

secure cloning functor, meaning that variant implementations or adaptations may unknowingly

introduce weaknesses. The schemes BIKE [14], KCL [217], LAC [169], Lizard [76], LOCKER [15],

Odd Manhattan [197], ROLLO-II [172], Round5 [20], SABER [86] and Titanium [214] fall into this

group.

Length differentiation. Many of these schemes use the “identity" functor in their reference

implementations, meaning that they set the final functions H1 = H2 = H3 = H4 = F for a single

base function F . If the scheme KE1[H1,H2,H3,H4] never queries two different oracles on inputs of

a single length, the domains of H1, . . . ,H4 are implicitly separated. Reference implementations

typically enforce this separation by fixing the input length of every call to F. Our formalism

calls this query restriction "length differentiation" and proves its security as an oracle cloning

20

method. We also generalize it to all methods which prevent the scheme from querying any two

distinct random oracles on a single input.

In the following, we discuss two schemes from the group, ROLLO-II and Lizard, where

ambiguity about cloning methods between the specification and reference implementation jeopar-

dizes the security of applications using these schemes. It will be important that, like BIG QUAKE

and RoundTwo, the PKE schemes defined by ROLLO-II and Lizard allow randomness-based

decryption.

The scheme ROLLO-II [172] defines its base KEM KE1[H1,H2,H3,H4] using the T5 trans-

form from Figure 1.1. The submission document states that H1, H2, H3, and H4 are “typically"

instantiated with a single fixed-length hash function F , but does not describe the cloning functors

used to do so. If the identity functor is used, so that H1 = H2 = H3 = H4 = F , (or more generally,

any functor that sets H2 = H3), an attack is possible. In the transform T5, both H2 and H3 are

queried on the same input M. Then Y = H3(M) = F(M) = H2(M) = R leaks the PKE’s random

coins, so the following attack will allow total key recovery via the randomness-based decryption.

Adversary A[F](pk,C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ←C∗ ; M← PKE.DecR(pk,C,Y) // (Y = R is the coins)

2. K← F(M ‖C‖Y) ; Return K

In the reference implementation of ROLLO-II, however, H2 is instantiated using a second,

independent function V instead of F, which prevents the above attack. Although the random

oracles H1,H3 and H4 are instantiated using the identity functor, they are never queried on

the same input thanks to length differentiation. As a result, the reference implementation of

ROLLO-II is provably secure, though alternate implementations could be both compliant with the

submission document and completely insecure. The relevant portions of both the specification and

the reference implementation were originally found in the corresponding first-round submission

(LOCKER).

Lizard [76] follows transform T9 to produce its base KEM KE1[H2,H3,H4]. Its submission

document suggests instantiation with a single function F as follows: it sets H3 = H4 = F, and

it sets H2 =W ◦F for some postprocessing function W whose details are irrelevant here. Since,

21

in T9, Y = H3(M) = F(M) and R = H2(M) =W ◦F(M) =W (Y), the randomness R will again be

leaked through Y in the ciphertext, permitting a key-recovery attack using randomness-based

decryption much like the others we have described. This attack is prevented in the reference

implementation of Lizard, which instantiates H3 and H4 using an independent function G. The

domains of H3 and H4 are separated by length differentiation. This allows us to prove the security

of the final KEM KE2[G,F], as defined by the reference implementation.

However, the length differentiation of H3 and H4 breaks down in the chosen-ciphertext-

secure PKE variant specification of Lizard, which transforms KE1. The PKE scheme, given a

plaintext P, chooses a random message M, computes R = H2(M) and Y = H3(M) according to T9,

but it computes K = H4(M), then includes the value B = K⊕P as part of the ciphertext C∗. Both

the identity functor and the functor used by the KEM reference implementation set H3 = H4, so

the following attack will extract the plaintext from any ciphertext–

Adversary A(pk,C∗) // Input public key and ciphertext

1. C‖B‖Y ←C∗ // Parse C∗ to get Y and B = P⊕K

2. P← Y ⊕B ; Return P // Y = H3(M) = H4(M) = K is the mask.

The reference implementation of the public-key encryption schemes prevents the attack by

cloning H3 and H4 from G via a third cloning functor, this one using the output splitting method.

Yet, the inconsistency in the choice of cloning functors between the specification and both

implementations underlines that ad-hoc cloning functors may easily “get lost” in modifications

or adaptations of a scheme.

1.2.6 Submissions with clear provable security

Here we place schemes which explicitly discuss their methods for domain separation and

follow good practice in their implementations: Classic McEliece [48], CRYSTALS-Kyber [18],

EMBLEM [210], FrodoKEM [185], HQC [174], LIMA [213], NTRU-HRSS-KEM [135], NTRU Prime [49],

NTS-KEM [10], RQC [173], SIKE [144] and ThreeBears [129]. These schemes are careful to account

for dependencies between random oracles that are considered to be independent in their security

models. When choosing to clone multiple random oracles from a single primitive, the schemes in

this group use padding bytes, deploy hash functions designed to accommodate domain separation,

22

or restrictions on the length of the inputs which are codified in the specification. These explicit

domain separation techniques can be cast in the formalism we develop in this work.

HQC and RQC are unique among the PQC KEM schemes in that their specifications warn

that the identity functor admits key-recovery attacks. As protection, they recommend that H2

and H3 be instantiated with unrelated primitives.

Signatures. Although the main focus of this paper is on domain separation in KEMs, we

wish to note that these issues are not unique to KEMs. At least one digital signature scheme

in the second round of the NIST PQC competition, MQDSS [74], models multiple hash functions

as independent random oracles in its security proof, then clones them from the same primitive

without explicit domain separation. We have not analyzed the NIST PQC digital signature

schemes’ security to see whether more subtle domain separation is present, or whether oracle

collisions admit the same vulnerabilities to signature forgery as they do to session key recovery.

This does, however, highlight that the problem of random oracle cloning is pervasive among more

types of cryptographic schemes.

1.3 Preliminaries

Basic notation. By [i.. j] we abbreviate the set {i, . . . , j}, for integers i≤ j. If x is a vector then

|x| is its length (the number of its coordinates), x[i] is its i-th coordinate and [x] = {x[i] : i∈ [1..|x|]}

is the set of its coordinates. The empty vector is denoted (). If S is a set, then S∗ is the set of

vectors over S, meaning the set of vectors of any (finite) length with coordinates in S. Strings are

identified with vectors over {0,1}, so that if x ∈ {0,1}∗ is a string then |x| is its length, x[i] is its

i-th bit, and x[i.. j] is the substring from its i-th to its j-th bit (including), for i≤ j. The empty

string is ε . If x,y are strings then we write x� y to indicate that x is a prefix of y. If S is a finite

set then |S| is its size (cardinality). A set S⊆ {0,1}∗ is length closed if {0,1}|x| ⊆ S for all x ∈ S.

We let y← A[O1, . . .](x1, . . . ;r) denote executing algorithm A on inputs x1, . . . and coins

r, with access to oracles O1, . . ., and letting y be the result. We let y←$ A[O1, . . .](x1, . . .) be the

resulting of picking r at random and letting y← A[O1, . . .](x1, . . . ;r). We let OUT(A[O1, . . .](x1, . . .))

denote the set of all possible outputs of algorithm A when invoked with inputs x1, . . . and access

23

to oracles O1, Algorithms are randomized unless otherwise indicated. Running time is worst

case. An adversary is an algorithm.

We use the code-based game-playing framework of [44]. A game G (see Figure 1.2 for

an example) starts with an init procedure, followed by a non-negative number of additional

procedures, and ends with a f in procedure. Procedures are also called oracles. Execution of

adversary A with game G consists of running A with oracle access to the game procedures, with

the restrictions that A’s first call must be to init, its last call must be to f in, and it can call

these two procedures at most once. The output of the execution is the output of f in. We write

Pr[G(A)] to denote the probability that the execution of game G with adversary A results in the

output being the boolean true. Note that our adversaries have no output. The role of what in

other treatments is the adversary output is, for us, played by the query to f in. We adopt the

convention that the running time of an adversary is the worst-case time to execute the game with

the adversary, so the time taken by game procedures (oracles) to respond to queries is included.

Functions. As usual g: D →R indicates that g is a function taking inputs in the domain set

D and returning outputs in the range set R. We may denote these sets by Dom(g) and Rng(g),

respectively.

We say that g: Dom(g)→ Rng(g) has output length ` if Rng(g) = {0,1}`. We say that g

is a single output-length (sol) function if there is some ` such that g has output length ` and also

the set D is length closed. We let SOL(D , `) denote the set of all sol functions g: D →{0,1}`.

We say g is an extendable output length (xol) function if the following are true: (1)

Rng(g) = {0,1}∗ (2) there is a length-closed set Dom∗(g) such that Dom(g) = Dom∗(g)×N (3)

|g(x, `)|= ` for all (x, `)∈Dom(g), and (4) g(x, `)� g(x, `′) whenever `≤ `′. We let XOL(D) denote

the set of all xol functions g: D →{0,1}∗.

1.4 Read-only indifferentiability of translating functors

We define read-only indifferentiability (rd-indff) of functors. Then we define a class of

functors called translating, and give general results about their rd-indiff security. Later we will

apply this to analyze the security of cloning functors, but the treatment in this section is broader

and, looking ahead to possible future applications, more general than we need for ours.

24

1.4.1 Functors and read-only indifferentiability

A random oracle, formally, is a function drawn at random from a certain space of functions.

A construction (functor) is a mapping from one such space to another. We start with definitions

for these.

Function spaces and functors. A function space FS is simply a set of functions, with

the requirement that all functions in the set have the same domain Dom(FS) and the same

range Rng(FS). Examples are SOL(D , `) and XOL(D). Now f←$ FS means we pick a function

uniformly at random from the set FS.

Sometimes (but not always) we want an extra condition called input independence. It

asks that the values of f on different inputs are identically and independently distributed when

f←$ FS. More formally, let D be a set and let Out be a function that associates to any W ∈D a

set Out(W). Let Out(D) be the union of the sets Out(W) as W ranges over D . Let FUNC(D ,Out)

be the set of all functions f : D → Out(D) such that f (W) ∈ Out(W) for all W ∈D . We say that

FS provides input independence if there exists such a Out such that FS = FUNC(Dom(FS),Out).

Put another way, there is a bijection between FS and the set S that is the cross product of the

sets Out(W) as W ranges over Dom(FS). (Members of S are |Dom(FS)|-vectors.) As an example

the function space SOL(D , `) satisfies input independence, but XOL(D) does not satisfy input

independence.

Let SS be a function space that we call the starting space. Let ES be another function

space that we call the ending space. We imagine that we are given a function s ∈ SS and want to

construct a function e ∈ ES. We refer to the object doing this as a functor. Formally a functor is

a deterministic algorithm F that, given as oracle a function s ∈ SS, returns a function F[s] ∈ ES.

We write F: SS→ ES to emphasize the starting and ending spaces of functor F.

Rd-indiff. We want the ending function to “emulate” a random function from ES. Indifferentia-

bility is a way of defining what this means. The original definition of MRH [171] has been followed

by many variants [80, 202, 94, 179]. Here we give ours, called read-only indifferentiability, which

implies composition not just for single-stage games, but even for multi-stage ones [202, 94, 179].

Let ES and SS be function spaces, and let F: SS→ ES be a functor. Our variant of

25

Game Grd-indiff
F,SS,ES,W ,Sim

init:
1 s←$SS

2 e1←F[s] ; e0←$ES

3 b←${0,1}
4 st←$Sim.Setup()

priv(W):
5 If W ∈W then return eb(W)

6 Else return ⊥

pub(U):
7 if (b = 1) then return s(U)

8 else return Sim.Ev[e0](st,U)

f in(b′):
9 return (b = b′)

Figure 1.2. Game defining read-only indifferentiability.

indifferentiability mandates a particular, strong simulator, which can read, but not write, its

(game-maintained) state, so that this state is a static quantity. Formally a read-only simulator Sim

for F specifies a setup algorithm Sim.Setup which outputs the state, and a deterministic evaluation

algorithm Sim.Ev that, given as oracle a function e ∈ ES, and given a string st ∈ OUT(Sim.Setup)

(the read-only state), defines a function Sim.Ev[e](st, ·): Dom(SS)→ Rng(SS).

The intent is that Sim.Ev[e](st, ·) play the role of a starting function s ∈ SS satisfying

F[s] = e. To formalize this, consider the read-only indifferentiability game Grd-indiff
F,SS,ES,W ,Sim of

Figure 1.2, where W ⊆ Dom(ES) is called the working domain. The adversary A playing this

game is called a distinguisher. Its advantage is defined as

Advrd-indiff
F,SS,ES,W ,Sim(A) = 2 ·Pr

[
Grd-indiff

F,SS,ES,W ,Sim(A)
]
−1.

To explain, in the game, b is a challenge bit that the distinguisher is trying to determine. Function

eb is a random member of the ending space ES if b = 0 and is F[s](·) if b = 1. The query W to

oracle priv is required to be in Dom(ES). The oracle returns the value of eb on W , but only if

W is in the working domain, otherwise returning ⊥. The query U to oracle pub is required to

be in Dom(SS). The oracle returns the value of s on U in the b = 1 case, but when b = 0, the

simulator evaluation algorithm Sim.Ev must answer the query with access to an oracle for e0.

The distinguisher ends by calling f in with its guess b′ ∈ {0,1} of b and the game returns true if

b′ = b (the distinguisher’s guess is correct) and false otherwise.

The working domain W ⊆ Dom(ES), a parameter of the definition, is included as a way

to allow the notion of read-only indifferentiability to provide results for oracle cloning methods

26

like length differentiation whose security depends on domain restrictions.

The Sim.Ev algorithm is given direct access to e0, rather than access to priv as in other

definitions, to bypass the working domain restriction, meaning it may query e0 at points in

Dom(ES) that are outside the working domain.

All invocations of Sim.Ev[e0] are given the same (static, game-maintained) state st as

input, but Sim.Ev[e0] cannot modify this state, which is why it is called read-only. Note init does

not return st, meaning the state is not given to the distinguisher.

Discussion. To compare rd-indiff to other indiff notions, we set W = Dom(ES), because prior

notions do not include working domains. Now, rd-indiff differs from prior indiff notions because it

requires that the simulator state be just the immutable string chosen at the start of the game. In

this regard, rd-indiff falls somewhere between the original MRH-indiff [171] and reset indiff [202]

in the sense that our simulator is more restricted than in the first and less than in the second. A

construction (functor) that is reset-indiff is thus rd-indiff, but not necessarily vice-versa, and a

construct that is rd-indiff is MRH-indiff, but not necessarily vice-versa. Put another way, the

class of rd-indff functors is larger than the class of reset-indiff ones, but smaller than the class of

MRH-indiff ones. Now, RSS’s proof [202] that reset-indiff implies security for multi-stage games

extends to rd-indiff, so we get this for a potentially larger class of functors. This larger class

includes some of the cloning functors we have described, which are not necessarily reset-indiff.

1.4.2 Translating functors

Translating functors. We focus on a class of functors that we call translating. This class

includes natural and existing oracle cloning methods, in particular all the effective methods used

by NIST KEMs, and we will be able to prove general results for translating functors that can be

applied to the cloning methods.

A translating functor T: SS→ ES is a functor that, with oracle access to s and on input

W ∈ Dom(ES), non-adaptively calls s on a fixed number of inputs, and computes its output

T[s](W) from the responses and W . Its operation can be split into three phases which do not

share state: (1) a pre-processing phase which chooses the inputs to s based on W alone (2)

the calls to s to obtain responses (3) a post-processing phase which uses W and the responses

27

collected in phase 2 to compute the final output value T[s](W).

Proceeding to the definitions, let SS,ES be function spaces. A (SS,ES)-query translator

is a function (deterministic algorithm) QT: Dom(ES)→ Dom(SS)∗, meaning it takes a point W

in the domain of the ending space and returns a vector of points in the domain of the starting

space. This models the pre-processing. A (SS,ES)-answer translator is a function (deterministic

algorithm) AT: Dom(ES)×Rng(SS)∗→ Rng(ES), meaning it takes the original W , and a vector of

points in the range of the starting space, to return a point in the range of the ending space. This

models the post-processing. To the pair (QT,AT), we associate the functor TFQT,AT: SS→ ES,

defined as follows:

Algorithm TFQT,AT[s](W) // Input W ∈ Dom(ES) and oracle s ∈ SS

U← QT(W)

For j = 1, . . . , |U| do V[j]← s(U[j]) // U[j] ∈ Dom(SS)

Y ← AT(W,V) ; Return Y

The above-mentioned calls of phase (2) are done in the second line of the code above, so that this

implements a translating functor as we described. Formally we say that a functor F: SS→ ES

is translating if there exists a (SS,ES)-query translator QT and a (SS,ES)-answer translator AT

such that F=TFQT,AT.

Inverses. So far, query and answer translators may have just seemed an unduly complex way

to say that a translating oracle construction is one that makes non-adaptive oracle queries. The

purpose of making the query and answer translators explicit is to define invertibility, which

determines rd-indiff security.

Let SS and ES be function spaces. Let QTI be a function (deterministic algorithm)

that takes an input U ∈ Dom(SS) and returns a vector W over Dom(ES). We allow QTI to

return the empty vector (), which is taken as an indication of failure to invert. Define the

support of QTI, denoted sup(QTI), to be the set of all U ∈ Dom(SS) such that QTI(U) 6= (). Say

that QTI has full support if sup(QTI) = Dom(SS), meaning there is no U ∈ Dom(SS) such that

QTI(U) = (). Let ATI be a function (deterministic algorithm) that takes U ∈ Dom(SS) and a

vector Y over Rng(ES) to return an output in Rng(SS). Given a function e ∈ ES, we define the

28

function P[e]QTI,ATI: Dom(SS)→ Rng(SS) by

Function P[e]QTI,ATI(U) // U ∈ Dom(SS)

W← QTI(U) ; Y← e(W) ; V ← ATI(U,Y) ; Return V

Above, e is applied to a vector component-wise, meaning e(W) is defined as the vector (e(W[1]),

. . . ,e(W[|W|])).

We require that the function P[e]QTI,ATI belong to the starting space SS. Now let QT be a

(SS,ES)-query translator and AT a (SS,ES)-answer translator. Let W ⊆ Dom(ES) be a working

domain. We say that QTI,ATI are inverses of QT,AT over W if two conditions are true. The

first is that for all e ∈ ES and all W ∈W we have

TFQT,AT[P[e]QTI,ATI](W) = e(W) . (1.2)

This equation needs some parsing. Fix a function e ∈ ES in the ending space. Then s = P[e]QTI,ATI

is in SS. Recall that the functor F=TFQT,AT takes a function s in the starting space as an oracle

and defines a function e′ = F[s] in the ending space. Equation (1.2) is asking that e′ is identical

to the original function e, on the working domain W . The second condition (for invertibility) is

that if U ∈ {QT(W)[i] : W ∈W } —that is, U is an entry of the vector U returned by QT on some

input W— then QTI(U) 6= (). Note that if QTI has full support then this condition is already

true, but otherwise it is an additional requirement.

We say that (QT,AT) is invertible over W if there exist QTI,ATI such that QTI,ATI are

inverses of QT,AT over W , and we say that a translating functor TFQT,AT is invertible over W

if (QT,AT) is invertible over W .

In the rd-indiff context, function P[e]QTI,ATI will be used by the simulator. Roughly, we

try to set Sim.Ev[e](st,U) = P[e]QTI,ATI(U). But we will only be able to successfully do this for

U ∈ sup(QTI). The state st is used by Sim.Ev to provide replies when U 6∈ sup(QTI).

Equation (1.2) is a correctness condition. There is also a security metric. Consider

the translation indistinguishability game Gti
SS,ES,QTI,ATI of Figure 1.3. Define the ti-advantage of

adversary B via

Advti
SS,ES,QTI,ATI(B) = 2 ·Pr

[
Gti

SS,ES,QTI,ATI(B)
]
−1.

29

Game Gti
SS,ES,QTI,ATI

init:
1 b←${0,1} ; e←$ES

2 s1←$SS ; s0← P[e]QTI,ATI

pub(U): // U ∈ Dom(SS)

3 If QTI(U) = () then return ⊥
4 return sb(U)

f in(b′):
5 return (b = b′)

Figure 1.3. Game defining translation indistinguishability.

In reading the game, recall that () is the empty vector, whose return by QTI represents an

inversion error. TI-security is thus asking that if e is randomly chosen from the ending space, then

the output of P[e]QTI,ATI on an input U is distributed like the output on U of a random function

in the starting space, but only as long as QTI(U) was non-empty. We will see that the latter

restriction creates some challenges in simulation whose resolution exploits using read-only state.

We say that (QTI,ATI) provides perfect translation indistinguishability if Advti
SS,ES,QTI,ATI(B) = 0

for all B , regardless of the running time of B .

Additionally we of course ask that the functions QT,AT,QTI,ATI all be efficiently com-

putable. In an asymptotic setting, this means they are polynomial time. In our concrete setting,

they show up in the running-time of the simulator or constructed adversaries. (The latter, as per

our conventions, being the time for the execution of the adversary with the overlying game.)

1.4.3 Rd-indiff of translating functors

We now move on to showing that invertibility of a pair (QT,AT) implies read-only

indifferentiability of the translating functor TFQT,AT. We start with the case that QTI has full

support.

Theorem 1.1. Let SS and ES be function spaces. Let W be a subset of Dom(ES). Let QT,AT be

(SS,ES) query and answer translators, respectively. Let QTI,ATI be inverses of QT,AT over W .

Assume QTI has full support. Define read-only simulator Sim as per the top panel of Figure 1.4.

30

Algorithm Sim.Setup:
1 Return ε

Algorithm Sim.Ev[e](st,U):
1 W←QTI(U) ; Y← e(W) ; V ← ATI(U,Y)

2 Return V

Algorithm Sim.Setup:
1 st←${0,1}G.kl

2 Return st

Algorithm Sim.Ev[e](st,U):
1 W←QTI(U)

2 If W = () then return Gst [e](U)

3 Y← e(W) ; V ← ATI(U,Y)

4 Return V

Figure 1.4. Simulators for Theorem 1.1 (top) and Theorem 1.2 (bottom).

Games G0, G1

init:
1 s←$SS // Game G0

2 e0←$ES ; s← P[e0]QTI,ATI // Game G1

priv(W):
3 If W ∈W then return F[s](W)

4 Else return ⊥

pub(U):
5 return s(U)

f in(b′):
6 return (b′ = 1)

Game G2

init:
1 e0←$ES

2 s← P[e0]QTI,ATI

priv(W):
3 If W ∈W then return e0(W)

4 Else return ⊥

pub(U):
5 return s(U)

f in(b′):
6 return (b′ = 1)

Adversary B :
1 init()

2 A[init ′, pub′, priv′, f in′]()

init ′:
3 Return

pub′(U):
4 return pub(U)

priv′(W):
5 if W 6∈W then return ⊥
6 U←QT(W)

7 For j = 1, . . . , |U| do V[j]← pub(U[j])

8 return AT(W,V)

f in′(b′):
9 f in(b′)

Figure 1.5. Top: Games for proof of Theorem 1.1. Bottom: Adversary for proof of Theorem 1.1.

Let F=TFQT,AT. Let A be any distinguisher. Then we construct a ti-adversary B such that

Advrd-indiff
F,SS,ES,W ,Sim(A)≤Advti

SS,ES,QTI,ATI(B) .

Let ` be the maximum output length of QT. If A makes qpriv,qpub queries to its priv, pub oracles,

respectively, then B makes ` · qpriv + qpub queries to its pub oracle. The running time of B is

about that of A.

31

Proof:[Theorem 1.1] Consider the games of Figure 1.5. In the left panel, line 1 is included

only in G0 and line 2 only in G1, and this is the only way the games differ. Game G0 is the real

game, meaning the case b = 1 in game Grd-indiff
F,SS,ES,W ,Sim. In game G2, oracle priv is switched to a

random function e0. From the description of the simulator in Figure 1.4 we see that

Sim.Ev[e0](ε,U) = P[e0]QTI,ATI(U)

for all U ∈ Dom(SS) and all e0 ∈ ES, so that oracle pub in game G2 is responding according to

the simulator based on e0. So game G2 is the case b = 0 in game Grd-indiff
F,SS,ES,W ,Sim. Thus

Advrd-indiff
F,SS,ES,W ,Sim(A) = Pr[G0(A)]−Pr[G2(A)]

= (Pr[G0(A)]−Pr[G1(A)])+(Pr[G1(A)]−Pr[G2(A)]) .

We define translation-indistinguishability adversary B in Figure 1.5 so that

Pr[G0(A)]−Pr[G1(A)]≤Advti
SS,ES,QTI,ATI(B) .

Adversary B is playing game Gti
SS,ES,QTI,ATI. Using its pub oracle, it presents the interface of

G0 and G1 to A. In order to simulate the priv oracle, B runs TFQT,AT[pub]. This is consistent

with G0 and G1. If b = 1 in Gti
SS,ES,QTI,ATI, then B perfectly simulates G0 for A. If b = 1, then B

correctly simulates G1 for A. To complete the proof we claim that

Pr[G1(A)] = Pr[G2(A)] .

This is true by the correctness condition. The latter says that if s← P[e0]QTI,ATI then F[s] is just

e0 itself. So e1 in game G1 is the same as e0 in game G2, making their priv oracles identical. And

their pub oracles are identical by definition. �

The simulator in Theorem 1.1 is stateless, so when W is chosen to be Dom(ES) the theorem is

establishing reset indifferentiability [202] of F.

For translating functors where QTI does not have full support, we need an auxiliary

32

G
prf
G,SS,ES

init():
1 b←${0,1}
2 e←$ES

3 st←${0,1}G.kl

4 s1← G[e](st, ·)
5 s0←$SS

RO(W):
6 Return e(W)

FnO(U):
7 V ← sb(U)

8 Return V

f in(b′):
9 Return (b′ = b)

Figure 1.6. Game to define PRF security of (SS,ES)-oracle aided PRF G.

primitive that we call a (SS,ES)-oracle aided PRF. Given an oracle for a function e ∈ ES, an

(SS,ES)-oracle aided PRF G defines a function G[e]: {0,1}G.kl×Dom(SS)→ Rng(SS). The first

input is a key. For C an adversary, let Adv
prf
G,SS,ES(C) = 2Pr[Gprf

G,SS,ES(C)]−1, where the game

is in Figure 1.6. The simulator uses its read-only state to store a key st for G, then using G(st, ·)

to answer queries outside the support sup(QTI).

We introduce this primitive because it allows multiple instantiations. The simplest is

that it is a PRF, which happens when it does not use its oracle. In that case the simulator is

using a computational primitive (a PRF) in the indifferentiability context, which seems novel.

Another instantiation prefixes st to the input and then invokes e to return the output. This

works for certain choices of ES, but not always. Note G is used only by the simulator and plays

no role in the functor.

Theorem 1.2. Let SS and ES be function spaces, and assume they provide input independence.

Let W be a subset of Dom(ES). Let QT,AT be (SS,ES) query and answer translators, respectively.

Let QTI,ATI be inverses of QT,AT over W . Define read-only simulator Sim as per the bottom

panel of Figure 1.4. Let F = TFQT,AT. Let A be any distinguisher. Then we construct a

ti-adversary B and a prf-adversary C such that

Advrd-indiff
F,SS,ES,W ,Sim(A)≤Advti

SS,ES,QTI,ATI(B)+Adv
prf
G,SS(C) .

Let ` be the maximum output length of QT and `′ the maximum output length of QTI. If A

makes qpriv,qpub queries to its priv, pub oracles, respectively, then B makes ` ·qpriv +qpub queries

to its pub oracle and C makes at most ` · `′ · qpriv + qpub queries to its RO oracle and at most

33

Games G0, G1

init:
1 s1←$SS

2 s2←$SS // Game G1

3 e1←F[s1]

priv(W):
4 If W ∈W then return e1(W)

5 Else return ⊥

pub(U):
6 if QTI(U) = () then
7 return s2(U) // Game G1

8 return s1(U)

f in(b′):
9 return (b′ = 1)

Game G2,G3

init:
1 e0←$ES

2 s1← P[e0]QTI,ATI

3 s2←$SS // Game G2

4 e1←F[s1]

5 st←$Sim.Setup() // Game G3

priv(W):
6 If W ∈W then return e1(W)

7 Else return ⊥

pub(U):
8 if QTI(U) = () then
9 return s2(U) // Game G2

10 return Gst [e0](U) // Game G3

11 return s1(U)

f in(b′):
12 return (b′ = 1)

Game G4

init:
1 e0←$ES

2 s1← P[e0]QTI,ATI

3 st←$Sim.Setup()

priv(W):
4 If W ∈W then return e0(W)

5 Else return ⊥

pub(U):
6 if QTI(U) = () then
7 return G[e0]st(U)

8 return s1(U)

f in(b′):
9 return (b′ = 1)

Figure 1.7. Games for proof of Theorem 1.2.

qpub + ` ·qpriv queries to its FnO oracle. The running times of B ,C are about that of A.

Proof:[Theorem 1.2] We will rely on the sequence of games in Figure 1.7. The first game

G0 is the real game, meaning the case b = 1 in game Grd-indiff
F,SS,ES,W ,Sim. Game G1 differs from G0

because it samples an additional function s2 from the starting space. When an inversion error

occurs in the pub oracle, game G1 answers using s2 instead of s1. Since the starting space SS

provides input independence, both s1 and s2 are drawn from FUNC(Dom(SS),Out) for some Out.

Then on any input U , the outputs of s1 and s2 are identically and independently distributed. The

adversary can therefore only tell that queries outside the support of QTI are not being answered

by s1 if the pub oracle becomes inconsistent with the priv oracle. This happens only if the priv

oracle, while computing F[s1] =TFQT,AT[s1], queries s1 on some point outside the support of

34

Adversary B :
1 init()

2 A[init ′, pub′, priv′, f in′]()

init ′:
3 Return

pub′(U):
4 if T [U] 6=⊥ then return T [U]

5 W ← pub(U)

6 if W =⊥ then
7 (i,X)←U

8 T [U]←$ Out(U)

9 W ← T [U]

10 return W

priv′(W):
11 if W ∈W then return F[pub](W)

12 Else return ⊥

f in′(b′):
13 f in(b′)

Adversary C :
1 init()

2 A[init ′, pub′, priv′, f in′]()

init ′:
3 Return

pub′(U):
4 if QTI(U) = () then
5 return FnO(U)

6 return P[RO]QTI,ATI(U)

priv′(W):
7 If W ∈W then
8 return F[pub′](W)

9 Else return ⊥

f in′(b′):
10 f in(b′)

Figure 1.8. Adversaries for proof of Theorem 1.2.

QTI, which is impossible by the first condition in the definition of invertibility. Hence

Pr[G0(A)] = Pr[G1(A)].

Between games G1 and G2, we draw a function e0 from the ending space and replace s1 with

PQTI,ATI[e0]. We construct the translation-indistinguishability adversary B in Figure 1.7 so that

Pr[G1(A)]−Pr[G2(A)]≤Advti
SS,ES,QTI,ATI(B).

This adversary simulates the interface of G1 and G2 for A, using its pub oracle to implement s1

and check for inversion errors. It lazily samples s2, which is consistent with G1 and G2 by the

input independence of SS. Its priv′ oracle runs F[pub], which is consistent. When the challenge

bit b = 1 in game Gti
SS,ES,QTI,ATI, adversary B simulates game G1 perfectly, and when b = 0 it

perfectly simulates game G2.

In game G3, we replace s2 with an (SS,ES)-oracle-aided pseudorandom function G and

sample a PRF key st in the init oracle. We construct an adversary C in Figure 1.7 against the

35

PRF-security of G. This adversary plays game G
prf
SS,ES,G and simulates the interface of games

G2 and G3 for A. It uses its RO oracle to simulate e0, and it uses its FnO oracle to answer

pub queries outside the support of QTI. When b = 0 in game G
prf
SS,ES,G, the adversary perfectly

simulates G2 for A, and when b = 1 it perfectly simulates G3. Therefore

Pr[G2(A)]−Pr[G3(A)]≤Adv
prf
SS,ES,G(C).

In Game G4, we answer priv queries with e0 directly, instead of with F[PQTI,ATI[e0]]. By the

correctness condition of invertibility, these two functions are identical, so

Pr[G3(A)] = Pr[G4(A)].

Looking at the pseudocode for simulator Sim in the bottom panel of Figure 1.4, we see

that Sim.Ev[e] first runs QTI on its input U . If QTI(U) = (), then it returns Gst [e](U). Otherwise,

it runs P[e]QTI,ATI(U) and returns the output. This is identical to lines 6-8 of game G4, so A

wins G4 if and only if it loses the ideal game (meaning the case b = 0), of the rd-indiff game

Grd−indiff
F,SS,ES,W ,Sim. Thus

Advreset-indiff
F,SS,ES,W ,Sim(A) = Pr[G0(A)]−Pr[G4(A)

= Pr[G1(A)]−Pr[G3(A)]

= (Pr[G1(A)]−Pr[G2(A)])+(Pr[G2(A)]−Pr[G3(A))]

≤Advti
SS,ES,QTI,ATI(B)+Adv

prf
SS,ES,G(C).

This completes the proof. �

1.5 Analysis of cloning functors

Section 1.4 defined the rd-indiff metric of security for functors and give a framework

to prove rd-indiff of translating functors. We now apply this to derive security results about

particular, practical cloning functors.

36

Arity-n function spaces. The cloning functors apply to function spaces where a function

specifies sub-functions, corresponding to the different random oracles we are trying to build.

Formally, a function space FS is said to have arity n if its members are two-argument functions f

whose first argument is an integer i ∈ [1..n]. For i ∈ [1..n] we let fi = f (i, ·) and FSi = { fi : f ∈ FS},

and refer to the latter as the i-th subspace of FS. We let Domi(FS) be the set of all X such that

(i,X) ∈ Dom(FS).

We say that FS has sol subspaces if FSi is a set of sol functions with domain Domi(FS),

for all i ∈ [1..n]. More precisely, there must be integers OL1(FS), . . . ,OLn(FS) such that FSi =

SOL(Domi(FS),OLi(FS)) for all i ∈ [1..n]. In this case, we let Rngi(FS) = {0,1}OLi(FS). This is the

most common case for practical uses of ROs.

To explain, access to n random oracles is modeled as access to a two-argument function f

drawn at random from FS, written f←$ FS. If FS has sol subspaces, then for each i, the function

fi is a sol function, with a certain domain and output length depending only on i. All such

functions are included. This ensures input independence as we defined it earlier. Thus if f←$ FS,

then for each i and any distinct inputs to fi, the outputs are independently distributed. Also

functions f1, . . . , fn are independently distributed when f←$ FS. Put another way, we can identify

FS with FS1×·· ·×FSn.

Domain-separating functors. We can now formalize the domain separation method by

seeing it as defining a certain type of (translating) functor.

Let the ending space ES be an arity n function space. Let F: SS→ ES be a translating

functor and QT,AT be its query and answer translations, respectively. Assume QT returns a

vector of length 1 and that AT((i,X),V) simply returns V[1]. We say that F is domain separating

if the following is true: QT(i1,X1) 6= QT(i2,X2) for any (i1,X1),(i2,X2) ∈ Dom(ES) that satisfy

i1 6= i2.

To explain, recall that the ending function is obtained as e← F[s], and defines ei for

i ∈ [1..n]. Function ei takes input X , lets (u)←QT(i,X) and returns s(u). The domain separation

requirement is that if (ui)← QT(i,Xi) and (u j)← QT(j,X j), then i 6= j implies ui 6= u j, regardless

of Xi,X j. Thus if i 6= j then the inputs to which s is applied are always different. The domain of s

has been “separated” into disjoint subsets, one for each i.

37

Practical cloning functors. We show that many popular methods for oracle cloning in

practice, including ones used in NIST KEM submissions, can be cast as translating functors.

In the following, the starting space SS = SOL({0,1}∗,OL(SS)) is assumed to be a sol

function space with domain {0,1}∗ and an output length denoted OL(SS). The ending space ES

is an arity n function spaces that has sol subspaces.

Prefixing. Here we formalize the canonical method of domain separation. Prefixing is used in

the following NIST PQC submissions: ClassicMcEliece, FrodoKEM, LIMA, NTRU Prime, SIKE,

QC-MDPC, ThreeBears.

Let p be a vector of strings. We require that it be prefix-free, by which we mean that

i 6= j implies that p[i] is not a prefix of p[j]. Entries of this vector will be used as prefixes to

enforce domain separation. One example is that the entries of p are distinct strings all of the

same length. Another is that a p[i] = E(i) for some prefix-free code E like a Huffman code.

Assume OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions have the same

output length as the starting function. The functor Fpf(p): SS→ ES corresponding to p is

defined by Fpf(p)[s](i,X) = s(p[i]‖X). To explain, recall that the ending function is obtained as

e← Fpf(p)[s], and defines ei for i ∈ [1..n]. Function ei takes input X , prefixes p[i] to X to get a

string X ′, applies the starting function s to X ′ to get Y , and returns Y as the value of ei(X).

We claim that Fpf(p) is a translating functor that is also a domain-separating functor as

per the definitions above. To see this, define query translator QTpf(p) by QTpf(p)(i,X) = (p[i]‖X),

the 1-vector whose sole entry is p[i]‖X . The answer translator ATpf(p), on input (i,X),V, returns

V[1], meaning it ignores i,X and returns the sole entry in its 1-vector V.

We proceed to the inverses, which are defined as follows:

Algorithm QTIpf(p)(U)

W← ()

For i = 1, . . . ,n do

If p[i]�U then p[i]‖X ←U ; W[1]← (i,X)

Return W

Algorithm ATIpf(p)(U,Y)

If Y 6= () then V ←Y[1]

Else V ← 0OL(SS)

Return V

The working domain is the full one: W = Dom(ES). We now verify Equation (1.2). Let

QT,QTI,AT,ATI be QTpf(p),QTIpf(p),ATpf(p),ATIpf(p), respectively. Then for all W = (i,X) ∈

38

Dom(ES), we have:

TFQT,AT[P[e]QTI,ATI](W) = P[e]QTI,ATI(p[i]‖X)

= ATI(p[i]‖X ,(e(i,X)))

= e(i,X) .

We observe that (QTIpf(p),ATIpf(p)) provides perfect translation indistinguishability. Since QTIpf(p)

does not have full support, we can’t use Theorem 1.1, but we can conclude rd-indiff via Theo-

rem 1.2.

Identity. Many NIST PQC submissions simply let ei(X) = s(X), meaning the ending functions

are identical to the starting one. This is captured by the identity functor Fid: SS→ ES, defined

by Fid[s](i,X) = s(X). This again assumes OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending

functions have the same output length as the starting function. This functor is translating,

via QTid(i,X) = X and ATid((i,X),V) = V[1]. It is however not, at least in general, domain

separating.

Clearly, this functor is not, in general, rd-indiff. To make secure use of it nonetheless,

applications can restrict the inputs to the ending functions to enforce a virtual domain separation,

meaning, for i 6= j, the schemes never query ei and e j on the same input. One way to do this

is length differentiation. Here, for i ∈ [1..n], the inputs to which ei is applied all have the same

length li, and l1, . . . , ln are distinct. Length differentiation is used in the following NIST PQC

submissions: BIKE,EMBLEM, HQC, RQC, LAC, LOCKER, NTS-KEM, SABER, Round2, Round5,Titanium.

There are, of course, many other similar ways to enforce the virtual domain separation.

There are two ways one might capture this with regard to security. One is to restrict the

domain Dom(ES) of the ending space. For example, for length differentiation, we would require

that there exist distinct l1, . . . , ln such that for all (i,X) ∈ Dom(ES) we have |X |= li. For such an

ending space, the identity functor would provide security. The approach we take is different.

We don’t restrict the domain of the ending space, but instead define security with respect to a

subdomain, which we called the working domain, where the restriction is captured. This, we

believe, is better suited for practice, for a few reasons. One is that a single implementation of the

39

ending functions can be used securely in different applications that each have their own working

domain. Another is that implementations of the ending functions do not appear to enforce any

restrictions, leaving it up to applications to figure out how to securely use the functions. In this

context, highlighting the working domain may help application designers think about what is

the working domain in their application and make this explicit, which can reduce error.

But we warn that the identity functor approach is more prone to misuse and in the end

more dangerous and brittle than some others.

As per the above, inverses can only be given for certain working domains. Let us say

that W ⊆ Dom(ES) separates domains if for all (i1,X1),(i2,X2) ∈W satisfying i1 6= i2, we have

X1 6= X2. Put another way, for any (i,X) ∈W there is at most one j such that X ∈ Dom j(ES).

We assume an efficient inverter for W . This is a deterministic algorithm InW that on input

X ∈ {0,1}∗ returns the unique i such that (i,X) ∈W if such an i exists, and otherwise returns ⊥.

(The uniqueness is by the assumption that W separates domains.)

As an example, for length differentiation, we pick some distinct integers l1, . . . , ln such that

{0,1}li ⊆Domi(ES) for all i∈ [1..n]. We then let W = {(i,X)∈Dom(ES) : |X |= li}. This separates

domains. Now we can define InW (X) to return the unique i such that |X |= li if |X | ∈ {l1, . . . , ln},

otherwise returning ⊥.

The inverses are then defined using InW , as follows, where U ∈ Dom(SS) = {0,1}∗:

Algorithm QTIid(U)

W← () ; i← InW (U)

If i 6=⊥ then W[1]← (i,U)

Return W

Algorithm ATIid(U,Y)

If Y 6= () then V ←Y[1]

Else V ← 0OL(SS)

Return V

The correctness condition of Equation (1.2) over W is met, and since InW (X) never returns

⊥ for X ∈W , the second condition of invertibility is also met. (QTIid,ATIid) provides perfect

translation indistinguishability. Since QTIid does not have full support, we can’t use Theorem 1.1,

but we can conclude rd-indiff via Theorem 1.2.

Output-splitting. We formalize another method that we call output splitting. It is used

in the following NIST PQC submissions: FrodoKEM, NTRU-HRSS-KEM, Odd Manhattan,QC-MDPC,

Round2, Round5.

40

Adversary Ainit,pub,priv, f in

init()
y← pub(0) ; d←${1,2} ; yd ← priv(d,0)
If (yd [1..256]) = y[1..256] then f in(1) else f in(0)

Figure 1.9. Adversary against the rd-indiff security of FNewHope.

Let `i = OL1(ES)+ · · ·+OLi(ES) for i ∈ [1..n]. Let ` = OL(SS) be the output length of

the sol functions s ∈ SS, and assume ` = `n. The output-splitting functor Fspl: SS→ ES is

defined by Fspl[s](i,X) = s(X)[`i−1+1..`i]. That is, if e← Fspl[s], then ei(X) lets Z ← s(X) and

then returns bits `i−1+1 through `i of Z. This functor is translating, via QTspl(i,X) = X and

ATspl((i,X),V) =V[1][`i−1+1..`i]. It is however not domain separating.

The inverses are defined as follows, where U ∈ Dom(SS) = {0,1}∗:

Algorithm QTIspl(U)

For i = 1, . . . ,n do W[i]← (i,U)

Return W

Algorithm ATIspl(U,Y)

V ←Y[1]‖· · ·‖Y[n]

Return V

The correctness condition of Equation (1.2) over W = ES is met, and (QTIspl,ATIspl) provides

perfect translation indistinguishability. Since QTIspl has full support, we can conclude rd-indiff

via Theorem 1.1.

Rd-indiff of NewHope. We next demonstrate how read-only indifferentiability can highlight

subpar methods of oracle cloning, using the example of NewHope [11]. The base KEM KE1 defined

in the specification of NewHope relies on just two random oracles, G and H4. (The base scheme

defined by transform T10, which uses 3 random oracles H2, H3, and H4, is equivalent to KE1 and

can be obtained by applying the output-splitting cloning functor to instantiate H2 and H3 with

G. NewHope’s security proof explicitly claims this equivalence [11].)

The final KEM KE2 instantiates these two functions through SHAKE256 without explicit

domain separation, setting H4(X) = SHAKE256(X ,32) and G(X) = SHAKE256(X ,96). For consis-

tency with our results, which focus on sol function spaces, we model SHAKE256 as a random

member of a sol function space SS with some very large output length L, and assume that the

adversary does not request more than L bits of output from SHAKE256 in a single call. We let ES

be the arity-2 sol function space defining sub-functions G and H4. In this setting, the cloning

41

functor FNewHope : SS→ ES used by NewHope is defined by FNewHope[s](1,X) = s(X)[1..256] and

FNewHope[s](2,X) = s(X)[1..768]. We will show that this functor cannot achieve rd-indiff for the

given oracle spaces and the working domain W = {0,1}∗. In Figure 1.9, we give an adversary A

which has high advantage in the rd-indiff game Grd-indiff
FNewHope,SS,ES,W ,Sim for any indifferentiability

simulator Sim. When b = 1 in game Grd-indiff
FNewHope,SS,ES,W ,Sim, we have that

yd [1..256] = FNewHope[s](d,0)[1..256] = s(0)[1..256] = y[1..256],

so adversary A will always call f in on the bit 1 and win. When b = 0 in game Grd-indiff
FNewHope,SS,ES,W ,Sim,

the two strings y1 = e0(1,X) and y2 = e0(2,X) will have different 256-bit prefixes, except with

probability ε = 2−256. Therefore, when A queries pub(0), the simulator’s response y can share

the prefix of most one of the two strings y1 and y2. Its response must be independent of d, which

is not chosen until after the query to pub, so Pr[y[1..256] = yd [1..256]]≤ 1/2+ ε , regardless of the

behavior of Sim. Hence, A breaks the indifferentiability of QNewHope with probability roughly 1/2,

rendering NewHope’s random oracle functor differentiable.

The implication of this result is that NewHope’s implementation differs noticeably from the

model in which its security claims are set, even when SHAKE256 is assumed to be a random oracle.

This admits the possibility of hash function collisions and other sources of vulnerability that are

not eliminated by the security proof. To claim provable security for NewHope’s implementation,

further justification is required to argue that these potential collisions are rare or unexploitable.

We do not claim that an attack on read-only indifferentiability implies an attack on the IND-

CCA security of NewHope, but it does highlight a gap that needs to be addressed. Read-only

indifferentiability constitutes a useful tool for detecting such gaps and measuring the strength of

various oracle cloning methods.

1.6 Oracle Cloning in KEMs

Having shown rd-indiff of various practical cloning functors, we’d like to come back

around and apply this to show IND-CCA security of KEMs (as the target primitive of the NIST

PQC submissions) that use these functors. At one level, this may seem straightforward and

42

unnecessary, for it is a special case of a general indifferentiability composition theorem, which

says that once indifferentiability of a functor has been shown, “all” uses of it are secure. In

particular, the composition theorems of [171, 202] for MRH-indefferentiability apply also to

rd-indiff and guarantee security when the latter is measured via a single-stage game, which is

true for IND-CCA KEMs. This, however, fails to account for working domains, which are not

present in prior indifferentiability formulations; the existing composition results only guarantee

security when the working domain is the full domain of the ending space. But this fails to be

the case for some oracle cloning methods like length differentiation that are used in NIST PQC

KEMs. We want a composition theorem that can allow us to conclude security of such usages.

For this, we first must ask what is the meaning or definition of the working domain in

the context of the application, here IND-CCA KEMs. Below, we define this. Then we give a

working-domain-conscious composition theorem for IND-CCA KEMs that allows us to draw the

conclusions mentioned above. The starting point for this treatment is to enhance the syntax of

KEMs to allow them to say precisely what types of ROs they want and use.

KEM syntax. In the formal version of the ROM in [41], there is a single random oracle that has

some fixed domain and range, for example mapping {0,1}∗ to {0,1}. Schemes, however, often

want multiple random oracles, and also want their oracles to have particular domains and ranges

that depend on the scheme. To capture this, we have the scheme syntax include a specification

of the desired function space from which the random oracle is then drawn by games defining

security. We suggest that schemes specified in standards include a specification of this space, to

avoid errors.

Formally, a key-encapsulation mechanism (KEM) KE specifies the following. First is a

function space KE.FS. Now as usual there is a key-generation algorithm KE.K that, given access

to an oracle H ∈ KE.FS, returns a public encryption key and matching secret decryption key,

(pk,dk)←$ KE.K[H]. Next there is an encapsulation algorithm KE.E that, given input pk, and

given oracle H , returns a symmetric key K ∈ {0,1}KE.kl and a ciphertext C encapsulating it,

(C,K)←$ KE.E[H](pk), where KE.kl is the symmetric-key length of KE. The randomness length

of KE.E is denoted KE.rl. Finally, there is a deterministic decapsulation algorithm KE.D that,

given inputs dk,C, and given oracle H , returns KE.D[H](dk,C) ∈ {0,1}KE.kl∪{⊥}.

43

Game Gind−cca
KE

init:
1 H←$KE.FS ; b←${0,1}
2 (pk,dk)←$KE.K[RO]

3 (C∗,K∗1)←$KE.E[RO](pk)

4 K∗0←${0,1}KE.kl

5 return pk,C∗,K∗b

Dec(C):
6 If (C =C∗) then return ⊥
7 K← KE.D[RO](dk,C)

8 return K

RO(W):
9 return H (W)

f in(b′):
10 return (b = b′)

Figure 1.10. KEM security game for indistinguishability under chosen-ciphertext attacks.

Security definitions. We cast the standard security notion of indistinguishability under

chosen-ciphertext attack (IND-CCA) for KEMs [82] in our extended syntax in Figure 1.10.

Adversary A gets a challenge ciphertext C∗ and a challenge key K∗b that is either the key K∗1

underlying C∗ or a random key K∗0 , and, to win, must determine b. Decapsulation oracle Dec

allows it to decapsulate any non-challenge ciphertext of its choice. We let

Advind-cca
KE (A) = 2Pr[Gind−cca

KE]−1

to be the ind-cca advantage of adversary A.

Working domain of a KEM. Let KE be a KEM. Let W ⊆ Dom(KE.FS) be a subset of

Dom(KE.FS). Consider game Gwdom
KE,W in Figure 1.11. The intent is that, at the end of the game,

the set U contains all queries made to RO by the scheme algorithms, while excluding ones made

by the adversary A but not by scheme algorithms. Boolean flag sq controls when a query W to

RO is to be put in U in accordance with this policy. (We do assume all queries to RO are in

Dom(KE.FS).) The adversary wins if it can make the scheme algorithms query a point outside

the working domain. Its wdom-advantage is Advwdom
KE,W (A) = Pr[Gwdom

KE,W (A)]. We say that W is a

working domain of KE if Advwdom
KE,W (A) = 0 for all adversaries A, regardless of the running time

and number of oracle queries of A.

The set Dom(KE.FS) is always a working domain of KE. The interesting case is when

one can specify a subset of it that is a working domain.

Composition. Let KE be a given KEM that we assume is IND-CCA secure. Let F: SS→KE.FS

be a functor. We associate to them the KEM KE =F(KE) that is defined as follows. Its function

space is KE.FS = SS, the starting space of the functor. The algorithms of KE, given an oracle for

44

Game Gwdom
KE,W

init:
1 H←$KE.FS ; sq← true

2 (pk,dk)←$KE.K[RO] ; (C,K)←$KE.E[RO](pk)

3 sq← false ; Return pk,C,K

Dec(C):
4 sq← true ; K← KE.D[RO](dk,C) ; sq← false ; Return K

RO(W):
5 If sq then U ←U ∪{W}
6 return H (W)

f in:
7 return (U 6⊆W)

Figure 1.11. Game to determine the working domain W of a KEM KE.

s, run the corresponding algorithm of KE with oracle e = F[s]. Let W be a working domain for

KE and assume F is rd-indiff over W . Then Theorem 1.3, below, says that KE is IND-CCA as

well.

The application to NIST PQC KEMs is as follows. Let KE be a base KEM from one of

the submissions, as discussed in Section 1.2, so that KE.FS is an arity-4 function space. We know

(or are willing to assume) that KE is IND-CCA. Now, we want to instantiate the four oracles of

KE by a single one, say drawn from the sol function space SS = SOL({0,1}∗, `) for some given

value of ` like ` = 256. We pick a cloning functor F: SS→ KE.FS that determines a function

for the base KEM from one of the given functions. The example of interest is that this is the

identity cloning functor, which is not rd-indiff over its full domain. Instantiating the oracles of

KE, via the functor applied to an oracle of the starting space, yields the KEM KE. This is what,

in Section 1.2, we called the final KEM, and the question is whether it is IND-CCA. Employing

length differentiation corresponds to the base KEM having the corresponding working domain.

From Section 1.5 we know that the identify functor is rd-indiff over this working domain. Now

Theorem 1.3 says that the final KEM is IND-CCA.

Theorem 1.3. Let KE be a KEM. Let F: SS→ KE.FS be a functor. Let KE = F(KE) be the

KEM associated to them as above. Let W be a working domain for KE, and let Sim be a read-only

simulator for F. Let A be an ind-cca adversary. Then we construct adversaries B , and D such

45

Games G0,G1

init:
1 s←$SS ; e←F[s] // Game G0

2 st←$Sim.Setup() ; e←$KE.FS // Game G1

3 b←${0,1}
4 (pk,dk)←$KE.K[e]

5 (C∗,K∗1)←$KE.E[e](pk)

6 K∗0←${0,1}KE.kl

7 return pk,C∗,K∗b

Dec(C):
8 If (C =C∗) then return ⊥
9 K← KE.D[e](dk,C)

10 return K

RO(U):
11 return s(U) // Game G0

12 return Sim.Ev[e](st,U) // Game G1

f in(b′):
13 return (b = b′)

Games G2, G3

init:
1 s←$SS ; e1←F[s]

2 st←$Sim.Setup() ; e0←$KE.FS

3 c←${0,1}

priv(W):
4 If W 6∈W then
5 bad← true

6 return ⊥ // Game G3

7 return ec(W)

pub(U):
8 if (c = 1) then return s(U)

9 else return Sim.Ev[e0](st,U)

f in(c′):
10 return (c = c′)

Figure 1.12. Games for the proof of Theorem 1.3.

that

Advind-cca
KE

(A)≤Advind-cca
KE (B)+2 ·Advrd-indiff

F,SS,KE.FS,W ,Sim(D) .

The running time of D is about that of A. If A makes q queries to RO, then the running time of

B is about that of A plus q times the running time of Sim.

Proof: Consider the games in Figure 1.12. We have

Advind-cca
KE

(A) = 2Pr[G0(A)]−1

= 2Pr[G1(A)]−1+2(Pr[G0(A)]−Pr[G1(A)]) .

Let adversary B be as shown in Figure 1.13. Then

2Pr[G1(A)]−1≤Advind-cca
KE (B) .

Game G3 is game Grd-indiff
F,SS,KE.FS,W ,Sim. Game G2 drops the working domain check at line 4. Let

46

Adversary D :
1 Ainit ′,Dec′,RO′, f in′()

init ′:
2 b←${0,1}
3 (pk,dk)←$KE.K[priv]

4 (C∗,K∗1)←$KE.E[priv](pk)

5 K∗0←${0,1}KE.kl

6 return pk,C∗,K∗b

Dec′(C):
7 If (C =C∗) then return ⊥
8 K← KE.D[priv](dk,C)

9 return K

RO′(U):
10 return pub(U)

f in′(b′):
11 if (b = b′) then f in(1)
12 else f in(0)

Adversary B :
1 st←$Sim.Setup()

2 Ainit ′,Dec′,RO′, f in′()

init ′:
3 (pk,C∗,K∗b)← init()

4 return pk,C∗,K∗b

Dec′(C):
5 return Dec(C)

RO′(W):
6 return Sim.Ev[RO](st,W)

f in′(b′):
7 f in(b′)

Figure 1.13. Adversaries for the proof of Theorem 1.3.

adversary D be as shown in Figure 1.13. Then

Pr[G0(A)]−Pr[G1(A)]≤ 2Pr[G2(D)]−1 .

Games G2,G3 are identical-until-bad so by the Fundamental Lemma of Game Playing [44] we

have

2Pr[G2(D)]−1 = 2Pr[G3(D)]−1+2(Pr[G2(D)]−Pr[G3(D)])

≤ 2Pr[G3(D)]−1+2Pr[G2(D) sets bad] .

Now we have

2Pr[G3(D)]−1 =Advrd-indiff
F,SS,KE.FS,W ,Sim(D) .

Adversary D invokes its priv oracle only on points queried by scheme algorithms, and, regardless

of the challenge bit c, the function underlying priv is a member of KE.FS. Because W is a

47

working domain for KE, we have

Pr[G2(D) sets bad] = 0 .

This concludes the proof. � �

Acknowledgments

We thank Dan Bernstein for comments and corrections. We thank the Eurocrypt 2020

reviewers for their comments.

Chapter 1, in full, is a reprint of the material as it appears in the proceedings of the 39th

Annual International Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), 2020. - CRYPTO 2017. Bellare, Mihir; Davis, Hannah; Günther, Felix. This

paper had two sections: the case study of NIST PQC KEMs, and the foundational theory. The

former was mainly my own contribution, including attack generation and implementation; the

latter was joint work between all three authors. I helped to author the game-based proofs with

much helpful guidance from Mihir and Felix.

48

Chapter 2

Tighter Bounds for TLS 1.3 and SIGMA

2.1 Introduction

The Transport Layer Security (TLS) protocol [201] is responsible for securing billions of

Internet connections every day. Usage statistics for Google Chrome1 and Mozilla Firefox2 report

that 76–98% of all web page accesses are encrypted.At the heart of TLS is an authenticated key

exchange (AKE) protocol, the so-called handshake protocol, responsible for providing the parties

(client and server) with a shared, symmetric key that is fresh, private and authenticated. The

ensuing record layer secures data using this key. The AKE protocol of TLS is based on the SIGMA

(“SIGn-and-MAc”) design of Krawczyk [152] for the Internet Key Exchange (IKE) protocol [131]

of IPsec [150], which generically augments an unauthenticated, ephemeral Diffie–Hellman (DH)

key exchange with authenticating signatures and MACs.

Naturally, the SIGMA AKE protocol and its incarnation in TLS have been the recipients

of proofs of security. We contend that these largely justify the AKE protocols in principle, but

not in practice, meaning not for the parameters in actual use and at the desired or expected

level of security. Our work takes steps towards filling this gap.

2.1.1 Qualitative and Quantitative Bounds

Let us expand on this. The protocols KE we consider are built from a cyclic group G in

which some DH problem P is assumed to be hard, a pseudorandom function PRF and unforgeable

signature and MAC schemes S and M. The target for KE is session-key security with explicit
1https://transparencyreport.google.com/https/
2https://telemetry.mozilla.org/

49

https://transparencyreport.google.com/https/
https://telemetry.mozilla.org/

authentication as originating from [42, 39, 71]. A proof of security has both a qualitative and

quantitative dimension. Qualitatively, a proof of security for the AKE protocol KE says that

KE meets its target definition assuming the building blocks meet theirs, where, in either case,

meeting the definition means any poly-time adversary has negligible advantage in violating it.

The quantitative dimension associates to each adversary in the security game of KE a

set of resources r, representing its runtime and attack surface (e.g., the number of users and

executed protocol sessions the adversary has access to). It then relates the maximum advantage

of any r-resource adversary in breaking KE’s security to likewise advantage functions for the

building blocks through an equation of the (simplified) form

AdvKE(r)≤ fG ·AdvP
G(rG)+ fS ·AdvEUF-CMA

S (rS)+ . . . ,

deriving quantitative factors fX and resources rX for the advantage of each building block X.

Speaking asymptotically again, when fX and rX are polynomial functions in r, then

AdvKE(r) is negligible whenever all building blocks’ advantages are. Due to the complexity of key

exchange models and the challenging task of combining the right components in a secure manner,

key exchange analyses (including prior work on SIGMA [72] and TLS 1.3 [104, 161, 106, 113, 103])

indeed often remain abstract and consider only qualitative, asymptotic security bounds.

Standardized protocols like TLS in contrast have to define concrete choices for each

cryptographic building block. This involves considering reasonable estimates for adversarial

resources (like runtime t and number of key-exchange model queries q) and specific instances

and parameters for the underlying components X. One would hope that key exchange proofs

can provide guidance in making sound choices that result in the desired overall security level.

Unfortunately, AKE security bounds regularly are highly non-tight, meaning that fX and/or rX

for some components X are so large that reasonable stand-alone parameters for X yield vacuous

key exchange advantages for practical parameters. While the asymptotic bound tells us that

scaling up the parameters for X (say, the DDH problem [59]) will at some point result in a

secure overall advantage, this causes efficiency concerns (e.g., doubling elliptic curve DH security

parameters means quadrupling the cost for group operations) and hence does not happen in

50

Table 2.1. Exemplary concrete advantages of a key exchange adversary with given resources t
(running time), #U (number of users), #S (number of sessions), in breaking the security of the
SIGMA and TLS 1.3 protocols when instantiated with curve secp256r1, secp384r1, or x25519,
based on the prior bounds by Canetti-Krawczyk [72] resp. Dowling et al. [103], and the bounds
we establish (Theorem 2.2 and 2.3). Target indicates the maximal advantage t/2b tolerable when
aiming for the respective curve’s security level (b = 128 resp. 192 bits); entries in red-shaded cells
miss that target. See Section 2.9 for full details and curves secp521r1 and x448.

Adv. resources SIGMA TLS 1.3
t #U #S Curve Target CK [72] Us (Thm. 2.2) DFGS [103] Us (Thm. 2.3)

260 220 235 secp256r1 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 230 255 secp256r1 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 x25519 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 230 255 x25519 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

280 220 235 secp256r1 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 230 255 secp256r1 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 x25519 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 230 255 x25519 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 secp384r1 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 230 255 secp384r1 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

practice.

We illustrate in Table 2.1 the effects of the non-tight bounds for SIGMA and TLS 1.3 when

instantiating the protocols with NIST curves secp256r1, secp384r1 [187], or curve x25519 [164]

and idealizing the protocols’ other components (see Section 2.9 for full details). Following

the curves’ security, we aim at a security level of 128 bits, resp. 192 bits, meaning the ratio

of an adversary’s runtime to its advantage should be bounded by 2−128, resp. 2−192. When

considering the advantage of key exchange adversaries running in time t, interacting in the

security game with #U users and #S sessions, we can see that previous security bounds fail to

meet the targeted security level for real-world–scale parameters (#U ranging in 220–230 based on

227 active certificates on the Internet3, #S ranging in 235–255 based on 232 Internet users and 233

daily Google searches4). In the security analysis by Canetti and Krawczyk [72] (CK) for SIGMA,

the factor associated to the decisional Diffie–Hellman problem is fDDH(t,#U,#S) = #U ·#S, where

#U and #S again are the number of users, resp. sessions, accessible by the adversary. The analysis

by Dowling et al. [103] (DFGS) for TLS 1.3 reduces to the strong Diffie–Hellman problem [4]—via

the PRF-ODH assumption [141, 66]—with factor fstDH(t,#U,#S) = (#S)2. In contrast, we reduce
3https://letsencrypt.org/stats/
4https://www.internetlivestats.com/

51

https://letsencrypt.org/stats/
https://www.internetlivestats.com/

to the strong Diffie–Hellman problem with a constant factor for both SIGMA and TLS 1.3.

Let us discuss three data points from Table 2.1:

1. Already with medium-sized resources, investing time t = 260 and interacting with a million

users (#U = 220) and a few billion sessions (#S = 235), the CK [72] and DFGS [103] advantage

bounds for SIGMA and TLS 1.3 with curves secp256r1 and x25519 fall 6–11 bits below

the target of 2−68 for 128-bit security.

2. When considering a more powerful, global-scale adversary (t = 280, #U = 230, #S = 255), both

CK and DFGS bounds for secp256r1/x25519 become fully vacuous; the upper bound on

the probability of the adversary breaking the protocol is 1. We stress that secp256r1 is the

mandatory-to-implement curve for TLS 1.3; secp256r1 and x25519 together make up for

90% of the TLS 1.3 ECDHE handshakes reported through Firefox Telemetry.

3. Finally, and notably, even switching to the higher-security curve secp384r1 helps only

marginally in the latter case: the resulting advantage against SIGMA falls 3 bits short of

the 192-bit security target of 2−112, and the TLS advantage bound only barely meets that

target.

For all curves and choices of parameters, our bounds do better.

2.1.2 Contributions

Most prior results in tightly secure key exchange (e.g., [22, 121]) apply only to bespoke

protocols, carefully designed to allow for tighter proof techniques, at the cost of requiring more

complex primitives which, in the end, eat up the gained practical efficiency. Recently, Cohn-

Gordon et al. [78, 79] established a proof strategy for a simple and efficient DH key exchange with

reasonable tightness loss (only linear in the number of users #U), achieving implicit authentication

through static DH keys through careful key derivation via a random oracle [41] with an optional

explicit-authentication step.

Our work in contrast establishes tight security for standardized AKE protocols. We give

tight reductions for the security of SIGMA and TLS 1.3 to the strong Diffie–Hellman problem [4],

which in addition we prove is as hard as the discrete logarithm problem in the generic group model

52

(GGM) [212, 170]. Instantiating our bounds shows that, with standardized real-world parameters,

we achieve the intended security levels even when considering powerful, globally-scaled attackers.

Code-based security model and proofs.

For our proofs, we provide detailed proof steps and reductions using the code-based

game-playing framework of Bellare and Rogaway [44]. Our security model is similar to the one

applied by Cohn-Gordon et al. [78], but formalized also as a code-based game (in Section 2.2)

and stronger in that it captures explicit authentication and regular (“perfect”) forward secrecy

(instead of only weak forward secrecy in [78]).

Tighter security proof of SIGMA(-I).

We establish fully quantitative security bounds for SIGMA and its identity-protecting

variant SIGMA-I [152] in Sections 2.5 and 2.6. Our result is for BR-like [42] key exchange security

and gives a tight reduction to the strong Diffie–Hellman problem [4] in the used DH group,

and to the multi-user (mu) security of the employed pseudorandom function (PRF), signature

scheme, and MAC scheme, adapting the techniques by Cohn-Gordon et al. [78] in the random

oracle model [41]. The latter mu-security bounds are essentially equivalent to the corresponding

bounds by CK [72]. Our improvement comes from shaving off a factor of #U ·#S (number of users

times number of sessions) on the DH problem advantage compared to CK. While we move to the

interactive strong Diffie–Hellman problem (compared to the decisional DH (DDH) problem [59]

used in [72]), we prove (in Section 2.4) that the strong DH problem, like DDH, is as hard as

solving discrete logarithms in the generic group model [212, 170], reflecting the (only generic)

algorithms known for solving discrete logarithms in elliptic curve groups.

Tighter security proof for the TLS 1.3 DH handshake.

We likewise establish fully quantitative security bounds for the key exchange of the

recently standardized newest version of the Transport Layer Security protocol, TLS 1.3 [201],

in Sections 2.7 and 2.8. The main quantitative improvement in our reduction is again a tight

reduction to the strong DH problem, whereas prior bounds by DFGS [103] incurred a quadratic

loss to the PRF-ODH assumption [141, 66], a loss which translates directly to strong DH [66].

While TLS 1.3 roughly follows the SIGMA-I design, its cascading key schedule impedes the

53

precise technique of Cohn-Gordon et al. [78] and a direct application of our results on SIGMA-I,

as no single function (to be modeled as a random oracle) binds the Diffie–Hellman values to

the session context. We therefore have to carefully adapt the proof to accommodate the more

complex key schedule and other core variations in TLS 1.3’s key exchange, achieving conceptually

similar tightness results as for SIGMA-I.

Evaluation.

In Section 2.9, we evaluate the concrete security implications of our improved bounds

for SIGMA and TLS 1.3 for a wide range of real-world resource parameters and all five elliptic

curves (secp256r1, secp384r1, secp521r1,x25519, x448) standardized for use in TLS 1.3 [201],

a summary of which is displayed in Table 2.1. Leveraging our GGM bound for the strong

Diffie–Hellman problem, we focus on the hardness of solving discrete logarithms in the respective

elliptic curve groups, instantiating signatures based on ECDSA [187] resp. EdDSA [50]. We

idealized the symmetric PRF, MAC, and hash function primitives (in two variants, with key and

output sizes twice as large as the curve’s security level, or fixed at 256 bits corresponding to the

choice in most TLS 1.3 cipher suites).

We report that our tighter proofs indeed materialize for a wide range of real-world

resource parameters (adversary runtime t ∈ {240,260,280}, number of users #U ∈ {220,230}, and

number of sessions #S ∈ {235,245,255}). The resulting attacker advantages meet the targeted

security levels of all five curves. In comparison to the prior CK [72] SIGMA and DFGS [103]

TLS 1.3 bounds, our results improve the obtained security across these real-world parameters by

up to 85 bits for SIGMA and 92 bits for TLS 1.3, respectively.

2.1.3 Optimizations, Limitations, and Possible Extensions

SIGMA being a generic AKE design, the signature, PRF, and MAC schemes may be

instantiated with primitives optimized for multi-user security. While we focus on standardized

and deployed schemes in our evaluation without assuming tight mu-security, our SIGMA bound

allows to directly leverage such optimization. For PRFs and MACs, efficient candidates exist

(e.g., AMAC [30]). For signatures, tight mu-security is more challenging [23] and often involves

computationally much more expensive constructions [22].

54

Like Cohn-Gordon et al. [78], our key exchange security model considers exposure of long-

term secrets and session keys, but does not allow revealing internal session state or randomness

(as in the (e)CK model [71, 163]). This is appropriate for protocols like TLS 1.3 not aiming to

protect against such threats. The original SIGMA proof [72] did establish security in the CK

model [71] allowing exposure of session state; in that sense our results are qualitatively weaker.

In recent work, Jager et al. [140] give a tightly secure protocol which uses symmetric state

encryption to protect against ephemeral state reveals. Establishing a tight security reduction for

a SIGMA-style DH-based AKE protocol which can handle adaptive compromises of session state

(including DH exponents) remains a challenging open problem.

In our proofs, we crucially rely on the ability to observe and program a random oracle

used for key derivation in the AKE protocol, borrowing from [78]. Notably, the approach of

Cohn-Gordon et al. is tailored to an AKE protocol achieving authenticity implicitly through

mixing long-term DH keys into the key derivation. Our proofs can hence be seen as translating

and adapting their technique to the setting of SIGMA and TLS 1.3, where an unauthenticated

ephemeral DH exchange is explicitly authenticated through signatures and MACs, confirming

that the generic SIGMA design as well as the standardized TLS 1.3 protocol bind enough

context to their DH shares for this proof technique to work. Leveraging the random oracle

model [41] is another qualitative difference compared to the original SIGMA proof [72] in the

standard model. Interestingly, this distinction vanishes in comparison to the provable security

results for the TLS 1.3 handshake protocol [104, 106, 113, 103] which employ the PRF-ODH

assumption [141, 66], an interactive assumption which plausibly can only be instantiated in the

random oracle model (from the strong DH assumption).

2.1.4 Concurrent Work

In concurrent and independent work, Diemert and Jager (DJ) [98] studied the tight

security of the main TLS 1.3 handshake. Their work also tightly reduces the security of TLS 1.3

to the strong Diffie–Hellman problem by extending the technique of Cohn-Gordon et al. [78],

and their bounds and ours are similarly tight. When instantiated with real-world parameters,

both bounds are dominated by the same terms, as we will demonstrate in Section 2.9. Our proof

55

differs from theirs in two key ways: We use an incomparable security model that is weaker in

some ways and stronger in others, and we approximate the TLS 1.3 key schedule with fewer

random oracles. We also contextualize our results quite differently than the DJ work, with a

detailed numerical analysis that is enabled by our fully parameterized, concrete bounds. Uniquely

to this work, we treat the more generic SIGMA-I protocol and justify our use of the strong DH

problem with new bounds in the generic group model. Diemert and Jager [98] in turn study

tight composition with the TLS record protocol.

The DJ analysis is carried out in the multi-stage key exchange model [112], proving

security not only of the final session key, but also of intermediate handshake encryption keys

and further secrets. While our proof does show security of these intermediate keys, we do

not treat them as first-class keys accessible to the adversary through dedicated queries in the

security model. Unlike either the DJ or Cohn-Gordon et al. works, our model addresses explicit

authentication, which we prove via HMAC’s unforgeability.

To tackle the challenge that TLS 1.3’s key schedule does not bind DH values and

session context in one function, DJ model the full cascading derivation of each intermediate

key monolithically as an independent, programmable random oracle (cf. [98, Theorem 6]). We

instead model the key schedule’s inner HKDF [155] extraction and expansion functions as two

individual random oracles, carefully connected via efficient look-up tables, yielding a slightly less

extensive use of random oracles and compensating for the existence of shared computations in

the derivation of multiple keys. This approach produces more compact bounds and allows our

analysis to stay closer to the use of HKDF in TLS 1.3, where the output of one extraction call is

used to derive multiple keys.

2.2 AKE Security Model

We provide our results in a game-based key exchange model formalized in Figure 2.1, at

its core following the seminal work by Bellare and Rogaway [42] considering an active network

adversary that controls all communication (initiating sessions and determining their next inputs

through Send queries) and is able to corrupt long-term secrets (RevLongTermKey) as well as

session keys (RevSessionKey). The adversary’s goal is then to (a) distinguish the established

56

shared session key in a “fresh” (not trivially compromised, captured through a Fresh predicate)

session from a uniformly random key obtained through Test queries (breaking key secrecy), or (b)

make a session accept without matching communication partner (breaking explicit authentication).

Following Cohn-Gordon et al. [78], we formalize our model in a real-or-random version

(following Abdalla, Fouque, and Pointcheval [6] with added forward secrecy [5]) with many Test

queries which all answer with a real or uniformly random session key based on the same random

bit b. We focus on the security of the main session key established. While our proofs (for both

SIGMA and TLS 1.3) establish security of the intermediate encryption and MAC keys, too, we do

not treat them as first-class keys available to the adversary through Test and RevSessionKey

queries. We expect that our results extend to a multi-stage key exchange (MSKE [112]) treatment

and refer to the concurrent work by Diemert and Jager [98] for tight results for TLS 1.3 in a

MSKE model.

In contrast to the work by Cohn-Gordon et al. [78] and Diemert and Jager [98], our model

additionally captures explicit authentication through the ExplicitAuth predicate in Figure 2.1,

ensuring sessions with non-corrupted peer accept with an honest partner session. We and [98]

further treat protocols where the communication partner’s identity of a session may be unknown

at the outset and only learned during the protocol execution; this setting of “post-specified

peers” [72] particularly applies to the SIGMA protocol family [152] as well as TLS 1.3 [201].

2.2.1 Key Exchange Protocols

We begin by formalizing the syntax of key exchange protocols. A key exchange protocol

KE consists of three algorithms (KGen,Activate,Run) and an associated key space KE.KS (where

most commonly KE.KS = {0,1}n for some n∈N). The key generation algorithm KGen() $−→ (pk,sk)

generates new long-term public/secret key pairs. In the security model, we will associate key pairs

to distinct users (or parties) with some identity u ∈ N running the protocol, and log the public

long-term keys associated with each user identity in a list peerpk. (The adversary will be in control

of initializing new users, identified by an increasing counter, and we assume it only references

existing user identities.) The activation algorithm Activate(id,sk, peerid, peerpk,role) $−→ (st ′,m′)

initiates a new session for a given user identity id (and associated long-term secret key sk)

57

acting in a given role role ∈ {initiator, responder} and aiming to communicate with some peer user

identity peerid. Activate also takes as input the list peerpk of all users’ public keys; protocols may

use this list to look up their own and their peers’ public keys. We provide the entire list instead of

just the user’s and peers’ public keys to accommodate protocols with post-specified peer. These

protocols may leave peerid unspecified at the time of session activation; when the peer identity is

set at some later point, the list can be used to find the corresponding long-term key. Activation

outputs a session state and (if role = initiator) first protocol message m′, and will be invoked in

the security model to create a new session π i
u at a user u (where the label i distinguishes different

sessions of the same user). Finally, Run(id,sk,st, peerpk,m) $−→ (st ′,m′) delivers the next incoming

key exchange message m to the session of user id with secret key sk and state st, resulting in an

updated state st ′ and a response message m′. Like Activate, it relies on the list peerpk to look up

its own and its peer’s long-term keys.

The state of each session in a key exchange protocol contains at least the following

variables, beyond possibly further, protocol-specific information:

peerid ∈ N. Reflects the (intended) partner identity of the session; in protocols with post-

specified peers this is learned and set (once) by the session during the protocol execution.

role ∈ {initiator, responder}. The session’s role, determined upon activation.

status ∈ {running,accepted, rejected}. The session’s status; initially status = running, a session

accepts when it switches to status = accepted (once).

skey ∈ KE.KS. The derived session key (in the protocol-specific key space KE.KS), set upon

acceptance.

sid. The session identifier used to define partnered session in the security model; initially unset,

sid is determined (once) during protocol execution.

2.2.2 Key Exchange Security

We formalize our key exchange security game GKE-SEC
KE,A in Figure 2.1, based on the concepts

introduced above in Figure 2.1 and following the framework for code-based game playing by

Bellare and Rogaway [44]. After initializing the game, the adversary A is given access to queries

58

NewUser (generating a new user’s public/secret key pair), Send (controlling activation and

message processing of sessions), RevSessionKey (revealing session keys), RevLongTermKey

(corrupting user’s long-term secrets), and Test (providing challenge real-or-random session keys),

as well as a f in query to which it will submit its guess b′ for the challenge bit b, ending the game.

The game GKE-SEC
KE,A then (in f in) determines whether A was successful through the following

three predicates, formalized in pseudocode in Figure 2.1:

Sound. The soundness predicate Sound checks that (a) no three session identifiers collide (hence

the session identifier properly serves to identify two partnered sessions). Furthermore, it

ensures that (b) accepted sessions with the same session identifier, agreeing partner identities,

and distinct roles derive the same session key. The adversary breaks soundness if it violates

either of these properties.

ExplicitAuth. The predicate ExplicitAuth captures explicit authentication in that it requires

that for any session of some user id that accepted while its partner peerid was not corrupted

(captured through logging relative acceptance time tacc and long-term reveal time revltkpeerid)

has (a) a partnered session run by the intended peer identity and in an opposite role, and (b)

if that partnered session accepts, it will do so with peer identity id. The adversary breaks

explicit authentication if this predicate evaluates to false.

Fresh. Finally, to capture key secrecy, we have to restrict the adversary to testing only so-called

fresh sessions in order to exclude trivial attacks, which the freshness predicate Fresh ensures.

A tested session is non-fresh, if (a) its session key has been revealed (in which case A

knows the real key), (b) its partnered session (through sid) has been revealed or tested (in

which case A knows the real key or may see two different random keys), or (c) its intended

peer identity was compromised prior to accepting (in which case A may fully control the

communication partner). If the adversary violates freshness, we invalidate its guess by

overwriting b′← 0.

We call two distinct sessions π i
u and π

j
v partnered if π i

u.sid = π
j

v .sid. We refer to sessions

generated by Activate (i.e., controlled by the game) as honest sessions to reflect that their behavior

59

GKE-SEC
KE,A

init:
1 time← 0; users← 0
2 b←${0,1}

NewUser:
3 users← users+1
4 (pkusers,skusers)←$KGen()

5 revltkusers← ∞

6 peerpk[users]← pkusers

7 return pkusers

Send(u, i,m):
8 if π i

u =⊥ then
9 (peerid,role)← m

10 (π i
u,m
′)←$Activate(u,sku, peerid, peerpk,role)

11 π i
u.tacc← 0

12 else
13 (π i

u,m
′)←$Run(u,sku,π

i
u, peerpk,m)

14 if π i
u.status = accepted then

15 time← time+1
16 π i

u.tacc← time

17 return m′

RevSessionKey(u, i):
18 if π i

u =⊥ or π i
u.status 6= accepted then

19 return ⊥
20 π i

u.revealed← true

21 return π i
u.skey

RevLongTermKey(u):
22 time← time+1
23 revltku← time

24 return sku

Test(u, i):
25 if π i

u =⊥ or π i
u.status 6= accepted or π i

u.tested then
26 return ⊥
27 π i

u.tested← true

28 T ← T ∪{π i
u}

29 k0← π i
u.skey

30 k1
$←− KE.KS

31 return kb

f in(b′):
32 if ¬Sound then
33 return 1
34 if ¬ExplicitAuth then
35 return 1
36 if ¬Fresh then
37 b′← 0
38 return [[b = b′]]

Sound:
1 if ∃ distinct π i

u, π
j

v , πk
w with π i

u.sid = π
j

v .sid = πk
w.sid

then // no triple sid match
2 return false

3 if ∃π i
u,π

j
v with

π i
u.status = π

j
v .status = accepted

and π i
u.sid = π

j
v .sid

and π i
u.peerid = v and π

j
v .peerid = u

and π i
u.role 6= π

j
v .role, but π i

u.skey 6= π
j

v .skey then
// partnering implies same key

4 return false

5 return true

ExplicitAuth:
1 return

∀π i
u : π i

u.status = accepted
and π i

u.tacc < revltkπ i
u.peerid

// all sessions accepting with a non-corrupted
peer . . .

=⇒ ∃π j
v : π i

u.peerid = v
and π i

u.sid = π
j

v .sid
and π i

u.role 6= π
j

v .role
// . . . have a partnered session . . .

and (π
j

v .status = accepted =⇒ π
j

v .peerid = u)
// . . . agreeing on the peerid (upon acceptance)

Fresh:
1 for each π i

u ∈ T

2 if π i
u.revealed then

3 return false // tested session may not be
revealed

4 if ∃π j
v 6= π i

u : π
j

v .sid = π i
u.sid

and (π j
v .tested or π

j
v .revealed) then

5 return false // tested session’s partnered ses-
sion may not be tested or revealed

6 if revltkπ i
u.peerid < π i

u.tacc then
7 return false // tested session’s peer may not
be corrupted prior to acceptance

8 return true
Figure 2.1. Key exchange security game.

60

is determined honestly by the game and not the adversary. The long-term key of an honest

session may still be corrupted, or its session key may be revealed without affecting this notion of

“honesty”.

Definition 1 (Key exchange security). Let KE be a key exchange protocol and GKE-SEC
KE,A be the

key exchange security game defined in Figure 2.1. We define

AdvKE-SEC
KE (t,qN,qS,qRS,qRL,qT) := 2 ·max

A
Pr
[
GKE-SEC

KE,A ⇒ 1
]
−1,

where the maximum is taken over all adversaries, denoted (t,qN,qS,qRS,qRL,qT)-KE-SEC-

adversaries, running in time at most t and making at most qN, qS, qRS, qRL, resp. qT queries to

their oracles NewUser, Send, RevSessionKey, RevLongTermKey, resp. Test.

2.2.3 Security Properties

Let us briefly revisit some core security properties captured in our key exchange security

model.

First, we capture regular key secrecy of the main session key through Test queries,

incorporating forward secrecy (sometimes called “perfect” forward secrecy) by allowing the

adversary to corrupt any user as long as all tested sessions accept prior to corrupting their

respective intended peer. This strengthens our model compared to that of Cohn-Gordon et al. [78]

which only captures weak forward secrecy where the adversary has to be passive in sessions

where it corrupts long-term secrets. Diemert and Jager [98] additionally treat the security of

intermediate keys and further secrets beyond the main session key in a multi-stage approach [112],

but without capturing explicit authentication.

Our model encodes explicit authentication (via ExplicitAuth), a strengthening compared

to the implicit-authentication model in [78].

Like [78, 98], our model captures key-compromise impersonation attacks by allowing the

session owner’s secret key of tested sessions to be corrupted at any point in time. Similarly, we

do not capture session-state or randomness reveals [71, 163] or post-compromise security [77].

61

2.3 Assumptions, Building Blocks, and Multi-User Security

Before we continue to our main technical results, let us briefly introduce notation and

discuss the multi-user security of the involved building blocks: strong Diffie–Hellman (including

the GGM bound we prove), PRFs, digital signatures, MAC schemes, and hash functions.

2.3.1 Decisional and Strong Diffie–Hellman

The classical decisional Diffie–Hellman assumption [59] states that, when only observing

the two Diffie–Hellman shares gx, gy, the resulting secret gxy is indistinguishable from a random

group element.

Definition 2 (Decisional Diffie–Hellman (DDH) assumption). Let G= 〈g〉 be a cyclic group of

prime order p. We define

AdvDDH
G (t) := max

A

∣∣∣Pr [A(G,g,gx,gy,gxy)⇒ 1 | x,y $←− Zp]−

Pr [A(G,g,gx,gy,gz)⇒ 1 | x,y,z $←− Zp]
∣∣∣,

where the maximum is taken over all adversaries, denoted (t)-DDH-adversaries running in time

at most t.

The strong Diffie–Hellman assumption, a weakening of the gap Diffie–Hellman assump-

tion [195], states that solving the computational Diffie–Hellman problem given a restricted

decisional Diffie–Hellman oracle is hard.

Definition 3 (Strong Diffie–Hellman assumption [195]). Let G= 〈g〉 be a cyclic group of prime

order p. Let DDH(X ,Y,Z) := [[X logg(Y) = Z]] be a decisional Diffie–Hellman oracle. We define

AdvstDH
G (t,qsDH) := max

A
Pr
[
ADDH(gx,·,·)(G,g,gx,gy) = gxy

∣∣∣ x,y $←− Zp

]
,

where the maximum is taken over all adversaries, denoted (t,qsDH)-stDH-adversaries running in

time at most t and making at most qsDH queries to their DDH oracle.

The strong (or gap) Diffie–Hellman assumption has been deployed in numerous works to

analyze practical key exchange designs, directly or through the PRF-ODH assumption [141, 66]

62

it supports, including [141, 112, 104, 161, 106, 113, 103] as well as in the closely related works

on practical tightness by Cohn-Gordon et al. [78] and Diemert and Jager [98]. To argue that

it is reasonable to rely on the strong Diffie–Hellman assumption, we turn to the generic group

model [212, 170]. Although some known algorithms for solving discrete logarithms in finite fields

like index calculus fall outside the generic group model, the best known algorithms for elliptic

curve groups are generic. Shoup [212] proved that, in the generic group model, any adversary

computing at most t group operations in a group of prime order p has advantage at most O(t2/p)

in solving the discrete logarithm problem or the computational or decisional Diffie–Hellman

problem in that group. We claim, and prove in Section 2.4, that any adversary in the generic

group model making at most t group operations and DDH oracle queries, also has advantage at

most O(t2/p) in solving the strong Diffie–Hellman problem.

Theorem 2.1. Let G be a group with prime order p. In the generic group model, AdvstDH
G (t,q)≤

4t2/p.

2.3.2 Multi-User PRF Security

Let us recap the multi-user security notion for pseudorandom functions (PRFs) [32].

Definition 4 (Multi-user PRF security). Let PRF : {0,1}k×{0,1}m → {0,1}n be a function

(for k,n ∈ N and m ∈ N∪{∗}) and Gmu-PRF
PRF,A be the multi-user PRF security game defined as in

Figure 2.2. We define

Advmu-PRF
PRF (t,qNw,qFn,qFn/U) := 2 ·max

A
Pr
[
Gmu-PRF

PRF,A ⇒ 1
]
−1,

where the maximum is taken over all adversaries, denoted (t,qNw,qFn,qFn/U)-mu-PRF-adversaries,

running in time at most t and making at most qNw queries to their New oracle, at most qFn

total queries to their Fn oracle, and at most qFn/U queries Fn(i, ·) for any user i.

Generically, the multi-user security of PRFs reduces to single-user security (formally,

Gmu-PRF
PRF,A with A restricted to qNw = 1 queries to New) with a factor in the number of users via

a hybrid argument [32], i.e.,

Advmu-PRF
PRF (t,qNw,qFn,qFn/U)≤ qNw ·Advmu-PRF

PRF (t ′,1,qFn/U,qFn/U),

63

Gmu-PRF
PRF,A

init:
1 b $←− {0,1}
2 u← 0

New:
3 u← u+1
4 if b = 1 then
5 Ku←${0,1}k

6 fu := PRF(Ku, ·)
7 else
8 fu $←− FUNC

Fn(i,x):
9 return fi(x)

f in(b∗):
10 return [[b = b∗]]

Figure 2.2. Multi-user PRF security of a pseudorandom function PRF : {0,1}k×{0,1}m →
{0,1}n. FUNC is the space of all functions {0,1}m→{0,1}n.

where t ≈ t ′. (Note that the total number qFn of queries to the Fn oracle across all users does

not affect the reduction.) There exist simple and efficient constructions, like AMAC [30], that

however achieve multi-user security tightly.

If we use a random oracle RO as a PRF with key length kl, then

Advmu-PRF
RO (t,qNw,qFn,qFn/U,qRO)≤

qNw ·qRO

2kl .

2.3.3 Multi-User Unforgeability with Adaptive Corruptions of Signatures
and MACs

We recap the definition of digital signature schemes and message authentication codes

(MACs) as well as the natural extension of classical existential unforgeability under chosen-

message attacks [123] to the multi-user setting with adaptive corruptions. For signatures, this

notion was considered by Bader et al. [22] and, without corruptions, by Menezes and Smart [176].

Definition 5 (Signature scheme). A signature scheme S = (KGen,Sign,Vrfy) consists of three

efficient algorithms defined as follows.

• KGen() $−→ (pk,sk). This probabilistic algorithm generates a public verification key pk and a

secret signing key sk.

• Sign(sk,m) $−→ σ . On input a signing key sk and a message m, this (possibly) probabilistic

algorithm outputs a signature σ .

• Vrfy(vk,m,σ)→ d. On input a verification key pk, a message m, and a signature σ , this

deterministic algorithm outputs a decision bit d ∈ {0,1} (where d = 1 indicates validity of

the signature).

64

Definition 6 (Signature mu-EUF-CMA security). Let S be a signature scheme and Gmu-EUF-CMA
S,A

be the game for signature multi-user existential unforgeability under chosen-message attacks

with adaptive corruptions defined as in Figure 2.3. We define

Advmu-EUF-CMA
S (t,qNw,qSg,qSg/U,qC) := max

A
Pr
[
Gmu-EUF-CMA

S,A ⇒ 1
]
,

where the maximum is taken over all adversaries, denoted (t,qNw,qSg,qSg/U,qC)-mu-EUF-CMA-

adversaries, running in time at most t and making at most qNw, qSg, resp. qC total queries to

their New, Sign, resp. Corrupt oracle, and making at most qSg/U queries Sign(i, ·) for any

user i.

Multi-user EUF-CMA security of signature schemes (with adaptive corruptions) can be

reduced to classical, single-user EUF-CMA security (formally, Gmu-EUF-CMA
S,A with A restricted to

qNw = 1 queries to New) by a standard hybrid argument, losing a factor of number of users.

Formally, this yields

Advmu-EUF-CMA
S (t,qNw,qSg,qSg/U,qC)≤ qNw ·Advmu-EUF-CMA

S (t ′,1,qSg/U,qSg/U,0),

where t ≈ t ′. (Note that the reduction is not affected by the total number of signature queries qSg

across all users.) In many cases, such loss is indeed unavoidable [23].

Definition 7 (MAC scheme). A MAC scheme M = (KGen,Tag,Vrfy) consists of three efficient

algorithms defined as follows.

• KGen() $−→ K. This probabilistic algorithm generates a key K.

• Tag(K,m) $−→ τ. On input a key K and a message m, this (possibly) probabilistic algorithm

outputs a message authentication code (MAC) τ.

• Vrfy(K,m,τ)→ d. On input a key K, a message m, and a MAC τ , this deterministic algorithm

outputs a decision bit d ∈ {0,1} (where d = 1 indicates validity of the MAC).

Definition 8 (MAC mu-EUF-CMA security). Let M be a MAC scheme and Gmu-EUF-CMA
M,A be the

game for MAC multi-user existential unforgeability under chosen-message attacks with adaptive

65

Gmu-EUF-CMA
S,A

init:
1 Q← /0
2 C ← /0
3 u← 0

Corrupt(i):
4 C ← C ∪{i}
5 return ski

New:
6 u← u+1
7 (pku,sku)←$KGen()

8 return pku

Sign(i,m):
9 σ←$Sign(ski,m)

10 Q← Q∪{(i,m)}
11 return σ

f in(i∗,m∗,σ∗):
12 d∗← Vrfy(pki∗ ,m∗,σ∗)

13 return [[d∗ = 1∧ i∗ /∈ C ∧ (i∗,m∗) /∈ Q]]

Gmu-EUF-CMA
M,A

init:
1 Q← /0
2 C ← /0
3 u← 0

Corrupt(i):
4 C ← C ∪{i}
5 return Ki

New:
6 u← u+1
7 Ku←$KGen()

Tag(i,m):
8 τ←$Tag(Ki,m)

9 Q← Q∪{(i,m)}
10 return τ

Vrfy(i,m,τ):
11 d← Vrfy(Ki,m,τ)

12 return d

f in(i∗,m∗,τ∗):
13 d∗← Vrfy(Ki∗ ,m∗,τ∗)

14 return [[d∗ = 1∧ i∗ /∈ C ∧ (i∗,m∗) /∈ Q]]

Figure 2.3. Multi-user existential unforgeability (mu-EUF-CMA) of signature schemes (top)
and MAC schemes (bottom).

corruptions defined as in Figure 2.3. We define

Advmu-EUF-CMA
M (t,qNw,qTg,qTg/U,qVf,qVf/U,qC) := max

A
Pr
[
Gmu-EUF-CMA

M,A ⇒ 1
]
,

where the maximum is taken over all adversaries, denoted (t,qNw,qTg,qTg/U,qVf,qVf/U,qC)-

mu-EUF-CMA-adversaries, running in time at most t and making at most qNw, qTg, qVf, resp.

qC queries to their New, Sign, Vrfy, resp. Corrupt oracle, and making at most qTg/U queries

Tag(i, ·), resp. qVf/U queries Vrfy(i, ·) for any user i.

As for signature schemes, multi-user EUF-CMA security of MACs reduces to the single-

user case (qNw = 1) by a standard hybrid argument:

Advmu-EUF-CMA
M (t,qNw,qTg,qTg/U,qVf,qVf/U,qC)

≤ qNw ·Advmu-EUF-CMA
M (t,1,qTg/U,qTg/U,qVf/U,qVf/U,0),

where t ≈ t ′. (Note that the reduction is not affected by the total number of tagging and

verification queries qTg resp. qVf across all users.)

66

Our multi-user definition of MACs provides a verification oracle, which is non-standard

(and in general not equivalent to a definition with a single forgery attempts, as Bellare, Goldreich

and Mityiagin [36] showed). For PRF-based MACs (which in particular includes HMAC used in

TLS 1.3), it however is equivalent and the reduction from multi-query to single-query verification

is tight [36].

In our key exchange reductions, we actually do not need to corrupt MAC keys, i.e., we

achieve qC = 0. This in particular allows specific constructions like AMAC [30] achieving tight

multi-user security (without corruptions).

If we use a random oracle RO as PRF-like MAC with key length kl and output length ol,

then

Advmu-EUF-CMA
RO (t,qNw,qTg,qTg/U,qVf,qVf/U,qC,qRO)≤

qVf
2ol +

(qNw−qC) ·qRO

2kl .

2.3.4 Hash Function Collision Resistance

Finally, let us define collision resistance of hash functions.

Definition 9 (Hash function collision resistance). Let H : {0,1}∗ → {0,1}ol for ol ∈ N be a

function. For a given adversary A running in time at most t, we can consider

AdvCR
H (t) := Pr

[
(m,m′)←$ A : m 6= m′ and H(m) = H(m′)

]
.

If we use a random oracle RO as hash function, then by the birthday bound

AdvCR
RO(t,qRO)≤

q2
RO

2ol+1 +
1

2ol .

2.4 Proof of the Strong Diffie–Hellman GGM Bound (Theo-
rem 2.1)

Proof: We begin by giving a code-based game for the strong Diffie–Hellman problem in

the generic group model. First, we establish some preliminaries, using the setting and notation of

Bellare and Dai [33]. Let G be an arbitrary set of strings with prime order p, and let E : Zp→G

be a bijection, called the encoding function. For any two strings A,B ∈G, we define the operation

67

G0

init():
1 p← |G|; E←$ Bijections(Zp,G)

2 1← E(0); g← E(1)
3 x,y←$Z∗p; X ← E(x); Y ← E(y)

4 GL←{1,g,x,y}
5 return (1,g,x,y)

OP(A,B, sgn):
6 if A 6∈ GL or B 6∈ GL then return ⊥
7 c← E−1(A) sgn E−1(B) mod p

8 C← E(c); GL← GL∪{C}
9 return C

stDH(A,B):
10 if A 6∈ GL or B 6∈ GL then return ⊥
11 z← x ·E−1(A) mod p

12 Z← E(z)

13 return [[Z = B]]

f in(Z):
14 if Z 6∈ GL then return false

15 z← x · y mod p; return [[Z = E(z)]]

Figure 2.4. Game G0 for the proof of Theorem 2.1.

AOPE B = E(E−1(A)+E−1(B) mod p). The set G is a group with respect to this operation, and

it is isomorphic to Zp. Therefore, G has the identity E(0), and it is generated by E(1).

In the generic group model, we wish for the adversary to compute group operations only

through an oracle OP. We accomplish this by picking the encoding function E at random and

keeping it secret; then providing oracle access to OPE through OP. In this model, we can give a

sequence of games bounding the advantage of any adversary A that makes t queries to the OP

oracle and q queries to the stDH oracle.

Game 0. This first game formalizes the strong Diffie–Hellman problem in the generic group

model. Note that for any a ∈ Zp, a is the discrete logarithm of the group element E(a).

It follows that

AdvstDH
G (t,qsDH) = Pr[G0⇒ 1].

Game 1. In Game G1, we change the internal notation of the game. First, for clarity and

without loss of generality, we assume the adversary queries its OP and stDH oracles only on

valid inputs (meaning their inputs are valid group elements in GL). Instead of representing

each element of G with an element of Zp, we use a vector over Z3
p. We define the basis vectors

~e1 := (1,0,0), ~e2 := (0,1,0), and ~e3 := (0,0,1). We map Z3
p to Zp by taking the inner product with

the vector (1,x,y). (Effectively, we are representing each element of Zp as a linear combination

modulo p of 1, x, and y.) We cache the map from Z3
p to G induced by this transformation in a

68

G1

init():
1 p← |G|; E←$ Bijections(Zp,G)

2 k← 0; 1←VE(~0); g←VE(~e1)

3 x,y←$Z∗p; ~x← 1,x,y
4 X ←VE(~e2); Y ←VE(~e3)

5 return (1,g,x,y)

OP(A,B, sgn):
6 ~c←VE−1(A) sgn VE−1(B) mod p

7 C←VE(~c); return C

VE(~t):
1 if TV [~t] 6=⊥ then return TV [~t]

2 k← k+1; ~tk←~t

3 v← 〈~t,~x〉; C← E(v); GL← GL∪{C}
4 TV [~t]←C; T I[C]←~t

5 return TV [~t]

stDH(A,B):
8 ~a←VE−1(A); ~b←VE−1(B)

9 return [[VE(x~a) = B]]

f in(Z):
10 return [[VE(x~e3) = Z]]

VE−1(C):
1 return T I[C]

Figure 2.5. Game G1 of the proof of Theorem 2.1.

table TV and its inverse map in a table T I.

Although one element of G may now have multiple representations, the bilinearity of the

inner product ensures that the view of the adversary is not changed, and Pr[G1] = Pr[G0].

Game 2. Next, we replace the random encoding function E with a lazily sampled encoding

represented by table TV for the forward direction and T I for the backward direction. Because we

want our encoding to be one-to-one, we sample from the set G\GL. This assigns a unique element

of G to each vector~t. However, as we’ve noted, each integer in Zp has multiple representations

in Z3
p. If two representations of the same integer are submitted to the encoding algorithm VE,

we set a bad flag and program the encoding table to maintain consistency.

We also change the format of the check in the stDH oracle. Since VE(x~a) = B =VE(~b) if

and only if 〈x~a,~x〉= 〈~b,~x〉, we return true if the latter condition holds and false otherwise. These

two conditions are equivalent, so Pr[G2] = Pr[G1].

Game 3. In this game, we stop programming the encoding table after the bad flag is set. Let

F1 denote the event that G3 sets the bad flag at any point. By the fundamental lemma of game

playing, Pr[G2]≤ Pr[G3 and F1 +Pr[F1].

Game 4. We remove the now-redundant bad flag, but the f in oracle now returns true if at any

69

point in game G3 the bad flag would have been set (i.e. if event F1 occurs). Otherwise, all oracles

behave exactly as they did in G3. It follows that Pr[G3 and F1]+Pr[F1]≤ Pr[G4].

Additionally, in the stDH oracle, we separate out checking for trivial queries: if the

adversary computed A = ga and B = Xa for an integer a of their choosing. If this is so, then

~a = a~e1 and ~b = a~e2, so 〈x~a,~x〉 = xa = 〈~b,~x〉, so may return true. If the query is nontrivial but

should still return true according to our previous condition, we set a bad[2] flag. This does not

change the oracle’s response to any query, so the above bound still holds.

Game 5. In Game G5, we no longer return true in the stDH oracle after the bad[2] flag is set.

This makes the second check redundant and has the effect that the stDH oracle’s behavior is no

longer dependent on the value of either x or ~x. Let event F2 denote the event that G5 sets the

bad[2] flag. By the fundamental lemma of game playing, Pr[G4]≤ Pr[G5 and F2]+Pr[F2].

Game 6. In Game G6, we remove the redundant check and bad flag from the stDH oracle, and

in the f in oracle we return true whenever the bad[2] flag would have been set in G5. Otherwise

all oracles behave precisely as they did in G5. It follows that Pr[G5 and F2]+Pr[F2]≤ Pr[G6]. We

also move the initialization of variables x, y, and ~x from init to f in. Since these variables are not

used by any oracle but f in, this does not change the view of the adversary.

At this point, we can collect the bounds from each gamehop to see that

AdvstDH
G (t,qsDH)≤ Pr[G6].

Therefore we analyze the advantage of an adversary in game G6.

We can separately analyze each condition of f in. We know that x and y are sampled

independently of the t + 4 entries of TV . For each index i ∈ [1 . . . t + 4], let Fi be the bivariate

linear polynomial over Zp whose coefficients are given by the vector ~ti. Then for any pair of

vectors (~ti,~t j), the condition 〈~ti−~t j〉= 0 holds only if (1,x,y) is a root of Fi−Fj. Using Lemma 1

of [212] and a union bound over all pairs, the probability of this event is at most (t +4)2/p.

For the second condition; we see that for any (~ti,~t j), it is true that 〈x~ti−~t j〉= 0 only if

(1,x,y) is a root of XFi−Fj, which is a bivariate quadratic polynomial over Zp. Again Using

Lemma 1 and a union bound, this occurs with probability at most 2(t +4)2/p.

70

G2, G3

stDH(A,B):
1 ~a←VE−1(A); ~b←VE−1(B)

2 if 〈x~a,~x〉= 〈~b,~x〉 then return true

3 return false

VE(~t):
1 if TV [~t] 6=⊥ then return TV [~t]

2 C←G\GL

3 if (∃~s : TV [~s] 6=⊥ and 〈~t,~x〉= 〈~s,~x〉)
4 then bad← true; C← TV [~s]

5 k← k+1; ~tk←~t

6 GL← GL∪{C}
7 TV [~t]←C; T I[C]←~t

8 return TV [~t]

G4, G5

stDH(A,B):
1 ~a←VE−1(A); ~b←VE−1(B); a←~a[1]
2 if ~a = a~e1 and ~b = a~e2 then return true

3 if 〈x~a,~x〉= 〈~b,~x〉 then bad[2]← true ; return true

4 return false

VE(~t):
1 if TV [~t] 6=⊥ then return TV [~t]

2 C←G\GL

3 k← k+1; ~tk←~t

4 GL← GL∪{C}
5 TV [~t]←C; T I[C]←~t

6 return TV [~t]

f in(Z):
5 if ∃i, j : 1≤ i < j ≤ k and 〈~ti−~t j,~x〉= 0
6 then return true

7 return [[VE(x~e3) = Z]]

G6

init():
1 p← |G|;
2 k← 0;1←VE(~0); g←VE(~e1)

3 X ←VE(~e2); Y ←VE(~e3)

4 return (1,g,x,y)

f in(Z):
5 x,y←$Z∗p; ~x← (1,x,y)
6 if ∃i, j : 1≤ i < j ≤ k and 〈~ti−~t j,~x〉= 0)
7 then return true

8 if ∃i, j : 1≤ i < j ≤ k

and 〈x~ti−~t j,~x〉= 0 or 〈x~t j−~ti,~x〉0
9 then return true

10 return [[VE(x~e3) = Z]]

stDH(A,B):
11 ~a←VE−1(A); ~b←VE−1(B);a←~a[1]
12 if (~a = a~e1 and ~b = a~e2) then return true

13 return 0

Figure 2.6. Top left: Games G2 (changes highlighted in gray) and G3 (changes highlighted in
frames) of the proof of Theorem 2.1. Top right: Games G4 and G5. Bottom: Game G6 (changes
highlighted in gray) of the proof of Theorem 2.1.

71

If neither event occurs, then the adversary wins only if [VE(x~e3) = Z]. Because the second

condition failed, we know that (x~e3) is not an entry in table TV . Therefore the response to

VE(x~e3) will be sampled uniformly at random, and it will equal Z with probability 1/p. Then by

the union bound, Pr[G6]≤ (3(t +4)2 +1)/p. Collecting the bounds gives the theorem statement

for all t > 25. �

2.5 The SIGMA Protocol

The SIGMA family of key exchange protocols introduced by Krawczyk [152, 153] describes

several variants for building authenticated Diffie–Hellman key exchange using the “SIGn-and-

MAc” approach. Its design has been adopted in several Internet security protocols, including, e.g.,

the Internet Key Exchange protocol [131, 149] as part of the IPsec Internet security protocol [150]

and the newest version 1.3 of the Transport Layer Security (TLS) protocol [201].

Beyond the basic SIGMA design, we are particularly interested in the SIGMA-I variant

which forms the basis of the TLS 1.3 key exchange and aims at hiding the protocol partic-

ipants’ identities as additional feature. We here present an augmented version of the basic

SIGMA/SIGMA-I protocols which includes explicit exchange of session-identifying random

numbers (nonces) to be closer to SIGMA(-like) protocols in practice, somewhat following the

“full-fledged” SIGMA variant [153, Appendix B]. We illustrate these protocol flows in Figure 2.7.

and Figure 2.8 formalizes both as key exchange protocols according to the syntax of Section 2.2.1.

The SIGMA and SIGMA-I protocols make use of a signature scheme S = (KGen,Sign,

Vrfy), a MAC scheme M = (KGen,Tag,Vrfy), a pseudorandom function PRF, and a function RO

which we model as a random oracle. The parties’ long-term secret keys consist of one signing key,

i.e., KE.KGen = S.KGen. The protocols consists of three messages exchanged and accordingly two

steps performed by both initiator and responder, which we describe in more detail now.

Initiator Step 1. The initiator picks a Diffie–Hellman exponent x $←− Zp and a random

nonce nI of length nl and sends nI and gx.

Responder Step 1. The responder also picks a random DH exponent y and a random

nonce nR. It then derives a master key as mk← RO(nI,nR,X ,Y,Xy) from nonces, DH shares,

72

Initiator I Responder Rcyclic group G= 〈g〉 of prime order p

RunInit1(I,skI,st) RunResp1(R,skR,st, peerpk,m = (nI,X))

x←$Zp, X ← gx y←$Zp, Y ← gy

nI←${0,1}nl nR←${0,1}nlnI,X
sid← (nI,nR,X ,Y)

mk← RO(nI,nR,X ,Y,Xy)

ks/kt/ke ← PRF(mk,0/1/2)
σ ← S.Sign(skR,Lrs‖nI‖nR‖X‖Y)

τ ←M.Tag(kt ,Lrm‖nI‖nR‖R)
c← (R,σ ,τ) c← Encke(R,σ ,τ)

RunInit2(I,skI,st, peerpk,m = (nR,Y,c)) nR,Y,c
sid← (nI,nR,X ,Y)
mk← RO(nI,nR,X ,Y,Y x)

ks/kt/ke ← PRF(mk,0/1/2)
(R,σ ,τ)← c (R,σ ,τ)←Decke(c)
abort if ¬S.Vrfy(peerpk[R],Lrs‖nI‖nR‖X‖Y,σ)

abort if ¬M.Vrfy(kt ,Lrm‖nI‖nR‖R,τ)
status← accepted; peerid← R
σ ′← S.Sign(skI,Lis‖nI‖nR‖X‖Y)
τ ′←M.Tag(kt ,Lim‖nI‖nR‖I)
c′← (I,σ ′,τ ′) c′← Encke(I,σ

′,τ ′) RunResp2(id,sk,st, peerpk,m = c′)(I,σ ′,τ ′)← c′ (I,σ ′,τ ′)←Decke(c
′)

abort if ¬S.Vrfy(peerpk[I],Lis‖nI‖nR‖X‖Y,σ ′)
abort if ¬M.Vrfy(kt ,Lim‖nI‖nR‖I,τ ′)

status← accepted; peerid← I

accept with key skey = ks and session identifier sid = (nI,nR,X ,Y)

st.state← (n,X ,x)

st.state← (n,n′,X ,Y,ks,kt , ke)

Figure 2.7. The SIGMA/SIGMA-I protocol flow diagram. Boxed code is only performed in
the SIGMA-I variant. Values Lx indicate label strings (distinct per x).

and the joint DH secret gxy = (gx)y. From mk, keys are derived via PRF with distinct labels:

the session key ks, the MAC key kt , and (only in SIGMA-I) the encryption key ke.

The responder computes a signature σ with skR over nonces and DH shares (and a unique

label Lrs) and a MAC value τ under key kt over the nonces and its identity R (and unique

label Lrm). It sends nI, gy, as well as R, σ , and τ to the initiator. In SIGMA-I the last

three elements are encrypted using ke to conceal the responder’s identity against passive

adversaries.

Initiator Step 2. The initiator also computes mk and keys ks, kt , and (in SIGMA-I, used to

decrypt the second message part) ke. It ensures both the received signature σ and MAC τ

verify, and aborts otherwise.

73

Activate(id,sk, peerid, peerpk,role):
1 st ′.role← role

2 st ′.status← running

3 if role = initiator then
4 (st ′,m′)← RunInit1(id,sk,st ′)

5 else m′←⊥
6 return (st ′,m′)

Run(id,sk,st, peerpk,m):
1 if st.status 6= running then
2 return ⊥
3 if st.role = initiator then
4 (st ′,m′)← RunInit2(id,sk,st, peerpk,m)

5 else if st.sid =⊥
6 (st ′,m′)← RunResp1(id,sk,st, peerpk,m)

7 else
8 (st ′,m′)← RunResp2(id,sk,st, peerpk,m)

9 return (st ′,m′)

RunInit1(id,sk,st):
1 nI

$←− {0,1}nl

2 x $←− Zp

3 X ← gx

4 st ′.state← (nI ,X ,x)

5 m′← (nI ,X)

6 return (st ′,m′)

RunResp1(id,sk,st, peerpk,m):
1 (nI ,X)← m

2 nR
$←− {0,1}nl

3 y $←− Zp

4 Y ← gy

5 st ′.sid← (nI ,nR,X ,Y)

6 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
7 mk← RO(nI‖nR‖X‖Y‖Xy)

8 ks← PRF(mk,0)
9 kt ← PRF(mk,1)

10 ke← PRF(mk,2)

11 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
12 st ′.state← (nI ,nR,X ,Y,ks,kt)

st ′.state← (nI ,nR,X ,Y,ks,kt ,ke)

13 m′← (nR,Y, id,σ ,τ)
m′← (nR,Y,Enc(ke,(id,σ ,τ)))

14 return (st ′,m′)

RunInit2(id,sk,st, peerpk,m):
1 (nR,Y, peerid,σ ,τ)← m

(nR,Y,c)← m

2 (nI ,X ,x)← st.state

3 st ′.sid← (nI ,nR,X ,Y)

4 mk← RO(nI‖nR‖X‖Y‖Y x)

5 ks← PRF(mk,0)
6 kt ← PRF(mk,1)

7 ke← PRF(mk,2)

8 (peerid,σ ,τ)←Dec(ke,c)

9 st ′.peerid← peerid

10 if S.Vrfy(peerpk[peerid],Lrs‖nI‖nR‖X‖Y,σ)
and M.Vrfy(kt ,Lrm‖nI‖nR‖peerid,τ) then

11 st ′.status← accepted

12 st ′.skey← ks

13 σ ′← S.Sign(sk,Lis‖nI‖nR‖X‖Y)
14 τ ′←M.Tag(kt ,Lim‖nI‖nR‖id)
15 m′← (id,σ ′,τ ′)

m′← Enc(ke,(id,σ ′,τ ′))

16 else
17 m′←⊥
18 st ′.status← rejected

19 return (st ′,m′)

RunResp2(id,sk,st, peerpk,m):
1 (nI ,nR,X ,Y,ks,kt)← st.state

(nI ,nR,X ,Y,ks,kt ,ke)← st.state

2 (peerid,σ ′,τ ′)← m
(peerid,σ ′,τ ′)←Dec(ke,m)

3 st ′.peerid← peerid

4 if S.Vrfy(peerpk[peerid],Lis‖nI‖nR‖X‖Y,σ ′)
and M.Vrfy(kt ,Lim‖nI‖nR‖peerid,τ ′) then

5 st ′.status← accepted

6 st ′.skey← ks

7 else st ′.status← rejected

8 m′← ε

9 return (st ′,m′)

Figure 2.8. The formalized SIGMA/SIGMA-I key exchange protocols (cf. Section 2.2.1). Boxed
code is only performed in the SIGMA-I variant.

74

It computes its own signature σ ′ under skI on nonces and DH shares (with a different label Lis)

and a MAC τ ′ under kt over the nonces and its identity I (with yet another label Lim). It

sends I, σ ′, and τ ′ to the responder (in SIGMA-I encrypted under ke) and accepts with

session key ks using the nonces and DH shares (nI,nR,X ,Y) as session identifier.

Responder Step 2. The responder finally checks the initiator’s signature σ ′ and MAC τ ′

(aborting if either fails) and then accepts with session key skey= ks and session identifier sid =

(nI,nR,X ,Y).

2.6 Tighter Security Proof for SIGMA-I

We now come to our first main result, a tighter security proof for the SIGMA-I protocol.

Note that by omitting message encryption our proof similarly applies to the basic SIGMA

protocol.

Theorem 2.2. Let the SIGMA-I protocol be as specified in Figure 2.8 based on a group G of

prime order p, a PRF PRF, a signature scheme S, and a MAC M, and let RO in the protocol be

modeled as a random oracle. For any (t,qN,qS,qRS,qRL,qT)-KE-SEC-adversary against SIGMA-I

making at most qRO queries to RO, we give algorithms B1, B2, B3, and B4 in the proof, with

running times tB1 ≈ t +2qRO log2 p and tBi ≈ t (for i = 2, . . . ,4) close to that of A, such that

AdvKE-SEC
SIGMA-I(t,qN,qS,qRS,qRL,qT)

≤
3q2

S

2nl+1 · p
+AdvstDH

G (tB1 ,qRO)+Advmu-PRF
PRF (tB2 ,qS,3qS,3)

+Advmu-EUF-CMA
S (tB3 ,qN,qS,qS,qRL)+Advmu-EUF-CMA

M (tB4 ,qS,qS,1,qS,1,0).

Here, nl is the nonce length in SIGMA-I and G is the used Diffie–Hellman group of prime

order p.

In terms of multi-user security for the employed primitives, multi-user PRF and MAC

security can be obtained tightly, e.g., via the efficient AMAC construction [30], and multi-user

signature security can be generically reduced to single-user security of any signature scheme with

a loss in the number of users, here parties (not sessions) in the key exchange game.

75

G1, G2

RunInit1(id,sk,st):
1 nI

$←− {0,1}nl

2 x $←− Zp

3 X ← gx

4 if (nI ,X) ∈ N then bad[C]← true ; abort
5 N← N∪{(nI ,X)}
6 st ′.state← (nI ,X ,x)

7 m′← (nI ,X)

8 return (st ′,m′)

RunInit2(id,sk,st, peerpk,m):
9 (nR,Y,c)← m

10 Recv← Recv∪{(nR,Y)}
11 (nI ,X ,x)← st.state

12 . . .

RunResp1(id,sk,st, peerpk,m):
13 (nI ,X)← m

14 nR
$←− {0,1}nl

15 y $←− Zp

16 Y ← gx

17 if (nR,Y) ∈ Recv then bad[O]← true ; abort
18 if (nR,Y) ∈ N then bad[C]← true ; abort
19 N← N∪{(nR,Y)}
20 st ′.sid← (nI ,nR,X ,Y)

21 . . .

RO(m):
101 if H[m] =⊥ then H[m] $←− {0,1}kl

102 return H[m]

Figure 2.9. Games G1 (changes highlighted in gray) and G2 (changes highlighted in frames)
for the proof of Theorem 2.2; with the explicit (lazy-sampled) random oracle RO.

Proof:

Our proof of key exchange security for SIGMA-I proceeds via a sequence of code-based

games [44]. For the first half, the proof conceptually follows the strategy put forward by

Cohn-Gordon et al. [78].

Game 0. The initial game, G0, is the key exchange security game played by A (cf. Figure 2.1),

using the KGen, Activate, and Run routines of SIGMA-I defined in Figure 2.8. Therefore,

Pr[G0⇒ 1] = Pr[GKE-SEC
KE,A ⇒ 1].

Game 1. Between G0 and G1 (Figure 2.9), we make internal changes to the record-keeping

of the game, namely we track the nonces and group elements chosen and received by honest

sessions. Whenever two honest sessions pick the same nonce or group element, we set a flag bad[C].

Whenever an honest responder session picks a nonce and group element that has already been

received by an initiator session, we set a flag bad[O]. This change is unobservable by the adversary,

hence

Pr[G0⇒ 1] = Pr[G1⇒ 1].

Game 2. In Game G2 (Figure 2.9), we abort whenever nonces and group elements collide

76

among honest sessions (i.e., the bad[C] flag is set), or whenever an honest responder session

chooses a nonce and group element already submitted by the adversary to an initiator (i.e.,

the bad[O] flag is set). By the identical-until-bad lemma [44],

Pr[G1⇒ 1]−Pr[G2⇒ 1]≤ Pr[bad[C] or bad[O]← true in G1].

In all of the calls to RunInit1 and RunResp1, up to qS pairs of nonces and group elements are

chosen uniformly at random. By the birthday bound, the probability of a collision between two

of these pairs setting the bad[C] flag is at most q2
S

2nl+1·p (where nl is the nonce length and p the

order of the Diffie–Hellman group). There are at most qS pairs received by initiator sessions,

so the probability that a responder session randomly chooses one of these pairs is at most qS
2nl ·p ;

then by the union bound we have that Pr[bad[O]← true in G1]≤
q2
S

2nl ·p . Since each of RunInit1 and

RunResp1 is called at most once per Send query, if an adversary makes qS queries to its Send

oracle, then

Pr[G1⇒ 1]−Pr[G2⇒ 1]≤
3q2

S

2nl+1 · p
.

In all subsequent games, we are now sure that each honest session chooses a unique nonce and

group element. Since the session identifier sid = (nI,nR,X ,Y) contains exactly one initiator and

one responder nonce, this furthermore implies that when two honest sessions are partnered, they

must have different roles.

Game 3. In Game G3 (Figure 2.10), we remove the now superfluous collision flags bad[C]

and bad[O] and add additional bookkeeping. All honest initiator sessions now log their outgoing

messages in an internal table Sent. Honest responder sessions use this table to check if the

message they received was sent by an honest initiator session. If so, they log their keys kt ,

ke, and ks in a second internal table, S, indexed by their session identifier. These changes are

unobservable by the adversary, so

Pr[G2⇒ 1] = Pr[G3⇒ 1].

77

Game 4. In Game G4 (Figure 2.10), we require that initiator sessions whose key material has

already been computed by an honest partner session simply copy their partners’ key material.

When an honest initiator session π i
u with nonce n and group element X receives a message

m ← (nR,Y,c), it sets its session identifier sid← (nI,nR,X ,Y). It then checks if S[sid] 6=⊥ (which is

only the case if π i
u has an honest partner), and if so uses the stored key material ks,kt ,ke← S[st ′.sid].

Recall that both partnered sessions agree on the DH shares X and Y as components of

sid. They hence also agree on the shared DH secret Z = gxy and thus on the master key derived

as RO(nI‖nR‖X‖Y‖Z) as well as the derived key ks, kt , and ke. For the adversary A it is hence

unobservable if initiators with honest partner actually compute their keys themselves or copy

their partners’ key material in Game G4, so

Pr[G3⇒ 1] = Pr[G4⇒ 1].

Game 5. In Game G5 (Figure 2.11), all honest sessions sample their master keys uniformly at

random (as long as the random oracle has not been been queried on the corresponding input) and

program the random oracle to that value (through RO’s internal table H[nI‖nR‖X‖Y‖Y x]← mk).

This is equivalent to RO performing the same checks and uniform sampling, and hence undetectable

for A:

Pr[G4⇒ 1] = Pr[G5⇒ 1].

Game 6. In Game G6 (Figure 2.11), responder sessions whose first message came from an honest

initiator stop programming the random oracle on their uniformly chosen master key mk. This is

undetectable for adversary A unless it makes a query RO(nI‖nR‖X‖Y‖Z), where sid = (nI,nR,X ,Y)

is the session identifier shared by two honest partnered sessions, and Z is the Diffie–Hellman

secret corresponding to the pair (X ,Y). We call this event F , and bound the probability of F by

giving a reduction B1 (specified in Figure 2.12) to the strong Diffie–Hellman assumption in the

DH group G. The reduction makes at most as many queries to its stDH oracle as A makes to

its RO oracle, as follows.

Given its strong DH challenge (A = ga,B = gb) and having access to an oracle stDHa(U,V)

78

G3, G4

RunInit1(id,sk,st):
1 nI

$←− {0,1}nl

2 x $←− Zp

3 X ← gx

4 if (nI ,X) ∈ N then abort
5 N← N∪{(nI ,X)}
6 st ′.state← (nI ,X ,x)

7 m′← (nI ,X)

8 Sent← Sent∪m′

9 return (st ′,m′)

RunInit2(id,sk,st, peerpk,m):
10 (nR,Y,c)← m

11 Recv← Recv∪{(nR,Y)}
12 (nI ,X ,x)← st.state

13 st ′.sid← (nI ,nR,X ,Y)

14 if S[st ′.sid] 6=⊥ then
15 mk← RO(nI‖nR‖X‖Y‖Y x)

16 ks← PRF(mk,0)
17 kt ← PRF(mk,1)
18 ke← PRF(mk,2)

19 ks,kt ,ke← S[st ′.sid]

20 else
21 mk← RO(nI‖nR‖X‖Y‖Y x)

22 ks← PRF(mk,0)
23 kt ← PRF(mk,1)
24 ke← PRF(mk,2)
25 (peerid,σ ,τ)←Dec(ke,c)

26 st ′.peerid← peerid

27 . . .

RunResp1(id,sk,st, peerpk,m):
28 (nI ,X)← m

29 nR
$←− {0,1}nl

30 y $←− Zp

31 Y ← gx

32 if (nR,Y) ∈ Recv then abort
33 if (nR,Y) ∈ N then abort
34 N← N∪{(nR,Y)}
35 st ′.sid← (nI ,nR,X ,Y)

36 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
37 mk← RO(nI‖nR‖X‖Y‖Xy)

38 ks← PRF(mk,0)
39 kt ← PRF(mk,1)
40 ke← PRF(mk,2)
41 if m ∈ Sent then
42 S[st ′.sid]← (ks,kt ,ke)

43 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
44 st ′.state← (nI ,nR,X ,Y,ks,kt)

45 m′← (nR,Y,Enc(ke,(id,σ ,τ)))

46 return (st ′,m′)

Figure 2.10. Games G3 (changes highlighted in gray) and G4 (changes highlighted in frames)
for the proof of Theorem 2.2.

which outputs 1 if Ua =V and 0 otherwise, B1 simulates G6 for an adversary A as follows. In all

honest initiator sessions, B1 embeds its challenge into the sent DH value as X← A ·gr, where r ∈Zp

is sampled uniformly at random for each session. Furthermore, in all responder sessions receiving

their first message from an honest initiator, B1 embeds its challenge as Y ← B ·gr′ , where r′ ∈ Zp

is sampled uniformly at random for each session.

Let us first observe that if event F occurs, then the value Z in the random oracle query

RO(nI‖nR‖X‖Y‖Z) will equal g(a+r)(b+r′) for some r,r′ ∈ Zp chosen by B1, and consequently

Z ·Y−r = g(a+r)(b+r′)−(b+r′)·r = ga(b+r′) = Y a.

79

This equality can be tested for by B1 by calling its stDHa oracle on the pair (Y,Z ·Y−r). We let

B1 do so whenever A queries RO on some value (nI‖nR‖X‖Y‖Z) where (nI,X = A ·gr) was output

by an honest initiator session and (nR,Y = g(b+r′)) was output by a responder session with an

honest initiator; the responder stores (nI,nR,X ,Y) in a look-up table Q so this can be checked

efficiently. If stDHa(Y,Z ·Y−r) = 1 on such occasion, i.e., event F occurs, B1 stops with output

Z ·Y−r ·A−r′ = g(a+r)(b+r′) ·g−(b+r′)·r ·g−ar′ = gab and wins. Therefore,

Pr[F]≤AdvstDH
G (B1).

One subtlety in this step is ensuring that B1 can respond correctly to RevSessionKey

queries to any initiator or responder session. We do so by accordingly programming the random

oracle on the sampled master key, where needed. First of all observe that responder sessions

without honest initiator keep picking their own Y share and compute mk regularly. Initiator and

responder sessions with honest partner have the challenge embedded and sample an independent

master key which is not programmed to the random oracle. However, B1 stops and wins (as

described above) if A ever queries the random oracle on the correct DH secret; i.e., A never sees

the (inconsistent) random oracle output for these master keys. The interesting case is when

an initiator session (which always embeds the challenge in its DH share as X = A ·gr) obtains a

message (nR,Y,c) not originating from an honest responder: Here, Y may well have been picked

by the adversary who could furthermore have corrupted the initiator’s peer and hence make the

initiator accept—with a master key it cannot compute itself.

We therefore let B1 attempt to copy the adversary’s master key, if it has been computed.

The RO oracle logs all queries it receives by their putative session id (nI,nR,X ,Y) in a look-up

table H ′, so B1 can efficiently access all Z such that (nI,nR,X ,Y,Z) has been queried to RO. Since

the DH secret corresponding to the pair (X ,Y) equals Y a+r, if Z is this DH secret, then

Z ·Y−r = Y (a+r)−r = Y a.

The reduction can check this equality using its stDHa oracle and in that case use the response

to RO(nI,nR,X ,Y,Z) as mk. Otherwise, B1 samples mk at random and stores it in the table Q

80

G5, G6

RunInit2(id,sk,st, peerpk,m):
1 (nR,Y,c)← m

2 Recv← Recv∪{(nR,Y)}
3 (nI ,X ,x)← st.state

4 st ′.sid← (nI ,nR,X ,Y)

5 if S[st ′.sid] 6=⊥ then
6 ks,kt ,ke← S[st ′.sid]

7 else
8 mk $←− {0,1}kl

9 if H[nI‖nR‖X‖Y‖Y x] 6=⊥
10 mk← H[nI‖nR‖X‖Y‖Y x]

11 H[nI‖nR‖X‖Y‖Y x]← mk

12 ks← PRF(mk,0)
13 kt ← PRF(mk,1)
14 ke← PRF(mk,2)
15 (peerid,σ ,τ)←Dec(ke,c)

16 st ′.peerid← peerid

17 if S.Vrfy(peerpk[peerid],Lrs‖nI‖nR‖X‖Y,σ)
and M.Vrfy(kt ,Lrm‖nI‖nR‖peerid) then

18 st ′.status← accepted

19 st ′.skey← ks

20 σ ′← S.Sign(sk,Lis‖nI‖nR‖X‖Y)
21 τ ′←M.Tag(kt ,Lim‖nI‖nR‖id)
22 m′← Enc(ke,(id,σ ′,τ ′))

23 else
24 m′←⊥ ; st ′.status← rejected

25 return (st ′,m′)

RunResp1(id,sk,st, peerpk,m):
26 (nI ,X)← m

27 nR
$←− {0,1}nl

28 y $←− Zp

29 Y ← gx

30 if (nR,Y) ∈ Recv then abort
31 if (nR,Y) ∈ N then abort
32 N← N∪{(nR,Y)}
33 st ′.sid← (nI ,nR,X ,Y)

34 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
35 mk $←− {0,1}kl

36 if m 6∈ Sent then
37 if H[nI‖nR‖X‖Y‖Xy] 6=⊥
38 mk← H[nI‖nR‖X‖Y‖Xy]

39 H[nI‖nR‖X‖Y‖Xy]← mk

40 ks← PRF(mk,0)
41 kt ← PRF(mk,1)
42 ke← PRF(mk,2)
43 if m ∈ Sent then
44 S[st ′.sid]← (ks,kt ,ke)

45 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
46 st ′.state← (nI ,nR,X ,Y,ks,kt)

47 m′← (nR,Y, id,σ ,τ)

48 return (st ′,m′)

Figure 2.11. Games G5 (changes highlighted in gray) and G6 (changes highlighted in frames)
for the proof of Theorem 2.2.

(Line 48 of Figure 2.12), indicating it should be programmed in the random oracle later if queried

on a matching Z value (Line 75). This ensures all responses to RevSessionKey queries are

consistent with A’s queries to the random oracle RO.

Observe that, in all this, B1 calls its stDH oracle at most once for each entry in the RO

table H[nI‖nR‖X‖Y‖Z] = mk. In RO, stDH is called (once) only for entries that were not present

when Q[(nI,nR,X ,Y)] was set, then H ′ is set. In RunInit2 and RunResp1, stDH is called only for

matching H ′ entries established prior to setting Q. Therefore, if stDH is called in RO for an

entry, it was not called in either RunInit2 or RunResp1. If stDH is called on an entry in RunResp1,

then the responder session is partnered, so its partner will copy its keys in RunInit2 and not call

stDH. Furthermore, due to uniqueness of nonces and DH shares (by Game G2), no RunInit2 or

81

B1(A,B)stDHa(·,·)

RunInit1(id,sk,st):
1 nI

$←− {0,1}nl

2 r $←− Zp

3 X ← A ·gr

4 if (nI ,X) ∈ N then abort
5 N← N∪{(nI ,X)}
6 st ′.state← (nI ,X ,r)

7 m′← (nI ,X)

8 Sent[m′]← x

9 return (st ′,m′)

RunInit2(id,sk,st, peerpk,m):
10 (nR,Y,c)← m

11 Recv← Recv∪{(nR,Y)}
12 (nI ,X ,r)← st.state

13 st ′.sid← (nI ,nR,X ,Y)

14 if S[st ′.sid] 6=⊥ then
15 ks,kt ,ke← S[st ′.sid]

16 else
17 mk $←− {0,1}kl

18 for each Z ∈ H ′[nI‖nR‖X‖Y]
19 if stDHa(Y,Z ·Y−r) = 1 then
20 mk← H[nI‖nR‖X‖Y‖Z]
21 Q[st ′.sid]← (r,⊥,mk)

22 ks← PRF(mk,0)
23 kt ← PRF(mk,1)
24 ke← PRF(mk,2)
25 (peerid,σ ,τ)←Dec(ke,c)

26 st ′.peerid← peerid

27 if S.Vrfy(Lrs‖nI‖nR‖X‖Y,σ , pkpeerid)
and M.Vrfy(kt ,Lrm‖nI‖nR‖peerid) then

28 st ′.status← accepted

29 st ′.skey← ks

30 σ ′← S.Sign(sk,Lis‖nI‖nR‖R‖W)

31 τ ′←M.Tag(kt ,Lim‖nI‖nR‖id)
32 m′← Enc(ke,(id,σ ′,τ ′))

33 else
34 m′←⊥
35 st ′.status← rejected

36 return (st ′,m′)

RunResp1(id,sk,st, peerpk,m):
37 (nI ,X)← m

38 nR
$←− {0,1}nl

39 r′ $←− Zp

40 mk $←− {0,1}kl

41 if m ∈ Sent then
42 r← Sent[m]

43 Y ← B ·gr′

44 st ′.sid← (nI ,nR,X ,Y)

45 for each Z ∈ H ′[nI‖nR‖X‖Y]
46 if stDHa(Y,Z ·Y−r) = 1 then
47 Finalize(Z ·Y−r ·A−r′)
48 Q[st ′.sid]← (r,r′,mk)

49 else
50 Y ← gr′

51 st ′.sid← (nI ,nR,X ,Y)

52 if H[nI‖nR‖X‖Y‖Xy] 6=⊥
53 mk← H[nI‖nR‖X‖Y‖X r′]

54 H[nI‖nR‖X‖Y‖Xy]← mk

55 if (nR,Y) ∈ Recv then abort
56 if (nR,Y) ∈ N then abort
57 N← N∪{(nR,Y)}
58 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
59 ks← PRF(mk,0)
60 kt ← PRF(mk,1)
61 ke← PRF(mk,2)
62 if m ∈ Sent then
63 S[st ′.sid]← (ks,kt ,ke)

64 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
65 st ′.state← (nI ,nR,X ,Y,ks,kt ,ke)

66 m′← (nR,Y,Enc(ke,(id,σ ,τ))

67 return (st ′,m′)

RO(m):
68 if H[m] =⊥ then
69 H[m] $←− {0,1}kl

70 parse nI‖nR‖X‖Y‖Z← m

71 H ′[nI‖nR‖X‖Y]← H ′[nI‖nR‖X‖Y]∪{Z}
72 if Q[(nI ,nR,X ,Y)] 6=⊥ then
73 (r,r′,mk)←Q[nI ,nR,X ,Y]

74 if stDHa(Y,Z ·Y−r) = 1 then
75 if r′ =⊥ then H[m]← mk

76 else Finalize(Z ·Y−r ·A−r′)

77 return H[m]

Figure 2.12. Reduction B1 to the strong Diffie–Hellman assumption for the proof of Theorem 2.2.
Sections highlighted in gray have been significantly altered compared to Game G6.

82

RunResp1 call makes stDH be invoked twice for the same H ′ entry.

Since the total time to iterate through the for loops over all Run and RO queries is at

most O(qRO), the running time of B1 is roughly that of A, plus the time needed to compute the

arguments of the stDH queries. Each of these arguments requires one group operation and one

exponentiation. (All other operations performed by B1 add only a small constant amount of time

per Send query, which is dominated by the runtime of A.) The exponentiation can be computed

using 2log2 p group operations using the square-and-multiply (or double-and-add) algorithm, so

tB1 ≈ t +2qRO log2 p. The runtime t of A already includes the computation of 2qS log2 p group

operations, so this is a significant but not prohibitive increase in runtime.

Having B1 perfectly simulate Game G5 for A up to the point when F happens, and G6

and G5 differing only when F happens, we have

Pr[G5⇒ 1] = Pr[G6⇒ 1]+Pr[F]≤ Pr[G6⇒ 1]+AdvstDH
G ()(tB1 ,qRO),

and tB1 ≈ t +2qRO log2 p.

Game 7. In Game G7 (Figure 2.13), responder oracles responding to honest messages samples

session, MAC, and encryption keys ks, kt , and ke randomly instead of computing them through

a PRF. (Initiator oracles partnered with an honest responder will continue to copy those, now

randomly sampled keys.)

Since the PRF key mk in this case is sampled independently of the random oracle and

the rest of the game, this reduces straightforwardly to the multi-user security of the PRF via

the reduction B2 we give in Figure 2.13. The adversary B2 makes one New and two FUNC

queries for each RunResp1 query, or three FUNC queries in SIGMA-I. Notably, it makes at most

three FUNC queries per user, and no Corrupt queries because mk is never revealed to the

adversary. Outside of the oracle calls, its running time exactly equals that of A in Game G6,

as their pseudocode is identical, so tB2 ≈ t. Using its Fn oracle of the PRF game, B2 perfectly

simulates G6 if the oracle gives real-PRF answers and G7 if it returns uniformly random values.

Therefore,

Pr[G6⇒ 1]≤ Pr[G7⇒ 1]+Advmu-PRF
PRF ()(tB2 ,qS,3qS,3,0).

83

G7

RunResp1(id,sk,st, peerpk,m):
1 (nI ,X)← m

2 nR
$←− {0,1}nl

3 y $←− Zp

4 Y ← gy

5 if (nR,Y) ∈ Recv then abort
6 if (nR,Y) ∈ N then abort
7 N← N∪{(nR,Y)}
8 st ′.sid← (nI ,nR,X ,Y)

9 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
10 mk $←− {0,1}kl

11 if m 6∈ Sent then
12 if H[Y x‖nI‖nR‖X‖Y] 6=⊥
13 mk← H[Y x‖nI‖nR‖X‖Y]
14 ks← PRF(mk,0)
15 kt ← PRF(mk,1)
16 ke← PRF(mk,2)
17 if m ∈ Sent

18 ks
$←− {0,1}kl

19 kt
$←− {0,1}kl

20 ke
$←− {0,1}kl

21 S[st ′.sid]← (ks,kt ,ke)

22 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
23 st ′.state← (nI ,nR,X ,Y,ks,kt)

24 m′← (nR,Y,Enc(ke,(id,σ ,τ))

25 return (st ′,m′)

B
Fn(·,·)
2

RunResp1(id,sk,st, peerpk,m):
1 (nI ,X)← m

2 nR
$←− {0,1}nl

3 y $←− Zp

4 Y ← gy

5 if (nR,Y) ∈ Recv then abort
6 if (nR,Y) ∈ N then abort
7 N← N∪{(nR,Y)}
8 st ′.sid← (nI ,nR,X ,Y)

9 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
10 mk $←− {0,1}kl

11 if m 6∈ Sent then
12 if H[nI‖nR‖X‖Y‖Xy] 6=⊥
13 mk← H[nI‖nR‖X‖Y‖Xy]

14 ks← PRF(mk,0)
15 kt ← PRF(mk,1)
16 ke← PRF(mk,2).
17 if m ∈ Sent

18 New(); i++

19 ks← Fn(i,0)
20 kt ← Fn(i,1)
21 ke← Fn(i,2)
22 S[st ′.sid]← (ks,kt ,ke)

23 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
24 st ′.state← (nI ,nR,X ,Y,ks,kt)

25 m′← (nR,Y,Enc(ke,(id,σ ,τ))

26 return (st ′,m′)
Figure 2.13. Game G7 and reduction B2 to PRF security for the proof of Theorem 2.2. Changes
from G6 resp. compared to G7 highlighted in gray .

Observe that from now on, session and MAC keys of responder oracles that received

honest initiator’s messages are chosen independently at random, and that initiator oracles with

matching sid will copy those keys. Notably, this is the case even for sessions whose (own or

peer’s) long-term secret have been revealed to the adversary. We will use these properties in the

following to argue authentication of sessions as well as forward security of the session keys.

Our final game hops are concerned with the explicit authentication performed through

signatures and MACs in the SIGMA-I protocol, and as such extend those proof steps for implicit

authentication of the main protocols in [78].

Game 8. In Game G8 (Figure 2.14), we log all messages for which signatures are generated

84

by an honest session, and set a bad flag bad[S] if the adversary submits a valid signature under

an uncorrupted signing key for a message which was not produced by an honest session. This

internal bookkeeping does not affect the adversary’s advantage, so

Pr[G7⇒ 1] = Pr[G8⇒ 1].

Game 9. In Game G9 (Figure 2.14), we abort if the bad[S] flag is set. By the identical-until-bad

lemma, the difference in advantage between G8 and G9 is bounded by the probability that this

event occurs, which we reduce via an algorithm B3 to the multi-user security of the digital

signature scheme S.

In the reduction, B3 obtains all long-term public keys from the multi-user signature game

and uses its signing oracles for any honest signature to be produced. It therefore makes qN

queries to New and one Sign query for each call to RunResp1 or RunInit2, for at most qS such

queries. It relays RevLongTermKey queries as corruptions in its multi-user game, making

qRL corruption queries in total. When bad[S] is triggered, B3 submits the triggering message and

signature under the targeted (uncorrupted) public key as its forgery. As the triggering message

was not signed before under the corresponding secret key (and hence not queried to the signing

oracle by B3), the forgery is valid and B3 wins if bad[S] is set. It follows that

Pr[G8⇒ 1]≤ Pr[G9⇒ 1]+Advmu-EUF-CMA
S (B3)(tB3 ,qN,qS,qS,qRL).

Except for the replacement of key generation, signatures, corruptions with oracle queries, the

pseudocode of B3 is identical to that of A in game G8, so tB3 ≈ t.

Game 10. In Game G10 (Figure 2.14), we remove the now redundant bad[S] flag again, and log

all MAC tags generated by honest sessions with honest partners in a list QM (using, as before,

the table S to determine whether a session has an honest partner). We set a flag bad[M] if a

session with an honest partner receives a valid MAC tag which was not computed by any honest

oracle. This bookkeeping is similar to the changes from G7 to G8, but noting MAC tags instead

85

G8, G9

RunInit2(id,sk,st, peerpk,m):
1 . . .
2 if S.Vrfy(peerpk[peerid],Lrs‖nI‖nR‖X‖Y,σ)

and M.Vrfy(kt ,Lrm‖nI‖nR‖peerid,τ) then
3 if revltkpeerid = ∞ and

(peerid,Lrs‖nI‖nR‖X‖Y) /∈QS then
4 bad[S]← true ; abort

7 st ′.status← accepted

8 st ′.skey← ks

9 σ ′← S.Sign(sk,Lis‖nI‖nR‖X‖Y)
10 QS←QS ∪{(id,Lis‖nI‖nR‖X‖Y)}
11 τ ′←M.Tag(kt ,Lim‖nI‖nR‖id)

14 . . .

RunResp1(id,sk,st, peerpk,m):
15 . . .
16 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
17 QS←QS ∪{(id,Lrs‖nI‖nR‖X‖Y)}
18 . . .
19 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)

21 . . .

RunResp2(id,sk,st, peerpk,m):
22 . . .
23 if S.Vrfy(peerpk[peerid],Lis‖nI‖nR‖X‖Y,σ ′)

and M.Vrfy(kt ,Lim‖nI‖nR‖peerid,τ ′) then
24 if revltkpeerid = ∞ and

(peerid,Lrs‖nI‖nR‖X‖Y) /∈QS then
25 bad[S]← true ; abort

28 st ′.status← accepted

29 st ′.skey← ks

30 else st ′.status← rejected

31 return (st ′,m′)

G10, G11

RunInit2(id,sk,st, peerpk,m):
1 . . .
2 if S.Vrfy(peerpk[peerid],Lrs‖nI‖nR‖X‖Y,σ)

and M.Vrfy(kt ,Lrm‖nI‖nR‖peerid) then
3 if revltkpeerid = ∞ and

(peerid,Lrs‖nI‖nR‖X‖Y) /∈QS then
4 abort
5 if S[st ′.sid] 6=⊥ and

(st ′.sid,Lrm‖nI‖nR‖peerid) /∈QM then
6 bad[M]← true ; abort
7 st ′.status← accepted

8 st ′.skey← ks

9 σ ′← S.Sign(sk,Lis‖nI‖nR‖X‖Y)
10 QS←QS ∪{(id,Lis‖nI‖nR‖X‖Y)}
11 τ ′←M.Tag(kt ,Lim‖nI‖nR‖id)
12 if S[st ′.sid] 6=⊥ then
13 QM ←QM ∪{(st ′.sid,Lim‖nI‖nR‖id)}
14 . . .

RunResp1(id,sk,st, peerpk,m):
15 . . .
16 σ ← S.Sign(sk,Lrs‖nI‖nR‖X‖Y)
17 QS←QS ∪{(id,Lrs‖nI‖nR‖X‖Y)}
18 . . .
19 τ ←M.Tag(kt ,Lrm‖nI‖nR‖id)
20 if S[st ′.sid] 6=⊥ then
21 QM ←QM ∪{(st ′.sid,Lrm‖nI‖nR‖id)}
22 . . .

RunResp2(id,sk,st, peerpk,m):
23 . . .
24 if S.Vrfy(peerpk[peerid],Lis‖nI‖nR‖X‖Y,σ ′)

and M.Vrfy(kt ,Lim‖nI‖nR‖peerid,τ ′) then
25 if revltkpeerid = ∞ and

(peerid,Lis‖nI‖nR‖X‖Y) /∈QS then
26 abort
27 if S[st ′.sid] 6=⊥ and

(st ′.sid,(peerid,Lim‖nI‖nR‖peerid) /∈QM then
28 bad[M]← true ; abort
29 st ′.status← accepted

30 st ′.skey← ks

31 else st ′.status← rejected

32 return (st ′,m′)

Figure 2.14. Games G8, G9, G10, and G11 for the proof of Theorem 2.2. Changes in G8 and
G10 are highlighted in gray , changes in G9 and G11 are highlighted in frames.

86

of signatures. As before, the bookkeeping itself does not affect the adversary’s advantage:

Pr[G9⇒ 1] = Pr[G10⇒ 1].

Game 11. In Game G11 (Figure 2.14), we abort if the bad[M] flag is set to true. Again applying

the identical-until-bad lemma, we need to bound the probability of bad[M] being set in G10,

which we do via the following reduction B4 to the multi-user EUF-CMA security of the MAC

scheme M.

The reduction B4 simulates G10 truthfully, except that for any session with honest origin

partner (i.e., session with state st where S[st.sid] 6=⊥), B4 does not compute kt itself, but instead

assigns an incremented user identifier i to this session’s sid and computes any calls to Tag or

Vrfy using its corresponding oracles for user i. There is at most one query to NewUser, and

one each to Tag and Vrfy for each of A’s queries to Send. Hence B4 makes at most qS queries to

each of these three oracles, and at most one query to Tag and Vrfy per user in the mu-EUF-CMA

game. When bad[M] is triggered, B4 submits the triggering message and MAC tag under user

identifier i as its forgery. In the simulation, sessions will share a user identifier i if and only if

they are partnered and would share keys in Game G10. These keys are furthermore unique to one

initiator and one responder session only, so consistency is maintained. Furthermore, kt cannot

be exposed (by RevLongTermKey or RevSessionKey) to adversary A, hence implicitly

replacing it with the MAC game’s oracles is sound, and B4 makes no Corrupt queries. Except

for oracle replacements, the pseudocode of B4 is identical to that of A in G10, so tB4 ≈ t.

If bad[M] is triggered, then S[st ′.sid] 6=⊥, so st ′.sid corresponds to some user identifier i in

the multi-user EUF-CMA game. Additionally, a tag τ for message m was verified under identity i,

and (st ′.sid,m) was not logged in QM. Since B4 logs (st ′.sid,m) every time it calls its Tag oracle

on the pair (i,m), this call cannot have occurred. Then τ is a valid forgery on m, which B4 will

output for user i to win the EUF-CMA game. Thus,

Pr[G10⇒ 1]≤ Pr[G11⇒ 1]+Advmu-EUF-CMA
M ()(tB4 ,qS,qS,1,qS,1,0).

87

We can now consider the final advantage of an adversary playing Game G11. Adversary A

has a non-zero advantage if in the final oracle query f in(b′)

1. Sound is false,

2. ExplicitAuth is false, or

3. Fresh is true and b′ = b.5

Soundness.

The flag Sound is set if (1) three honest sessions hold the same session identifier, or if (2)

two partnered sessions hold different session keys.

For (1): No three honest sessions can share the same session identifiers, as this would

require a collision in either the contained initiator or responder nonce, which is excluded by

Game G2.

For (2): The session identifier includes both nonces n and nR and DH shares X and Y ,

which together determine the derived master key mk = RO(nI‖nR‖X‖Y‖Z) (where Z is the DH

secret from X and Y) and thus the session key. Agreement on the session identifier hence implies

deriving the same session key.

Hence, in Game G11, Sound is always true.

Explicit authentication.

The predicate ExplicitAuth requires that for any session π i
u which accepts with a non-

compromised peer v, there exists a partnered session π
j

v of user v with opposite role which, if it

accepts, has u set as its peer.

The session π i
u, prior to accepting, obtained a valid signature on π i

u.sid and a label

corresponding to a role r 6= π i
u.role. Due to Game G9, this signature must have been issued by

an honest session π
j

v (since v was not compromised at this point). All honest sessions sign their

own sid and a label corresponding to their own role, so π i
u.sid = π

j
v .sid and π i

u.role = r 6= π
j

v .role

are satisfied.

Furthermore, when π
j

v accepts, it must have received a valid MAC tag τ on a label

identifying an opposite-role session and that session’s user identity, as well as their shared nonces.
5If Fresh is false, b = b′ = 0 happens with probability 1

2 , so A’s advantage is 0.

88

Due to Game G11, this MAC value must have been computed by an honest session holding the

same nonces, as π
j

v has an honest partner session and therefore S[π j
v .sid] 6=⊥. Furthermore, by

Game G2, nonces do not collide and hence that session must have been π i
u, thus computing the

MAC on user identity u, which π
j

v accordingly sets as peer identity.

Therefore ExplicitAuth is always true in G11. Note that we did not require that the

long-term key of user u was uncorrupted, and we allow the adversary to continue interacting

with sessions after compromise; hence covering key compromise impersonation attacks.

Guessing the challenge bit.

Finally, we have to consider A’s chance of guessing the challenge bit b, which it may only

learn through Test queries such that all tested sessions are fresh (i.e., Fresh is true).

The Fresh predicate being true ensures that all tested sessions (those in T) accepted prior

to their respective partner being corrupt. Then, as ExplicitAuth is true, we have that for each

tested session there exists an honest session with the same sid and different roles. This session,

by Fresh, was not tested or revealed. Being partnered, the first message (nI,X) between these

two honest sessions was not tampered with, so in the responder session, whether it was the

tested session or its partner, the master and session keys are sampled uniformly at random (due

to Games G6 and G7). Since the initiator session holds the same sid, it copied the responder’s

random session key (due to Game G4). This random session key was not revealed in either of the

two sessions (by Fresh), and hence from A’s perspective is a uniformly random and independent

value. In all Test oracle responses, k0 and k1 are hence identically distributed and so G11 is fully

independent of b. It follows that the adversary A has no better than a 1
2 probability of choosing

b′ equal to b, so

Pr[G11⇒ 1] =
1
2
,

which concludes the proof. �

2.7 The TLS 1.3 Handshake Protocol

The Transport Layer Security (TLS) protocol in version 1.3 [201] bases its key exchange

design (the so-called handshake protocol) on a variant of SIGMA-I. Following the core SIGMA

89

design, the TLS 1.3 main handshake is an ephemeral Diffie–Hellman key exchange, authenticated

through a combination of signing and MAC-ing the (full, hashed) communication transcript.6

Additionally, and similar to SIGMA-I, beyond establishing the main (application traffic) session

key, handshake traffic keys are derived and used to encrypt part of the handshake.

Beyond additional protocol features like negotiating the cryptographic algorithms to be

used, communicating further information in extensions, etc.—which we do not capture here—,

TLS 1.3 however deviates in two core cryptographic aspects from the more simplistic and abstract

SIGMA(-I) design: it hashes the communication transcript when deriving keys and computing

signatures and MACs, and it uses a significantly more complicated key schedule. In this section

we revisit the TLS 1.3 handshake and discuss the careful technical changes and additional

assumptions needed to translate our tight security results for SIGMA-I to TLS 1.3’s main key

exchange mode.

2.7.1 Protocol Description

We focus on a slightly simplified version of the handshake encompassing all essential cryp-

tographic aspects for our tightness results. In particular, we only consider mutual authentication

and security of the main application traffic keys (see [104, 106, 113, 103] for full computational,

multi-stage key exchange analyses of the different modes with varying authentication) and

accordingly leave out some computations and additional messages. To ease linking back to the

underlying SIGMA-I structure, we describe the protocol in the following referencing back to the

latter (cf. Section 2.5). We illustrate the handshake protocol and its accompanying key schedule

in Figure 2.15, the latter deriving keys in the extract-then-expand paradigm of the HKDF key

derivation function [155].7

In the TLS 1.3 handshake, the client acts as initiator and the server as responder. Within

Hello messages, both send nonce values nC resp. nS together with ephemeral Diffie–Hellman

shares gx resp. gy. Based on these values, both parties extract a handshake secret HS from the
6TLS 1.3 also specifies an abbreviated resumption-style handshake based on pre-shared keys; we focus on the

main DH-based handshake in this work.
7We follow the standard HKDF syntax: HKDF.Extract(XTS,SKM) on input salt XTS and source key mate-

rial SKM outputs a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK
and context information CTXinfo outputs pseudorandom key material KM.

90

Client Server

ClientHello: nC
$←− {0,1}nl, X ← gx

ClientHello

ServerHello: nS
$←− {0,1}nl, Y ← gy

ServerHello

DHE← Y x DHE← XyHS← HKDF.Extract(C1,DHE)
CHTS/SHTS← HKDF.Expand(HS,L1/L2,H(CH‖SH))

dHS← HKDF.Expand(HS,L3,H(""))
tkchs/tkshs← HKDF.Expand(CHTS/SHTS,L4,H(""))

ServerCert: pkS

ServerCertVfy: SCV← S.Sign(skS,L5‖H(CH‖ . . .‖SCRT))
fkS← HKDF.Expand(SHTS,L6,H(""))

ServerFinished: SF← HMAC(fkS,H(CH‖ . . .‖SCV))
{ServerCert,ServerCertVfy,ServerFinished}tkshs

abort if ¬S.Vrfy(pkS,L5‖H(CH‖ . . .‖SCRT),SCV)
abort if SF 6= HMAC(fkS,H(CH‖ . . .‖SCV))

ClientCert: pkC

ClientCertVfy: CCV← S.Sign(skC,L7‖H(CH‖ . . .‖CCRT))
fkC← HKDF.Expand(CHTS,L6,H(""))
ClientFinished: CF← HMAC(fkC,H(CH‖ . . .‖CCV))

{ClientCert,ClientCertVfy,ClientFinished}tkchs

abort if ¬S.Vrfy(pkC,L7‖H(CH‖ . . .‖CCRT),CCV)
abort if CF 6= HMAC(fkC,H(CH‖ . . .‖CCV))

MS← HKDF.Extract(dHS,0)
ATS← HKDF.Expand(MS,L8,H(CH‖ . . .‖SF))

accept with key skey = ATS, session identifier sid = (nC,nS,X ,Y)

DHE = gxy

HS

dHS

MS

Ext

Exp

Ext

CHTS tkchs

fkC

Exp

H(CH‖SH)

Exp

Exp

SHTS tkshs

fkS

Exp

H(CH‖SH)

Exp

Exp

ATSExp

H(CH‖ . . .‖SF)

Protocol flow legend Message Abbreviations
MSG: Z message MSG sent, containing Z CH ClientHello

{MSG}K message AEAD-encrypted with K = tkshs/tkchs SH ServerHello

CCRT/SCRT Client/ServerCert
CCV/SCV Client/ServerCertVfy
CF/SF Client/ServerFinished

Figure 2.15. The simplified TLS 1.3 main Diffie–Hellman handshake protocol (left) and key
schedule (right). Values Li and Ci indicate bitstring labels, resp. constant values, (distinct per i).
Boxes Ext and Exp denote HKDF extraction resp. expansion, dashed inputs to Exp indicating
context information (see protocol figure for detailed computations).

shared DH value DHE = gxy using HKDF.Extract with a constant salt input.8 In a second step,

client and server derive their respective handshake traffic keys tkchs, tkshs and MAC keys fkC,

fkS through two levels of HKDF.Expand steps from the handshake secret HS, including in the

first level distinct labels and the hashed communication transcript H(CH‖SH) so far as context

information.

The handshake traffic keys are then used to encrypt the remaining handshake messages.

First the server, then the client send their certificate (carrying their identity and public key),
8This salt input becomes relevant for pre-shared key handshakes, but in the full handshake takes the constant

value C1 = Expand(Extract(0,0),"derived",H("")).

91

a signature over the hashed transcript up to including their certificate (H(CH‖ . . .‖SCRT), resp.

H(CH‖ . . .‖CCRT)), as well as a MAC over the (hashed) transcript up to incl. their signatures

(H(CH‖ . . .‖SCV), resp. H(CH‖ . . .‖CCV)). Note the similarity to SIGMA-I here: each party signs

both nonces and DH values (within CH‖SH, modulo transcript hashing) together with a unique

label, and then MACs both nonces and their own identity (the latter being part of their

certificate).9 The application traffic secret ATS—which we treat as the session key skey, unifying

secrets of both client and server—is then derived from the master secret MS through HKDF.Expand

with handshake context up to the ServerFinished message. The master secret in turn is derived

through (context-less) Expand and Extract from the handshake secret HS.

2.7.2 Handling the TLS 1.3 Key Schedule

As mentioned before, the message flow of the TLS 1.3 handshake relatively closely follows

the SIGMA-I design [152, 153] (cf. Figure 2.7): after exchanging nonces and DH shares (in Hello)

from both sides, the remaining (encrypted) messages carry identities (Certificate), signatures

over the nonces and DH shares (CertificateVerify), and MACs over the nonces and identities

(Finished).

What crucially differentiates the TLS 1.3 handshake from the basic SIGMA-I design

(beyond putting more under the respective signatures and MACs, which does not negatively

affect the key exchange security we are after) is the way keys are derived. While SIGMA-I

immediately derives a master key through a random oracle with input both the shared DH secret

and the session identifying nonces and DH shares, TLS 1.3 separates them in its HKDF-based

extract-then-expand key schedule: The core secrets—handshake secret (HS) and master secret

(MS)—are derived without further context purely from the shared DH secret DHE = gxy (beyond

other constant inputs). Only when deriving the specific-purpose secrets—handshake traffic keys

(tkchs, tkshs), MAC keys (fkC, fkS), and session key (ATS)—is context added to the key derivation,

including in particular the nonces and DH shares identifying the session. To complicate matters

even further, this context is hashed before entering key derivation (or signature and MAC

computation), and the final session key ATS depends on more messages than just the session-
9Instead of using distinct labels for the client and server MAC computations, TLS 1.3 employs distinct MAC

keys for client and server, achieving separation between the two MAC values this way.

92

identifying ones. Since our tighter security proof for the SIGMA(-I) protocol (cf. Section 2.6)

heavily makes use of (exactly) the session identifiers being input together with DH secrets to a

random oracle when programming the latter, the question arises how to treat the TLS 1.3 key

schedule when aiming at a similar proof strategy.

In their concurrent work, Diemert and Jager [98] satisfy this requirement by modeling

the full derivation of each stage key in their multi-stage treatment as a separate random oracle.

This directly connects inputs to keys, but results in a monolithic random oracle treatment of the

key schedule which loses the independence of the intermediate HKDF.Extract and HKDF.Expand

steps in translation.

We overcome the technical obstacle of this linking while staying closer to the structure of

TLS 1.3’s key schedule. First of all, we directly model both HKDF.Extract and HKDF.Expand as

individual (programmable) random oracles, which leads to a slightly less excessive use of the

random oracle technique. We then have to carefully orchestrate the programming of intermediate

secrets and session keys in a two-level approach, connecting them through constant-time look-ups,

and taking into account that inputs to deriving the session keys depend on values established

through the intermediate secrets (namely, the server’s Finished MAC). Along the way, we

separately ensure that we recognize any hashed inputs of interest that the adversary might query

to the random oracle, without modeling the hash function H as a random oracle itself. By tracking

intermediate programming points (especially HS and MS) in the random oracles, we recover the

needed capability of linking sessions and their session identifiers and DH shares exchanged to the

corresponding session keys. This finally allows us to again (efficiently) determine when and on

what input to query the strong Diffie–Hellman oracle when programming challenge DH shares

into the TLS 1.3 key exchange execution during the proof.

2.8 Tighter Security Proof for the TLS 1.3 Handshake

We now give our second main result, the tighter-security bound for the TLS 1.3 handshake

protocol.

Theorem 2.3. Let A be a key exchange security adversary against the TLS 1.3 handshake protocol

as specified in Figure 2.15 based on a hash function H, a signature scheme S, and a group G of

93

prime order p, and let the HKDF functions Extract and Expand in the protocol be modeled as

(independent) random oracles RO1, resp. RO2. For any (t,qN,qS,qRS,qRL,qT)-KE-SEC-adversary

against SIGMA-I making at most qRO queries to the random oracle, we give algorithms B1, B2,

B3, and B4 in the proof, with running times tBi ≈ t (for i = 1,3,4) and tB2 ≈ t +2qRO log2 p close

to that of A, such that

AdvKE-SEC
TLS1.3 (t,qN,qS,qRS,qRL,qT)≤

3q2
S

2nl+1 · p
+AdvCR

H (tB1)

+2 ·AdvstDH
G (tB2 ,qRO)+

qRO ·qS
2kl−1 +Advmu-EUF-CMA

S (tB3 ,qN,qS,qS,qRL)

+Advmu-EUF-CMA
HMAC (tB4 ,qS,qS,1,qS,1,0).

Here, nl = 256 is the nonce length in TLS 1.3, kl is the output length of RO2 = HKDF.Expand, G

is the used Diffie–Hellman group of prime order p, and qS ·qRO ≤ 2kl−3.10

Proof: We prove our bound by making an incremental series of changes to the key

exchange security game and limiting the amount that each change affects the success probability

of A.

Game 0. The initial game, Game G0, is the key exchange security game for TLS played by A,

using the implicit KGen, Activate, and Run routines defined by the TLS protocol specification

on the left side of Figure 2.15. (In this game, HKDF.Extract and HKDF.Expand are modeled by

random oracles RO1 and RO2 respectively.) By definition,

Pr[G0⇒ 1] = Pr[GKE-SEC
TLS,A ⇒ 1].

Game 1. In game G0, we start logging the nonces and group elements chosen by honest sessions.

Whenever two honest sessions choose the same nonces or group elements, we set a flag bad[C].

Whenever an honest responder session chooses a nonce and group element that have already

been received by another session, we set a flag bad[O]. We also make both random oracles RO1

and RO2 lazily sampled using internal tables H1 and H2. These changes only affect the values of
10We simplify the factor on AdvstDH

G to 2 by assuming qS ·qRO ≤ 2kl−3, which is true for any reasonable real-world
parameters. See the proof for the exact bound.

94

the game’s internal state, and the view of the adversary remains the same as in G0, so

Pr[G1⇒ 1] = Pr[G0⇒ 1].

Game 2. Starting with G2, we abort whenever two honest sessions sample the same nonce or

group element and whenever an honest responder samples a nonce and group element that are

already in use. Since this happens only after one of the flags bad[C] and bad[O] is set, by the

identical-until-bad lemma,

Pr[G1⇒ 1]−Pr[G2⇒ 1]≤ Pr[bad[C]← true or bad[O]← true in G1].

One nonce and one group element is chosen in each RunInit1 call and each RunResp1 call, so at

most one nonce and one group element is chosen for each of the qS queries the adversary makes

to its Send oracle. We use the birthday bound to limit the probability of a collision (flag bad[C])

in either the set of honest sessions’ nonces or the set of honest sessions’ DH shares to q2
S

2nl+1·p .

Every time a responder session chooses a nonce and group element, there are at most qS values

have already been chosen, so by the union bound bad[O] is set with probability at most q2
S

2nl ·p .

Therefore

Pr[G1⇒ 1]−Pr[G2⇒ 1]≤
3q2

S

2nl+1 · p
.

Game 3. Next, we must ensure that partial transcripts between honest sessions do not collide

under the hash function H. This is a step unique to the TLS proof, which hashes all of its

context with a collision-resistant hash function before it is input into key-derivation. In G3,

honest sessions will log all of their hash outputs in a look-up table T : whenever an honest session

computes d = H(s) for some string s, it sets T [d]← s if T [d] has not already been defined. If T [d]

is not empty, then some prior honest session has computed d = H(s′) for some string s′. The

session will set a flag bad[H] if s′ 6= s, noting that a collision has occurred. We also remove the

now superfluous bad[C] flag. These administrative changes do not affect the view of the adversary,

95

so

Pr[G3⇒ 1] = Pr[G2⇒ 1].

Game 4. In Game G4, we abort whenever hashes computed by honest sessions collide (i.e.

the bad[H] flag is set). By the identical-until-bad lemma,

Pr[G3⇒ 1]−Pr[G4⇒ 1]≤ Pr[bad[H]← true in G3].

We bound the probability that bad[H] is set via a reduction B1 to the collision-resistance security

of H. The reduction simulates G3 honestly for the adversary A. If the flag bad[H] is set, then

the reduction has obtained strings s, s′, and d such that s′ 6= s, and H(s) = H(s′) = d. Then B1

outputs (s,s′) and wins the collision-resistance game, so Advcr
H(B1) ≥ Pr[bad[H]← true in G3].

The runtime tB1 of B1 approximately equals the runtime of A in G3. It follows that

Pr[G3⇒ 1]−Pr[G4⇒ 1]≤AdvCR
H (tB1).

Game 5. In Game G5, we remove the superfluous bad[H] flag and make additional internal

changes to the behavior of honest sessions. As in the SIGMA-I proof, all honest initatior sessions

now log the first message they send in a set Sent, and honest responder sessions use this set to

check whether their first received message came from an honest session without tampering. If so,

we say the responder session has an “honest origin partner." In the SIGMA-I protocol, partnering

between honest sessions was sufficient to ensure agreement on the derived master key and all

subsequently computed keys, since partners are guaranteed to hold the same nonces and group

elements. In TLS 1.3, partnering also ensures agreement on the handshake traffic secrets SHTS

and CHTS, but it does not ensure agreement on the session key ATS. Therefore the responder

only logs the handshake traffic keys fkS, fkC, tkshs, and tkchs in a look-up table S under its session

identifier. In addition to the session identifier, the application traffic secret ATS depends on the

server’s identity SCRT, signature SCV, and MAC tag SF. These values are not necessarily shared

by partner sessions in Game G5, so two partnered sessions may derive different values of ATS.

96

The responder session therefore logs its session key ATS in a second look-up table S′ indexed by

all of the dependencies of the session key: sid,SCRT,SCV, and SF. All of this is just bookkeeping,

so

Pr[G5⇒ 1] = Pr[G4⇒ 1].

Game 6. Going forward from Game G6, honest initiators copy their key material from tables

S and S′ if it is consistent for them to do so. In the case where the adversary has tampered with

the values of SCRT, SCV, or SF, the partner’s session key depends on the untampered values and

should not be copied. Therefore honest initiators always copy encryption and MAC keys from

the table S if they have an honest partner session, but they only copy ATS when the SCRT,SCV,

and SF messages they received match the ones sent by their partner. The initiator session can

check whether tampering occurred using the table S′, which will contain a session key ATS at

index sid‖SCRT‖SCV‖SF if and only if the honest partner session computed and sent SCRT, SCV,

and SF.

We argue that all copied keys are consistent with the keys that would be derived in G5.

Recall that partnered sessions agree on the nonces and the DH shares X and Y as components

of sid, so they also agree on the shared DH secret Z associated with the pair (X ,Y). Partnered

sessions therefore agree on the handshake secret HS, which is derived from Z without context,

and on the handshake traffic secrets, which are derived with the session identifier as context.

Thus partnered sessions agree on the values of the handshake traffic keys fkS, fkC, tkshs, and tkchs

which are derived from the handshake traffic secrets. For the adversary it is hence unobservable

if honest sessions compute the handshake traffic keys themselves, or copy the keys from their

partners. By agreeing on the handshake secret HS, partnered sessions will also agree on the

master secret MS, which is derived from HS without context. The if SCRT, SCV, and SF are

left untampered, both sessions will derive the session key as RO2(MS,L8,H(sid‖SCRT‖SCV‖SF)]).

Hence it is again unobservable whether an honest initiator derives ATS itself or copies ATS from

an honest partner which agrees on the values of SCRT, SCV,SF; consequently

Pr[G6⇒ 1] = Pr[G5⇒ 1].

97

Game 7. In Game G7, all responders sample ATS, SHTS and CHTS randomly (unless their

values have already been fixed by queries to random oracle RO2 on the corresponding input), then

retroactively programs random oracle RO2 by setting its internal table H2 on the appropriate

input. Partnered initiator sessions which have not copied ATS (i.e., those who received tampered

SCRT, SCV, and SF) also sample ATS randomly and program RO2 when necessary. We choose to

program ATS, SHTS, and CHTS, as opposed to only mk in the SIGMA-I proof, because these

three keys are derived with context. Most importantly, the DH shares X and Y indirectly enter

the key derivation for these keys, which will be critical for the reduction in the next step. This

simply moves the lazy sampling process from RO2 to RunResp1 and RunInit2 for certain queries,

which is unobservable to the adversary; therefore

Pr[G7⇒ 1] = Pr[G6⇒ 1].

Game 8. The step between G7 and G8 is most technically involved step of this proof, and it is

also the most significantly altered from the corresponding step in the proof of SIGMA-I. In G8,

partnered initiators and responder sessions with honest origin partners will stop maintaining

the consistency of their keys ATS, SHTS, and CHTS with the random oracle RO2. Specifically,

responders with honest origin partners sample ATS, SHTS, and CHTS uniformly at random even

if RO2 has already been queried on the string HS,L,d for the appropriate label and hash, and

they do not retroactively program RO2. Partnered initiator sessions which have not copied ATS

from their partner also sample ATS uniformly without checking or programming RO2. These

keys are therefore completely random, and they will be inconsistent with any random oracle

queries made before or after the keys are sampled.

In order to detect this inconsistency, the adversary must make a query to RO2 that would,

in G7, return one of the unprogrammed keys. Which queries are these? They are the queries

that an honest responder session with honest origin partner would use to derive SHTS, CHTS,

and ATS, and the queries that an honest partnered initiator which received a tampered message

would use to derive ATS. Formally, let sid = (n,n′,X ,Y) be the session ID held by some honest

responder session with honest origin partner, and let SCRT, SCV, SF be the identity, signature,

98

and MAC tag sent by this session. Let DHE be the DH secret corresponding to the pair (X ,Y).

Then the adversary A can detect an inconsistency (in derviations of honest responders) in game

G8 if at any point during the game A queries RO2 on one of the tuples

(RO1(C1,DHE),L,H(sid)) or (MS,L8,H(sid‖SCRT‖SCV‖SF)),

where L ∈ {L1,L2} and where for some HS, dHS, we have that HS = RO1(C1,DHE), that dHS =

RO2(HS,L3,H("")), and that MS = RO1(dHS,0). Otherwise (for derviations of honest initiators),

let sid be the session ID held by an honest partnered initiator session, and let SCRT, SCV, and

SF be the identity, signature, and MAC tag received by that session. For initiator sessions that

do not copy ATS, at least one of these values was not sent by the honest partner. Then the

adversary A can detect an inconsistency in game G8 if at any point it queries RO2 on the tuple

(MS,L8,H(sid‖SCRT‖SCV‖SF)),

where for some HS, dHS, we have that HS = RO1(C1,DHE), that dHS = RO2(HS,L3,H("")), and

that MS = RO1(dHS,0). Let event F denote the event that the adversary A makes at least one of

the above queries. If event F does not occur, then ATS, SHTS, and CHTS are chosen uniformly

at random in both G7 and G8, hence

Pr[G7⇒ 1]−Pr[G8]⇒ 1]≤ Pr[F occurs in G7].

We bound the probability of event F via a reduction B2 to the strong Diffie–Hellman assumption

in group G. The reduction will make no more queries to its stDH oracle than A makes to its RO2

oracles.

Given its strong DH challenge (A = ga,B = gb) and having access to the strong Diffie–

Hellman oracle stDHa, B2 simulates G7 for an adversary A in the following manner: In all honest

initiator sessions, B2 samples r uniformly at random from Zp and sets the session’s DH share

X ← A ·gr. In all honest responder sessions with honest origin partner, B2 samples r′ uniformly

from Zp and sets the session’s DH share Y ← B ·gr′ . Both of these DH shares are still distributed

99

uniformly over Zp as long as p is prime and A and B are not the identity. To extract gab when

event F occurs, the reduction B2 will follow the same general strategy as the reduction B1 in the

proof of SIGMA-I, with four major points of divergence. We address these points first, before

giving a full description of B2.

1. Since B2 no longer knows x or y such that X = gx or Y = gy, it cannot compute the Diffie–

Hellman secret DHE or the derived handshake secret HS, so it samples HS randomly for

honest responder sessions with honest origin partners and for honest partnered initiator

sessions. The adversary can only tell that HS was not correctly computed if it notices that

SHTS, CHTS, or dHS are derived from an incorrect value of HS. The former two cases

require the adversary to make a query that triggers event F . In the latter case, dHS is not

revealed to the adversary through any oracle, so the adversary must notice that ATS, which

is derived indirectly from dHS via the master secret, is derived from an incorrect value of

HS. This also requires A to make a query that triggers event F. Therefore, until event F

occurs, this change is unobservable to the adversary.

2. In the TLS protocol, the context string, including the Diffie–Hellman shares X and Y , is

hashed with H before it enters key derivation, so B2 cannot directly associate a query to

RO2 with the honest session(s) whose session ID is being used. The reduction addresses

this by having each honest responder with honest origin partner and each honest partnered

initiator, log the hash of its context in a reverse look-up table R. (The context does not

include the handshake or master secrets.) Then in the RO2 oracle, B2 can use R to efficiently

check whether the hash d of a query is used to derive a handshake or application traffic key.

3. Due to TLS’s complex key schedule, no one random oracle query contains both a pair of

Diffie–Hellman shares and the DH secret associated with that pair. Instead, B2 will augment

the RO1 and RO2 oracles to log in a reverse look-up table T the DH secret associated with each

of the intermediate values HS, dHS, and MS. The DH secret for dHS = RO2(HS,L3,H(""))

simply be copied from T [HS], and the DH secret for MS = RO1(dHS,0) will be copied from

T [dHS]. For each query to RO2 with secret s, the reduction can efficiently check using T

whether s was derived from some DH secret via RO1.

100

4. The TLS key schedule uses multiple random oracle queries (if we model HKDF.Extract and

HKDF.Expand as random oracles) whereas the SIGMA-I protocol uses only one. If A can

guess the intermediate value HS = RO1(C1,DHE), where DHE is the DH secret associated to

some pair of embedded shares (X ,Y) chosen by honest sessions, then it can trigger event

F without ever submitting DHE to an oracle. In this case, A can trigger event F, but B2

cannot win the Strong DH game. However, if RO1(C1,DHE) is never queried, then it is

uniformly random, and the probability that A guesses correctly is bounded by qRO·qS
2kl by the

birthday bound.

To compute the correct handshake and application traffic keys, B2 needs to be able to

correctly program CHTS, SHTS, and ATS. When these keys are chosen by an honest responder

with honest origin partner or a partnered initiator, B2 uses its strong DH oracle to check whether

RO2 has already received the query that the adversary needs to make to generate these keys.

If the query has already been made, B2 can look up the DH secret using T and win the game.

Otherwise, B2 hashes the session’s context and logs it in R, so that future RO2 queries can identify

this session for retroactive programming. It also logs the session’s randomness in a look-up table

Q, to be used if event F is triggered relative to this session by a future RO2 query.

Like in the SIGMA-I proof, B2 must be able to correctly compute handshake and

application traffic keys for unpartnered initiator sessions. Because all initiator sessions have

embedded DH shares, B2 cannot compute the DH secret DHE for these sessions. However, it

can use its StrongDH oracle to check whether the adversary has queried such a secret and copy

the expected keys to preserve consistency in this case. If no query has been made, the keys are

selected randomly and the initiator session stores its context, randomness, and keys in R. In

future queries to the RO2 oracle, B2 will use R to efficiently check whether a query should output

one of the initiator session’s keys. If so, it retroactively programs the oracle using the keys from

R.

Therefore, if event F occurs, reduction B2 wins the strong Diffie–Hellman game except with

probability qRO·qS
2kl , resulting in AdvstDH

G (tB2 ,qRO)≥ (1− qRO·qS
2kl) ·Pr[F]. Then Pr[F]≤ 2kl

2kl−qRO·qS
·

AdvstDH
G (tB2 ,qRO). Otherwise, the reduction simulates G7 perfectly except with probability

qRO·qS
2kl .

101

Pr[G7⇒ 1] = Pr[G8⇒ 1]+Pr[F]+ (1−Pr[F]) · qRO ·qS
2kl

≤ Pr[G8⇒ 1]+
2kl +qRO ·qS
2kl−qRO ·qS

·AdvstDH
G (tB2 ,qRO)+

qRO ·qS
2kl

≤ Pr[G8⇒ 1]+2 ·AdvstDH
G (tB2 ,qRO)+

qRO ·qS
2kl ,

where the last simplification step assumes that qS ·qRO ≤ 2kl−2, which is true for any reasonable

real-world parameters.

Game 9. In Game G9, honest responders with honest origin partners sample fkS, fkC, tkchs and

tkshs uniformly at random, so these keys are no longer consistent with RO2. The adversary can

distinguish this change if and only if it queries RO2 on a string SHTS,L,H(""), or CHTS,L,H(""),

where L ∈ {L4,L6}, and SHTS and CHTS are chosen by an honest responder sessions with honest

origin partner. Call this event E. In these sessions, SHTS and CHTS are chosen uniformly at

random by G8, and they are never revealed by any oracle. Therefore the probability of event E

is at most qRO·qS
2kl by the birthday bound, hence

Pr[G8]≤ Pr[G9]+
qRO ·qS

2kl .

Note that this step in the SIGMA-I proof introduced a multi-user PRF security bound

due to final keys being derived through a PRF, not the random oracle. Modeling HKDF.Expand

as random oracle RO2, we here instead incur a birthday bound under the random oracle instead

of a multi-user PRF security bound for HKDF.Expand.

The remaining game hops are identical to those in the proof of SIGMA-I, so we discuss

them only briefly.

Game 10. In Game G10, we log all messages signed by an honest session in a look-up table QS,

and we set a flag bad[S] whenever a partnered session verifies a signature with an uncorrupted

102

public key on a message that was not in QS. This is just administrative, so

Pr[G10⇒ 1] = Pr[G9⇒ 1].

Game 11. In Game G11, we abort if the flag bad[S] is set. In this case, an honest partnered

session received a signature which was not computed by an honest session, and which was verified

by an uncorrupted public key. We can give a straightforward reduction B3 to the multi-user

EUF-CMA security of the signature scheme that wins whenever bad[S] is set and has runtime

approximately equal to that of A in G10. By the identical-until-bad lemma,

Pr[G10⇒ 1]−Pr[G11⇒ 1]≤Advmu-EUF-CMA
S (tB3 ,qN,qS,qS,qRL).

Interestingly and in contrast to the SIGMA-I proof, soundness is still not guaranteed

after this game hop, because we do not require the signature scheme to be strongly unforgeable.

Therefore the adversary may be able to produce a new signature on a message that had been

signed by an honest session, allowing it to tamper with SCV without setting the bad[S] flag.

Game 12. In Game G12 we log all messages for which an honest session computed a MAC

tag in a look-up table QM. We remove the bad[S] flag and instead set a flag bad[M] if an honest

partnered session verifies a MAC on a message that is not in QM. Again, this is only bookkeeping

and does not impact the view of A, hence

Pr[G12⇒ 1] = Pr[G11⇒ 1].

Game 13. Finally, in Game G13, we abort if an honest session with an honest partner verifies

a MAC tag on a message which was not tagged by any honest session; i.e if the bad[M] flag is set.

We can give a simple reduction B4 to multi-user MAC security. The reduction B4 assigns a pair

of indices i, i+1 to each session identifier held by an honest session with honest origin partner.

When an honest session with honest origin partner needs to compute a server MAC tag, B4 finds

the pair (i, i+1) using the session identifier and calls its Tag oracle with user identity i. When

103

the session needs a client MAC tag B4 calls Tag with user identity i+1. The reduction calls its

Tag oracle no more than twice for every query A makes to Send (once to generate a tag, and

once to verify a tag). Since by Game G9 all honest sessions with honest origin partners sample

their MAC keys fkS and fkC uniformly at random, the keys implicitly generated by the MAC

security game are consistent with the expected operation of Game G13. When the flag bad[M] is

set, a partnered session has received a valid tag on a message which was never logged in QM.

The reduction can look up the pair (i, i+1) using the session identifier of whichever session set

bad[M]. Since B4 logs every message for which it calls its Tag oracle, this is a valid forgery for

either identity i or identity i+1, and B4 will win. Then

Pr[G12⇒ 1]−Pr[G13⇒ 1]≤Advmu-EUF-CMA
M (tB4 ,qS,qS,1,qS,1,0).

The runtime of B4 is about that of A in G12.

We can now finally argue that the advantage of A in G13 is zero. The adversary A would

win game G13 with probability better than 1
2 in one of three ways:

1. Sound is false,

2. ExplicitAuth is false, or

3. Fresh is true and b′ = b.

Soundness.

The flag Sound is set if (1) three honest sessions hold the same session identifier, or if (2)

two partnered sessions accept with different session keys. By Game G2, each session identifier is

held by at most one session of each role. There are only two roles so case (1) never occurs. If two

partnered sessions π1 and π2 accept, the initiator session π1 verified a MAC tag τ on the message

m = n‖n′‖X‖Y‖SCRT‖SCV. Because τ was verified by an honsest partnered session, by Game G13,

this message was tagged by an honest session. Honest sessions only tag strings including their

own nonce, and by Game G2, the only honest session with nonce n′ is π2. Then π2 must have

tagged the message m, so π1 and π2 agree on both τ and m. Since the DH shares X and Y are

components of m, π1 and π2 also agree on the DH secret DHE associated with the pair (X ,Y).

104

Consequently, π1 and π2 will agree on any value derived deterministically from m, τ, and DHE,

including the session key ATS. Then the flag Sound is always true in G13.

Explicit authentication.

The flag ExplicitAuth is set if there exists a session π i
u that accepts with uncorrupted

peer identity v, and either (1) no honest session π
j

v is partnered with π i
u, or (2) a session π

j
v is

partnered with π i
u but accepts with peer identity w 6= u. To have accepted with peer identity v,

the session π i
u must have received and verified a signature σ using the public key of identity v on

a message m containing the session identifier of π i
u. As v was uncorrupted at the time that π i

u

accepted, by Game G11, the message m must have been signed by some honest session π
j

v . As

honest sessions only sign messages containing their own session identifiers, π
j

v .sid = π i
u.sid, so π

j
v

and π i
u are partnered. If case (2) occurs, π

j
v must have accepted a MAC tag τ on message m′

containing its session ID and the identity w of its peer. We know that π
j

v is a partnered session,

so by G13, m′ was tagged by some honest session. Honest sessions tag only messages containing

their own session identifiers, so by G2, the message m′ must have been tagged by either π i
u or π

j
v .

In SIGMA-I, the messages tagged by these two sessions are differentiated by there labels. Here,

they are differentiated by their length: one role signs a message including values SF, CCRT, and

CCV, while the other signs a message which does not contain these values. For this reason π
j

v will

not verify the tag on a message it signed itself. Therefore m′ must have been tagged by π i
u, so m′

contains the identity u. This contradicts the assumption that w 6= u, so case (2) never occurs,

and the flag ExplicitAuth is always false in G13.

Guessing the challenge bit.

Now the adversary can only win with advantage better than zero is by guessing the

correct value of b when the Fresh flag is set to true. This requirement ensures that all tested

sessions accepted with uncorrupted peer identities. Since ExplicitAuth is true, each tested session

must therefore have an honest session with which it is partnered, and by Sound, this session

holds the same session key. Then by G6, each tested initiator session copies the session key of its

partner. By G8 each tested responder session, and each responder session partnered with a tested

initiator session chooses its session key uniformly at random. By Fresh, the partners of tested

105

sessions were not tested or revealed. Then the session keys of all tested sessions are sampled

uniformly and never revealed to the adversary by any oracle. Therefore the key returned by

each Test query is uniformly random and independent of the bit b. The adversary’s view is

independent of the bit b, so it will win G13 with probability 1
2 , and consequently its advantage is

0.

Collecting the bounds across all game hops gives the theorem statement. �

2.9 Evaluation

Tighter security results in terms of loss factors are practically meaningful only if they

materialize in better concrete advantage bounds when taking the underlying assumptions into

account. In our case, this amounts to the question: How does the overall concrete security of the

SIGMA/SIGMA-I and the TLS 1.3 key exchange protocols improve based on our tighter security

proofs?

Parameter selection.

In order to evaluate our and prior bounds pratically, we need to make concrete choices

for each of the parameters entering the bounds. Let us explain the choices we made in our

evaluation:

Runtime t ∈ {240,260,280}. We parameterize the adversary’s runtime between well within

computational reach (240) and large-scale attackers (280).

Number of users #U = qN ∈ {220,230}. We consider the number of users a global-scale ad-

versary may interact with to be in the order of active public-key certificates on the Internet,

reported at 130–150 million11 (≈ 227).

Number of sessions #S≈ qS ∈ {235,245,255}. Chrome12 and Firefox13 report that 76–98%

of all web page accesses through these browsers are encrypted, with an active daily base

of about 2 billion (≈ 230) users.We consider adversaries may easily see 235 sessions and a
11https://letsencrypt.org/stats/, https://trends.builtwith.com/ssl/traffic/Entire-Internet
12https://transparencyreport.google.com/https/
13https://telemetry.mozilla.org/

106

https://letsencrypt.org/stats/
https://trends.builtwith.com/ssl/traffic/Entire-Internet
https://transparencyreport.google.com/https/
https://telemetry.mozilla.org/

global-scale attacker may have access to 255 sessions over an extended timespan. Note that

the number of send queries essentially corresponds to the number of sessions.

Number of RO queries #RO = qRO = t
210 . We fix this bound at a 210-fraction of the overall

runtime accounting for all adversarial steps.

Diffie–Hellman groups and group order p. We consider all five elliptic curves standard-

ized for use with TLS 1.3 (bit-security level b and group order p in parentheses): secp256r1

(b = 128, p ≈ 2256), secp384r1 (b = 192, p ≈ 2384), secp521r1 (b = 256, p ≈ 2521), x25519

(b = 128, p≈ 2252), and x448 (b = 224, p≈ 2446). We focus on elliptic curve groups only, as

they provide high efficiency and the best known algorithms for solving discrete-log and DH

problems are generic, allowing us to apply GGM bounds for the involved DDH and strong

DH assumptions.

Signature schemes. In order to unify the underlying hardness assumptions, we consider

the ECDSA/EdDSA signature schemes standardized for use with TLS 1.3, based on the

five elliptic curves above, treating their single-user unforgeability as equally hard as the

corresponding discrete logarithm problem.

Symmetric schemes and key/output/nonce lengths kl,ol,nl. Since our focus is mostly

on evaluating ECDH parameters, we idealize the symmetric primitives (PRF, MAC, and

hash function) in the random oracle model. Applying lengths standardized for TLS 1.3, we

set the key and output length to kl = ol = 256 bits for 128-bit security curves and 384 bits

for higher-security curves, corresponding to ciphersuites using SHA-256 or SHA-384. The

nonce length is fixed to nl = 256 bits, again as in TLS 1.3.

Reveal and Test queries qRS, qRL, qT. Using a generic reduction to single-user signature

unforgeability, the number of RevLongTermKey, RevSessionKey, and Test queries

do not affect the bounds; we hence do not place any constraints on them.

Fully-quantitative CK/DFGS bounds for SIGMA/TLS 1.3.

For our evaluation, we need to reconstruct fully-quantitative security bounds from the

more abstract prior security proofs for SIGMA by Canetti-Krawczyk [72] and for TLS 1.3 by

107

Table 2.2. Advantages of a key exchange adversary with given resources t (running time), #U
(number of users), #S (number of sessions), and #RO (number of random oracle queries), in
breaking the security of the SIGMA and TLS 1.3 protocols when instantiated with the given
curves (bit security b and group order p in parentheses), based on the prior bounds by Canetti-
Krawczyk [72] resp. Dowling et al. [103], and the bounds we establish (Theorem 2.2 and 2.3).
Target indicates the maximal advantage t/2b tolerable when aiming for the respective curve’s
security level b; entries in red-shaded cells miss that target. See Section 2.9 for further details.

Adv. resources SIGMA TLS 1.3

t #U #S #RO Curve (bit security b, group order p) Target t/2b CK [72] Us (Thm. 2.2) DFGS [103] Us (Thm. 2.3)

240 220 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−101 ≈ 2−156 ≈ 2−104 ≈ 2−156

240 220 245 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−91 ≈ 2−156 ≈ 2−84 ≈ 2−156

240 220 255 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−81 ≈ 2−156 ≈ 2−64 ≈ 2−156

240 230 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−81 ≈ 2−146 ≈ 2−104 ≈ 2−146

240 230 245 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−71 ≈ 2−146 ≈ 2−84 ≈ 2−146

240 230 255 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−61 ≈ 2−146 ≈ 2−64 ≈ 2−146

240 220 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−229 ≈ 2−284 ≈ 2−232 ≈ 2−284

240 220 245 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−219 ≈ 2−284 ≈ 2−212 ≈ 2−284

240 220 255 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−209 ≈ 2−284 ≈ 2−192 ≈ 2−284

240 230 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−209 ≈ 2−274 ≈ 2−232 ≈ 2−274

240 230 245 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−199 ≈ 2−274 ≈ 2−212 ≈ 2−274

240 230 255 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−189 ≈ 2−274 ≈ 2−192 ≈ 2−274

240 220 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−298 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−288 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−278 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−288 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−278 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−268 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 220 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−97 ≈ 2−152 ≈ 2−100 ≈ 2−152

240 220 245 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−87 ≈ 2−152 ≈ 2−80 ≈ 2−152

240 220 255 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−77 ≈ 2−152 ≈ 2−60 ≈ 2−152

240 230 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−77 ≈ 2−142 ≈ 2−100 ≈ 2−142

240 230 245 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−67 ≈ 2−142 ≈ 2−80 ≈ 2−142

240 230 255 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−57 ≈ 2−142 ≈ 2−60 ≈ 2−142

240 220 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−291 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 x448 (b=224, p≈2446) 2−184 ≈ 2−281 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 x448 (b=224, p≈2446) 2−184 ≈ 2−271 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−271 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 x448 (b=224, p≈2446) 2−184 ≈ 2−261 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 x448 (b=224, p≈2446) 2−184 ≈ 2−251 ≈ 2−298 ≈ 2−242 ≈ 2−297

260 220 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 220 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−51 ≈ 2−116 ≈ 2−44 ≈ 2−116

260 220 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−41 ≈ 2−116 ≈ 2−24 ≈ 2−116

260 230 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−41 ≈ 2−106 ≈ 2−64 ≈ 2−106

260 230 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−31 ≈ 2−106 ≈ 2−44 ≈ 2−106

260 230 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−189 ≈ 2−244 ≈ 2−192 ≈ 2−244

260 220 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−179 ≈ 2−244 ≈ 2−172 ≈ 2−244

260 220 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−169 ≈ 2−244 ≈ 2−152 ≈ 2−244

260 230 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−169 ≈ 2−234 ≈ 2−192 ≈ 2−234

260 230 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−159 ≈ 2−234 ≈ 2−172 ≈ 2−234

260 230 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−149 ≈ 2−234 ≈ 2−152 ≈ 2−234

260 220 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−278 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−268 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 220 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−258 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 230 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−268 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 230 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−258 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 230 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−248 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 220 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 220 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−47 ≈ 2−112 ≈ 2−40 ≈ 2−112

260 220 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−112 ≈ 2−20 ≈ 2−112

260 230 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−102 ≈ 2−60 ≈ 2−102

260 230 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−27 ≈ 2−102 ≈ 2−40 ≈ 2−102

260 230 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

260 220 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−251 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−241 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 220 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−231 ≈ 2−278 ≈ 2−214 ≈ 2−277

260 230 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−231 ≈ 2−296 ≈ 2−250 ≈ 2−285

260 230 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−221 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 230 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−211 ≈ 2−278 ≈ 2−214 ≈ 2−277

280 220 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 220 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−11 ≈ 2−76 ≈ 2−4 ≈ 2−76

280 220 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−76 1 ≈ 2−76

280 230 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−66 ≈ 2−24 ≈ 2−66

280 230 245 270 secp256r1 (b=128, p≈2256) 2−48 1 ≈ 2−66 ≈ 2−4 ≈ 2−66

280 230 255 270 secp256r1 (b=128, p≈2256) 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 220 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−139 ≈ 2−204 ≈ 2−132 ≈ 2−204

280 220 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−204 ≈ 2−112 ≈ 2−204

280 230 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−194 ≈ 2−152 ≈ 2−194

280 230 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−119 ≈ 2−194 ≈ 2−132 ≈ 2−194

280 230 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

280 220 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−258 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 220 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−248 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 220 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−238 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 230 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−248 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 230 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−238 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 230 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−228 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 220 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 220 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−7 ≈ 2−72 1 ≈ 2−72

280 220 255 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−72 1 ≈ 2−72

280 230 235 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 ≈ 2−20 ≈ 2−62

280 230 245 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 230 255 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−211 ≈ 2−266 ≈ 2−210 ≈ 2−245

280 220 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−201 ≈ 2−266 ≈ 2−194 ≈ 2−245

280 220 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−191 ≈ 2−258 ≈ 2−174 ≈ 2−245

280 230 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−191 ≈ 2−256 ≈ 2−210 ≈ 2−245

280 230 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−181 ≈ 2−256 ≈ 2−194 ≈ 2−245

280 230 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−171 ≈ 2−256 ≈ 2−174 ≈ 2−245

108

220 230 240 250 260

2256

2384

gr
ou

p
or
de

r
p

128 bit security level
secp256r1
secp384r1
CK (sm)
CK (lg)
DFGS (sm)
DFGS (lg)
Us (sm)
Us (lg)

220 230 240 250 260
2256

2384

number of sessions #S

gr
ou

p
or
de

r
p

192 bit security level

Figure 2.16. Elliptic curve group order (y axis) required to achieve 128-bit (top) and 192-bit
(bottom) AKE security for SIGMA and TLS 1.3 based on the CK [72] SIGMA, DFGS [103]
TLS 1.3, and our bounds (ours giving the same result for SIGMA and TLS 1.3), for a varying
number of sessions #S (x axis). Both axes are in log-scale.
For each security and bound, we plot a smaller-resource “(sm)” setting with runtime t = 260,
number of users #U = 220, and number of random oracle queries #RO = 250 and a larger-resource
“(lg)” setting with t = 280, #U = 230, and #RO = 270. We let symmetric key/output lengths be
256 bits for 128-bit security and 384-bits for 192-bit security; nonce length is 256 bits. The
group orders of NIST elliptic curves secp256r1 (p≈ 2256) and secp384r1 (p≈ 2384) are shown
as horizontal lines for context.

Dowling et al. [103]. We report them in Section 2.10 for reference. In terms of their reduction to

underlying DH problems, the CK SIGMA bound reduces to the DDH problem with a loss of

#U ·#S, whereas the DFGS TLS 1.3 bound reduces to the strong DH problem with a loss of (#S)2.

Numerical advantage bounds for CK, DFGS, and ours.

We report the numerical advantage bounds for SIGMA and TLS 1.3 based on prior

(CK [72], DFGS [103]) and our bounds when ranging over the full parameter space detailed above

in Table 2.2. Table 2.1 summarizes the key data points for 128-bit and 192-bit security levels.

Throughout Table 2.2, we assume that an adversary with running time t makes no more

than t ·2−10 queries to its random oracles. We target the bit-security of whatever curve we use;

this means that for b bits of security we want an advantage of t/2b. If a bound does not achieve

this goal, we color it red. We consider runtimes between 240 and 280, a total number of users

109

between to vary between 220 and 230, and a total number of sessions between 235 and 255 (see

above for the discussion of these parameter choices). We evaluate these parameters in relation

to all of the elliptic curve groups standardized for use with TLS 1.3. We idealize symmetric

primitives, assuming the use of 256-bit keys in conjunction with 128-bit security curves and

384-bit keys in conjunction with higher-security curves, this corresponds to the available SHA-256

and SHA-384 functions in TLS 1.3. The nonce length is fixed to 256 bits (as in TLS 1.3).

Our bounds do better than the CK [72] and DFGS [103] bounds across all considered

parameters and always meet the security targets, which these prior bounds fail to meet for

secp256r1 and x25519 for almost all parameters, but notably also for the 192-bit security level

of curve secp384r1 for large-scale parameters. We improve over prior bounds by at least 20 and

up to 85 bits of security for SIGMA, and by at least 35 and up to 92 bits of security for TLS 1.3.

In comparison, the TLS 1.3 bounds from the concurrent work by Diemert and Jager [98]

yield bit security levels similar to ours for TLS 1.3: While some sub-terms in their bound are

slightly worse (esp. for strong DH), the dominating sub-terms are the same.

Group size requirements based on CK, DFGS, and our bound.

Finally, let us take a slightly different perspective on what the prior and our bounds

tell us: Figure 2.16 illustrates the group size required to achieve 128-bit resp. 192-bit AKE

security for SIGMA and TLS 1.3 based on the different bounds, dependent on a varying number

of sessions #S. The CK SIGMA and our SIGMA and TLS 1.3 bounds are dominated by the

signature scheme advantage (with a #S · (#U)2 loss for CK and a #U loss for our bound); the

DFGS TLS 1.3 bound instead is mostly dominated by the (#S)2–loss reduction to strong DH.

The CK and DFGS bounds require the use of larger, less efficient curves to achieve 128-bit

security even for 235 sessions. For large-scale attackers, they similarly require a larger curve than

secp384r1 above about 255 sessions. We highlight that, in contrast, with our bounds a curve

with 128-bit, resp. 192-bit, security is sufficient to guarantee the same security level for SIGMA

and TLS 1.3, for both small- and large-scale adversaries and for very conservative bounds on the

number of sessions.

110

2.10 Evaluation Details

2.10.1 Fully-quantitative CK SIGMA Bound

Recall our security bound for SIGMA/SIGMA-I from Theorem 2.2:

AdvKE-SEC
SIGMA-I(t,qN,qS,qRS,qRL,qT)

≤
3q2

S

2nl+1 · p
+AdvstDH

G (tB1 ,qRO)+Advmu-PRF
PRF (tB2 ,qS,3qS,3)

+Advmu-EUF-CMA
S (tB3 ,qN,qS,qS,qRL)+Advmu-EUF-CMA

M (tB4 ,qS,qS,1,qS,1,0).

Comparing this bound to the original security proof for SIGMA by Canetti and Krawczyk

[72] (CK) faces two complications. First, we must reconstruct a concrete security bound from the

CK proof, which merely refers to the decisional Diffie–Hellman and “standard security notions”

for digital signatures, MACs, and PRFs (i.e., single-user EUF-CMA and PRF security). Second,

the CK result is given in a stronger security model for key exchange [71] which allows state-reveal

attacks. Further, the CK proof assumes out-of-band unique session identifiers, whereas protocols

in practice have to establish those from, e.g., nonces (introducing a corresponding collision bound

as in our analysis). We are therefore inherently constrained to compare qualitatively different

security properties here.

Let us informally consider a game-based definition of the CK model [71] in the same style

as our AKE model (cf. Definition 1), capturing the same oracles plus an additional state-reveal

oracle, with qRSt denoting the number of queries to this oracle, and session identifiers that, like

ours, consist of the session and peers’ nonces and DH shares. Translating the SIGMA-I security

proof from [72, Theorem 6 in the full version], we obtained the following concrete security bound:

111

AdvCK
SIGMA-I(t,qN,qS,qRS,qRL,qRSt,qT)

≤
2q2

S

2nl · p
+Advmu-EUF-CMA

S (tB1 ,qN,qS,qS,qRL) // sid collision & property P1

+qN ·qS ·
(
AdvDDH

G (tB2)+Advmu-PRF
PRF (tB5 ,1,3) // property P2 . . .

+(qN+1) ·Advmu-EUF-CMA
S (tB3 ,1,qS,qS,0)+Advmu-EUF-CMA

M (tB4 ,1,2,2,2,2,0)
)
,

where nl is the nonce length, G the used Diffie–Hellman group of prime order p, the number

of test queries is restricted to qT = 1, and Bi (for i = 1, . . . ,5) are the described reductions for

property P1 and P2 in [72, Theorem 6 in the full version] all running in time tBi ≈ t. For simplicity,

we present the above bound in terms of “multi-user” PRF, signature, and MAC advantages

for a single user qNw = 1, which are equivalent to the corresponding single-user advantages (cf.

Section 2.3).

2.10.2 Fully-quantitative DFGS TLS 1.3 Bound

Recall our security bound for TLS 1.3 from Theorem 2.3:

AdvKE-SEC
TLS1.3 (t,qN,qS,qRS,qRL,qT)≤

3q2
S

2nl+1 · p
+AdvCR

H (tB1)

+2 ·AdvstDH
G (tB2 ,qRO)+

qRO ·qS
2kl−1 +Advmu-EUF-CMA

S (tB3 ,qN,qS,qS,qRL)

+Advmu-EUF-CMA
HMAC (tB4 ,qS,qS,1,qS,1,0).

We compare this bound with the bound of Dowling et al. [103] (DFGS). Note that this

bound is established in a multi-stage key exchange model [112], here we focus only on the

main application key derivation, as in our proof. The DFGS bound needs instantiation through

the random oracle only in one step (the PRF-ODH assumption on HKDF.Extract) while other

PRF steps remain in the standard model. Our proof instead models both HKDF.Extract and

112

HKDF.Expand as random oracles. Translating the bound from [103, Theorems 5.1, 5.2] yields:

AdvDFGS
TLS1.3(t,qN,qS,qRS,qRL,qT)

≤
q2
S

2nl · p
+qS ·

(
AdvCR

H (tB1)+qN ·Advmu-EUF-CMA
S (tB2 ,1,qS,qS,0)

+qS ·
(
Advdual-snPRF-ODH

HKDF.Extract,G (tB3)+Advmu-PRF
HKDF.Expand(tB4 ,1,3,3,0)

+2 ·Advmu-PRF
HKDF.Expand(tB5 ,1,2,2,0)+Advmu-PRF

HKDF.Extract(tB6 ,1,1,1,0)

+Advmu-PRF
HKDF.Expand(tB7 ,1,1,1,0)

))
.

Let us further unpack the PRF-ODH term. Following Brendel et al. [66], it can be

reduced to the strong Diffie–Hellman assumption modeling HKDF.Extract as a random oracle.14

In this reduction, the single DH oracle query is checked against each random oracle query via

the strong-DH oracle, hence establishing the following bound:

Advdual-snPRF-ODH
RO,G (tB3 ,qRO)≤AdvstDH

G (tB3 ,qRO).

Acknowledgements

We thank Mihir Bellare for insightful discussions and helpful comments, and Denis Diemert

and Tibor Jager for their kind handling of our concurrent work. We thank the anonymous

reviewers for valuable comments. Both authors were supported in part by National Science

Foundation (NSF) grant CNS-1717640. Felix Günther has been supported in part by Research

Fellowship grant GU 1859/1-1 of the German Research Foundation (DFG). Chapter 2, in full, is

a reprint of the material as it appears in the proceedings of International Conference on Applied

Cryptography and Network Security (ACNS), 2021. Davis, Hannah; Günther, Felix. This was

joint work between Felix and I based on his original notion of achieving tight security for both

SIGMA and TLS 1.3 by extending the work of Cohn-Gordon et al. While he initially focused on
14The same paper suggests that a standard-model instantiation of the PRF-ODH assumption via an algebraic

black-box reduction to common cryptographic problems is implausible.

113

the syntax and security definitions and I the proofs, the latter two were sufficiently intertwined as

to eventually consist of significant contributions from both authors throughout. I was primarily

responsible for the concrete generic group model proofs on the strong Diffie–Hellman, following

the suggestions of Mihir Bellare. Similar bounds for the TLS 1.3 handshake were also shown

concurrently by Denis Diemert and Tibor Jager.

114

Chapter 3

On the concrete security of TLS 1.3 PSK
Mode

3.1 Introduction

The Transport Layer Security (TLS) protocol is probably the most widely-used crypto-

graphic protocol. It provides a secure channel between two endpoints (client and server) for

arbitrary higher-layer application protocols. Its most recent version, TLS 1.3 [201], specifies

two different “modes” for the initial handshake establishing a secure session key: the main

handshake mode based on a Diffie–Hellman key exchange and public-key authentication via

digital signatures, and a pre-shared key (PSK) mode, which performs authentication based on

symmetric keys. The latter is mainly used for two purposes:

Session resumption. Here, a prior TLS connection established a secure channel along with

a pre-shared key PSK, usually via a full handshake. Subsequent TLS resumption sessions use

this key for authentication and key derivation. For example, modern web browsers typically

establish multiple TLS connections when loading a web site. Using public-key authentication

only in an initial session and PSK-mode in subsequent ones minimizes the number of

relatively expensive public-key computations and significantly improves performance for

both clients and servers.

Out-of-band establishment. PSKs can also be established out-of-band, e.g., by manual

configuration of devices or with a separate key establishment protocol. This enables secure

communication in settings where a complex public-key infrastructure (PKI) is unsuitable,

such as IoT applications.

115

TLS 1.3 provides two variants of the PSK handshake mode: PSK-only and PSK-(EC)DHE.

The PSK-only mode is purely based on symmetric-key cryptography. This makes TLS accessible to

resource-constrained low-cost devices, and other applications with strict performance requirements,

but comes at the cost of not providing forward secrecy [125], since the latter is not achievable

with static symmetric keys.1 The PSK-(EC)DHE mode in turn achieves forward secrecy by

additionally performing an (elliptic-curve) Diffie–Hellman key exchange, authenticated via the

PSK (i.e., still avoiding inefficient public-key signatures). This compromise between performance

and security is the suggested choice for TLS 1.3 session resumption on the Internet.

Concrete security and tightness.

Classical, complexity-theoretic security proofs considered the security of cryptosystems

asymptotically. They are satisfied with security reductions running in polynomial time and

having non-negligible success probability. However, it is well-known that this only guarantees

that a sufficiently large security parameter exists asymptotically, but it does not guarantee that

a deployed real-world cryptosystem with standardized parameters—such as concrete key lengths,

sizes of algebraic groups, moduli, etc.—can achieve a certain expected security level. In contrast,

a concrete security approach makes all bounds on the running time and success probability of

adversaries explicit, for example, with a bound of the form

Adv(A)≤ f (A) ·Adv(B),

where f is a function of the adversary’s resources and B is an adversary against some underlying

cryptographic hardness assumption.

The concrete security approach makes it possible to determine concrete deployment

parameters that are supported by a formal security proof. As an intuitive toy example, suppose

we want to achieve “128-bit security”, that is, we want a security proof that guarantees (for any

A in a certain class of adversaries) that Adv(A)≤ 2−128. Suppose we have a cryptosystem with

a reduction that loses “40 bits of security” because we can only prove a bound of f (A) ≤ 240.

This means that we have to instantiate the scheme with an underlying hardness assumption
1See [19, 63] for recent work discussing symmetric key exchange and forward secrecy.

116

that achieves Adv(B)≤ 2−168 for any B in order to upper bound Adv(A) by 2−128 as desired.

Hence, the 40-bit security loss of the bound is compensated by larger parameters that provide

“168-bit security”.

This yields a theoretically-sound choice of deployment parameters, but it might incur a

very significant performance loss, as it requires the choice of larger groups, moduli, or key lengths.

For example, the size of an elliptic curve group scales quadratically with the expected bit security,

so we would have to choose |G| ≈ 22·168 = 2336 instead of the optimal |G| ≈ 22·128 = 2256. The

performance penalty is even more significant for finite field groups, RSA or discrete logarithms

“modulo p”. This could lead to parameters which are either too large for practical use, or too

small to be supported by the formal security analysis of the cryptosystem. We demonstrate this

below for security proofs of TLS.

Even worse, for a given security proof the concrete loss ` may not be a constant, as in the

above example, but very often ` depends on other parameters, such as the number of users or

protocol sessions, for example. This makes it difficult to choose theoretically-sound parameters

when bounds on these other parameters are not exactly known at the time of deployment. If then

a concrete value for ` is estimated too small (e.g., because the number of users is underestimated),

then the derived parameters are not backed by the security analysis. If ` is chosen too large,

then it incurs an unnecessary performance overhead.

Therefore we want to have tight security proofs, where ` is a small constant, independent

of any parameters that are unknown when the cryptosystem is deployed. This holds in particular

for cryptosystems and protocols that are designed to maximize performance, such as the PSK

modes of TLS 1.3 for session resumption or resource-constrained devices.

Previous analyses of the TLS handshake protocol and their tightness.

TLS 1.3 is the first TLS version that was developed in a close collaboration between

academia and industry. Early TLS 1.3 drafts were inspired by the OPTLS design by Krawczyk

and Wee [161], and several draft revisions as well as the final TLS 1.3 standard in RFC 8446 [201]

were analyzed by many different research groups, including computational/reductionist analyses

of the full and PSK modes in [104, 106, 113, 103]. All reductions in these papers are however

highly non-tight, having up to a quadratic security loss in the number of TLS sessions and

117

adversary can interact with. For example, [99] explains that for “128-bit security” and plausible

numbers of users and sessions, an RSA modulus of more than 10,000 bits would be necessary

to compensate the loss of previous security proofs for TLS, even though 3072 bits are usually

considered sufficient for “128-bit security” when the loss of reductions is not taken into account.

Likewise, [89] argues that the tightness loss to the underlying Diffie–Hellman hardness assumption

lets these bounds fail to meet the standardized elliptic curves’ security target, and for large-scale

adversary even yields completely vacuous bounds.

Recently, Davis and Günther [89] and Diemert and Jager [99] gave new, tight security

proofs for the TLS 1.3 full handshake based on Diffie–Hellman key exchange and digital signatures

(not PSKs). However, their results required very strong assumptions. One is that the underlying

digital signature scheme is tightly secure in a multi-user setting with adaptive corruptions. While

such signature schemes do exist [22, 121, 97, 130], this is not known for any of the signature

schemes standardized for TLS 1.3, which are subject to the tightness lower bounds of [23] as

their public keys uniquely determine the matching secret key.

Even more importantly, both [89] and [99] modeled the TLS key schedule or components

thereof as independent random oracles. This was done to overcome the technical challenge that

the Diffie–Hellman secret and key shares need to be combined in the key derivation to apply their

tight security proof strategy, following Cohn-Gordon et al. [78], yet in TLS 1.3 those values enter

key derivation through separate function calls. But neither work provided formal justification for

their modeling, and both neglected to address potential dependencies between the use of a hash

function in the key schedule and elsewhere in the protocol.

Our contributions

In this paper, we describe a new perspective on TLS 1.3, which enables a modular security

analysis with tight security proofs.

New abstraction of the TLS 1.3 key schedule.

We first describe a new abstraction of the TLS 1.3 key schedule used in the PSK modes

(in Section 3.2), where different steps of the key schedule are modeled as independent random

oracles (12 random oracles in total). This makes it significantly easier to rigorously analyze the

118

security of TLS 1.3, since it replaces a significant part of the complexity of the protocol with

what the key schedule intuitively provides, namely “as-good-as-independent cryptographic keys”,

deterministically derived from pre-shared keys, Diffie–Hellman values (in PSK-(EC)DHE mode),

protocol messages, and the randomness of communicating parties.

Most importantly, in contrast to prior works on TLS 1.3’s tightness that abstracted (parts

of or the entire) key schedule as random oracles [99, 89] to enable the tight proof technique of

Cohn-Gordon et al. [78], we support this new abstraction formally. Using the indifferentiability

framework of Maurer et al. [171] in its recent adaptation by Bellare et al. [35] that treats multiple

random oracles, in Section 3.4 we prove our abstraction indifferentiable from TLS 1.3 with only

the underlying cryptographic hash function modeled as a random oracle, and this proof is tight.

This accounts for possible interdependencies between the use of a hash function in multiple

contexts, which were not considered in [99, 89].

Identifying a lack of domain separation.

A noteworthy subtlety is that, to our surprise, we identify that for a certain choice of

TLS 1.3 PSK mode and hash function (namely, PSK-only mode with SHA384), a lack of domain

separation [35] in the protocol does not allow us to prove indifferentiability for this case. We

discuss the details of why domain separation is achieved for all but this case in Section 3.8.

This gap could be closed by more careful domain separation in the key schedule, which

we consider an interesting insight for designers of future versions of TLS or other protocols.

Concretely, the ideal domain separation method would be to add a unique prefix or suffix to

each hash function call made by the protocol. However, existing standard primitives like HMAC

and HKDF do not permit the use of such labels, so this advice is not practical for TLS 1.3 or

similar protocols. For these, a combination of labels (where possible) and padding for domain

separation seems advisable, where the padding ensures that the protocol’s direct hash calls have

strictly longer inputs than the internal hash calls in HMAC and HKDF. We outline this method

in more detail in Section 3.8.5.

119

Modularization of record layer encryption.

Like most of the prior computational TLS 1.3 analyses [104, 113, 103, 99], we use a

multi-stage key exchange (MSKE) security model [112] to capture the complex and fine-grained

security aspects of TLS 1.3. These aspects include cleverly distinguishing between “external”

keys established in the handshake for subsequent use (by, e.g., application data encryption,

resumption, etc.) and “internal” keys, used within the handshake itself (in TLS 1.3 for encrypting

most of the handshake through the protocol’s record layer) to avoid complex security models

such as the ACCE model [141] which monolithically treat handshake and record-layer encryption.

As a generic simplification step for MSKE models, we show (in Section 3.5) that for

a certain class of transformations using the internal keys, we can even avoid the somewhat

involved handling of internal keys altogether. We use this to simplify our analysis of the TLS 1.3

handshake (treating the TLS 1.3 record-layer encryption as such transformation). The result

itself however is not specific to TLS 1.3, but general and of independent interest; it furthermore

is tight.

Tight security of TLS 1.3 PSK modes.

We leverage the new perspective on the TLS 1.3 key schedule and the fact that we can

ignore record-layer encryption to give our main results: the first tight security proofs for the

PSK-only and PSK-(EC)DHE handshake modes of TLS 1.3.

Evaluation.

Finally, we evaluate our new bounds and prior ones from [103] over a wide range of

fully concrete resource parameters, following the approach of Davis and Günther [89]. Our

bounds improve on previous analyses of the PSK-only handshake by between 15 and 53 bits of

security, and those of the PSK-(EC)DHE handshake by 60 and 131 bits of security across all our

parameters evaluated.

Further related work and scope of our analysis

Several previous works gave security proofs for the previous protocol version TLS 1.2 [141,

159, 118, 160, 167, 55], including its PSK-modes [167]; all reductions in these works are highly

non-tight.

120

Brzuska et al. [68] recently proposed a stand-alone security model for the TLS 1.3 key

schedule, likewise aiming at a new abstraction perspective on the latter to support formal protocol

analysis. While their treatment focuses solely on the key schedule and only briefly argues its

application to a key exchange security result, it is more general and covers the negotiation of

parameters [107, 54] and agile usage of various algorithms.

Our focus is on the TLS 1.3 PSK modes. Hence, our abstraction of the key schedule and

the careful indifferentiability treatment is tailored to that mode and cannot be directly translated

to the full handshake (without PSKs). We are confident that our approach can be adapted to

achieve similar results for the full handshake, but leave revisiting the results in [99, 89] in that

way to future work.

Like many previous cryptographic analyses [141, 159, 104, 106, 113, 103, 99, 89] of the TLS

handshake, our work focuses on the “cryptographic core” of the TLS 1.3 PSK handshake modes

(in particular, we consider fixed parameters like the Diffie–Hellman group, TLS ciphersuite,

etc.). Our abstraction of the key schedule is designed for easy composition with our tight

key exchange proof, and our indifferentiability treatment is important confirmation of that

abstraction’s soundness. We do not consider, e.g., ciphersuite and version negotiation [107] or

backwards compatibility issues in settings where multiple TLS versions are used in parallel, such

as [142]. We also do not treat the security of the TLS record layer; instead we explain how to

avoid the necessity to do so in order to achieve more modular security analyses, and we refer to

compositional results [112, 104, 126, 103, 99] treating the combined security when subsequent

protocols use the session keys established in an MSKE protocol.

Numerous authenticated key exchange protocols [121, 78, 168, 140, 130] were recently

proposed that can be proven (almost) tightly secure. However, these protocols were specifically

designed to be tightly secure and none is standardized.

3.2 The TLS 1.3 Pre-shared Key Handshake Protocol

Overview.

We consider the pre-shared key mode of TLS 1.3, used in a setting where both client and

server already share a common secret, a so-called pre-shared key (PSK). A PSK is a cryptographic

121

key which may either be manually configured, negotiated out-of-band, or (and most commonly) be

obtained from a prior and possibly not PSK-based TLS session to enable fast session resumption.

The TLS 1.3 PSK handshake comes in two flavors: PSK-only, where security is established from

the pre-shared key alone, and PSK-(EC)DHE, which includes an (finite-field or elliptic-curve)

Diffie–Hellman key exchange for added forward secrecy. Both PSK handshakes essentially consist

of two phases (cf. Figure 3.1).

1. The client sends a random nonce and a list of offered pre-shared keys to the server, where

each key is identified by a (unique) identifier pskid.2 The server then selects one pskid from

the list, and responds with another random nonce and the selected pskid. In PSK-(EC)DHE

mode, client and server additionally perform a Diffie–Hellman key exchange, sending group

elements along with the nonces and PSK identifiers. In both modes, the client also sends a

so-called binder value, which applies a message authentication code (MAC) to the client’s

nonce and pskid (and the Diffie–Hellman share in PSK-(EC)DHE mode) and binds the

PSK handshake to the (potential) prior handshake in which the used pre-shared key was

established (see [83, 156] for analysis rationale behind the binder value).

2. Then client and server derive unauthenticated cryptographic keys from the PSK and the

established Diffie–Hellman key (the latter only in (EC)DHE mode, of course). This includes,

for instance, the client and server handshake traffic keys (htkC and htkS) used to encrypt the

subsequent handshake messages, as well as finished keys (fkC and fkS) used to compute and

exchange finished messages. The finished messages are MAC tags over all previous messages,

ensuring that client and server have received all previous messages exactly as they were sent.

After verifying the finished messages, client and server “accept” authenticated cryptographic

keys, including the client and server application traffic secret (CATS and SATS), the exporter

master secret (EMS), and the resumption master secret (RMS) for future session resumptions.

2In this work, we do not consider negotiation of pre-shared keys in situations where client and server share
multiple keys, but focus on the case where client and server share only one PSK and the client therefore offers
only a single pskid. However, we expect that our results extend to the general case as well.

122

Client Server

rC
$←− {0,1}nl

x $←− Zp, X ← gx

ClientHello: rC

[+ ClientKeyShare: X]†
ES←Extract(0,PSK)

dES←Expand(ES, `3 ‖H(""))
BK←Expand(ES, `0 ‖H(""))

fkb←Expand(BK, `6)

binder ←MAC(fkb,H(CH−))

+ ClientPreSharedKey: pskid,binder

abort if binder 6=MAC(fkb,H(CH−))

accept ETS←Expand(ES, `1 ‖H(CH))
stage 1

accept EEMS←Expand(ES, `2 ‖H(CH))
stage 2

rS
$←− {0,1}nl

y $←− Zp, Y ← gy

ServerHello: rS

[+ ServerKeyShare: Y]†
+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�
HS←Extract(dES,DHE)

CHTS←Expand(HS, `4 ‖H(CH‖SH))
SHTS←Expand(HS, `5 ‖H(CH‖SH))

dHS←Expand(HS, `3 ‖H(""))
accept htkC← DeriveTK(CHTS)

stage 3
accept htkS← DeriveTK(SHTS)

stage 4
{EncryptedExtensions}

fkS←Expand(SHTS, `6)

finS←MAC(fkS,H(CH‖ · · · ‖EE))
{ServerFinished}: finS

abort if finS 6= HMAC(fkS,H(CH‖ · · · ‖EE))
MS←Extract(dHS,0)

accept CATS←Expand(MS, `7 ‖H(CH‖ · · · ‖SF))
stage 5

accept SATS←Expand(MS, `8 ‖H(CH‖ · · · ‖SF))
stage 6

accept EMS←Expand(MS, `9 ‖H(CH‖ · · · ‖SF))
stage 7

fkC←Expand(CHTS, `6)

finC←MAC(fkC,H(CH‖ · · · ‖SF))
{ClientFinished}: finC

abort if finC 6=MAC(fkC,H(CH‖ · · · ‖SF))
accept RMS←Expand(MS, `10 ‖H(CH‖ · · · ‖CF))

stage 8

Client Server

rC
$←− {0,1}nl

x $←− Zp, X ← gx

ClientHello: rC

[+ ClientKeyShare: X]†

binder ← TKDFbinder (PSK,H(CH−))

+ ClientPreSharedKey: pskid,binder

abort if binder 6= TKDFbinder (PSK,H(CH−))

accept ETS← TKDFETS(PSK,H(CH))
stage 1

accept EEMS← TKDFEEMS(PSK,H(CH))
stage 2

rS
$←− {0,1}nl

y $←− Zp, Y ← gy

ServerHello: rS

[+ ServerKeyShare: Y]†
+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

accept htkC← TKDFhtkC(PSK,DHE,H(CH‖SH))
stage 3

accept htkS← TKDFhtkS(PSK,DHE,H(CH‖SH))
stage 4

{EncryptedExtensions}

finS← TKDFfinS
(PSK,DHE,H(CH‖SH),H(CH‖ · · · ‖EE))

{ServerFinished}: finS

abort if finS 6= TKDFfinS (PSK,DHE,H(CH‖SH),H(CH‖ · · · ‖EE))

accept CATS← TKDFCATS(PSK,DHE,H(CH‖ · · · ‖SF))
stage 5

accept SATS← TKDFSATS(PSK,DHE,H(CH‖ · · · ‖SF))
stage 6

accept EMS← TKDFEMS(PSK,DHE,H(CH‖ · · · ‖SF))
stage 7

finC← TKDFfinC
(PSK,DHE,H(CH‖SH),H(CH‖ · · · ‖SF))

{ClientFinished}: finC

abort if finC 6= TKDFfinC (PSK,DHE,H(CH‖SH),H(CH‖ · · · ‖SF))

accept RMS← TKDFRMS(PSK,DHE,H(CH‖ · · · ‖CF))
stage 8

Legend
MSG: Y message MSG sent, containing Y
+ MSG extension sent within previous message
{MSG} MSG sent AEAD-encrypted with htkC/htkS
[. . .]† present only in PSK-(EC)DHE
[. . .]� present only in PSK

CH− partial ClientHello up to (incl.) pskid
`x label value, distinct for distinct x

DeriveTK(HTS) :=Expand(HTS , `11 ‖Th(""),hl)‖Expand(HTS , `12 ‖Th(""), ivl)
(traffic key computation, deriving a hl-bit key and a ivl-bit IV)

Figure 3.1. TLS 1.3 PSK and PSK-(EC)DHE handshake modes with (optional) 0-RTT keys
(stages 1 and 2), with detailed key schedule (left) and our representation of the key schedule
through functions TKDFx (right), explained in the text. Centered computations are executed by
both client and server with their respective messages received, and possibly at different points
in time. Dotted lines indicate the derivation of session (stage) keys together with their stage
number. The labels `x are distinct for distinct index x, see Table 3.1 for their definition.

123

Table 3.1. Definitions of the short labels used in Figure 3.1. We simplify the labeling of
Expand in our presentation. In the specification each Expand is not only labeled by `‖H for
some label ` and some hash H, but it is prefixed by the output length of the respecitive Expand
call and the constant label “tls13 ”. As the output length for all of the above calls is equal
(namely, the output length hl of H), we leave this constant prefix out to reduce complexity.

Value Label Value Label

dES `3 = "derived" htkC `11 = "key" & `12 = "iv"
BK `0 = "ext binder" / "res binder" htkS `11 = "key" & `12 = "iv"
fkb `6 = "finished" fkS `6 = "finished"
ETS `1 = "c e traffic" CATS `7 = "c ap traffic"
EEMS `2 = "e exp master" SATS `8 = "s ap traffic"
CHTS `4 = "c hs traffic" EMS `9 = "exp master"
SHTS `5 = "s hs traffic" fkC `6 = "finished"
dHS `3 = "derived" RMS `10 = "res master"

Detailed specification.

For our proofs we will need fully-specified descriptions for each of the TLS 1.3 PSK and

PSK-(EC)DHE handshake protocols. Pseudocode for these protocols can be found in Figure 3.1,

where we let (G, p,g) be a cyclic group of prime order p such that G= 〈g〉.

The two descriptions on the left and right in Figure 3.1 show the same protocol, but they

use different abstractions to highlight how we capture the complex way TLS 1.3 calls its hash

function. This one hash function is used in some places to condense transcripts, in others to help

derive session keys, and in still others as part of a message authentication code. We call this

function H, and let its output length be hl bits so that we have H : {0,1}∗→{0,1}hl . Depending

on the choice of ciphersuite, TLS 1.3 instantiates H with either SHA256 or SHA384 [186]. In our

security analysis, we will model H as a random oracle.

On the left-hand side of Figure 3.1, we distinguish four named subroutines of TLS 1.3

which use H for different purposes:

• A message authentication code MAC : {0,1}hl ×{0,1}∗→ {0,1}hl , which calls H via the

HMAC function MAC(K,M) := HMAC[H](K,M) where

HMAC[H](K,M) := H((K ‖0bl−hl)⊕opad)‖H((K ‖0bl−hl ⊕ ipad)‖M))

124

Here opad and ipad are bl-bit strings, where each byte of opad and ipad is set to the

hexadecimal value 0x5c, resp. 0x36. We have bl = 512 when SHA256 is used and bl = 512 for

SHA384. When modeling SHA256 resp. SHA384 as a random oracle, we keep the corresponding

value of bl.

• Extract,Expand : {0,1}hl ×{0,1}∗→{0,1}hl , two subroutines for extracting and expand-

ing key material in the key schedule, following the HKDF key derivation paradigm of

Krawczyk [155, 158]. These functions are defined

– Extract(K,M) := HKDF.Extract(K,M) =MAC(K,M).

– Expand(K,M) := HKDF.Expand(K,M) =MAC(K,M ‖0x01).3

Despite the new naming conventions, this abstraction closely mimics the TLS 1.3 standard:

MAC, Extract, and Expand can be read as more generic ways of referring to the HMAC,

HKDF.Extract, and HKDF.Expand algorithms [157, 158].

The right-hand side of Figure 3.1 separates the key derivation functions for each first-class

key as well as the binder and finished MAC values derived. This way of modeling TLS 1.3 makes

it easier to establish key independence for the many keys computed in the key schedule, as we

will see in Section 3.4. We introduce 11 functions TKDFbinder , TKDFETS, TKDFEEMS, TKDFhtkC ,

TKDFfinC
, TKDFhtkS , TKDFfinS

, TKDFCATS, TKDFSATS, TKDFEMS, and TKDFRMS (indexed by

the value they derive) and use them to abstract away many intermediate computations. Note

that we are not changing the protocol, though: we define each TKDF function to capture the

same steps it replaces.

Take as an example TKDFfinS
, the function used to derive the MAC in the ServerFinished

message. In the prior abstraction, a session would first use the key schedule to derive a finished

key fkS from the hashed transcript and the secrets PSK and DHE. It would then call MAC, keyed

with fkS, to generate the ServerFinished message authentication code on the hashed transcript

and encrypted extensions. Accordingly, we define TKDFfinS
: {0,1}hl ×G×{0,1}hl ×{0,1}hl →

{0,1}hl as in Figure 3.2. In the protocol, TKDFfinS
takes inputs the pre-shared key PSK and

3HKDF.Expand [158] is defined for any output length (given as third parameter). In TLS 1.3, Expand always
derives at most hl bits, which can be trimmed from a hl-bit output; we hence in most places omit the output
length parameter.

125

TKDFfinS
(PSK,DHE,h1,h2):

1 ES←Extract(0,PSK)

2 dES←Expand(ES, `3 ‖Th(""))
3 HS←Extract(dES,DHE)

4 SHTS←Expand(HS, `5 ‖h1)

5 fkS←Expand(SHTS, `6)

6 finS←MAC(fkS,h2)

7 return finS
Figure 3.2. Definition of TKDFfinS

, deriving the ServerFinished MAC.

Diffie–Hellman secret DHE and hash digests h1 = Th(CH‖SH) and h2 = Th(CH‖ · · · ‖EE), and it

outputs a MAC tag for the ServerFinished message. The remaining key derivation functions

are defined the same way; we give their signatures

below for completeness.

1. TKDFbinder [ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

2. TKDFETS[ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

3. TKDFEEMS[ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

4. TKDFhtkC [ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl+ivl

5. TKDFfinC
[ROHMAC] : {0,1}hl ×G×{0,1}hl ×{0,1}hl →{0,1}hl

6. TKDFhtkS [ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl+ivl

7. TKDFfinS
[ROHMAC] : {0,1}hl ×G×{0,1}hl ×{0,1}hl →{0,1}hl

8. TKDFCATS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

9. TKDFSATS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

10. TKDFEMS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

11. TKDFRMS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

Note that the definition of the 11 functions induces a lot of redundancy as we derive

every value independently and therefore compute intermediate values (e.g., ES, dES, and HS)

multiple times over the execution of the handshake. However, this is only conceptual. Since the

computations of these intermediate values are deterministic, the intermediate values will be the

same for the same inputs and could be cached.

126

3.3 Code-based MSKE Model for PSK Modes

We formalize security of the TLS 1.3 PSK modes in a game-based multi-stage key

exchange (MSKE) model, adapted primarily from that of Dowling et al. [103]. We fully specify

our model in pseudocode in Figures 3.3 and 3.4. We adopt the explicit authentication property

from the model of Davis and Günther [89] and capture forward secrecy by following the model of

Schwabe et al. [209].

3.3.1 Key Exchange Syntax

In our security model, the adversary interacts with sessions executing a key exchange

protocol KE. For the definition of the security experiment it will be useful to have a unified,

generic interface to the algorithms implementing KE, which can then be called from the various

procedures defining the security experiment to run KE. Therefore, we first formalize a general

syntax for protocols.

We assume that pairs of users share long-term symmetric keys (pre-shared keys), which

are chosen uniformly at random from a set KE.PSKS.4 We allow users to share multiple pre-shared

keys, maintained in a list pskeys, and require that each user uses any key only in a fixed role

(i.e., as client or server) to avoid the Selfie attack [108]. We do not cover PSK negotiation; each

session will know at the start of the protocol which key it intends to use.

New sessions are created via the algorithm Activate. This algorithm takes as input the

new session’s own user, identified by some ID u, the user ID peerid of the intended communication

partner, a pre-shared key PSK, and a role identifier—initiator (client) or responder (server)—that

determines whether the session will send or receive the first protocol message. It returns the

new session π i
u, which is identified by its user ID u and a unique index i so that a single user can

execute many sessions.

Existing sessions send and receive messages by executing the algorithm Run. The inputs

to Run are an existing session π i
u and a message m it has received. The algorithm processes the

message, updates the state of π i
u, and returns the next protocol message m′ on behalf of the

4While our results can be generalized to any distribution on KE.PSKS (based on its min-entropy), for simplicity,
we focus on the uniform distribution in this work.

127

session. Run also maintains the status of π i
u, which can have one of three values: running when

it is awaiting the next protocol message, accepted when it has established a session key, and

rejected if the protocol has terminated in failure.

In a multi-stage protocol, sessions accept multiple session keys while running; we identify

each with a numbered stage. A protocol may accept several stages/keys while processing a single

message, and TLS 1.3 does this. In order to handle each stage individually, our model adds

artificial pauses after each acceptance to allow the adversary to interact with the sessions upon

each stage accepting (beyond, as usual, each message exchanged). When a session π i
u accepts in

stage s while executing Run, we require Run to set the status of π i
u to accepteds and terminate.

We then define a special “continue” message. When session π i
u in state accepteds, receives this

message it calls Run again, updates its status to runnings+1 and continues processing from the

point where it left off.

3.3.2 Key Exchange Security

We define key exchange security via a real-or-random security game, formalized through

Figures 3.3 and 3.4.

Game oracles.

In this security game, the adversary A has access to seven oracles: init, NewSecret,

Send, RevSessionKey, RevLongTermKey, Test, and f in, as well as any random oracles

the protocol defines. The game begins with a call to init, which samples a challenge bit b. It

ends when the adversary calls f in with a guess b′ at the challenge bit. We say the adversary

“wins” the game if f in returns true.

The adversary can establish a random pre-shared key between two users by calling

NewSecret.5 It can corrupt existing users’ pre-shared keys via the oracle RevLongTermKey.

The Send oracle creates new protocol sessions and processes protocol messages on the behalf of

existing sessions. The RevSessionKey oracle reveals a session’s accepted session key. Finally,
5Our model stipulates that pre-shared keys are sampled uniformly random and honestly. One could additionally

allow the registration of biased or malicious PSKs, akin to models treating, e.g., the certification of public keys [62].
While this would yield a theoretically stronger model, we consider a simpler model reasonable, because we expect
most PSKs used in practice to be random keys established in prior protocol sessions. Furthermore, we consider
tightness as particularly interesting when “good” PSKs are used, since low-entropy PSKs might decrease the
security below what is achieved by (non)-tight security proofs, anyway.

128

GKE-SEC
KE,A

init:
1 time← 0;
2 b $←− {0,1}

NewSecret(u,v, pskid):
3 time← time+1
4 if pskeys[(u,v, pskid)] 6=⊥
5 return ⊥
6 pskeys[(u,v, pskid)]←$KE.PSKS

7 revpsk(u,v,pskid)← ∞

8 return pskid

Send(u, i,m):
9 time← time+1

10 if π i
u =⊥ then

11 (peerid, pskid,role)← m

12 if role = initiator

13 then psk ← pskeys[(u, peerid, pskid)]

14 else psk ← pskeys[(peerid,u, pskid)]

15 (π i
u,m
′)←$Activate(u, peerid,psk ,role)

16 else
17 (π i

u,m
′)←$Run(u,π i

u.psk ,π
i
u,m)

18 if π i
u.status = acceptedπ i

u.stage then
19 stage← π i

u.stage

20 π i
u.accepted[stage]← time

21 if repr[π i
u.sid[stage]] 6=⊥ then

22 π i
u.skey[stage]← repr[π i

u.sid[stage]]

23 π i
u.untampered[stage] ← ∃π j

v with π
j

v .cidπ i
u.role[stage] =

π i
u.cidπ i

u.role[stage]

24 return m′

RevSessionKey(u, i,s):
25 time← time+1
26 if π i

u =⊥ or π i
u.tacc[s] = ∞ then

27 return ⊥
28 π i

u.revealed[s]← true

29 return π i
u.skey[s]

RevLongTermKey(u,v, pskid):
30 time← time+1
31 revpsk(u,v,pskid)← time

32 return pskeys[(u,v, pskid)]

Test(u, i,s):
33 time← time+1
34 if s ∈ INT

and ∃π j
v : π

j
v .sid[s] = π i

u.sid[s]
and π

j
v .tacc[s]< ∞

and π
j

v .status 6= accepteds then
35 return ⊥

// can only test internal keys if all sessions
having accepted that key have not moved
on with the protocol

36 if π i
u =⊥ or π i

u.tacc[s] = ∞ or ¬π i
u.tested[s] then

37 return ⊥
38 π i

u.tested[s]← time

39 T ←T ∪{(π i
u,s)}

40 k0← π i
u.skey[s]

41 k1
$←− KE.KS[s]

42 if s ∈ INT then
∀π j

v : π
j

v .sid[s] = π i
u.sid[s]

and π
j

v .status = accepteds

43 π
j

v .skey[s]← kb

44 repr[π i
u.sid[s]]← kb

45 return kb

f in(b′):
46 if ¬Sound then
47 return 1
48 if ¬ExplicitAuth then
49 return 1
50 if ¬Fresh then
51 b′← 0
52 return [[b = b′]]

RO(i,X):
53 time← time+1
54 return ROi(X)

Figure 3.3. Multi-stage key exchange (MSKE) security game for a key exchange protocol KE
with pre-shared keys. Predicates Fresh, ExplicitAuth, and Sound are defined in Figure 3.4. The
functions ROi correspond to the (independent) random oracles available to the adversary.

the Test oracle servers as the challenge oracle: it returns the real session key of a target session

or an independent one sampled randomly from the session key space KE.KS[s] of the respective

stage s, depending on the value of the challenge bit b.

129

Fresh:
1 for each (π i

u,s) ∈T

2 tTest← π i
u.tested[s]

3 if π i
u.revealed[s] then

4 return false // tested session may not be
revealed

5 if ∃π j
v 6= π i

u : π
j

v .sid[s] = π i
u.sid[s]

and (π j
v .tested[s] or π

j
v .revealed[s]) then

6 return false // tested session’s partnered ses-
sion may not be tested or revealed

7 if π i
u.tacc[FS[s, fs]]< tTest

8 if revpsk(u,π i
u.peerid,π i

u.pskid) < π i
u.tacc[FS[s, fs]] and

¬π i
u.untampered[FS[s, fs]] then

9 return false // Sessions with forward secrecy
are fresh if they attained fs before their PSK was
corrupted, or if they have a contributive partner
(no tampering).

10 else if π i
u.tacc[FS[s,wfs2]]< tTest

11 if revpsk(u,π i
u.peerid,π i

u.pskid) and
¬π i

u.untampered[FS[s,wfs2]] then
12 return false // Sessions with weak forward

secrecy 2 are fresh if the PSK was never corrupted,
or if they have a contributive partner.

13 else if revpsk{u,π i
u.peerid},π i

u.pskid then
14 return false // Sessions with no forward se-

crecy are fresh if the PSK was never corrupted.
15 return true

ExplicitAuth:
1 if ∀π i

u,s:
s′← EAUTH[π i

u.role,s]
π i

u.tacc[s′]< ∞

and π i
u.tacc[s]< ∞

and π i
u.tacc[s′]< revpsk(u,π i

u.peerid,π i
u.pskid)

and π i
u.tacc[s′]< ∞

// all sessions accepting in explicitly authenti-
cated stages whose PSK was not corrupted before
acceptance of the stage at which explicit authenti-
cation was (perhaps retroactively) established. . .
=⇒ ∃π j

v : π i
u.sid[s′] = π

j
v .sid[s′]

and π i
u.peerid = v

and π i
u.pskid = π

j
v .pskid

// . . . have a partnered session in that stage . . .
// . . . agreeing on the peerid and pre-shared key. . .

and (π
j

v .tacc[s]< time =⇒ π
j

v .sid[s] = π i
u.sid[s])

// . . . and partnered in stage s (upon acceptance)
2 return true

Sound:
1 if ∃s, distinct π i

u, π
j

v , πk
w with π i

u.sid[s] = π
j

v .sid[s] =
πk

w.sid[s] 6=⊥
and REPLAY[s] = false then

2 return false
// no triple sid match, except for replayable stages

3 if ∃π i
u,π

j
v , s with

π i
u.sid[s] = π

j
v .sid[s] 6=⊥ and

π i
u.role = π

j
v .role and

(REPLAY[s] = false or π i
u.role = initiator) then

4 return false
// partnering implies different roles (except for
responders in replayable stages)

5 if ∃π i
u,π

j
v , s with

π i
u.sid[s] = π

j
v .sid[s] 6=⊥ and

(π i
u.cidinitiator[s] 6= π

j
v .cidinitiator[s] or π i

u.cidresponder[s] 6=
π

j
v .cidresponder[s])

6 return false
// partnering implies matching cids
if ∃π i

u,π
j

v and s 6= t such that
π i

u.sid[s] = π
j

v .sid[t]

7 return false
// different stages implies different sids

8 if ∃π i
u,π

j
v , s with

π i
u.sid[s] = π

j
v .sid[s] 6=⊥

and π i
u.peerid 6= v

or π
j

v .peerid 6= u or π i
u.pskid 6= π

j
v .pskid then

// partnering implies agreement on peer IDs and
PSKs

9 return false

10 if ∃π i
u,π

j
v , s with

π i
u.tacc[s]< time

and π
j

v .tacc[s]< time

and π i
u.sid[s] = π

j
v .sid[s] 6=⊥,

but π i
u.skey[s] 6= π

j
v .skey[s] then

// partnering implies same key
11 return false

12 return true

Figure 3.4. Predicates Fresh, ExplicitAuth, and Sound for the MSKE pre-shared key model.

130

Protocol properties.

Keys established in different stages possess different security attributes, which are defined

as part of the key exchange protocol: replayability, forward secrecy level, and authentication

level. Certain stages, whose indices are tracked in a list INT, produce “internal” keys intended

for use only within the key exchange protocol; these keys may only be Tested at the time of

acceptance of this particular key, but not later. This is because otherwise such keys may be

trivially distinguishable from random, e.g., via trial decryption, due to the fact that they are used

within the protocol. To avoid a trivial distinguishing attack, we force the rest of the protocol

execution to be consistent with the result of such a Test. That is, a tested internal key is

replaced in the protocol with whatever the Test returns to the adversary (which is either the

real internal key or an independent random key). The remaining stages produce “external” keys

which may be tested at any time after acceptance.

For some protocols, it may be possible that a trivial replay attack can achieve that several

sessions agree on the same session key for stage s, but this is not considered an “attack”. For

example, in TLS 1.3 PSK an adversary can always replay the ClientHello message to multiple

sessions of the same server, which then all derive the same ETS and EEMS keys (cf. Figure 3.1).

To specify that such a replay is not considered a protocol weakness, and thus should not be

considered a valid “attack”, the protocol specification may define REPLAY[s] to true for a stage s.

REPLAY[s] is set to false by default.

As we focus on protocols which rely on (pre-authenticated) pre-shared keys, our model

encodes that all protocol stages are at least implicitly mutually authenticated in the sense of

Krawczyk [154], i.e., a session is guaranteed that any established key can only be known by the

intended partner. Some stages will further be explicitly authenticated, either immediately upon

acceptance or retroactively upon acceptance of a later state. Additionally, the stage at which

explicit authentication is achieved may differ between the initiator and responder roles. For each

stage s and role r, the key exchange protocol specification states in EAUTH[r,s] the stage t from

whose acceptance stage s derives explicit authentication for the session in role r. Note that the

stage-s key is not authenticated until both stages s and EAUTH[r,s] have been accepted. If the

stage-s key will never be explicitly authenticated for role r, we set EAUTH[r,s] = ∞.

131

We use a predicate ExplicitAuth (cf. Figure 3.4) to require the existence of an honest partner

for explicitly authenticated stages upon both parties’ completion of the protocol, except when

the session’s pre-shared key was corrupted prior to accepting the explicitly-authenticating stage

(as in that case, we anticipate the adversary can trivially forge any authentication mechanism).

Motivated by TLS 1.3, it might be the case that initiator and responder sessions achieve

slightly different guarantees of authentication. While responders in TLS 1.3 are guaranteed the

existence of an honest partner in any explicitly authenticated stage, initiators cannot guarantee

that their partner has received their final message. This issue was first raised by FGSW [114]

and led to their definitions of “full” and “almost-full” key confirmation; it was then extended

to “full” and “almost-full” explicit authentication by DFW [93]. Our definitions for responders

and initiators respectively resemble the latter two notions most closely, but we rely on session

identifiers instead of “key confirmation identifiers”.

We consider three levels of forward secrecy inspired by the KEMTLS work of Schwabe,

Stebila, and Wiggers [209]: no forward secrecy, weak forward secrecy 2 (wfs2), and full forward

secrecy (fs). As for authentication, each stage may retroactively upgrade its level of forward

secrecy upon the acceptance of later stages, and forward secrecy may be established at different

stages for each role. For each stage s and role r, the stage at which wfs2, resp. fs, is achieved is

stated in FS[r,s,wfs2], resp. FS[r,s, fs], by the key exchange protocol.

The definition of weak forward secrecy 2 states that a session key with wfs2 should

be indistinguishable as long as (1) that session has received the relevant messages from an

honest partner (formalized via matching contributive identifiers below, we say: “has an honest

contributive partner”) or (2) the pre-shared key was never corrupted. Full forward secrecy relaxes

condition (2) to forbid corruption of the pre-shared key only before acceptance of the stage

that retroactively provides full forward secrecy. We capture these notions of forward secrecy

in a predicate Fresh(cf. Figure 3.4), which uses the log of events to check whether any tested

session key is trivially distinguishable (e.g., through the session or its partnered being revealed,

or forward secrecy requirements violated). With forward secrecy encoded in Fresh, our long-term

key corruption oracle (RevLongTermKey), unlike in the model of [103], handles all corruptions

the same way, regardless of forward secrecy.

132

Session and game variables.

Sessions π i
u and the security game itself maintain several variables; we indicate the former

in italics, the latter in sans-serif font.

The game uses a counter time, initialized to 0 and incremented with any oracle query the

adversary makes, to order events in the game log for later analysis. When we say that an event

happens at a certain “time”, we mean the current value of the time counter. The list pskeys

contains, as discussed above, all pre-shared keys, indexed by a tuple (u,v, pskid) containing the

two users’ IDs (u using the key only in the initiator role, v only in the reponder role), and a

unique string identifier. The list revpsk, indexed like pskeys, tracks the time of each pre-shared

key corruption, initialized to revpsk(u,v,pskid)←∞. (In boolean expressions, we write revpsk(u,v,pskid)

as a shorthand for revpsk(u,v,pskid) 6= ∞.)

Each session π i
u, identified by (adversarially chosen) user ID and a unique session ID,

furthermore tracks the following variables:

• status ∈ {runnings,accepteds, rejecteds | s ∈ [1, . . . ,STAGES]}, where STAGES is the total num-

ber of stages of the considered protocol. The status should be accepteds immediately after

the session accepts the stage-s key, rejecteds after it rejects stage s (but may continue running;

e.g., rejecting 0-RTT data), and runnings for some stage s otherwise.

• peerid. The identity of the session’s intended communication partner.

• pskid. The identifier of the session’s pre-shared key.

• tacc[s]. For each stage s, the time (i.e., the value of the time counter) at which the stage s

key was accepted. Initialized to ∞.

• revealed[s]. A boolean denoting whether the stage s key has been leaked through a

RevSessionKey query. Initialized to false.

• tested[s]. The time at which the stage s key was tested. Initialized to ∞ before any Test

query occurs. (In boolean expressions, we write tested[s] as a shorthand for tested[s] 6= ∞.)

• sid[s]. The session identifier for each stage s, used to match honest communication partners

within each stage.

133

• skey[s]. The key accepted at each stage.

• cidinitiator[s] and cidresponder[s]. The contributive identifiers for each stage s, where cidrole[s]

identifies the communication part that a session in role role must have honestly received in

order to be allowed to be tested in certain scenarios (cf. the freshness definition in the Fresh

predicate). Unlike prior models, each session maintains a contributive identifiers for each

role; one for itself and one for its intended partner. This enables more fine-grained testing

of session stages in our model.

The predicate Sound (cf. Figure 3.4) captures that variables are properly assigned, in particular

that session identifiers uniquely identify a partner session (except for replayable stages) and that

partnering implies agreement on (distinct) roles, contributive identifiers, peer identities and the

pre-shared key used, as well as the established session key.

Definition 10 (Multi-stage key exchange security). Let KE be a key exchange protocol and let

GKE-SEC
KE,A be the key exchange security game defined in Figures 3.3 and 3.4. We define

AdvKE-SEC
KE (t,qNS,qS,qRS,qRL,qT,qRO) := 2 ·max

A
Pr
[
GKE-SEC

KE,A ⇒ 1
]
−1,

where the maximum is taken over all adversaries, denoted (t,qNS,qS,qRS,qRL,qT,qRO)-KE-SEC-

adversaries, running in time at most t and making at most qNS, qS, qRS, qRL, qT, resp. qRO

queries to their respective oracles NewSecret, Send, RevSessionKey, RevLongTermKey,

Test, and RO.

3.3.3 The indifferentiability framework

In the random oracle model, we treat hash functions like SHA256 as uniformly sampled

random functions. Honest parties and adversaries alike access these functions via additional

oracles in the security game. These are the random oracles. These random functions will be

sampled from a set called a function space at the start of a security game. Alternatively, the

random oracle can lazily sample responses to each query as they are needed. While we typically

use the latter (lazily-sampled) model in key exchange security proofs, we will focus on the former

conceptual view here.

134

Let us give an example. When we model the TLS 1.3 protocol in the ROM, we will equip

our protocol definition with a function space parameter FS. We set this parameter according to

the portion of the protocol we wish to model as a random oracle. If we wish to replace the hash

function H with a random oracle ROH, then we would set FS to be the set of all functions the

set of all functions with domain {0,1}∗ and range {0,1}hl . The KE security game would sample

ROH from FS in its init routine, then provide oracle access to ROH to all parties. This notation

also captures protocols which use multiple random oracles. If we wish to use two independent

random oracles, say RO1 and RO2, then we would define an arity-2 function space FS, which is a

set of tuples each containing two functions. Let FS1, resp. FS2 be the set from which RO1, RO2

should be drawn. Then we set FS = {(F1,F2) : F1 ∈ FS1 and F2 ∈ FS2}. We call FS1 and FS2 the

subspaces of FS. A security game provides access to F1 and F2 through a single oracle RO that

takes two arguments; the first is the index of the function to be queried and the second is the

contents of the query. So RO(i,X) will return Fi(X). We can also cast an arity-1 function space

in this notation by identifying each function F with the tuple (F), but we will typically omit the

parentheses and index argument when only one random oracle is used.

Indifferentiability was originally developed by Maurer, Renner, and Holenstein [171], and

it has been used to prove security for hash functions built from public compression functions.

More generally, it gives a framework to show the security of a transition between any two

function spaces. We’ll call these spaces SS (for “starting space”) and ES (for “ending space”).

A construction of ES from SS is an algorithm C that outputs elements of ES given an oracle

ROSS ∈ SS. We may use the notation C : SS→ ES. We then say that C is “indifferentiable” if

for any function ROSS sampled from SS, C[RO] behaves indistinguishably from a function ROES

sampled from ES. Indifferentiability requires this behavior to hold even when the adversary

can access both C[ROSS] and ROSS without any restriction. Once we have an indifferentiable

construction between two function spaces, we can use the indifferentiability “composition theorem”

to prove that (almost) any protocol is as secure when it uses C[ROSS] as its random oracle as

when it uses ROES.6

6As Ristenpart, Shacham, and Shrimpton [202] showed, indifferentiability composition does not cover what they
call “multi-stage games,” meaning games in which the adversary is split into distinct algorithms with restricted
communication. Our multi-stage AKE security game is actually a “single-stage” game in the RSS terminology;
indifferentiability composition does apply to our results without issue.

135

Game Gindiff
C,Sim,SS,ES

init():
1 b←${0,1}
2 ROSS←$SS

3 ROES←$ES

4 state←$ ε

f in(b′):
5 return b′

Pub(i,Y):
6 if b = 0 then
7 (z,state)← Sim[Priv](i,Y,state)

8 return z

9 else return ROSS(i,Y)

Priv(i,X):
10 if b = 0 then return ROSS(i,X)

11 else return C[ROES](i,X)

Figure 3.5. The game Gindiff
C,Sim,SS,ES measuring indifferentiability of a construct C that transforms

function space SS into ES. The game is parameterized by a simulator Sim.

How do we check whether a construction C is indifferentiable? From the earlier intuition,

we set up a security game with two worlds. In one world, often called the “real world”, the

adversary has oracle access to ROSS (drawn from SS) and C[ROSS]. In the other, the “ideal

world”, it has oracle access to ROES, a random oracle sampled from ES. The adversary’s task is

then to return a bit indicating which world it is in.

This intuition is obviously incomplete: the adversary can distinguish between worlds just

by counting its oracles. We need a second oracle in the ideal world. This second oracle, Pub,

must behave indistinguishably from ROSS, but its responses must also be consistent with the

view of ROES (accessed via the first oracle, Priv) as a construction of Pub. The algorithm that

does this is called a “simulator”. Every construction requires a different simulator Sim, so we

make it a parameter of the definition. We can now give pseudocode for the full indifferentiability

security game, shown in Figure 3.5.

Definition 11 (Indifferentiability). Let SS and ES be function spaces, and letC be a construction

of ES from SS. Then for any simulator Sim and any adversary D which makes qPriv queries to

the Priv oracle and qPub queries to the Pub oracle, the indifferentiability advantage of D is

Advindiff
C,Sim,qPriv,qPub

(D) := Pr[Gindiff
C,Sim(D)⇒ 1|b = 1]−Pr[Gindiff

C,Sim(D)⇒ 1|b = 0].

Indifferentiability is useful because of the following theorem of Maurer et al. [171]. In

our presentation, we consider only the authenticated key exchange game, although the theorem

applies equally well to any single-stage game [202].

136

Theorem 3.1. Let KE be a key exchange protocol using function space ES. Let C be an

indifferentiable construct of ES from SS with respect to simulator Sim, and let t ′ be the runtime

of Sim on a single query. We define KE′ to be the following key exchange protocol with function

space SS: KE′ runs KE, but wherever KE would call its random oracle, KE′ instead computes

C using its own random oracle. For any adversary A against the KE-SEC security of KE′ with

runtime tA and making q random oracle queries, there exists an adversary B and a distinguisher

D with runtime approximately tA +q · t such that

AdvKE-SEC
KE′ (A)≤AdvKE-SEC

KE (B)+Advindiff
C,Sim(D).

Proof: Adversary B is a wrapper for A whenever A makes a query to its random oracle

RO, B responds by running the simulator with its own random oracle. The distinguisher D

simulates the KE−Sec game of KE for A, with two differences: instead of an RO, it gives A oracle

access to Pub, and where KE would query its own RO, it instead queries Priv. We claim that

when b = 1 in the indifferentiability game (the real world), D perfectly simulates the KE-SEC

game of KE′ for A. This works because the Priv oracle computes C for KE′, and the Pub oracle

is indeed an RO as A expects. When b = 0, D perfectly simulates KE-SEC of KE for B . The

Pub oracle answers all of A’s queries using the simulator, so it properly executes the wrapper

code that makes up B . The rest of the simulation is honest, down to the random oracle accessed

via Priv. �

3.4 Key-Schedule Indifferentiability

In this section we will argue that the key schedule of TLS 1.3 PSK modes, where the

underlying cryptographic hash function is modeled as a random oracle (i.e., the left-hand side of

Figure 3.1 with the underlying hash function modeled as a random oracle), is indifferentiable [171]

from a key schedule that uses independent random oracles for each step of the key derivation

(i.e., the right-hand side of Figure 3.1 with all TKDFx functions modeled as independent random

oracles). We stress that this step not only makes our main security proof in Section 3.6 significantly

simpler and cleaner, but also it puts the entire protocol security analysis on a firmer theoretical

137

ground than previous works. For some background on the indifferentiability framework, see

Section 3.3.3.

In their proof of tight security, Diemert and Jager [99] previously modeled the TLS 1.3

key schedule as four independent random oracles. Davis and Günther [89] concurrently modeled

the functions HKDF.Extract and HKDF.Expand used by the key schedule as two independent

random oracles. Neither work provided formal justification for their modeling. Most importantly,

both neglected potential dependencies between the use of the hash function in multiple contexts

in the key schedule and elsewhere in the protocol. In particular, no construction of HKDF.Extract

and HKDF.Expand as independent ROs from one hash function could be indifferentiable, because

HKDF.Extract and HKDF.Expand both call HMAC directly on their inputs, with HKDF.Expand

only adding a counter byte. Hence, the two functions are inextricably correlated by definition.

We do not claim that the analyses of [99, 89] are incorrect or invalid, but merely point out

that their modeling of independent random oracles is currently not justified and might not be

formally reachable if one only wants to treat the hash function itself as a random oracle. This is

undesirable because the gap between an instantiated protocol and its abstraction in the random

oracle model can camouflage serious attacks, as Bellare et al. [35] found for the NIST PQC KEMs.

Their attacks exploited dependencies between functions that were also modeled as independent

random oracles but instantiated with a single hash function.

In contrast, in this section we will show that our modeling of the TLS 1.3 key schedule

is indifferentiable from the key schedule when the underlying cryptographic hash function is

modeled as a random oracle. To this end, we will require that inputs to the hash function

do not appear in multiple contexts. For instance, a protocol transcript might collide with a

Diffie–Hellman group element or an internal key (i.e., both might be represented by exactly the

same bit string, but in different contexts). For most parameter settings, we can rule out such

collisions by exploiting serendipitous formatting, but for one choice of parameters (the PSK-only

handshake using SHA384 as hash function), an adversary could conceivably force this type of

collision to occur; see Section 3.8 for a detailed discussion. While this does not lead to any known

attack on the handshake, it precludes our indifferentiability approach for that case.

138

Insights for the design of cryptographic protocols.

One interesting insight for protocol designers that results from our attempt of closing

this gap with a careful indifferentiability-based analysis is that proper domain separation might

enable a cleaner and simpler analysis, whereas a lack of domain separation leads to uncertainty

in the security analysis. No domain separation means stronger assumptions in the best case, and

an insecure protocol in the worst case, due to the potential for overlooked attack vectors in the

hash functions. A simple prefix can avoid this with hardly any performance loss.

Indifferentiability of the TLS 1.3 key schedule.

Via the indifferentiability framework, we replace the complex key schedule of TLS 1.3

with 12 independent random oracles: one for each first-class key and MAC tag, and one more

for computing transcript hashes. In short, we relate the security of TLS 1.3 as described in the

left-hand side of Figure 3.1 to that of the simplified protocol on the right side of Figure 3.1 with

the key derivation and MAC functions TKDFx and modeled as independent random oracles. We

prove the following theorem, which formally justifies our abstraction of the key exchange protocol

by reducing its security to that of the original key exchange game.

Theorem 3.2. Let ROH : {0,1}∗→ {0,1}hl be a random oracle. Let KE be the TLS 1.3 PSK-

only or PSK-(EC)DHE handshake protocol described on the left hand side of Figure 3.1 with

H := ROH and MAC, Extract, and Expand defined from H as in Section 3.2. Let KE′ be

the corresponding (PSK-only or PSK-(EC)DHE) handshake protocol on the right hand side of

Figure 3.1, with H := ROTh and TKDFx := ROx, where ROTh, RObinder , . . . , RORMS are random

oracles with the appropriate signatures (cf. Section 3.4.1 for the signature details). Then,

AdvKE-SEC
KE (t,qNS,qS,qRS,qRL,qT,qRO)≤AdvKE-SEC

KE′ (t,qNS,qS,qRS,qRL,qT,qRO)

+
2(12qS+qRO)

2

2hl
+

2q2
RO

2hl
+

8(qRO+36qS)2

2hl
.

We establish this result via three modular steps in the indifferentiability framework

introduced by Maurer, Renner, and Holenstein [171]. More specifically we will leverage a recent

generalization proposed by Bellare, Davis, and Günther (BDG) [35], which in particular formalizes

indifferentiability for constructions of multiple random oracles.

139

3.4.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

We move from the left of Figure 3.1 to the right via three steps. Each step introduces

a new variant of the TLS 1.3 protocol with a different set of random oracles by changing how

we implement H, MAC, Expand, Extract, and eventually the whole key schedule. Then we

view the prior implementations of these functions as constructions of new, independent random

oracles. We prove security for each intermediate protocol in two parts: first, we bound the

indifferentiability advantage against that step’s construction; then we apply the indifferentiability

composition theorem based on [171] (cf. Section 3.3.3, Theorem 3.1) to bound the multi-stage

key exchange (KE-SEC) security of the new protocol.

We give a brief description of each step; all details and formal theorem statements and

proofs can be found in Sections 3.4.1, 3.4.1, and 3.4.1, respectively.

From one random oracle to two. TLS 1.3 calls its hash function H, which we initially

model as random oracle ROH, for two purposes: to hash protocol transcripts, and as a

component of MAC, Extract, and Expand which are implemented using HMAC[H]. Our

eventual key exchange proof needs to make full use of the random oracle model for the latter

category of hashes, but we require only collision resistance for transcript hashes.

Our first intermediate handshake variant, KE1, replaces H with two new functions: Th for

hashing transcripts, and Ch for use within MAC, Extract, or Expand. While KE uses

the same random oracle ROH to implement Th and Ch, the KE1 protocol instead uses two

independent random oracles ROTh and ROHMAC. To accomplish this without loss in KE-SEC

security, we exploit some possibly unintentional domain separation in how inputs to these

functions are formatted in TLS 1.3 to define a so-called cloning functor, following BDG [35].

Effectively, we partition the domain {0,1}∗ of ROH into two sets DomTh and DomCh such

that DomTh contains all valid transcripts and DomCh contains all possible inputs to H from

HMAC. We then leverage Theorem 1 of [35] that guarantees composition for any scheme

that only queries ROCh within the set DomCh and ROTh within the set DomTh.

We defer details on the exact domain separation to Section 3.8, but highlight that the

PSK-only handshake with hash function SHA384 fails to achieve this domain separation and

140

consequently this proof step cannot be applied and leaves a gap for that configuration of

TLS 1.3.

From SHA to HMAC. Our second variant protocol, KE2, rewrites the MAC function. In-

stead of computing HMAC[ROCh], MAC now directly queries a new random oracle ROHMAC :

{0,1}hl ×{0,1}∗→{0,1}hl . Since ROCh was only called by MAC, we drop it from the proto-

col, but we do continue to use ROTh, i.e., KE2 uses two random oracles: ROTh and ROHMAC.

The security of this replacement follows directly from Theorem 4.3 of Dodis et al. [102],

which proves the indifferentiability of HMAC with fixed-length keys.7

From two random oracles to 12. Finally, we apply a “big” indifferentiability step which

yields 12 independent random oracles and moves us to the right-hand side of Figure 3.1. The

12 ROs include the transcript-hash oracle ROTh and 11 oracles that handle each key(-like)

output in TLS 1.3’s key derivation, named RObinder , ROETS, ROEEMS, ROhtkC , ROCF, ROhtkS ,

ROSF, ROCATS, ROSATS, ROEMS, and RORMS. (The signatures for these oracles are given in

Section 3.4.1.) For this step, we view TKDF as a construction of 11 random oracles from a

single underlying oracle (ROHMAC). We then give our a simulator in pseudocode and prove

the indifferentiability of TKDF with respect to this simulator. Our simulator uses look-up

tables to efficiently identify intermediate values in the key schedule and consistently program

the final keys and MAC tags.

Combining these three steps yields the result in Theorem 3.2. In the remainder of the

paper, we can therefore now work with the right-hand side of Figure 3.1, modeling H and the

TKDF functions as 12 independent random oracles.

Step 1: Domain-separating the Transcript Hash

In the original TLS 1.3 PSK/PSK-(EC)DHE handshake, the hash function H is used

in two different ways. It is used directly to compute digests of a transcript and it is used as a

component of MAC, Extract, and Expand. We will argue now that these two uses are entirely

distinct, and we can accordingly write two functions Th and Ch in place of the two uses of H,
7This requires PSKs to be elements of {0,1}hl , which is true of resumption keys but possibly not for out-of-band

PSKs.

141

and, following BDG [35], go from modeling H as one random oracle to modeling Th and Ch as

two independent random oracles.

We will refer to our two new random oracles as ROTh (modeling the transcript hash

function Th) and ROCh (modeling the component hash Ch). Because TLS 1.3 fully specifies the

inputs to each hash function call, we can show that in PSK-(EC)DHE mode and in PSK-only

mode when hl = 256, TLS 1.3 will never call the same string as an input to both Th and Ch.

This is due to some fortunate coincidences of formatting in the standard, which we describe

in full in Section 3.8. We can therefore define two disjoint sets DomTh and DomCh such that

DomTh∪DomTh = {0,1}∗ split up H’s domain.

If we define the domain of ROTh to be DomTh and the domain of ROCh to be DomCh,

we could prove indifferentiability using a construction called the identity (cloning) functor I

from [35]. The identity functor constructs two or more random oracles RO1,RO2, . . . from ROH

by forwarding all ROi queries to ROH unchanged. However, the definitions of sets DomTh and

DomCh are somewhat complex, especially in PSK-only mode. We would instead prefer to define

both ROTh and ROCh with domains {0,1}∗. This would greatly simplify our later use of ROCh

as a component of HMAC. Unfortunately, when the domains of ROTh and ROCh overlap, the

identity functor is not indifferentiable. We can however still provide the desired result by turning

to the read-only indifferentiability framework of Bellare, Davis, and Günther [35].

Read-only indifferentiability (a.k.a. rd-indiff) is similar to standard indifferentiability [171].

One notable change (and the one we will leverage here) is that it is parameterized by a set W

called the “working domain.” The security game places a restriction on the Priv oracle so

that it only responds to queries within W . Read-only indifferentiability supports a broader

composition thoerem than Theorem 3.1, which covers security games which call their random

oracles only within the working domain. BDG prove [35, Theorem 1], which states that when W

consists of disjoint sets like DomTh and DomCh, the identity functor is read-only indifferentiable

even when the full domains of ROTh and ROCh are not disjoint. Furthermore, the read-only

indifferentiability advantage is upper-bounded by 0, and BDG give a simulator that runs in linear

time on the length of its inputs and makes at most one query per execution. When we apply the

read-only indifferentiability composition theorem, the adversary’s runtime and query bounds will

142

not increase.

We formalize this with a lemma:

Lemma 3.3. Let KE be the TLS 1.3 key exchange protocol of Theorem 3.2. Let ROTh,ROCh :

{0,1}∗→ {0,1}hl be two random oracles, and let KE1 be the protocol on the left-hand side of

Figure 3.1, where

• H := ROTh

• MAC := HMAC[ROCh]

and Expand and Extract are as in KE (using the new definition of MAC). Let DomTh and

DomCh be two disjoint sets such that KE1.Run only queries ROTh, resp. ROCh in DomTh, resp.

DomCh, and DomTh∪DomCh = {0,1}∗. Furthermore, let DomTh have an efficient membership

function.

Let A be an adversary against the KE-SEC security of KE, running in time tA and making

qRO and qS queries to its random oracle resp. Send oracle. Then there exists an adversary B

against the security of KE′, such that

AdvKE-SEC
KE (A)≤AdvKE-SEC

KE1
(B).

Adversary B ’s runtime is O(tA +qRO), and it makes the same number of queries to each

of its oracles as A in the KE-SEC game.

Proof: The function space of KE is SS = FUNC((,{0,1})∗,{0,1}hl), and the function

space of KE1 is ES = FUNC((,{)Th,Ch}×{0,1}∗,{0,1}hl). We can construct ES from SS via a

construction called the “identity functor” defined by BDG [35]. This construction is parameterized

by a set W := ({Th}×DomTh)∪ ({Ch}×DomCh). To answer any query (i,s), the identity functor

simply forwards s to its own oracle, regardless of whether i is Th or Ch. Because W is the union

of two disjoint sets with efficient membership functions, the simulator Sim defined by BDG’s

Theorem 1 has the property that for any distinguisher D ,

Advrd-indiff
IW ,W ,Sim(D) = 0.

143

Sim works by using the membership function of DomTh to check which of the two oracles is being

simulated; then it forwards the query to the appropriate oracle.

For this (or any) simulator, the composition theorem for read-only indifferentiability

grants the existence of adversary B and a distingisher D such that

AdvKE-SEC
KE (A)≤AdvKE-SEC

KE1
(B)+Advrd-indiff

IW ,W ,Sim(D)≤AdvKE-SEC
KE1

(B).

This composition theorem crucially rests on the fact that KE1.Run queries ROTh and ROCh only

within W . The lemma follows.

We require that DomTh and DomCh are disjoint sets. We define specific choices of DomTh

and DomCh based on the low-level formatting of TLS 1.3 in Section 3.8, and there we give detailed

arguments that the sets are disjoint for 3 of 4 standardized settings of the PSK/PSK-(EC)DHE

handshake.

In the fourth setting, PSK-only mode with hash function SHA384, there are no disjoint

choices for DomTh and DomCh with efficient membership functions. This is due to a lack of

careful domain separation of the hash function calls in TLS 1.3. We therefore cannot apply this

indifferentiability step for the PSK-only/SHA384 handshake protocol. Any security proof of this

handshake must either rely on stronger, possibly falsifiable abstractions in the random oracle

model, or use a model SHA384 as a single random oracle, with no guarantees of independence.

We avoid the latter approach in order to maintain a modular and readable proof.

The second inequality follows from our choice of simulator and Theorem 1 of [35], which

makes at most one query to its random oracle per execution. Their simulator, as mentioned above,

must efficiently determine for every query s whether to query ROTh or ROCh. This induces the

requirement that DomTh∪DomCh = {0,1}∗, so every possible query can be routed appropriately,

and the requirement that DomTh has an efficient membership function so that the simulator

is itself efficient. DomTh and DomCh satisfy these requirements thanks to the rules given in

Section 3.8. �

144

Step 2: Applying the Indifferentiability of HMAC

Our next key exchange protocol, KE2, replaces the construction HMAC[Ch] with a single

random oracle ROHMAC in the implementation of MAC and by extension Extract and Expand.

We rely on the proof of HMAC’s indifferentiability by Dodis et al. [102, Theorem 3]. As a

prerequisite for this theorem, we need to restrict HMAC to keys of a fixed length less than the

block length of the hash function (512 bits for SHA256 and 1024 bits for SHA384). This is consistent

with HMAC’s usage in TLS 1.3, where the keys are almost always of length hl ∈ {256,384}. The

only exception is when pre-shared keys of another length are negotiated out-of-band; we exclude

this case.

Lemma 3.4. Let ROTh,ROCh : {0,1}∗ → {0,1}hl and ROHMAC : {0,1}hl ×{0,1}∗ → {0,1}hl be

random oracles. Let KE1 be the TLS 1.3 key exchange protocol described in Theorem 3.3 using

random oracles ROTh and ROCh. Let KE2 be the key exchange protocol given on the left-hand side

of Figure 3.1, where

• H := ROTh

• MAC := ROHMAC

and Extract and Expand are defined as Section 3.2. Let A be an adversary against the KE-SEC

security of KE1, running in time tA and making qRO and qS queries to its random oracle resp.

Send oracle. Then there exists an adversary B against the security of KE2 such that

AdvKE-SEC
KE1

(A)≤AdvKE-SEC
KE2

(B)+
2(12qS+qRO)

2

2hl
.

Adversary B has runtime O(tA + qRO) and makes the same number of queries to each of its

oracles as A in the KE-SEC game.

Proof: KE1 uses function space ES, defined in the proof of Lemma 3.3, and KE2 uses

function space ES2 = FUNC((,(){Th}× {0,1}∗)∪ ({HMAC}× {0,1}hl ×{0,1}∗),{0,1}hl). The

construction C of ES2 from ES simply forwards all queries to ROTh. It answers ROHMAC queries

with HMAC[ROCh].

145

For any simulator Sim, Theorem 5 grants the existence of a distinguisher D and an

adversary B such that

AdvKE-SEC
KE1

(A)≤AdvKE-SEC
KE2

(B)+Advindiff
C,Sim(D).

The distinguisher D makes up to 12 queries to Priv for each Send query made by A, and makes

one Pub query for each RO query of A.

We consider the simulator Sim2 defined by Dodis et al. for [101, Theorem 4.3] (the full

version of [102, Theorem 3]). This simulator relies on the requirement that HMAC keys are a

fixed length, and shorter than the block length of the underlying hash function. HMAC pads its

keys with zero bits up to the block length, so each hash function call made by HMAC contains a

segment containing the byte 0x36 for the first of the two calls and 0x5c for the second. Sim2 uses

this segment to identify whether a particular query is intended to simulate the first or second

hash function call. It answers the “first” calls with random strings and logs these responses.

Then it programs the “second” calls by using its stored intermediate values to find which ROHMAC

query should be simulated. We augment the simulator to forward all queries to ROTh; this does

not change its runtime or effectiveness. This simulator works perfectly unless there is a collision

among the 2qPriv+qPub intermediate values, which Dodis et al. bound with a birthday bound.

That theorem states that for a distinguisher D making 12qS queries to Priv and qRO queries to

Pub,

Advindiff
C,Sim(D)≤ 2(12qS+qRO)

2

2hl
.

The lemma follows. �

Step 3: Applying Indifferentiability to the TLS Key Schedule

In the last step, we move to the right-hand side of Figure 3.1 and introduce 11 new

independent random oracles to model the key schedule. We start by rephrasing the TLS key

schedule and message authentication codes as eleven functions TKDFbinder , . . . , TKDFRMS as

in Section 3.2. This abstraction does not change any of the operations performed by the key

schedule; the TKDF functions simply rename the key derivation steps already performed by KE2.

146

In our last key exchange protocol KE′, we model each TKDF function as a independent random

oracle. We name these oracles after the keys or values they derive:

1. RObinder [ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

2. ROETS[ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

3. ROEEMS[ROHMAC] : {0,1}hl ×{0,1}hl →{0,1}hl

4. ROhtkC [ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl+ivl

5. ROfinC
[ROHMAC] : {0,1}hl ×G×{0,1}hl ×{0,1}hl →{0,1}hl

6. ROhtkS [ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl+ivl

7. ROfinS
[ROHMAC] : {0,1}hl ×G×{0,1}hl ×{0,1}hl →{0,1}hl

8. ROCATS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

9. ROSATS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

10. ROEMS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

11. RORMS[ROHMAC] : {0,1}hl ×G×{0,1}hl →{0,1}hl

The 12th random oracle is ROTh, used to hash transcripts as in KE1 and KE2.

Now we can state Lemma 3.5.

Lemma 3.5. Let KE2 be the key exchange protocol of Lemma 3.4, and let KE′ be the key exchange

protocol of Theorem 3.2.

For any adversary A against the KE-SEC security of KE2, with runtime t and making

qRO random oracle queries and qS queries to Send, there exists adversary B against the KE-SEC

security of KE′ such that

AdvKE-SEC
KE1

(A)≤AdvKE-SEC
KE2

(B)+
2q2

Pub

2hl
+

8(qPub+6qPriv)
2

2hl
.

Adversary B runs in time at most t +qROtG, where tG is the time to perform one group operation

in the Diffie–Hellman group G. It makes no more queries to each of the oracles in the KE-SEC

game than does A.

147

Proof: We view TKDF as defined in Section 3.2 as a construction of the function space

ES′ of KE′: the arity-12 function space whose first subspace is FUNC((,{0,1})∗,{0,1}hl) and

whose remaining 11 subspaces are the spaces of all functions with the domains and ranges

specified in the above list. This TKDF construction takes an oracle from ES2, the function space

of KS2.

As in the prior two steps, we consider a particular simulator Sim (cf. Figure 3.6) and rely

on Theorem 5 for the existence of a distinguisher D and an adversary B such that

AdvKE-SEC
KE2

(A)≤AdvKE-SEC
KE′ (B)+Advindiff

TKDF,Sim(D).

The distinguisher D will make no more than 12 queries to Priv for each Send query made by A

and one query to Pub per RO query.

Via a sequence of code-based games, we will show that the indifferentiability advantage

of any distinguisher D making qPriv queries to the Priv oracle and qPub queries to the Pub

oracle is

Advindiff
TKDF,SS,ES,Sim(D)≤

2q2
Pub

2hl
+

8(qPub+6qPriv)
2

2hl
.

We give fully specified pseudocode for each of our games.

First, we explain the high-level strategy of our simulator. Our simulator takes two

inputs: an index i ∈ {Th,HMAC} and a string s ∈ {0,1}∗. When i = Th, the simulator simulates

ROTh(s) easily; it simply forwards the query to its own random oracle ROTh. When i = HMAC,

the simulator will parse s into a key K ∈ {0,1}hl and a context string Y ∈ {0,1}∗ and simulate

ROHMAC(K,Y). This simulation should be compatible with a view of the random oracles ROx as

computing TKDFx[ROHMAC].

Initially, Sim randomly samples the response y to any simulated ROHMAC query from

{0,1}hl . Repeated queries are cached in a table M. Next, Sim checks whether the query could

be part of an attempt to compute TKDFx[Sim] for some x. If so, it may have to program its

response for consistency with ROx, or it may store its response in a lookup table T to enable

future programming.

The only values that need programming are the first-class keys and MAC values. These

148

are all outputs of Expand[ROHMAC]. Sim can tell if a particular ROHMAC query is made by

Expand by checking its formatting. The inputs Y of all Expand’s queries in the key schedule

start with 3 bytes of fixed values and a label ` between 8 and 18 bytes long that starts with the

string “tls13”. They end with a 1 byte counter that TLS 1.3 fixes to 0x01. Sim pattern-matches

this label to determine which key is being derived. It has a subroutine L to translate the few

labels which are used in the last derivation step for multiple keys.

Whenever Sim detects the label of an intermediate key derivation query like the Expand

calls used to compute ES, HS, or MS, it stores the response to this query in table T under

the name of the key in question. If D computes TKDF honestly, these tables will allow the

simulator to backtrack through the execution to identify all of the inputs to TKDF. Inputs to

ROHMAC queries made by HKDF.Extract do not contain labels, so some tables contain multiple

intermediate values. Even without labels, each intermediate value should only appear in one key

derivation except in the unlikely event of a collision in ROHMAC.

The first game in our sequence is G0 which is the “ideal world” setting of the indifferen-

tiability game. Here, Priv queries are answered using a random function RO drawn from ES,

and Pub queries are answered with Sim[RO].

In G1 (cf. Figure 3.8), we set a bad flag badC and abort whenever Sim samples a random

answer y that collides with the input or output of any previous simulator query. We track these

inputs and outputs in a list L. For each new query, there are at most 2qPub points to collide with.

Since y is sampled uniformly from {0,1}hl , the probability of such a collision over all queries is

at most 2q2
Pub

2hl by a birthday and union bound). Then

|Pr[G1]−Pr[G0]| ≤
2q2

Pub

2hl
.

In G2 (Figure3.9), the f in oracle computes TKDF[ROHMAC] on the input to every query

to the Priv oracle, using Pub as its hash function. It discards the results of this computation,

so this change can affect the outcome of the game only if one of the additional Pub queries sets

the badC flag. The TKDF function queries its oracle at most 6 times per execution, so there are

no more than 6qPriv new queries. There are now a total of qPub+6qPriv queries to Pub, so the

149

Sim(i,s)

Sim[RO](i,s):
1 if M[s] 6=⊥
2 then return M[s]

3 if i = Th then return ROTh(K‖Y)
// If not, this query should simulate

ROHMAC

4 K, Y ← s

// Randomly sample a response
5 y←${0,1}hl

6 if Y = 0
7 TPSK[y]← K

8 else if K = 0
9 TdHS[y]← Y

10 else if Tfk b/fkC/fk S
[K] 6=⊥

11 ES← TES[TBK/CHTS/SHTS[K]]

12 PSK← TPSK[ES]
13 if PSK 6=⊥
14 y← RObinder (PSK,Y)

15 HTS← TBK/CHTS/SHTS[K]

16 (`′,HS,H2)← THS/d [HTS]
17 (dES,DHE)← TdES/DHE[HS]
18 PSK← TPSK[TES/HS[dES]]
19 if PSK 6=⊥
20 y← RO`′[1](PSK,DHE,H2,Y)[L (`)]

21 else TdES/DHE[y]← (K,Y)

22 if (Y [0 . . .2] 6= hl)

∨Y [2]< 8)∨ (Y [2]> 18)
∨(Y [3 . . .9] 6= ”tls13”)
∨(Y [|Y |−1] 6= 1)
// This query does not match

HKDF.Expand formatting.
23 M[s]← y

24 return y

// Parse the Expand formatting to find
the label.

25 len`← Y [2]
26 `← Y [3 . . .(3+ len`)]
27 d← Y [(3+ len`) . . . |Y |]

. . . // continued in next column

Sim[RO](i,s) // continued:
28 if `= `binder and d = H("")
29 TES[y]← K

30 else if `= `dES/dHS and d = H("")
31 TES/HS[y]← K

32 else if ` ∈ {`CHTS, `SHTS}
33 THS/d [y]← (L (`),K,d)

34 else if ∃k ∈ {ETS,EEMS} with `= `k and TPSK[K] 6=⊥
35 y← ROk(TPSK[K],d)

36 else if ∃k ∈ {CATS,SATS,EMS,RMS} with `= `k

37 (dES,DHE)← TdES/DHE[TES/HS[TdHS[K]]]

38 PSK← TPSK[TES/HS[dES]]
39 if PSK 6=⊥
40 y← ROk(PSK,DHE,d)
41 else if `= `fk and d = ""
42 TBK/CHTS/SHTS[y]← K

43 else if ` ∈ {"tls13 key", "tls13 iv"}
44 and d = H("")
45 (`′,HS,H2)← THS/d [K]

46 (dES,DHE)← TdES/DHE[HS]
47 PSK← TPSK[TES/HS[dES]]
48 if PSK 6=⊥
49 y← RO`′[0](PSK,DHE,H2)[L (`)]

50 M[s]← y

51 return y

Label translator L (`):
52 if `= `CHTS

53 return htkC,ClientFinished

54 if `= `SHTS

55 return htkS,ServerFinished

56 if `= "tls13 key"
57 return 0
58 if `= "tls13 iv"
59 return 1
60 return ⊥

Figure 3.6. Simulator Sim used in the proof of Lemma 3.5.

150

probability that badC is set increases by another birthday bound.

|Pr[G2]−Pr[G1]| ≤
2(qPub+6qPriv)

2

2hl
.

The next step is the most subtle. In G3 (Figure 3.9), we move the new computations

of TKDF from the f in oracle into Priv. When Priv is called with index i and input X , it

still returns ROi(X). First, however, it computes TKDFi[Pub](X). It discards the result of this

computation, so the behavior of the Priv oracle does not change in the adversary’s view.

However, queries to Priv now run the simulator Sim. They can update its state and set

the global badC flag. This has two consequences. First, the changed order of Pub queries may

cause badC to be set in G3 when it was not set in G2, or vice versa. Second, queries to Priv in

G3 can add entries to the reverse lookup table T . These new entries can be used to satisfy the

conditions the simulator uses to check if a full execution of TKDF has been completed. Then the

simulator in G3 may program responses that were not programmed in G2.

We claim that despite the changed order of the queries, G3 and G2 behave identically in

the adversary’s view except when one of them would set the badC flag, assuming that the same

random coins are used in both games. Let E denote the event that badC is set either when A

plays G2 or when A plays G3. Differences between the two games about when this flag is set are

obviously irrelevant unless event E occurs.

The argument that Pub responses are identical in both games except when event E

occurs is more subtle. Assume event E does not occur. There must be a first adversarial query

to Pub that gives different responses in G3 and G2, all oracles behave identically in both games.

We name this query Q. Both games sample the same random responses, so query Q has its

response programmed by the simulator in at least one of the two games.

The simulator decides whether to program based on the entries of reverse lookup table T ,

so we consider the differences in this table between our two games. Let T2 be the table in G2 at

the time when Query Q is made, and let T3 be the table at the same point in G4. Entries in the

reverse lookup table are indexed by randomly sampled values y, so they cannot be overwritten

by later queries unless event E occurs. Furthermore, until query Q is made, every Pub query

151

in G2 that updates T gives the identical response in G3, so every entry in T2 is also an entry

in T3. Therefore any query which is programmed in G2, up to and including query Q, will be

programmed to the same response in G3. The contrapositive statement says that any response

which is randomly sampled in G3 will be also be randomly sampled in G2.

It follows that query Q must have a randomly sampled response in G2 but be programmed

in G3. There must exist a sequence of entries in T3 that correspond to a full execution of

TKDF[Pub] on some input. We name the queries that created these entries Q1, . . . ,Qi. In each

execution, our simulator either stores an entry in T , or it programs the response y, never both.

Therefore queries Q1, . . .Qi have randomly sampled responses. By the definition of TKDF, the

output of each query Q j is contained in the input of the next query Q j+1. The output of Qi is

contained in the input of Q, so we identify query Q with Qi+1.

In G2, one of the entries in the sequence is not present in T2. Therefore one of the queries

Q1, . . . ,Qi is not made before query Q in G2. This query, Q j must have been one of the f in queries

of G2 that were moved earlier in G3. It will therefore be made in f in, after all of the other queries,

including Q j+1. The randomly sampled output of Q j will collide with the input of earlier query

Q j+1, setting badC and causing event E to occur.

The difference in advantage in G3 and G2 is therefore bounded by the probability of

event E. Both games make qPub+6qPriv queries to Pub, each of which sets badC is set with

probability at most 2(qPub+6qPriv)
2hl . By a union bound,

|Pr[G3]−Pr[G2]| ≤
4(qPub+6qPriv)

2

2hl
.

Pseudocode for the last three games is given in Figure 3.10. Now we adjust Priv in G4 to

return the result ofC[Pub] instead of querying RO. Unless badC is set, TKDF[Pub](r,X) =ROr(X).

The function TKDF makes sequential queries to Pub that are properly formatted, so our Sim

will program the last query in the sequence for consistency with the appropriate RO. This

programming occurs every time TKDF[Pub] is called, unless the last query is a repeated query.

In that case, it will be answered using table M instead of RO. However, if the queries in the

sequence occur out of order, they will always cause badC to be set because the output of a later

152

query will match the input to an earlier query. Then the adversary wins in G4 with the same

likelihood as G3, unless badC is set. If badC is set, both games have a win probability of 0 thanks

to the check in the f in oracle, so

Pr[G4] = Pr[G3].

Starting with G5, we stop returning 0 in f in when badC is set. This increases the win

probability by at most Pr[G4 sets badC]≤ 2(qPub+6qPriv)
2

2hl , by the same birthday and union bounds

over the qPub+6qPriv queries to Pub.

|Pr[G5]−Pr[G4]| ≤
2(qPub+6qPriv)

2

2hl
.

From G4 onward, all queries to ROHMAC are made by Sim. In G6, therefore, we can inline

the lazily sampled ROHMAC oracle as part of the simulator. Repeated queries to Sim are cached,

so the random oracle does not need to maintain its own lookup table. Now all responses from

Pub are randomly sampled from {0,1}hl , regardless of the contents of table T . The table and

the conditional statements used to maintain it are now redundant bookkeeping, as is the unused

badC flag after G5. We eliminate all of this code from G6 without detection by the adversary.

Then

Pr[G6] = Pr[G5].

The remaining code of Sim just implements random oracles ROHMAC and ROTh. Conse-

quently G6 is identical to the ideal indifferentiability game for the TKDF construction. Collecting

bounds proves the theorem. �

We have now established that in order to give a (tight) security proof for TLS 1.3 PSK-

only and PSK-(EC)DHE, it suffices to prove (tight) security of the protocol on the right-hand

side of Figure 3.1.

3.5 Modularizing Handshake Encryption

Next will argue that using “internal” keys to encrypt handshake messages on the TLS 1.3

record-layer does not impact the security of other keys established by the handshake.

153

Game G0

init():
1 b← 0
2 RO←$ES

3 state←$ ε

Sim(i,s,state):
1 if i = Th then return ROTh,(s)

2 T,M← state

3 if M[s] 6=⊥
4 then return M[s]

5 K,Y ← s

6 y← Sim[RO](K,Y,T)

7 M[s]← y

8 return y

Sim[RO](K,Y,T):
// Randomly sample a response

9 y←${0,1}hl

10 if Y = 0
11 TPSK[y]← K

12 else if K = 0
13 TdHS[y]← Y

14 else if Tfk b/fkC/fk S
[K] 6=⊥

15 ES← TES[TBK/CHTS/SHTS[K]]

16 PSK← TPSK[ES]
17 if PSK 6=⊥
18 y← RObinder (PSK,Y)

19 HTS← TBK/CHTS/SHTS[K]

20 (`′,HS,H2)← THS/d [HTS]
21 (dES,DHE)← TdES/DHE[HS]
22 PSK← TPSK[TES/HS[dES]]
23 if PSK 6=⊥
24 y← RO`′[1](PSK,DHE,H2,Y)[L (`)]

25 else TdES/DHE[y]← (K,Y)

26 if (Y [0 . . .2] 6= hl)

∨Y [2]< 8)∨ (Y [2]> 18)
∨(Y [3 . . .9] 6= ”tls13”)
∨(Y [|Y |−1] 6= 1)
// This query does not match HKDF.Expand

formatting.
27 return y

// Parse the Expand formatting to find the
label.

28 len`← Y [2]
29 `← Y [3 . . .(3+ len`)]
30 d← Y [(3+ len`) . . . |Y |]

. . . // continued in next column

Sim[RO](K,Y,T) // ...continued:
31 if `= `binder and d = H("")
32 TES[y]← K

33 else if `= `dES/dHS and d = H("")
34 TES/HS[y]← K

35 else if ` ∈ {`CHTS, `SHTS}
36 THS/d [y]← (L (`),K,d)

37 else if ∃k ∈ {ETS,EEMS} with `= `k and TPSK[K] 6=⊥
38 y← ROk(TPSK[K],d)

39 else if ∃k ∈ {CATS,SATS,EMS,RMS} with `= `k

40 (dES,DHE)← TdES/DHE[TES/HS[TdHS[K])]]

41 PSK← TPSK[TES/HS[dES]]
42 if PSK 6=⊥
43 y← ROk(PSK,DHE,d)
44 else if `= `fk and d = ""
45 TBK/CHTS/SHTS[y]← K

46 else if ` ∈ {"tls13 key", "tls13 iv"}
47 and d = H("")
48 (`′,HS,H2)← THS/d [K]

49 (dES,DHE)← TdES/DHE[HS]
50 PSK← TPSK[TES/HS[dES]]
51 if PSK 6=⊥
52 y← RO`′[0](PSK,DHE,H2)[L (`)]

53 return y

Pub(i,s):
1 (z,state)← Sim(i,s,state)

2 return z

Priv(r,X):
1 return ROr(X)

f in(b′):
1 return b′

Figure 3.7. Indiff game instantiated with simulator Sim, also Game G0 for the proof of
Lemma 3.5.

154

Games G1

Sim(i,s,state):
1 if i = Th then return ROTh(s)

2 T,M,L← state

3 if M[s] 6=⊥
4 then return M[s]

5 K,Y ← s

6 y← Sim[RO](K,Y,T,L)
7 M[s]← y

8 L← L∪{y,s}
9 return y

Sim[RO](K,Y,T,L):
10 y←${0,1}hl

11 if y ∈ L or ∃t ∈ L such that y ∈ t

12 badC← true

. . .

f in(b′):
1 if badC then return 0
2 return b′

Figure 3.8. Game G1 for the proof of Lemma 3.5.
Game G2

Priv(r,X):
1 Q← Q

⋃
{(r,X)}

2 return ROr(X)

f in(b′):
1 for (r,X) ∈ Q do
2 z← TKDFr[Pub](X)

3 if badC then return 0
4 return b′

Game G3

Priv(r,X):
1 z← TKDFr[Pub](X)

2 return ROr(X)

f in(b′):
1 if badC then return 0
2 return b′

Figure 3.9. Games G2 and G3 for the proof of Lemma 3.5.

Theorem 3.7 below formulates our argument in a general way, applicable to any multi-

stage key exchange protocol, so that future analyses of similar protocols might take advantage of

this modularity as well.

Intuitively, we argue as follows. Let KE2 be a protocol that provides multiple different

stages with different external keys (i.e., none of the keys is used in the protocol, e.g., to encrypt

messages), and let KE1 be the same protocol, except that some keys are “internal” and used,

e.g., to encrypt certain protocol messages. We argue that either using “internal” keys in KE1

does not harm the security of other keys of KE1, or KE2 cannot be secure in the first place. This

will establish that we can prove security of a variant TLS 1.3 without handshake encryption

(in an accordingly simpler model), and then lift this result to the actual TLS 1.3 protocol with

handshake encryption and the handshake traffic keys treated as “internal” keys.

Theorem 3.6. Let KE1 be the TLS 1.3 PSK-only resp. PSK-(EC)DHE mode with handshake

encryption (i.e., with internal stages KE1.INT = {3,4}) as specified on the right-hand side in

Figure 3.1. Let KE2 be the same mode without handshake encryption (i.e., KE1.INT = /0 and

155

Games G4 , G5

Priv(r,X):
1 z← TKDFr[Pub](X)

2 return z

f in(b′):
1 if badC then return 0
2 return b′

Game G6

Sim[RO](i,s,T):
1 y←${0,1}hl

2 return y

Figure 3.10. Games G4, G5, and G6 for the proof of Lemma 3.5.

AEAD-encryption/decryption of messages is omitted). Let TransformSend and TransformRecv be the

AEAD encryption resp. decryption algorithms deployed in TLS 1.3 and KTransform = KE1.INT =

{3,4}. Then we have

AdvKE-SEC
KE1

(t,qNS,qS,qRS,qRL,qT,qRO)

≤AdvKE-SEC
KE2

(t + tAEAD ·qS,qNS,qS,qRS+qS,qRL,qT,qRO)

where tAEAD is the maximum time required to execute AEAD encryption or decryption of TLS 1.3

messages.

For TLS 1.3 this means that we will not consider any security guarantees provided by

the additional encryption of handshake messages. We consider this as reasonable for PSK-mode

ciphersuites, because the main purposes of handshake message encryption in TLS 1.3 is to hide

the identities of communicating parties, e.g., in digital certificates, cf. [16]. In PSK mode there

are no such identities. The pskid might be viewed as a string that could identify communicating

parties, but it is sent unencrypted in the ClientHello message, anyway; the encryption of

subsequent handshake messages would not contribute to its protection.

3.5.1 Handshake Encryption as a Modular Transformation

Formally, let KE2 = (KGen,Activate,Run) be a key exchange protocol with no internal

keys. We define another key exchange protocol KE1 which is parameterized by two functions

TransformSend and TransformRecv and a list KTransform ⊆ {1, . . . ,STAGES}, where STAGES is the

number of stages of KE2. KE1 inherits its key generation and activation algorithms from KE2.

In its KE1.Run algorithm, described in Figure 3.11, it essentially applies TransformRecv to a

message before calling KE2.Run, and then TransformSend to the returned message, to transform

156

the protocol messages as they pass over a wire. This transformation may be, for instance, the

encryption and decryption of messages of KE2 using an internal key.

In addition to the messages, both algorithms take as input the list of stages that have

been accepted by the current session, its role (initiator or responder) in the protocol, and a list

of the keys from all stages in KTransform. In the security game for KE1, the stages in KTransform

will produce internal keys; all other keys remain external.

Although TransformSend and TransformRecv change the messages as they pass over the wire,

the way that the messages are processed after receipt by KE2.Run must not change. In particular,

KE2.Run, internally run within KE1.Run, still expects messages of the same format and content;

also, KE1 defines its session and contributive identifiers, as well as all other session-specific

information in the same way as KE2.

Correctness.

Not all choices of TransformSend and TransformRecv are “good choices”. For example, if

mauling overwrites critical pieces of the protocol messages, then no honest session would ever

accept a key. The resulting key exchange KE2 would be vacuously “secure” because it would be

unusable.

For our perspective to be meaningful, we therefore need a correctness property that

guarantees that two honest parties executing KE1 with no adversarial interference will accept at

all stages. Informally, we wish that if two sessions honestly executing KE2 will accept keys for

stage s with probability p, then two sessions honestly executing KE1 will accept keys for stage s

with probability close to p. This property only needs to hold when the protocol messages are

relayed honestly, with no changes or delivery failures beyond those caused by the application of

TransformSend and TransformRecv.

We do not give a formal definition or proof of correctness for TLS 1.3, but we note that in

TLS 1.3, the transformation algorithms are AEAD encryption and decryption. Since decryption

failures cannot occur in the standardized AEAD algorithms if messages are honestly relayed

(due to their perfect correctness), received messages will always match their corresponding sent

message, and correctness of TransformSend and TransformRecv follows.

157

Security.

We wish KE1 to be secure if KE2 is secure. This should be independent of TransformSend

and TransformRecv, i.e., should hold even if TransformSend leaks its keys and fully overwrites all

protocol messages. The following theorem established this result, using that the keys used for

the transformation are internal and TransformSend and TransformRecv have no access to other

privileged information. Therefore, their behavior can be mimicked by a reduction to the security

of KE2 as long as KE2 has “public session matching” for the stages in KTransform of KE1, i.e., session

partnering (or matching) for those stages is decidable from the publicly exchanged messages.8

Theorem 3.7. Let KE2 be a key exchange protocol with STAGES stages, KE2.INT being empty,

and public session matching. Let TransformSend and TransformRecv be algorithms as above and

KTransform ⊆ {1, . . . ,STAGES}. Define key exchange KE1 such that KE1.Run is described in Fig-

ure 3.11, KE1.INT = KTransform, and all other attributes of KE1 are identical to those of KE2.

Let A be an adversary with running time t against the multi-stage key exchange security

of KE1, making qS queries to the Send oracle. Then there exists an adversary B with running

time ≈ t +qSm, where m is the maximum running time of TransformSend and TransformRecv, such

that

AdvKE-SEC
KE1

(A)≤AdvKE-SEC
KE2

(B).

B makes at most qS queries to RevSessionKey in addition to queries made by A and the same

number of queries as A to all other oracles in the KE-SEC game.

Proof: Adversary B runs adversary A and relays all of its queries to the appropriate

oracles in its own KE-SEC game, except for Send queries. It maintains the time time of the

KE-SEC game itself, incrementing it once per query. For each session π i
u, it maintains a list keysi

u

that is initially empty and a list acci
u in which acci

u[stage] is initially false for each stage∈KTransform.

When A makes a query Send(u, i,m), B first checks for each stage ∈ KTransform with

acci
u[stage] = false whether π i

u.accepted[stage] 6= ∞. For each stage which satisfies this condition,

B checks whether π i
u.tested[stage] or π i

u.revealed[stage] is true and if π i
u has a partnered session

(matching sid[stage]) which has been tested or revealed. (The latter check for partnering is
8The property of “public session matching” has already already come up when considering the composition of

(regular or multi-stage) key exchange protocols with subsequent symmetric-key protocols [69, 104, 105, 126].

158

possible because KE1 has public session matching.) If any of these conditions is true, then B

knows π i
u.skey[stage]. Otherwise, it makes an extra query RevSessionKey(u, i,stage) and adds

the response to keysi
u. Then it marks acci

u[stage]← true and computes the appropriate message

m̃←TransformRecv(keysi
u,π

i
u.role,acci

u,m). It queries its own Send oracle on the tuple (u, i, m̃) and

captures the response m̃′. Then it returns m′← TransformSend(keysi
u,π

i
u.role,acci

u, m̃
′) to A.

B perfectly simulates KE1 for A, so we wish that if A wins its simulated game, B should

also win its game. A can win the KE-SEC game in one of three ways: it can violate the Sound

predicate, it can violate the ExplicitAuth predicate, or it can satisfy the Fresh predicate and

guess the secret bit b. All of the variables tracked by the ExplicitAuth and Sound predicates are

maintained by the KE-SEC game for KE1, not by B . Therefore A wins the simulated game by

violating Sound or ExplicitAuth only if Sound or ExplicitAuth is violated in the KE-SEC game for

KE2. In this case, B also wins.

If A wins by guessing the secret bit b, the story is more complicated. The bit b is chosen

by the KE-SEC game, so if A guesses correctly, then so will B . However, a correct guess only

matters if the queries do not violate the Fresh predicate. Even if A did not violate the Fresh

predicate, B makes up to qS additional RevSessionKey queries. Each of these could cause

Fresh to be set to false. We claim that none of these queries violate the Fresh predicate.

The Fresh predicate requires that no session be both tested and revealed. B only reveals

keys that have not already been tested, so the only worry is that A will test this key later.

However, all keys that B reveals are in KTransform, which is a subset of KE1.INT, meaning they

are internal keys. These keys cannot be tested if any session which has accepted it has moved on

with the protocol. Since B only reveals a key when a session has both accepted that key and

received the next protocol message, it will have moved on and A can not make any later Test

queries on a key that B has revealed.

The next condition of Fresh is that a tested session’s partner cannot be tested or revealed.

B ensures that such a Test query does not occur before the RevSessionKey query. Again, the

Test query cannot happen after the RevSessionKey query because the session whose key was

revealed has moved on with the protocol. Since all the revealed keys are internal in the simulated

game, A cannot test them after this point.

159

The remaining three conditions of the Fresh predicate establish different levels of forward

secrecy. They check for the existence of a contributive partner. We want to exclude the situation

that a contributive partner exists in A’s simulated game, but not in B ’s game. However,

contributive identifiers are defined identically in KE1 and KE2. Therefore if two sessions π i
u and

π
j

v have matching contributive identifiers in the simulated game for KE2, they will also have

matching identfiers in the game for KE1.

It is therefore not possible for A to win its simulated KE-SEC game unless B also wins

its KE-SEC game, and the theorem follows. �

3.6 Tight Security of the TLS 1.3 PSK Modes

In this section, we apply the insights gained in Sections 3.4 and 3.5 to obtain tight

security bounds for both the PSK-only and the PSK-(EC)DHE mode of TLS 1.3. To that end,

we first present the protocol-specific properties of the TLS 1.3 PSK-only and PSK-(EC)DHE

modes such that they can be viewed as multi-stage key exchange (MSKE) protocols as defined in

Section 3.3. Then, we prove tight security bounds in the MSKE model in Theorem 3.8 for the

TLS 1.3 PSK-(EC)DHE mode and in Theorem 3.9 for the TLS 1.3 PSK-only mode.

3.6.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE modes, specified in

Figure 3.1, formally as MSKE protocols. To this end, we must explicitly define the variables

discussed in Section 3.3. In particular, we have to define the stages themselves, which stages

are internal and which replayable, the session and contributive identifiers, when stages receive

explicit authentication, and when stages become forward secret.

Stages.

The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight stages corresponding

to the keys ETS, EEMS, htkS, htkC, CATS, SATS, EMS, and RMS in that order. The set INT of

internal keys contains htkC and htkS, the handshake traffic encryption keys. Stages ETS and

EEMS are replayable: REPLAY[s] is true for s ∈ {1,2} and false for all others.

160

Session and contributive identifiers.

The session and contributive identifiers for stages are tuples (label s,ctxt), where label s is

a unique label identifying stage s, and ctxt is the transcript that enters key’s derivation. The

session identifiers (sid[s])s∈{1,...,8} are defined as follows:9

sid[1] =
(
“ETS”,(CH,CKS†,CPSK)

)
,

sid[2] =
(
“EEMS”,(CH,CKS†,CPSK)

)
,

sid[3] =
(
“htkC”,(CH,CKS†,CPSK,SH,SKS†,SPSK)

)
,

sid[4] =
(
“htkS”,(CH,CKS†,CPSK,SH,SKS†,SPSK)

)
,

sid[5] =
(
“CATS”,(CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF)

)
,

sid[6] =
(
“SATS”,(CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF)

)
,

sid[7] =
(
“EMS”,(CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF)

)
, and

sid[8] =
(
“RMS”,(CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF,CF)

)
.

To make sure that a server that received untampered ClientHello, ClientKeyShare†, and

ClientPreSharedKey messages can be tested in stages 3 and 4, even if the sending client did not

receive the server’s answer, we set the contributive identifiers of stages 3 and 4 such that cidrole

reflects the messages that a session in role role must have honestly received for testing to be

allowed. Namely, we let clients (resp. servers) upon sending (resp. receving) the messages

(CH,CKS†,CPSK) set

cidresponder[3] =
(
“htkC”,(CH,CKS†,CPSK)

)
and

cidresponder[4] =
(
“htkS”,(CH,CKS†,CPSK)

)
.

Further, when the client receives (resp. the server sends) the message (SH,SKS†,SPSK), they set

cidinitiator[3] = sid[3] and cidinitiator[4] = sid[4].

9Components marked with † are only part of the TLS 1.3 PSK-(EC)DHE handshake.

161

For all other stages s ∈ {1,2,5,6,7,8}, cidinitiator[s] = cidresponder[s] = sid[s] is set upon acceptance

of the respective stage (i.e., when sid[s] is set as well).

Explicit authentication.

For initiator sessions, all stages achieve explicit authentication when the ServerFinished

message is verified successfully. This happens right before stage 5 (i.e., CATS) is accepted.

That is, upon accepting stage 5 all previous stages receive explicit authentication retroac-

tively and all following stages are explicitly authenticated upon acceptance. Formally, we set

EAUTH[initiator,s] = 5 for all stages s ∈ {1, . . . ,8}.

For responder session, all stages receive explicit authentication upon (successful) verifi-

cation of the ClientFinished message. This occurs right before the acceptance of stage 8

(i.e., RMS). Similar to initiators, responders receive explicit authentication for all stages

upon acceptance of stage 8 since this is the last stage of the protocol. Accordingly, we set

EAUTH[responder,s] = 8 for all stages s ∈ {1, . . . ,8}.

Forward secrecy.

Only keys dependent on a Diffie–Hellman secret achieve forward secrecy, so all stages s of

the PSK-only handshake have FS[r,s, fs] = FS[r,s,wfs2] = ∞ for both roles r ∈ {initiator, responder}.

In the PSK-(EC)DHE handshake, full forward secrecy is achieved at the same stage as explicit

authentication for all keys except ETS and EEMS, which are never forward secret. That is,

for both roles r and stages s ∈ {3, . . . ,8} we have FS[r,s, fs] = EAUTH[r,s]. All keys except ETS

and EEMS possess weak forward secrecy 2 upon acceptance, so we set FS[r,s,wfs2] = s for

stages s ∈ {3, . . . ,8}. Finally, as stages 1 and 2 (i.e., ETS and EEMS) never achieve forward

secrecy we set FS[r,s, fs] = FS[r,s,wfs2] = ∞ for both roles r and stages s ∈ {1,2}.

3.6.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE

We now come to the tight MSKE security result for the TLS 1.3 PSK-(EC)DHE handshake.

Theorem 3.8. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol (with

optional 0-RTT) as specified on the right-hand side in Figure 3.1 without handshake encryption.

Let G be the Diffie–Hellman group of order p. Let nl be the length in bits of the nonce, let hl be

the output length in bits of H, and let the pre-shared key space be KE.PSKS = {0,1}hl . We model

162

the functions H and TKDFx for each x ∈ {binder , . . . ,RMS} as 12 independent random oracles

ROTh,RObinder , . . . ,RORMS. Then,

AdvKE-SEC
TLS1.3-PSK-(EC)DHE(t,qNS,qS,qRS,qRL,qT,qRO)≤

2q2
S

2nl · p

+
(qRO+qS)2 +q2

NS+(qRO+6qS)2 +qRO ·qNS+qS
2hl

+
4(t +4log(p) ·qRO)

2

p
.

Remark 1. Our MSKE model from Section 3.3 assumes pre-shared keys to be uniformly random

sampled from KE.PSKS, where here KE.PSKS = {0,1}hl . This matches how pre-shared keys are

derived for session resumption, as well as our analysis of domain separation, which assumes

pre-shared keys to be of length hl .

Remark 2. Our bound is easily adapted to any distribution on {0,1}hl in order to accommodate

out-of-band pre-shared keys that satisfy the length requirement but do not have full entropy.

Expectedly, lower-entropy PSK distributions result in weaker bounds, due to the increased chance

for collisions between PSKs as well as the adversary guessing a PSK.

Proof: To prove our bound, we make an incremental series of changes to the key exchange

security game GTLS1.3-PSK-(EC)DHE,A. We divide the proof into three phases reflecting the three ways

of the adversary to win the security game.

1. We establish that the adversary cannot violate the predicate Sound.

2. We establish the same for the predicate ExplicitAuth.

3. Finally, we ensure that all Test queries return uniformly random keys independent of the

challenge bit b if predicate Fresh is not violated.

We can then conclude that the adversary cannot do better than random guessing to win the

game, i.e., its advantage is 0.

Game 0 (Initial game). The initial game GA
0 is the key exchange security game GTLS1.3-PSK-(EC)DHE

played for the TLS 1.3 PSK-(EC)DHE handshake (with optional 0-RTT) as specified in Figure 3.1

(right), but without handshake encryption. Note that the functions H and TKDFx for x ∈

{binder , . . . ,RMS} are modeled as 12 independent random oracles ROTh,RObinder , . . . ,RORMS. We

163

implement random oracle ROx by a look-up table ROListx assigning inputs to outputs. We assume

that every look-up table implementing a random oracle is stored in a data structure that enables

constant time access when indexed either by random oracle inputs or by random oracle outputs,

using two hash tables, for instance. By definition, we have

Pr[GA
0 ⇒ 1] =AdvKE-SEC

TLS1.3-PSK-(EC)DHE(A).

Phase 1: Ensuring Predicate Sound cannot be violated

Game 1 (Exclude collisions of nonces and group elements). In GA
1 , we eliminate collisions

among nonces and group elements computed by honest sessions via two new flags:

• badC is set when two honest sessions choose the same nonce and group element, and

• badO is set when an honest responder samples some nonce and group element that have

already been received by another session. We view this nonce and group element as having

been chosen by an adversarial session.

If either badC or badO is set, the game returns 0 from f in.

By the well-known identical-until-bad-lemma [43, Lemma 2], we get

Pr[GA
0 ⇒ 1]≤ Pr[GA

1 ⇒ 1]+Pr[GA
1 sets badC]

+Pr[GA
1 sets badO]. (3.1)

Let us separately analyze the probabilities that GA
1 sets the flags badC and badO. Each Send

query causes at most one session to uniformly and independently sample a nonce r $←− {0,1}nl

and a group element g $←−G. If the badC flag is set, we have that there exists some Send query

that creates a session π i
u using Activate. This new session samples nonce and group element(r,g)

which were previously sampled by another session π i′
u′ . That is, the probability for badC to be

set is the probability of a collision among the (up to) qS pairs of uniformly and independently

sampled nonces and group elements; we can use the birthday bound to bound the probability of

164

setting badC by

Pr[GA
1 sets badC]≤

q2
S

2nl · p
. (3.2)

where qS is the number of Send queries.

Next, if the game sets badO, we have that there is a Send query which creates a new

session π
j

v . This session samples a nonce rS
$←− {0,1}nl and a group element Y $←−G, which were

already received by another session π i
u. There are at most qS sessions, so there are no more

than qS received pairs which which (rS,Y) can collide. Since π
j

v samples its nonce and group

element uniformly and independently at random from {0,1}nl×G, we get by the union bound

that the probability that π
j

v samples one of the already received pairs is bounded from above by

qS/(2nl · p). Overall, we again get by the union bound that there is such a collision for any π
j

v

with probability

Pr[GA
1 sets badO]≤ qS ·

qS
2nl · p

=
q2
S

2nl · p
. (3.3)

Combining Equations (3.1)–(3.3), we get

Pr[GA∗
0 ⇒ 1]≤ Pr[GA∗

1 ⇒ 1]+
2q2

S

2nl · p
. (3.4)

Game 2 (Exclude binder collisions). In game GA
2 , we let the adversary lose if there is a collision

among the binder values computed by any honest session. Whenever two distinct queries to

RObinder return the same value, we set a flag badbinder and return 0 from f in.

To implement this, we add a table CollListbinder to the random oracle RObinder (this

table is currently redundant to the table implementing RObinder , but will be useful in later

game hops, where we will introduce changes such that it is not guaranteed anymore that all

binder values will be contained in the RObinder table). Whenever RObinder computes a binder

value b = RObinder (PSK,ctxt), we log CollListbinder [b]← (PSK,ctxt). Now, whenever RObinder

computes some binder b for some tuple s and CollListbinder [b] is not empty, there has to be a

tuple s′ = (PSK,ctxt) with RObinder (psk,ctxt) = b queried before and we have found a collision if

s 6= s′. In this case we set badbinder .

165

Again by the identical-until-bad-lemma,

Pr[GA
1 ⇒ 1]≤ Pr[GA

2 ⇒ 1]+Pr[GA
2 sets badbinder].

To bound the probability that the game sets flag badbinder , we construct a reduction B1 to the

collision-resistance of RObinder . The reduction B1 simulates Game 2 for adversary A. It implements

all oracles itself except for RObinder . B1 will need to query its own oracle RObinder at most once

per RO query and once per Send query, so it makes qRO+qS queries in total. If the flag badbinder

would be set in Game 2, which can be checked efficiently using CollListbinder as described before,

then the reduction has found a collision (s,s′) with s 6= s′ such that RObinder (s) = RObinder (s′).

Reduction B1 then outputs (s,s′) and wins the collision-resistance game.

Therefore, we have that

Pr[GA
1 ⇒ 1]≤ Pr[GA

2 ⇒ 1]+AdvCR
RObinder

(qRO+qS). (3.5)

Game 3 (Exclude collisions of pre-shared keys). In game GA
3 , we set a flag badPC and return

0 from f in whenever the NewSecret oracle samples a previously sampled pre-shared key

(again). Formally, we set badPC if there exist two distinct tuples (u,v, pskid) and (u′,v′, pskid′)

with pskeys[(u,v, pskid)] = pskeys[(u′,v′, pskid′)]. By the identical-until-bad-lemma,

Pr[GA
2 ⇒ 1]≤ Pr[GA

3 ⇒ 1]+Pr[GA
3 sets badPC].

Since the pre-shared keys are uniformly distributed10 on {0,1}hl , by the birthday bound

Pr[GA
3 sets badPC]≤

q2
NS

2hl
.

Conclusion of Phase 1.

At this point, we argue that in Game 3 and any subsequent games, adversary A cannot

violate the Sound predicate without also causing f in to return 0. If any Sound check fails, one of
10As mentioned in Remark 2, this term has to be adapted for a different distribution on {0,1}hl , i.e., for any

distribution D on {0,1}hl , the denominator would change to 2α , where α is the min-entropy of D .

166

the checks we have added to the f in oracle will also fail. According to the definition of the MSKE

game, there are six events that cause the predicate Sound to be violated (see Figure 3.4). In

the following, we argue why each of these events cannot occur in Game 3 and thus Sound = true

needs to hold from Game 3 on.

1. There are three honest sessions that have the same session identifier at any non-replayable

stage.

Since the only replayable stages are stages 1 (ETS) and 2 (EEMS), consider any later stage

s≥ 3. Recall that session identifiers sid for all stages s≥ 3 contain a ClientHello message

containing the initiator session’s nonce and group element and a ServerHello message

containing the responder session’s nonce and group element (see Section 3.6.1). Every

session’s sid therefore contains its own randomly sampled nonce-group element pair. For

three sessions to accept the same sid[s] for s ≥ 3, there must be two honest sessions who

have sampled the same nonce and group element. Due to Game 1, this would trigger the

badC flag, leading f in to return 0.

2. There are two sessions with the same session identifier in some non-replayable stage that

have the same role.

Session identifiers sid[s] for s≥ 3 as defined by TLS 1.3 (see Section 3.6.1) contain only one

pair of nonce and group element per initiator and responder. If two honest sessions share a

sid and a role, they must also share a nonce and group element. This case would also trigger

the badC flag.

3. There are two sessions with the same session identifier in some stage that do not share the

same contributive identifier in that stage.

Once a session holds both a contributive identifier and a session identifier for the same stage,

both are equal by our definition (see Section 3.6.1) of the session and contributive identifiers

for TLS 1.3. This case will therefore never occur.

4. There are two sessions that hold the same session identifier for different stages.

167

This is impossible as the session identifier of stage s begins with the unique label label s for

stage s.

5. There are two honest sessions with the same session identifier in some stage that disagree

on the identity of their peer or their pskid.

Two sessions which hold the same session identifier must necessarily agree on the value of the

binder , which is part of the ClientHello message. In Game 2, we required that f in returns

0 if two queries to the oracle RObinder collide. The two sessions must therefore also agree on

the pre-shared key, which they obtained from the list pskeys. From Game 3, we have that

f in returns 0 if any two distinct entries in pskeys contain the same value. Therefore two

sessions can obtain the same pre-shared key from pskeys only if they hold the same tuple

(u,v, pskid), meaning they agree on both the peer identities and the pre-shared key identity.

6. Sessions with the same session identifier in some stage do not hold the same key in that

stage.

We have just established that two sessions with the same session identifier must agree on

the peer identities and pskid (contained in CPSK and SPSK), meaning they also share the

same PSK. Session identifiers for stages whose keys are derived from a Diffie–Hellman secret

DHE must include both Diffie–Hellman shares X and Y (contained in CKS and SKS). These

shares uniquely determine DHE. Besides that the session identifier also contains the context

required to derive the respective stage keys, which then uniquely determines the stage key.

Therefore, agreement on a session identifier implies agreement on a stage key.

Phase 2: Ensuring Predicate ExplicitAuth cannot be violated

Game 4 (Exclude transcript hash collisions). In GA
4 , we let the adversary lose if two distinct

queries to ROTh lead to colliding outputs. This ensures that each transcript has a unique hash.

When such a collision occurs, we set a new flag badH and let the game return 0 from f in.

As in Game 2, we introduce a table CollListTh to random oracle ROTh. Whenever it

computes a hash d = ROTh(s) for some string s, we log CollListTh[d]← s. This table then is used

to set badTh as in Game 2.

168

Analogously to Game 2, we can construct a reduction B2 to the collision-resistance of

ROTh. As it simulates Game 4, the adversary B2 will need to make one query to its ROTh oracle

for each ROTh query of A and up to 6 ROTh queries for the up to 6 distinct transcript hash values

computed in a protocol step per Send query of A; in total qRO+6qS queries.

Therefore, we have that

Pr[GA
4 sets badH]≤AdvCR

ROTh
(qRO+6qS)

and it follows that

Pr[GA
3 ⇒ 1]≤ Pr[GA

4 ⇒ 1]+AdvCR
ROTh

(qRO+6qS).

Game 5 (Abort if adversary guess a uncorrupted PSK). In GA
5 , we make the adversary lose

when it queries any random oracle on a pre-shared key PSK before that key has been corrupted

via RevLongTermKey.

We introduce some bookkeeping in order to implement this change. First, we add a

reverse look-up table PSKList that is maintained by the NewSecret oracle. When the oracle

receives query NewSecret(u,v, pskid), it samples a fresh pre-shared key PSK, and we log the

tuple under index PSK as PSKList[PSK]← (u,v, pskid). Note that the pre-shared keys might

repeat, so we may have multiple entries in PSKList indexed by a single PSK. Second, we add a

time log T to the 12 random oracles ROx. Each random oracle query containing a pre-shared

key PSK now creates an entry T[PSK]← time, where time is the counter maintained by the key

exchange experiment, unless T[PSK] already exists.

The actual check whether the adversary queries any random oracle with a PSK before it

was corrupted is performed by the f in oracle. We set a flag badPSK if T(PSK)≤ revpsk(u,v,pskid)

for any PSK ∈ T and (u,v, pskid) ∈ P[PSK]. If the badPSK flag was set during this process, the f in

oracle returns 0.

Next, let us analyze the probability that the game is lost due to flag badPSK being set.

Each random oracle query could hit one out of qNS many pre-shared keys. Before a given

pre-shared key is corrupted or queried to a random oracle, the adversary knows nothing about

its value. Since we assume that pre-shared keys are sampled uniformly at random from {0,1}hl ,

169

the probability to hit a specific one is at most 2−hl .11 By the union bound, we obtain that the

probability that the adversary hits any of the pre-shared keys in a single random oracle query

is upper-bounded by qNS ·2−hl . Thus, the probability that badPSK is set in response to any of

the qRO many random oracle queries overall is limited by qRO ·qNS ·2−hl . This follows again by

applying the union bound.

Hence, we get by the identical-until-bad lemma,

Pr[GA
4 ⇒ 1]≤ Pr[GA

5 ⇒ 1]+Pr[GA
5 sets badPSK]

≤ Pr[GA
5 ⇒ 1]+

qRO ·qNS

2hl
.

In the next two games, we change the way that partnered sessions compute their session

keys, binder values, and FinishedMAC tags. Since we have established in Phase 1 that partnered

sessions will always share the same key, we can compute these keys only once and let partnered

sessions copy the results. This will make it easier to maintain consistency between partners as

we change the way we compute keys and tags. This approach follows the tight key exchange

security proof techniques of Cohn-Gordon et al. [78].

Game 6 (Log session keys and MAC tags). First, we will store all session keys in a look-up

table SKEYS under their session identifiers. Sessions will be able to use this table to easily check

if they share a session identifier with another honest session and thus share a key with a partner.

Honest sessions π i
u in the initiator role will derive the keys ETS, EEMS, and RMS before

their partners. In Game 6, when an initiator session accepts in stage 1 (ETS), 2 (EEMS), or 8

(RMS) it creates a new entry in SKEYS, i.e.,

SKEYS[π i
u.sid[s]]← π

i
u.skey[s]

for s ∈ {1,2,8}. Honest responder sessions π
j

v will derive the keys htkS, htkC, CATS, SATS, and

EMS before their partners. These sessions also log their keys in S under the appropriate session
11Note that at this point, we use that the pre-shared key distribution is uniform. As already mentioned before,

for any distribution D on {0,1}hl , the probability would be 2−α , where α is the min-entropy of D .

170

identifier:

SKEYS[π j
v .sid[s]]← π

j
v .skey[s]

for s ∈ {3, . . . ,7}.

Note that no two sessions will ever log keys in table SKEYS under the same sid. From

Sound, we know that only one initiator and one responder session may have the same session

identifier sid[s] in any stage s. Note that for the replayable stages 1 and 2 (ETS and EEMS) we

only log once because the messages will only be logged by the initiator that output the replayed

messages and not by the receivers that are receiving them.

We also store binder , finC and finS MAC tags. When any honest session queries ROx

with x ∈ {binder ,finC,finS}, it logs the response in a second look-up table, TAGS, indexed by x

and the inputs to ROx. That is, for a query (PSK,DHE,d1,d2) to ROfinS
, we log

TAGS[finS,PSK,DHE,d1,d2]← ROfinS
(PSK,DHE,d1,d2).

Since Game 6 only introduces book-keeping steps, we have that

Pr[GA
5 ⇒ 1] = Pr[GA

6 ⇒ 1].

Game 7 (Copy session keys and MAC tags from partnered session). In this game, we change

the way the sessions compute their keys and MAC tags. Namely, if a session has an honest

partner in stage s, instead of computing a key itself, it copies the stage-s key already computed

by the partner via the table SKEYS introduced in Game 6. Concretely, the sessions compute

their keys depending on their role as follows.

Honest server sessions.

An honest server session π
j

v , upon receiving (CH,CKS,CPSK), sets its session identifier for

stages 1 (ETS) and 2 (EEMS). It then checks whether keys have been logged in SKEYS under

π
j

v .sid[1] and π
j

v .sid[2]. If such log entries exist, then π
j

v has an honest partner in stages 1 and 2,

and copies the keys ETS and EEMS from SKEYS when they would instead be computed directly.

Analogously, upon receiving CF, π
j

v uses SKEYS to check whether there is an honest client

171

session that shares the same stage-8 (RMS) session identifier π
j

v .sid[8], and it copies the RMS

key if this is the case. If there are no entries in SKEYS under the appropriate session identifiers,

π
j

v proceeds as in Game 6 and computes its keys using the random oracles.

Honest client sessions.

An honest client session π i
u, upon receiving (SH,SKS,SPSK), sets its session identifiers for

stages 3–7, which identify the keys htkS, htkC, CATS, SATS and EMS. It then searches for entries

in SKEYS indexed by π i
u.sid[s] for s ∈ {3, . . . ,7}. If these entries are present for stage s, then π i

v

copies the stage-s keys from SKEYS instead of computing them itself. Otherwise, π i
u proceeds as

in Game 6 and computes the keys using the random oracle in each case.

Computation of MAC tags.

Finally, all honest sessions (both client and server) which would query ROx to compute

x ∈ {binder ,finC,finS} in Game 6 first check the look-up table TAGS to see if their query has

already been logged. If so, they copy the response from TAGS instead of making the query to

ROx.

It remains to argue that the procedure of copying the keys in partnered sessions described

in this game is consistent with computing the keys in Game 6. Recall that sessions which are

partnered in stage s must agree on the stage-s key, since the Sound predicate (Property 6) cannot

be violated. Consider a session π i
u which accepts the stage-s key π i

u.skey[s]. By Sound, any other

session π
j

v in Game 6 which accepts in stage s with π
j

v .sid[s] = π i
u.sid[s] must set its stage-s key

equal to π i
u.skey[s]. Although in Game 7 the session π

j
v may copy π i

u.skey[s] from table SKEYS

instead of deriving it directly, the value of π
j

v .skey[s] does not change between the two games.

Sessions may also copy queries from look-up table TAGS instead of making the appropriate

random oracle query themselves. However, table TAGS simply caches the response to random

oracle queries and does not change them. Hence, the view of the adversary is identical. This

implies that

Pr[GA
6 ⇒ 1] = Pr[GA

7 ⇒ 1].

With the next two games, we finalize Phase 2. First, we postpone the sampling of

the pre-shared key to the RevLongTermKey oracle such that only corrupted sessions hold

172

pre-shared keys. As a consequence of this change, we can no longer compute session keys and

MAC tags using the random oracles. We will instead sample these uniformly at random from

their respective range and only program the random oracles upon corruption of the corresponding

pre-shared key. After this change, we can show that in order to break explicit authentication,

the adversary must predict a uniformly random Finished MAC tag, which is unlikely.

Game 8 (Postpone PSK sampling until after corruption). In this game, we postpone the

sampling of pre-shared keys from the NewSecret oracle to the RevLongTermKey oracle (if

the pre-shared key gets corrupted) or the f in oracle (if the key remains uncorrupted).

Since we now do not have a PSK anymore for uncorrupted sessions, we cannot use

the random oracle to compute keys or MAC tags in those sessions, but instead sample them

uniformly at random. If the corresponding pre-shared key is corrupted later and a PSK is chosen

(in RevLongTermKey), we will retroactively program the affected random oracles to ensure

consistency.

Concretely, we change the implementation of the game as follows. When NewSecret

receives a query (u,v, pskid), we set pskeys[(u,v, pskid)] to a special symbol ? instead of a randomly

chosen pre-shared key. The ? serves as a placeholder and signalizes that the NewSecret oracle

already received a query (u,v, pskid), but no PSK has been chosen yet. We add (u,v, pskid) to the

set PSKList[?] to keep track of all tuples with an undefined PSK.

We let honest sessions whose pre-shared key has not been sampled (yet) but equals ?

sample their session keys as well as binder and Finished MAC tags uniformly at random. Due

to the changes introduced in Game 7 we do not need to ensure consistency when sampling, as we

sample each value once and partnered sessions copy the suitable value from the tables SKEYS

and TAGS. (When sessions would log MAC tags in TAGS under their pre-shared keys in Game 7,

those with no pre-shared key instead use the tuple (u,v, pskid) in this game.) We further log the

respective random oracle query that sessions would normally have used for the computation in a

look-up table PrgListx for later programming of the respective random oracle ROx. Sessions which

would log their RO-derived values in tables SKEYS and TAGS now log their randomly chosen

values instead. That is, if a session in Game 7 would issue a query (?,DHE,ctxt) (where DHE

might be ⊥) to random oracle ROx to compute a value k, in Game 8 it chooses k uniformly at

173

random from ROx’s range and logs

PrgListx[(u,v, pskid),DHE,ctxt]← k

in the look-up table PrgListx, where (u,v, pskid) uniquely identifies the used PSK. Note that the

table PrgListx is closely related to the random oracle table ROListx for ROx. Table PrgListx is

always used when there is no PSK defined for a session, i.e., it has not (yet) been corrupted.

Therefore, we need to make sure that if the PSK (identified by (u,v, pskid)) gets corrupted we are

able to reprogram ROx. Using PrgListx we can upon corruption of the pre-shared key associated

with (u,v, pskid) efficiently look-up the entries we need to program from PrgListx and transfer

them to the random oracle table ROListx after PSK has been set. We will discuss the precise

process below when we describe how to adapt the RevLongTermKey oracle.

We must be particularly careful when x = binder , because we still wish to set the badbinder

flag when two randomly chosen binder values collide. Therefore, honest sessions still record the

sampled binder values in list CollListbinder , so that the badbinder flag is set as before. This ensures

that the probability of setting the flag does not change.

We also need to adapt the corruption oracle RevLongTermKey. Upon a query

(u,v, pskid) for which pskeys[(u,v, pskid)] = ?, we perform the following additional steps: First, we

sample a fresh pre-shared key PSK $←− KE.PSKS and update pskeys, i.e., set pskeys[(u,v, pskid)]←

PSK. Next, we need to reprogram the random oracles using the lists Rx to ensure consistency.

Thus, for all x we update the random oracle tables ROListx for ROx using PrgListx. For every

entry PrgListx[((u,v, pskid),DHE,ctxt)] = k, we set

ROListx[PSK,DHE,ctxt]← k

where ROListx is the random oracle table of ROx. Lastly, we remove (u,v, pskid) from the set

PSKList[?] and add it to PSKList[PSK].

To be able to still set badPSK, we also make sure that in the f in procedure every pre-shared

key is defined before the check against the random oracle time log T introduced in Game 5. We

sample a pre-shared key for every tuple (u,v, pskid)∈ P[?], setting pskeys[(u,v, pskid)] $←−KE.PSKS,

174

and update the reverse look-up table PSKList accordingly. As a result, also uncorrupted sessions

now have a pre-shared key defined and we can check the condition for badPSK being set as

introduced in Game 5.

The changes introduced in Game 8 are unobservable for the adversary as it never queries

the random oracle for an uncorrupted pre-shared key, as otherwise the game would be aborted

due to badPSK introduced in Game 5. It hence does not matter whether the pre-shared key is

already set before or upon corruption, because from the view of the adversary the keys (and

the pre-shared key) are uniformly random bitstrings anyway up to this point. Upon corruption

of a pre-shared key, we make sure by reprogramming the random oracle that all session keys

and MAC tag computations are consistent with sessions that would have otherwise used this

pre-shared key but derived all session keys and MAC tags without it. The change to the f in

procedure does not affect the view of the adversary as it only retroactively defines keys on which

the adversary cannot get any information about anymore. Consequently,

Pr[GA
7 ⇒ 1] = Pr[GA

8 ⇒ 1].

Game 9 (Exclude that honest sessions accept without a partner). In this game, we set a

flag badMAC and return 0 from f in if any session with an uncorrupted pre-shared key accepts

stage 5 (htkC) as initiator, or stage 8 (RMS) as responder, without having a partnered session.

Formally, we set badMAC if there is a session π i
u such that π i

u.tacc[s] < revpsk(u,v,π i
u.pskid) with

v = π i
u.peerid and

s =

5 if π i

u.role = initiator

8 if π i
u.role = responder

and there is no session π
j

v with π i
u.sid[s] = π

j
v .sid[s] when π i

u accepts stage s.

Let us analyze the probability Pr[GA
9 sets badMAC]. Consider a session π i

u which triggers

the badMAC flag. In the following analysis, let π i
u be an initiator. For responder sessions the

arguments are analogous. The pre-shared key of session π i
u is uncorrupted, which means that by

the changes of Game 8 it has not been sampled. Therefore π i
u either samples the ServerFinished

MAC tag uniformly at random or copies it from table TAGS (in which case the MAC tag was

175

uniformly sampled and logged by another honest session).

First observe that session π i
u will not copy the ServerFinishedMAC tag from table TAGS

as this would imply that π i
u is partnered when it accepts in stage 5. This in turn contradicts

that π i
u has triggered flag badMAC. Namely, if π i

u would be able to copy the ServerFinished

MAC tag from table TAGS there must have been another honest session that computed the same

ServerFinished MAC, i.e., using the same tuple (u,v, pskid), DHE secret, and transcript hash.

Recall that the session identifier of stage 5 contains both the ServerFinished message and the

transcript hashed to computed the ServerFinished MAC tag. Further, we have that transcript

hashes are unique due to Game 4. This implies that the session that logged the ServerFinished

MAC tag in TAGS needs to have the same stage-5 session identifier than π i
u meaning π i

u would

be partnered in stage 5.

Thus, if π i
u triggers badMAC, it must have sampled its ServerFinished MAC tag at

random and the received ServerFinished message will match this tag with probability no more

than 2−hl .

Thus the probability that π i
u triggers the flag badMAC is bounded by 2−hl . A union bound

over all sessions gives

Pr[GA
9 sets badMAC]≤

qS
2hl

.

Overall, we get by the identical-until-bad-lemma

Pr[GA
8 ⇒ 1]≤ Pr[GA

9 ⇒ 1]+Pr[GA
9 sets badMAC]

≤ Pr[GA
9 ⇒ 1]+

qS
2hl

.

Conclusion of Phase 2.

At this point, we argue that in Game 9 and any subsequent games, adversary A cannot

violate the ExplicitAuth predicate without also causing f in to return 0. To this end, we argue

that ExplicitAuth = true holds with certainty from Game 9 on.

The predicate ExplicitAuth is set to false if there is a session π i
u accepting an explicitly

authenticated stage s, whose pre-shared key was not corrupted before accepting the stage s′ ≥ s

in which it received (perhaps retroactively) explicit authentication, and (1) there is no honest

176

session π
j

v partnered to π i
u in stage s′, or (2) there is an honest partner session π

j
v for π i

u in stage s′

but it accepts with a peer identity w 6= u, with a different pre-shared key identity than π i
u, i.e.

π
j

v .pskid 6= π i
u.pskid, or with a different stage-s session identifier, i.e. π

j
v .sid[s] 6= π i

u.sid[s].

Recall that initiator (resp. responder) sessions receive explicit authentication with ac-

ceptance of stage 5 (resp. stage 8) meaning that all previous stages 1–4 (resp. stages 1–7)

receive explicit authentication retroactively and all future stages 6–8 upon their acceptance.

From Game 9, we have that any initiator session π i
u accepting stage 5 (resp. any responder

session accepting stage 8) with uncorrupted PSK must have a partnered session in that stage.

Consequently, case (1) is impossible to achieve.

We next address the possibility of case (2). To achieve explicit authentication for stage

s≤ 8, a responder session must have accepted stage 8. From Game 9 on, we know that π i
u must

have a partner with the same stage 8 session identifier. Observe that the transcripts contained

in π i
u’s session identifiers for all stages are “sub-transcripts” of the transcript contained in the

session identifier of stage 8. Therefore the partner must also have the same stage s session

identifier. Property 5 of the Sound predicate then ensures that all partnered sessions agree

on the peer identity and the pre-shared key identity, so ExplicitAuth is not violated by session

π i
u. The same property holds for initiator sessions accepting stages s≤ 5. So ExplicitAuth can

only be violated if an initiator session’s stage-5 partner accepts in stage s > 5 with a different

peer identity, pre-shared key identifier, or session ID. Since peer and pre-shared key identifiers

do not change after they are set, only the session identifiers may not match in stage s. The

“sub-transcripts” of stage 6 (CATS) and 7 (SATS) session identifiers are identical to those of

stage 5, so a partner in stage 5 will also be a partner in stages 6 and 7. Then the only way to

violate predicate ExplicitAuth is to convince the stage-5 partner, a responder session, to accept

a forged ClientFinished message and accept stage 8. This is impossible because the partner

will verify the received ClientFinished message against the message sent by π i
u, which it copies

from table TAGS. It follows that no session, responder or initiator, can violate the ExplicitAuth

predicate.

177

Phase 3: Ensuring that the Challenge Bit is Independently Random

Game 10. In this game, we rule out that the adversary manages to guess the DHE secret of

two honestly partnered session to learn about the keys they are computing. Here, we only look

at those session that have a corrupted pre-shared key, because we already ruled out in Game 5

that the adversary learns something about the keys computed by these sessions. To that end, we

add another flag badDHE to the game and return 0 from f in when it is set. Flag badDHE is set if

the adversary ever queries a random oracle

ROx(PSK,DHE,ROTh(sid[s]))

for (x,s) ∈ {(htkC,3),(htkS,4),(finS,5)(CATS,5),(SATS,6),(EMS,7),(finC,8),(RMS,8)} such that

• PSK is corrupted, i.e., the adversary made a prior query RevLongTermKey(u,v, pskid)

with pskeys[(u,v, pskid)] = PSK,

• there are honest sessions π i
u and π

j
v that are contributively partnered in stage s with

π
j

v .cidπ i
u.role[s] = π i

u.cidπ i
u.role[s] = (CH,CKS,CPSK,SH,SKS,SPSK, . . .), and

• DHE = gxy such that CKS= gx and SKS= gy.12

We bound the probability of flag badDHE being set via a reduction BDHE to the strong

Diffie–Hellman assumption in group G. Reduction BDHE simulates Game 10 for A, and it wins

the strong Diffie–Hellman whenever the simulated game would set the badDHE flag.

Definition 12. Let G be a group of order p generated by g. We define

AdvstDH
G (tBDHE ,2qRO) := Pr

[
gab←$ B

stDHa(·,·)
DHE (ga,gb) : a,b←$Zp

]

where stDHa is a special “fixed-exponent DDH oracle” that on input (B,C) returns 1 if and only

if C = Ba.
12Note that the game knows the exponents x and y used by the sessions, but the reduction constructed in the

remainder will not.

178

Construction of reduction BDHE.

The reduction BDHE gets as input a strong DH challenge (A = ga,B = gb) as well as access

to the oracle stDHa for the Decisional Diffie–Hellman problem with the first argument fixed.

Adversary BDHE then honestly executes the init, RevSessionKey, Test, and NewSecret

oracles as Game 10 would, managing all game variables itself. We explain in more detail how

BDHE answers Send, RevLongTermKey, and random oracle queries.

When A makes a query to the Send oracle, BDHE delivers the message to a protocol

session in the same way as Game 10. However, the sessions themselves handle messages quite

differently. At a high level, BDHE embeds its strong DH challenges into the key shares of every

initiator session and every partnered responder session. When badDHE is triggered, BDHE learns

the Diffie–Hellman secret DHE associated with two of these embedded key shares, and it can

extract a solution to the strong DH challenge using some basic algebra. However, BDHE must

take care to appropriately program random oracles queries after corruptions, since it cannot

compute Diffie–Hellman secrets for embedded key shares as it does not know the corresponding

exponents. Next, we describe how client and server sessions are implemented in Game 10.

But first we explain the (constant-time accessible) look-up tables that are used (or defined)

by reduction BDHE to ensure an efficient implementation:

• The look-up table KSRnd is maintained for all sessions. It holds the random exponent τ

used by the honest sessions to randomize their key share G, indexed by the session’s nonce

and key share (r,G) (see the implementation of the session for further details). To identify a

session uniquely we use its nonce r and key share G as the index.

• Each random oracle ROx maintains a look-up table DHEListx. For each query ROx(PSK,Z,d),

the table stores the group element Z indexed by PSK and d.

• Each random oracle ROx maintains a look-up table RndListx. It holds a tuple (τ,τ ′,ctxt ,key)

indexed by the pair (PSK,d). The table holds all necessary information that is required

to reprogram of the random oracle ROx. The fields PSK and key can hold special values.

If a PSK is uncorrupted, we cannot log the information under it because it is not defined.

Therefore, we can use the tuple (u,v, pskid) uniquely identifying PSK instead. Moreover, key

179

can sometimes be an empty field, because reprogramming of that value will never occur.

When this field is empty, it will not be accessed as we instead use the remaining information

of RndListx to solve the stDH challenge. See the remainder of the proof for details.

Implementation of honest server sessions.

Consider any server session π
j

v .

1. Upon receiving (CH,CKS,

CPSKtls), the reduction BDHE first checks whether π
j

v has an honest partner in stages 1

(ETS) and 2 (EEMS) by checking for entries indexed by π
j

v .sid[1] and π
j

v .sid[2] in the look-up

table SKEYS introduced in Game 6. If no such entries exist, then BDHE answers this and all

future Send queries just as specified in Game 10. For the rest of the discussion, we assume

the entries do exist.

Session π
j

v generates its key share SKS by randomizing the challenge key share B. Namely, it

chooses a randomizer τ
j

v
$←− Zp uniformly at random and sets Y ← B ·gτ

j
v . Then, it logs τ

j
v

under index (rS,Y) in the look-up table KSRnd.

2. Before π
j

v outputs (SH,SKS,SPSK), it computes the keys htkC and htkS. By Game 8, these

keys are sampled randomly when PSK is uncorrupted and computed using ROhtkC , resp.

ROhtkS otherwise. In both cases, BDHE needs to know the Diffie–Hellman secret DHE to log

in table PrgListx or to query ROx for x ∈ {htkC,htkS}. However, BDHE cannot compute DHE

because it does not know the discrete logarithms of either CKS or SKS.

Therefore, BDHE needs to compute the keys without knowing the DHE key using the control

over the random oracles.

If the pre-shared key has been corrupted, the adversary could potentially have already

queried the random oracle ROhtkC with the query π
j

v should make. To that end, BDHE first

checks whether the corresponding query for htkC was already made to ROhtkC . Concretely,

BDHE computes the context hash d = ROTh(CH‖ · · · ‖SPSK) and checks for a suitable ROhtkC

query using the look-up table DHEListhtkC [PSK,d] maintained in ROhtkC (see above for the

definition). Reduction BDHE queries stDHa(Y,Z ·Y−τ i
u) for all Z ∈ DHEListhtkC [PSK,d], where

180

τ i
u is the randomizer used by the honest partner of π

j
v , which can be looked up from

KSRnd[rC,X] using π i
u’s nonce and key share. (Although this may cause several stDHa

queries in response to a single Send query, BDHE is still efficient because it only checks

random oracle queries whose context is d, and due to the lack of both nonce/group element

and hash collisions d is unique to session π i
u and its partner. Therefore each entry in

DHEListhtkC [PSK,d] will be checked at most twice over the course of the entire reduction.)

If any one of these queries is answered positively, we have by the definition of stDHa that

Z ·Y−τ i
u = Y a, which implies that Z = Y a+τ i

u = Xb+τ
j

v by definition of Y and X , which was

computed by the honest partner π i
u that has output the CH message received by π

j
v . This

exactly is the DHE value that π
j

v would have computed if we would have known the discrete

logarithm of B. Hence, we have found the right Z value and only need to derandomize it to

win the challenge. Therefore, we let BDHE submit the value

Z ·Y−τ i
u ·A−τ

j
v = Y a ·A−τ

j
v = (ga)b+τ

j
v · (ga)−τ

j
v = gab

to the f in oracle as a solution to the strong Diffie–Hellman problem.

Observe that if badDHE is set due to a query to ROhtkC in Game 10, there is a random oracle

query such that one of the above stDHa queries will be answered positively. Thus, BDHE will

win if badDHE is set. We do the same for htkS with ROhtkS .

If in the above process no query is answered positively, i.e., badDHE will also not be set, then

π
j

v samples the key htkC
$←− KE.KS[3] itself and logs the following information so that future

RO queries can be answered appropriately:

RndListhtkC(PSK,d = H(CH‖ · · · ‖SPSK))←
(
τ

i
u,τ

j
v ,(CH‖ · · · ‖SPSK),⊥

)
.

Again, we do the same for htkS.

If PSK is not corrupted, then badDHE cannot possibly have been set and we do not need

to worry about consistency with earlier random oracle queries. Therefore, we do not need

to do the process described above and immediately sample htkC and htkS randomly as in

181

Game 10. It logs the keys in table SKEYS under their respective session identifiers, which

do not contain DHE or any unknown values. In Game 10, we added entries to PrgListhtkC

and PrgListhtkS
in order to program future random oracle queries upon corruption. The

reduction cannot do this here as it does not know DHE; instead, it logs

RndListx[((u,v, pskid),d = H(CH‖ · · · ‖SPSK))]←
(
τ

i
u,τ

j
v ,(CH‖ · · · ‖SPSK),⊥

)
.

for x ∈ {htkC,htkS}. This will allow BDHE to win if a later RevLongTermKey or random

oracle query triggers badDHE.

3. To compute the ServerFinished message BDHE proceeds exactly as in Step 2 except that it

uses the random oracle ROfinS
and context CH‖ · · · ‖EE through the EncryptedExtensions.

Also, the ServerFinished message is computed first by the server, so BDHE does not check

table SKEYS or TAGS for any entries. Reduction BDHE also cannot log the inputs to random

oracle query ROfinS
in table TAGS (as done since game Game 6) because it does not know

DHE. Instead, it logs the derived value of finS in table TAGS and replaces DHE in the index

of TAGS by
(

τ i
u,τ

j
v ,(CH‖ · · · ‖EE)

)
. That is, if it computes finS for inputs PSK, d1, and d2, it

logs

TAGS[finS,PSK,(τ i
u,τ

j
v ,(CH‖ · · · ‖EE)),d1,d2]← finS.

That way, it is possible to identify DHE without knowing it. For finS, we keep the same

notation for the sets DHEListx, RndListx and ROListx numbered as the corresponding random

oracle ROx.

4. Reduction BDHE proceeds exactly as for finS above, except that we again use different

random oracles and the context cidCATS = CH‖ · · · ‖SF= cidSATS = cidEMS, where cidx denotes

transcript contained in the contributive identifier which is prefixed by “x”, and thus the hash

d = ROTh(CH‖ · · · ‖SF). With respect to random oracles, we have ROCATS for CATS, ROSATS

for SATS and ROEMS for EMS, respectively. Reduction BDHE logs the keys in table SKEYS

under their respective session identifiers, which do not contain DHE or any unknown values.

After this is done, π
j

v outputs (EE,SF).

182

5. Upon receiving CF, BDHE looks for a suitable entry for finC in TAGS. If there is a value finC

consistent with π
j

v ’s view, BDHE terminates the session as specified if CF does not match the

looked-up value of finC. Otherwise, BDHE continues to compute RMS. To this end, BDHE

checks whether there is an entry in SKEYS that matches the stage-8 session identifier of π
j

v , if

yes π
j

v simply copies that entry. If not, first observe that if there is no entry in SKEYS there

is no honest stage-8 partner, which implies that PSK needs to be corrupted as otherwise

the game would have been aborted due to badMAC introduced in Game 9. Therefore, the

adversary also would be allowed to query RORMS to compute RMS. Thus, BDHE needs to

check whether the value for RMS is already set. Here, we need to distinguish two cases.

Namely, whether there is an honest contributive stage-3 partner or not.

First note that as described in Step 1, BDHE does not embed its challenge in SKS if there

is no honest session output the ClientHello received, i.e., there is no honest contributive

stage-3 partner. Therefore, here BDHE can simply implement π
j

v as specified in Game 10.

In case there is an honest contributive stage-3 partner, then BDHE proceeds as described in

Step 2 for oracle RORMS and context hash d = ROTh(cidRMS) = ROTh(CH‖ · · · ‖CF) to check

whether the adversary already solved the stDH challenge for BDHE. Note that the stage-3

session identifier uniquely defines the DHE key, thus if there is an honest partner and there

is a respective RORMS query, the adversary has to break stDH to submit the query.

Implementation of honest client sessions.

Consider any client session π i
u.

1. The reduction B4 proceeds exactly as in Game 10 until the session chooses its key share.

Instead of choosing a fresh exponent as specified in Figure 3.1, it chooses a value τ i
u

$←− Zp

uniformly at random and sets X ← A ·gτ i
u as its key share in the ClientKeyShare message.

Further, it logs τ i
u in KSRnd indexed with (rC,X). The rest is exactly as specified in Game 10.

That is, it computes ETS and EEMS and outputs (CH,CKS,

CPSKtls).

183

2. Upon receiving (SH,SKS,SPSK), π i
u checks whether there is an entry

SKEYS[(”htkC”,CH, . . . ,SPSK)] 6=⊥.

If this is the case, π i
u knows that there is an honest stage-3 partner, and it copies all the

keys stored under π i
u’s session identifier as defined in Game 10. If there is no suitable entry,

BDHE faces the problem that it already “committed” to not knowing the discrete logarithm

of π i
u’s key share X by embedding A into it and thus we are not able to compute the DHE

value. Since there is no entry in SKEYS for htkC, we know that there is no honest stage-3

partner session by definition of SKEYS. That is, no honest server session computed SKS and

thus it must have been chosen by the adversary. If the pre-shared key is corrupted, BDHE

needs to use the stDHa oracle to check whether there already was a query issued to ROx

for x ∈ {htkC,htkS}. If this is not the case, π i
u freshly samples random keys and remembers

them for possible retroactive reprogramming of the random oracle. Concretely, we do the

following for each random oracle ROx for x ∈ {htkC,htkS}:

First compute d = ROTh(CH‖ . . . ‖SPSK) and then make one query to the stDHa oracle for

each entry Z ∈ DHEListx[PSK,d], where PSK is the pre-shared key used by π i
u, as

stDHa(Y,Z ·Y−τ i
u) = 1 ⇐⇒ Z = Y a,

where Y is the DH key share contained in SPSK. See the server session implementation above

for further explanation. If there is any of these queries is answered positively, let the respective

key be ROx(PSK,Z,d). If there is no Z that results in a positive query, let key $←− KE.KS[x]

be sampled at random, and BDHE logs the value for possible later reprogramming of the

random oracle ROx, i.e.,

RndListx[(PSK,d = ROTh(CH‖ · · · ‖SPSK))]←
(
τ

i
u,⊥,(CH‖ · · · ‖SPSK),key

)
.

After that π i
v either has copied the keys or chose them itself and will accept all of the stage

keys among these keys.

184

If the PSK of π i
u has not been corrupted, then no “right” query can have been made and the

keys be sampled randomly. However, we still need to program future “right” RO queries

after a corruption. Therefore set

RndListx[(PSK,d = ROTh(CH‖ · · · ‖SPSK))]←
(
τ

i
u,⊥,(CH‖ · · · ‖SPSK),key

)
.

PrgListx is not updated as in Game 10, because DHE is unknown.

3. Upon receiving (EE,SF), similar to the previous step, π
j

v checks whether there is an entry in

SKEYS and TAGS (to verify SF) corresponding to its stage-5 session identifier. If this is the

case, it copies the keys from that list. In case there is none, we have that there is no honest

stage-5 partner. Here, we need to distinguish the case whether there was an honest stage-3

partner before or not.

Namely, the adversary could corrupt the PSK, then change the EE output by an honest

session and then compute a new SF message for the changed transcript. Hence, there is

an honest stage-3 partner, but no stage-5 partner. In this case, BDHE again applies the

approach from above (see implementation of server session, Step 2) for the random oracles

ROx for x ∈ {CATS,SATS,EMS} and the context d = ROTh(CH‖ · · · ‖SF) checking whether

the random oracles received already a correct query which set the keys CATS, SATS and

EMS. If this is the case and since there was a stage-3 partner, BDHE has embedded the DH

challenge in both the client and the server, this solves the strong Diffie–Hellman problem.

When there is no such query the keys are chosen at random and all necessary information for

possible retroactive programming of the random oracles ROx is logged in the table RndListx.

Please see above for details.

However, if there is no honest stage-3 partner, SKS was chosen by the adversary. Hence,

BDHE needs to apply the procedure described in the previous step (Step 2) and use the oracle

stDHa to check the random oracles ROx for x ∈ {CATS,SATS,EMS} whether they already

set the keys. The important difference here is that a positive answer of the stDHa oracle

does not solve stDH, as SKS was chosen by the adversary. Note that BDHE again needs to

make sure that it gathers all the information needed to make retroactive programming of

185

the random oracles possible by logging information in RndListx as before.

4. π i
u computes finC using the same process as above: if PSK is corrupted, it checks for RO

queries in DHEListfinC
[PSK,d] that could set badDHE when π i

u has an honest partner in stage

8 or fix the value of finC when no honest partner exists. It then calls f in or sets finC

accordingly. If no earlier RO query matches finC, then we sample finC randomly and log τ i
u,

finC, and the transcript in table RndListfinC
under PSK and the transcript hash d. If PSK is

uncorrupted, π i
u immediately samples finC randomly and logs τ i

u, finC, and the transcript in

RndListfinC
under index ((u,v, pskid),d).

Next we compute RMS. As π i
u is not able to compute DHE independent of there being a

honest stage-3 partner or not, BDHE need to apply the same procedure that was described

before in Step 3, when there was no stage-5 partner for random oracle RORMS and context

d = ROTh(CH‖ · · · ‖CF). The only difference is that in case there was a stage-3 partner, f in

is queried when the stDH oracle returns true, and if there is no stage-3 partner, RMS is only

programmed. Then, π i
u outputs CF.

Besides changing the implementation of the session oracles, we also need to adapt the

random oracles ROx for x ∈ {htkC, . . . ,RMS} to make sure (1) BDHE programs the random oracle

retroactively if the random oracle receives the right query and (2) to check whether the adversary

computed DHE for BDHE for honestly partnered sessions.

Implementation of random oracle ROx.

If ROx receives a query that was already answered, it answers consistently. However,

if there is a new query of the form (PSK,Z,d), it appends Z to the set DHEListk[PSK,d]. If

RndListk[PSK,d] 6=⊥, then there already was a session using PSK and context hash d trying to

compute a key without knowing the correct DHE secret. Therefore, BDHE uses the stDHa oracle

to check whether Z is that secret. Let (τ i
u,τ

j
v ,ctxt ,key) be the entry of RndListk[PSK,d], where τ i

u

and τ
j

v denote the randomness used by the client and the server to randomize the stDH challenge,

respectively, ctxt = CH‖CKS‖

CPSKtls‖SH‖SKS‖SPSK‖ · · · denotes the context such that d = ROTh(ctxt) and key denotes the

key chosen by the session since there was no random oracle fixing it. Using this information, it

186

fetches SKS= Y and queries stDHa(Y,Z ·Y−τ i
u). If this query is answered positively, BDHE knows

that the right DH value Z was queried. If τ
j

u = ⊥, i.e., the log in RndListk was set by a client

without an honestly partnered server, BDHE needs to program the random oracle to be consistent.

That is, ROListk[PSK,Z,d]← key . Otherwise, BDHE knows that the PrgListx entry was set by an

honestly partnered session, and thus Z is a randomized solution to the stDH challenge. Thus,

BDHE submits the solution Z ·Y−τ i
u ·A−τ

j
v to its stDH f in oracle.

Unless BDHE solved the stDH challenge, the oracle outputs ROListx[PSK,Z,d].

Implementation of corruption oracle RevLongTermKey.

Finally, BDHE needs to handle corruptions via the RevLongTermKey oracle. Since

Game 8, the RevLongTermKey oracle upon input (u,v, pskid) samples a fresh PSK. It then

uses lists PrgListx to program all the random oracles ROx for consistency with any sessions

whose pre-shared key is now PSK. Reduction BDHE still does this, but in our reduction, the

lists PrgListx are no longer comprehensive. Some sessions fix the outputs of ROx on some query

without knowing the DHE input to that query. These sessions create log entries in RndListx, not

PrgListx, and the entries have indices of the form ((u,v, pskid),d). BDHE cannot use these entries

to program past ROx queries, but this is not necessary since any past ROx query containing PSK

would set the badPSK flag and cause the game to abort. BDHE also cannot program future queries

because we still do not know DHE. Instead, BDHE just updates each matching entry in PrgListx

so that its index is (PSK,d) instead of ((u,v, pskid),d). Future ROx queries containing PSK will

then handle strong DH checking and programming for BDHE.

By the considerations above, we have that if badDHE is set the BDHE wins the strong DH

challenge. The identical-until-bad-lemma gives us that

Pr[GA
9 ⇒ 1]≤ Pr[GA

10⇒ 1]+Pr[badDHE]

≤ Pr[GA
10⇒ 1]+AdvstDH

G (tBDHE ,2qRO), (3.6)

where the number of stDHa oracle queries is no greater than 2qRO, since BDHE will query the

oracle at most twice (once for each partner) for every random oracle query issued by the adversary,

and tBDHE with tBDHE ≈ t +4log(p) ·qRO is the running time of BDHE. Note that for every stDHa

187

query, BDHE needs to perform one group operation and one exponentiation in G, the latter can be

done in 2log(p) many group operations using, e.g., the square-and-multiply algorithm. Thus, the

time to answer a single stDHa query take approximately time 2log(p) and taking this together

with the bound on the number of stDHa yields the approximate runtime tBDHE .

Conclusion of Phase 3.

We finally argue that the adversary’s probability in determining the challenge bit b in

Game 10 is at most 1
2 if the Fresh predicate is true. First, recall that Fresh = true implies no

session can be tested and revealed in the same stage, and a tested session’s partner may also be

neither tested nor revealed in that stage. In the following, we refer to a session being “fresh” in a

stage if this session does not violate the conditions defined in the predicate Fresh in that stage.

The Fresh predicate depends on the level of forward secrecy reached at the time of each Test

query. First, if a session is tested in a non-forward secret stage, it remains only fresh if the PSK

was never corrupted. Second, if a session is tested in a weak forward secret 2 stage s, it remains

fresh if the PSK was never corrupted or if there is a contributive partner in stage s. Lastly, if a

session is tested on a forward secret stage s, it remains fresh the PSK was corrupted after forward

secrecy was established for that stage (perhaps retroactively) or if there is a contributive partner.

Next, we argue for each level of forward secrecy that all tested keys in Game 10 which do

not violate Fresh are uniformly and independently distributed from the view of the adversary.

For the non-forward secret stages 1 (ETS) and 2 (EEMS), the adversary cannot corrupt the

PSK of all sessions that it queried Test on stage 1 or 2. Since Game 8, we sample all session

keys derived from uncorrupted pre-shared keys uniformly at random, or copy uniformly random

keys from SKEYS. That is, the key returned by the Test query is a uniformly random key

independent of the challenge bit b. Therefore, it cannot learn anything about either ETS nor

EEMS of any session with an uncorrupted key, and thus the response of a Test query will be a

uniformly random string independent of the challenge bit b from the view of the adversary.

All other stages, i.e., stages 3–8, are weak forward secret 2 upon acceptance and become

forward secret as soon as the session achieves explicit authentication. If the pre-shared key is

never corrupted, we have by the same arguments given for the non-forward secret stages that the

adversary receives a uniformly random key in response to the Test query independent of the

188

challenge bit.

It remains to argue that the same is true if there is a contributive partner and the PSK is

corrupted. In this case, the adversary would need to make a random oracle query that triggers

badDHE introduced in Game 10 and would cause f in to return 0. Without such a query the

respective key is just a uniformly and independently distributed bitstring from the adversary’s

view. Hence, without losing the game, the adversary cannot learn anything about a weak forward

secret 2 key, and thus it does not learn anything from the response of the Test query.

Since forward secret stages are weak forward secret 2 until explicit authentication is

established, we only consider the case that a session that is tested on a weak forward secret

2 stage was corrupted after forward secrecy has been (retroactively) established. As we only

establish forward secrecy after explicit authentication has been achieved, we can be sure due to

ExplicitAuth never beeing violated that there is a partnered session for that stage. Hence, there

also is a contributive partner and by the same arguments as given before the adversary would

trigger badDHE and lose the game before it can learn something about the session.

Overall, we have that the adversary in Game 10 cannot gain any information on the

challenge bit b without violating any of the predicates Sound, ExplicitAuth, or Fresh. Thus, the

probability that f in and thus Game 10 returns 1 is no greater than 1/2. Formally,

Pr[GA
10⇒ 1]≤ 1

2
.

Collecting all the terms, we get the final bound

AdvKE-SEC
TLS1.3-PSK-(EC)DHE(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl · p
+AdvCR

RObinder
(qRO+qS)+

q2
NS

2hl
+AdvCR

ROTh
(qRO+6qS)

+
qRO ·qNS

2hl
+

qS
2hl

+AdvstDH
G (tBDHE ,2qRO)

189

Applying the result of Section 2.3.4, we can make the collision resistance terms explicit

AdvKE-SEC
TLS1.3-PSK-(EC)DHE(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl · p
+

(qRO+qS)2

2hl
+

q2
NS

2hl
+

(qRO+6qS)2

2hl
+

qRO ·qNS

2hl
+

qS
2hl

+AdvstDH
G (tBDHE ,2qRO)

Further, applying the GGM bound for the strong Diffie–Hellman problem proven by Davis and

Günther in [89], we get the final result

AdvKE-SEC
TLS1.3-PSK-(EC)DHE(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl · p
+

(qRO+qS)2

2hl
+

q2
NS

2hl
+

(qRO+6qS)2

2hl
+

qRO ·qNS

2hl
+

qS
2hl

+
4(t +4log(p) ·qRO)

2

p

=
2q2

S

2nl · p
+

(qRO+qS)2 +q2
NS+(qRO+6qS)2 +qRO ·qNS+qS

2hl

+
4(t +4log(p) ·qRO)

2

p

�

3.6.3 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

We can finally combine the results of Sections 3.4, 3.5, and our key exchange bound

above to produce fully concrete bounds for the TLS 1.3 PSK-(EC)DHE and PSK-only handshake

protocols as specified on the left-hand side of Figure 1. This bound applies to the protocol with

handshake traffic encryption and internal keys when only modeling as random oracle ROH the

hash function H.

First, we define three variants of the TLS 1.3 PSK handshake:

• KE0, as defined in Theorem 3.2 with handshake traffic encryption and one random oracle

ROH. (This is the variant we want to obtain our overall result for.)

• KE1, as defined in Theorem 3.2 with handshake traffic encryption and 12 random oracles

ROTh, RObinder , . . . , RORMS.

190

• KE2: as defined in Theorem 3.6, with no handshake traffic encryption and 12 random oracles

ROTh, RObinder , . . . , RORMS.

Theorem 3.2 grants that

AdvKE-SEC
KE0

(t,qNS,qS,qRS,qRL,qT,qRO)≤ AdvKE-SEC
KE1

(t,qNS,qS,qRS,qRL,qT,qRO)

+
2(12qS+qRO)

2

2hl
+

2q2
RO

2hl
+

8(qRO+36qS)2

2hl
.

Next, we apply Theorem 3.6, yielding the bound

AdvKE-SEC
KE1

(t,qNS,qS,qRS,qRL,qT,qRO)

AdvKE-SEC
KE2

(t + tAEAD ·qS,qNS,qS,qRS+qS,qRL,qT,qRO),

where tAEAD is the maximum time required to execute AEAD encryption or decryption of TLS 1.3

messages.

Theorem 3.8 then finally and entirely bounds the advantage against the KE-SEC security

of KE2. Collecting these bounds gives

AdvKE-SEC
KE0

(t,qNS,qS,qRS,qRL,qT,qRO)≤AdvKE-SEC
KE1

(t,qNS,qS,qRS,qRL,qT,qRO)

+
2(12qS+qRO)

2

2hl
+

2q2
RO

2hl
+

8(qRO+36qS)2

2hl

≤AdvKE-SEC
KE2

(t + tAEAD ·qS,qNS,qS,qRS+qS,qRL,qT,qRO)

+
2(12qS+qRO)

2 +2q2
RO+8(qRO+36qS)2

2hl

≤
(qRO+qS)2 +q2

NS+(qRO+6qS)2 +qRO ·qNS+qS
2hl

+
2q2

S

2nl · p
+

4(t + tAEAD ·qS+4log(p) ·qRO)
2

p

+
2(12qS+qRO)

2 +2q2
RO+8(qRO+36qS)2

2hl
.

This yields the following overall result for the KE-SEC security of the TLS 1.3 PSK-

(EC)DHE handshake protocol.

Corollary 1. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol as

191

specified on the left-hand side in Figure 3.1. Let G be the Diffie–Hellman group of order p. Let nl

be the length in bits of the nonce, let hl be the output length in bits of H, and let the pre-shared

key space be KE.PSKS = {0,1}hl . Let H be modeled as a random oracle ROH. Then,

AdvKE-SEC
TLS1.3-PSK-(EC)DHE(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl · p
+

(qRO+qS)2 +q2
NS+(qRO+6qS)2 +qRO ·qNS+qS

2hl

+
4(t + tAEAD ·qS+4log(p) ·qRO)

2

p

+
2(12qS+qRO)

2 +2q2
RO+8(qRO+36qS)2

2hl
.

Our tight security proof for the TLS 1.3 PSK-(EC)DHE handshake given in Section 3.6.2

can be adapted to the PSK-only handshake. The structure and resulting bounds are largely

the same between the two modes, with a couple of significant changes. Naturally, we have

no Diffie–Hellman group, no key shares in the ClientHello or ServerHello messages, and no

reduction to the strong Diffie–Hellman problem. Without the reduction to stDH, we cannot

achieve forward secrecy for any key: an adversary in possession of the pre-shared key can compute

all session keys.

The security proof for the TLS 1.3 PSK-only handshake uses the same sequence of games

G0 to G9 (excluding the reduction to the strong Diffie–Hellman problem in G10). There only is a

difference in G1, in which we exclude collisions of nonces and group elements sampled by honest

session to compute there Hello messages. Since we do not have any key shares in the PSK-only

mode, the session will consequently also not sample a group elements. Thus, the bound for G0

changes to

Pr[G0⇒ 1]≤ Pr[G1⇒ 1]+
2q2

S

2nl .

The rest of the arguments follow similarly as given in Section 3.6.2. We obtain the following

result.

Theorem 3.9. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the

right-hand side in Figure 3.1 without handshake encryption. Let functions H and TKDFx for each

x ∈ {binder , . . . ,RMS} be modeled as 12 independent random oracles ROTh,RObinder , . . . ,RORMS.

192

Let nl be the length in bits of the nonce, let hl be the output length in bits of H, and let the

pre-shared key space KE.PSKS be the set {0,1}hl . Then,

AdvKE-SEC
TLS1.3-PSK(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl +
(qRO+qS)2 +q2

NS+(qRO+6qS)2 +qRO ·qNS+qS
2hl

From this we obtain the following overall result for the TLS 1.3 PSK-only mode via the

same series of arguments as in Section 3.6.3.

Corollary 2. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the

left-hand side in Figure 3.1. Let nl be the length in bits of the nonce, let hl be the output length in

bits of H, and let the pre-shared key space be KE.PSKS = {0,1}hl . Let H be modeled as a random

oracle ROH. Then,

AdvKE-SEC
TLS1.3-PSK(t,qNS,qS,qRS,qRL,qT,qRO)

≤
2q2

S

2nl +
(qRO+qS)2 +q2

NS+(qRO+6qS)2 +qRO ·qNS+qS
2hl

+
2(12qS+qRO)

2 +2q2
RO+8(qRO+36qS)2

2hl
.

3.7 Evaluation

Asymptotically, our tighter security bounds improve on prior analysis of TLS 1.3 by a

quadratic factor. We evaluate ours and prior bounds over a wide range of fully concrete resource

parameters, following the approach of Davis and Günther [89]. The full range of evaluated

parameters is given in Tables 3.2 and 3.3 below, along with reasoning for how we chose the

various ranges of resource parameters. The tables show that while the prior PSK-(EC)DHE

bound by Dowling et al. [103] meets the target security goals in a number of configurations, there

are at least some settings for all elliptic-curve groups in which the targeted security is not met.

Our bounds do significantly better than the target in all configurations we considered. The gap

for the PSK-only handshake is less significant as the loosest prior reduction for TLS 1.3 was to

the Diffie–Hellman problem.

193

Overall, our bounds improve on previous analyses of the PSK-only handshake by 15 to 53

bits of security, and those of the PSK-(EC)DHE handshake by 60 to 131 bits of security, across

all our parameters evaluated.

3.7.1 Evaluation Details

In the following, we will briefly explain the reasoning behind each of our specific resource

parameter estimates. An adversary in the MSKE game (cf. Definition 10) is limited in its

runtime t, the number of pre-shared keys #N, and distinct protocol sessions #S it can observe

or interact with, and the number of random oracle queries #RO it can make. This last quantity

captures offline work the adversary spends on computing the hash function H, which in our

analysis we model as random oracle. The choice of ciphersuite enters the bound through the

length of the symmetric session keys and pre-shared keys. For the PSK-(EC)DHE handshake,

the bound also depends on the underlying Diffie–Hellman group.

Runtime t ∈ {240,260,280}.

We consider a range of adversarial runtimes from easily achievable (240 operations) to

state-scaled computational power (280 operations).

Random oracle queries #RO ∈ {240,260,280}.

The number of random oracle queries models the number of hash function computations

an adversary is capable of computing. Accordingly, we scale the number of RO queries with the

runtime, always setting #RO = t/210.

Number of pre-shared keys #N ∈ {225,235}.

The world’s largest certificate authority Let’s Encrypt reports ≈ 227.5 active certificates

for fully-qualified domains.13 While not every user of TLS 1.3 will perform resumption, our model

counts the number of pre-shared keys, where typically users may hold many pre-shared keys,

with servers regularly issuing several PSKs per full-handshake connection for later resumption.

We hence estimate that the number of pre-shared keys accessible to a globally-scaled adversary

may well exceed the reported number of (server) certificates.
13https://letsencrypt.org/stats/

194

https://letsencrypt.org/stats/

Number of sessions #S ∈ {235,245,255}.

We use the same estimates as Davis and Günther [89], based on Google’s and Firefox’s

usage reports.14 With a daily browser user base of 2 billion (≈ 231) and an HTTPS traffic

encryption rate in the range of 76–98%, we estimate an adversary could encounter up to 255

distinct sessions over an extended time period. Note that although the PSK handshakes are

less commonly used by browsers than the full TLS 1.3 handshake, they are frequently used by

embedded and low-powered devices which do not appear in these reports. Naturally, we do not

allow the number of sessions to exceed the adversary’s runtime t.

Diffie–Hellman groups.

There are ten Diffie–Hellman groups standardized for use with the PSK-(EC)DHE

handshake: five elliptic-curve groups and five finite-field groups. We reduce to the security of

the strong Diffie–Hellman assumption in each of these groups. Davis and Günther gave a proof

of hardness in the generic group model (GGM) for the strong DH problem. This result is a

good heuristic for elliptic-curve groups, but not for finite-field ones because they are vulnerable

to index-calculus based attacks not covered by the GGM. The elliptic-curve groups are more

efficient and more widely used than finite-field groups, so we restrict our analysis to these groups:

secp256r1, x25519, secp384r1, x448, secp521r1. For each group, we give in Table 3.3 the

order p and the expected security level b in bits. We use the security level b to determine the

choice of hash function and the target security level for the entire PSK-(EC)DHE handshake.

Ciphersuite and symmetric lengths.

Our bounds reduce to the collision resistance of the random oracle ROTh, which models

the handshake’s hash function. The choice of hash function also determines the length of the

session and resumption keys. TLS 1.3 has five ciphersuites, all of which set the hash function to

be either SHA256 or SHA384. For PSK-(EC)DHE mode, we select SHA256 as the hash function

whenever a curve with 128-bit security is used and we select SHA384 for higher-security curves.

As our results of Section 3.4 only apply to PSK-only mode when SHA256 is the hash function, we

always use SHA256 and a target-security level of 128 bits.
14https://transparencyreport.google.com/, https://telemetry.mozilla.org/

195

https://transparencyreport.google.com/
https://telemetry.mozilla.org/

Table 3.2. Concrete advantages of a key exchange adversary with given resources t (running
time), #N (number of pre-shared keys), #S (number of sessions), and #RO (number of random
oracle queries) in breaking the security of the TLS 1.3 PSK-only handshake protocol with a
ciphersuite targeting 128-bit security. Numbers based on the prior bounds by Dowling et al. [103]
and our bound for PSK-only in Corollary 2. “Target” indicates the maximal advantage t/2b

tolerable for a given bound on t when aiming for the bit security level b = 128; entries in green-
shaded cells meet that target. We assume that the ciphersuite uses SHA256 as its hash function
(see Section 3.8 for further explanation).

Adversary resources PSK-only
t #N #S #RO Target t/2b DFGS [103] Us (Cor. 2)

240 225 235 230 2−88 ≈ 2−158 ≈ 2−173

240 235 235 230 2−88 ≈ 2−150 ≈ 2−173

260 225 235 250 2−68 ≈ 2−119 ≈ 2−152

260 225 245 250 2−68 ≈ 2−109 ≈ 2−151

260 225 255 250 2−68 ≈ 2−99 ≈ 2−133

260 235 235 250 2−68 ≈ 2−119 ≈ 2−152

260 235 245 250 2−68 ≈ 2−109 ≈ 2−151

260 235 255 250 2−68 ≈ 2−99 ≈ 2−133

280 225 235 270 2−48 ≈ 2−79 ≈ 2−112

280 225 245 270 2−48 ≈ 2−69 ≈ 2−112

280 225 255 270 2−48 ≈ 2−59 ≈ 2−112

280 235 235 270 2−48 ≈ 2−79 ≈ 2−112

280 235 245 270 2−48 ≈ 2−69 ≈ 2−112

280 235 255 270 2−48 ≈ 2−59 ≈ 2−112

3.8 A Careful Discussion of Domain Separation

In our indifferentiability treatment of the TLS 1.3 key schedule (cf. Section 3.4), we

change what we capture as random oracles in the key exchange model. We start with one random

oracle, ROH, used wherever the hash function H would be called in the protocol. We change this

to classify queries to ROH into two types:

Type 1 queries: component hashes (via function Ch) used within Extract, Expand, and

MAC to compute HKDF.Extract, HKDF.Expand, resp. HMAC.

Type 2 queries: transcript hashes (via function Th) computing hash values of protocol

transcripts (or empty strings).

We wish to model Ch and Th now as two independent random oracles: ROCh resp. ROTh.

To change the model, we can just change the pseudocode of the protocol to replace

ROH with whichever of ROCh and ROTh seems more appropriate. However, we must define an

explicit construction that performs this substitution in a systematic way in order to give a formal

196

Table 3.3. Concrete advantages of a key exchange adversary with given resources t (running
time), #N (number of pre-shared keys), #S (number of sessions), and #RO (number of random
oracle queries) in breaking the security of the TLS 1.3 PSK-(EC)DHE handshake protocol.
Numbers based on the prior bounds by Dowling et al. [103] and our bound for PSK-(EC)DHE
in Corollary 1. “Target” indicates the maximal advantage t/2b tolerable for a given bound on t
when aiming for the respective curve’s bit security level b; entries in green-shaded cells meet
that target. See Section 3.7 for further details.

Adversary resources PSK-(EC)DHE
t #N #S #RO Curve (bit security b, group order p) Target t/2b DFGS [103] Us (Cor. 1)
240 225 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−92 ≈ 2−167

240 235 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−82 ≈ 2−167

240 225 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−92 ≈ 2−163

240 235 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−82 ≈ 2−163

240 225 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−220 ≈ 2−294

240 235 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−210 ≈ 2−294

240 225 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−220 ≈ 2−301

240 235 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−210 ≈ 2−301

240 225 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−220 ≈ 2−301

240 235 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−210 ≈ 2−301

260 225 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−61 ≈ 2−132

260 225 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−40 ≈ 2−132

260 225 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−12 ≈ 2−127

260 235 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−60 ≈ 2−132

260 235 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−32 ≈ 2−132

260 235 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−2 ≈ 2−127

260 225 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−128

260 225 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−128

260 225 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−12 ≈ 2−123

260 235 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−128

260 235 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−32 ≈ 2−128

260 235 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−2 ≈ 2−123

260 225 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−189 ≈ 2−259

260 225 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−168 ≈ 2−259

260 225 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−140 ≈ 2−254

260 235 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−188 ≈ 2−259

260 235 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−160 ≈ 2−259

260 235 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−130 ≈ 2−254

260 225 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−200 ≈ 2−280

260 225 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−170 ≈ 2−279

260 225 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−140 ≈ 2−261

260 235 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−190 ≈ 2−280

260 235 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−160 ≈ 2−279

260 235 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−130 ≈ 2−261

260 225 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−200 ≈ 2−280

260 225 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−170 ≈ 2−279

260 225 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−140 ≈ 2−261

260 235 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−190 ≈ 2−280

260 235 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−160 ≈ 2−279

260 235 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−130 ≈ 2−261

280 225 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−92

280 225 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−92

280 225 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 219 ≈ 2−92

280 235 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−92

280 235 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−92

280 235 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 220 ≈ 2−92

280 225 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−88

280 225 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 23 ≈ 2−88

280 225 255 270 x25519 (b=128, p≈2252) 2−48 ≈ 223 ≈ 2−88

280 235 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−88

280 235 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 23 ≈ 2−88

280 235 255 270 x25519 (b=128, p≈2252) 2−48 ≈ 223 ≈ 2−88

280 225 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−219

280 225 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−219

280 225 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−109 ≈ 2−219

280 235 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−219

280 235 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−219

280 235 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−108 ≈ 2−219

280 225 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−180 ≈ 2−240

280 225 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−150 ≈ 2−240

280 225 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−120 ≈ 2−240

280 235 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−170 ≈ 2−240

280 235 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−140 ≈ 2−240

280 235 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−110 ≈ 2−240

280 225 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−180 ≈ 2−240

280 225 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−150 ≈ 2−240

280 225 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−120 ≈ 2−240

280 235 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−170 ≈ 2−240

280 235 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−140 ≈ 2−240

280 235 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−110 ≈ 2−240

197

proof of security. This construction needs a Boolean condition to determine which of ROCh and

ROTh should be queried, and this condition cannot be dependent on the higher-level context

of the protocol’s usage. Instead, we must define two disjoint sets DomCh and DomTh such that

honest executions of TLS 1.3 only query ROH on inputs in DomCh when computing HKDF.Extract,

HKDF.Expand, or HMAC, and it otherwise only queries ROH on inputs in DomTh.

This separation must hold even when an honest session is responding to adversarially-

chosen messages. We do make some assumptions about the way that honest sessions process

incoming messages. We assume that a server receiving a first ClientHello message from a client

will not respond or execute the protocol unless the message contains correct encodings of all of

the mandatory parameters for TLS 1.3. If the client fails to specify a valid group and key share

in PSK-(EC)DHE mode, or version number, mode, and pre-shared key in any mode, the server

should abort. Of course, the ClientHello message may also contain invalid encodings of these

values or even arbitrary data; we do not exclude this possibility. Note that our conditions apply

only to random-oracle queries made by honest executions of the protocol. An adversary may of

course call ROH on any input it chooses in either DomCh or DomTh.

The TLS 1.3 handshake protocol does not provide any intentional domain separation

between Type 1 and Type 2 queries. We therefore turn to the formatting of queries to ROH in

the hopes of finding some unintentional separation. We identify seven subtypes of query: five

subtypes of Type 1 and two subtypes of Type 2. Queries of each subtype have some unique

formatting: a fixed length, a byte with a particular value, an encoded label. These attributes are

heavily dependent on the specific configuration of the TLS 1.3 protocol; we therefore analyze

four separate cases: two modes of operation (PSK-(EC)DHE and PSK-only mode) and two

ciphersuites defining ROH as SHA256 and SHA384 respectively. Throughout, we will assume that

any pre-shared-keys are the same length as the output length of ROH, i.e., hl bits. This is true

of resumption keys, but may not be true in general for pre-shared keys negotiated out-of-band.

As TLS 1.3 fields length are given in (full) bytes, we will be talking about byte lengths if not

otherwise stated in the following and use the shorthand Hl := hl/8 for the output length of ROH

in bytes. We also assume that if a Diffie–Hellman group is used, it is one of the standardized

elliptic curve or finite field groups.

198

All Type 1 queries to ROH are intermediate steps in the computation of functions HMAC,

HKDF.Extract, and HKDF.Expand. They consequently share some formatting which we discuss

here before addressing each subtype individually. HKDF.Extract and HMAC are two names for

the same function. Given a key K and input s, HKDF.Expand(K,s) pads s with a single trailing

counter byte with value 0x01, then returns HMAC(K,s‖0x01). Therefore all Type 1 queries to

ROH arise in the computation of HMAC. HMAC[ROH](K,s) takes a key K of length Hl bytes. It

then pads this key with zeroes up to the block length Bl of its hash function. The block lengths

of SHA256 and SHA384 are 64 and 128 bytes respectively. We call the padded key K′. Then

HMAC[ROH] makes two queries to ROH:

1. d← ROH(K′⊕ ipad‖s),

2. ROH(K′⊕opad‖d).

The values ipad and opad are strings of Bl bytes. Each byte in ipad is fixed to 0x36, and each

byte in opad is fixed to 0x5c. The padded key K′ is Bl long, longer than K, so every Type 1

query has a segment of length Bl −Hl bytes in which each byte equals one of 0x36 and 0x5c.

We refer to this segment as the “fixed region”. When the hash function is SHA256, resp. SHA384,

the fixed region is 32, resp 80 bytes long.

Now we can present the seven subtypes of queries made by TLS 1.3. The first five types

are Type 1 queries, and the last two (Empty and Transcript) are Type 2 queries.

The seven subtypes of queries are:

1. Outer HMAC queries. These queries are the second query made in the computation of

HMAC. Its key has length Hl , and the digest d also has length Hl . In between these is the

fixed region, in which every byte contains 0x5c. The total query is 96, resp. 176 bytes long.

2. Inner HMAC queries. We divide the first ROH query made by HMAC into several subtypes;

this type includes only those where the input to HMAC is an arbitrary string of length Hl .

This subtype is formatted identically to an outer HMAC query, except that the bytes of the

fixed region are fixed to the value 0x36 instead of 0x5c. TLS 1.3 makes inner HMAC queries

while computing Finished and binder messages (where the input is a hashed transcript),

the early and master secrets, and in PSK-only mode, also the handshake secret.

199

3. Diffie–Hellman HMAC query. In PSK-(EC)DHE mode, TLS 1.3 computes the handshake

secret by calling HMAC on an encoded Diffie–Hellman key share. HMAC’s first query is a

Diffie–Hellman HMAC query. The formatting is the same as an inner HMAC hash except

that the segment following the fixed region has a different length. Namely, the byte length

(denoted by |G|/8) of the encoding of an element of a standardized Diffie–Hellman group.

The actual byte length for each standardized Diffie–Hellman group can be found in Table 3.4.

The total query length is then Bl + |G|/8 bytes, which is 64+ |G|/8 bytes if the hash function

is SHA256 and 128+ |G|/8 bytes if the hash function is SHA384.

4. Derive-Secret hashes. The Derive-Secret function is a component of the TLS key

schedule [201, Section 7.1]. Its inputs are a key of length Hl , a label string of 2 to 12-bytes

in length, and an input Messages string.

Derive-Secret queries ROH three times: once to hash the Messages string, and twice

as part of HKDF.Expand. The first of these three queries is a transcript query, and the

third is an Outer HMAC query. The second query we call a Derive-Secret query. The

Derive-Secret query has the same formatting as Inner HMAC queries and Diffie–Hellman

queries, but the segment following the fixed region contains a strictly formatted HkdfLabel

struct [201, Section 7.1].

This struct begins with a two-byte field encoding the integer value Hl . This is followed by a

variable-length vector with a 1-byte length field containing the string ”tls13 ” followed

by a label string with length between 2 and 12 bytes. Lastly comes a vector of length Hl ,

prefixed with a 1-byte field encoding its length. The last byte in the input contains the

0x01. This byte is the counter mandated by the definition of HKDF.Expand; however since

HKDF.Expand is never called on inputs longer than Hl , the counter never reaches a value

higher than 1.

The total length of the label struct, including the counter byte, is at least Hl +13 bytes and

at most Hl +23 bytes. The total query is thus in the range of Bl +Hl +13 and Bl +Hl +23

bytes, which is 109–119 bytes if the hash function is SHA256 and 189–199 bytes if the hash

function is SHA384.

200

5. Finished hash. The HKDF-Expand-Label function is a subroutine of the Derive-Secret

function, but also called during the computation of Finished messages and the binder

value [201, Section 4.4.4]. HKDF-Expand-Label makes two calls to ROH. The second is an

Outer HMAC hash; we call the first a Finished hash. A Finished hash is identical to a

Derive-Secret hash, except that the label string is fixed to finished and the final vector

has length 0. The counter byte is still present. In total, the label struct occupies 19 bytes.

The total query is thus Bl +19 bytes, which is 83 bytes if the hash function is SHA256 and

147 bytes if the hash function is SHA384.

6. Empty hashes. Occasionally in the key schedule, TLS 1.3 calls ROH on the empty string.

7. Transcript hashes. The last use of ROH is to condense partial transcripts. Each transcript

includes at least a partial ClientHello message. We assume calling ROH on a transcript

which includes at least a partial ClientHello. The minimum length of a partial ClientHello

message in PSK-only mode is 73 bytes. This includes the following fields15 [201, Section 4.1.2]:

• 1 byte message type fixed to 0x01

• 3 bytes encoded message length

• 2 bytes legacy_version fixed to 0x0303

• 32 bytes random

• 1 byte legacy_session_id (for an empty vector with 1-byte length field)

• 4 bytes ciphersuites (must include a 2-byte length field and at least one value)

• 2 bytes legacy_compression_methods (must include a 1-byte length field and the

value 0x00)

• 2 bytes encoded length of extensions field

• 7 bytes supported_versions extension extension [201, Section 4.2.1] (must start

with 0x002b and include 0x0304)
15An earlier version omitted the leading 1-byte message type and 3-byte message length encoding. We thank

Robert Merget for pointing this out, which leads to an accordingly modified domain separation analysis. In
brief, domain separation for SHA384 is still lacking, unless one assumes parties only accept defined extensions and
ciphersuites; see [96].

201

Table 3.4. Table displaying the standardized groups for use with TLS 1.3, their encodings in
the NamedGroup enum, and the length of an encoded group element in bytes.

Group name NamedGroup enum value Encoding length |G|/8

secp256r1 [188] 0x0017 32
secp384r1 [188] 0x0018 48
secp521r1 [188] 0x0019 66
x25519 [164] 0x001d 32
x448 [164] 0x001E 56
ffdhe2048 [120] 0x0100 128
ffdhe3072 [120] 0x0101 192
ffdhe4096 [120] 0x0102 256
ffdhe6144 [120] 0x0103 384
ffdhe8192 [120] 0x0104 512

• 6 bytes psk_key_exchange_modes extension [201, Section 4.2.9] (must start with 0x002d

and include 0x00)

• 13 bytes pre_shared_key extension [201, Section 4.2.11] (partial: excluding the binder

list; must come last, must start with 0x0029)

The first 47 bytes (through the extensions’ length encoding), must appear in the order

displayed, although the variable-length fields legacy_session_id, ciphersuites, and

legacy_compression_methods fields can be longer than the minimum values given above.

We will occasionally refer to this segment as the “fixed preface” of a ClientHello because

it must appear at the beginning of every well-formed ClientHello message. The extensions

can be reordered arbitrarily (except for the pre_shared_key extension) and additional

extensions and ciphersuites can be added or repeated, up to a maximum length of 216−

2 bytes of ciphersuites and 216−1 bytes for extensions. The vectors legacy_session_id

and legacy_compression_methods have a maximum length of 32 bytes and 28−1 bytes,

respectively. The overall maximum length of a truncated ClientHello is then 2 · 216 +

328 bytes. A full ClientHello in PSK-only mode, including the binder list, adds at least

another 3+Hl bytes for a binders vector with 3 bytes of encoded length. The binders

vector has a maximum length of 216−1 bytes with a 2-byte length field. The ClientHello

message thus contains a minimum of 76+Hl bytes and a maximum of 3 ·216 +329 bytes.

202

Table 3.5. Table showing input lengths for hash function calls made by TLS 1.3 in PSK-only
mode with SHA256.

Type Minimum length (bytes) Maximum length (bytes)

Outer HMAC 96 96
Inner HMAC 96 96
Derive-Secret 109 119
Finished 83 83
Empty 0 0
Transcript 73 2 ·216 +328

In PSK-(EC)DHE mode, two additional extensions are also mandatory: the key_share

and supported_groups extensions [201, Section 9.2], so the minimum ClientHello length

increases by at least 18+|G|/8 bytes, cf. Table 3.416. This increase occurs for both truncated

and full ClientHello messages. In this mode, a truncated ClientHello message is at least

91+ |G|/8 bytes long, and a full ClientHello is at least 94+Hl + |G|/8 bytes long. The

maximum lengths are identical to those in PSK-only mode as the two additional mandatory

extensions key_share and supported_groups were only accounted for in the maximum

length of the extensions field.

3.8.1 PSK-only mode with SHA256

The block length of this hash function is 64 bytes, and the output length is 32 bytes.

In Table 3.5, we give the minimum and maximum input lengths for each of the six call types.

(Diffie–Hellman HMAC calls do not occur in this mode.)

In Table 3.5 we note the minimum and maximum input lengths of each type of message.

For those types with overlapping length ranges, we must show they have separate domains by

other means. Outer and Inner HMAC hashes have identical lengths; however each of them has

a 32-byte fixed region. In outer HMAC hashes, the fixed region contains opad; in inner HMAC

hashes, it contains ipad. These are distinct values, so no string can be both an outer and an

inner HMAC hash.
16This includes 8 bytes for supported_groups and 10+ |G|/8 bytes for key_share. An standard-compliant

key_share extension may be empty and thus only 6 bytes if the client is requesting a HelloRetryRequest
message; however in this case the subsequent transcript hash will contain two ClientHello messages and a
HelloRetryRequest; the second ClientHello in the transcript must contain a non-empty key_share extension
along with the other mandatory extensions; thus the total length of the transcript will increase by more than
10+ |G|/8 bytes even if the first key_share extension is empty.

203

Transcript hashes are not domain-separated by length from any hash except the empty

hashes. We therefore turn to formatting to separate these from other types. In the following, we

visually lay out each byte of potentially overlapping inputs.

For a string to be both a transcript and an HMAC hash (outer or inner), it must be

96 bytes (cf. Table 3.5) long. We diagram and compare a transcript hash containing a partial

ClientHello17 and an HMAC hash (outer or inner) in Figure 3.12.

We can see that the fixed preface of the transcript hash overlaps the fixed region of the

HMAC hash that is fixed to either ipad or opad. Consequently, the legacy_session_id vector

must begin within the fixed region (at byte 39). This is a variable-length vector preceded by

a 1-byte length field, and its maximum length is 32 bytes [201, Section 4.1.2]. Therefore the

maximum value of the length field is 0x20 and it cannot contain either byte 0x36 or 0x5c. Any

string containing a valid partial ClientHello therefore cannot also be a correctly formatted

HMAC hash.

The same argument applies to Finished and Derive-Secret hashes, both of which

contain the same fixed region in the same location as inner HMAC hashes.

For this mode, we define the set DomTh to include of the empty string and all strings of

length greater than or equal to 69 bytes for which the 39th byte is not equal to ipad or opad. We

let DomCh contain all other elements of {0,1}∗.

3.8.2 Pre-shared key with Diffie–Hellmann mode with SHA256

Again, we present the minimum and maximum lengths of each hash type; see Table 3.6.

We now include Diffie–Hellman HMAC hashes, and transcript hashes include additional mandatory

extensions for PSK-(EC)DHE mode.

In this mode, Diffie–Hellman HMAC hashes may collide with Derive-Secret or Inner

HMAC hashes for certain choices of G. This is not a failure of domain separation because these

inputs to these three types will all belong to DomCh. Transcript hashes now only have length

overlaps with Diffie–Hellman HMAC and Derive-Secret hashes. In both cases, however, the

same argument about the 39th byte containing the length of legacy_session_id applies, and
17A full ClientHello contains at least 76+Hl ≥ 108 bytes, which is too long to be an HMAC hash.

204

Table 3.6. Table showing input lengths for hash function calls made by TLS 1.3 in PSK-
(EC)DHE mode with SHA256. For transcript hashes, the encoding lengths |G|/8 can be found in
Table 3.4.

Type Minimum length (bytes) Maximum length (bytes)

Outer HMAC 96 96
Inner HMAC 96 96
Diffie–Hellman HMAC 64+ |G|/8 64+ |G|/8
Derive-Secret 109 119
Finished 83 83
Empty 0 0
Transcript 91+ |G|/8 2 ·216 +328

Table 3.7. Table showing input lengths for hash function calls made by TLS 1.3 in PSK-
(EC)DHE mode with SHA384.

Type Minimum length (bytes) Maximum length (bytes)

Outer HMAC 176 176
Inner HMAC 176 176
Diffie–Hellman HMAC 128+ |G|/8 128+ |G|/8
Derive-Secret 189 199
Finished 147 147
Empty 0 0
Transcript 91+ |G|/8 2 ·216 +328

no string can be two different types.

For this mode, the set DomTh consists of the empty string and all strings of length greater

than or equal to 91+ |G| bytes for which the 39th byte is not equal to ipad or opad. DomCh

contains all other elements of {0,1}∗.

3.8.3 Pre-shared key with Diffie–Hellmann mode with SHA384

Table 3.7 shows the minimum and maximum lengths of each hash type for this configu-

ration. The hash function SHA384 has 48-byte output and 128-byte block length, so the fixed

region in HMAC, Finished, and Derive-Secret hashes will be 80 bytes long.

Unlike the PSK modes with SHA256, we cannot rely on the distinction between the fixed

region and the legacy_session_id length field for domain separation, because the 48-byte

HMAC keys for SHA384 already reach past the position of the legacy_session_id length field

at byte 39. Instead, we consider whether a minimum-length ClientHello can accommodate the

mandatory extensions for this mode.

205

We worry only about possible collisions between transcript hashes and the other types:

Finished, (outer and inner) HMAC, and Derive-Secret. We diagram a transcript hash of

176 bytes together with an outer HMAC hash as a demonstration of the domain-separation

argument in Figure 3.13, but the same argument applies to all.

There are no obvious conflicts here: the fixed preface of a ClientHello message is covered

by the key section of the HMAC hash, and the pre_shared_key extension is covered by the

arbitrary string at the end. However, notice that of the 116 bytes available for extension data in

the ClientHello, 80 of them must be fixed to opad to allow a collision. Even including the 1 bytes

immediately after the fixed preface and 13 bytes reserved for the pre_shared_key extension,

this leaves only 50 bytes. In PSK-(EC)DHE mode, five extensions are mandatory even for

truncated ClientHello messages. They are supported_versions [201, Section 4.2.1] (minimum

7 bytes), supported_groups [201, Section 4.2.7] (minimum 8 bytes), key_share [201, Section

4.2.8] (minimum 10+ |G|/8 bytes), psk_key_exchange_modes [201, Section 4.2.9] (minimum

6 bytes), and pre_shared_key [201, Section 4.2.11] (minimum 13 bytes). Even for the smallest

choice of G, at least 76 bytes are required to contain these extensions. At least one of the

extensions must overlap with the fixed field, and will differ from opad in at least one byte.

Any valid transcript hash will need at least 91+ |G|/8 bytes outside the fixed region:

47 bytes for the preface and 44+ |G|/8 for the mandatory extensions. An outer HMAC hash has

only 96 unfixed bytes and cannot meet this threshold. This is true also for inner HMAC hashes

(96 unfixed bytes), and Diffie–Hellman HMAC hashes, which have 48+ |G|/8 unfixed bytes. It is

true for Finished hashes, which have 48 unfixed bytes, because of the 80-byte fixed region and

the fixed 19-byte label struct for the finished label. And it is true for Derive-Secret hashes,

which have at most 119 unfixed bytes.

Let us be even more clear about why this overlap means no collision is possible. We

cannot fit all of the mandatory extensions in the segment after the fixed region. Therefore one of

the extensions must start either in the fixed region, or before the fixed region. None of these

extensions can start in the fixed region because they all begin with an extension type different from

ipad or opad (cf. [201, Section 4.2]). Therefore one of them must start before the fixed region and

continue into the fixed region. We call this the “first extension”. The pre_shared_key extension

206

must be the last extension, so it cannot be the first extension. Therefore the first extension is one

of key_share, supported_groups, and psk_key_exchange_modes, and supported_versions.

All extensions start with a 4 byte encoding of their type and length. Since the fixed preface is

already 47 bytes, the second extension type byte of the first extension would need to be either

0x5c or 0x36. However, none of the aforementioned extensions contains these bytes on the second

position of its extension type. Consequently, the extensions can neither start before nor in the

fixed region. Moreover, we outline above that the space after the fixed region alone is too tight

to fit all of the mandatory extensions.

To be precise, the mandatory extensions must occupy no more than 71 bytes after the

fixed region (for the longest possible Derive-Secret hash) or |G|/8 bytes after (for an inner

HMAC hash). But summing their minimum lengths gives 44+ |G|/8 bytes. Even for the smallest

possible |G|/8 = 32, the extensions just do not fit in the given space. It is therefore impossible

to construct a valid ClientHello message, truncated or otherwise, that collides with a possible

HMAC, Derive-Secret, or Finished hash.

Consequently we can set DomTh to contain the empty string and all strings of at least 86

bytes for which at least one of bytes 49 through 128 does not equal either ipad or opad. Again,

we set DomCh to be all other elements of {0,1}∗.

3.8.4 PSK-only mode with SHA384

In this mode/hash function combination, the transcript hash can collide with outer

HMAC hashes. There are other collisions as well, but one is sufficient to demonstrate the lack of

domain separation. We illustrate this via a 176-byte transcript hash (containing a truncated

ClientHello) and an outer HMAC hash, shown in Figure 3.14.

We construct the following message, which is both a truncated ClientHello (and therefore

a transcript hash) and an outer HMAC hash. The message starts with the fixed 39 bytes through

the legacy_session_id. That is, 1 byte message type fixed to 0x01, 3 bytes encoding the

message length 176 (i.e., 0x0000B0), 2 bytes legacy_version fixed to 0x0303, 32 arbitrary

bytes for random, and 1 byte encoding the legacy_session_id length fixed 0x00 followed by

the empty vector. The next segment of the preface is the ciphersuites. To construct the

207

collision, we use that the standard RFC8446 mandates that servers must ignore ciphersuite

values that it does not recognize (e.g., undefined) and must process only the recognized ones

as usual (cf. [201, Section 4.1.2]). This means that a ciphersuites vector containing at least

one standardized ciphersuite is well-formed. We let the ciphersuites contain 44 ciphersuites,

where the first ciphersuite is the valid, mandatory 0x1301, and the remaining (undefined) 43

are opad (= 0x5c5c). Thus, the 39 bytes described above are followed by the length field of

the ciphersuites vector encoding 88 in 2 bytes, i.e., 0x0058, and the ciphersuites vector

0x1301‖(opad)43. This ciphersuites field is followed by the legacy_compression_methods

vector (with 1-byte length field), which must contain a single null byte. We now have fixed 131

bytes of the message, which means that there are still 176−131 = 45 bytes to define. In particular,

we need to define 45 bytes of extensions. Therefore, the legacy_compression_methods vector

is followed by 2 bytes encoding 45, which is the length of the extensions vector. In PSK-only

mode, the mandatory extensions are only supported_versions, psk_key_exchange_modes, and

(the truncated) pre_shared_key, and they take up 26 bytes. Since pre_shared_key always has

to be the last extension, we set these 26 bytes at the end of the message. Finally, there are

19 bytes left undefined between the extension length field and the mandatory extensions. We

can fill these with a cookie [201, Section 4.2.2] extension with arbitrary content. Like every

extension this starts with 4 bytes of extension type (0x0068) and length (0x00FF), and is then

followed by 15 bytes of arbitrary content. (We could also fill these bytes without including

additional extensions.)

The 0x5c5c extension values in the constructed message match the HMAC opad key

padding in the format-restricted portion of the outer HMAC hash, the remainder lies in the

unrestricted portion. This type of collision is unavoidable, so there are no disjoint sets DomTh and

DomCh that capture the way TLS 1.3 calls SHA384 in pre-shared key only mode. Consequently

the indifferentiability step of Section 3.4.1 does not apply to this mode.

We remark that if one is willing to accept the additional assumption (for PSK-only with

SHA384) that client and servers only consider Hello messages valid that solely use standardized

ciphersuite values and extension types, meaning that the above collision would be discarded

as a malformed ClientHello, one can show domain-separation for this mode/hash function

208

combination as well, as demonstrated in [96]. The author of [96] considers this assumption

reasonable as honest client implementations would never use undefined values in their Hello

messages. That is, the presence of undefined values would inherently uncover tampering with

a message. Since for domain separation only queries from honest executions are of interest,

considering only messages that might be output by honest parties is only a mild assumption even

though this is not standard-compliant.

3.8.5 Repairing Domain Separation for TLS 1.3-like Protocols

The above analysis demonstrates that complete domain separation is nontrivial to achieve

for a protocol like TLS 1.3 which uses a hash function for multiple purposes and at multiple levels

of abstraction. We would like to present our suggestions for how this could be achieved most

simply and efficiently in future iterations of TLS and other schemes. As discussed by Bellare et

al. [35], the most well-known method of domain separation is the inclusion of distinct labels into

each hash function call; this is precisely the method adopted by TLS 1.3 to distinguish calls to

its Derive-Secret function. Ideally, a future scheme could specify a unique label string for each

purpose: not only the various derived secrets, but also each time the transcript is hashed and

each internal call made by HMAC, HKDF.Extract, and HKDF.Expand.

Unfortunately, this ideal method is not compatible with the existing specifications of

HMAC and HKDF. Both of these functions make “outer HMAC queries” as discussed above;

these calls have a fixed input length of Bl +Hl bytes and this input does not include a label. A

protocol could avoid this roadblock by using an implementation of HMAC or HKDF with a custom

underlying hash function that prepends an HMAC-specific label to its input. This approach

would be both standard-compliant and efficient, but we do not recommend it because existing

cryptographic libraries already have trustworthy HMAC and HKDF functionality and encouraging

custom implementations for every new protocol increases the probability of accidental errors in

these new implementations. Instead, we suggest making no adjustments to the internal execution

of HMAC or HKDF and instead altering direct hash function calls (the other six subtypes we

discuss) to avoid collisions.

In practice, this means that under our recommendation, all hash function calls which are

209

not outer HMAC queries should obey two simple rules: first, they should end with a unique label

and second, that their input must not be Bl +Hl long. To conform with the first rule, TLS 1.3

would need to make the following changes.

1. Add distinct labels to the end of each transcript before hashing; for clarity we suggest using

the names of the last message in the transcript; i.e. “PartialClientHello”, “ClientHello”,

“ServerHello”, etc. If HKDF is used, we would also recommend that these labels should

not end with the byte 0x01.

2. Add distinct labels to the end of the input each time HMAC is called; this would include

inner HMAC queries, Diffie–Hellman HMAC queries, Finished queries, and Derive-Secret

queries. Note that the labels should be postpended to the HMAC payload and not the key.

The labels used by Derive-Secret could then be omitted, although this is not necessary.

3. Ensure that none of the labels used is a suffix of another; this can introduce collisions even

if the labels are distinct.

We encourage using suffixes for domain separation, although prefixes are more commonly-used,

because they are easier to use in conjunction with HMAC and HKDF. Although we are not

applying labels to outer HMAC queries, we would still like to use them to domain separate inner

HMAC queries (and the other subtypes). The inputs to these queries begin with the HMAC key,

which undergoes an XOR operation with ipad before it is hashed. So prefixed labels would need

to remain unique and prefix-free after this XOR operation; this introduces some confusion that

we prefer to avoid. Additionally, the second step of our indifferentiability proof relies crucially

on the fact that HMAC uses fixed-length keys shorter than Bl ; prefixed labels would therefore

need to share a fixed length shorter than Bl −Hl bytes. With suffixes, we still need to contend

with the counter byte that HKDF.Expand appends to its input, but in TLS 1.3 where this byte is

always 0x01, this presents less of a restriction.

To conform with the second rule, TLS 1.3 would need to enforce that it never hashes

a string of Bl +Hl except as an outer HMAC query. The easiest and least error-prone way to

do this would be to pad every non-empty hash function call and input to HMAC and HKDF

with exactly Bl +Hl bytes (before the suffixed labels); all calls would then be strictly longer

210

than Bl +Hl . This method adds two additional compression function calls to each hash function

execution. There are some ways to lessen this requirement without impacting the effectiveness

of the length-based domain separation. Calls which already have input longer than Bl +Hl

bytes can omit the padding; so can calls which have strictly shorter input. It would also be

possible to use only as much padding is needed to make inputs at least Bl +Hl +1 bytes long.

However, non-uniform padding should be done carefully so that, for example, two previously

distinct ClientHello messages do not collide after being padded.

Acknowledgments

We thank the anonymous reviewers of EUROCRYPT 2022 for their helpful comments.

Chapter 3, in full, is a reprint of the material as it appears in the proceedings of the 41st

Annual International Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), 2022. Davis, Hannah; Diemert, Denis; Günther, Felix; Jager, Tibor. This

project was designed to fulfill a joint vision extending the work of Chapter 2 and the concurrent

work of Diemert and Jager to the pre-shared key mode of the TLS 1.3 handshake. All four

authors jointly decided to give a formally justified abstraction of the key schedule; the use of the

indifferentiability framework to do so and the structure of its application were the contributions

of this author. Part of this formal justification was a careful domain-separation argument, which

was first compiled by this author and later updated for better accuracy by Denis Diemert in

accordance with comments from Robert Merget. The pseudocode multi-stage key exchange

model was due to Felix Günther, in discussion with all authors, while the bulk of the game-based

proof was contributed by Denis Diemert with some assistance from Tibor Jager and myself.

The idea to modularize handshake encryption was that of Felix Günther; the formal result was

written by this author under his supervision.

211

KE1.Run(u,π i
u,psk ,m):

1 keys← (π i
u.skey[stage] for stage ∈ KTransform)

2 acc← (π i
u.tacc[stage] 6= ∞ for stage in [1 . . .STAGES])

3 m̃← TransformRecv(keys,π i
u.role,acc,m)

4 (π i
u, m̃
′)← KE2.Run(u,π i

u,psk , m̃)

5 keys← (π i
u.skey[stage] for stage ∈ KTransform)

6 acc← (π i
u.tacc[stage] 6= ∞ for stage in [1 . . .STAGES])

7 m′← TransformSend(keys,π i
u.role,acc, m̃′)

8 return (π i
u,m
′)

Figure 3.11. Key exchange KE1 built by transforming protocol messages of KE2.

Fixed preface: 47 B Extension data: 36 B End
PSK:
13 B

Key: 32 B Fixed ipad/opad:
32 B

Arbitrary string:
32 B

Figure 3.12. Domain separation in PSK-only mode with SHA256: Transcript hash containing a
partial ClientHello (top) vs. (outer or inner) HMAC hash (bottom). “End PSK” is the end of
the pre_shared_key extension.

Fixed preface: 47 B Extension data: 116 B End
PSK:
13 B

Key: 48 B Fixed region (opad): 80 B Arbitrary string:
48 B

Figure 3.13. Domain separation in PSK-(EC)DHE mode with SHA384: Transcript hash of
176 bytes (top) vs. outer HMAC hash (bottom). “End PSK” is the end of the pre_shared_key
extension.

Fixed preface: 39 B ciphersuites: 0x0058‖0x1301‖(opad)43: 90 B cookie: 19 B Mandatory
extensions:
26 B

Key: 48 bytes Fixed region (opad): 80 bytes Arbitrary string: 48 bytes

Figure 3.14. Failing domain separation in PSK-only mode with SHA384: Transcript hash of
176 bytes, containing a truncated ClientHello (top) vs. outer HMAC hash (bottom).

212

Chapter 4

Derive-then-Derandomize: Stronger Secu-
rity Proofs for EdDSA Signatures

4.1 Introduction

In designing schemes, and proving them secure, theoreticians implicitly assume certain

things, such as on-demand fresh randomness and correct implementation. In practice, these

assumptions can fail. Weaknesses in system random-number generators are common and have

catastrophic consequences. (An example relevant to this paper is the well-known key-recovery

attack on Schnorr signatures when signing reuses randomness. Another striking example are Ps

and Qs attacks [132, 166].) Meanwhile, implementation errors can be exploited, as shown by

Bleichenbacher’s attack on RSA signatures [57].

In light of this, practitioners may try to “harden” theoretical schemes before standardiza-

tion and usage. A prominent and highly successful instance is EdDSA, a hardening of the Schnorr

signature scheme proposed by Bernstein, Duif, Lange, Schwabe, and Yang (BDLSY) [52]. It

incorporates explicit, simple key-derivation, makes signing deterministic, adds protection against

sidechannel attacks via “clamping,” and for simplicity confines itself to a single hash function,

namely SHA512. The scheme is widely standardized [189, 147] and used [137].

There is however a subtle danger here, namely that the hardening attempt introduces

new vulnerabilities. In other words, hardening needs to be done right; if not, it may even “soften”

the scheme! Thus it is crucial that the hardened scheme be vetted via a proof of security. This is

of particular importance for EdDSA given its widespread deployment. In that regard, Brendel,

Cremers, Jackson and Zhao (BCJZ) [65] showed that EdDSA is secure if the Discrete-Log (DL)

213

problem is hard and the hash function is modeled as a random oracle. This is significant as a

first step but has at least two important limitations: (1) Due to the extension attack, a random

oracle is not an appropriate model for the SHA512 hash function EdDSA actually uses, and (2)

the reduction is so loose that there is no security guarantee for group sizes in use today.

Extrapolating EdDSA, the first part of this paper defines a general hardening transform

on signature schemes called Derive-then-Derandomize (DR), and proves its soundness. Next

we prove the indifferentiability of a general class of constructions, that we call shrink-MD; it

includes the well-studied chop-MD construction [80] and also the modulo-a-prime construction

arising in EdDSA. Armed with these results, the second part of the paper returns to give new

proofs for EdDSA that in particular fill the above gaps. We begin with some background.

Respecting hash structure in proofs. Recall that the MD-transform [177, 84] defines a

hash function HH =MD[h]: {0,1}∗→{0,1}2k by iterating an underlying compression function

h: {0,1}b+2k → {0,1}2k. (See Section 4.2 for details.) SHA256 and SHA512 are obtained in

this way, with (b,k) being (512,128) and (1024,256), respectively. This structure gives rise to

attacks, of which the most well known is the extension attack. The latter allows an attacker

given t ←MD[h](e2‖M), where e2 is a secret unknown to the attacker and M ∈ {0,1}∗ is

public, to compute compute t ′ =MD[h](e2‖M′), for some M′ ∈ {0,1}∗ of its choice. This has

been exploited to violate the UF-security of the so-called prefix message authentication code

pfMACe2
(M) = HH(e2‖M) when HH is an MD-hash function; HMAC [31] was designed to overcome

this.

A proof of security of a scheme (such as EdDSA) that uses a hash function HH will often

model HH as a random oracle [41], in what we’ll call the (HH,HH)-model: scheme algorithms,

and the adversary, both have oracle access to the same random HH. However the presence of the

above-discussed structure in “real” hash functions led Dodis, Ristenpart and Shrimpton (DRS)

[100] to argue that the “right” model in which to prove security of a scheme that uses HH=MD[h]

is to model the compression function h —rather than the hash function HH =MD[h]— as a

random oracle. We’ll call this the (MD[h],h)-model: the adversary has oracle access to a random

h, with scheme algorithms having access to MD[h]. There is now widespread agreement with the

DRS thesis that proofs of security of MD-hash-using schemes should use the (MD[h],h) model.

214

Giving from-scratch proofs in the (MD[h],h) model is, however, difficult. Maurer, Renner

and Holenstein (MRH) [171] show that if a construction F is indifferentiable (abbreviated indiff)

and a scheme is secure in the (HH,HH) model, then it remains secure in the (F[h],h) model.

(This requires the game defining security of the scheme to be single-stage [202], which is true for

the relevant ones here.) Unfortunately, F=MD is provably not indiff [80], due exactly to the

extension attack. So the MRH result does not help with MD. This led to a search for indiff

variants. DRS [100] and YMO [216] (independently) offer public-indiff and show that it suffices

to prove security, in the (MD[h],h) model, of schemes that use MD in some restricted way.

However, EdDSA does not obey these restrictions. Thus, other means are needed.

The EdDSA scheme. The Edwards curve Digital Signature Algorithm (EdDSA) is a Schnorr-

based signature scheme introduced by Bernstein, Duif, Lange, Schwabe and Yang [52]. Ed25519,

which uses the Curve25519 Edwards curve and SHA512 as the hash function, is its most popular

instance. The scheme is standardized by NIST [189] and the IETF [147]. It is used in TLS 1.3,

OpenSSH, OpenSSL, Tor, GnuPGP, Signal and WhatsApp. It is also the preferred signature

scheme of the Corda, Tezos, Stellar and Libra blockchain systems. Overall, IANIX [137] reports

over 200 uses of Ed25519. Proving security of this scheme is accordingly of high importance.

Figure 4.4 shows EdDSA on the right, and, on the left, the classic Schnorr scheme [207]

on which EdDSA is based. The schemes are over a cyclic, additively-written group G of prime

order p with generator B. The public verification key is A. The Schnorr hash function has range

Zp = {0, . . . ,p−1}, while, for EdDSA, function HH1 has range {0,1}2k where k, the bit-length of

p, is 256 for Ed25519. Functions HH2,HH3 have range Zp.

EdDSA differs from Schnorr in significant ways. While the Schnorr secret key s is in

Zp, the EdDSA secret key sk is a k-bit string. This is hashed and the 2k-bit result is split into

k-bit halves e1‖e2. A Schnorr secret-key s is derived by applying to e1 a clamping function

CF that zeroes out the three least significant bits of e1. (Note: This means s is not uniformly

distributed over Zp.) Clamping increases resistance to side-channel attacks [52]. Signing is made

deterministic by a standard de-randomization technique [122, 184, 38, 46], namely obtaining the

Schnorr randomness r by hashing the message M with a secret-key dependent string e2. We note

that all of HH1,HH2,HH3 are instantiated via the same hash function, namely SHA512.

215

Prior work and our questions. Recall that the security goal for a signature scheme is UF

(UnForgeability under Chosen-Message Attack) [123]. Schnorr is well studied, and proven UF

under DL (Discrete Log in G) when HH is a random oracle [199, 3]. The provable security of

EdDSA, however, received surprisingly little attention until the work of Brendel, Cremers, Jackson

and Zhao (BCJZ) [65]. They take the path also used for Schnorr and other identification-based

signature schemes [199, 3], seeing EdDSA as the result of the Fiat-Shamir transform on an

underlying identification scheme EdID that they define, proving security of the latter under DL,

and concluding UF of EdDSA under DL when HH is a random oracle. This is an important

step forward, but the BCJZ proof [65] remains in the (HH,HH) model. We ask and address the

following two questions.

1. Can we prove security in the (MD[h],h) model? The NIST standard [189]

mandates that Ed25519 uses SHA512, which is an MD-hash function. Accordingly, as explained

above, the BCJZ proof [65], being in the (HH,HH) model, does not guarantee security; to do the

latter, we need a proof in the (MD[h],h) model.

The gap is more than cosmetic. As we saw above with the example of the prefix MAC,

a scheme could be secure in the (HH,HH) model, yet totally insecure in the more realistic

(MD[h],h) model, and thus also in practice. And EdDSA skirts close to the edge: line 14 is using

the prefix-MAC that the extension attack breaks, and overlaps in inputs across the three uses of

HH could lead to failures. Intuitively what prevents attacks is that the MAC outputs are taken

modulo p, and inputs to HH in two of the three uses involve secrets. Thus, we’d expect that the

scheme is indeed secure in the (MD[h],h) model.

Proving this, however, is another matter. We already know that MD is not indiff. It is

public indiff [100, 216], but this will not suffice for EdDSA because HH1,HH2 are being called on

secrets. We ask, first, can EdDSA be proved secure in the (MD[h],h) model, and second, can

this be done in some modular way, rather than from scratch?

2. Can we improve reduction tightness? The reduction of BCJZ [65] is so loose

that, in the 256-bit curve over which Ed25519 is implemented, it guarantees little security. Let’s

elaborate. Given an adversary AUF violating the UF-security of EdDSA with probability εUF, the

reduction builds an adversary ADL breaking DL with probability εDL = ε2
UF/qh where qh is the

216

number of HH-queries of AUF and the two adversaries have about the same running time t. (The

square arises from the use of rewinding, analyzed via the Reset Lemma of [37].) In an order p

elliptic curve group, εDL ≈ t2/p so we get εUF = t ·
√

qh/p. Ed25519 has p≈ 2256. Say t = qh = 270,

which (as shown by BitCoin mining capability) is not far from attacker reach. Then εDL = 2−116

is small but εUF = 270 ·2−(256−70)/2 = 2−23 is in comparison quite high.

Now, one might say that one would not expect better because the same reduction loss is

present for Schnorr. The classical reductions for Schnorr [199, 3] did indeed display the above

loss, but that has changed: recent advances for Schnorr include a tighter reduction from DL [203],

an almost-tight reduction from the MBDL problem [33] and a tight reduction from DL in the

Algebraic Group Model [115]. We’d like to put EdDSA on par with the state of the art for

Schnorr. We ask, first, is this possible, and second, is there a modular way to do it that leverages,

rather than repeats, the (many, complex) just-cited proofs for Schnorr?

Contributions for EdDSA. We simultaneously simplify and strengthen the security proofs for

EdDSA as follows.

1. Reduction from Schnorr. Rather than, as in prior work, give a reduction from DL

or some other algebraic problem, we give a simple, direct reduction from Schnorr itself. That is,

we show that if the Schnorr signature scheme is UF-secure, then so is EdDSA. Furthermore, the

reduction is tight up to a constant factor. This allows us to leverage prior work [203, 33, 115]

to obtain tight proofs for EdDSA under various algebraic assumptions and justify security for

group sizes in actual use. But there are two further dividends. First, Schnorr [207] is over 30

years old and has withstood the tests of time and cryptanalysis, so our proof that EdDSA is just

as secure as Schnorr allows the former to inherit, and benefit from, this confidence. Second, our

result formalizes and proves what was the intuition and belief in the first place [52], namely that,

despite the algorithmic differences, EdDSA is a sound hardening of Schnorr.

2. Accurate modeling of the hash function. As noted above, BCJZ [65] assume

the hash function HH is a random oracle, but this, due to the extension attack, is not an accurate

model for the MD-hash function SHA512 used by EdDSA. We fill this gap by instead proving

security in the (MD[h],h) model, where HH =MD[hh] is derived via the MD-transform [177, 84]

217

and the compression function hh is a random oracle.

Approach and broader contributions. The above-mentioned results on EdDSA are obtained

as a consequence of more general ones.

3. The DR transform and its soundness. We extend the hardening technique used

in EdDSA to define a general transform that we call Derive-then-Derandomize (DR). It takes an

arbitrary signature scheme DS, and with the aid of a PRG HH1 and a PRF HH2, constructs a

hardened signature scheme DS. We provide (Theorem 4.1) a strong and general validation of

DR, showing that DS is UF-secure assuming DS is UF-secure. Moreover the reduction is tight

and the proof is simple. This shows that the EdDSA hardening method is generically sound.

4. Indifferentiability of Shrink-MD. It is well-known that MD is not indifferen-

tiable [171] from a random oracle, but that the Chop-MD [80], which truncates the output of

an an MD hash by some number of bits, is indifferentiable. Unfortunately, we identified gaps

in two prominent proofs of indifferentiability of Chop-MD [80, 180]. EdDSA uses a similar

construction that reduces the MD hash output modulo a prime p sufficiently smaller than the

size of the range of MD, due to which we refer to this construction as Mod-MD. The Mod-MD

construction has not been proven indifferentiable. We simultaneously give new proofs of indiffer-

entiability for Chop-MD and Mod-MD as part of a more general class of constructions that

we call Shrink-MD functors. These are constructions of the form Out(MD) where Out is some

output-processing function, and we prove indifferentiability under certain “shrinking” conditions

on Out.

5. Application to EdDSA. EdDSA is obtained as the result DS of the DR transform

applied to the DS = Schnorr signature scheme, and with the PRG and PRF defined via MD,

specifically HH1(sk) =MD[hh](sk) and HH2(e2,M) =MD[hh](e2‖M) mod p where p is the prime

order of the underlying group. Additionally, the hash function used in Schnorr is also HH3(X) =

MD[hh](X) mod p. Due to Theorem 4.1 validating DR, we are left to show the PRG security of

HH1, the PRF security of HH2 and the UF-security of Schnorr, all with hh modeled as a random

oracle. We do the first directly. We obtain the second as a consequence of the indifferentiability of

Mod-MD. (In principle it follows from the PRF security of AMAC [30], but we found it difficult

218

to extract precise bounds via this route.) For the third, we again exploit indifferentiability of

Mod-MD, together with a technique from BCJZ [65] to handle clamping, to reduce to the UF

security of regular Schnorr, where the hash function is modeled as a random oracle. Putting all

this carefully together yields our above-mentioned results for EdDSA. We note that one delicate

and important point is that the idealized compression function hh is the same across HH1,HH2

and HH3, meaning these are not independent. This is handled through the building blocks in

Theorem 4.1 being functors [35] rather than functions.

Discussion and related work. Both BCJZ [65] and CGN [73] note that there are a few

versions of EdDSA out there, the differences being in their verification algorithms. What Figure 4.4

shows is the most basic version of the scheme, but we will be able to cover the variants too, in a

modular way, by reducing from Schnorr with the same verification algorithm.

BBT [30] define the function AMAC[h] to take a key e2 and message M, and return a

modularly reduced digest MD[h](e2‖M) mod p. This is the HH2 in EdDSA. We could exploit

their results to conclude PRF security of HH2, but it requires putting together many different

pieces from their work, and it is easier and more direct to establish PRF security of HH2 by using

our lemma on the indifferentiability of Mod-MD.

In the Generic Group Model (GGM) [212], it is possible to prove UF-security of Schnorr

under standard (rather than random oracle) model assumptions on the hash functions [190, 75].

But use of the GGM means the result applies to a limited class of adversaries. Our results,

following the classical proofs for identification-based signatures [199, 194, 3, 151], instead use the

standard model for the group, while modeling the hash function (in our case, the compression

function) as a random oracle.

In an earlier version of this paper, our proofs had relied on a variant of indifferentiability

that we had introduced. At the suggestion of a Crypto 2022 reviewer, this has been dropped

in favor of a direct proof based on PRG and PRF assumptions on HH1,HH2. We thank the

(anonymous) reviewer for this suggestion.

Theorem 4.1 is in the standard model if the PRG, PRF and starting signature scheme

DS are standard-model, hence can be viewed as a standard-model justification of the hardening

template underlying EdDSA. However, when we want to justify EdDSA itself, we need to consider

219

the specific, MD-based instantiations of the PRG, PRF and Schnorr hash function, and for these

we use the model where the compression function is ideal.

Several works study de-randomization of signing by deriving the coins via a PRF applied

to the message, considering different ways to key the PRF [122, 184, 38, 46]. We use their

techniques in the proof of Theorem 4.1.

One might ask how to view the UF-security of Schnorr signatures as an assumption.

What is relevant is not its form (it is interactive) but that (1) it can be seen as a hub from where

one can bridge to other assumptions that imply it, such as DL (non-tightly) [199, 3] or MBDL

(tightly) [33], and (2) it is validated by decades of cryptanalysis.

Our results have been stated for UF but extend to SUF (Strong unforgeability), meaning

our proofs also show SUF-security of EdDSA in the (MD[h],h) model assuming SUF security of

Schnorr, with a tight (up to the usual constant factor) reduction.

EdDSA could be used with other hash functions such as SHAKE256. The extension attack

does not apply to the latter, so the proof of BCJZ [65] applies, but gives a loose reduction from

DL; our results still add something, namely a tight reduction from Schnorr and thus improved

tightness in several ways as discussed above.

4.2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . ,n−1} and [n] or [1..n] denote

the set {1, . . . ,n}. If x is a vector then |x| is its length (the number of its coordinates), x[i] is its

i-th coordinate and [x] = {x[i] : 1≤ i≤ |x|} is the set of all its coordinates. A string is identified

with a vector over {0,1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. We

denote x[i.. j] the i-th bit to the j-th bit of string x. By ε we denote the empty vector or string.

The size of a set S is denoted |S|. For sets D,R let FUNC((,D),R) denote the set of all functions

f : D→ R. If f : D→ R is a function then Img(f) = { f (x) : x ∈D} ⊆ R is its image. We say that f

is regular if every y ∈ Img(f) has the same number of pre-images under f . By {0,1}≤L we denote

the set of all strings of length at most L. For any variables a and b, the expression [[a = b]]

denotes the Boolean value true when a and b contain the same value and false otherwise.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from S

220

and assigning it to x. We let y← A[O1, . . .](x1, . . . ;r) denote executing algorithm A on inputs x1, . . .

and coins r with access to oracles O1, . . . and letting y be the result. We let y←$ A[O1, . . .](x1, . . .)

be the resulting of picking r at random and letting y← A[O1, . . .](x1, . . . ;r) be the equivalent. We

let OUT(A[O1, . . .](x1, . . .)]) denote the set of all possible outputs of A when invoked with inputs

x1, . . . and oracles O1, Algorithms are randomized unless otherwise indicated. Running time

is worst case.

Games. We use the code-based game playing framework of [44]. (See Fig. 1 for an example.)

Games have procedures, also called oracles. Among the oracles are init and a f in. In executing

an adversary A with a game G, the adversary may query the oracles at will. We require that the

adversary’s first oracle query be to init and its last to f in and it query these oracles at most once.

The value return by the f in procedure is taken as the game output. By G(A)⇒ y we denote the

event that the execution of game G with adversary A results in output y. We write Pr[G(A)] as

shorthand for Pr[G(A)⇒ true], the probability that the game returns true.

In writing game or adversary pseudocode, it is assumed that Boolean variables are

initialized to false, integer variables are initialized to 0 and set-valued variables are initialized to

the empty set /0.

We adopt the convention that the running time of an adversary is the time for the

execution of the game with the adversary, so that the time for oracles to respond to queries is

included. In counting the number of queries to an oracle O, we have two metrics. We let QA
O

denote the number of queries made to O in the execution of the game with A. (This includes not

just queries made directly by A but also those made by game oracles, the latter usually arising

from game executions of scheme algorithms that use O.) In particular, under this metric, the

number of queries to a random oracle FO includes those made by scheme algorithms executed by

game procedures. With qA
O we count only queries made directly by A to O, not by other game

oracles or scheme algorithms. These counts are all worst case.

Groups. Throughout the paper, we fix integers k and b, an odd prime p, and a positive integer

f such that 2f < p. We then fix two groups: G, a group of order p ·2f whose elements are k-bit

strings, and its cyclic subgroup Gp of order p. We prove in Appendix 4.7 that this subgroup is

unique, and that it has an efficient membership test. We also assume an efficient membership test

221

for G. We will use additive notation for the group operation, and we let 0G denote the identity

element of G. We let G∗p =G\{0G} denote the set of non-identity elements of Gp, which is its

set of generators. We fix a distinguished generator B ∈G∗p. Then for any X ∈G∗, the discrete

logarithm base B of X is denoted DLG,B(X), and it is in the set Z|G|.

4.3 Functor framework

Our treatment relies on the notion of functors [35], which are functions that access an

idealized primitive. We give relevant definitions, starting with signature schemes whose security

is measured relative to a functor. Then we extend the notions of PRGs and PRFs to functors.

Function spaces. In using the random oracle model [41], works in the literature sometimes

omit to say what exactly are the domain and range of the underlying functions, and, when

multiple functions are present, whether or not they are independent. (Yet, implicitly their proofs

rely on certain choices.) For greater precision, we use the language of function spaces of [35],

which we now recall.

A function space FS is a set of tuples HH = (HH1, . . . ,HHn) of functions. The integer n is

called the arity of the function space, and can be recovered as FS.arity. We view HH as taking

an input X that it parses as (i,x) to return HHi(x).

Functors. Following [35], we use the term functor for a transform that constructs one function

from another. A functor F: SS→ ES takes as oracle a function hh from a starting function

space SS and returns a function F[hh] in the ending function space ES. (The term is inspired by

category theory, where a functor maps from one category into another. In our case, the categories

are function spaces.) If ES has arity n, then we also refer to n as the arity of F, and write Fi for

the functor which returns the i-th component of F. That is, Fi[hh] lets HH← F[hh] and returns

HHi.

MD functor. We are interested in the Merkle-Damgrard [177, 84] transform. This transform

constructs a hash function with domain {0,1}∗ from a compression function hh: {0,1}b+2k →

{0,1}2k for some integers b and k. The compression function takes a 2k-bit chaining variable y and

a b-bit block B to return a 2k bit output hh(y‖B). In the case of SHA512, the hash function used

222

in EdDSA, the compression function sha512 has b = 1024 and k = 256 (so the chaining variable

is 512 bits and a block is 1024 bits), while b = 512 and k = 128 for SHA256. In our language, the

Merkle-Damgrard transform is a functor MD: FUNC((,{0,1})b+2k,{0,1}2k)→ FUNC((,{0,1})∗,

{0,1}2k). It is parameterized by a padding function pad that takes the length ` of an input to the

hash function and returns a padding string such that `+ |pad(`)| is a multiple of b. Specifically,

pad(`) returns 10∗〈`〉 where 〈`〉 is a 64-bit, resp. 128-bit encoding of ` for SHA256 resp. SHA512,

and 0∗ indicates the minimum number p of 0s needed to make `+1+ p+64, resp. `+1+ p+128

a multiple of b. We also fix an “initialization vector” IV ∈ {0,1}2k. Given oracle hh, the functor

defines hash function HH =MD[hh]: {0,1}∗→{0,1}2k as follows:

Functor MD[hh](X)

y[0]← IV

P← pad(|X |) ; X ′[1] . . .X ′[m]← X‖P // Split X‖P into b-bit blocks

For i = 1, . . . ,m do y[i]← hh(y[i−1]‖X ′[i])

Return y[m]

Strictly speaking, the domain is only strings of length less than 264 resp. 2128, but since this is

huge in practice, we view the domain as {0,1}∗.

Signature scheme syntax. We give an enhanced, flexible syntax for a signature scheme DS.

We want to cover ROM schemes, which means scheme algorithms have oracle access to a function

HH, but of what range and domain? Since these can vary from scheme to scheme, we have the

scheme begin by naming the function space DS.FS from which HH is drawn. We see the key-

generation algorithm DS.Kg as first picking a signing key sk←$ DS.SK via a signing-key generation

algorithm DS.SK, then obtaining the public verification key pk← DS.PK[HH](sk) by applying a

deterministic verification-key generation algorithm DS.PK, and finally returning (pk,sk). (For

simplicity, DS.SK, unlike other scheme algorithms, does not have access to HH.) We break

it up like this because we may need to explicitly refer to the sub-algorithms in constructions.

Continuing, via σ ← DS.Sign[HH](sk, pk,M;r) the signing algorithm takes sk, pk, a message

M ∈ {0,1}∗, and randomness r from the randomness space DS.SR of the algorithm, to return

a signature σ . As usual, σ←$ DS.Sign[HH](sk, pk,M) is shorthand for picking r←$ DS.SR and

returning σ ←DS.Sign[HH](sk, pk,M;r). Via b←DS.Vf[HH](pk,M,σ), the verification algorithm

223

Game Guf
DS,FF

init:
1 hh←$SS ; HH←FF[FO] ; (pk,sk)←$DS.Kg[HH] ; Return pk

Sign(M):
2 σ←$DS.Sign[HH](sk, pk,M) ; S← S∪{M} ; Return σ

FO(X):
3 Return hh(X)

f in(M∗,σ∗):
4 If (M∗ ∈ S) then return false

5 Return DS.Vf[HH](pk,M∗,σ∗)

Game G
prg
P

init:
1 hh←$SS ; c←${0,1}
2 s←${0,1}k ; y1←P[FO](s)

3 y0←${0,1}`

4 Return yc

FO(X):
5 Return hh(X)

f in(c′):
6 Return (c = c′)

Game G
prf
F

init:
1 hh←$SS ; c←${0,1} ; K←${0,1}k

FN(X):
2 If YT[X] 6=⊥ then
3 If (c = 1) then YT[X]←F[FO](K,X)

4 Else YT[X]←$ R

5 Return YT[X]

FO(X):
6 Return hh(X)

f in(c′):
7 Return (c = c′)

Figure 4.1. Top: Game defining UF security of signature scheme DS relative to func-
tor FF: SS → DS.FS. Bottom Left: Game defining PRG security of functor P: SS →
FUNC((,{0,1})k,{0,1}`). Bottom Right: Game defining PRF security of functor F: SS→
FUNC((,{0,1})k×{0,1}∗,R).

obtains a boolean decision b ∈ {true, false} about the validity of the signature. The correctness

requirement is that for all HH ∈ DS.FS, all (pk,sk) ∈ OUT(DS.Kg[HH]), all M ∈ {0,1}∗ and all

σ ∈ OUT(DS.Sign[HH](sk, pk,M)) we have DS.Vf[HH](pk,M,σ) = true.

UF security. We want to discuss security of a signature scheme DS under different ways in

which the functions in DS.FS are chosen or built. Game Guf
DS,FF in Fig. 4.1 is thus parameterized

by a functor FF: SS→DS.FS. At line 1, a starting function hh is chosen from the starting space

of the functor, and then the function HH ∈ DS.FS that the scheme algorithms (key-generation,

signing and verification) get as oracle is determined as HH← FF[hh]. The adversary, however,

via oracle FO, gets access to hh, which here is the random oracle. The rest is as per the usual

unforgeability definition. (Given in the standard model in [123] and extended to the ROM

224

DS.SK:
1 sk←${0,1}k ; Return sk
DS.PK[HH](sk):
2 e1‖e2← HH1(sk) ; sk← CF(e1)

3 pk←DS.PK[HH3](sk)

4 Return pk
DS.Sign[HH](sk, pk,M):
5 e1‖e2← HH1(sk) ; sk← CF(e1)

6 r← HH2(e2,M)

7 σ ←DS.Sign[HH3](sk, pk,M;r)

8 Return σ

DS.Vf[HH](pk,M,σ):
9 Return DS.Vf[HH3](pk,M,σ)

DS∗.SK:
1 sk←${0,1}k ; Return sk
DS∗.PK[G](sk):
2 sk← CF(sk)

3 pk←DS.PK[G](sk)

4 Return pk
DS∗.Sign[G](sk, pk,M):
5 sk← CF(sk)

6 σ←$DS.Sign[G](sk, pk,M)

7 Return σ

DS∗.Vf[G](pk,M,σ):
8 Return DS.Vf[G](pk,M,σ)

Figure 4.2. Left: The signature scheme DS =DR[DS,CF] constructed by the DR transform
applied to signature scheme DS and clamping function CF: {0,1}k→ OUT(DS.SK). Right: The
signature scheme DS = JCl[DS,CF] constructed by the JCl transform.

in [41].) We define the UF advantage of adversary A as Advuf
DS,FF(A) = Pr[Guf

DS,FF(A)].

PRGs and PRFs. The usual definition of a PRGs is for a function; we define it instead for a

functor P. The game G
prg
P is in Figure 4.1. It picks a function hh from the starting space SS

of the functor. The functor now determines a function P[hh]: {0,1}k→{0,1}`. The game then

follows the usual PRG one for this function, additionally giving the adversary oracle access to hh

via oracle FO. We let Adv
prg
P (A) = 2Pr[Gprg

P (A)]−1.

Similarly we extend the usual definition of PRG security to a functor F, via game G
prf
F of

Figure 4.1. Here, for hh in the starting space SS of the functor, the defined function maps as

F[hh]: {0,1}k×{0,1}∗→ R for some k and range set R. We let Adv
prf
F (A) = 2Pr[Gprf

F (A)]−1.

4.4 The soundness of Derive-then-Derandomize

We specify a general signature-hardening transform that we call Derive-then-Derandomize

(DR) and prove that it preserves the security of the starting signature scheme.

The DR transform. Let DS be a given signature scheme that we call the base signature

scheme. It will be the (general) Schnorr scheme in our application. Assume for simplicity that

its function space DS.FS has arity 1.

The DR (derive then de-randomize) transform constructs a signature scheme DS =

DR[DS,CF] based on DS and a function CF: {0,1}k→ OUT(DS.SK), called the clamping func-

225

tion, that turns a k-bit string into a signing key for DS. The algorithms of DS are shown in

Figure 4.2. They have access to oracle HH that specifies sub-functions HH1,HH2,HH3. Func-

tion HH1: {0,1}k → {0,1}2k expands the signing key sk of DS into sub-keys ε1 and ε2. The

clamping function is applied to ε1 to get a signing key for the base scheme, and its associ-

ated verification key is returned as the one for the new scheme at line 4. At line 6, function

HH2: {0,1}k×{0,1}∗→ DS.SR is applied to the second sub-key ε2 and the message M to de-

termine signing randomness r for the line 5 invocation of the base signing algorithm. Finally,

HH3 ∈ DS.FS is an oracle for the algorithms of DS. Formally the oracle space DS.FS of DS is the

arity 3 space consisting of all HH = (HH1,HH2,HH3) that map as above.

Viewing the PRG HH1, PRF HH2 and oracle HH3 for the base scheme as specified in the

function space is convenient for our application to EdDSA, where they are all based on MD with

the same underlying idealized compression function.

Just clamp. Given a signature scheme DS and a clamping function CF: {0,1}k→ OUT(DS.SK),

it is useful to also consider the signature scheme DS∗ = JCl[DS,CF] that does just the clamping.

The scheme is shown in Figure 4.2. Its oracle space is the same as that of DS and is assumed to

have arity 1. On the right of Figure 4.2 the function drawn from it is denoted G; it will be the

same as HH3 on the left.

Security of DR. We study the security of the scheme DS =DR[DS,CF] obtained via the DR

transform.

When we prove security of DS, it will be with respect to a functor FF that constructs all

of HH1,HH2,HH3. This means that these three functions could all depend on the same starting

function that FF uses, and in particular not be independent of each other. An important

element of the following theorem is that it holds even in this case, managing to reduce security

to conditions on the individual functors despite their using related (in fact, the same) underlying

starting function.

Theorem 4.1. Let DS be a signature scheme. Let CF: {0,1}k → OUT(DS.SK) be a clamping

function. Let DS = DR[DS,CF] and DS∗ = JCl[DS,CF] be the signature schemes obtained by

the above transforms. Let FF: SS→ DS.FS be a functor that constructs the function HH that

226

Games G0,G1,G2

init:
1 hh←$SS

2 sk←${0,1}k ; e1‖e2←FF1[FO](sk) // Game G0

3 e1‖e2←${0,1}2k // Games G1,G2

4 sk← CF(e1) ; pk←DS.PK[FF3[FO]](sk) ; Return pk

Sign(M):
5 If ST[M] 6=⊥ then return ST[M]

6 r←FF2[FO](ε2,M) // Games G0,G1

7 r←$DS.SR // Game G2

8 ST[M]←DS.Sign[FF3[FO]](sk, pk,M;r) ; Return ST[M]

FO(X):
9 Return hh(X)

f in(M∗,σ∗):
10 If (ST[M∗] 6=⊥) then return false

11 Return DS.Vf[FF3[FO]](pk,M∗,σ∗)

Figure 4.3. Games for the proof of Theorem 4.1. A line annotated with names of games is
included only in those games.

algorithms of DS use as an oracle. Let A be an adversary attacking the Guf security of DS. Then

there are adversaries A1,A2,A3 such that

Advuf
DS,FF

(A)≤Adv
prg
FF1

(A1)+Adv
prf
FF2

(A2)+Advuf
DS∗,FF3

(A3) .

The constructed adversaries have QAi
FO = QA

FO (i = 1,2,3) and approximately the same running

time as A. Adversary A2 makes QA
Sign queries to FN. Adversary A3 makes QA

Sign queries to

Sign.

Recall that QB
O means the number of queries made to oracle O in the execution of the

game with adversary B , so queries made by scheme algorithms, run in the game in response to

B ’s queries, are included. The theorem says the number of queries to FO is preserved under this

metric. The number of direct queries to FO is not necessarily preserved. Thus qAi
FO could be

more than qA
FO. For example qA1

FO is qA
FO plus the number of queries to FO made by the calls to

FF3[FO], the latter calls in turn made by the execution of DS.Sign[FF3[FO]] across the different

queries to Sign. Accounting precisely for this is involved, whence a preference where possible for

the game-inclusive query metric Q··.

Proof: [Theorem 4.1] The proof uses code-based game playing [44]. Consider the games

227

of Figure 4.3. Let εi = Pr[Gi(A)] for i = 0,1,2.

Game G0 is the Guf game for DS except that the signature of M is stored in table ST at

line 8, and, at line 5, if a signature for M already exists, it is returned directly. Since signing in

DS is deterministic, meaning the signature is always the same for a given message and signing

key, this does not change what Sign returns, and thus

Advuf
DS,FF

(A) = ε0

= (ε0− ε1)+(ε1− ε2)+ ε2 .

We bound each of the three terms above in turn.

The change in moving to game G1 is at line 3, where we sample e1‖e2 uniformly from the

set {0,1}2k rather than obtaining it via FF1[FO] as in game G0. We build PRG adversary A1

such that

ε0− ε1 ≤Adv
prg
FF1

(A1) . (4.1)

Adversary A1 is playing game Gprg
FF1

. It gets its challenge via e1‖e2←G
prg
FF1

.init. It lets sk← CF(e1)

and vk← DS.PK[FF3[G
prg
FF1

.FO]](sk) where G
prg
FF1

.FO is the oracle provided in its own game. It

runs A, returning vk in response to A’s init query. It answers Sign queries as do G0,G1 except

that it uses Gprg
FF1

.FO in place of FO at lines 6,8. As part of this simulation, it maintains table

ST. It answers FO queries via G
prg
FF1

.FO. When A calls f in(M∗,σ∗), adversary A1 lets c′← 1

if DS.Vf[FF3[G
prg
FF1

.FO]](pk,M∗,σ∗) is true and ST[M∗] =⊥, and otherwise lets c′← 0. It then

calls Gprg
FF1

. f in(c′). When the challenge bit c in game G
prg
FF1

is c = 1, the view of A is as in G0,

and when c = 0 it is as in G1, which explains Eq. (4.1).

Moving to G2, the change is that line 6 is replaced by line 7, meaning signing coins are

now chosen at random from the randomness space DS.SR of DS. We build PRF adversary A2

such that

ε1− ε2 ≤Adv
prf
FF2

(A2) . (4.2)

228

Adversary A2 is playing game G
prf
FF2

. It picks e1‖e2←${0,1}2k. It lets sk← CF(e1) and vk ←

DS.PK[FF3[G
prf
FF2

.FO]](sk) where G
prg
FF2

.FO is the oracle provided in its own game. It runs A,

returning vk in response to A’s init query. It answers Sign queries as does G1 except that it

uses G
prf
FF2

.FN in place of FF2[FO] at line 6 and G
prf
FF2

.FO in place of FO in line 8. As part

of this simulation, it maintains table ST. It answers FO queries via G
prf
FF2

.FO. When A calls

f in(M∗,σ∗), adversary A2 lets c′← 1 if DS.Vf[FF3[G
prf
FF2

.FO]](pk,M∗,σ∗) is true and ST[M∗] =⊥,

and otherwise lets c′← 0. It then calls Gprf
FF2

. f in(c′). When the challenge bit c in game G
prf
FF2

is

c = 1, the view of A is as in G1, and when c = 0 it is as in G2, which explains Eq. (4.2).

Finally we build adversary A3 such that

ε2 ≤Advuf
DS∗,FF3

(A3) . (4.3)

Adversary A3 is playing game Guf
DS∗,FF3

. It lets vk←Guf
DS∗,FF3

.init. It runs A, returning vk in

response to A’s init query. When A makes query M to Sign, it answers as per the following:

If ST[M] 6=⊥ then return ST[M]

ST[M]←$Guf
DS∗,FF3

.Sign(M) ; Return ST[M]

Note that memoizing signatures in ST is important here to ensure that the Sign queries of A

are correctly simulated. It answers FO queries via Guf
DS∗,FF3

.FO. When A calls f in(M∗,σ∗),

adversary A2 calls Guf
DS∗,FF3

. f in(M∗,σ∗). The distribution of signatures that A is given, and of

the keys underlying them, is as in G2, which explains Eq. (4.3).

Note that the constructed adversaries having access to oracle FO in their games is

important to their ability to simulate A faithfully.

With regard to the costs (number of queries, running time) of the constructed adversaries,

recall that we have defined these as the costs in the execution of the adversary with the game

that the adversary is playing, so for example the number of queries to FO includes the ones

made by algorithms executed in the game. When this is taken into account, queries to FO are

preserved, and the other claims are direct. �

Security of JCl. We have now reduced the security of DS to that of DS∗. To further reduce

the security of DS∗ to that of DS, we give a general result on clamping. Let K = OUT(DS.SK)

229

and let CF: {0,1}k→K be a clamping function. As per terminology in Section 4.2, recall that

Img(CF) = {CF(sk) : |sk| = k} ⊆K is the image of the clamping function, and CF is regular if

every y ∈ Img(CF) has the same number of pre-images under CF.

Theorem 4.2. Let DS be a signature scheme such that DS.SK draws its signing key sk←$K

at random from a set K . Let CF: {0,1}k → K be a regular clamping function. Let δ =

|Img(CF)|/|K | > 0. Let DS∗ = JCl[DS,CF] be the signature scheme obtained by the just-clamp

transform. Let FF: SS→DS.FS be any functor. Let B be an adversary attacking the Guf security

of DS∗. Then

Advuf
DS∗,FF(B)≤ (1/δ) ·Advuf

DS,FF(B) .

Proof:[Theorem 4.2] We consider running B in game Guf
DS,FF, where the signing key

is sk←$K . With probability δ we have sk ∈ Img(CF). Due to the regularity of CF, key sk

now has the same distribution as a key CF(sk) for sk←${0,1}k drawn in game Guf
DS∗,FF. Thus

Advuf
DS,FF(B)≥ δ ·Advuf

DS∗,FF(B). �

4.5 Security of EdDSA

The Schnorr scheme. Let the prime-order group Gp of k-bit strings with generator B be as

described in Section 4.2. The algorithms of the Schnorr signature scheme DS = Sch are shown

on the left in Figure 4.4. The function space DS.FS is FUNC((,{0,1})∗,Zp). (Implementations

may use a hash function that outputs a string and embed the result in Zp but following prior

proofs [3] we view the hash function as directly mapping into Zp.) Verification is parameterized

by an algorithm VF to allow us to consider strict and permissive verification in a modular way.

The corresponding choices of verification algorithms are at the bottom of Figure 4.4. The signing

randomness space is DS.SR = Zp.

Schnorr signatures have a few variants that differ in details. In Schnorr’s paper [207],

the challenge is c = HH(R‖M) mod p. Our inclusion of the public key in the input to HH follows

Bernstein [47] and helps here because it is what EdDSA does. It doesn’t affect security. (The

security of the scheme that includes the public key in the hash input is implied by the security of

230

DS.SK:
1 s←$Zp

2 Return s

DS.PK(s):
3 A← s ·B ; Return A

DS.Sign[HH](s,A,M):
4 r←$Zp ; R← r ·B
5 c← HH(R‖A‖M)

6 z← (sc+ r) mod p

7 Return (R,z)

DS.Vf[HH](A,M,σ):
8 (R,z)← σ

9 c← HH(R‖A‖M)

10 Return VF(A,R,c,z)

DS.SK:
1 sk←${0,1}k ; Return sk
DS.PK(sk):
2 e1‖e2← HH1(sk) ; s← CF(e1)

3 A← s ·B ; Return A

DS.Sign[HH](sk,A,M):
4 e1‖e2← HH1(sk) ; s← CF(e1)

5 r← HH2(e2,M) ; R← r ·B
6 c← HH3(R‖A‖M)

7 z← (sc+ r) mod p

8 Return (R,z)

DS.Vf[HH](A,M,σ):
9 (R,z)← σ

10 c← HH3(R‖A‖M) mod p

11 Return VF(A,R,c,z)

CF(e) // e ∈ {0,1}k:
12 t← 2k−2

13 for i ∈ [4..k−2]
14 t← t +2i−1 · e[i]
15 s← t mod p

16 return s

sVF(A,R,c,z):
1 Return (z ·B= c ·A+R)

pVF(A,R,c,z):
1 Return 2f(z ·B) = 2f(c ·A+R)

Figure 4.4. Top Left: the Schnorr scheme. Top Right: The EdDSA scheme. Bottom Left:
EDDSA clamping function (generalized for any k; in the original definition, k = 256). Bottom
Right: Strict and Permissive verification algorithms as choices for VF.

the one that doesn’t via a reduction that includes the public key in the message.) Also in [207],

the signature is (c,z). The version we use, where it is (R,z), is from [3]. However, BBSS [21]

shows that these versions have equivalent security.

The EdDSA scheme. Let the prime-order group Gp of k-bit strings with generator B be as

before and assume 2k−5 < p < 2k. Let CF: {0,1}k→ Zp be the clamping function shown at the

bottom of Figure 4.4. The algorithms of the scheme DS are shown on the right side of Figure 4.4.

The key length is k. As before, the verification algorithm VF is a parameter. The HH available to

the algorithms defines three sub-functions. The first, HH1: {0,1}k→{0,1}2k, is used at lines 2,4,

where its output is parsed into k-bit halves. The second, HH2: {0,1}k×{0,1}∗→ Zp, is used at

line 5 for de-randomization. The third, HH3: {0,1}∗→ Zp, plays the role of the function HH for

the Schnorr schemes. Formally, DS.FS is the arity-3 function space consisting of all HH mapping

as just indicated.

In [52, 65], the output of the clamping is an integer that (in our notation) is in the range

231

2k−2, . . . ,2k−1−8. When used in the scheme, however, it is (implicitly) modulo p. It is convenient

for our analysis, accordingly, to define CF to be the result modulo p of the actual clamping. Note

that in EdDSA the prime p has magnitude a little more than 2k−4 and less than 2k−3.

There are several versions of EdDSA depending on the choice for verification algorithms:

strict, permissive or batch VF. We specify the first two choices in Figure 4.4. Our results hold

for all choices of VF, meaning EdDSA is secure with respect to VF assuming Schnorr is secure

with respect to VF. It is in order to make this general claim that we abstract out VF.

Security of EdDSA with independent ROs. As a warm-up, we show security of EdDSA when

the three functions it uses are independent random oracles, the setting assumed by BCJZ [65].

However, while they assume hardness of DL, our result is more general, assuming only security of

Schnorr with a monolithic random oracle. We can then use known results on Schnorr [199, 3] to

recover the result of BCJZ [65], but the proof is simpler and more modular. Also, other known

results on Schnorr [203, 33, 115] can be applied to get better bounds. Following this, we will turn

to the “real” case, where the three functions are all MD with a random compression function.

The Theorem below is for a general prime p > 2k−5 but in EdDSA the prime is 2k−4 <

p < 2k−3 so the value of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. We

capture the three functions of EdDSA being independent random oracles by setting functor P

below to the identity functor, and similarly capture Schnorr being with a monolithic random

oracle by setting Fid to be the identity functor.

Theorem 4.3. Let DS = Sch be the Schnorr signature scheme of Figure 4.4. Let CF: {0,1}k→Zp

be the clamping function of Figure 4.4. Assume p > 2k−5 and let δ = 2k−5/p. Let DS =DR[DS,CF]

be the EdDSA signature scheme. Let Fid: FUNC((,{0,1})∗,Zp)→ FUNC((,{0,1})∗,Zp) be the

identity functor. Let P: DS.FS→DS.FS be the identity functor. Let A be an adversary attacking

the Guf security of DS. Then there is an adversary B such that

Advuf
DS,P

(A)≤(1/δ) ·Advuf
DS,Fid

(B)+
2 ·QA

FO

2k .

Adversary B preserves the queries and running time of A.

232

Functor S1[hh](sk): // |sk|= k
2 ε ←MD[hh](sk) ; Return e // |e|= 2k
Functor S2[hh](e2,M): // |e2|= k
3 Return MD[hh](e2‖M) mod p

Functor S3[hh](X): // also called Mod-MD
4 Return MD[hh](X) mod p

Figure 4.5. The arity-3 functor S for EdDSA. Here hh: {0,1}b+2k→{0,1}2k is a compression
function.

Proof:[Theorem 4.3] Let DS∗ = JCl[Sch,CF]. By Theorem 4.1, we have

Advuf
DS,P

(A)≤Adv
prg
P1

(A1)+Adv
prf
P2
(A2)+Advuf

DS∗,P3
(A3) .

It is easy to see that

Adv
prg
P1

(A1)≤
qA1
FO

2k ≤
QA
FO

2k

Adv
prf
P2
(A2)≤

qA2
FO

2k ≤
QA
FO

2k .

Under the assumption p > 2k−5 made in the theorem, BCJZ [65] established that |Img(CF)|= 2k−5.

So |Img(CF)|/|Zp|= 2k−5/p = δ . Let B = A3 and note that P3 =Fid. So by Theorem 4.2 we have

Advuf
DS∗,P3

(A3)≤ (1/δ) ·Advuf
DS,Fid

(B) . (4.4)

Collecting terms, we obtain the claimed bound stated in Theorem 4.3. �

Analysis of the S functor. Let DS be the result of the DR transform applied to Sch

and a clamping function CF: {0,1}k→ Zp. Security of EdDSA is captured as security in game

Guf
DS,S

when S is the functor that builds the component hash functions in the way that EdDSA

does, namely from a MD-hash function. To evaluate this security, we start by defining the

functor S in Figure 4.5. It is an arity-3 functor, and we separately specify S1,S2,S3. (Functor

S3 will be called Mod-MD in later analyses.) The starting space, from which hh is drawn, is

FUNC((,{0,1})b+2k,{0,1}2k), the set of compression functions. The prime p is as before, and is

public.

We want to establish the three assumptions of Theorem 4.1. Namely: (1) S1 is PRG-

233

Games G0, G1

init:
1 sk←${0,1}k ; e←${0,1}2k

2 Return e

FO(X):
3 If FT[X] 6=⊥ then return FT[X]
4 Y←${0,1}2k

5 If X = IV‖sk‖P then bad← true ; Y ← e

6 FT[X]← Y ; Return FT[X]

f in(c′):
7 Return (c′ = 1)

Figure 4.6. Games G0 and G1 for the proof of Lemma 4.4. Boxed code is only in G1.

secure (2) S2 is PRF secure and (3) security holds in game Guf
Sch∗,S3

where Sch∗ = JCl[Sch,CF].

Bridging from Sch∗ to Sch itself will use Theorem 4.2.

Lemma 4.4. Let functor S1: FUNC((,{0,1})b+2k,{0,1}2k)→ FUNC((,{0,1})k,{0,1}2k) be de-

fined as in Figure 4.5. Let A1 be an adversary. Then

Adv
prg
S1

(A1)≤
qA1
FO

2k ≤
QA1
FO

2k . (4.5)

Proof:[Lemma 4.4] Since the input sk to S1[hh] is k-bits long, the MD transform defined

in Section 4.3 only iterates once and the output is e = hh(IV‖sk‖P), for padding P ∈ {0,1}3k and

initialization vector IV ∈ {0,1}2k that are fixed and known. Now consider the games in Figure 4.6,

where the boxed code is only in G1. Then we have

Adv
prg
S1

(A1) = Pr[G1(A1)]−Pr[G0(A1)]

≤ Pr[G0(A1) sets bad]

≤
QA1
FO

2k .

The second line above is by the Fundamental Lemma of Game Playing, which applies since G0,G1

are identical-until-bad. �

We turn to PRF security of the S2 functor. Note that the construction is what BRT

called AMAC [30]. They proved its PRF security by a combination of standard-model and ROM

234

results. First they showed AMAC is PRF-secure if the compression function hh is PRF-secure

under leakage of a certain function of the key. Then they show that ideal compression functions

have this PRF-under-leakage security. Putting this together implies PRF security of S2. However,

we found it hard to put the steps and Lemmas in BRT together to get a good, concrete bound for

the PRF security of S2. Instead we give a direct proof, with an explicit bound, using our result

on the indifferentiability of Mod-MD from Theorem 4.8 together with the indifferentiability

composition theorem [171].

Lemma 4.5. Let functor S2: FUNC((,{0,1})b+2k,{0,1}2k)→ FUNC((,{0,1})k×{0,1}∗,Zp) be

defined as in Figure 4.5. Let ` be an integer such that all messages queried to FO are no more

than b · (`−1)− k bits long. Let A2 be an adversary. Then

Adv
prf
S2
(A2)≤

QA2
FO

2k +
2p(qA2

FO+ `QA2
FN)

22k +
(qA2

FO+ `QA2
FN)

2

22k +
pqA2

FO · `Q
A2
FN

22k .

Proof:[Lemma 4.5] In Section 4.6, we prove the indifferentiability of functor S3 (c.f.

Figure 4.5), which we also call Mod-MD. Define R: FUNC((,{0,1})∗,Zp)→ FUNC((,{0,1})k×

{0,1}∗,Zp) to be the identity functor such that R[HH](x,y) = HH(x‖y) for all x,y,HH in the

appropriate domains. Notice that when R is given access to the Mod-MD functor as its oracle,

the resulting functor is exactly S2. Using this property, we will reduce the PRF security of

functor S2 to the indifferentiability of Mod-MD.

For any simulator algorithm Sim, the indifferentiability composition theorem [171] grants

the existence of distinguisher D and adversary A5 such that

Adv
prf
S2
(A2)≤Adv

prf
R (A5)+Advindiff

Mod-MD,Sim(D).

We let Sim be the simulator guaranteed by Theorem 4.8 and separately bound each of these

terms. Adversary A5 simulates the PRF game for its challenger A2 by forwarding all FN queries

to its own FN oracle and answering FO queries using the simulator, which has access to the FO

oracle of A5. Since the simulator is efficient and makes at most one query to its oracle each time

it is run, we can say the runtime of A5 is approximately the same as that of A2. A5 makes the

same number of FN and FO queries as A2.

235

Next, we want to compute Adv
prf
R (A5). When R is evaluated with access to a random

function hh, its outputs are random unless the adversary makes a relevant query involving the

secret key. The adversary can only distinguish if the output of FN is randomly sampled or from

R[hh] if it queries FO on the k-bit secret key (e2), which has probability 1
2k for a single query.

Taking a union bound over all FO queries, we have

Adv
prf
R (A5)≤

QA2
FO

2k .

Distinguisher D simulates the PRF game for A2, by replacing functor Mod-MD with its

own Priv oracle within the FN oracle and forwarding A2’s direct FO queries to Pub. D hence

makes QFN
A2

queries to Priv of maximum length b · (`−1) and qFOA2
to Pub. To bound the second

term, we apply Theorem 4.8 on the indifferentiability of shrink-MD transforms. This theorem is

parameterized by two numbers γ and ε; in Section 4.6, we show that Mod-MD belongs to the

shrink-MD class for γ = b22k

p c and ε = p
22k . Then the theorem gives

Advindiff
Mod-MD,Sim(D)≤ 2(QD

Pub+ `QD
Priv)ε +

(QD
Pub+ `QD

Priv)
2

22k +
QD
Pub · `QD

Priv

γ
.

By substituting QD
Pub = qA2

FO and QD
Priv = QA2

FN, we obtain the bound stated in the theorem.

�

Finally we turn to S3. The following considers the UF security of DS∗ = JCl[Sch,CF]

with the hash function being an MD one, meaning with S3, and reduces this to the UF security

of the same scheme with the hash function being a monolithic random oracle. Formally, the

latter is captured by game Guf
DS∗,R where R is the identity functor. One route to this result is

to exploit the public-indifferentiability of MD established by DRS [100]. However we found it

simpler to give a direct proof and bound based on our Theorem 4.8.

Lemma 4.6. Let functor S3: FUNC((,{0,1})b+2k,{0,1}2k)→ FUNC((,{0,1})∗,Zp) be defined as

in Figure 4.5. Assume 2k > p. Let DS∗ = JCl[Sch,CF] where CF: {0,1}k → Zp is a clamping

function. Let R: FUNC((,{0,1})∗,Zp)→ FUNC((,{0,1})∗,Zp) be the identity functor, meaning

R[HH] = HH. Let A3 be a Guf adversary and let ` be an integer such that the maximum message

length A3 queries to Sign is at most b · (`−1)−2k bits. Then we can construct adversary A4

236

such that

Advuf
DS∗,S3

(A3)≤Advuf
DS∗,R(A4)+

2p(qA3
FO+ `QA3

Sign)

22k (4.6)

+
(qA3

FO+ `QA3
Sign)

2

22k +
pqA3

FO · `Q
A3
Sign

22k . (4.7)

Adversary A4 has approximately equal runtime and query complexity to A3.

Proof:[Lemma 4.6] Again, we rely on the indifferentiability of functor S3 =Mod-MD,

as shown in Section 4.6. The general indifferentiability composition theorem [171] states that for

any simulator Sim and adversary A3, there exist distinguisher D and adversary A4 such that

Advuf
DS∗,S3

(A3)≤Advuf
DS∗,R(A4)+Advindiff

S3,Sim(D).

Let Sim be the simulator whose existence is implied by Theorem 4.8. The distinguisher

runs the unforgeability game for its adversary, replacing S3[FO] in scheme algorithms and

adversarial FO queries with its Priv and Pub oracles respectively. It makes qA3
FO queries to

Pub and QA3
Sign queries to Priv, and the maximum length of any query to Priv is b · (`−1) bits

because each element of group Gp is a k-bit string (c.f. Section 4.2). We apply Theorem 4.8 to

obtain the bound

Advindiff
S3,Sim(D)≤ 2(qA3

FO+ `QA3
Sign)ε +

(qA3
FO+ `QA3

Sign)
2

22k +
qA3
FO · `Q

A3
Sign

γ
.

Adversary A4 is a wrapper for A3, which answers all of its queries to FO by running Sim

with access to its own FO oracle; since the simulator runs in constant time and makes only one

query to its oracle, the runtime and query complexity approximately equal those of A3.

Substituting 1
γ
≥ p

22k and ε = p
22k gives the bound. �

Security of EdDSA with MD. We now want to conclude security of EdDSA, with an MD-hash

function, assuming security of Schnorr with a monolithic random oracle. The Theorem is for

a general prime p in the range 2k > p > 2k−5 but in EdDSA the prime is 2k−4 < p < 2k−3 so the

value of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. Again recall our

237

convention that query counts of an adversary include those made by oracles in its game, implying

for example that QA
FO ≥ QA

Sign.

Theorem 4.7. Let DS = Sch be the Schnorr signature scheme of Figure 4.4. Let CF: {0,1}k→

Zp be the clamping function of Figure 4.4. Assume 2k > p > 2k−5 and let δ = 2k−5/p. Let DS =

DR[DS,CF] be the EdDSA signature scheme. Let R: FUNC((,{0,1})∗,Zp)→ FUNC((,{0,1})∗,Zp)

be the identity functor. Let S be the functor of Figure 4.5. Let A be an adversary attacking the

Guf security of DS. Again let b · (`−1)−2k be the maximum length in bits of a message input to

Sign. Then there is an adversary B such that

Advuf
DS,S

(A)≤(1/δ) ·Advuf
DS,R(B)+

QA
FO

2k−1 +
p(qA

FO+ `QA
Sign)

22k−2

+
(qA

FO+ `QA2
Sign)

2

22k−1 +
pqA

FO · `QA
Sign

22k−1 .

Adversary B preserves the queries and running time of A.

Proof:[Theorem 4.7] Let DS∗ = JCl[Sch,CF]. By Theorem 4.1, we have

Advuf
DS,S

(A)≤Adv
prg
S1

(A1)+Adv
prf
S2
(A2)+Advuf

DS∗,S3
(A3).

Now applying Lemma 4.4, we have

Adv
prg
S1

(A1)≤
QA
FO

2k .

Applying Lemma 4.5, we have

Adv
prf
S2
(A2)≤

QA2
FO

2k +
2p(qA2

FO+ `QA2
FN)

22k +
(qA2

FO+ `QA2
FN)

2

22k +
pqA2

FO · `Q
A2
FN

22k .

We substitute QA2
FO = QA

FO, qA2
FO = qA

FO and QA2
FN = QA

Sign. By Lemma 4.6 we obtain

Advuf
DS∗,S3

(A3)≤Advuf
DS∗,R(B)+

2p(QA3
FO+ `QA3

Sign)

22k

+
(QA3

FO+ `QA3
Sign)

2

22k +
pQA3

FO · `Q
A3
Sign

22k .

238

Recall that adversary A3 has the same query complexity as A.

Under the assumption p > 2k−5 made in the theorem, BCJZ [65] established that

|Img(CF)|= 2k−5. So |Img(CF)|/|Zp|= 2k−5/p = δ . So by Theorem 4.2 we have

Advuf
DS∗,R(B)≤ (1/δ) ·Advuf

DS,R(B) . (4.8)

By substituting with the number of queries made by A as in Theorem 4.1 and collecting terms,

we obtain the claimed bound stated in Theorem 4.7. �

We can now obtain security of EdDSA under number-theoretic assumptions via known

results on the security of Schnorr. Namely, we use the known results to bound Advuf
DS,R(B)

above. From [199, 3] we can get a bound and proof based on the DL problems, and from [203]

with a better bound. We can also get an almost tight bound under the MBDL assumption

via [33] and a tight bound in the AGM via [115].

4.6 Indifferentiability of the shrink-MD class of functors

Indifferentiability We want the tuple of functions returned by a functor F : SS→ ES to be

able to “replace" a tuple drawn directly from ES. Indifferentiability is a way of defining what

this means. We adapt the original MRH definition of indifferentiability [171] to our game-based

model in Figure 4.7. In this game, Sim is a simulator algorithm. The advantage of an adversary

A against the indifferentiability of functor F with respect to simulator Sim is defined to be

Advindiff
F,Sim(A) := 2Pr[Gindiff

F,Sim(A)⇒ 1]−1.

Modifying the Merkle-Damgrard Transform Coron et al. showed that the Merkle-

Damgrard transform is not indifferentiable with respect to any efficient simulator due to its

susceptibility to length-extension attacks [80]. In the same work, they analysed the indiffer-

entiability of several closely related indifferentiable constructions, including the “chop-MD”

construction. Chop-MD is a functor with the same domain as the MD transform; it simply

truncates a specified number of bits from the output of MD. The S3 functor of Figure 4.5 operates

239

Game Gindiff
F,Sim

init():
1 c←${0,1}
2 hh←$SS

3 HH←$ES

Pub(i,Y):
1 if c = 0 then
2 return Sim[HH](i,Y)

3 else return hh(i,Y)

Priv(i,X):
1 if c = 0 then return HH(i,X)

2 else return F[hh](i,X)

f in(c′):
1 return [[c = c′]]

Figure 4.7. The game Gindiff
F,Sim measuring indifferentiability of a functor F with respect to

simulator Sim.

similarly to the chop-MD functor, except that S3 reduces the output modulo a prime p instead

of truncating. This small change introduces some bias into the resulting construction that affects

its indifferentiability due to the fact that the outputs of the MD transform, which are 2k-bit

strings, are not distributed uniformly over Zp.

In this section, we establish indifferentiability for a general class of functors that includes

both chop-MD and S3. We rely on the indifferentiability of S3 in Section 4.5 as a stepping-stone

to the unforgeability of EdDSA; however, we think our proof for chop-MD is of independent

interest and improves upon prior work.

The original analysis of the chop-MD construction [80] was set in the ideal cipher model

and accounted for some of the structure of the underlying compression function. A later proof by

Fischlin and Mittelbach [180] adapts the proof strategy to the simpler construction we address

here and works in the random oracle model as we do. Both proofs, however, contain a subtle gap

in the way they use their simulators.

At a high level, both proofs define stateful simulators Sim which simulate a random

compression function by sampling uniform answers to some queries and programming others

with the help of their random oracles. These simulators are not perfect, and fail with some

probability that the proofs bound. In the ideal indifferentiability game, the Pub oracle answers

queries using the simulator and the Priv oracle answers queries using a random oracle. Both

proofs at some point replace the random oracle HH in Priv with Chop-MD[Sim] and claim

that because Chop-MD[Sim[HH]](X) will always return HH(X) if the simulator does not fail,

240

the adversary cannot detect the change. This argument is not quite true, because the additional

queries to Sim made by the Priv oracle can affect its internal state and prevent the simulator

from failing when it would have in the previous game. In our proof, we avoid this issue with a

novel simulator with two internal states to enforce separation between Priv and Pub queries

that both run the simulator.

Our result establishes indifferentiability for all members of the Shrink-MD class of

functors, which includes any functor built by composing of the MD transform with a function

Out : {0,1}2k→ S that satisfies three conditions, namely that for some γ,ε ≥ 0,

1. For all y ∈ S, we can efficiently sample from the uniform distribution on the preimage set

{Out−1(y)}. We permit the sampling algorithm to fail with probability at most ε , but require

that upon failure the algorithm outputs a (not necessarily random) element of {Out−1(y)}.

2. For all y ∈ S, it holds that γ ≤ |{Out−1(y)}|.

3. The statistical distance δ (D) between the distribution

D := z←$ Out−1(y) : y←$ S

and the uniform distribution on {0,1}2k is bounded above by ε.

In principle, we wish γ to be large and ε to be small; if this is so, then the set S will be

substantially smaller than {0,1}2k and the function Out “shrinks” its domain by mapping it onto

a smaller set.

Both chop-MD and mod-MD are members of the Shrink-MD class of functors; we briefly

show the functions that perform bit truncation and modular reduction by a prime satisfy our

three conditions. Truncation by any number of bits trivially satisfies condition (1) with ε = 0.

Reduction modulo p also satisfies condition (1) because the following algorithm samples

from the equivalence class of x modulo p with failure probability at most p
22k . Let ` be the smallest

integer such that ` > 22k

p . Sample w←$ [0 . . . `−1] and output w ·p+ x, or x if w ·p+ x > 22k. We

say this algorithm “fails” in the latter case, which occurs with probability at most 1
` <

p
22k . In

the event the algorithm does not fail, it outputs a uniform element of the equivalence class of x.

241

Bellare et al. showed that the truncation of n trailing bits satisfies condition (2) for

γ = 22k−n and reduction modulo prime p satisfies (2) for γ = b22k/pc . It is clear that sampling

from the preimages of a random 2k− n-bit string under n-bit truncation produces a uniform

2k-bit string, so truncation satisfies condition (3) with ε = 0. Also from Bellare et al. [30], we

have that the statistical distance between a uniform element of Zp and the modular reduction of

a uniform 2k-bit string is ε = p
22k . The statistical distance of our distribution z←$ Out−1(Y) for

uniform Y over S from the uniform distribution over {0,1}2k is bounded above by the same ε;

hence condition (3) holds.

Given a set S and a function Out : {0,1}2k→ S, we define the functor FS,Out as the compo-

sition of Out with MD. In other words, for any x ∈ {0,1}∗ and hh ∈ FUNC((,{0,1})b+2k,{0,1}2k),

let FS,Out[hh](x) := Out(MD[hh](x)).

Theorem 4.8. Let k be an integer and S a set of bitstrings. Let Out : {0,1}2k→ S be a function

satisfying conditions (1), (2), and (3) above with respect to γ,ε > 0. Let MD be the Merkle-

Damgrard functor(c.f. Section 4.2) FS,Out := Out ◦MD be the functor described in the prior

paragraph. Let pad be the padding function used by MD, and let unpad be the function that

removes padding from its input (i.e., for all X ∈ {0,1}∗, it holds that unpad(X ‖pad(|X |)) =X).

Assume that unpad returns ⊥ if its input is incorrectly padded and that unpad is injective on its

support. Then there exists a simulator Sim such that for any adversary A making Priv queries

of maximum length b · (`−1) bits then

Advindiff
F,Sim(A)≤ 2(QA

Pub+ `QA
Priv)ε +

(QA
Pub+ `QA

Priv)
2

22k +
QA
Pub · `QA

Priv

γ
.

Proof:[Theorem 4.8] We first give a brief overview of our proof strategy and its differences

from previous indifferentiability proofs for the chop-MD construction [80, 180].

Our simulator, Sim, is defined in Figure 4.8. It is inspired by, but distinct from, that of

Mittelbach and Fischlin’s simulator for the chop-MD construction ([180] Figure 17.4.), which

in turn adapts the simulator of Coron et al [80] from the ideal cipher model to the random

oracle model. These simulators all present the interface of a random compression function

hh and internally maintain a graph in which each edge represents an input-output pair under

242

Simulator Sim[HH](Y ,G) :

1 (y,m)←Y

2 if ∃z such that (y,z,m) ∈G.edges
3 return z

4 M←G.FindPath(IV,y)
5 if M 6=⊥ and unpad(M ‖m) 6=⊥ then
6 if Thh[Y ,M] 6=⊥ then z←Thh[Y ,M]

7 else z←$Out−1(HH(unpad(M ‖m)))

8 Thh[Y ,M]← z

9 else if Thh[Y] 6=⊥ then z←Thh[Y]

10 else z←${0,1}2k; Thh[Y]← z

11 add (y,z,m) to G.edges
12 add (y,z,m) to Gall.edges
13 return z

Game G0 := Gindiff
F,Sim|b = 0

init():
1 HH←$ FUNC({0,1}∗,S,)
2 Gall,Gpub← (IV)

Priv(X):
1 return HH(X)

Pub(Y):
1 z← Sim[HH](Y ,Gpub)

2 return z

f in(c′):
1 return c′

Figure 4.8. An indifferentiability simulator used by the proof of Theorem 4.8 (left). The
ideal-world game Gindiff

F,Sim measuring indifferentiability of a functor F with respect to an arbitrary
simulator Sim (right).

the simulated compression function. The intention is that each path through this graph will

represent a possible evaluation of FS,Out[hh]. The fundamental difference between our simulator

and previous ones is that we maintain two internal graphs instead of one: one graph for all

queries, and one graph for public interface queries only. This novel method of using two graphs

avoids the gap in prior proofs described above by tracking precisely which parts of the simulator’s

state are influenced by private and public interface queries respectively.

In the “ideal” indifferentiability game, Priv queries are answered by a random oracle HH

drawn from the function space FUNC({0,1}∗,S,). Pub queries are answered by the simulator

Sim, which maintains the two graphs Gpub and Gall. We present pseudocode for this game (G0)

in Figure 4.8. In each graph, the nodes and edges are labeled with 2k-bit strings. An edge from

node y to node z with label m is denoted (y,z,m), and represents a single value of the simulated

compression function; namely, on 6k-bit input y‖m, the simulated compression function should

output z. Queries made in the process of evaluating MD[S] will form a path that begins at the

node labeled with the initialization vector IV ; the path’s edges will be labeled with the 4k-bit

blocks of pad(M).

Whenever the simulator receives a fresh query (y,m), it uses a pathfinding algorithm

FindPath to check whether the query extends an existing path from IV and thus continues

243

an existing evaluation of the MD transform. If so, it reads the message from the path’s edge

labels then appends the new block m to the end. If the result is a properly padded message,

the simulator removes the padding and uses its oracle HH to compute the output of functor F

on the original message. This output w is an element of S, and it should be consistent with

Out when applied to the 2k-bit simulator output. The simulator therefore samples its response

from the preimages of w under Out. If any of these steps fail, then the query does not need

to be programmed, so the simulator samples a uniformly random response z and updates its

graph with the new edge from y. Because we are attempting to simulate a random function, the

simulator must cache its responses to maintain consistency between repeated queries. It does

this in two ways: via the graphs and via table Thh. We require two forms of caching because

the simulator may use two graphs and thus responses may not be cached consistently between

private and public queries in the graphs alone.

Our G0 differs from this ideal indifferentiability game only in the f in oracle, which returns

the adversary’s challenge guess c′. Thus the probability that game G0 returns 1 exactly equals

1−Pr[Gindiff
F,Sim(A)|c = 0].

We move to G1, where the Priv oracle uses Sim to calculate the output of functor F,

then discards the result. We wish for the adversary’s view of games G0 and G1 to be identical,

so we must ensure that the additional queries to Sim do not influence its state or its responses to

Pub queries. We therefore call the simulator with different graphs in the two oracles. It responds

to public queries based only on the public graph, and queries made by Priv are private and do

not update the public graph. We do use shared table Thh to cache outputs across all queries; in

this sense a private query can affect a public query; however, we cache responses separately for

each branch of the simulator, so our caching does not alter the simulator’s branching behavior

and the distribution of public queries’ responses does not change. The adversary cannot detect

at what time a response z is first sampled, so its view does not change, and

Pr[G0] = Pr[G1].

In game G2, we set a bad flag if the simulator if Gall contains any collisions, cycles, or “duplicate”

244

Game G1

init():
1 HH←$ FUNC({0,1}∗,S,)
2 Gall,Gpub← (IV)

Pub(Y):
1 z← Sim[HH](Y ,Gpub)

2 return z

Priv(X):
1 w←F[Sim[HH](·,Gall)](X)

2 return HH(X)

f in(c′):
1 return c′

Figure 4.9. Game G1 in the proof of Theorem 4.8. Highlighted code is changed from the
previous game, and algorithms not shown are unchanged from the previous game.

edges: edges with the same starting node and label but different ending nodes.

Collisions and cycles are formed only when a new edge is created whose ending node is

already present in the graph; we set bad in this case. The caching in line 2 prevents duplicate

edges except when the Priv and Pub oracles query the simulator on the same input (y,m), in

that order. Even in this case, caching in table Thh prevents duplicate edges unless one query

detects a path that the other did not, or the two queries detect different paths.

If the Pub query detects a path to node y that did not exist during the previous Priv

query, or there are two distinct paths to y in Gall, then Gall must contain a collision or a cycle,

and the bad flag will be set when that is detected. Furthermore, Gpub is a subgraph of Gall, so

it cannot contain a path to y that Gall does not. To catch the formation of duplicate edges, it is

therefore sufficient to set bad if Gall contains a path from IV to y that is not detected by the

subsequent Pub query.

The bad flag is internal and does not affect the view of the game, so

Pr[G2] = Pr[G1]

In G3, we force the adversary to lose when the bad flag is set. This strictly decreases

their advantage, so

Pr[G3]≤ Pr[G2].

In our next game, we stop querying HH directly in the Priv oracle and instead return

w, the result of our functor on the query. We claim that in G3, either w = HH(X) or bad = true;

thus if the adversary wins G3, then in all Priv queries we have w = HH(X). From this claim, we

245

Game G2, G3

f in(c′):
1 if bad then return 0
2 return c′

Game G4

Priv(X):
1 w←F[Sim[HH](·,Gall)](X)

2 return w

Sim[HH](Y ,G):
1 (y,m)←Y

2 if ∃z such that (y,z,m) ∈G.edges
3 return z

4 M←G.FindPath(IV,y)
5 Mall←Gall.FindPath(IV,y)
6 if M 6=⊥ and unpad(M ‖m) 6=⊥ then
7 if Thh[Y ,M] 6=⊥ then z←Thh[Y ,M]

8 else z←$Out−1(HH(unpad(M ‖m)))

9 Thh[Y ,M]← z

10 else if Thh[Y] 6=⊥ then z←Thh[Y]

11 else z←${0,1}2k; Thh[Y]← z

12 if (z ∈Gall.nodes and (y,z,m) 6∈Gall.edges)
13 or M 6= Mall

14 bad← true

15 add (y,z,m) to G.edges
16 add (y,z,m) to Gall.edges
17 return z

Figure 4.10. Games G2, G3, and G4 in the proof of Theorem 4.8. Highlighted code is changed
from the previous game, and boxed code is present only in G3 (and subsequent games). Algorithms
not shown are unchanged from the previous game.

can see that the change does not affect the view of the adversary and

Pr[G4] = Pr[G3].

To prove the claim, consider a query Priv(X). Let (X1, . . . ,Xn) be the b-bit blocks of

X ‖pad(|X |). By the definition of the MD transform, Priv makes n queries to Sim of the form

(yi,Xi),Gall, where y1 = IV and yi = Sim((yi−1,Xi−1),Gall) for all i > 1. These may not be fresh

queries, but they must be made in order or bad will be set: if query Sim((yi,Xi)) outputs yi+1

and this has already been the input of a prior query, then yi+1 is a node in Gall; a collision has

occurred and the query will set bad. Unless bad is set, there exists exactly one path in Gall from

IV to yi, and the labels on this path are (X1, . . . ,Xi−1). This is trivially true for i = 1; the path

is the empty path. The query Sim((yi−1,Xi−1),Gall) creates the edge (yi−1,yi,Xi−1) in Gall. By

induction on i, there is always a path from IV to yi with labels (X1, . . . ,Xi−1). If there exists

more than one path from IV to yi, then Gall must contain either a cycle or two edges with the

same ending node; in either case the bad flag will be set.

246

Game G5

Sim(Y ,G):
1 (y,m)←Y

2 if ∃z such that (y,z,m) ∈G.edges
3 return z

4 M←G.FindPath(IV,y)
5 Mall←Gall.FindPath(IV,y)
6 if Mall 6=⊥

and unpad(Mall ‖m) 6=⊥ then
7 if Thh[Y ,Mall] 6=⊥ then
8 z←Thh[Y ,Mall]

9 else
10 if THH[unpad(Mall ‖m)] 6=⊥
11 y←THH[unpad(Mall ‖m)]

12 THH[unpad(Mall ‖m)]← y

13 z←$Out−1(y); Thh[Y ,Mall]← z

14 else if Thh[Y] 6=⊥ then z←Thh[Y]

15 else z←${0,1}2k; Thh[Y]← z

16 if (z ∈Gall.nodes and (y,z,m) 6∈Gall.edges)
17 or M 6= Mall

18 bad← true

19 add (y,z,m) to G.edges
20 add (y,z,m) to Gall.edges
21 return z

Game G6

Sim(Y ,G):
1 (y,m)←Y

2 if ∃z such that (y,z,m) ∈G.edges
3 return z

4 M←G.FindPath(IV,y)
5 Mall←Gall.FindPath(IV,y)
6 if Mall 6=⊥ and unpad(Mall ‖m) 6=⊥ then
7 z←${0,1}2k

8 if THH[unpad(Mall ‖m)] 6=⊥
9 z←THH[unpad(Mall ‖m)]

10 THH[unpad(Mall ‖m)]← z

11 else if Thh[Y] 6=⊥ then z←Thh[Y]

12 else z←${0,1}2k; Thh[Y]← z

13 if (z ∈Gall.nodes and (y,z,m) 6∈Gall.edges)
14 or M 6= Mall

15 bad← true

16 add (y,z,m) to G.edges
17 add (y,z,m) to Gall.edges
18 return z

Figure 4.11. Left: Game G5 in the proof of Theorem 4.8. Right: Game G6 in the proof of
Theorem 4.8. Highlighted code is changed from the previous game, and algorithms not shown
are unchanged from the previous game.

Therefore, when Priv first makes the query Sim((yn−1,Xn),Gall), it will detect the path,

compute unpad(M ‖Xn) = X and output an element z ∈ Out−1(HH(X)). By the definition of

Out−1, we have w = Out(z) = HH(X), so the claim holds.

At this point, the adversary can no longer directly query random oracle HH, so we allow

the simulator to lazily sample the function. Also in this game, the simulator queries HH on the

path from IV to y in Gall for all queries, not just private queries. If the path in G is different

from the path in Gpub, then the bad flag will be set and the adversary will lose anyway. Therefore

the view in any winning game is unchanged, and

Pr[G4] = Pr[G5].

247

In our next game G6, we replace the sampling of z from the preimages of a random point

y with sampling a uniformly random 2k-bit string. The sampling will never fail to be uniform,

which means the adversary can distinguish the game if it were to fail in G5; from condition

(1) we have that the probability of failure was at most ε per query. Otherwise, we have from

condition (3) on Out that the statistical distance of the distribution (z←$ Out−1(y): : y←$ S) from

the uniform distribution on {0,1}2k is at most ε . By a hybrid argument over the QA
Pub+ `QA

Priv

queries to the simulator, the probability that A can distinguish G5 from G6 is bounded above by

2(QA
Pub+ `QA

Priv)ε.

Now that we are caching z in table THH when the check of line 6 holdss true, it has become

redundant to cache it in table Thh, so we stop doing this caching. We must be careful since table

THH is indexed by labels of the form unpad(Mall ‖m) where Thh was indexed by tuples (Y ,Mall).

Since Mall is a path from IV to y in a graph with no duplicate edges provided bad is not set,

Mall uniquely determines its ending node y and unpad(Mall ‖m) uniquely determines a tuple

((y,m),Mall) because unpad is injective. Thus the entries of THH are in one-to-one correlation

with the entries of Thh, and we can safely retain only the former, and

Pr[G6]≤ Pr[G5]+2(QA
Pub+ `QA

Priv)ε

In G7, all queries are sampled randomly from {0,1}2k and cached in table Thh under the

input Y , instead of some being cached under the message unpad(Mall ‖m). We claim that in G6

if a query Sim(y,m) stores z in THH[X], then a later query Sim(y′,m′) will return z if and only if

(y,m) = (y′,m′) or bad is set. The forward direction is trivial. If Sim(y′,m′) returns THH[X], then

either we have

X = unpad(Gall.FindPath(IV,y′)‖m′) = unpad(Gall.FindPath(IV,y)‖m),

or there was a bad-setting collision between THH[X] and the randomly-sampled response z.

In the former case, the function unpad is injective, so we know m = m′, and the paths

from IV to y′ and y′ respectively have the same sequence of edge labels. Unless bad is set, there

are no duplicate edges, so a starting node and sequence of edge labels uniquely identify the

248

Game G7

Sim(Y ,G):
1 (y,m)←Y

2 if ∃z such that (y,z,m) ∈G.edges
3 return z

4 M←G.FindPath(IV,y)
5 Mall←Gall.FindPath(IV,y)
6 if Mall 6=⊥ and unpad(Mall ‖m) 6=⊥ then
7 z←${0,1}2k

8 if Thh[Y] 6=⊥ then z←Thh[Y]

9 Thh[Y]← z

10 else if Thh[Y] 6=⊥ then z←Thh[Y]

11 else z←${0,1}2k; Thh[Y]← z

12 if z ∈Gall.nodes or M 6= Mall

13 bad← true

14 add (y,z,m) to G.edges
15 add (y,z,m) to Gall.edges
16 return z

Game G8

Sim(Y):
1 if Thh[Y] 6=⊥ then z←Thh[Y]

2 else z←${0,1}2k; Thh[Y]← z

3 return z

f in(c′):
1 return c′

Figure 4.12. Left: Game G7 in the proof of Theorem 4.8. Right: Game G8 in the proof of
Theorem 4.8. Highlighted code is changed from the previous game, and algorithms not shown
are unchanged from the previous game.

ending node on the path; consequently y = y′ and the claim follows.

Queries in G7 therefore hit a cache indexed by Y if and only if they would hit a cache

indexed by X in G6. We do not need to worry that the new entries in Thh overlap with those

created in line 11; if the check in line 6 holds true during some query, then it cannot have been

false in an earlier query with the same Y unless bad would be set. Thus no queries are answered

from table Thh in G7 that would not have been cached in earlier games, and

Pr[G7] = Pr[G6].

Notice that both branches of the simulator now identically sample z←${0,1}2k uniformly,

subject to caching in table Thh under Y ; in the next game we will eliminate the redundant check

on Mall in line 6.

In our final game, G8, we remove the bad flag and the internal variables used to set it.

This increases the adversary’s advantage, since it can now win even if the game would set bad.

The probability of a collision among the QA
Pub+ `QA

Priv randomly sampled nodes of Gall is at

249

most (QA
Pub+`QA

Priv)
2

22k by a birthday bound. The probability that Gall contains a path to y that Gpub

does not is the probability that the adversary A queries Pub on one of the `qPriv intermediate

nodes on a path in Gall, before it learns the label of that node from Pub. A may use Priv to

learn the output y of Out an intermediate node, but it does not learn anything about which of

the equally likely preimages of y is the label; from condition (2) we have that there are at least γ

such preimages to guess from. Then the probability that A sets bad with a single Pub query is

at most `QA
Priv
γ

; a union bound over all Pub queries gives that a path exists in Gall but not Gpub

with probability no greater than QA
Pub·`QA

Priv
γ

.

We also stop maintaining the graphs Gpub and Gall, which are now only used to cache

queries whose responses are already cached in table Thh. This changes nothing about the view of

the adversary, so

Pr[G8]≤ Pr[G7]+
(QA

Pub+ `QA
Priv)

2

22k +
QA
Pub · `QA

Priv

γ
.

If we look closely at G8, we can see that the “simulator” is actually just a lazily-sampled

random function with domain {0,1}6k and codomain {0,1}2k. In fact, G8 is identical to the “real”

indifferentiability game for functor F, save for its choice of challenge bit. Thus

Pr[G8] = Pr[Gindiff
F,Sim(A)|c = 1].

Collecting bounds across all gamehops gives the theorem. �

4.7 The unique order-p subgroup of G

Here, we briefly prove that our choice in Section 4.2 of Gp as the unique subgroup of

order p of group G, which has order p ·2f , is well-defined. (We do not prove that Gp is cyclic

as this follows directly from the fact that its order is prime.) We also give an efficient test for

membership in Gp.

Proposition 1. Let p be an odd prime, let 2f < p be a positive integer, and let G be a group of

order 2f ·p. Then (1) the group G has a unique subgroup of order p, and (2) For all X ∈G it is

the case that X is in this subgroup iff p ·X = 0G.

250

(1) Let n be the number of p-order subgroups of G. According to Sylow’s theorem n≡ 1 mod p.

We now have two cases: either n = 1, or n > 1. We prove that n = 1 by contradiction;

therefore we assume n > 1. It follows that n≥ p+1. Two distinct groups of prime order can

intersect only at the identity, so each of the n subgroups of G contains p−1 unique elements.

Consequently the order of G is at least n(p−1)≥ (p+1)(p−1)≥ p(p+1). Since we have

already defined the order of G to be 2f ·p, we have that 2f ≥ p+ 1. This contradicts our

initial assumption that 2f < p; thus our assumption that n > 1 must be false and G must

have exactly one subgroup of order p. This subgroup is Gp.

(2) Let X ∈G be a group element and assume that p ·X = 0G. This implies that the order of

X divides p. Since p is prime, either the order of X is 1 or it is p. In the first case, x = 0G.

Otherwise, X generates a subgroup with order p, which by part (1) is the unique such

subgroup Gp. Therefore X generates Gp and must belong to it.

For the reverse direction, assume that X is in Gp. The order of X must divide the order of

Gp; so X must either have order p or order 1. In either case, p ·X = 0G.

Acknowledgments

Bellare and Davis were supported in part by NSF grant CNS-2154272. We thank the

(anonymous) reviewers of Crypto 2022, Asiacrypt 2022 and CT-RSA 2023 for their valuable

comments. We thank Joseph Jaeger for his helpful comments and discussions about the correctness

of chop-MD proofs in the literature.

Chapter 4 is a reprint, in full, of material as it appears in the proceedings of the 26th

IACR International Conference on Practice and Theory of Public-Key Cryptography (PKC), 2023.

Bellare, Mihir; Davis, Hannah; Di, Zijing. The overall structure of the tight proof of security for

EdDSA is due to anonymous reviewers at CRYPTO and ASIACRYPT; we thank them. The

Derive-then-Derandomize transform was designed by Mihir, and the details of its security were

worked out by Zijing Di, with guidance from Mihir. This author’s primary contribution was the

new proof of indifferentiability of the chop-MD construction and other members of its class.

251

Chapter 5

Verifiable Distributed Aggregation Func-
tions

5.1 Introduction

Operating a complex software system, such as an operating system, web browser, or

web service, often requires measuring the behavior of the system’s users. When used for a

specific purpose, such measurements are often only consumed in some aggregated form, e.g.,

F(m1, . . . ,mct) for some specific function F , rather than the individual measurements m1, . . . ,mct .

But in conventional systems, the measurements are revealed to the operator as a matter of course,

resulting in an increased capability to surveil users. Consider the following motivating examples:

1. Identifying misbehaving or malicious origins. To detect bugs or attack vectors, a browser

vendor might want to know how often establishing a connection to a given origin or loading

a given web page triggers a specific event [183]. But logging these events and aggregating

them in the clear risks exposing browser history.

2. Measuring ad conversion rates. Today advertising is a significant revenue source for many

web service providers. In order to accurately assess the value of an ad campaign, the service

provider and advertiser might want to measure how many people who clicked on a given ad

made a purchase [2].

3. Classifying malicious client behavior. Many operators benefit from the ability to classify

(or predict) user behavior automatically, and in real-time. For example, anomaly detection

systems use machine learning models, trained and validated on requests from real clients, to

252

classify fraudulent or otherwise malicious behavior [181].

These applications require only aggregates; by collecting individual measurements, the operator

learns more information than is ultimately used for the intended purpose. One way out of this

predicament is multi-party computation (MPC), which allows computing some function of private

inputs distributed across multiple parties, without revealing these private inputs. In this paper,

we consider a class of MPC protocols in which the bulk of the computation is outsourced to a

small set of non-colluding servers.

Recent attention from the MPC community on problems like these has yielded solutions

that are practical enough for real-world deployment [124, 81, 60, 61, 9, 27]. Notable examples

include Mozilla’s Origin Telemetry project [183] and the COVID-19 Exposure Notification Private

Analytics system developed jointly by Apple and Google [13]. The success of these projects

spurred the formation of a working group within the Internet Engineering Task Force (IETF)

whose objective is to standardize MPC for “Privacy-Preserving Measurement (PPM)” [1], thereby

improving interoperability and providing a deployment roadmap for new schemes.

The primary goal of this paper is to lay some of the groundwork for the provable security

analysis that will be needed to support this effort. We formalize a syntax and set of security

definitions for a particular class of MPC protocols from the literature [81, 60, 61, 9] of interest to

the working group. Our definitions unify previous ones into an explicit, game-based framework

that accounts for practical matters not attended to in prior work.

We apply our definitional framework to two constructions. The first is a candidate for

standardization based on the Prio scheme designed by [81]; we show that this protocol meets

our security goals with only minor changes. Another candidate for standardization is the more

recent Poplar scheme due to [61]; we introduce and analyze a variant of this protocol that has

improved round complexity.

Overview

The PPM working group plans to develop multiple protocol standards, one of which is the

focus of this work. The Distributed Aggregation Protocol (DAP) standard [117] centers around

the execution of a particular class of MPC protocols, called Verifiable Distributed Aggregation

253

m

sk,st Init

n

Shard

Prep1msgInit,x1

Prep2
msgInit,x2

Prep1

Prep2

M1

M2

y1

y2

Unshard

Agg1y1,1, . . . ,y1,ct

Agg2y2,1, . . . ,y2,ct

a

ct

Figure 5.1. Illustration of (left) sharding and preparation of a single measurement and (right)
aggregation and unsharding of a set of measurements. All parameters are defined in Section 5.3.

Functions (VDAFs) [26]. A VDAF is used to securely compute some aggregation function F

over a set of measurements generated by the clients. To protect their privacy, the measurements

are secret-shared and the computation of the aggregate is distributed amongst multiple, non-

colluding aggregation servers (called aggregators hereafter). Execution of a VDAF involves

four basic steps (illustrated in Figure 5.1):

• Shard: Each client shards its measurement mi into input shares and sends one share to

each aggregator. In this work, we sometimes refer to this sequence of input shares as the

client’s report.

• Prepare: After receiving a report from a client, the aggregators gossip amongst themselves

in order to prepare their shares for aggregation. This involves refining the shares into

an aggregatable form and verifying that the outputs are “well-formed”, e.g., that they

correspond to an integer in a given range, or correspond to a one-hot vector (a vector that is

non-zero in at most one position). We call the outputs of this process the refined shares.

• Aggregate: Once an aggregator has recovered the desired number of refined shares, it

combines them into its share of the aggregate result, called an aggregate share. It then

sends this to the data consumer, known as the collector.

• Unshard: Finally, the collector combines each of the aggregate shares into F(m1, . . . ,mct).

Why standardize VDAFs? The case for standardizing this class of MPC protocols is made by

the aforementioned deployments of Prio [183, 13], of which VDAFs are a natural generalization.

The key feature that makes these protocols widely applicable and suited for Internet scale is that

the expensive part of the computation (Shard/Prepare) is fully parallelizable across all reports

254

being aggregated. This means that deployments can be scaled to such a degree that the time

spent on executing the VDAF is primarily network-bound rather than CPU-bound. It is less clear

(at least to those in the PPM working group) whether MPC techniques where the computations

depend on all reports (e.g., oblivious sorting [215] or shuffling [12, 27]) would scale in the same

way.

This feature also implies that VDAFs are only suitable for aggregation functions F that

can be decomposed into f ,g for which F(m1, . . . ,mct) = f (g(m1), . . . ,g(mct)), where g may be

non-linear, but f must be affine. Indeed, the goal is not to encompass all possible MPC schemes,

but a particular, useful, and highly parallelizable class of them. VDAFs can be used for a variety

of aggregation tasks, including: simple statistics like sum, mean, standard deviation, quantile

estimates, or linear regression [81]; a step of a gradient descent [138]; or heavy hitters (see below).

Security goals. The PPM working group’s primary goal for VDAFs (cf. [117, Section 7]) is

that they are private in the sense that the attacker learns nothing about the measurements

m1, . . . ,mct beyond what it can infer from the aggregate result F(m1, . . . ,mct). An active attacker

who corrupts the collector and a fraction of the aggregators (typically all but one) and controls

transmission of all messages in the protocol—except, of course, the input shares delivered to

honest aggregators. Its corruptions are “static”: the set of corrupt parties does not change over

the course of the attack.

Another security consideration for VDAFs is that they are robust in the sense that the

attacker cannot force the collector to compute anything other than the aggregate of honestly

generated reports. Here the attacker is a set of malicious clients attempting to corrupt the

aggregate result by sending malformed reports. For robustness we assume all of the aggregators

execute the protocol correctly. Otherwise, a corrupt aggregator could trivially corrupt the result

by sending the collector a malformed aggregate share.

We formalize these security notions in the game-playing paradigm [45]. First, in Sec-

tion 5.3.2 we define privacy via an indistinguishability game Exppriv
Π

(A) played by an attacker A

against VDAF Π . The attacker interacts with the honest parties (i.e., the clients and uncorrupted

aggregators) via a set of oracles. These oracles allow A to mount a kind of “chosen batch attack”

in which the honest parties process one of two batches of measurements, and A’s goal is to

255

determine which was processed. This is analogous to the simulation-based definition of [81,

Definition 1], which asks the the attacker to distinguish the protocol’s execution from the view

generated by a simulator.

We formalize robustness via a game ExprobustΠ (A) (Section 5.3.2). Here the attacker A—

playing the role of a coalition of malicious clients—is given a single oracle that models the

execution of the preparation step of VDAF execution on (invalid) reports. The attacker wins if an

aggregator ever accepts an invalid share or if the aggregators compute refined shares that, when

combined, do not correspond to a valid refined measurement. For natural VDAFs, robustness

implies robustness in the sense of [81, Definition 6]: namely, the collector is guaranteed to

correctly aggregate measurements uploaded by honest clients.

Note on the simulation paradigm. An alternative approach, and one that is more conven-

tional for MPC, is to formulate security in the Universal Composability (UC) framework [70]. This

methodology would begin by specifying the “ideal functionality” for computing an aggregation

function such that, for any VDAF that securely realizes this functionality, any suitable notion of

either privacy or robustness would follow from the UC composition theorem.

While this methodology is attractive, it creates the following difficulty in our setting.

Many applications of VDAFs may be willing to tolerate a loose robustness bound (i.e., a non-

negligible probability of accepting an invalid share) if doing so leads to better performance or

communication. On the other hand, no application can accept a loose bound for privacy. In

order to reason about this tradeoff, it is necessary to obtain explicit, concrete bounds for privacy

and robustness separately. A theorem in the UC framework yields only a single bound, for the

“UC-realizability” of the ideal functionality; applying this result directly would lead to parameter

choices that might be more conservative than strictly necessary for the given application.

Another consideration is to make our results accessible to the target audience. Applying

the UC framework, and interpreting its results, involves a number of subtleties that, based on

our own observations, are often misunderstood when translated to practice.1 One goal of our
1For a recent example, consider the standards for PAKEs (“Password-Authenticated Key Exchange”) developed

by the CFRG. Most of these standards are based on protocols with analysis in the UC framework. For one
protocol [8], one question left open by that analysis was how to securely instantiate the “session identifier”, one of
the artifacts of the ideal functionality. The current draft offers recommendations for choosing the session identifier,
but allows applications to ignore this entirely; a game-playing argument was used to justify this (cf [7, Section B]).

256

definitions is to make as explicit as possible all of the requirements an application like DAP [117]

needs to meet in order to use VDAFs securely.

Previous definitions. Our definitions in Section 5.3 can be seen as a more precise (but not

necessarily stronger) formulation of the informal definitions given in the original Prio paper [81,

Section A]. While the authors mention the possibility of using a unified simulation-based security

definition for privacy and robustness, they do not provide one.

For Poplar on the other hand, [61, Section A] provide a simulation-based definition for

the end-to-end functionality. In order to capture the fact that a malicious server can influence

the output of the protocol, they define a leakage function that allows the attacker to perturb the

aggregate result with an arbitrary additive offset. While we believe this captures the robustness

attacks that are possible for Poplar, it does not immediately generalize to the broader class of

functionalities we consider as VDAFs. Also note that Bonet et al. [61] do not provide any proofs

using their security definition. (The proofs they do provide are for definitions that are naturally

captured by games, e.g., [61, Section D].) Finally, the simulation-based security definition of

Poplar only considers a single security parameter, something that would need to be overcome to

allow for separate security bounds for privacy and robustness.

Constructions

The starting point for our work is draft-irtf-cfrg-vdaf-03 [26], the current draft of the

VDAF specification at the time of writing.

The first scheme described in draft-03, called Prio3, is based on Prio [81], but incorporates

performance improvements from [60] (hereafter BBCG+19). Prio3 can be used to compute a wide

variety of aggregation functions due to its use of Fully Linear Proofs (FLPs). Briefly, an FLP is

a special type of zero-knowledge proof that allows the client’s input measurement to be validated

by the aggregators (e.g., ensure that it is a number in some pre-determined range) who have only

secret shares of the input and proof. The FLP designed by BBCG+19 (see [60, Theorem 4.3])

and adopted by the draft (with minor modifications; see [26, Section 7.3]) is expressed in terms

of some arithmetic circuit C that takes in the prover’s input x and a random string jr computed

jointly by the prover and verifier. Computing this joint randomness, verifying the proof, and

257

evaluating C(x, jr) requires just one round of communication among the aggregators.

In Section 5.4, we prove Prio3 is both robust (Theorem 5.1) and private (Theorem 5.2)

under the assumption that the underlying FLP is, respectively, sound and honest-verifier zero-

knowledge as defined by BBCG+19. Our analysis unveiled a few subtle design issues in draft-03

that we address here.

The second scheme in draft-03 is called Poplar1 and is based on the recent Poplar protocol

from [61] (BBCG+21). Poplar is designed to solve the private “heavy hitters” problem in which

each client submits an arbitrary bitstring α and the collector wants to compute the set of unique

strings that occurred at least T times. The key idea of BBCG+21 is an extension of distributed

point functions (DPFs) [119], where two aggregators hold a share of a “DPF key” that concisely

represents a point function. A point function evaluates to 0 on every input, except for the

distinguished point α, where the function evaluates to some β 6= 0. By secret sharing the DPF

keys generated by the clients, the aggregators can count how many clients submitted a particular

candidate string without revealing which clients submitted it.

Poplar1 makes use of an enriched primitive called an incremental DPF (IDPF). IDPF

keys can be queried not only at a given point, but a given prefix. That is, an incremental point

function is one that evaluates to 0 on every input except for the set of strings that are a prefix

of α. This new primitive gives rise to an efficient solution to the heavy hitters problem that

involves running Poplar1 multiple times over the same set of IDPF keys, where each run begins

with a set of candidate prefixes computed from the previous run.

To achieve robustness, Poplar1 uses a two-round multi-party computation in which the

aggregators verify that the IDPF outputs are well-formed. That means that, compared to

Prio3, the Poplar1 VDAF costs one additional round of communication, per report, during the

preparation phase. The additional roundtrip is significant from an operational perspective.

In Section 5.5 we introduce Doplar, our modification to Poplar which achieves a one-

round preparation. To achieve this, we combine FLPs and methods from distributed point

functions in a novel way. We adopt a point-function verification method from De Castro and

Polychroniadou [92]. We also introduce a new flavor of delayed-input FLPs, which may be of

independent interest.

258

Related Work

Several works have considered private aggregate statistics, relying either on secret-sharing

between non-colluding servers [85, 109, 111, 145, 162, 175], or on anonymization networks [200,

134, 67]. However, these works either do not provide privacy against malicious clients or rely on

expensive zero-knowledge proofs.

A protocol for Secure Aggregation (SecAgg) in the single-server setting was presented by

[58] and subsequently improved by [29, 28]. While SecAgg can provide security against malicious

parties, it relies on multiple rounds of interaction between clients and server.

The VDAF abstraction was designed to encompass the architecture of Prio and Poplar

in which the expensive portion of the MPC is fully parallelizable. Another example of a VDAF

from the literature is the protocol of [9], which uses boolean (bit-wise) secret sharing instead of

arithmetic circuit to improve communication cost from client to aggregator. However, this comes

at a cost of weaker privacy, since their protocol does not protect against malicious servers.

There are also protocols that do not fit neatly into the VDAF framework as specified,

but which might be adapted into VDAFs in the future. Masked LARK [138] is a proposal by

Microsoft for training machine learning models on private data, using secret-sharing and MPC

between a set of aggregators. AdScale [124] presents an aggregation system focused on private

ads measurement. While designed for a single aggregation server, their construction appears to

be amenable to our multi-server setting.

Other protocols in the literature share the same security goals of VDAFs, but do not

have the same streaming architecture. One example is the recent “Oblivious Shuffling” protocol

due to [12], which involves an MPC, assisted by a third-party, for unlinking each report from the

client that sent it. The online processing for this procedure intrinsically involves all of the reports

being shuffled; for VDAFs, all of the online processing is per-report. Similarly, [27] present a

protocol for computing sparse histograms with two aggregators that is more efficient than DPFs

for large domains, but reveals differentially private views to the aggregators. Again, the protocol

crucially relies on shuffling contributions from multiple users. Vogue [143] is a protocol for

computing private heavy hitters using three non-colluding servers. The protocol is secure against

malicious servers and clients, but again relies on shuffling. Finally, the STAR protocol [87] uses

259

an anonymizing proxy to ensure the collector only learns “popular” measurements, while any

measurement that occurs less than a pre-determined threshold is not revealed to any party.

In recent concurrent work, [182] present another three-party, honest-majority protocol

for computing heavy hitters. Their full protocol relies on a secure comparison protocol that

is run after the aggregation phase, and thus doesn’t immediately fit our setting. However, we

believe their input validation protocol can be adapted to obtain a VDAF for heavy hitters that

has similar characteristics as our protocol in Section 5.5. (Indeed their core primitive, which

they also call “Verifiable IDPF”, bears a striking resemblence to our own VIDPF abstraction.)

Likewise, one could get robustness against malicious aggregators in the honest-majority setting

by applying their "duplicate aggregator" technique to our protocols. We leave exploration of how

to combine our results to future work.

Full version

This is the proceedings version of our paper. The full version [91] includes proofs of all

theorems, a notion of “completeness” for VDAFs, and additional remarks and commentary.

5.2 Preliminaries

This section describes cryptographic primitives on which our constructions are based.

We begin with a bit of non-standard notation.

Notation

Let [i.. j] denote the set of integers {i, . . . , j} and write [i] as shorthand for the set [1..i].

If ~v is a vector, let ~v[i] denote the i-th element of ~v. Let (x,) denote the singleton vector with

value x and () the empty vector.

In our pseudocode, all variables that are undeclared implicitly have the value ⊥. Let y←$ S

denote sampling y uniformly from a finite set S ; let y←$ A(x) denote execution of randomized

algorithm A; and let y← A(x; r) denote execution of randomized algorithm A with coins r. If X

is a random variable with support {0,1} we let Pr
[

X
]
denote the probability that X = 1.

A table T is a map from unique keys to values; we write T[K1, . . .] to denote the value

corresponding to key K1, We sometimes write a dot “·” in place of one of the elements

260

of the key, e.g., “T[K1, ·]” instead of “T[K1,K2]”. We use this notation to denote the vector of

values in the table that match the key pattern. For example, we write T[K1, ·] for the vector

(T[K1,K1
2], . . . ,T[K1,Kn

2]) where (K1,K1
2), . . . ,(K1,Kn

2) are all of the keys in the table prefixed by K1,

in lexicographic order.

We measure an adversary’s runtime by the time it takes to run its experiment to

completion, including evaluating its queries.

Pseudorandom Generators

The VDAF spec [26, Section 6.2] calls for a particular type of object they call “pseudo-

random generator (PRG)”. Unlike the conventional PRGs, these objects are stateful. A PRG is

comprised of the following algorithms:

• PRG.init(seed ∈ {0,1}κ ,cntxt ∈ {0,1}∗)→ state ∈ Q takes a seed and context string to the

initial PRG state. We call κ the seed length.

• PRG.Next(state ∈ Q, ` ∈ N)→ (state′ ∈ Q,out ∈ {0,1}`) takes in the current PRG state and

outputs a string of the desired length.

We also make use of an algorithm Expand[PRG] that uses the given PRG to map a seed and

context string to a vector of integers over the modular ring Zp for the desired modulus p. We

defer to [26, Section 6.2] for the full definition of Expand[PRG].

In our security proofs, we model PRGs as random oracles [40]. In some cases, such as

the distributed point functions (DPFs) in Section 5.5.1, constructions based on computational

assumptions are known to be sufficient. We refer to [127, 128] for an overview of the state-of-the-art

PRGs for DPFs and similar constructions.

Fully Linear Proof Systems

We recall the definition of FLP systems from BBCG+19 [60]. (Our formulation differs

slightly, as we discuss below.) FLPs allow a prover to prove to a verifier, in zero-knowledge, that

a secret-shared value has some property required by the application, e.g., the input is a number

in the desired range, is a one-hot vector, etc. (The main construction of BBCG+19 allows the

validity condition to be expressed in terms of an arithmetic circuit evaluated over the input,

261

similar to more conventional zero-knowledge proof systems.) They are “fully linear” in the sense

that verifying the proof involves computing a strictly linear function over both the input and

proof. This allows verification to be performed on secret-shared data, leveraging its additive

homomorphism property. (This is contrast to prior work on “linear PCPs” [17, 56, 139] in which

the verifier has linear access to the proof, but arbitrary access to the input.)

An FLP with finite field F, proof length m, verifier length v, prover randomness length pl ,

joint randomness length jl , and query randomness length ql is a triple of algorithms FLP defined

as follows:

• FLP.Prove(x ∈ Fn, jr ∈ Fjl)→ π ∈ Fm is the randomized proof-generation algorithm that

takes in an input x and joint randomness jr and outputs a proof string π ∈ Fm. We shall

assume this algorithm generates random coins by sampling uniformly from Fpl .

• FLP.Query(x∈ Fn,π ∈ Fm, jr ∈ Fjl)→ σ ∈ Fv is the randomized query-generation algorithm

that takes in an input x, proof string π, and joint randomness jr and outputs a verifier

string σ . We shall assume the random coins are sampled uniformly from Fql .

• FLP.Decide(σ ∈ Fv)→ acc ∈ {0,1} is the deterministic decision predicate that takes in a

verifier string σ and outputs a bit acc indicating whether the input is valid.

We require the field F to have prime order; we occasionally denote its order by F.p. We say

that FLP is fully linear if the query-generation algorithm computes a linear function of the

input and proof. That is, there exists a function Q whose output is a matrix in Fv×(n+m) and,

for all inputs x, proofs π, joint randomnesses jr , and query randomnesses qr , it holds that

Query(x,π, jr ; qr) = Q(jr ; qr) · (x‖π) ∈ Fv.

Associated with FLP is a language L ⊆ Fn. We say that FLP is complete for L if the

proof system outputs 1 whenever the input is in L . That is, for all x ∈L it holds that

Pr
[
Decide(σ) : jr←$Fjl ;π←$Prove(x, jr);σ←$Query(x,π, jr)

]
= 1 .

We define soundness of FLP in terms of experiment ErrFLP(P∗) shown in Figure 5.2

associated with a malicious prover P∗. In this experiment, the prover commits to an invalid

262

Algorithm ViewFLP(x):
1 jr←$Fjl ; qr←$Fql

2 π←$Prove(x, jr)
3 σ ← Query(x,π, jr ; qr)
4 ret jr ‖qr ‖σ

Algorithm ErrFLP(P∗):
5 (stateP∗ ,x)←$ P∗(); jr←$Fjl

6 π←$ P∗(stateP∗ , jr)
7 σ←$Query(x,π, jl)
8 ret x 6∈L ∧ Decide(σ)

Figure 5.2. Procedures for defining security of FLPs.

input x ∈ Fn \L . Next, joint randomness jr is generated and given to P∗, who then generates a

proof π. Finally, the verifier is run on x,π, jr ; the malicious prover “wins” if the verifier deems

the input valid. We say FLP is ε-sound for L if for all P∗ it holds that Pr
[
ErrFLP(P∗)

]
≤ ε.

Let ViewFLP(x) denote the procedure defined in Figure 5.2. We say FLP is δ -statistical,

strong, honest-verifier zero-knowledge—or, simply, δ -private—if the verifier’s view can

be simulated without knowledge of the input. That is, there exists a randomized algorithm S

such that for all x ∈L it holds that

∑
ω

∣∣Pr
[
ViewFLP(x) = ω

]
−Pr

[
S() = ω

]∣∣≤ δ .

Comparison to [60]. Our syntax diverges slightly from BBCG+19 in two main respects. First,

we have tailored the syntax to 1.5-round, public-coin IOP systems (cf. [60, Section 3.2]), as this

is the only type of system considered in the VDAF specification [26]. Following the spec, we refer

to the “random challenge” as the “joint randomness”, as this allows us to more easily distinguish

the challenge from the randomness consumed locally by the prover and verifier. Second, following

the VDAF specification [26], we have adapted the syntax so that it describes explicitly the

computations of the prover and verifier. Namely, our query-generation algorithm takes in the

input and proof and outputs the verifier string consumed by the decision algorithm, whereas in

BBCG+19, the query-generation algorithm outputs a description of the linear function used to

compute the verifier string.

Our notion of FLP soundness differs slightly from BBCG+19 in that it explicitly requires

the prover to “commit” to the invalid prior to the joint randomness being generated. This clarifies

that the joint randomness needs to be independent of the input in order for soundness to be

achievable.

263

Incremental Distributed Point Functions

A point function is a function that is 0 everywhere except on a special input α; an

incremental point function is a function that is 0 everywhere except on any prefix of α. One can

imagine arranging the co-domain of this function into a complete, binary tree in which the nodes

are labeled with prefixes; and for each node labeled p, its children are labeled with p‖0 and

p‖1. Each node on the path to the leaf node α is assigned a non-0 value, and all other nodes

are assigned 0. (See [61, Figure 4] for an illustration.)

An incremental point function that gives output ~β [`] on the length-` prefix of α is defined

formally as:

f
α,~β

(
pfx ∈ {0,1}≤η

)
=

~β
[
|pfx |

]
if pfx is a prefix of α

0 otherwise.

An Incremental Distributed Point Function (IDPF) [61] is a concise secret sharing of an incre-

mental point function. We recall the definition of an IDPF from [61] and restrict it slightly to

suit the constructions of [26]. An IDPF’s domain is the set of bitstrings of length at most η . For

each input length `, the IDPF generates outputs in the group G`. We present definitions only for

the case of 2 parties, since leading constructions are specialized for that case. Let η , and κ be

positive integers, let M be a set, and let G` be a group for each ` ∈ [η]. An IDPF is a pair of

algorithms:

• IDPF.Gen(α ∈ {0,1}η ,~β ∈G1×·· ·×Gη)→ ({0,1}κ)2×M is the key generation algorithm

that takes a bitstring α and a vector ~β of point values, each of which is an element of the

group G` for the corresponding input length. It outputs a pair of key shares and a “public

share” (an element of M).

• IDPF.Eval(id ∈ {1,2},key∈ {0,1}κ ,pub ∈M ,pfx ∈ {0,1}`)→G` is the point-function eval-

uation algorithm that takes in a shareholder index, an IDPF key share, a public share pub,

and a prefix string of `≤ η bits, then outputs a share of the IDPF output.

An IDPF is correct if for all strings α ∈ {0,1}η , all vectors ~β ∈ G1 × ·· · ×Gη , all tuples

264

(key1,key2,pub) ∈ [IDPF.Gen(α,~β)], and all strings pfx of length `≤ η :

f
α,~β

(pfx) = ∑
ĵ∈{1,2}

IDPF.Eval(ĵ,key ĵ,pub,pfx) .

We define privacy for an IDPF later in Section 5.5.1.

5.3 Security Model

5.3.1 Syntax

As discussed in Section 5.1, a VDAF can be thought of as a protocol for evaluating an

aggregation function F that takes as input the vector of measurements generated by the clients

and outputs an aggregate result. In addition, the function may include an auxiliary “aggregation

parameter” that allows the measurements to be “refined” to contain only the information of

interest to the collector. Accordingly, prior to executing the VDAF, each aggregator’s state is

initialized with this aggregation parameter.

Recall that execution of a VDAF proceeds in four distinct phases. (See Figure 5.1 for

an illustration.) We formalize the computation of the parties in each phase as the component

algorithms of a VDAF:

• Shard(m ∈ I ,n ∈ N)→ (msg Init ∈M ,~x ∈ X s) is the randomized sharding algorithm run by

the client. It takes in the client’s input measurement m and a nonce n and returns an initial

message2 to be broadcasted to all aggregators and a sequence of input shares, one for

each of the s aggregators.

• Prep(ĵ ∈ [s],sk ∈ SK ,state ∈ Q,n ∈ N, ~M ∈M ∗,x ∈ X)

→ (status ∈ {running,finished,failed},out ∈ (Q×M)∪

Y ∪{⊥} is the deterministic, interactive preparation algorithm run by each aggregator

during the online preparation process. Its inputs are the share index ĵ, the verification

key shared by the aggregators sk, the current state state, the nonce n, the most recent round

of broadcast messages ~M (or (msg Init,) if this is the first round), and the aggregator’s
2This message is called the “public share” in the specification.

265

input share x . The preparation algorithm returns an indication status of whether the process

is running, finished, or failed. When the status is running, the output includes the

aggregator’s next state and broadcast message ((state,M) ∈ Q×M); and when the status is

finished, the output includes the aggregator’s refined share (y ∈ Y).

• Agg(~y ∈Y ∗)→ a∈A is the deterministic aggregation algorithm run locally by each aggregator.

It takes in a sequence of refined shares ~y and outputs an aggregate share a.

• Unshard(ct ∈ N,~a ∈As)→ r ∈O is the deterministic unsharding algorithm used to compute

the aggregate result r. Its inputs are the report count ct and aggregate shares ~a.

The sets I , N, M , X , SK , Q, Y , A, and O must also be defined by the VDAF. (We typically

do so only implicitly.) In addition to these sets, the VDAF specifies a set QInit ⊆ Q of possible

initial states.

Our security definitions for VDAFs require three additional syntactic properties. The

first is a property we call refinement consistency. Intuitively, this property insists that, for a

given initial state, the VDAF defines the set of refined measurements with respect to which the

validity of the refined shares is to be verified. For Doplar for example (Section 5.5), the set of

measurements are fixed-length bitstrings, while the refined measurements are one-hot vectors

over a finite field. Formally, refinement consistency requires the existence of functions refine and

refineFromShares such that for all m,n and st Init ∈QInit,

Pr[refine(st Init,m) = refineFromShares(st Init,M,~x) :

(M,~x)←$Shard(m,n)] = 1 .

Second, we require aggregation consistency, which means, roughly, that aggregating

refined shares into aggregate shares, then unsharding, is equivalent to first unsharding the

individual refined shares, then aggregating. To illustrate this idea, imagine arranging the refined

shares into a matrix, where the rows correspond to aggregators and the columns to measurements.

Aggregation consistency means that one can either add up the columns, then the rows, or add

up the rows, then the columns. Formally, we require the existence of a function finishResult such

266

that for all refined shares y1
1, . . . ,y

1
ct , . . . ,y

s
1, . . . ,y

s
ct ∈ Y , it holds that

Unshard(ct ,(Agg(y1
1, . . . ,y

1
ct), . . . ,Agg(ys

1, . . . ,y
s
ct))) =

finishResult(ct ,Unshard(1,(Agg(y1
1), . . . ,Agg(ys

1))),

. . . ,Unshard(1,(Agg(y1
ct), . . . ,Agg(ys

ct)))) .

We will see that these notions of refinement and aggregation consistency, while fairly technical in

nature, are trivial to show for natural constructions (including Prio3 and Doplar).

Lastly, our privacy definition allows the VDAF to be executed multiple times over the

same batch of measurements, each time beginning with a new initial state. (This accounts for

the iterative nature of IDPFs.) Depending on the VDAF, it may be necessary for aggregators

to restrict the sequence of initial states to prevent trivial leakage. Accordingly, we require each

VDAF to specify an allowed-state algorithm validSt that takes in the sequence of previous

initial states and the next initial state and returns a bit indicating whether the next initial state

is allowed.

Remark 3. A notable feature of the VDAF syntax is the “verification key” shared by the

aggregators. Looking ahead, this key is used to derive, from the nonce supplied by the client,

shared randomness used for verifying refined shares. This is how the authors of the VDAF

spec [26] chose to instantiate the “ideal coin-flipping functionality” used in the descriptions of

protocols in the papers on which the spec is based [81, 60, 61]. As we will see in the next section,

the details to how this functionality is instantiated are crucial to the privacy and robustness of

VDAFs.

5.3.2 Security

Three definitions are given for VDAFs. The first, completeness, is used to specify correct

evaluation of an aggregation function. The others, robustness and privacy, roughly correspond3

to the notions of the same names from [81, Section A].
3We have not attempted to work out formal relationships between our definitions and those of Corrigan-Gibbs et

al. [81]; whether our definitions, when restricted to the same class of protocols, are stronger, weaker, or equivalent
is an open question.

267

Security considerations for DAP [117]. Recall from the introduction that the DAP

standard being developed by the PPM working group is designed to securely execute a VDAF

in a real world network. Aspects of our security model can be thought of as abstracting away

the functionality provided by DAP. As such, many of our modeling decisions here amount to

requirements that the DAP protocol must fulfill. We will highlight some of these considerations

throughout this section.

Completeness

We require that, when executed honestly, the VDAF evaluates its aggregation function F

correctly. We formalize non-adversarial execution of Π via procedure RunΠ in Figure 5.3. Along

with the VDAF Π , this procedure is parameterized by an initial state st Init with which to configure

the aggregators and a sequence of measurements and nonces to process into an aggregate result.

Algorithm Run processes the measurements as illustrated in Figure 5.1. First, each

measurement is sharded into input shares by the submitting client (line 4), then refined into

a set of refined shares by the aggregators (5–16). Next, the refined shares recovered by each

aggregator are combined into an aggregate share (18). Finally, the aggregate shares are combined

by the collector into the aggregate result (19).

Definition 13 (Completeness). Let F : QInit× I ∗→O be a function. We say that VDAF Π is

complete for F if for all ~m ∈ I ∗ and ~n ∈ N∗ for which |~m|= |~n| and st Init ∈QInit it holds that

Pr
[
RunΠ (st Init,~m,~n) = F(st Init,~m)

]
= 1 ,

where the probability is over the randomness of Run and its subroutines. We say that Π is

complete if it is complete for some function F .

Robustness

We say that VDAF Π is robust if, when all of the aggregators execute the protocol correctly,

“valid” refined measurements are correctly aggregated, while any “invalid” measurements are

filtered out by the aggregators (with high probability). This property is captured via the game

ExprobustΠ (A) defined in Figure 5.3. In this game the adversary, acting as a coalition of malicious

268

clients, submits reports to the aggregators, eavesdrops on their communication, and observes

the result of their computation. This functionality is modeled by the Prep oracle, which the

adversary may query any number of times. It controls the nonce and initial state for each trial,

but its oracle queries are subject to the restriction that, for each distinct nonce, the sequence of

initial states must be valid (according to the allowed-state algorithm validSt).

Validity is defined in terms of the refinement-consistency algorithms (see Section 5.3.1).

Let VstInit = {refinestInit(m) : m ∈ I } be the set of refined measurements for initial state st Init.

The adversary wins the robustness game if, when run on initial state st Init, initial message msg Init,

and input shares ~x , either: (1) an aggregator accepts a share of an invalid refined measurement,

i.e., one of the aggregators ends in state finished, but the refined share y is not valid (i.e., not

in the set VstInit , see line 15 in Figure 5.3); or (2) the refined shares computed by the aggregators

do not match the expected refined measurement, i.e., unsharding the refined shares does not

result in y (line 18).

Definition 14 (Robustness). Define the advantage of A in defeating the robustness of VDAF Π

as

Advrobust
Π (A) = Pr

[
ExprobustΠ (A)

]
.

Informally, we say that Π is robust if for every efficient adversary A, the value of Advrobust
Π (A)

is small.

Remark 4. If a VDAF is robust in the sense of Definition 14 and aggregation-consistent, then the

VDAF is also robust in the sense of [81, Definition 6]. Namely, as long as the aggregators execute

the VDAF correctly, the collector is guaranteed to correctly aggregate measurements from honest

clients (and reject the measurements from dishonest clients). The aggregation function that is

computed is determined by the finishResult function implied by aggregation consistency, namely

F(st Init,m1, . . . ,mct) = finishResult(ct ,(y1, . . . ,yct)), where yk̂ is the refined measurement obtained

from refining mk̂ with st Init.

Privacy

We formalize privacy via the indistinguishability game Exppriv
Π ,t (A) in the right panel of

Figure 5.4. The game is associated with VDAF Π , adversary A, and corruption threshold t.

269

Algorithm RunΠ (st Init, ~m,~n):
1 sk←$ SK ; ct ← |~m|
2 // Shard/Prepare
3 for k̂ ∈ [ct]:
4 (M,~x)←Π .Shard(~m[k̂],~n[k̂])
5 Msg[0,1]←M
6 for ĵ ∈ [s]: St[ĵ]← st Init
7 for ˆ̀∈ [r +1]:
8 for ĵ ∈ [s]:
9 (status,out)←Π .Prep(ĵ,sk,St[ĵ],

10 ~n[k̂],Msg[ˆ̀-1, ·],~x [ĵ])
11 if status = running:
12 (St[ĵ],M)← out
13 Msg[ˆ̀, ĵ]←M
14 else if status = finished:
15 Out[ĵ, k̂]← out
16 else if status = failed: ret ⊥
17 //Aggregate/Unshard
18 for ĵ ∈ [s]: ~a[ĵ]←Π .Agg(Out[ĵ, ·])
19 ret Π .Unshard(ct ,~a)

Game Exprobust
Π (A):

1 sk←$ SK ; win← false; APrep(); ret w

Prep(n ∈ N,~x ∈ Xs ,msgInit ∈M ,st Init ∈QInit):
2 if not Π .validSt(Used[n],st Init): ret ⊥
3 Used[n]←Used[n]‖(st Init,)
4 Msg[0,1]←msgInit
5 y←Π .refineFromShares(st Init,msgInit,~x)
6 for ĵ ∈ [s]: St[ĵ]← st Init
7 for ˆ̀∈ [r +1]:
8 for ĵ ∈ [s]:
9 (status,out)←Π .Prep(ĵ,sk,St[ĵ]

10 n,Msg[ˆ̀-1, ·],~x [ĵ])
11 if status = running:
12 (St[ĵ],M)← out
13 Msg[ˆ̀, ĵ]←M
14 else if status = finished:
15 y ĵ← out ; w̃in← [y 6∈VstInit]
16 else if status = failed: pass
17 if not w̃in:
18 w̃in← [y 6= Π .Unshard(1,(Π .Agg(y ĵ)) ĵ∈s]

19 win← win
∨

w̃in; ret (win,Msg)

Figure 5.3. Left: Procedure for defining completeness of r -round, s-party VDAF Π . Right:
Game for defining robustness of Π . Let QInit ⊆ Q denote the set of valid initial states and, for
each st Init ∈QInit, let VstInit = {refinestInit(m) : m ∈ I }.

We consider an attacker that controls the collector and statically corrupts at most t aggregators

(lines 1–2). Using its Prep oracle (lines 16–28), the adversary controls transmission of all messages

in the protocol, except for the honestly generated input shares sent to honest (uncorrupted)

aggregators. We assume that the adversary also controls setup (see the Setup oracle on lines

11–15), meaning that it can pick the verification keys for honest aggregators (1) and the initial

state of each run of the preparation phase (14). This captures the real-world setting of the DAP

protocol [117], where one of the aggregators (the “leader”) effectively picks these values on behalf

of the others (the “helpers”). Note that our game requires the secret key to be committed to

prior to generating measurements: this is a deliberate restriction that was necessary to prove

security of our constructions. (It is necessary for DAP to enforce this restriction.)

The initial state for each run is subject to the restriction imposed by the allowed-state

algorithm defined by the VDAF (lines 11–13). (Accordingly, it is necessary for honest aggregators

to enforce this restriction in the DAP protocol.)

270

Game Exppriv
Π ,t (A):

1 (stateA,V,(sk ĵ) ĵ∈V)←$ A()
2 if |V|+ t 6= s return ⊥
3 b←${0,1}
4 b ′←$ AShard,Setup,Prep,Agg(stateA)
5 ret b = b ′

Shard(k̂ ∈ N,m0,m1 ∈ I):
6 if Used[k̂] 6=⊥: ret ⊥
7 n←$ N
8 (Pub[k̂], In[k̂, ·])←$ Π .Shard(mb ,n)
9 Used[k̂]← (n,m0,m1)

10 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Setup(î ∈ N, ĵ ∈ V,st Init ∈QInit):
11 if Status[î, ĵ] 6=⊥
12 or not
Π .validSt(Setup[·, ĵ],st Init):
13 ret ⊥
14 Setup[î, ĵ]← st Init
15 Status[î, ĵ]← running

Prep(î ∈ N, ĵ ∈ V, k̂ ∈ N, ~M ∈M ∗):
16 if Status[î, ĵ] 6= running or In[k̂, ĵ] =⊥: ret ⊥
17 if St[î, ĵ, k̂] =⊥:
18 St[î, ĵ, k̂]← Setup[î, ĵ]; ~M← (Pub[k̂],)
19 (n,m0,m1)←Used[k̂]
20 (status,out)←
21 Π .Prep(ĵ,sk ĵ,St[î, ĵ, k̂],n, ~M, In[k̂, ĵ])
22 if status = running:
23 (state,M)← out ; St[î, ĵ, k̂]← state
24 else if status = finished:
25 St[î, ĵ, k̂]←⊥; Out[î, ĵ, k̂]← out
26 Batch0[î, ĵ, k̂]←m0; Batch1[î, ĵ, k̂]←m1
27 else if status = failed: St[î, ĵ, k̂]←⊥
28 ret (status,M)

Agg(î ∈ N, ĵ ∈ V):
29 if Status[î, ĵ] 6= running: ret ⊥
30 (state1, . . . ,states)← Setup[î, ·]
31 if F(state ĵ,Batch0[î, ĵ, ·]) 6= F(state ĵ,Batch1[î, ĵ, ·])
32 and (∀ j, j′ ∈ V)state j = state j′ ∧ sk j = sk j′ :
33 ret ⊥
34 Status[î, ĵ]← finished
35 ret Π .Agg(Out[î, ĵ, ·])

Figure 5.4. Game for defining privacy of a complete, s-party VDAF Π for corruption threshold
≥ 0. Let F denote the aggregation function for which Π is complete and let QInit its set of initial
states. Let T = [s]\V.

The game asks A to distinguish execution of the protocol on two sets of measurements

of its choosing. To capture this, the attacker is given an oracle Shard (lines 6–10) that models

execution of the honest clients. This oracle takes in two measurements m0,m1 and shards mb ,

where b is the challenge bit chosen at the start of the game, and returns the initial message and

the input shares of the corrupted aggregators. The oracle chooses a nonce n from the nonce

space N at random. (Accordingly, the DAP protocol must arrange for clients to choose their

nonces at random.)

To model an attacker that controls the collector, the game allows the adversary to learn

the aggregate shares computed by honest aggregators. This is captured by the Agg oracle

(lines 29–35). Queries to this oracle are subject to the restriction that the aggregate share does

not trivially leak the challenge bit: namely, the aggregate of both batches of measurements

specified by the adversary must be equal (31). (Tables Batch0,Batch1 keep track of the pairs of

measurements m0,m1 passed to the Shard for which a given aggregator has recovered a refined

271

share for a given initial state.) This restriction is analogous to the “leakage function” provided to

the simulator in previous simulation-style definitions. See [81, Section A] and [61, Section A]. We

consider something slightly stronger: if the honest aggregators disagree either on the initial state

or the verification key, then we do not impose the restriction (32). This amounts to demanding

that the aggregate shares leak nothing in this case.

Definition 15 (Privacy). Let Π be an s-party VDAF and let t < s be a positive integer. Define

the t-advantage of A in attacking the privacy of Π as

Advpriv
Π ,t (A) = 2 ·Pr

[
Exppriv

Π ,t (A)
]
−1 .

Informally, we say that Π is t-private if for every efficient A the value of Advpriv
Π ,t (A) is small.

5.4 Prio3

In this section we present our security analysis for Prio3, one of the candidates for

standardization specified in draft-irtf-cfrg-vdaf-03 [26]. The starting point for this VDAF is an

FLP system (Section 5.2) that defines the set of valid measurements. Drawing on techniques from

Boneh et al. [60], Prio3 exploits the full-linearity property to allow the aggregators to validate

the secret shared input. However, in order for the resulting VDAF to be suitable for a particular

aggregation function F : I →O , we need the proof system to define how measurements (I) are

encoded as inputs to the prover and how refined shares are processed into the aggregate results

(O).

Definition 16 (Affine, aggregatable encodings [81, Sec. 5.]). Let F : I → O be a function.

An FLP system FLP admits an affine, aggregatable encoding for F if it defines the following

algorithms:

• FLP.Encode(m ∈ I)→ inp ∈ Fn is an injective map from the domain of F to the input

space Fn of FLP.

• FLP.Truncate(inp ∈ Fn)→ out ∈ Fol refines an FLP input into a format suitable for aggrega-

tion. We call ol the output length.

272

Algorithm Shard(m,n):
1 inp← Encode(m)
2 for ĵ ∈ [2..s]:
3 blind ĵ,xseed ĵ,pseed ĵ←${0,1}κ

4 ~x [ĵ]← RG2(xseed ĵ, ĵ)

5 ~rseed [ĵ]← RG7(blind ĵ, ĵ‖n‖~x [ĵ])
6 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

7 blind1←${0,1}κ

8 ~rseed [1]← RG7(blind1,1‖n‖~x [1])
9 jseed ← RG6(0κ , ~rseed); jr ← RG1(jseed ,ε)

10 ps←${0,1}κ ; pr ← RG4(ps,ε)
11 ~π[1]← Prove(inp, jr ;pr)
12 ~π[1]← ~π[1]−∑

s
ĵ=2RG3(pseed ĵ, ĵ)

13 ~x [1]← (~x [1],~π[1],blind1)
14 for ĵ ∈ [2..s]:
15 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

16 ret (~rseed ,~x)

Algorithm Unpack(ĵ,x):
17 if ĵ = 1: (inp,π,blind)← x
18 else:
19 (xseed ,pseed ,blind)← x
20 inp← RG2(xseed , ĵ)
21 π ← RG3(pseed , ĵ)
22 ret (inp,π,blind)

Algorithm Prep(ĵ,sk,state,n, ~M,x):
23 if state = ε: //Process initial message from client
24 (inp,π,blind)← Unpack(ĵ,x)
25 (~rseed ,)← ~M; ~rseed [ĵ]← RG7(blind , ĵ‖n‖ inp)

26 jseed ← RG6(0κ , ~rseed); jr ← RG1(jseed ,ε)
27 qr ← RG5(sk,n)
28 M← (Query(inp,π, jr ;qr), ~rseed [ĵ])
29 state← (jseed ,Truncate(inp))
30 ret (running,state,M)
31 //Process broadcast messages from aggregators
32 (jseed ,y)← state; (~vfs[ĵ], ~rseed [ĵ]) ĵ∈[s]← ~M

33 acc← Decide(∑s
ĵ=1

~vfs[ĵ])

34 if acc and jseed = RG6(0κ , ~rseed): ret (finished,y)
35 else ret (failed,⊥)

Algorithm Agg(~y):

36 ret ∑
|~y|
i=1~y [i]

Algorithm Unshard(ct ,~a):

37 ret Decode(ct ,∑
|~a|
i=1~a[i])

Algorithm RGi(seed ,cntxt):
38 l← (jl ,n,m,pl ,ql)
39 if i≤ 5: ret Expand[PRG](seed , `i ‖cntxt ,F.p, l[i])
40 else: ret PRG.Next(PRG.init(seed , `i ‖cntxt),κ)

Figure 5.5. Definition of 1-round, s-party VDAF Prio3[FLP,PRG]. Let `1, . . . , `7 be arbitrary,
distinct bitstrings.

• FLP.Decode(ct ∈N,out ∈ Fol)→ a ∈O converts a refined, aggregated output out to its final

form a. This computation may depend on the number of measurements ct .

Correctness requires that for all ct ≥ 0 and ~m ∈ I ct it holds that

F(~m) = Decode
(

ct , ∑
i∈[ct]

Truncate(Encode(~m[i]))
)
.

Let FLP be an FLP system that admits an affine, aggregatable encoding for F and let PRG

be a PRG. We specify the core algorithms of Prio3[FLP,PRG] in Figure 5.5. (This version includes

changes to draft-irtf-cfrg-vdaf-03 [26], as we discuss below.) The sharding algorithm begins by

encoding the measurement as prescribed by the FLP. It then splits the encoded measurement inp

into shares, generates a proof of inp’s validity, and splits the proof into shares as well. The joint

273

randomness jr passed to the proof generation algorithm is derived from the input shares following

the Fiat-Shamir-style transform described—but not formally analyzed—in [60, Section 6.2.3].

During preparation, the aggregators collectively re-compute jr from their input shares. Each

aggregator broadcasts a share of the verifier by running the FLP query-generation algorithm on

its share of the input and proof. (The query randomness qr is derived from the shared verification

key sk and the nonce n provided by the environment.) The FLP decision algorithm is run on the

combined verifier shares.

The aggregators must derive the joint randomness prior to computing their verifier shares.

In order to allow them to perform both computations in parallel in a single round, the client

sends in its initial message the sequence ~rseed of “joint randomness parts” consisting of the

intermediate values computed by the aggregators. This allows jr to be computed immediately

on receipt of the input shares. To detect if a malicious client transmitted malformed parts, the

aggregators also verify the joint randomness was computed properly in the same flow.

Allowed initial states

The set of initial states for Prio3 is simply QInit = {ε}. In our security analysis, we

assume honest aggregators process a batch at most once. Accordingly, the allowed-state algorithm

Prio3[FLP,PRG].validSt accepts only if the batch was not aggregated previously.

Consistency

The set of refined measurements includes any output of the affine, aggregatable encoding

for FLP. On input of st Init ∈ {ε} and m ∈ I , the refinement algorithm Prio3[FLP,PRG].refine first

encodes m, then truncates and decodes it as prescribed by FLP. The refine-from-shares algorithm,

Prio3[FLP,PRG].refineFromShares, unpacks each input share (see Unpack in Figure 5.5), extracts

the shares of the FLP input, truncates them, adds them together, and decodes the result.

For aggregation consistency, we require the encoding scheme for FLP to be aggregation-

consistent in a similar sense. Specifically, there must exist a function finishResult such that for

all outputs out1, . . . ,outct ∈ Fol it holds that

274

Decode(ct , ∑
k̂∈[ct]

out k̂) = finishResult(ct ,Decode(1,out1), . . . ,Decode(1,outct)).

Changes to the specification [26]. Figure 5.5 differs from draft-03 of the VDAF spec in

three ways. The most important change is to incorporate the nonce provided by the environment

into the joint randomness computation. This turns out to be crucial for a tight robustness bound;

without this change, we must contend with cases in which joint randomness is reused across

reports.

Second, we have revised the domain separation tags for the PRG invocations so that each

RGi in Figure 5.5 can be treated as an independent random oracle.

Lastly, we have moved the joint randomness parts from the input shares into the client’s

initial broadcast message. This change allowed us to simplify our proofs somewhat, but we do not

believe it is essential for security. It also has the added benefit of reducing overall communication

overhead for s > 2.

Security

Fix s > 2 and let Π = Prio3[FLP,PRG] be as specified above. Let N denote the nonce

space for Π and let κ denote the seed length of PRG.

Theorem 5.1. Modeling each RGi in Figure 5.5 as a random oracle, if FLP is ε-sound (Sec-

tion 5.2), then for every adversary A against the robustness of Π it holds that

Advrobust
Π (A)≤ (qRG+qPrep) · ε +

qRG+qPrep2

2κ−1 ,

where A makes qPrep queries to Prep and a total of qRG queries to its random oracles.

For reasonable choices of the PRG seed size, the loosest term in this bound is (qRG+

qPrep) ·ε . The multiplicative loss of qRG+qPrep reflects the adversary’s ability to partially control

the randomness of the FLP insofar as it is able to use rejection sampling to obtain query and

joint randomness with any property. The ε-soundness of FLP bounds the probability of violating

275

soundness in a single interaction, but in a VDAF the attacker may interact with the underlying

FLP once in each of its qPrep queries to Prep, and it can use its queries to RG1 to bias these

interactions’ joint randomness.

Proof:[Proof sketch] We sketch the security reduction here and defer the detailed proof

to Section 5.9.1. Our goal is to construct from A a malicious prover P∗ for the soundness of FLP.

The overall idea is to run A in a simulation of the robustness game for Π in which P∗’s instance

of the soundness experiment (Figure 5.2) is embedded in a random Prep query so that P∗ wins

its game precisely when A sets win← true for the first time in that query. The main difficulty

is that P∗ must arrange to use the joint randomness it received as input in its own game. To

provide a consistent simulation of RG1, we need to arrange to extract the input to commit to

from A’s queries. This results in a union bound over all queries to RG1, either by the simulation

of Prep or by A directly. �

Remark 5. For FLPs that do not make use of joint randomness (i.e., those for which jl = 0),

queries to RG1 can be disregarded, as this oracle is not used by Π . In particular, a similar

reduction can be shown that results in a multiplicative loss of just qPrep.

Remark 6. Although we have not addressed this explicitly in our specification, the extraction

step of our security reduction relies on the encoding of the context string passed to each RGi

being invertible. (Similarly for Theorem 5.3.)

Theorem 5.2. Modeling each RGi in Figure 5.5 as a random oracle, if FLP is δ -private, then

for all 0 < t < s and attackers A it holds that

Advpriv
Π ,t (A)≤ 2qShard

(
δ +

qRG+qShard
|N|

+
s ·qRG
2κ−1

)
,

where A makes qShard queries to Shard and a total of qRG queries to the random oracles.

Proof:[Proof sketch] The full proof is given in Section 5.9.2. The main idea is to arrange

for A’s queries to its oracles to be independent of the challenge bit. We do so via a game-

playing argument in which we incrementally revise the game until the outcome of each oracle is

independent of the current state of the game. The last step involves a hybrid argument, where

in each hybrid world we replace one invocation of the proof- and query-generation algorithms

276

of FLP (see Figure 5.2) with invocation of the simulator hypothesized by the δ -privacy of FLP.

This accounts for the multiplicative loss of qShard in the bound. �

Remark 7. Instead of using separate seeds for the input share, proof share, and blind, it may be

safe to reuse the same seed for all three purposes, similar to the seed in Doplar (Section 5.5).

This may result in a slightly looser bound: such a change would enable the attacker to test

guesses of the input share because the known joint randomness part would be derived from the

same seed.

5.5 Doplar

In this section we describe and analyze Doplar, our round-reduced variant of Poplar1 [26].

Poplar1 is a candidate for standardization in draft-irtf-cfrg-vdaf-03; Doplar is introduced by our

paper.

Poplar1 is designed to solve the “heavy hitters” problem (as described in Section 5.1)

using an IDPF (Section 5.2) in the following way. Two aggregators hold shares of an IDPF key

generated by the clients. Each evaluates its IDPF key at a number of equal-length candidate

prefixes. They expect that the output is non-zero for at most one of these candidates; to verify

this, they execute an MPC to determine if they hold shares of a one-hot vector, and that the

non-zero value is in the desired range (i.e., equal to one or zero). If verification succeeds, then

each adds its share of the vector together with the other verified shares. The result is a vector

representing the number of measurements prefixed by each candidate.

The “secure sketch” MPC of Boneh et al. [61] requires two rounds of communication

between the aggregators. (Computing and verifying this sketch occurs during the preparation

phase of VDAF evaluation.) In this section we propose an alternative strategy that, leveraging

techniques in Section 5.4, requires just one.

Our first step is to factor the validity check into two, parallelizable computations. The

first computation is solely responsible for checking that the vector of IDPF outputs is one-hot. In

Section 5.5.1 we extend IDPFs (Section 5.2) into verifiable IDPFs (VIDPFs), which preserve the

same privacy properties as IDPFs, but additionally verify the one-hotness of the refined shares.

In Section 5.7 we show how to instantiate this primitive using a simple technique from DeCastro

277

and Polychroniadou [92].

The second computation checks that the sum of the elements of the vector is in the

desired range. Our first idea is to perform this range check using an FLP (Section 5.2). This

does not work, however, since a standard FLP requires the prover to know the statement it is

proving; in our case, it does not know the value of the sum computed by the aggregators, since

it does not know the candidate prefixes. To overcome this, we show how to transform an FLP

into one that is delayed input [165]. Such a proof system allows a proof to be generated for a

set of potential inputs such that the honest verifier accepts the proof for any input in this set,

but rejects otherwise (with high probability). We define delayed-input FLP in Section 5.5.2 and

defer the construction to Section 5.8.

The result is the 1-round, 2-party VDAF presented in Section 5.5.3. The cost of this

round reduction is a modest increase in overall communication cost and CPU time, at least for

the current instantiations of the VIDPF and delayed-input FLP. We compare the cost of Doplar

and Poplar1 at the end of this section.

5.5.1 Verifiable IDPF

A verifiable IDPF (VIDPF) allows the dealer to prove to the shareholders that their

shares represent a one-hot vector. For our purposes, we define a one-hot vector as a vector

that is nonzero in at most one component (i.e., the all-zeroes vector is also one-hot). Verifiable

function secret sharings (of which VIDPF is a special case) were previously considered in [64, 92],

and a construction specifically for VIDPF was given in [92].

A VIDPF has two algorithms in addition to the usual Gen,Eval:

• VIDPF.VEval(id ∈ {1,2},key ∈ {0,1}κ ,pub ∈M ,

~x ∈ ({0,1}`)u)→ {0,1}∗× (G`)
u takes as input an IDPF share (private and public parts),

and a sequence of IDPF inputs. It outputs a verification value and a sequence of output

shares.

• VIDPF.Verify(h1,h2)→{0,1} takes as input two verification values and returns a boolean.

We also overload the syntax of the plaintext evaluation function to take a vector of inputs, i.e.,

278

we let

f
α,~β

(~x) =
(

f
α,~β

(~x[1]), f
α,~β

(~x[2]), . . .
)
.

We say VIDPF is correct if, for all strings α ∈ {0,1}η , all vectors ~β ∈G1×·· ·×Gη , all strings ~x ∈

({0,1}`)∗, all (key1,key2,pub) ∈ [Gen(α,~β)], all (h1,~y1) ∈ [VEval(1,key1,pub,~x)], and all (h2,~y2) ∈

[VEval(2,key2,pub,~x)]:

• ~y1 +~y2 = f
α,~β

(~x)

• If (~y1 +~y2) is a one-hot vector then V.Verify(h1,h2) = 1

Theorem 5.3 requires VIDPF to be extractable. Intuitively, there should be an algorithm

that can extract α,~β from adversarially generated VIDPF key shares. Then VEval must produce

shares consistent with the incremental point function f
α,~β

, whenever Verify succeeds. (A similar

property is formalized for IDPFs by BBCG+21.) This property implies, among other things,

that if Verify succeeds, then shareholders are guaranteed to hold shares of a one-hot vector. We

formalize this property below.

Definition 17 (Extractable VIDPF (cf. [61, Definition 7])). Suppose that VIDPF is defined

in terms of a random oracle with co-domain Y . Refer to the game in Figure 5.6 associated to

VIDPF, extractor E , and adversary A. Define A’s advantage in fooling E as Advextract
VIDPF,E (A) =

2 ·Pr
[
ExpextractVIDPF,E (A)

]
−1.

Finally, our privacy reduction for Doplar (Theorem 5.4) requires the underlying VIDPF

to be private, in the sense that one shareholder’s view—consisting of its share key ĵ, the public

share pub, and the other shareholder’s verification value h—leaks nothing about the secrets α and

β . Prior definitions of verifiable FSS—e.g., the one of DeCastro and Polychroniadou [92]—only

define privacy with respect to a single vector of evaluation points and verification predicate,

both of which are assumed to be known at the time of share generation. In our setting, shares

are generated and only later is there a choice of evaluation points and verification predicates.

The same shares may be evaluated many times, on different input vectors and with different

verification predicates. This leads to a more interactive, and stronger, definition than in prior

279

works.4

Definition 18. Let Exppriv
VIDPF,Sim(A) be the privacy game for VIDPF, two-stage simulator Sim =

(Sim1,Sim2), and adversary A defined in Figure 5.6. Define the advantage of A in distinguishing

Sim’s simulation from its view of VIDPF’s execution asAdvpriv
VIDPF,Sim(A)= 2 ·Pr[Exppriv

VIDPF,Sim(A)]−

1.

If this privacy game withholds the Sketch oracle from the adversary (shaded in Figure 5.6)

then we obtain the privacy game for plain IDPFs, with the adversary’s advantage defined

analogously.

In Section 5.7 we describe a VIDPF construction that satisfies all the necessary security

properties. The construction is heavily based on the verifiable DPF technique from [92].

5.5.2 Delayed-Input FLPs

We introduce a new variant of fully linear proofs (FLPs), in which the prover does not

know in advance which instance (i.e., input) will be used during verification. Instead, the proof is

generated only knowing a set of possible instances; later, the proof is verified using one of those

instances. For technical reasons, the proof and verification steps operate not on the instance,

but on a randomized encoding of the instance. This extra randomness is useful in our eventual

construction (Section 5.8).

We adopt the terminology of delayed-input, which is standard in the study of (inter-

active) zero-knowledge protocols. In an interactive protocol with delayed input, the instance

and witness need not be known/chosen until some intermediate round (often the prover’s final

round). In our setting, the actual choice of instance/witness is not chosen until after the prover

finishes “speaking”. The protocol of Lapidot and Shamir [165] is often regarded as the first ZK

protocol with delayed input, while Katz and Ostrovsky[148] were the first to explicitly rely on

the delayed input property while using a ZK proof in an application.

Definition 19. A delayed-input FLP DFLP consists of the following algorithms:
4The game does not need to provide an oracle for VIDPF.Verify since it is a deterministic algorithm whose

inputs are known to the adversary.

280

Game Expextract
VIDPF,E (A):

1 b←${0,1}; (key1,key2,pub,stateA)←$ ARO()

2 if b = 0: (α,~β)←$E (key1,key2,pub,Rand)
3 b ′←$ ARO,Eval(stateA); ret b = b ′

Eval(~x):
4 (h1,~y1)←$VIDPF.VEvalRO(1,key1,pub,~x)
5 (h2,~y2)←$VIDPF.VEvalRO(2,key2,pub,~x)
6 if b = 0 and VIDPF.VerifyRO(h1,h2) = 1:
7 ret f

α,~β
(~x)

8 else: ret ~y1 +~y2

RO(inp):
9 if Rand[inp] =⊥: Rand[inp]←$Y

10 ret Rand[inp]

Game Exppriv
VIDPF,Sim(A):

11 b←${0,1}; (stateA,α,~β , ĵ)←A()
12 if b = 0: (key ĵ,pub)←$ Sim1(ĵ)

13 else: (key1,key2,pub)←$VIDPF.Gen(α,~β)
14 b ′←ASketch(stateA,key ĵ,pub); ret b = b ′

Sketch(~x):
15 if b = 0: h← Sim2(ĵ,key ĵ,pub,~x)
16 else:
17 (h,_)← VIDPF.VEval(3− ĵ,key3− ĵ,pub,~x)
18 ret h

Game Exppriv
DFLP,Sim(A):

1 b←${0,1}; (X ,stA)← A()
2 if b = 0: (stSim, jr ,qr)← Sim1(|X |)
3 else:
4 jr←$Fjl ; qr←$Fql ; ∆←$Fel

5 π←$DFLP.Prove(X ,∆ , jr)
6 (x,stA)← A(stA, jr ,qr); assert x ∈ X
7 if b = 0: σ ← Sim(stSim)
8 else:
9 σ ← DFLP.Query(DFLP.Encode(∆ ,x),∆ ,π, jr ; qr)

10 b ′← A(stA,σ); ret b = b ′

Figure 5.6. Games for defining extractability (top-left), and privacy (bottom-left) of VIDPFs
and privacy of delayed-input FLP (right).

• DFLP.Encode(∆ ∈ Fel ,x ∈ Fn)→ e ∈ Fn′ takes as input encoding randomness ∆ , and an input

instance x. Returns an encoding of x; we let n′ denote the length of the encoding. The

function Encode(∆ , ·) must be a linear function and invertible. We denote the inverse by

Decode.

• DFLP.Prove(X ⊆ Fn,∆ ∈ Fel , jr ∈ Fjl)→ π ∈ Fm takes as input a set of possible instances,

encoding randomness ∆ , and joint randomness jr . Produces output proof π.

• DFLP.Query(e ∈ Fn′ ,∆ ∈ Fel ,π ∈ Fm, jr ∈ Fjl ;qr ∈ Fql)→ σ ∈ Fv takes as input an encoded

instance e, encoding randomness ∆ , proof π, joint randomness jr , and query randomness qr .

Returns a verifier σ . The function Query(·, ·, ·, jr ;qr) must be linear.

• DFLP.Decide(σ ∈ Fv)→ acc ∈ {0,1}: Takes as input query responses σ and returns a boolean.

281

If Prove is restricted to sets X with |X | = k then we call the construction a delayed-k-input

FLP.

A delayed-input FLP should satisfy the following properties:

• Completeness (with respect to language L): For all X ⊆L , all x ∈ X , and all ∆ :

Pr[Decide(σ) : jr←$Fjl ;π←$Prove(X ,∆ , jr);

σ←$Query(Encode(∆ ,x),∆ ,π, jr)] = 1 .

• Soundness (with respect to L): The scheme should be sound in the usual sense of FLPs,

with respect to the language L ∗ = {(Encode(∆ ,x),∆) | x ∈L }. In other words, it is hard

for a malicious prover to generate a proof that verifies with respect to (e,∆) 6∈L ∗.

• Privacy: In Figure 5.6 we define a game for delayed-input FLPs, in which the proof is

generated using some set X of candidates, and later verified with respect to a particular

x ∈ X . A delayed-input FLP is δ -private if there exists a simulator Sim such that every A’s

advantage is Advpriv
DFLP,Sim(A)≤ δ , where

Advpriv
DFLP(A) = 2 ·Pr[Exppriv

DFLP,Sim(A)]−1 .

5.5.3 Construction

We specify our construction Doplar[VIDPF,DFLP,PRG] in Figure 5.7. Its three compo-

nents are: a verifiable IDPF VIDPF with input length η; a delayed-2-input FLP DFLP with

input set {0,1}, proof length m, encoded input length n, encoding randomness length el , joint

randomness length jl , and query randomness length ql ; and a pseudorandom generator PRG

(Section 5.2) with seed length κ . To be suitable for our construction, we must choose VIDPF and

DFLP so that VIDPF.G` = DFLP.Fn for each ` ∈ [η].

To shard its measurement α ∈ {0,1}η , the client begins by running the VIDPF key

generator on α. The initial state for Doplar encodes the “level” ` at which the VIDPF shares

are to be evaluated; each candidate prefix must have length `. (Recall from Section 5.2 that

282

Algorithm Shard(α,n):
1 //Construct the VIDPF key shares.
2 seed1,seed2←${0,1}κ

3 for ` ∈ [η]:
4 ~∆ [`]← RG2(seed1,n‖`‖1)
5 +RG2(seed2,n‖`‖2)
6 ~β [`]← DFLP.Encode(~∆ [`],1)
7 (key1,key2,pub)←$VIDPF.Gen(α,~β)
8 //Prepare the joint randomness parts.
9 ~rseed [1]← RG5(seed1,n‖1‖pub ‖key1)

10 ~rseed [2]← RG5(seed2,n‖2‖pub ‖key2)
11 //Generate the level proofs.
12 for ` ∈ [η]:
13 jseed ← RG6(0κ , `‖ ~rseed)
14 jr ← RG1(jseed ,n‖`)
15 π←$DFLP.Prove({0,1}, ~∆ [`], jr)

16 ~pf [`]← π−RG3(seed2,n‖`)
17 //Prepare the initial message and input shares.
18 x1← (key1,seed1, ~pf)
19 x2← (key2,seed2)

20 M← (pub, ~rseed)
21 ret (M,x1,x2)

Algorithm Unpack(ĵ,x ,n, `):
22 if ĵ = 1: (key,seed , ~pf)← x ; π ← ~pf [`]
23 else:
24 (key,seed)← x ; π ← RG3(seed ,n‖`)
25 ret (key,seed ,π)

Algorithm Prep(ĵ,sk,state,n,M,x):
26 if state ∈QInit: //Process initial message from client
27 (`, ~pfx)← state; u← | ~pfx |
28 (pub, ~rseed)←M; (key,seed ,π)← Unpack(ĵ,x ,n, `)
29 ∆ ← RG2(seed ,n‖`‖ ĵ)
30 ~rseed [ĵ]← RG5(seed ,n‖`‖ ĵ‖pub ‖key)
31 jseed ← RG6(0κ , ~rseed)
32 jr ← RG1(jseed ,n‖`); qr ← RG4(sk,n‖`)
33 (h,~y)← VIDPF.VEval(ĵ,pub,key, ~pfx)
34 inp← ∑i∈[u]~y[i]
35 σ ← DFLP.Query(inp,∆ ,π, jr ; qr)

36 M← (σ , ~rseed [ĵ],h)
37 state← (jseed ,(DFLP.Decode(~y[i]))i∈[u])
38 ret (running,state,M)
39 //Process broadcast messages from aggregators
40 (jseed ,~y)← state

41

(
(σ1,rseed1,h1),(σ2,rseed2,h2)

)
←M

42 acc← DFLP.Decide(σ1 +σ2)
43 if acc and jseed = RG6(0κ ,(rseed1,rseed2))
44 and VIDPF.Verify(h1,h2): ret (finished,~y)
45 else: ret (failed,⊥)

Algorithm Agg(~y): ret ∑
|~y|
i=1~y [i]

Algorithm Unshard(_ ,~a): ret ∑
|~a|
i=1~a[i]

Algorithm RGi(seed ,cntxt):
46 l← (jl ,el ,m,ql)
47 if i≤ 4: ret Expand[PRG](seed , `i ‖cntxt ,F.p, l[i])
48 else: ret PRG.Next(PRG.init(seed , `i ‖cntxt),κ)

Figure 5.7. Definition of 1-round, 2-party VDAF Doplar[VIDPF,DFLP,PRG]. Let `1, . . . , `6 be
arbitrary, distinct bitstrings.

(V)IDPFs can be thought of as shares of values arranged in a binary tree with nodes labeled by

prefixes.) For each level of the VIDPF tree, the client generates a delayed-input proof of the

refined shares’ validity; just as for Prio3 (Section 5.4), the joint randomness used at each level is

derived from the aggregator’s input shares. The VIDPF output is programmed so that the sum

of the output shares corresponds to an encoded input for the delayed-input FLP.

To prepare a report for aggregation, the aggregators evaluate their VIDPF key shares at

the desired candidate prefixes, then interact in order to check that (1) the joint randomness was

computed correctly, (2) their refined shares are one-hot, and (3) the sum of their refined shares

is either one or zero.

283

Allowed initial states

An initial state is valid if it consists of a sequence of candidate prefixes all having the

same length. Moreover, each of the prefixes must be distinct. An initial state is allowed for

Doplar[VIDPF,DFLP,PRG] if the prefix length is distinct from all previous states for the same

report. That is, the allowed-state algorithm validSt only permits a new state state = (`, ~pfx) if `

is distinct for all previous states and each of the prefixes ~pfx is distinct.

Remark 8. Although not addressed in Boneh et al. [61] explicitly, this restriction on the candidate

prefixes is necessary for Poplar as well, as re-using the correlated randomness shared by the

client would reveal information about the secret-shared vector.

Consistency

The set of refined measurements for Doplar are one-hot vectors over the field F for which

the non-zero element is equal to 0 or 1. For a given initial state (`, ~pfx), this can be computed

from the VIDPF public share and key shares by evaluating the shares on each of the prefixes

~pfx . Since the VIDPF is a point function and the prefixes are distinct, the vector of VIDPF

outputs will contain at most one nonzero entry. Aggregation consistency for Doplar is similarly

straight-forward, since the refined share space and aggregate share space are the same and both

aggregation and unsharding are vector summation. When we let finishResult be vector summation

as well, the desired property is trivially true.

Security

Let Π = Doplar[VIDPF,DFLP,PRG] as specified above. Let N be the nonce space and let

κ be the seed length for PRG.

Theorem 5.3. Modeling each RGi in Figure 5.7 as a random oracle, if DFLP is ε-sound, then for

all tA-time adversaries A and tE -time extractors E there exists a O(tA +qPreptE)-time adversary

B for which

Advrobust
Π (A)≤ 2(qRG+qPrep) · ε +

(qRG+3qPrep)
2

2κ

+qPrep ·Advextract
VIDPF,E (B) ,

284

where A makes qPrep queries to Prep and a total of qRG queries to its random oracles.

Proof:[Proof sketch] The proof has a similar structure to Theorem 5.1 in that the last

step is a reduction to the soundness of DFLP. However in order to use this, we must first revise

the game so that the challenge input issued by the malicious prover P∗ was constructed from the

sum of refined shares that are otherwise valid (i.e., one-hot). Using the extractability property of

VIDPF, we can simplify the winning condition by extracting the the input measurement from the

adversary’s random oracle queries and use it to compute the refined measurement whenever the

one-hotness check succeeds. Refer to Section 5.9.3 for the proof. �

Theorem 5.4. For all tA-time adversaries A and t ′-time simulators S ,T there exist O(tA +

qShardt ′)-time adversaries B ,C for which

Advpriv
Π ,1(A)≤ 2qShard

(
Advpriv

VIDPF,S (B)+η ·Advpriv
DFLP,T (C)

+
ηqRG+qShard

|N|
+

3qRG
2κ−1

)
,

where each RGi in Figure 5.7 is modeled as a random oracle, adversary A makes a total of qRG

queries to all of its random oracles and qShard queries to Shard.

Proof:[Proof sketch] The reduction to DFLP privacy follows the same lines as Theorem 5.2

except there are η ·qShard different hybrid worlds in the last step. Privacy of VIDPF is used to

ensure that the simulation of the boundary world can be carried out without access to the input

measurement. Refer to Section 5.9.4 for the proof. �

5.5.4 Performance Evaluation

In this section we compare the cost of Doplar to Poplar1 in terms of communication

(total bits written to the wire) and computation. The parameters chosen for Poplar1 by the

specification [26] match those in the performance evaluation conducted by Boneh et al. [60].

We therefore take these parameters as our basis for comparison. In the following, we have

instantiated VIDPF and DFLP as described in Section 5.7 and Section 5.8 respectively.

Boneh et al. [60] claim a per-report robustness bound of roughly 2/|F|, where F is the field

285

0

50

100

150

200

B
a
n
d
w
id
th

(K
il
o
b
y
te
s)

Doplar Client

Doplar Aggregator

Poplar1 Client

Poplar1 Aggregator

100 200 300 400 500
0

5

10

15

Input Length (Bits)

R
u
n
ti
m
e
(m

il
li
se
co
n
d
s) Doplar Client

Doplar Aggregator

Poplar1 Client

Poplar1 Aggregator

Figure 5.8. Bandwidth (top) and runtime (bottom) for Doplar and Poplar1.

chosen for the inner nodes.5 They choose a 62-bit field. In order to obtain the same robustness

bound, while permitting the adversary at most 264 queries to its random oracles, we need to

use a 128-bit field for Doplar. For both constructions, we instantiate the PRG with AES-128 as

described in [26, Section 6.2] (hence the seed length is κ = 128).

Communication overhead

In Figure 5.8 we plot the communication cost of Doplar and Poplar1 for various choices

of the input length η . We plot the total number of kilobytes sent by each client. We also plot the

total number of kilobytes sent by each aggregator, per report, over all η rounds of aggregation.

As one would expect, the communication cost for Doplar scales linearly with the input length.

However, the client’s bandwidth is about 6 times that of Poplar1; and the Aggregator’s bandwidth

is about 5 times.

Computational overhead

To evaluate Doplar’s computational overhead, we implement a prototype6 and benchmark

it against an existing implementation of Poplar1. The ISRG (Internet Security Research Group)
5Poplar1 uses a smaller field for the inner nodes of the IDPF tree than the leaf nodes.
6https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact

286

https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact

maintains Rust implementations of the current crop of VDAF standard candidates.7 The code

includes a work-in-progress version of Poplar1 (on a development branch, as of this writing) as

well as the FLP and IDPF primitives we use in our own implementation of Doplar.

We use the Criterion framework for Rust.8 All benchmarks reported below were run on a

2019 MacBook Pro (2.6 GHz 6-Core Intel Core i7) running rustc version 1.67.1 and cargo-criterion

version 1.1.0. The default parameters were used, except the measurement time was set to 30

seconds for all benchmarks.

Microbenchmarks for sharding. To benchmark the client, we chose a random input string of

the desired length, then measured the runtime of the sharding algorithm on that input. Figure 5.8

shows the runtimes for lengths ranging from 32 to 512 bits. From these data we see that sharding

is about 6 times as expensive for Doplar as for Poplar1. However, sharding a 512-bit input takes

only 5 milliseconds, which is still quite practical. (Moreover, there is more room for optimization

of our prototype.)

Microbenchmarks for preparation. Due to the highly parallelizable nature of VDAFs,

much of the time the aggregators spend on executing the protocol is network-bound. However,

it is useful to assess the amount of CPU time spent on processing a single report. To do so,

we report microbenchmarks for per-report preparation, specifically how much time it takes an

aggregator to compute its (first) broadcast message from the initial state provided by the collector

and the input share provided by the client. Let us call this “preparation initialization”.

One complicating factor is that the runtime of IDPF evaluation depends intrinsically

on the distribution of the batch of measurements and the heavy-hitters threshold used. (We

refer the reader to Algorithm 3 in Boneh et al. [61] for details.) To address this, we generated

a synthetic batch of measurements and computed the prefix tree (cf. [61, Section 5.1]) for the

desired threshold, then ran preparation initialization on the longest paths of this tree.9

The following experiment was run 10 times. Following Boneh et al. [61], we sample

random input strings from a Zipf distribution (with parameter 1.03 and support 128), then
7Source code for the prio crate: https://github.com/divviup/libprio-rs
8Criterion: https://docs.rs/criterion/latest/criterion/
9Note that IDPFs can be implemented with cross-aggregation cache, which amortizes longest-path evaluation

over multiple aggregations.

287

https://github.com/divviup/libprio-rs
https://docs.rs/criterion/latest/criterion/

compute the prefix tree with a heavy-hitters threshold of 10. We chose a batch size of 1000. For

both Doplar and Poplar, run Criterion to measure the runtime of preparation for the longest

paths of the tree.

Figure 5.8 shows the runtime averaged over all trials for lengths ranging from 32 to 512

bits. From these data we see that preparation is only about 1.75 times as expensive for Doplar

as for Poplar1. This is not surprising, given that the runtime is dominated by IDPF evaluation,

which in turn depends on the number of candidates.

Level skipping. One way to improve bandwidth for both schemes is to “skip” IDPF evaluation

at certain levels. For example, if we descend the IDPF tree in τ-bit increments instead of 1-bit

increments, then (1) our VIDPF construction requires one-hot check material only in every τ-th

level, and (2) the Doplar construction requires DFLPs only at every τ-th level.10 As a result,

these major contributors to communication cost are reduced by a factor of τ. Additionally, the

process of aggregating (traversing the tree of prefixes to find heavy hitters) requires fewer rounds

by a factor of τ. The trade-off is that we consider more candidate prefixes at each level—i.e.,

at each step we consider the 2τ descendants at depth τ from each candidate—but this cost is

amortized over the batch.

Notably, the impact of this optimization is more significant for Doplar than for Poplar1.

(For example, a “skip factor” of τ = 2, i.e., skipping every other level, reduces the client’s overhead

from 6 to 5 times that of Poplar1 with the same optimization.) This is primarily due to the

reduction in the number of delayed-input proofs, which make up the bulk of the first input share.

(The second input share compresses its shares of the proofs into a single PRG seed.)

5.6 Conclusion and Future Work

The PPM working group’s ambition is to preserve user privacy even as software systems

rely increasingly on gaining insights into user behavior. Our work aims to help ensure that this

effort rests on firm formal foundations. However, we leave open a number of directions for future

work. We discuss two in the remainder.
10The underlying (non-verifiable) IDPF is still organized as a binary tree, so its cost is not affected.

288

Security analysis of DAP

The definitions in this paper apply to VDAFs, which are only a component of the DAP

specification [117]. Thus, our work necessarily leaves open the security of the end-to-end protocol.

There are two important questions. First, DAP is designed to inherit the security properties of

VDAF, i.e., one would hope that whatever can be proven about the VDAF also holds when the

VDAF is instantiated in the real-world environment in which DAP runs. One way to address this

is to formulate the problem in terms of indifferentiability [196]: if DAP’s execution can be shown

to be indifferentiable from the execution of the VDAF in the idealized environment described

here, then any attack against DAP can be translated into an attack against the underlying

VDAF.

The other important question is whether DAP meets its own security goals, which,

depending on the application, might go beyond what can be achieved with a VDAF alone.

Consider that whether MPC-style definitions like ours are enough for privacy depends intrinsically

on the nature of the measurements being collected and how they are aggregated. It is one thing

to ensure that we securely compute the aggregate; it is another to ensure that the aggregate

itself does not leak “too much” information about the measurements. In particular, in many

applications it will be useful to achieve differential privacy (DP) [110] in addition to secure

computation. There are definitions of DP that extend to the multi-party setting [178, 208],

and a number of works have considered MPC protocols for aggregation functionalities that also

guarantee differential privacy of the outputs [204, 136, 27]. We hope to see future work extend

this investigation to specific VDAFs.

Doplar improvements

For some applications, it would be useful for Doplar (or Poplar1) if the leaf output could

be “weighted”, i.e., a number in range {a, . . . ,b} rather than {0,1}. (Consider the ad-conversion

use case from Section 5.1: it might be useful to know not only how many purchases were made

per ad impression, but the total amount of money that was spent.) The delayed-k-input FLP

paradigm may allow for this generalization, if schemes can be constructed for k > 2. (In this

work, we only construct the delayed-2-input FLP needed for plain heavy hitters.)

289

There is also room for improvement of the communication cost. Despite the round

reduction, the higher bandwidth may be prohibitive for some applications. However, we are

optimistic that the bandwidth can be improved. Future work should focus on the delayed-2-input

FLP. The current instantiation (Section 5.8), while simple, effectively doubles the proof size of

the base FLP.

Acknowledgements

Thank you to the anonymous reviewers from the PETS 2023 program committee whose

feedback helped us improve a number of technical aspects of our paper. Thank you as well to

Christopher Wood who helped us position this work in the context of the ongoing standardization

effort at IETF. Finally, thanks to Nikita Borisov, Sofía Celi, Tanya Verma, Tara Whalen, and

Avani Wildani for editorial improvements.

Hannah and Mike carried out their work on this paper while visiting Cloudflare Research.

This research received no specific grant from any funding agency in the public, commercial, or

not-for-profit sectors.

5.7 Instantiating VIDPF

In this section we present our proposed VIDPF construction.

De Castro-Polychroniadou technique.

De Castro & Polychroniadou [92] (hereafter DP22) proposed the following simple and

elegant technique to verify that a vector is one-hot. Consider a vector ~v that is additively

secret-shared ~v =~v1⊕~v2. For simplicity, we describe the technique assuming that the sharing is

with respect to XOR, since in that case the shares of zero are identical strings. The technique

adapts readily to the more general case of additive shares over any group. Assume also that the

parties have additive shares of a binary indicator vector ~b =~b1⊕~b2, which is nonzero exactly in

the same positions that ~v is.

First, observe that the parties can easily verify whether they hold shares of an all-zeroes

vector, since this happens if and only if their shares (as strings) are identical. They can simply

exchange and compare hashes of their share-vectors (although see our remark below for a

290

disclaimer about this idea). The technique of DP22 is to adjust a one-hot vector into an all-zeroes

vector, with the help of the dealer.

Define

adjust(~vi,~bi,C) =
(

H(1,~vi[1])⊕~bi[1] ·C, H(2,~vi[2])⊕~bi[2] ·C, . . .
)

If ~v and~b are nonzero in (only) position i∗, then set C∗ = H(i∗,~v1[i∗])⊕H(i∗,~v2[i∗]). Now consider

the result of both shareholders applying adjust(·, ·,C∗) to their shares:

• In positions i 6= i∗ where they share zero, we have ~v1[i] =~v2[i] and ~b1[i] =~b2[i]. For these

positions in the output of adjust, both parties will compute identical strings.

• In position i∗, the parties have~b1[i∗] 6=~b2[i∗]. By symmetry, suppose~b1[i∗] = 1 and~b2[i∗] = 0.

Then the first party will compute

H(i∗,~v1[i∗])⊕C∗

= H(i∗,~v1[i∗])⊕
(
H(i∗,~v1[i∗])⊕H(i∗,~v2[i∗])

)
= H(i∗,~v2[i∗])

and the second party will compute H(i∗,~v2[i∗]) as well.

In all cases, both parties will compute the same output of adjust, which they can check for

equality by exchanging and comparing hashes. Hence, the dealer will compute the C∗ value and

include it in the parties’ DPF keys. They can use C∗ to perform their verification.

To see why the DP22 approach is sound, suppose the parties hold shares of a non-one-hot

vector — i.e., it is nonzero at positions i 6= i′. Do both parties compute the same output of adjust?

This can only happen if C∗ value somehow corrects both positions i and i′, and this happens only

when

H(i,~v1[i])⊕H(i,~v2[i]) =C∗ = H(i′,~v1[i′])⊕H(i′,~v2[i′])

⇐⇒ H(i,~v1[i])⊕H(i,~v2[i])⊕H(i′,~v1[i′])⊕H(i′,~v2[i′]) = 0

291

The construction is therefore sound if it is hard to find “multi-collisions” of this form in H. In

particular, if H is a random oracle with output length 4κ then an adversary making q < 2κ

queries to H can find such a collision with probability bounded by q4/24κ � q/2κ .

Regarding privacy, there is one subtle issue that must be considered. Suppose party #1

holds its share ~v1 and the correction value C∗ = H(i∗,~v1[i∗])⊕H(i∗,~v2[i∗]). Suppose this party

has a guess for i∗ and a guess for the nonzero value v =~v1[i∗]⊕~v2[i∗]. Then she can verify this

guess by checking whether C∗ = H(i∗,~v1[i∗])⊕H(i∗,~v1[i∗]⊕ v) — all values she knows. Hence, C∗

exposes an offline dictionary attack on the secret values i∗ and ~v[i∗]. If ~v[i∗] is high entropy, then

this is no vulnerability at all. But if ~v[i∗] is known to be a small value like 1 (as is the case in

many applications), then this issue allows a corrupt shareholder to unilaterally learn i∗, violating

privacy. We resolve this by simply ensuring that the dealer encodes a random element at the

one-hot position (in addition to a potentially low-entropy desired value).11

Extending to incremental DPF

The technique of DP22 is well-suited for DPFs. In an incremental DPF (IDPF), we can

apply their technique to each prefix-length. However, this guarantees only that each prefix-length

corresponds to some point function. It does not necessarily guarantee that the point functions of

the different prefix-lengths satisfy the prefix condition that is needed in an IDPF.

In our construction, we extend the DP22 technique to IDPFs. For each evaluation of the

IDPF — say, at point x — we compute the adjustment strings using the DP22 technique, for x

and all of its prefixes. This alone is not enough to guarantee the prefix property. To “tie different

prefix lengths together,” we ask the shareholders to compute the adjustment strings with respect

to the same sharings of the indicator bit, for all the prefixes of x. We show that this forces the

point functions at every prefix-length to be prefix-consistent.
11 We have chosen to describe our VIDPF to use an underlying IDPF as a black-box. When this is the case, we

must ensure that the IDPF outputs have sufficient entropy for the one-hotness check. If we were to instead to
analyze our VIDPF (instantiated with a natural IDPF construction) as a monolithic construction, it is likely that
the underlying IDPF would already have internal entropy available that could be used for the one-hotness check.
I.e., we may be able to obtain smaller share sizes by exploiting internal properties of the underlying IDPF.

292

VIDPF.Gen(α ∈ {0,1}η ,~β ∈G1×·· ·×Gη):
1 for ` ∈ [η]:
2 ~R[`]←${0,1}κ

3 ~β ∗[`]← (1,~β [`],~R[`])
4 (key1,key2,pub)← IDPF.Gen(α,~β ∗)
5 for ` ∈ [η]:
6 pfx ← α[1 : `]
7 (_,data1,R1)← IDPF.Eval(1,key1,pub,pfx)
8 (_,data2,R2)← IDPF.Eval(2,key2,pub,pfx)

9
~C[`]← RG(pfx ‖−data1 ‖−R1)

⊕RG(pfx ‖data2 ‖R2)

10 pub∗← (pub,~C)
11 ret (key1,key2,pub∗)

VIDPF.VEval(id,key,pub∗,~x):
12 (pub,~C)← pub∗

13 for i ∈ [|~x|]
14 ~y[i]← IDPF.Eval(id,key,pub,~x[i])
15 (b, ~data[i],R)←~y[i]
16 h← h‖adjust(id,key,pub∗,b,~x[i])
17 ret (h, ~data)

VIDPF.adjust(id,key,pub∗,b,x): // a helper proce-
dure
18 (pub,~C)← pub∗

19 if |x|= 0: ret x // length of x as a bit string
20 (_,d,R)← IDPF.Eval(id,key,pub,x)
21 prefix ← adjust(id,key,pub∗,b,x[1 : |x|−1])
22 ret prefix ‖

(
RG(x‖(−1)idd ‖(−1)idR)⊕b ·~C[|x|]

)
VIDPF.Verify(h1,h2):
23 ret h1 == h2

Figure 5.9. VIDPF construction VIDPF[IDPF], based on any IDPF. If the VIDPF is to
be instantiated with groups G1, . . . ,Gη then the underlying IPDF is instantiated with groups
G̃1, . . . ,G̃η , where G̃` = {0,1}×G`×{0,1}κ .

Immediate Optimizations in an Implementation

Our construction evaluates the underlying IDPF on all prefixes of the given strings. Doing

this naïvely would increase the computational costs by a factor of ` when evaluating on strings

of length `. However, these extra evaluations are essentially free in existing IDPFs — while

evaluating at string x, these constructions already evaluate all prefixes of x along the way. A

reasonable implementation of our VIDPF will take advantage of this fact.

The verification value h produced by VEval is a very long string, consisting of ` ·4κ bits

for each query point of length `. If parties are to exchange these h values in an application of

our VIDPF, it would account for a significant fraction of the total communication. However, the

Verify algorithm that uses these h values merely checks them for equality. Therefore, it suffices

for each party to send only a collision-resistant hash of their h value, which can have fixed length

only 2κ . This optimization changes the concrete security bound for VIDPF soundness, by adding

a term for the probability of finding a collision under the hash function.

Lemma 5.5. Let IDPF be an IDPF and RG be a random oracle with outputs of length 4κ. Let

A be an adversary making q queries to RG. There is a O(tA)-time adversary A′ such that the

293

construction VIDPF[IDPF] in Figure 5.9 satisfies the following:

Advextract
VIDPF[IDPF],E (A)≤ (q4 +q2)/24κ

Advpriv
VIDPF[IDPF](A)≤Advpriv

IDPF(A
′)+q/2κ

Proof: Correctness of our construction follows from the discussion above, and is the

same as in DP22.

Extractability: We begin with a few observations, which hold for all VIDPF keys, even

adversarially generated ones:

Observation: If adjust(1,key1,pub∗,b1,x) = adjust(2,key2,pub∗, b2,x), then

adjust(1,key1,pub∗,b1,x′) = adjust(2,key2,pub∗,b2,x′) as well, for every prefix x′ of x. This follows

trivially by inspection and the recursive nature of adjust. Note that the same b1,b2 are used for

both x and x′.

Observation: Let pub∗ = (pub,~C). Suppose adjust(1,key1,pub∗, b1,x) =

adjust(2,key2,pub∗,b2,x), and IDPF.Eval(1,key1,pub,x)

= (_,y1,R1),and IDPF.Eval(2,key2,pub,x) = (_,y2,R2). Then:

1. If b1 = b2 then RG(x‖−y1 ‖−R1) = RG(x‖y2 ‖R2). This includes the case where (y1,R1)+

(y2,R2) = (0,0), making the two calls to RG identical. It also includes the case where these

two calls to RG are a collision.

2. If b1 6= b2 then ~C[|x|] = RG(x‖−y1 ‖−R1)⊕RG(x‖y2 ‖R2).

This observation can be verified by inspection.

Let E1 denote the bad event that the adversary queries RG and observes a collision. If

RG has outputs of length 4κ, and the adversary makes q oracle queries, then the probability of

this bad event is bounded by q2/24κ . When E1 does not happen, then in condition (1) above,

only the case that (y1,R1)+(y2,R2) = (0,0) is possible.

294

E (key1,key2,pub∗,Rand):
1 (pub,~C)← pub∗

2 if E1 or E2: // defined in the text, here with respect to oracle queries
listed in Rand

3 abort
4 α ← empty string
5 for ` ∈ [η]:
6 if ∃a ∈ {0,1},y1,R1,y2,R2 such that
7 ~C[`] = Rand[(α‖a)‖−y1 ‖−R1]⊕Rand[(α‖a)‖y1 ‖R2]
8 α ← α ‖a
9 ~β [`]← y1 + y2

10 else: α ← α ‖0; ~β [`]← 0
11 ret (α,~β)

Figure 5.10. Extractor for the proof of Lemma 5.5.

Let E2 denote the bad event that the adversary makes any four queries to RG that satisfy:

RG(pfx ‖−d1 ‖−R1)⊕RG(pfx ‖d2 ‖R2) =

RG(pfx ′ ‖−d′1 ‖−R′1)⊕RG(pfx ′ ‖d′2 ‖R′2)

for pfx 6= pfx ′ and d1 +d2 6= 0 and d′1 +d′2 6= 0. (These conditions ensure that the four calls to

RG must be on distinct inputs.) If RG has outputs of length 4κ, and the adversary makes q

oracle queries, then the probability of this bad event is bounded by q4/24κ . When E2 does not

happen, then any value C ∈ {0,1}4κ uniquely determines at most one pair of queries satisfying

C = RG(pfx ‖−d1 ‖−R1)⊕RG(pfx ‖d2 ‖R2)

We can apply the two observations inductively and obtain the following property. If

adjust(1,key1,pub∗,b1,x) = adjust(2,key2, pub∗,b2,x) for b1 6= b2, then every correction word ~C[`]

must be of the form RG(x[1 : `]‖ · · ·)⊕RG(x[1 : `]‖ · · ·), for `≤ |x|. Then, provided that E2 does

not happen, there is at most one x of length ` for which ~C can be written in this way.

Combining all of these observations, we can define the extractor as shown in Figure 5.10.

Conditioned on the event that E doesn’t abort (which happens only with probability

(q4 +q2)/24κ), we claim that the adversary has no advantage in the extractability game.

Consider a query to Eval(~x) in the game, and assume the call to Verify succeeds. Then

for every ~x[i], the corresponding calls to adjust produce identical output. If these calls to adjust

295

have b1 = b2, and E1 has not happened, then the corresponding output ~y[i] must be 0. If these

calls to adjust have b1 6= b2, then ~C[`] must have the form RG(~x[i]‖ · · ·)⊕RG(~x[i]‖ · · ·). If E2

has not happened, then ~x[i] is in fact unique with this property, and therefore ~x[i] is a prefix

of α computed by the extractor E . One can easily check that E extracts ~β [`] that is equal to

the VIDPF output ~y[i]. In other words, ~y matches the output of f
α,~β

. Hence, the adversary’s

advantage is zero.

Privacy: Let SimIDPF be the simulator for privacy for the underlying IDPF. The simulator

for our construction is given in Figure 5.11. We prove privacy in a series of hybrids, also illustrated

in Figure 5.11. Game G0 refers to the original experiment Exppriv
VIDPF, where we have inlined the

definition of Sim2 for convenience. The b = 0 and b = 1 branches of the Sketch oracle differ

only in whose shares are given as input to VIDPF.VEval. By the correctness of the scheme, the

distinction doesn’t matter, so the Sketch oracle is independent of b. Eliminating the conditional

in the Sketch oracle, we obtain G1, which is distributed identically to G0.

G2 is identical to G1, but we have inlined the definition of VIDPF.Gen for convenience. By

the correctness of the underlying IDPF, outputs of IDPF.Eval(1, ·) and IDPF.Eval(2, ·) are secret-

shares of the appropriate plaintext values. So it has no effect on the adversary’s view to solve

for the output of IDPF.Eval(3− ĵ, ·) using the plaintext values and the output of IDPF.Eval(ĵ, ·),

instead of using key3− ĵ. In doing so, we obtain G3 which is distributed identically to G2.

Now notice that in G3, the value key3− ĵ is never used. As such, we can replace line 26

(the call to IDPF.Gen) with a corresponding call to the simulator SimIDPF, which generates a

simulated key ĵ and pub. Call the result G4 (not pictured); this advantage in distinguishing G3

from G4 is at most εpriv.

In G4, the random values ~R[`] are used only to solve for R3− ĵ, which is in turn used only

as an argument to RG. Define a bad event that the adversary ever queries RG at an input of

this form — i.e., of the form RG(·‖ · ‖~R[`]−R ĵ). The probability of the bad event is bounded by

q/2κ since ~R[`] is uniformly random. Conditioned on this bad event not happening, the results

of these queries to RG are freshly random, and the value that is assigned to ~C[`] is uniform. In

that case, the behavior of the game is independent of the challenge bit because Sim1 also assigns

uniform values to ~C[`]. The advantage in guessing the challenge bit is therefore bounded by the

296

Sim1(ĵ):
1 (key,pub)← SimIDPF()
2 for ` ∈ [η]: ~C[`]←${0,1}4κ

3 pub∗← (pub,~C)
4 ret (key,pub∗)

Sim2(ĵ,key,pub,~x):
5 (h,_)← VIDPF.VEval(ĵ,key,pub,~x)
6 ret h

Game G0 G1 :
7 b←${0,1}
8 (stateA,α,~β , ĵ)←A()
9 if b = 0: (key ĵ,pub∗)←$ Sim1(ĵ)

10 else: (key1,key2,pub∗)←$VIDPF.Gen(α,~β)
11 b∗←ASketch(stateA,key ĵ,pub∗)
12 ret b = b∗

Sketch(~x):
13 if b = 0:
14 // h ← Sim2(ĵ,key ĵ,pub∗,~x)

15 (h,_)← VIDPF.VEval(ĵ,key ĵ,pub∗,~x)
16 else:
17 (h,_)← VIDPF.VEval(3− ĵ,key3− ĵ,pub∗,~x)
18 ret h

Game G2 G3 :
19 b←${0,1}
20 (stateA,α,~β , ĵ)←A()
21 if b = 0: (key ĵ,pub∗)←$ Sim1(ĵ)
22 else:
23 // (key1,key2,pub∗)←$VIDPF.Gen(α,~β):
24 for ` ∈ [η]:
25 ~R[`]←${0,1}κ

26 ~β ∗[`]← (1,~β [`],~R[`])
27 (key1,key2,pub)← IDPF.Gen(α,~β ∗)
28 for ` ∈ [η]:
29 pfx ← α[1 : `]
30 (b1,data1,R1)← IDPF.Eval(1,key1,pub,pfx)
31 (b2,data2,R2)← IDPF.Eval(2,key2,pub,pfx)

32 (b ĵ,data ĵ,R ĵ)← IDPF.Eval(ĵ,key ĵ,pub,pfx)

33
(b3− ĵ,data3− ĵ,R3− ĵ)

← (1⊕b ĵ,
~β [`]−data ĵ,

~R[`]−R ĵ)

34
~C[`]← RG(pfx ‖ −data1 ‖R1)

⊕RG(pfx ‖data2 ‖R2)

35 pub∗← (pub,~C)
36 b∗←ASketch(stateA,key ĵ,pub∗)
37 ret b = b∗

Sketch(~x):
38 // h ← Sim2(ĵ,key ĵ,pub∗,~x)

39 (h,_)← VIDPF.VEval(ĵ,key ĵ,pub∗,~x)
40 ret h

Figure 5.11. Simulator and hybrids used in the proof of privacy for the VIDPF construction.

probability of the bad event. �

5.8 Instantiating Delayed-Input FLP

Our main result is to construct a delayed-2-input FLP for use in Doplar.

Lemma 5.6. The construction in Figure 5.12 (when suitably instantiated) is a delayed-2-

input FLP with perfect completeness, soundness 4(n+ 2)/(|F| − n− 2), and privacy 1/|F|, for

F-arithmetic circuits with n multiplication gates.

The main idea of the construction is simple. The prover wishes to generate a proof that

will work with either of two instances x1 and x2. She simply generates a separate FLP proof for

both instances x1 and x2, and randomly permutes the two proofs. To verify the combined proof

against some x, the verifier accepts iff either of the component proofs verifies against that x.

297

DFLP∗.Prove({~x1,~x2},∆ , jr):
1 (jr1, jr2)← jr
2 ~e1← FLP.Encode(∆ ,~x1)
3 ~e2← FLP.Encode(∆ ,~x2)
4 b←${1,2}
5 πb←$FLP.Prove(~e1,∆ , jrb)
6 π3−b←$FLP.Prove(~e2,∆ , jr3−b)
7 ret (π1,π2)

DFLP∗.Query(~e,∆ ,(π1,π2), jr ;qr):
8 (jr1, jr2)← jr ; (qr1,qr2)← qr
9 σ1←$FLP.Query(~e,∆ ,π1, jr1;qr1)

10 σ2←$FLP.Query(~e,∆ ,π2, jr2;qr2)
11 ret (σ1,σ2)

DFLP∗.Decide(σ):
12 (σ1,σ2)← σ

13 ret FLP.Decide(σ1)
14 ∨ FLP.Decide(σ2)

DFLP∗.Encode(∆ ∈ F,~x ∈ Fn):
15 for i ∈ [n]:
16 ~e[i]←~x[i]
17 ~e[i+n]← ∆ ·~x[i]
18 ret ~e

DFLP∗.Decode(~e ∈ F2n):
19 ret ~e[1 : n]

Figure 5.12. Delayed-2-input FLP construction DFLP∗[FLP]. The construction should be
instantiated where FLP is the FLP for arithmetic circuits from [60].

Completeness and soundness of this construction are relatively clear. However, the

construction is not necessarily zero-knowledge. While verifying the combined proof, we expect to

verify a component proof against a proof that was generated for some other instance — e.g., verify

a proof generated for x1 against x2. The standard zero-knowledge property of the underlying

FLP does not apply to this situation. Indeed, since the Query function is linear, the result of

querying a “mismatched” instance-proof pair will reveal “how far away” the instance is from the

correct one.

We show that, when the underlying FLP is that of Boneh et al. [60], and extra randomness

is introduced into the statement by means of the Encode(∆ , ·) function, even the queries to the

“mismatched” instance+proof can be simulated. Intuitively, the extra uncertainty of ∆ blinds the

results of the problematic queries.

Proof:[Proof of Lemma 5.6]

Figure 5.12 describes a delayed-input FLP that uses a basic FLP as a building block.

Our claims in this proof rely on that FLP being instantiated using the construction of [60], also

used in the VDAF draft specification (see [26, Section 7.3]). We recall the relevant aspects of

that construction below, as needed.

In Doplar, we will use our DFLP construction for the language L = {0,1} — i.e., we use

it to prove that a value is zero or one. In this case, we instantiate the underlying FLP with the

298

circuit:

C((s, t,∆),r) =
(
r · s(s−1)+ r2 · (s ·∆ − t)

)2
, (5.1)

where r denotes the joint randomness. This circuit recognizes the set of inputs (s, t,∆) ∈

{(0,0,∆),(1,∆ ,∆)}. Note that FLP has input length n = 3 and joint-randomness length jl = 1;

its circuit has 3 multiplication gates (s(s−1), s∆ , and the outer square). In the more general

case, FLP will be instantiated for the language {(s, t,∆) | s ∈ L ∧ s∆ = t}. If the circuit for

membership in L has n multiplication gates, then FLP will be instantiated with a circuit with

n+2 multiplication gates.

Completeness follows immediately from the perfect completeness of the underlying FLP.

The FLP of [60] has soundness 2n′/(|F|− n′) when its circuit has n′ multiplication gates. We

instantiate that FLP with n′ = n+2, and we also incur a factor 2 loss in soundness since our

construction verifies two proofs in the underlying FLP. Hence, we obtain the soundness bound

stated in the lemma.

The zero-knowledge simulator for our construction is given as Sim in Figure 5.13. To

demonstrate privacy, we first consider the hybrid on the left of Figure 5.13. With the gray box

included and white box excluded, the hybrid generates exactly the honest verifier’s view. In this

game, both proofs are queried on xc, the adversary’s choice. Note that proof πb⊕c was generated

with input xc in mind, while πb⊕c⊕1 was not. Let u = b⊕ c⊕1, the index of the “mismatched”

proof (i.e., πu was generated with xc⊕1 in mind, not xc). By applying the linearity of Encode(∆ , ·)

and Query(·, ·, ·), we can write:

Query(Encode(∆ ,xc),∆ ,πu,jru;qru) =

Query(Encode(∆ ,xc⊕1),∆ ,πu, jru;qru)

+Query(Encode(∆ ,xc− xc⊕1),0,~0, jru;qru)

Making this change of notation in the game yields hybrid G1 (in Figure 5.13, gray boxes excluded

and outlined box included). G1 is distributed identically to the original privacy game.

299

In each call to Query in G1 that involves a value πi, we use the same input that was used

to generate πi. Hence, we can apply the zero-knowledge property of the underlying FLP to each

such expression. In doing so, we obtain the hybrid G2 on the right of Figure 5.13. The underlying

FLP of [60] has perfect zero-knowledge, so G2 is distributed identically to the original game.

To complete the proof, it suffices to show that σu is distributed pseudorandomly in

F3×{0}, since the simulator samples σu uniformly from that set. In particular, when σ̃ is

distributed as in a simulated proof, ∆ is random, and d 6= 0, what is the distribution on

σ̃ +Query(Encode(∆ ,d),~0,~0, · · ·)?

To answer this question, we must use specific properties of the FLP from [60]. We first

briefly review the main idea behind their proof. The prover defines two polynomials L and R

such that, for each multiplication gate i in the verification circuit, the value on its left wire is L(i)

and its right wire R(i). Additionally, L(0) and R(0) are chosen uniformly. Define the “gadget”

polynomial G = L×R — then G(i) is the value of the output wire of the ith gate.

The proof vector π then consists of L(0), R(0), and the coefficients of the G polynomial.

With that in mind, the Query algorithm makes 4 linear queries to the input + proof vector:

1. Obtain evaluations of the polynomial L as follows:

• L(0) is part of the proof vector.

• For i > 0, if the left input to gate i is an input to the circuit, then L(i) is given as part

of the proof input/instance, to which Query has access.

• Otherwise, the left input to gate i is the output of some other multiplication gate j.

This value can be obtained as G(j), since the coefficients of G are included in the proof

vector.

Reconstruct L as the result of Lagrange interpolation over the points {(i,L(i))}. Evaluate

this polynomial L at point qr (the query randomness).

2. Similarly, reconstruct R and evaluate it at point qr .

3. Evaluate the polynomial G at point qr .

300

4. Evaluate G at point m, where the output of verification circuit is the output wire of the m’th

multiplication gate.

Suppose the results of these queries are (r,s, t,u); the Decide algorithm checks that t = rs and

u = 0. The zero-knowledge property is that the result of the queries is distributed as (r,s,rs,0)

for uniform r,s←$F.

With Query as above, we now consider the distribution of

(r,s,rs,0)+Query(Encode(∆ ,d),~0,~0, · · ·),

where ∆ ,r,s are uniform in F.

• The first component of this expression is uniform due to r.

• With overwhelming probability 1− 1/|F| we have r 6= 0. Conditioned on r 6= 0, the third

component of the expression is uniform, since it is masked with rs, and s is uniform (even

conditioned on the first component).

• Let q4 be the 4th component of Query’s output in the above expression. By definition of

Query, q4 is the result of evaluating G at point qr . But in this expression, the “proof vector”

argument to Query is all zeroes, hence Query evaluates the all-zeroes polynomial and outputs

q4 = 0. Hence the 4th component of the overall expression is zero.

• Let q2 be the second output of Query in the above expression. We see that q2 is the result

of evaluating polynomial R at point qr , after reconstructing R as described above. Fix a

position i in which ~d[i] 6= 0. Then the (n+ i)th position of ~e = Encode(∆ , ~d) is ~e[i] = ~d[i]∆ ,

and therefore is uniformly distributed when ∆ is uniformly distributed.

The final multiplication gate in the verification circuit is the outermost square in (5.1).

The input to this squaring operation is a linear combination that includes ~e[i]. So as ~e[i]

is uniformly distributed, the input to this multiplication gate is also uniformly distributed.

Then the result of interpolating polynomial R (based on ~e[i] among other values) and

evaluating R at qr is also uniformly distributed. In other words, q2 is uniformly distributed

over uniform choice of ∆ , so the second component of the above expression is uniform.

301

Exppriv
DFLP,Sim(A): G1(A):

1 b←${0,1}
2 ({x0,x1},stA)← A()
3 if b = 0:
4 (stSim,(jr0, jr1),(qr0,qr1))← Sim1()
5 else:
6 jr0, jr1←$Fjl ; qr0,qr1←$Fql

7 ∆←$F
//Prove({x0,x1},∆ , jr)

8 b←${0,1}
9 πb← Prove(Encode(∆ ,~x0),∆ , jrb)

10 π1⊕b← Prove(Encode(∆ ,~x1),∆ , jr1⊕b)

11 (c,stA)← A(stA,(jr0, jr1),(qr0,qr1))
12 if b = 0: (σ0,σ1)← Sim∗(stSim)
13 else: //Query(Encode(∆ ,xc),∆ ,π, jr ; qr)

14 σ0← Query(Encode(∆ ,xc),∆ ,π0, jr0;qr0)
15 σ1← Query(Encode(∆ ,xc),∆ ,π1, jr1;qr1)

16 σb← Query(Encode(∆ ,x0),∆ ,πb, jrb;qrb)

17 b′ ← num
den

1⊕b

18 σb′← Query(Encode(∆ ,x1),∆ ,πb′, jrb′;qrb′)
19 u← b⊕ c⊕1 // index of “mismatched” proof
20 σu← σu

+Query(Encode(∆ ,xc− x1⊕c),0,~0, jru;qru)

21 b ′← A(stA,(σ0,σ1))
22 ret b == b ′

G2(A):
1 b←${0,1}
2 ({x0,x1},stA)← A()
3 if b = 0:
4 (stSim,(jr0, jr1),(qr0,qr1))← Sim1()
5 else:
6 ∆←$F
7 b←${0,1}

8 (jr0,qr0,σ0)← SimFLP()
9 (jr1,qr1,σ1)← SimFLP()

10 (c,st)← A(stA,(jr0, jr1),(qr0,qr1))
11 if b = 0: (σ0,σ1)← Sim∗(stSim)
12 else:
13 u← b⊕ c⊕1 // index of “mismatched” proof
14 σu← σu

+Query(Encode(∆ ,xc−x1⊕c),0,~0, jru;qru)
15 b ′← A(stA,(σ0,σ1))
16 ret b == b ′

Sim1():
1 (jr0,qr0,σ0)← Sim()
2 (jr1,qr1,σ1)← Sim()
3 ret

(
stSim = (σ0,σ1),(jr0, jr1),(qr0,qr1)

)
Sim2(σ0,σ1):

4 b←${0,1}
5 σb←$F3×{0} // overwrite σb

6 ret (σ0,σ1)

Figure 5.13. Hybrids for zero-knowledge property of the delayed-2-input FLP construction.

Overall, we have shown that the distribution of σu in G2 of Figure 5.13 is statistical distance

1/|F| from the simulator’s distribution: uniform over F3×{0}. Hence in G2 the adversary has

advantage bounded by 1/|F| in G2. �

5.9 Proofs of Theorems

5.9.1 Prio3 Robustness (Theorem 5.1)

We begin by instantiating the robustness game for Π in Figure 5.14. We expand the

Prep algorithm and make a few simplifications to the game’s internal notation and bookkeeping.

First, the game Exprobust calls for a VDAF with an arbitrary number of rounds, but Prio3

constructions has just one round. Second, we know that the Prep algorithm will be called exactly

twice for each aggregator, and that the initial broadcast message and state are empty. We

302

Game Exprobust
Π (A) G1(A) :

1 win← false; sk←${0,1}κ

2 ARO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed

10 jr ← RO1(~state[ĵ],ε) jr ← RO1(~state[1],ε)
11 qr ← RO5(sk,n)
12 ~vfs[ĵ]← Query(~inp[ĵ],~π[ĵ], jr ;qr)

13 vf ← ∑
s
ĵ=1

~vfs[ĵ]
14 d← FLP.Decide(vf)
15 for ĵ ∈ [s]:
16 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

17 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

18 win ← (win
∨
[acc ĵ ∧ refineFromShares(ε,~x) 6∈

L])

19 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Adversary BRO,Prep():
1 sk′←${0,1}κ

2 ARO,PrepSim()

PrepSim(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>; fwd ← true
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // Joint rand seed

10 if ~state[ĵ] 6= ~state[1]: fwd ← false
11 jr ← RO1(~state[ĵ],ε)
12 qr ← RO5(sk′,n)
13 ~vfs[ĵ]← Query(~inp[ĵ],~π[ĵ], jr ;qr)
14 if fwd : return Prep(n,~x ,msgInit,st Init)

15 ret (false,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Figure 5.14. Left: Definition of game G1 for the proof of Theorem 5.1. Also shown is the
robustness game for Π and adversary A with some simplifications applied. Right: Adversary B .

Therefore unroll the loop of lines 5–14 of Figure 5.3 and evaluate those if-statements whose

values are pre-determined. Third, we replace table St with a vector ~state and remove table Msg

altogether. (The transcript output by the oracle is now constructed at the end on line 21 on the

left-hand panel of Figure 5.14.) Fourth, we evaluate Prep in parallel for all aggregators instead

of in sequence; the order of these operations does not affect their results because aggregators

do not share state. Fifth, we perform the deterministic Decide operation only once since its

result is the same for all aggregators. Finally, we replace each call to RGi with a call to the

corresponding random oracle ROi. Let qi denote the number of queries A makes to ROi; note

that qRG = q1 + · · ·+q7.

We have also dropped winning condition on line 16 of Figure 5.3. By definition,

Π .refineFromShares(ε,~x) = Π .Unshard(1, (Π .Agg(~inp[1]), . . . ,Π .Agg(~inp[s]))), where inp[ĵ] is the

unpacked inner measurement share of input share ~x[ĵ] for each ĵ. Thus win can never be set by

forcing the refined shares to mismatch the expected refined measurement.

303

Now we express the proof with a series of incrementally changed games, beginning with

G1 (c.f. Figure 5.14). The joint randomness for each aggregator ĵ is derived in ExprobustΠ from

the seed jseed ĵ of that aggregator, which is also the state ~state[ĵ]. In G1, we instead derive joint

randomness from ~state[1] for all aggregators, thus ensuring that the joint randomness is the same

for everyone.

We build a wrapper adversary B for which

Advrobust
Π (A)≤ Pr[G1(B)]+

q5

2κ
. (5.2)

Adversary B only makes queries to Prep that set ~state[ĵ] = ~state[1] for all ĵ. It accomplishes

this by calculating ~state[ĵ] for every aggregator and Prep query made by A. If it finds that

~state[ĵ] = ~state[1] for all aggregators, it forwards the query to its own Prep oracle. Otherwise,

it runs Prep itself. B can perfectly simulate Prep except for line 9, because it does not know

sk. Instead, B picks its own verification key sk′ and uses sk′ in line 9 where Prep would use sk.

Adversary A can detect the substitution of sk′ for sk in two cases: If A queries RO5 on seed sk′;

or if the Prep oracle and B query RO5 on the same context string. The latter event does not

occur because each query to RO5 contains a unique nonce. The former occurs with probability at

most q5
2κ , because sk′ is a uniformly random κ-bit string. The queries that B simulates would

always set acc ĵ ← 0 in line 17. Thus any query that would set win← true is forwarded to the

Prep oracle by B , and B wins whenever A does. The claim follows.

Next, we use the full linearity of FLP to decompose FLP.Query into algorithm Q and

a matrix multiplication operation, as shown in the left-hand panel of Figure 5.15. Q is a

randomized algorithm, but it is executed deterministically with fixed input jr and coins qr . We

may therefore call Q only once to eliminate redundancy. Finally, we sum the vectors ~x ĵ ‖π ĵ before

the multiplication instead of multiplying then summing the products. This preserves the output

thanks to the associativity of matrix multiplication.

Full linearity is an information theoretic property that holds unconditionally for all inputs,

304

Game G1(B) G2(B) :
1 win← false; sk←${0,1}κ

2 BRO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed

10 jr ← RO1(~state[1],ε); qr ← RO5(sk,n)
11 ~vfs[ĵ]← Query(~inp[ĵ],~π[ĵ], jr ;qr)

12 vf ← ∑
s
ĵ=1

~vfs[ĵ]

13 jr ← RO1(~state[1],ε); qr ← RO5(sk,n)
14 Z← Q(jr ;qr)
15 vf ← Z ·∑s

ĵ=1
~inp[ĵ]‖~π[ĵ]

16 d← FLP.Decide(vf)
17 for ĵ ∈ [s]:
18 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

19 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

20 win ← (win
∨
[acc ĵ ∧ refineFromShares(ε,~x) 6∈

L])

21 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Game G2(B) G3(B) :
1 win← false; sk←${0,1}κ

2 BRO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed

10 jr ← RO1(~state[1],ε)
11 qr ← RO5(sk,n)
12 Z← Q(jr ;qr)
13 vf ← Z ·∑s

ĵ=1
~inp[ĵ]‖~π[ĵ]

14 inp← ∑
s
ĵ=1

~inp[ĵ]; π ← ∑
s
ĵ=1

~π[ĵ]
15 vf ← FLP.Query(inp,π, jr ;qr)

16 d← FLP.Decide(vf)
17 for ĵ ∈ [s]:
18 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

19 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

20 win← (win
∨
[acc ĵ ∧ refineFromShares(ε,~x) 6∈

L])

21 win← (win
∨
[acc ĵ ∧ inp 6∈L])

22 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Figure 5.15. Game G2 (left) and game G3 (right) for the proof of Theorem 5.1.

proofs, and coins, so the new game computes the same verifier string vf . Thus

Pr[G1(B)] = Pr[G2(B)] . (5.3)

We produce the next modified game, in the right-hand panel of Figure 5.15, to define

variables inp =∑
s
ĵ=1

~inp[ĵ] and π =∑
s
ĵ=1

~π[ĵ] and invoke PRG.Query on inp,π directly. In addition,

from Figure 5.5, we can see that inp = Π .refineFromShares(ε,~x), so we substitute inp into line 21.

By the full linearity of FLP, we have that Q(jr ;qr) · (inp ‖π) = FLP.Query(inp,π, jr ;qr). Again,

these operations do not affect the adversary’s view of Prep, and

Pr[G2(B)] = Pr[G3(B)] . (5.4)

305

In the next game, we replace the pseudorandom query randomness qr with a fresh random

string that is implicitly sampled by Query. We bound the difference in advantage between games

G3 and G4 via a reduction B ′ to the pseudorandomness of RG5. The reduction honestly simulates

G3 except in line 11, where it queries its challenge oracle on n and sets qr to the response.

Because every nonce is unique, these queries are all distinct. When the challenge oracle is a

random function, this is a perfect simulation of G4; otherwise it is a perfect simulation of G3.

Adversary B ′ makes qPrep queries to its challenge oracle; when RG5 is modeled as a random

oracle, there is a maximum of q5 random oracle queries.

The generic PRF advantage for a (q5,qPrep)-query attacker against a random oracle with

domain {0,1}κ is bounded by the probability q5
2κ that the attacker makes a random oracle query

containing sk. Thus

Pr[G3(B)]≤ Pr[G4(B)]+
q5

2κ
. (5.5)

Our next game (G5 defined in the right-hand panel of Figure 5.16) differs from G4 as

follows. We set a bad flag and force the adversary to lose if it makes two queries to Prep which

derive their joint randomness from the same seed. Each query to Prep derives its joint randomness

seed from a unique nonce, so duplicate seeds require a collision between two queries to RO6 or

between two vectors of hints. Both seeds and hints are randomly sampled by random oracles

RO6 and RO7 respectively, so we limit the probability of both types of collision with a birthday

bound over the qPrep queries to Prep:

qPrep2

2κ+1 +
qPrep2

2κ·s+1 <
qPrep2

2κ
.

Since the games are identical until bad gets set, we have

Pr[G4(B)]≤ Pr[G5(B)]+
qPrep2

2κ
. (5.6)

We are now ready to reduce to FLP soundness. To do so, we construct a malicious

prover P∗ in Figure 5.17 from B whose advantage in the FLP soundness experiment is related

306

Game G3(B) G4(B) :
1 win← false; sk←${0,1}κ

2 BRO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed

10 jr ← RO1(~state[1],ε)
11 qr ← RO5(sk,n)
12 inp← ∑

s
ĵ=1

~inp[ĵ]; π ← ∑
s
ĵ=1

~π[ĵ]

13 vf ← FLP.Query(inp,π, jr ;qr)

14 vf ←$FLP.Query(inp,π, jr)

15 d← FLP.Decide(vf)
16 for ĵ ∈ [s]:
17 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

18 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

19 win← (win
∨
[acc ĵ ∧ inp 6∈L])

20 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Game G4(B) G5(B) :
1 win← false; sk←${0,1}κ ; J ← /0
2 BRO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
3 if Used[n] 6=⊥: ret ⊥
4 Used[n]←>
5 for ĵ ∈ [s]:
6 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
7 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
8 ~rseed [ĵ]←~ρ[ĵ]
9 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed

10 if ~state[1] ∈ J : bad← true
11 J ← J ∪{ ~state[1]}
12 jr ← RO1(~state[1],ε)
13 inp← ∑

s
ĵ=1

~inp[ĵ]; π ← ∑
s
ĵ=1

~π[ĵ]
14 vf ←$FLP.Query(inp,π, jr)
15 d← FLP.Decide(vf)
16 for ĵ ∈ [s]:
17 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

18 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

19 win← (win
∨
[¬bad ∧ acc ĵ ∧ inp 6∈L])

20 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Figure 5.16. Fourth and fifth intermediate games for the proof of Theorem 5.1.

to B ’s advantage in winning game G5. Recall from Figure 5.2 that the prover is called twice, first

to choose an input and a second time to generate a proof. The prover is given joint randomness

jr in this second call, after committing to the input. Thus, in our reduction we must extract this

input from B random oracle queries, then program the random oracle with jr before proceeding.

The malicious prover P∗ runs B in a simulation of G5. Its random oracle queries are

answered by lazy-evaluating a table Rand; all oracle queries are handled the same way except

for a distinguished query, which will be programmed using the jr string generated as part

of the malicious prover’s experiment. At the start of the simulation, the prover P∗ samples

i∗←$ [q1 + qPrep]. On the i∗ unique invocation of RO1 (see ROExt1 in Figure 5.17), the prover

checks the table Rand for a nonce n and input shares inp1, . . . , inps that give rise to the seed jseed

provided as input. If successful, the prover outputs inp1 + · · ·+ inps as its challenge input, awaits

the response jr , and sets Rand[1, jseed ,ε]← jr (line 11). It also records n∗← n for use later on.

The simulation of Prep queries is identical except after two events. First, the prover P∗

307

Adversary P∗[B]():
1 win← false; sk←${0,1}κ ; bad← false; J ← /0
2 ctr ← 0; n∗←⊥; i∗←$ [q1 +qPrep]
3 BROExt1,RO2,...,RO7PrepSim(); ret w

ROExt1(seed ,cntxt):
4 if Rand[1,seed ,cntxt] 6=⊥: ret RO1(seed ,cntxt)
5 ctr ← ctr +1
6 if ctr = i∗ ∧ (∃n,(blind ĵ, inp ĵ,ρ ĵ) ĵ∈[s])

7
(
∀ ĵ
)
Rand[7,blind ĵ, ĵ‖n‖ inp ĵ] = ρ ĵ

8 ∧ Rand[6,0κ ,(ρ1, . . . ,ρs)] = seed :
9 output inp1 + · · ·+ inps and wait for jr .

10 n∗← n; Rand[1,seed ,cntxt]← jr
11 ret RO1(seed ,cntxt)

ROi(seed ,cntxt):
12 l← (jl ,n,m,pl ,ql)
13 if Rand[i,seed ,cntxt] =⊥:
14 if i≤ 5: Rand[i,seed ,cntxt]←$Fl[i]

15 else: Rand[i,seed ,cntxt]←${0,1}κ

16 ret Rand[i,seed ,cntxt]

PrepSim(n,~x ,msgInit,st Init):
17 if Used[n] 6=⊥: ret ⊥
18 Used[n]←>
19 for ĵ ∈ [s]:
20 (~inp[ĵ],~π[ĵ],blind)← Unpack(ĵ,~x [ĵ])
21 (~ρ,)← ~M; ~ρ[ĵ]← RO7(blind , ĵ‖n‖ ~inp[ĵ])
22 ~rseed [ĵ]←~ρ[ĵ]
23 ~state[ĵ]← RO6(0κ ,~ρ) // joint rand seed
24 if ~state[1] ∈ J : bad← true; halt.
25 J ← J ∪{ ~state[1]}
26 jr ← ROExt1(~state[1],ε)
27 inp← ∑

s
ĵ=1

~inp[ĵ]; π ← ∑
s
ĵ=1

~π[ĵ]
28 if n = n∗: output π and halt.
29 vf ←$FLP.Query(inp,π, jr)
30 d← FLP.Decide(vf)
31 for ĵ ∈ [s]:
32 jseed ĵ← ~state[ĵ]; jseed ′ĵ← RO6(0κ , ~rseed)

33 acc ĵ← d ∧ [[jseed ĵ = jseed ′ĵ]]

34 win← (win
∨
[¬bad ∧ acc ĵ ∧ inp 6∈L])

35 ret (win,(msgInit,(~vfs[ĵ], ~rseed [ĵ])) ĵ∈[s])

Figure 5.17. Malicious prover P∗ for the proof of Theorem 5.1. The lookup in the random
oracle table Rand on lines 6–8 can performed efficiently by creating a reverse-lookup table; we
omit the details for brevity.

halts and concedes if two Prep queries generate the same joint randomness seed ~state[1]. (Adversary

B loses in this case.) Second, if n = n∗, then P∗ immediately halts and outputs the proof π

computed on line 30. If the simulation has reached this point, then the probability that P∗ wins

its game is at least the probability that the game sets w← true on line 36. Conditioning on the

probability that P∗ guesses the winning query to RO1, we have that

Pr
[

G5(B)
]
≤ (q1 +qPrep) · ε . (5.7)

The claimed bound follows by gathering up all of the bounds across the games and simplifying.

5.9.2 Prio3 Privacy (Theorem 5.2)

We begin by instantiating the privacy game Exppriv
Π ,t for Prio3 VDAF Π . Game G0 in

Figure 5.18 was constructed by inlining Π ’s constituent algorithms and cleaning up the control

flow. In addition, calls to RGi have been substituted with calls to a random oracle ROi. Let qi

denote the number of queries A makes to ROi; note that qRG = q1 + · · ·+q7.

308

Game G0(A) G1(A) :
1 (stateA,V,(sk ĵ) ĵ∈V)←$ ARO(); T ← [s]\V
2 if |V|+ t 6= s return ⊥
3 b←${0,1}; b ′←$ ARO,Shard,Setup,Prep,Agg(stateA)
4 ret b = b ′

Shard(k̂ ∈ N,m0,m1 ∈ I):
5 if Used[k̂] 6=⊥: ret ⊥
6 n←$ N
7 if n ∈ N∗: bad1← true; n←$ N \N∗

8 N∗← N∗∪{n}
9 inp← Encode(mb)

10 for ĵ ∈ [2..s]:
11 blind ĵ,xseed ĵ,pseed ĵ←${0,1}κ

12 ~x [ĵ]← RO2(xseed ĵ, ĵ)

13 ~rseed [ĵ]← RO7(blind ĵ, ĵ‖n‖~x [ĵ])
14 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

15 blind1←${0,1}κ ; ps←${0,1}κ

16 ~rseed [1]← RO7(blind1,1‖n‖~x [1])
17 jseed ← RO6(0κ , ~rseed); jr ← RO1(jseed ,ε)
18 pr ← RO4(ps,ε)
19 ~π[1]← Prove(inp, jr pr)
20 ~π[1]← ~π[1]−∑

s
ĵ=2 RO3(pseed ĵ, ĵ)

21 ~x [1]← (~x [1],~π[1],blind1)
22 for ĵ ∈ [2..s]:
23 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

24 Pub[k̂]← ~rseed ; In[k̂, ·]←~x
25 Used[k̂]← (n,m0,m1)
26 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Setup(î ∈ N, ĵ ∈ V,st Init ∈ {ε}):
27 if Status[î, ĵ] 6=⊥ or |Setup[·, ĵ]|> 0: ret ⊥
28 Setup[î, ĵ]← st Init
29 Status[î, ĵ]← running

Prep(î ∈ N, ĵ ∈ V, k̂ ∈ N, ~M ∈M ∗):
30 if Status[î, ĵ] 6= running or In[k̂, ĵ] =⊥:
31 ret ⊥
32 if St[î, ĵ, k̂] =⊥:
33 St[î, ĵ, k̂]← Setup[î, ĵ]
34 ~M← (Pub[k̂],)
35 (n,m0,m1)←Used[k̂]
36 if St[î, ĵ, k̂] = ε: //Process initial message from client
37 (inp,π,blind)← Unpack(ĵ, In[k̂, ĵ])
38 (~rseed ,)← ~M
39 ~rseed [ĵ]← RO7(blind , ĵ‖n‖ inp)

40 jseed ← RO6(0κ , ~rseed); jr ← RO1(jseed ,ε)
41 qr ← RO5(sk ĵ,n)

42 M← (Query(inp,π, jr ;qr), ~rseed [ĵ])
43 St[î, ĵ, k̂]← (jseed ,Truncate(inp))
44 ret (running,M)
45 //Process broadcast messages from aggregators
46 (jseed ,y)← St[î, ĵ, k̂]
47 (~vfs[ĵ], ~rseed [ĵ]) ĵ∈[s]← ~M

48 acc← Decide(∑s
ĵ=1

~vfs[ĵ])

49 St[î, ĵ, k̂]←⊥
50 if acc = 0 or jseed 6= RO6(0κ , ~rseed):
51 ret (failed,⊥)
52 Out[î, ĵ, k̂]← y
53 Batch0[î, ĵ, k̂]←m0
54 Batch1[î, ĵ, k̂]←m1
55 ret (finished,⊥)

Agg(î ∈ N, ĵ ∈ V):
56 if Status[î, ĵ] 6= running: ret ⊥
57 if F(Batch0[î, ĵ, ·]) 6= F(Batch1[î, ĵ, ·])
58 and (∀ j, j′ ∈ V)sk j = sk j′ : ret ⊥
59 Status[î, ĵ]← finished
60 ~y←Out[î, ĵ, ·]
61 ret ∑

|~y|
i=1~y[i]

ROi(seed ,cntxt):
62 l← (jl ,n,m,pl ,ql)
63 if Rand[i,seed ,cntxt] =⊥:
64 if i≤ 5: Rand[i,seed ,cntxt]←$Fl[i]

65 else: Rand[i,seed ,cntxt]←${0,1}κ

66 ret Rand[i,seed ,cntxt]

Figure 5.18. Games G0 and G1 for the proof of Theorem 5.2. This game is identical to the
privacy game for Π , except the Shard, Prep, and Agg algorithms have been inlined. Algorithm
Unpack is as defined in Figure 5.5. The random oracles ROi are lazy-evaluated in a table Rand.

309

In our first game hop, we modify Shard oracle’s behavior after setting flag bad1 on line

7. In the new game, G1 (Figure 5.18), the nonce n is sampled without replacement, ensuring

that each nonce is used is unique. Applying the Fundamental Lemma of Game Playing [45], and

using a birthday bound for the probability of bad1 getting set,

Pr
[

G0(A)
]
≤ Pr

[
G1(A)

]
+

qShard2

|N|
. (5.8)

Next we replace the adversary A with one that controls all but one aggregator. We

construct such an adversary B as a wrapper around A, and show that B wins with at least

the probability of A. The adversary B , defined in Figure 5.19, presents four oracles ShardSim,

SetupSim, PrepSim, and AggSim to adversary A, each emulating an oracle in game G1. Algorithms

SetupSim, PrepSim, AggSim are computed by B just as the respective oracles in game G1 except

that queries pertaining to aggregator z are forwarded to B ’s own oracles. Algorithm ShardSim

forwards A’s query to Shard in the natural way, but returns the shares of the aggregators deemed

honest by A.

We claim that B perfectly simulates G1(A). This is obvious for ShardSim and for queries

for which ĵ = z; in these cases, B simply forwards its queries to the appropriate oracles without

changing their inputs. The only difference is that Shard returns more input shares than A requests;

B stores these extra input shares for its own use and does not reveal them. By construction, this

is a subset of the input shares returned by the query.

When A makes queries to SetupSim, PrepSim, or AggSim with ĵ ∈ V \{z}, our wrapper

adversary performs the operations of Setup, Prep, or Agg respectively. Effectively, adversary

B uses its stored input shares to fill in entries of tables In, Batch, Setup, Status, St, and Out

exactly as the real privacy game would. Since each entry is disambiguated by its ĵ, there is no

overlap with the tables maintained by the game; every table entry read by B must first have been

written by B and thus all the information it needs to simulate the game perfectly is accessible.

It follows that

Pr
[

G1(A)
]
= Pr

[
G1(B)

]
. (5.9)

In the next game hop (Figure 5.20) we make some simplifying changes, including cleaning

310

Adversary BRO[A]():
1 (stateA,V,(sk ĵ) ĵ∈V)←$ ARO()

2 z←$ V; V′←{z}; T ← [s]\V
3 stateB ← (stateA,z,T,V,(sk ĵ) ĵ∈V)

4 ret (stateB ,V′,(skz))

Adversary BRO,Shard,Setup,Prep,Agg[A](stateB):
5 (stateA,z,T,V,(sk ĵ) ĵ∈V)← stateB

6 b ′←$ ARO,ShardSim,SetupSim,PrepSim,AggSim(stateA)
7 ret b ′

Figure 5.19. Wrapper adversary B for the proof of Theorem 5.2. Algorithms SetupSim,
PrepSim, AggSim are evaluated by B just as the respective oracles in game G0 except that queries
pertaining to aggregator z are forwarded to B ’s own oracles. Algorithm ShardSim forwards A’s
query to Shard in the natural way, but returns the shares of the aggregators deemed honest by A.

up the bad1 flag and substituting {z} for V and simplifying accordingly. (We do not highlight

this change in Figure 5.20, as it is fairly straightforward.) We also make the following breaking

change: In game G2, we program the table Rand with values chosen by the Shard oracle for the

joint randomness, prover randomness, and query randomness. Accordingly, we pass these joint

randomness and query randomness to the honest aggregator via its input share (In[k̂,z]; see line

29). This is to simplify bookkeeping in the next step.

Game G2 is identical to game G1 until programming Rand overwrites an already existing

value on line 18, 19, 20, or 21.

• Line 18: Adversary B either has to guess jseed or guess the input to RO6 used to derive it. For

the latter it must must guess ~rseed or all of the corresponding inputs to RO7, which include the

blinds generated by oracle Shard. Taking union bound over all the queries to Shard, the game

overwrites Rand at this point with probability at most q1qShard/2κ +(q6 +q7)qShard/(2s·κ).

• Line 19: B must guess the ps generated by oracle Shard, so the game overwrites the table

with probability at most q4qShard/2κ .

• Line 20: B must guess the nonce n generated by the oracle. The game overwrites the table

here with probability at most q5qShard/|N|.

• Line 21: B must guess ~rseed or all of the corresponding inputs to RO7, so the game overwrites

the table with probability at most (q6 +q7)qShard/(2s·κ).

We bound the probability of B distinguishing between these games by the probability that any

311

one of these events occurs, Gathering up the terms yields

Pr
[

G1(B)
]
≤ Pr

[
G2(B)

]
(5.10)

+
(q1 +q4)qShard

2κ
+

(q6 +q7)qShard
2s·κ−1 +

q5qShard
|N|

. (5.11)

In the next game hop (see G3 in the left panel of Figure 5.21) we prepare to ensure

that all of the input shares ~x, proof shares ~π, and the public share ~rseed sampled by the Shard

oracle are uniform random. We do so by sampling these values prior to processing mb and

programming the random oracle with the sample values (lines 3–12) so long as doing so does

overwrite existing values (see procedure PO on lines 37–40). The game sets a flag bad4 if Shard

would have overwritten an existing value. This does not change the adversary’s view of the

experiment, so

Pr
[

G2(B)
]
= Pr

[
G3(B)

]
. (5.12)

Next, in game G4 (top-right panel of Figure 5.21) we change oracle Shard’s behavior

after bad4 gets set. In particular, if ever PO is called on an input (i,seed ,cntxt ,out) for which

Rand[i,seed ,cntxt], the value is overwritten. Game G4 is identical to game G3 until bad4 gets set.

Then we apply the Fundamental Lemma of Game Playing [45] to show that

Pr
[

G3(B)
]
≤ Pr

[
G4(B)

]
+Pr

[
G4(B) sets bad4

]
(5.13)

≤ Pr
[

G4(B)
]
+

((s−1)(q2 +q3)+ s(q7))qShard
2κ

. (5.14)

The probability that B sets the bad4 flag in Game G4 is the probability that B makes a

random oracle query that gets overwritten on line 9, 10, 11, or 12. On each line, the random

oracle is programmed with a uniform random string sampled by the oracle prior to being revealed

to the adversary. Rolling out the for-loop on line 8 and taking a union bound over all Shard

queries yields the claimed bound.

Next, in game G5 (bottom-right panel of Figure 5.21) we simplify the Shard oracle by

inlining calls to PO and replacing invocations of RO with corresponding value generated by the

312

Game G1(B) G2(B) :
1 (stateB ,{z},(skz,))←$ BRO(); T ← [s]\{z}
2 b←${0,1}; b ′←$ BRO,Shard,Setup,Prep,Agg(stateB)
3 ret b = b ′

Shard(k̂ ∈ N,m0,m1 ∈ I):
4 if Used[k̂] 6=⊥: ret ⊥
5 n←$ N \N∗; N∗← N∗∪{n}
6 inp← Encode(mb)
7 for ĵ ∈ [2..s]:
8 blind ĵ,xseed ĵ,pseed ĵ←${0,1}κ

9 ~x [ĵ]← RO2(xseed ĵ, ĵ)

10 ~rseed [ĵ]← RO7(blind ĵ, ĵ‖n‖~x [ĵ])
11 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

12 blind1←${0,1}κ ; ps←${0,1}κ

13 ~rseed [1]← RO7(blind1,1‖n‖~x [1])
14 jseed ← RO6(0κ , ~rseed); jr ← RO1(jseed ,ε)
15 pr ← RO4(ps,ε)

16 jseed←${0,1}κ

17 jr←$Fjl ; pr←$Fpl ; qr←$Fql

18 Rand[1, jseed ,ε]← jr
19 Rand[4,ps,ε]← pr
20 Rand[5,skz,n]← qr

21 Rand[6,0κ , ~rseed]← jseed

22 ~π[1]← Prove(inp, jr ;pr)
23 ~π[1]← ~π[1]−∑

s
ĵ=2 RO3(pseed ĵ, ĵ)

24 ~x [1]← (~x [1],~π[1],blind1)
25 for ĵ ∈ [2..s]:
26 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

27 Pub[k̂]← ~rseed
28 In[k̂, ·]←~x
29 In[k̂,z]← (~x[z], jseed , jr ,qr)

30 Used[k̂]← (n,m0,m1)
31 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Setup(î ∈ N, ĵ ∈ {z},st Init ∈ {ε}):
32 if Status[î, ĵ] 6=⊥ or |Setup[·, ĵ]|> 0: ret ⊥
33 Setup[î, ĵ]← st Init
34 Status[î, ĵ]← running

Prep(î ∈ N, ĵ ∈ {z}, k̂ ∈ N, ~M ∈M ∗):
35 if Status[î, ĵ] 6= running or In[k̂, ĵ] =⊥:
36 ret ⊥
37 if St[î, ĵ, k̂] =⊥:
38 St[î, ĵ, k̂]← Setup[î, ĵ]
39 ~M← (Pub[k̂],)
40 (n,m0,m1)←Used[k̂]
41 if St[î, ĵ, k̂] = ε: //Process initial message from client
42 (inp,π,blind)← Unpack(ĵ, In[k̂, ĵ])

43 (x, jseed , jr ,qr)← In[k̂, ĵ]
44 (inp,π,blind)← Unpack(ĵ,x)

45 (~rseed ,)← ~M
46 ~rseed [ĵ]← RO7(blind , ĵ‖n‖ inp)

47 jseed ← RO6(0κ , ~rseed); jr ← RO1(jseed ,ε)
48 qr ← RO5(skz,n)
49 M← (Query(inp,π, jr ;qr), ~rseed [ĵ])
50 St[î, ĵ, k̂]← (jseed ,Truncate(inp))
51 ret (running,M)
52 //Process broadcast messages from aggregators
53 (jseed ,y)← St[î, ĵ, k̂]
54 (~vfs[ĵ], ~rseed [ĵ]) ĵ∈[s]← ~M

55 acc← Decide(∑s
ĵ=1

~vfs[ĵ])

56 St[î, ĵ, k̂]←⊥
57 if acc = 0 or jseed 6= RO6(0κ , ~rseed):
58 ret (failed,⊥)
59 Out[î, ĵ, k̂]← y
60 Batch0[î, ĵ, k̂]←m0
61 Batch1[î, ĵ, k̂]←m1
62 ret (finished,⊥)

Agg(î ∈ N, ĵ ∈ {z}):
63 if Status[î, ĵ] 6= running: ret ⊥
64 if F(Batch0[î, ĵ, ·]) 6= F(Batch1[î, ĵ, ·]): ret ⊥
65 Status[î, ĵ]← finished
66 ~y←Out[î, ĵ, ·]
67 ret ∑

|~y|
i=1~y[i]

ROi(seed ,cntxt):
68 l← (jl ,n,m,pl ,ql)
69 if Rand[i,seed ,cntxt] =⊥:
70 if i≤ 5: Rand[i,seed ,cntxt]←$Fl[i]

71 else: Rand[i,seed ,cntxt]←${0,1}κ

72 ret Rand[i,seed ,cntxt]

Figure 5.20. Game G2 for the proof of Theorem 5.2.

313

oracle. These changes do not change the view of the adversary, so

Pr
[

G4(B)
]
= Pr

[
G5(B)

]
. (5.15)

Up to this point, we have constructed the “leader” input and proof shares differently

than all of the other shares: we pick all other shares randomly, then set ~x [1] = inp−∑
s
ĵ=2~x [ĵ]

and ~π[1] = π−∑
s
ĵ=2

~π[ĵ]. In our next game, we instead sample the “leader” shares randomly and

compute the shares of the honest aggregator z in a distinguished manner: ~x [z] = inp−∑ ĵ∈T~x [ĵ]

and ~π[z] = π−∑ ĵ∈T~x [ĵ], where T = [s]\{z}. If z = 1, this changes nothing. Otherwise, consider

that in G5, we have

~x [1] = inp−
s

∑
ĵ=2

~x [ĵ] = inp−

∑
ĵ∈T

~x [ĵ]−~x [z]+~x [1]

 .

If we add ~x [z]−~x [1] to both sides of this equation, we can see that in G4, it was already true

that ~x [z] = inp−∑ ĵ∈T~x [ĵ]. The same holds true for ~π[z] by an analogous argument. Therefore

the distributions of aggregators’ 1 and z’s input and proof shares are unchanged between G4 and

G5, and we have

Pr[G5(B)] = Pr[G6(B)] . (5.16)

In our next game (G7, defined in the right panel of Figure 5.23) we run the query algorithm

for aggregator z in the Shard oracle and only send the result to Prep. The adversary cannot

detect the timing of when this algorithm is run, so we have

Pr[G6(B)] = Pr[G7(B)] . (5.17)

In the next game (G8, defined in the left panel of Figure 5.24) we run ViewFLP (as defined

in Section 5.2) on input inp to get jr , qr , and a verifier σ and use these to compute Shard’s

output. We have defined ~x [z] = inp−∑ ĵ∈T~x [ĵ] and ~x [z] = π−∑ ĵ∈T ~π[ĵ]. Using the full linearity

of FLP, we can the honest aggregator z’s verifier share vfs in terms of jr ,qr ,σ and the corrupt

314

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G2 G3

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s

8 for ĵ ∈ [s]:
9 PO2(xseed ĵ, ĵ,~x[ĵ])

10 PO3(pseed ĵ, ĵ,~π[ĵ])

11 PO7(blind ĵ, ĵ‖n‖~x[ĵ], ~rseed [ĵ])

12 PO7(blind1,1‖n‖~x[1], ~rseed [1])
13 inp← Encode(mb)
14 for ĵ ∈ [2..s]:
15 blind ĵ,xseed ĵ,pseed ĵ←${0,1}κ

16 ~x [ĵ]← RO2(xseed ĵ, ĵ)

17 ~rseed [ĵ]← RO7(blind ĵ, ĵ‖n‖~x [ĵ])
18 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

19 blind1←${0,1}κ ; ps←${0,1}κ

20 ~rseed [1]← RO7(blind1,1‖n‖~x [1])
21 jseed←${0,1}κ

22 jr←$Fjl ; pr←$Fpl ; qr←$Fql

23 Rand[1, jseed ,ε]← jr
24 Rand[4,ps,ε]← pr
25 Rand[5,skz,n]← qr

26 Rand[6,0κ , ~rseed]← jseed
27 ~π[1]← Prove(inp, jr ;pr)
28 ~π[1]← ~π[1]−∑

s
ĵ=2 RO3(pseed ĵ, ĵ)

29 ~x [1]← (~x [1],~π[1],blind1)
30 for ĵ ∈ [2..s]:
31 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

32 Pub[k̂]← ~rseed
33 In[k̂, ·]←~x
34 In[k̂,z]← (~x[z], jseed , jr ,qr)
35 Used[k̂]← (n,m0,m1)
36 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Algorithm POi(seed ,cntxt ,out):
37 if Rand[i,seed ,cntxt] =⊥:
38 Rand[i,seed ,cntxt]← out
39 else:
40 bad4← true

Algorithm POi(seed ,cntxt ,out): Game G3 G4

1 if Rand[i,seed ,cntxt] =⊥:
2 Rand[i,seed ,cntxt]← out
3 else:
4 bad4← true; Rand[i,seed ,cntxt]← out

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G5

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s

8 for ĵ ∈ [s]:
9 Rand[2,xseed ĵ, ĵ]←~x[ĵ]

10 Rand[3,pseed ĵ, ĵ]← ~π[ĵ]

11 Rand[7,blind ĵ, ĵ‖n‖~x[ĵ]]← ~rseed [ĵ]

12 Rand[7,blind1,1‖n‖~x[1]]← ~rseed [1]
13 inp← Encode(mb)
14 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

15 ps←${0,1}κ

16 jseed←${0,1}κ

17 jr←$Fjl ; pr←$Fpl ; qr←$Fql

18 Rand[1, jseed ,ε]← jr
19 Rand[4,ps,ε]← pr
20 Rand[5,skz,n]← qr

21 Rand[6,0κ , ~rseed]← jseed
22 ~π[1]← Prove(inp, jr ;pr)
23 ~π[1]← ~π[1]−∑

s
ĵ=2

~π[ĵ]
24 ~x [1]← (~x [1],~π[1],blind1)
25 for ĵ ∈ [2..s]:
26 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

27 Pub[k̂]← ~rseed
28 In[k̂, ·]←~x
29 In[k̂,z]← (~x[z], jseed , jr ,qr)
30 Used[k̂]← (n,m0,m1)
31 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Figure 5.21. Games G3 (left), G4 (top-right), and G5 (bottom-right) for the proof of Theorem 5.2.
Only the Shard is shown, as this is the only object that changes in each game hop.

315

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G5 G6

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s

8 jr←$Fjl ; pr←$Fpl

9 inp← Encode(mb)
10 π ← Prove(inp, jr ;pr)
11 ~x [z]← inp−∑ ĵ∈T~x [ĵ]
12 ~π[z]← π−∑ ĵ∈T ~π[ĵ]

13 for ĵ ∈ [s]:
14 Rand[2,xseed ĵ, ĵ]←~x[ĵ]
15 Rand[3,pseed ĵ, ĵ]← ~π[ĵ]

16 Rand[7,blind ĵ, ĵ‖n‖~x[ĵ]]← ~rseed [ĵ]

17 Rand[7,blind1,1‖n‖~x[1]]← ~rseed [1]
18 inp← Encode(mb)
19 ~x [1]← inp−∑

s
ĵ=2~x [ĵ]

20 ps←${0,1}κ

21 jseed←${0,1}κ

22 jr←$Fjl ; pr←$Fpl ; qr←$Fql

23 Rand[1, jseed ,ε]← jr
24 Rand[4,ps,ε]← pr
25 Rand[5,skz,n]← qr

26 Rand[6,0κ , ~rseed]← jseed
27 ~π[1]← Prove(inp, jr ;pr)
28 ~π[1]← ~π[1]−∑

s
ĵ=2

~π[ĵ]

29 ~x [1]← (~x [1],~π[1],blind1)
30 for ĵ ∈ [2..s]:
31 ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

32 Pub[k̂]← ~rseed
33 In[k̂, ·]←~x
34 In[k̂,z]← (~x[z], jseed , jr ,qr)
35 Used[k̂]← (n,m0,m1)
36 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Figure 5.22. Game G6 for the proof of Theorem 5.2.

316

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G6 G7

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s ; jr←$Fjl ; pr←$Fpl

8 inp← Encode(mb)
9 π ← Prove(inp, jr ;pr)

10 ~x [z]← inp−∑ ĵ∈T~x [ĵ]
11 ~π[z]← π−∑ ĵ∈T ~π[ĵ]
12 for ĵ ∈ [s]:
13 Rand[2,xseed ĵ, ĵ]←~x[ĵ]
14 Rand[3,pseed ĵ, ĵ]← ~π[ĵ]

15 Rand[7,blind ĵ, ĵ‖n‖~x[ĵ]]← ~rseed [ĵ]

16 Rand[7,blind1,1‖n‖~x[1]]← ~rseed [1]
17 ps←${0,1}κ ; jseed←${0,1}κ ; qr←$Fql

18 Rand[1, jseed ,ε]← jr ; Rand[4,ps,ε]← pr

19 Rand[5,skz,n]← qr ; Rand[6,0κ , ~rseed]← jseed
20 ~x [1]← (~x [1],~π[1],blind1)
21 for ĵ ∈ [2..s]: ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

22 Pub[k̂]← ~rseed ; In[k̂, ·]←~x
23 In[k̂,z]← (~x[z], jseed , jr ,qr)

24 vfs ← Query(~x [z],~π[z], jr ;qr)

25 In[k̂, ĵ]← (vfs, ~rseed [z],Truncate(~x [z]), jseed)

26 Used[k̂]← (n,m0,m1)
27 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Prep(î ∈ N, ĵ ∈ {z}, k̂ ∈ N, ~M ∈M ∗):
28 if Status[î, ĵ] 6= running or In[k̂, ĵ] =⊥: ret ⊥
29 if St[î, ĵ, k̂] =⊥:
30 St[î, ĵ, k̂]← Setup[î, ĵ]; ~M← (Pub[k̂],)
31 (n,m0,m1)←Used[k̂]
32 if St[î, ĵ, k̂] = ε: //Process initial message from client
33 (x, jseed , jr ,qr)← In[k̂, ĵ]
34 (inp,π,blind)← Unpack(ĵ,x); (~rseed ,)← ~M
35 ~rseed [ĵ]← RO7(blind , ĵ‖n‖ inp)

36 M← (Query(inp,π, jr ;qr), ~rseed [ĵ])
37 St[î, ĵ, k̂]← (jseed ,Truncate(inp))

38 (vfs,rseed ,y , jseed)← In[k̂, ĵ]
39 M← (vfs,rseed); St[î, ĵ, k̂]← (jseed ,y)
40 ret (running,M)
41 //Process broadcast messages from aggregators
42 (jseed ,y)← St[î, ĵ, k̂]; (~vfs[ĵ], ~rseed [ĵ]) ĵ∈[s]← ~M

43 acc← Decide(∑s
ĵ=1

~vfs[ĵ]); St[î, ĵ, k̂]←⊥
44 if acc = 0 or jseed 6= RO6(0κ , ~rseed):
45 ret (failed,⊥)
46 Out[î, ĵ, k̂]← y
47 Batch0[î, ĵ, k̂]←m0; Batch1[î, ĵ, k̂]←m1
48 ret (finished,⊥)

Figure 5.23. Game G7 (right) for the proof of Theorem 5.2.

aggregators’ shares, since:

Query(inp,π, jr ;qr) = Query(~x [z],~π[z], jr ;qr) (5.18)

+ ∑
ĵ∈T

Query(~x [ĵ],~π[ĵ], jr ;qr) (5.19)

This revision to the game does not change the outcome of the experiment. However, since

we do not have access to the prover randomness generated by ViewFLP(inp), we can no longer

consistently program the random oracle (see 19). Fortunately, to trigger this inconsistency, the

adversary would have to guess the seed ps used to to program it prior to calling Shard. It follows

317

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G7 G8

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s ; jr←$Fjl ; pr←$Fpl

8 inp← Encode(mb)
9 π ← Prove(inp, jr ;pr)

10 jr ‖ ‖qr ‖σ←$ViewFLP(inp)

11 ~x [z]← inp−∑ ĵ∈T~x [ĵ]

12 ~π[z]← π−∑ ĵ∈T ~π[ĵ]

13 for ĵ ∈ [s]:
14 Rand[2,xseed ĵ, ĵ]←~x[ĵ]
15 Rand[3,pseed ĵ, ĵ]← ~π[ĵ]

16 Rand[7,blind ĵ, ĵ‖n‖~x[ĵ]]← ~rseed [ĵ]

17 Rand[7,blind1,1‖n‖~x[1]]← ~rseed [1]
18 ps←${0,1}κ ; jseed←${0,1}κ ; qr←$Fql

19 Rand[1, jseed ,ε]← jr ; Rand[4,ps,ε]← pr

20 Rand[5,skz,n]← qr ; Rand[6,0κ , ~rseed]← jseed
21 ~x [1]← (~x [1],~π[1],blind1)
22 for ĵ ∈ [2..s]: ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

23 Pub[k̂]← ~rseed ; In[k̂, ·]←~x
24 vfs ← Query(~x [z],~π[z], jr ;qr)

25 vfs ← σ−
26 ∑ ĵ∈T Query(~x [ĵ],~π[ĵ], jr ;qr)

27 In[k̂, ĵ]← (vfs, ~rseed [z],Truncate(~x [z]), jseed)
28 Used[k̂]← (n,m0,m1)
29 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G8 Gi
9

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗; N∗← N∗∪{n}
3 ~x←$(Fn)s ; ~π←$(Fm)s

4 (blind1, . . . ,blind s)←$({0,1}κ)s

5 (xseed2, . . . ,xseed s)←$({0,1}κ)s−1

6 (pseed2, . . . ,pseed s)←$({0,1}κ)s−1

7 ~rseed←$({0,1}κ)s

8 inp← Encode(mb)
9 jr ‖ ‖qr ‖σ←$ViewFLP(inp)

10 ctr ← ctr +1
11 if ctr < i: jr ‖ ‖qr ‖σ←$ Sim()
12 else: jr ‖ ‖qr ‖σ←$ViewFLP(inp)

13 ~x [z]← inp−∑ ĵ∈T~x [ĵ]
14 for ĵ ∈ [s]:
15 Rand[2,xseed ĵ, ĵ]←~x[ĵ]
16 Rand[3,pseed ĵ, ĵ]← ~π[ĵ]

17 Rand[7,blind ĵ, ĵ‖n‖~x[ĵ]]← ~rseed [ĵ]

18 Rand[7,blind1,1‖n‖~x[1]]← ~rseed [1]
19 jseed←${0,1}κ

20 Rand[1, jseed ,ε]← jr

21 Rand[5,skz,n]← qr ; Rand[6,0κ , ~rseed]← jseed
22 ~x [1]← (~x [1],~π[1],blind1)
23 for ĵ ∈ [2..s]: ~x [ĵ]← (xseed ĵ,pseed ĵ,blind ĵ)

24 Pub[k̂]← ~rseed ; In[k̂, ·]←~x
25 vfs ← σ−
26 ∑ ĵ∈T Query(~x [ĵ],~π[ĵ], jr ;qr)

27 In[k̂, ĵ]← (vfs, ~rseed [z],Truncate(~x [z]), jseed)
28 Used[k̂]← (n,m0,m1)
29 ret (n,Pub[k̂],(In[k̂, ĵ]) ĵ∈T)

Figure 5.24. Game G8 (left) and game G9 for the proof of Theorem 5.2.

that

Pr[G7(B)]≤ Pr[G8(B)]+
q4qShard

2κ
. (5.20)

Let Sim be the simulator hypothesized by δ -privacy of FLP. In the right panel of

Figure 5.24 we define a series of hybrid games that replace ViewFLP with a simulator S for the

privacy of FLP. Recall from Section 5.2 that Sim outputs a string jr ‖qr ‖σ . In Gi
9(B), the

first i−1 queries to Shard generate jr ,qr ,σ by calling Sim(); the remaining queries call ViewFLP

318

instead. This means that G1
9 is identical to G8, so

Pr
[

G8(B)
]
= Pr

[
G1

9(B)
]
. (5.21)

For every v∈Fjl×ql×v, we let pi,v denote the probability that B wins hybrid Gi
9, conditioned

on the event that the ith query to Shard sets v = jr ‖qr ‖σ . A union bound over all v shows that

Pr[Gi
9(B)] = ∑

v∈Fjl×ql×v

pi,v . (5.22)

We are now ready to bound the quantity Pr[Gi+1
9 (B)]−Pr[Gi

9(B)]. The two games Gi+1
9 and Gi

9

differ only in the tuple v chosen by of the (i+1)th query to Shard: the former calls ViewFLP and

the latter calls Sim. We therefore decompose both probabilities over the possible choices of v,

and substitute in the statement

∑
v∈Fjl×ql×v

∣∣Pr
[
ViewFLP(inp) = v

]
−Pr

[
Sim() = v

]∣∣≤ δ

that follows from the δ -privacy of FLP for all inp. Since pi,v ≤ 1 for all i and v and

Pr[ViewFLP(inp) = v]−Pr[Sim() = v]≤ |Pr[ViewFLP(inp) = v]−Pr[Sim() = v]| ,

we have

Pr[Gi+1
9 (B)]−Pr[Gi

9(B)] =

∑
v

pi,v ·Pr[ViewFLP(inp) = v]− pi,v ·Pr[Sim() = v]

= ∑
v

pi,v · (Pr[ViewFLP(inp) = v]−Pr[Sim() = v])

≤∑
v
|Pr[ViewFLP(inp) = v]−Pr[Sim() = v]|

≤ δ .

A union bound over all i ∈ [qShard] produces the final inequality:

319

Pr[GqShard
9 (B)]−Pr[G1

9(B)]≤ δ ·qShard. (5.23)

Finally, we observe that game GqShard
9 can now be rewritten so that the outcome is

independent of the challenge bit b. Hence

Pr[GqShard
9 (B)] =

1
2
. (5.24)

Collecting bounds across all games and simplifying yields the theorem.

5.9.3 Doplar Robustness (Theorem 5.3)

The proof is by a game-playing argument. We begin with the game G0 defined in

Figure 5.25 played by the given adversary A. This game was constructed from ExprobustΠ (A) by

applying the following revisions. First, we have replaced Prep with its implementation, rolled out

the loops in the Prep oracle, and simplified some of the control flow. Second, we have removed

the call to refineFromShares and set the purported refined measurement with the sum of the

refined shares output by the calls to VIDPF.VEval. (This is equivalent by refinement consistency

of Π .) Third, we use the fact that the allowed-state validSt algorithm for Π only permits Prep

queries with unique (n, `) pairs to make the contents of table Used more explicit. Finally, we

lazy-evaluate each random oracle, denoted ROi, with a table Rand. We use RO′ to denote the

random oracle for VIDPF. By construction we have that

Advrobust
Π (A) = Pr

[
G0(A)

]
. (5.25)

In the remainder, we let qi denote the number queries A makes to ROi and qi denote the number

of queries A makes to RO′; note that qRG = q1 + · · ·+q6 +q′.

Similar to the proof of Theorem 5.1, note that we have dropped the winning condition on

line 16 of the robustness game (Figure 5.3). The refined measurement computed from the input

shares is equal to Π .Unshard(1,(Π .Agg(~y1),Π .Agg(~y2))) = ~y1 +~y2, so this condition is never met

by definition.

Next, in game G1 (left panel of Figure 5.25) we revise the definition of the RO oracle so

320

Game G0(A) G1(A) :
1 sk←$ SK ; win← false; ARO,Prep(); ret w

Prep(n,~x ,msgInit,st Init):
2 (`, ~pfx)← state; u← | ~pfx |
3 if Used[n, `] 6=⊥: ret ⊥
4 Used[n, `]←>
5 (pub, ~rseed)←msgInit
6 (key1,seed1,π1)← Unpack(1,~x [1],n, `)
7 (key2,seed2,π2)← Unpack(2,~x [2],n, `)
8 ∆1← RO2(seed1,n‖`‖1)
9 ∆2← RO2(seed2,n‖`‖2)

10 ρ1← RO5(seed1,n‖1‖pub ‖key1)
11 ρ2← RO5(seed2,n‖2‖pub ‖key2)

12 jseed1← RO6(0κ , `‖ρ1 ‖ ~rseed [2])
13 jseed2← RO6(0κ , `‖ ~rseed [1]‖ρ2)
14 jr1← RO1(jseed1,n‖`)
15 jr2← RO1(jseed2,n‖`)
16 qr ← RO4(sk,n‖`‖)
17 (h1,~y1)← VIDPF.VEvalRO′(1,pub,key1, ~pfx)

18 (h2,~y2)← VIDPF.VEvalRO′(2,pub,key2, ~pfx)
19 ~y←~y1 +~y2
20 inp1← ∑i∈[u]~y1[i]
21 inp2← ∑i∈[u]~y2[i]
22 σ1← DFLP.Query(inp1,∆1,π1, jr1; qr)
23 σ2← DFLP.Query(inp2,∆2,π2, jr2; qr)
24 jseed ← RO6(0κ , `‖ρ1 ‖ρ2)
25 b1← jseed1 = jseed
26 b2← jseed2 = jseed

27 v← VIDPF.VerifyRO′(h1,h2)
28 d← DFLP.Decide(σ1 +σ2)
29 if ~y 6∈VstInit
30 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): win← true
31 ret (win,(msgInit,((σ1,ρ1,h1),(σ2,ρ2,h2))))

ROi(seed ,cntxt):
32 l← (jl ,el ,m,ql)
33 if Rand[i,seed ,cntxt] =⊥:
34 if i≤ 4: Rand[i,seed ,cntxt]←$Fl[i]

35 else: Rand[i,seed ,cntxt]←${0,1}κ

36 out←${0,1}κ \Qi; Qi← Qi∪{out}
37 Rand[i,seed ,cntxt]← out

38 ret Rand[i,seed ,cntxt]

RO′(inp):
39 if Rand′[inp] =⊥: Rand′[inp]←$Y
40 ret Rand′[inp]

Prep(n,~x ,msgInit,st Init): G1 G2

1 (`, ~pfx)← state; u← | ~pfx |
2 if Used[n, `] 6=⊥: ret ⊥
3 Used[n, `]←>
4 (pub, ~rseed)←msgInit
5 (key1,seed1,π1)← Unpack(1,~x [1],n, `)
6 (key2,seed2,π2)← Unpack(2,~x [2],n, `)
7 ∆1← RO2(seed1,n‖`‖1)
8 ∆2← RO2(seed2,n‖`‖2)
9 ρ1← RO5(seed1,n‖1‖pub ‖key1)

10 ρ2← RO5(seed2,n‖2‖pub ‖key2)

11 jseed1← RO6(0κ , `‖ρ1 ‖ ~rseed [2])
12 jseed2← RO6(0κ , `‖ ~rseed [1]‖ρ2)
13 jr1← RO1(jseed1,n‖`)
14 jr2← RO1(jseed2,n‖`)
15 jseed ← RO6(0κ , `‖ρ1 ‖ρ2)
16 jr ← RO1(jseed ,n‖`)
17 qr ← RO4(sk,n‖`‖)
18 (h1,~y1)← VIDPF.VEvalRO′(1,pub,key1, ~pfx)

19 (h2,~y2)← VIDPF.VEvalRO′(2,pub,key2, ~pfx)
20 ~y←~y1 +~y2
21 inp1← ∑i∈[u]~y1[i]
22 inp2← ∑i∈[u]~y2[i]
23 σ1← DFLP.Query(inp1,∆1,π1, jr1 jr ; qr)
24 σ2← DFLP.Query(inp2,∆2,π2, jr2 jr ; qr)

25 jseed ← RO6(0κ , `‖ρ1 ‖ρ2)
26 b1← jseed1 = jseed
27 b2← jseed2 = jseed

28 b1← ρ1 6= ~rseed [1]
29 b2← ρ2 6= ~rseed [2]

30 v← VIDPF.VerifyRO′(h1,h2)
31 d← DFLP.Decide(σ1 +σ2)
32 if ~y 6∈VstInit
33 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): win← true
34 ret (win,(msgInit,((σ1,ρ1,h1),(σ2,ρ2,h2))))

Figure 5.25. Games G0, G1, and G2 for the proof of Theorem 5.3. Let Y denote the co-domain
of the random oracle used by VIDPF.

321

that for each i ∈ {5,6}, the values of Rand[i,seed ,cntxt] are sampled without replacement. The

new game is identical to G0 up to a collision in the output for either Rand[5, ·, ·] or Rand[6, ·, ·].

Applying a birthday bound over all queries by A or by the Prep oracle yields

Pr
[

G0(A)
]
≤ Pr

[
G1(A)

]
+

(q5 +2qPrep)
2

2κ+1 +
(q6 +3qPrep)

2

2κ+1 . (5.26)

Next, in game G2 (right panel of Figure 5.26) we simplify the Prep oracle by substituting

aggregator ĵ’s local computation of the joint randomness seed jseed ĵ with a direct computation

of the seed jseed from the parts ρ1,ρ2 computed on lines 9–10. Accordingly, We simplify the

joint local randomness checks (lines 26–27) to just check if the purported hint ~rseed [ĵ] matches

the computed part ρ ĵ (28–29). This change is only detectable to the adversary if it can find

a joint randomness seed and hints such that the check succeeds, but the aggregators compute

distinct jseed1 6= jseed2. This is impossible by construction (transition from G1 to G2), so

Pr
[

G1(A)
]
= Pr

[
G2(A)

]
. (5.27)

Next, in game G3 (Figure 5.26), we make the following changes. First, we modify oracle

RO4 so that, for any query that coincides with the secret verification key sk sampled at the

beginning of the game, the oracle immediately returns ⊥ without programming the RO table.

Second, we modify Prep by replacing the call to

qr ← RO4(sk,n‖`‖)

with

qr ← Rand[4,sk,n‖`]←$Fql .

That way each call to Prep samples fresh query randomness. The second change does not

overwrite any value in Rand due to the first change. Thus the new game is identical to G2 until

the adversary makes a query to RO4 with the seed equal to sk. Taking a union bound over all

322

Prep(n,~x ,msgInit,st Init): G2 G3

1 (`, ~pfx)← state; u← | ~pfx |
2 if Used[n, `] 6=⊥: ret ⊥
3 Used[n, `]←>
4 (pub, ~rseed)←msgInit
5 (key1,seed1,π1)← Unpack(1,~x [1],n, `)
6 (key2,seed2,π2)← Unpack(2,~x [2],n, `)
7 ∆1← RO2(seed1,n‖`‖1)
8 ∆2← RO2(seed2,n‖`‖2)
9 ρ1← RO5(seed1,n‖1‖pub ‖key1)

10 ρ2← RO5(seed2,n‖2‖pub ‖key2)
11 jseed ← RO6(0κ , `‖ρ1 ‖ρ2)
12 jr ← RO1(jseed ,n‖`)
13 qr ← RO4(sk,n‖`‖)
14 qr ← Rand[4,sk,n‖`]←$Fql

15 (h1,~y1)← VIDPF.VEvalRO′(1,pub,key1, ~pfx)

16 (h2,~y2)← VIDPF.VEvalRO′(2,pub,key2, ~pfx)
17 ~y←~y1 +~y2
18 inp1← ∑i∈[u]~y1[i]
19 inp2← ∑i∈[u]~y2[i]
20 σ1← DFLP.Query(inp1,∆1,π1, jr ; qr)
21 σ2← DFLP.Query(inp2,∆2,π2, jr ; qr)

22 b1← ρ1 6= ~rseed [1]
23 b2← ρ2 6= ~rseed [2]
24 v← VIDPF.VerifyRO′(h1,h2)
25 d← DFLP.Decide(σ1 +σ2)
26 if ~y 6∈VstInit
27 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): win← true
28 ret (win,(msgInit,((σ1,ρ1,h1),(σ2,ρ2,h2))))

ROi(seed ,cntxt):
29 if i = 4 ∧ seed = sk: ret ⊥
30 l← (jl ,el ,m,ql)
31 if Rand[i,seed ,cntxt] =⊥:
32 if i≤ 4: Rand[i,seed ,cntxt]←$Fl[i]

33 else:
34 out←${0,1}κ \Qi; Qi← Qi∪{out}
35 Rand[i,seed ,cntxt]← out
36 ret Rand[i,seed ,cntxt]

Prep(n,~x ,msgInit,st Init): G3 G4

1 (`, ~pfx)← state; u← | ~pfx |
2 if Used[n, `] 6=⊥: ret ⊥
3 Used[n, `]←>
4 (pub, ~rseed)←msgInit
5 (key1,seed1,π1)← Unpack(1,~x [1],n, `)
6 (key2,seed2,π2)← Unpack(2,~x [2],n, `)
7 if T[n] =⊥: T[n]←$E (key1,key2,pub,Rand′)
8 ∆1← RO2(seed1,n‖`‖1)
9 ∆2← RO2(seed2,n‖`‖2)

10 ρ1← RO5(seed1,n‖1‖pub ‖key1)
11 ρ2← RO5(seed2,n‖2‖pub ‖key2)
12 jseed ← RO6(0κ , `‖ρ1 ‖ρ2)
13 jr ← RO1(jseed ,n‖`)
14 qr ← Rand[4,sk,n‖`]←$Fql

15 (h1,~y1)← VIDPF.VEvalRO′(1,pub,key1, ~pfx)

16 (h2,~y2)← VIDPF.VEvalRO′(2,pub,key2, ~pfx)
17 ~y←~y1 +~y2
18 inp1← ∑i∈[u]~y1[i]
19 inp2← ∑i∈[u]~y2[i]
20 σ1← DFLP.Query(inp1,∆1,π1, jr ; qr)
21 σ2← DFLP.Query(inp2,∆2,π2, jr ; qr)

22 b1← ρ1 6= ~rseed [1]
23 b2← ρ2 6= ~rseed [2]
24 v← VIDPF.VerifyRO′(h1,h2)

25 if v = 1: (α,~β)←$T[n]; ~y← f
α,~β

(~pfx)

26 else ~y←~y1 +~y2

27 d← DFLP.Decide(σ1 +σ2)

28 if ~y 6∈VstInit

(
∑i∈[u]~y[i]

)
6∈ X

29 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): win← true
30 ret (win,(msgInit,((σ1,ρ1,h1),(σ2,ρ2,h2))))

Figure 5.26. Games G3 and G4 for the proof of Theorem 5.3. Let X = {0,1} denote the
delayed-input set for DFLP.

of A’s queries, we have that

Pr
[

G2(A)
]
≤ Pr

[
G3(A)

]
+

q4qPrep
2κ

. (5.28)

In the last game, G4 (right-hand panel of Figure 5.26), we use the extractability of VIDPF

323

to simplify the winning condition. First, we change how the IDPF output vector ~y is computed

by Prep: If the one-hot check succeeds, i.e., v is set to 1 on line 24, then we use the extractor E

to extract (α,~β) from the transcript of the random oracle (7) and set ~y to f
α,~β

(~pfx). Second, we

revise the winning condition (28) by requiring only that the sum of the elements of ~y is not in

the delayed-input set X = {0,1} for DFLP. In particular, we no longer require ~y to be one-hot

for the adversary to win. (Recall that VstInit is the set of one-hot vectors where the non-zero

element is in X .) These conditions are equivalent in the revised game, since (1) A cannot set win

if v = 0, and if v = 1, vector ~y is one-hot by definition.

We claim that there exists an O(tA +qPreptE)-time adversary B for which

Pr
[

G3(A)
]
≤ Pr

[
G4(A)

]
+qPrep ·Advextract

VIDPF,E (B) . (5.29)

The proof is by a hybrid argument. For each i ∈ [qPrep] let G′i be the game G3 except that only

the first i queries to Prep are answered in the usual way; the remaining queries are answered

as they are in game G4. Adversary B first samples i←$ [qPrep] then runs G′i(A) as usual, except

that it simulates Prep queries for one of the reports using its own game. Specifically, after

unpacking IDPF public share pub and key shares key1,key2 on lines 4–6, it pauses the simulation,

outputs (pub,key1,key2), and waits to be invoked again. On its second invocation, it resumes

the simulation of the Prep query until it reaches the computation of ~y on lines 23–26: At this

point it queries its own Eval oracle on the candidate prefixes ~pfx and sets ~y to the return value.

Thereafter, it simulates the remainder of the game faithfully. if A sets w← true in its game, then

B guesses 1; otherwise it guesses 0.

Let δ i
1 (resp. δ i

0) denote the probability that B samples i and guesses 1 in the VIDPF

extractability experiment, conditioned on the outcome of the coin toss being 1 (resp. 0). Then

for all i,

Advextract
VIDPF,E (A)≥ 1

qPrep

(
δ

i
1−δ

i
0
)
. (5.30)

Moreover, by construction we have that

δ
i
1−δ

i
0 = Pr

[
G′i(A)

]
−Pr

[
G′i+1(A)

]
. (5.31)

324

Adversary P∗[A]():
1 i∗←$ [q1 +qPrep]; n∗, `∗←⊥; ctr ← 0
2 sk←$ SK ; win← false; AROExt,PrepSim()

ROExt i(seed ,cntxt):
3 if i = 4 ∧ seed = sk: ret ⊥
4 l← (jl ,el ,m,ql)
5 if Rand[i,seed ,cntxt] =⊥:
6 if i = 1:
7 ctr ← ctr +1
8 if i = i∗ ∧
9 if (∃n, `,pub,key1,key2,ρ1,ρ2,seed1,seed2)

10 ∧ ρ1 = Rand[5,seed1,n‖1‖pub ‖key1]
11 ∧ ρ2 = Rand[5,seed2,n‖2‖pub ‖key2]
12 ∧ seed = Rand[6,0κ , `‖ρ1, ‖ρ2]:
13 (n∗, `∗)← (n, `)
14 //We don’t know ~pfx , so guess what the sum will
be!
15 inp∗←${0,1}
16 ∆1← ROExt2(seed1,n‖`‖1)
17 ∆2← ROExt2(seed2,n‖`‖2)
18 ∆ ← ∆1 +∆2
19 e← DFLP.Encode(∆ , inp∗)
20 output (e,∆) and wait for jr .
21 Rand[1,seed ,cntxt]← jr
22 else: Rand[1,seed ,cntxt]←$Fjl

23 else if i ∈ {2,3,4}: Rand[i,seed ,cntxt]←$Fl[i]

24 else:
25 out←${0,1}κ \Qi; Qi← Qi∪{out}
26 Rand[i,seed ,cntxt]← out
27 ret Rand[i,seed ,cntxt]

ROExt ′(inp):
28 if Rand′[inp] =⊥: Rand′[inp]←$Y
29 ret Rand′[inp]

PrepSim(n,~x ,msgInit,st Init):
30 (`, ~pfx)← state; u← | ~pfx |
31 if Used[n, `] 6=⊥: ret ⊥
32 Used[n, `]←>
33 (pub, ~rseed)←msgInit
34 (key1,seed1,π1)← Unpack(1,~x [1],n, `)
35 (key2,seed2,π2)← Unpack(2,~x [2],n, `)
36 if (n∗, `∗) = (n, `): output π1 +π2 and halt.
37 if T[n] =⊥: T[n]←$E (key1,key2,pub,Rand′)
38 ∆1← RO2(seed1,n‖`‖1)
39 ∆2← RO2(seed2,n‖`‖2)
40 ρ1← RO5(seed1,n‖1‖pub ‖key1)
41 ρ2← RO5(seed2,n‖2‖pub ‖key2)
42 jseed ← RO6(0κ , `‖ρ1, ‖ρ2)
43 jr ← RO1(jseed ,n‖`)
44 qr ← Rand[4,sk,n‖`]←$Fql

45 (h1,~y1)← VIDPF.VEvalRO′(1,pub,key1, ~pfx)

46 (h2,~y2)← VIDPF.VEvalRO′(2,pub,key2, ~pfx)
47 inp1← ∑i∈[u]~y1[i]
48 inp2← ∑i∈[u]~y2[i]
49 σ1← DFLP.Query(inp1,∆1,π1, jr ; qr)
50 σ2← DFLP.Query(inp2,∆2,π2, jr ; qr)

51 b1← ρ1 6= ~rseed [1]
52 b2← ρ2 6= ~rseed [2]
53 v← VIDPF.VerifyRO′(h1,h2)

54 if v = 1: (α,~β)←$T[n]; ~y← f
α,~β

(~pfx)

55 else ~y←~y1 +~y2
56 d← DFLP.Decide(σ1 +σ2)
57 if

(
∑i∈[u]~y[i]

)
6∈ X

58 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): win← true
59 ret (win,(msgInit,((σ1,ρ1,h1),(σ2,ρ2,h2))))

Figure 5.27. Malicious prover P∗ against the soundness of DFLP for the proof of Theorem 5.3.

for all i. The claim follows from the observation that Pr
[

G3(A)
]
= Pr

[
G′0(A)

]
and Pr

[
G4(A)

]
=

Pr
[

G′qPrep(A)
]
.

Consider what A must do to set win← true in game G4. For some Prep query, the

delayed-input proof check must succeed when in fact the sum ∑i∈[u]~y[i] is not a valid en-

coded input. We bound A’s advantage in game G4 by a reduction to the soundness of DFLP.

Recall from the definition of soundness in Section 5.5.2 that the malicious prover P∗ first

commits to an encoded input (e,∆), then gets a fresh joint randomness jr , then picks a

proof forgery π. It wins if DFLP.Decode(e) 6∈L but the verifier deems the input valid (i.e.,

325

DFLP.Decide(DFLP.Query(e,∆ ,π, jr ; qr)) = 1, where qr is a fresh query randomness sampled by

the game).

Consider the malicious prover P∗ in Figure 5.27. The basic idea is that P∗ simulates

G4(A) and extracts its commitment from queries to the random oracle. Specifically, the prover

samples i∗←$ [q1+qPrep] at the beginning of the game, and for the i∗-th query to RO1, it attempts

to compute (e,∆) as follows (see lines 15–19).

The prover maintains a reverse look-up table for random oracle queries for computing the

query randomness (i.e., RO4), the joint randomness seed parts (RO5), and the joint randomness

seed (RO5). On the i∗-th query, it looks for values n, `, pub, key1, key2, seed1, and seed2 that

would be used by a query to Prep. If successful, it uses these to construct its encoded input

(DFLP.Encode(∆ , inp∗),∆) to output in its game (20). It computes ∆ as the sum of the ∆ ĵ’s

corresponding to that query (16–17). So how does it compute inp∗? Well, in G4, the Prep query

corresponding to i∗ evaluates IDPF keys shares at a set of candidate prefixes ~pfx chosen by the

adversary. But because ~pfx is not known at this point, the best it can do is guess. It therefore

chooses inp∗ by sampling uniform randomly from the set X = {0,1} of delayed-input values.

If extraction of the commitment is successful, then the prover outputs it, awaits the

response from its game, and programs the table with the response jr (21). Thereafter, prover P∗

runs G5(A) as usual until a Prep query is made for the session (n∗, `∗) that coincides with the

distinguished RO1 query i∗. At this point, the prover cannot compute the decision bit d and the

verifier shares σ1,σ2 consistently, as it does not have access to the query randomness sampled by

its game. Instead, it simply halts and outputs π1 +π2 as its proof forgery (35–37).

Observe that P∗’s simulation of G5(A) is perfect up until the point it it halts and outputs

its forgery. This is due to the full linearity of DFLP, which allows us to substitute the computation

of the query-generation algorithm secret-shared data in G5 with the computation of the query-

generation algorithm on plaintext inputs in the prover’s soundness game. It follows that P∗ wins

precisely when A sets win← true in the call to Prep that coincides with the distinguished session.

Conditioning on the probability that P∗ guesses the correct call to RO1, and that we guessed the

value of inp∗ correctly, we conclude that

326

Game G0(A) G1(A) :
1 (stateA,{z},(sk,))←$ ARO(); z̃← 3− z
2 b←${0,1}; b ′←$ ARO,Shard,Setup,Prep,Agg(stateA)
3 ret b = b ′

Shard(k̂ ∈ N,α0,α1 ∈ I):
4 if Used[k̂] 6=⊥: ret ⊥
5 n←$ N n←$ N \N∗;N∗← N∗∪{n}
6 //Construct the VIDPF key shares.
7 seed1,seed2←${0,1}κ

8 for ` ∈ [η]:
9 D[k̂, `]← RO2(seed1,n‖`‖1)

10 +RO2(seed2,n‖`‖2)
11 ~β [`]← Encode(D[k̂, `],1)
12 (key1,key2,pub)←$VIDPF.Gen(αb ,~β)
13 //Prepare the joint randomness.
14 ~rseed [1]← RO5(seed1,n‖1‖pub ‖key1)

15 ~rseed [2]← RO5(seed2,n‖2‖pub ‖key2)
16 //Generate the level proofs.
17 for ` ∈ [η]:
18 jseed ← RO6(0κ , `‖ ~rseed)
19 jr ← RO1(jseed ,n‖`)
20 π←$DFLP.Prove({0,1},D[k̂, `], jr)
21 ~pf [`]← π−RO3(seed2,n‖`)
22 //Prepare the initial message and input shares.
23 x1← (key1,seed1, ~pf)
24 x2← (key2,seed2)
25 In[k̂]← xz

26 Pub[k̂]← (pub, ~rseed)
27 Used[k̂]← (n,α0,α1)
28 ret (n,Pub[k̂],(xz̃,))

Setup(î ∈ N,st Init ∈QInit):
29 (`, ~pfx)← st Init
30 if Status[î] 6=⊥ or ` ∈U or ~pfx not distinct: ret
⊥
31 U ←U ∪{`}
32 Setup[î]← st Init; Status[î]← running

Prep(î ∈ N, k̂ ∈ N, ~M ∈M ∗):
33 if Status[î] 6= running or In[k̂] =⊥: ret ⊥
34 if St[î, k̂] =⊥: St[î, k̂]← Setup[î]
35 (n,α0,α1)←Used[k̂]
36 if St[î, k̂] ∈QInit: //Process initial message from client
37 (`, ~pfx)← St[î, k̂]; u← | ~pfx |
38 (pub, ~rseed)← Pub[k̂]
39 (key,seed ,π)← Unpack(z, In[k̂],n, `)
40 ∆ ← RO2(seed ,n‖`‖z)
41 ~rseed [z]← RO5(seed ,n‖z‖pub ‖key)
42 jseed ← RO6(0κ , `‖ ~rseed)
43 jr ← RO1(jseed ,n‖`); qr ← RO4(sk,n‖`)
44 (h,~y)← VIDPF.VEval(z,pub,key, ~pfx)
45 inp← ∑i∈[u]~y[i]
46 σ ← DFLP.Query(inp,∆ ,π, jr ; qr)

47 M← (σ , ~rseed [z],h)
48 St[î, k̂]← (jseed ,(DFLP.Decode(~y[i]))i∈[u])
49 ret (running,M)
50 //Process broadcast messages from aggregators
51 (jseed ,~y)← St[î, k̂]; St[î, k̂]←⊥
52

(
(σ1,rseed1,h1),(σ2,rseed2,h2)

)
← ~M

53 accDFLP← DFLP.Decide(σ1 +σ2)
54 accVIDPF← VIDPF.Verify(h1,h2)
55 acc0← jseed = RO6(0κ , `‖rseed1 ‖rseed2)
56 if accDFLP and accVIDPF and acc0:
57 Out[î, k̂]←~y; Batch0[î, k̂]← α0; Batch1[î, k̂]←
α1
58 ret finished
59 ret failed

Agg(î ∈ N):
60 if Status[î] 6= running: ret ⊥
61 st Init← Setup[î]
62 if F(st Init,Batch0[î, ·]) 6= F(st Init,Batch1[î, ·]):
ret ⊥
63 Status[î]← finished
64 ret ∑~y∈Out[î,·]~y

Figure 5.28. Games G0 and G1 for the proof of Theorem 5.4.

Pr
[

G4(A)
]
≤ 2(q1 +qPrep) · ε . (5.32)

The bound follows from gathering up each of the equations in simplifying.

327

5.9.4 Doplar Privacy (Theorem 5.4)

We begin with a game G0 (Figure 5.28) in which we instantiate Exppriv
Π

(A) in the random

oracle model, in-line the sub-routines of Π , and simplify the code. Calls to RG have been replaced

with a random oracle RO; as usual, RO is implemented by lazy-evaluating a table Rand. In the

remainder, we let qi denote the number of queries A makes to ROi. Another simplifying change

we have made is to hard-code the index of the corrupt aggregator, which we denote by z̃. (We

denote the honest aggregator by z.) Accordingly, we have removed the share index ĵ from the

oracle parameters and tables, as there is only one valid choice for these. (This is without loss of

generality.) None of these changes impact the outcome of the experiment, so

Pr
[
Exppriv

Π
(A)

]
= Pr

[
G0(A)

]
. (5.33)

In game G1 (Figure 5.28) we revise the Shard oracle by sampling the nonce without

replacement (line 5). This ensures each report has a unique nonce, which will be useful in

subsequent steps. By a birthday bound, we have that

Pr
[

G0(A)
]
≤ Pr

[
G1(A)

]
+

qShard2

|N|
. (5.34)

In our next step, G2 (Figure 5.29), we modify the Shard oracle such that, instead of

querying the random oracle RO, it programs the random oracle using a new sub-routine, PO

(31–34). This ensures that the output of Shard is not correlated with the game’s current state,

allowing us to treat the sampled values as fresh. This has a cost, however, since if any of the

values programmed by the oracle overwrite existing values in table Rand, then the adversary

will end up with an inconsistent view. We can bound this by considering the probability of any

one of the following events occurring:

• Seed seed1 or seed2 sampled on line 4 coincides with a query to RO2 made by A (see lines

6–7). We write this as Rand2 for short in the remainder.

• Seed seed1 or seed2 coincides with an element of Rand5 (11–12).

• Vector ~rseed sampled on lines 11–12 coincides with an element of Rand6 (13).

328

Shard(k̂ ∈ N,α0,α1 ∈ I):
1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗;N∗← N∗∪{n}
3 //Construct the VIDPF key shares.
4 seed1,seed2←${0,1}κ

5 for ` ∈ [η]:
6 D[k̂, `]←RO2 PO2 (seed1,n‖`‖1)
7 +RO2 PO2 (seed2,n‖`‖2)
8 ~β [`]← Encode(D[k̂, `],1)
9 (key1,key2,pub)←$VIDPF.Gen(αb ,~β)

10 //Prepare the joint randomness.
11 ~rseed [1]←RO5 PO5 (seed1,n‖1‖pub ‖key1)

12 ~rseed [2]←RO5 PO5 (seed2,n‖2‖pub ‖key2)
13 //Generate the level proofs.
14 for ` ∈ [η]:
15 jseed ←RO6 PO6 (0κ , `‖ ~rseed)
16 jr ←RO1 PO1 (jseed ,n‖`)
17 π←$DFLP.Prove({0,1},D[k̂, `], jr)
18 ~pf [`]← π−RO3 PO3 (seed2,n‖`)
19 //Prepare the initial message and input shares.
20 x1← (key1,seed1, ~pf)
21 x2← (key2,seed2)
22 In[k̂]← xz

23 Pub[k̂]← (pub, ~rseed)
24 Used[k̂]← (n,α0,α1)
25 ret (n,Pub[k̂],(xz̃,))

ROi(seed ,cntxt): G1 G2

26 l← (jl ,el ,m,ql)
27 if Rand[i,seed ,cntxt] =⊥:
28 if i≤ 4: Rand[i,seed ,cntxt]←$Fl[i]

29 else: Rand[i,seed ,cntxt]←${0,1}κ

30 ret Rand[i,seed ,cntxt]

POi(seed ,cntxt):
31 l← (jl ,el ,m,ql)
32 if i≤ 4: Rand[i,seed ,cntxt]←$Fl[i]

33 else: Rand[i,seed ,cntxt]←${0,1}κ

34 ret Rand[i,seed ,cntxt]

Figure 5.29. Game G2 for the proof of Theorem 5.4.

• Seed jseed sampled on line 15 coincides with an element of Rand1 (16).

• Seed seed2 coincides with an element of Rand3 (18).

Because the nonces sampled by Shard are unique, and because each of this oracle queries

encodes the nonce, we can be certain that points programmed into the table by each Shard query

do not collide with one another. Indeed, it is only possible for these values to coincide with

random oracle queries made by A. Apply a union bound over all qShard queries, we conclude that

Pr
[

G1(A)
]
≤ Pr

[
G2(A)

]
+

q2qShard
2κ−1 +

q5qShard
2κ−1 +

q6qShard
22κ

+
q1qShard

2κ
. (5.35)

In the next step, G3 (Figure 5.30), we substitute calls to VIDPF.Gen and VIDPF.VEval

with calls to the simulator S = (S 1
VIDPF,S

2
VIDPF). The first part, S 1

VIDPF, is used to simulate

the public share corrupt aggregator’s key share (10); the second part, S 2
VIDPF, is used to simulate

329

Shard(k̂ ∈ N,α0,α1 ∈ I):
1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗;N∗← N∗∪{n}
3 //Construct the VIDPF key shares.
4 seed1,seed2←${0,1}κ

5 for ` ∈ [η]:
6 D[k̂, `]← PO2(seed1,n‖`‖1)
7 +PO2(seed2,n‖`‖2)
8 ~β [`]← Encode(D[k̂, `],1)
9 (key1,key2,pub)←$VIDPF.Gen(αb ,~β)

10 (T[k̂],pub)←$S 1
VIDPF(z̃); keyz̃← T[k̂]; keyz←⊥

11 //Prepare the joint randomness.
12 ~rseed [1]← PO5(seed1,n‖1‖pub ‖key1)

13 ~rseed [2]← PO5(seed2,n‖2‖pub ‖key2)
14 //Generate the level proofs.
15 for ` ∈ [η]:
16 jseed ← PO6(0κ , `‖ ~rseed)
17 jr ← PO1(jseed ,n‖`)
18 π←$DFLP.Prove({0,1},D[k̂, `], jr)
19 ~pf [`]← π−PO3(seed2,n‖`)
20 //Prepare the initial message and input shares.
21 x1← (key1,seed1, ~pf)
22 x2← (key2,seed2)
23 In[k̂]← xz

24 Pub[k̂]← (pub, ~rseed)
25 Used[k̂]← (n,α0,α1)
26 ret (n,Pub[k̂],(xz̃,))

Prep(î ∈ N, k̂ ∈ N, ~M ∈M ∗): G2 G3

27 if Status[î] 6= running or In[k̂] =⊥: ret ⊥
28 if St[î, k̂] =⊥: St[î, k̂]← Setup[î]
29 (n,α0,α1)←Used[k̂]
30 if St[î, k̂] ∈QInit: //Process initial message from client
31 (`, ~pfx)← St[î, k̂]; u← | ~pfx |
32 (pub, ~rseed)← Pub[k̂]
33 (key _ ,seed ,π)← Unpack(z, In[k̂],n, `)
34 ∆ ← RO2(seed ,n‖`‖z)
35 ~rseed [z]← RO5(seed ,n‖z‖pub ‖key)
36 jseed ← RO6(0κ , `‖ ~rseed)
37 jr ← RO1(jseed ,n‖`); qr ← RO4(sk,n‖`)
38 (h,~y)← VIDPF.VEval(z,pub,key, ~pfx)
39 inp← ∑i∈[u]~y[i]

40 keyz̃← T[k̂]
41 h←$S 2

VIDPF(z̃,pub,keyz̃, ~pfx)

42 (_ ,~̃y)← VIDPF.VEval(z̃,pub,keyz̃, ~pfx)

43 xb ← |{ ~pfx [i] : ~pfx [i] prefixes αb}i∈[u]|
44 inpb ← DFLP.Encode(∆ [k̂, `],xb)
45 inp← inpb−∑i∈[u]~̃y[i]
46 σ ← DFLP.Query(inp,∆ ,π, jr ; qr)

47 M← (σ , ~rseed [z],h)
48 St[î, k̂]← (jseed ,(DFLP.Decode(~y[i]))i∈[u])
49 ret (running,M)
50 //Process broadcast messages from aggregators
51 (jseed ,~y)← St[î, k̂]; St[î, k̂]←⊥
52

(
(σ1,rseed1,h1),(σ2,rseed2,h2)

)
← ~M

53 accDFLP← DFLP.Decide(σ1 +σ2)
54 accVIDPF← VIDPF.Verify(h1,h2)
55 acc0← jseed = RO6(0κ , `‖rseed1 ‖rseed2)
56 if accDFLP and accVIDPF and acc0:
57 Out[î, k̂]←~y; Batch0[î, k̂]← α0; Batch1[î, k̂]←
α1
58 ret finished
59 ret failed

Figure 5.30. Game G3 for the proof of Theorem 5.4.

330

the honest aggregators one-hot check, based on the output of the first (41). After this second

point, we no longer compute the honest aggregator’s refined share ~y consistently. Instead, we

compute the corrupt aggregator’s refined share ~̃y and compute the the challenge input inp by

subtracting the sum from the true sum for the input αb (43–44).

There exists an adversary B for which

Pr
[

G2(A)
]
≤ Pr

[
G3(A)

]
+qShard ·Advpriv

VIDPF,S (B) . (5.36)

The proof is by a standard argument. In each hybrid game, we answer one more Shard query

(and the corresponding Prep query) using S . Adversary B simply runs A in one of these hybrid

games, chosen at random, and outputs whatever A outputs.

In game G4 (Figure 5.31), we prepare for the Shard oracle for the reduction to DFLP

privacy. The primary change is that we have Shard sample the query randomness qr that will be

used to query the proof at each level (see line 18 in the left panel). This ensures that the query

randomness is “committed” even before the query is made. We use the unpredictability of the

nonce to bound the probability that this change leads to an inconsistent view of the experiment.

In particular,

Pr
[

G3(A)
]
≤ Pr

[
G4(A)

]
+

ηq4qShard
|N|

. (5.37)

In this step, we also make a couple of non-breaking changes. First, we in-line programming of

the random oracle with the joint randomness and encoding randomness (16–17,19). Second, we

store each proof and encoding randomness in tables P and D respectively. These changes are

made to clarify the next step.

In game G5 (Figure 5.31) we prepare the Prep oracle by re-arranging the proof query. In

particular, we run the query-generation algorithm on the plaintext encoded input and proof, and

generate the verifier share that is output by subtracting from the verifier (denoted V[k̂, `]; see

line 19 of the right panel) the verifier share generated from the corrupt aggregator’s share. The

adversary’s view is consistent with the previous game by the full linearity of DFLP.

Lastly, in game G6 (not pictured) we modify the Prep oracle by replacing computation of

the verifier from αb with the DFLP-privacy simulator T . There exists an adversary C for which

331

Shard(k̂ ∈ N,α0,α1 ∈ I): G3 G4

1 if Used[k̂] 6=⊥: ret ⊥
2 n←$ N \N∗;N∗← N∗∪{n}
3 //Construct the VIDPF key shares.
4 seed1,seed2←${0,1}κ

5 for ` ∈ [η]:
6 D[k̂, `]← PO2(seed1,n‖`‖1)
7 +PO2(seed2,n‖`‖2)
8 (T[k̂],pub)←$S 1

VIDPF(z̃); keyz̃ ← T[k̂]; keyz ←
⊥

9 //Prepare the joint randomness.
10 ~rseed [1]← PO5(seed1,n‖1‖pub ‖key1)

11 ~rseed [2]← PO5(seed2,n‖2‖pub ‖key2)
12 //Generate the level proofs.
13 for ` ∈ [η]:
14 jseed ← PO6(0κ , `‖ ~rseed)

15 jr←$Fjl ; qr←$Fql ; D[k̂, `], ∆̃←$Fel

16 Rand[2,seed z,n‖`‖z]← D[k̂, `]− ∆̃

17 Rand[2,seed z̃,n‖`‖ z̃]← ∆̃

18 Rand[4,sk,n‖`]← qr
19 Rand[1, jseed ,n‖`]← jr
20 P[k̂, `]←$DFLP.Prove({0,1},∆ , jr)

21 ~pf [`]← P[k̂, `]−PO3(seed2,n‖`)
22 jr ← PO1(jseed ,n‖`)
23 π←$DFLP.Prove({0,1},D[k̂, `], jr)
24 ~pf [`]← π−PO3(seed2,n‖`)
25 //Prepare the initial message and input shares.
26 x1← (key1,seed1, ~pf); x2← (key2,seed2)

27 In[k̂]← xz; Pub[k̂]← (pub, ~rseed)
28 Used[k̂]← (n,α0,α1)
29 ret (n,Pub[k̂],(xz̃,))

Prep(î ∈ N, k̂ ∈ N, ~M ∈M ∗): G4 G5

1 if Status[î] 6= running or In[k̂] =⊥: ret ⊥
2 if St[î, k̂] =⊥: St[î, k̂]← Setup[î]
3 (n,α0,α1)←Used[k̂]
4 if St[î, k̂] ∈QInit: //Process initial message from client
5 (`, ~pfx)← St[î, k̂]; u← | ~pfx |
6 (pub, ~rseed)← Pub[k̂]
7 (_ ,seed ,π)← Unpack(z, In[k̂],n, `)
8 ∆ ← RO2(seed ,n‖`‖z)
9 ~rseed [z]← RO5(seed ,n‖z‖pub ‖key)

10 jseed ← RO6(0κ , `‖ ~rseed)
11 jr ← RO1(jseed ,n‖`); qr ← RO4(sk,n‖`)
12 keyz̃← T[k̂]
13 h←$S 2

VIDPF(z̃,pub,keyz̃, ~pfx)

14 (_ ,~̃y)← VIDPF.VEval(z̃,pub,keyz̃, ~pfx)

15 xb ← |{ ~pfx [i] : ~pfx [i] prefixes αb}i∈[u]|
16 inpb ← DFLP.Encode(∆ [k̂, `],xb)

17 inp← inpb−∑i∈[u]~̃y[i]
18 σ ← DFLP.Query(inp,∆ ,π, jr ; qr)

19 V[k̂, `]← DFLP.Query(inpb ,D[k̂, `],P[k̂, `], jr ; qr)
20 σ ← V[k̂, `]−DFLP.Query(∑i∈[u]~̃y[i],∆ ,π, jr ; qr)

21 M← (σ , ~rseed [z],h)
22 St[î, k̂]← (jseed ,(DFLP.Decode(~y[i]))i∈[u])
23 ret (running,M)
24 //Process broadcast messages from aggregators
25 (jseed ,~y)← St[î, k̂]; St[î, k̂]←⊥
26

(
(σ1,rseed1,h1),(σ2,rseed2,h2)

)
← ~M

27 accDFLP← DFLP.Decide(σ1 +σ2)
28 accVIDPF← VIDPF.Verify(h1,h2)
29 acc0← jseed = RO6(0κ , `‖rseed1 ‖rseed2)
30 if accDFLP and accVIDPF and acc0:
31 Out[î, k̂]←~y; Batch0[î, k̂]← α0; Batch1[î, k̂]← α1
32 ret finished
33 ret failed

Figure 5.31. Games G4 and G5 for the proof of Theorem 5.4.

332

Pr
[

G5(A)
]
≤ Pr

[
G6(A)

]
+ηqShard ·Advpriv

DFLP,T (C) . (5.38)

The proof is by a hybrid argument, where each hybrid game G′u,v is defined as follows. For the

first u reports and for the first v levels of the VIDPF tree, the verifier V[u,v] is generated as

specified in game G5 (line 19 in the right panel of Figure 5.31); all other verifiers are generated

by T as specified in game G6. By construction,

Pr
[

G5(A)
]
−Pr

[
G6(A)

]
= Pr

[
G′0,0(A)

]
−Pr

[
G′qShard,η(A)

]
. (5.39)

Define DFLP-privacy attacker C as follows. (Refer to Figure 5.6.) On its first invocation,

it simply outputs X = {0,1} as the input set, as this is what is required by the game. On its

next invocation, it is given joint randomness jr∗ and query randomness qr∗. It proceeds by

simulating A in a random hybrid game. It first samples u∗←$ [qShard] and v∗←$ [η]. It then runs

G′u∗,v∗(A) except:

• On the u∗-th query to Shard, for the v∗-th level, it uses jr∗ and qr∗ to program the random

oracles for the joint and query randomness respectively.

• When A makes a Prep query corresponding to report u∗ and level v∗, it halts and outputs xb

and awaits a response from its game. Upon being invoked once more on input σ , it sets

V[u∗,v∗]← σ and continues the simulation.

Finally, when A halts, C halts and returns whatever A output. Then C perfectly simulates

G′u∗,v∗(A) when the value of its challenge bit is 1, and it perfectly simulates G′u∗,v∗+1(A) when its

challenge bit is equal to 0. The claimed bound follows from a standard conditioning argument.

To complete the proof, we note that

Pr
[

G6(A)
]
=

1
2
. (5.40)

Gathering up all of the terms and simplifying yields the desired bound.

333

Acknowledgments

Thank you to the anonymous reviewers from the PETS 2023 program committee whose

feedback helped us improve a number of technical aspects of our paper. Thank you as well to

Christopher Wood who helped us position this work in the context of the ongoing standardization

effort at IETF. Finally, thanks to Nikita Borisov, Sofía Celi, Tanya Verma, Tara Whalen, and

Avani Wildani for editorial improvements.

Hannah and Mike carried out their work on this paper while visiting Cloudflare Research.

This research received no specific grant from any funding agency in the public, commercial, or

not-for-profit sectors. Chapter 5 is a reprint of the full version of a paper appearing in the

proceedings of Privacy Enhancing Technology Symposium (PETS), 2023. Davis, Hannah; Patton,

Christopher; Rosulek, Mike; Schoppmann, Phillipp. This author’s main contributions consist of

the game-based privacy and robustness definitions, security proofs for Prio3, and some of the

design of our delayed input fully linear proofs as an element of Doplar. These contributions

would not have been possible without the careful supervision and feedback of Chris, who also

wrote the bulk of the security proofs for Doplar, provided the initial vision for the project and

led its application to the draft standards. Thanks also to Mike and Phillipp for their extensive

work on the paper and Doplar’s design and analysis, especially the verifiable IDPFs.

334

Bibliography

[1] Privacy preserving measurement, 2022. (Cited on page 5, 253.)

[2] Private Advertising Tecnology Community Group, 2022. (Cited on page 252.)

[3] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security.
In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433.
Springer, Heidelberg, Apr. / May 2002. (Cited on page 216, 217, 219, 220, 230, 231, 232,
239.)

[4] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages
143–158. Springer, Heidelberg, Apr. 2001. (Cited on page 51, 52, 53.)

[5] M. Abdalla, F. Benhamouda, and P. MacKenzie. Security of the J-PAKE password-
authenticated key exchange protocol. In 2015 IEEE Symposium on Security and Privacy,
pages 571–587. IEEE Computer Society Press, May 2015. (Cited on page 57.)

[6] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange
in the three-party setting. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages
65–84. Springer, Heidelberg, Jan. 2005. (Cited on page 57.)

[7] M. Abdalla, B. Haase, and J. Hesse. Security analysis of cpace. Cryptology ePrint Archive,
Paper 2021/114, 2021. (Cited on page 256.)

[8] M. Abdalla, B. Haase, and J. Hesse. CPace, a balanced composable PAKE. Internet-Draft
draft-irtf-cfrg-cpace-06, Internet Engineering Task Force, July 2022. Work in Progress.
(Cited on page 256.)

[9] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou. Prio+: Privacy
preserving aggregate statistics via boolean shares. Cryptology ePrint Archive, Report
2021/576, 2021. https://ia.cr/2021/576. (Cited on page 253, 259.)

[10] M. Albrecht, C. Cid, K. G. Paterson, C. J. Tjhai, and M. Tomlinson. NTS-KEM. NIST
PQC Round 2 Submission, 2019. (Cited on page 9, 22.)

[11] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe, and
D. Stebila. NewHope: Algorithm specifications and supporting documentation. NIST PQC
Round 2 Submission, 2019. (Cited on page 3, 8, 20, 41.)

335

https://ia.cr/2021/576

[12] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and C. Weng. Aggregate
measurement via oblivious shuffling. Cryptology ePrint Archive, Report 2021/1490, 2021.
https://ia.cr/2021/1490. (Cited on page 255, 259.)

[13] Apple and Google. Exposure Notification Privacy-preserving Analytics (ENPA). White
paper, 2021. https://covid19-static.cdn-apple.com/applications/covid19/current/static/
contact-tracing/pdf/ENPA_White_Paper.pdf. (Cited on page 5, 253, 254.)

[14] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Güneysu, C. Aguilar Melchor, R. Misoczki, E. Persichetti,
N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor. BIKE: Bit flipping key encapsulation.
NIST PQC Round 2 Submission, 2019. (Cited on page 9, 20.)

[15] N. Aragon, O. Blazy, J.-C. Deneuville, P. Gaborit, A. Hauteville, O. Ruatta, J.-P. Tillich,
and G. Zémor. LOCKER: Low rank parity check codes encryption. NIST PQC Round 1
Submission, 2017. (Cited on page 9, 20.)

[16] G. Arfaoui, X. Bultel, P.-A. Fouque, A. Nedelcu, and C. Onete. The privacy of the TLS
1.3 protocol. PoPETs, 2019(4):190–210, Oct. 2019. (Cited on page 156.)

[17] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. J. ACM, 45(3):501–555, may 1998. (Cited on
page 262.)

[18] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-Kyber: Algorithm specifications and
supporting documentation. NIST PQC Round 2 Submission, 2019. (Cited on page 9, 22.)

[19] G. Avoine, S. Canard, and L. Ferreira. Symmetric-key authenticated key exchange (SAKE)
with perfect forward secrecy. In S. Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS,
pages 199–224. Springer, Heidelberg, Feb. 2020. (Cited on page 116.)

[20] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarohoven, R. Player,
R. Rietman, M.-J. O. Saarinen, L. Tolhuizen, J. L. Torre-Arce, and Z. Zhang. Round5:
KEM and PKE based on (ring) learning with rounding. NIST PQC Round 2 Submission,
2019. (Cited on page 9, 20.)

[21] M. Backendal, M. Bellare, J. Sorrell, and J. Sun. The fiat-shamir zoo: Relating the security
of different signature variants. In N. Gruschka, editor, Secure IT Systems - 23rd Nordic
Conference, NordSec 2018, volume 11252 of Lecture Notes in Computer Science, pages
154–170. Springer, 2018. (Cited on page 231.)

[22] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated key
exchange. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 629–658. Springer, Heidelberg, Mar. 2015. (Cited on page 52, 54, 64, 118.)

[23] C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight cryptographic
reductions. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 273–304. Springer, Heidelberg, May 2016. (Cited on page 54, 65,
118.)

336

https://ia.cr/2021/1490
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

[24] G. Banegas, P. S. L. M. Barreto, B. O. Boidje, P.-L. Cayrel, G. N. Dione, K. Gaj,
C. T. Gueye, R. Haeussler, J. B. Klamti, O. N’diaye, D. T. Nguyen, E. Persichetti, and
J. E. Ricardini. DAGS: Key encapsulation from dyadic GS codes. NIST PQC Round 1
Submission, 2017. (Cited on page 8, 17.)

[25] M. Bardet, É. Barelli, O. Blazy, R. Canto-Torres, A. Couvreur, P. Gaborit, A. Otmani,
N. Sendrier, and J.-P. Tillich. BIG QUAKE: Binary goppa quasi-cyclic key encapsulation.
NIST PQC Round 1 Submission, 2017. (Cited on page 8, 17.)

[26] R. Barnes, C. Patton, and P. Schoppmann. Verifiable Distributed Aggregation Functions.
Internet-Draft draft-irtf-cfrg-vdaf-03, Internet Engineering Task Force, Aug. 2022. Work in
Progress. (Cited on page 5, 254, 257, 261, 263, 264, 267, 272, 273, 275, 277, 285, 286, 298.)

[27] J. Bell, A. Gascón, B. Ghazi, R. Kumar, P. Manurangsi, M. Raykova, and P. Schoppmann.
Distributed, private, sparse histograms in the two-server model. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pages 307–321,
2022. (Cited on page 253, 255, 259, 289.)

[28] J. Bell, A. Gascón, T. Lepoint, B. Li, S. Meiklejohn, M. Raykova, and C. Yun. Acorn: Input
validation for secure aggregation. Cryptology ePrint Archive, 2022. (Cited on page 259.)

[29] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure single-server
aggregation with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1253–1269, 2020. (Cited on
page 259.)

[30] M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC and its
multi-user security. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 566–595. Springer, Heidelberg, May 2016. (Cited on page 13,
54, 64, 67, 75, 218, 219, 234, 242.)

[31] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Heidelberg,
Aug. 1996. (Cited on page 214.)

[32] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer
Society Press, Oct. 1996. (Cited on page 63.)

[33] M. Bellare and W. Dai. The multi-base discrete logarithm problem: Non-rewinding proofs
and improved reduction tightness for identification and signatures. In INDOCRYPT 2020,
2020. https://eprint.iacr.org/2020/416. (Cited on page 4, 67, 217, 220, 232, 239.)

[34] M. Bellare, H. Davis, and Z. Di. Hardening signature schemes via derive-then-derandomize:
Stronger security proofs for eddsa. In A. Boldyreva and V. Kolesnikov, editors, Public-Key
Cryptography - PKC 2023 - 26th IACR International Conference on Practice and Theory of
Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023, Proceedings, Part I, volume
13940 of Lecture Notes in Computer Science, pages 223–250. Springer, 2023. (Cited on
page .)

337

https://eprint.iacr.org/2020/416

[35] M. Bellare, H. Davis, and F. Günther. Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. In A. Canteaut and Y. Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 3–32. Springer, Heidelberg,
May 2020. (Cited on page 119, 138, 139, 140, 142, 143, 144, 209, 219, 222.)

[36] M. Bellare, O. Goldreich, and A. Mityagin. The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309,
2004. https://eprint.iacr.org/2004/309. (Cited on page 67.)

[37] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 162–177. Springer, Heidelberg, Aug. 2002. (Cited on page 217.)

[38] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures, tightly: A frame-
work and generic transforms. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 435–464. Springer, Heidelberg, Dec. 2016. (Cited on
page 215, 220.)

[39] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
139–155. Springer, Heidelberg, May 2000. (Cited on page 50.)

[40] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM. (Cited on page 2, 261.)

[41] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. (Cited on page 6, 13, 43, 52,
53, 55, 214, 222, 225.)

[42] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, Aug. 1994.
(Cited on page 50, 53, 56.)

[43] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331, 2004. https://eprint.iacr.org/
2004/331. (Cited on page 164.)

[44] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 24, 47, 53,
58, 76, 77, 221, 227.)

[45] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, pages 409–426, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. (Cited on
page 255, 310, 312.)

338

https://eprint.iacr.org/2004/309
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331

[46] M. Bellare and B. Tackmann. Nonce-based cryptography: Retaining security when ran-
domness fails. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 729–757. Springer, Heidelberg, May 2016. (Cited on page 215, 220.)

[47] D. J. Bernstein. Multi-user Schnorr security, revisited. Cryptology ePrint Archive, Report
2015/996, 2015. https://eprint.iacr.org/2015/996. (Cited on page 230.)

[48] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. N. Rafael Misoczki, E. Persichetti,
C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang. Classic McEliece: conservative
code-based cryptography. NIST PQC Round 2 Submission, 2019. (Cited on page 9, 22.)

[49] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU Prime.
NIST PQC Round 2 Submission, 2019. (Cited on page 9, 22.)

[50] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
124–142. Springer, Heidelberg, Sept. / Oct. 2011. (Cited on page 54.)

[51] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sept. 2012. (Cited on page 4.)

[52] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. Journal of cryptographic engineering, 2(2):77–89, 2012. (Cited on page 213,
215, 217, 231.)

[53] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the
sponge construction. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 181–197. Springer, Heidelberg, Apr. 2008. (Cited on page 2.)

[54] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Zanella-Béguelin.
Downgrade resilience in key-exchange protocols. In 2016 IEEE Symposium on Security and
Privacy, pages 506–525. IEEE Computer Society Press, May 2016. (Cited on page 121.)

[55] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella Béguelin.
Proving the TLS handshake secure (as it is). In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 235–255. Springer, Heidelberg, Aug.
2014. (Cited on page 120.)

[56] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. Succinct non-interactive
arguments via linear interactive proofs. In A. Sahai, editor, Theory of Cryptography, pages
315–333, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. (Cited on page 262.)

[57] D. Bleichenbacher. A forgery attack on RSA signatures based on implementation errors
in the verification. Rump Session Presentation, Crypto 2006, August 2006. (Cited on
page 213.)

[58] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning.
In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1175–1191, 2017. (Cited on page 259.)

339

https://eprint.iacr.org/2015/996

[59] D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium (ANTS), volume 1423 of LNCS. Springer, Heidelberg, 1998. Invited paper.
(Cited on page 50, 53, 62.)

[60] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Zero-knowledge proofs
on secret-shared data via fully linear pcps. In A. Boldyreva and D. Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 67–97, Cham, 2019. Springer International
Publishing. (Cited on page x, 5, 253, 257, 261, 263, 267, 272, 274, 285, 298, 299, 300.)

[61] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Lightweight techniques
for private heavy hitters. In IEEE Symposium on Security and Privacy, pages 762–776.
IEEE, 2021. (Cited on page 5, 253, 257, 258, 264, 267, 272, 277, 279, 284, 287.)

[62] C. Boyd, C. Cremers, M. Feltz, K. G. Paterson, B. Poettering, and D. Stebila. ASICS:
Authenticated key exchange security incorporating certification systems. In J. Crampton,
S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 381–399.
Springer, Heidelberg, Sept. 2013. (Cited on page 128.)

[63] C. Boyd, G. T. Davies, B. de Kock, K. Gellert, T. Jager, and L. Millerjord. Symmetric key
exchange with full forward security and robust synchronization. In ASIACRYPT 2021, 2021.
To appear. Available as Cryptology ePrint Archive, Report 2021/702. https://ia.cr/2021/702.
(Cited on page 116.)

[64] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1292–1303, 2016. (Cited on page 278.)

[65] J. Brendel, C. Cremers, D. Jackson, and M. Zhao. The provable security of Ed25519:
Theory and practice. In 2021 IEEE Symposium on Security and Privacy, pages 1659–1676.
IEEE Computer Society Press, May 2021. (Cited on page 2, 4, 213, 216, 217, 219, 220,
231, 232, 233, 239.)

[66] J. Brendel, M. Fischlin, F. Günther, and C. Janson. PRF-ODH: Relations, instantiations,
and impossibility results. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 651–681. Springer, Heidelberg, Aug. 2017. (Cited on page 51,
53, 55, 62, 113.)

[67] J. Brickell and V. Shmatikov. Efficient anonymity-preserving data collection. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 76–85, 2006. (Cited on page 259.)

[68] C. Brzuska, A. Delignat-Lavaud, C. Egger, C. Fournet, K. Kohbrok, and M. Kohlweiss. Key-
schedule security for the TLS 1.3 standard. Cryptology ePrint Archive, Report 2021/467,
2021. https://eprint.iacr.org/2021/467. (Cited on page 121.)

[69] C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability of Bellare-
Rogaway key exchange protocols. In Y. Chen, G. Danezis, and V. Shmatikov, editors,
ACM CCS 2011, pages 51–62. ACM Press, Oct. 2011. (Cited on page 158.)

[70] R. Canetti. Universally composable security. J. ACM, 67(5), sep 2020. (Cited on page 256.)

340

https://ia.cr/2021/702
https://eprint.iacr.org/2021/467

[71] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
453–474. Springer, Heidelberg, May 2001. (Cited on page 50, 55, 61, 111.)

[72] R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 143–161.
Springer, Heidelberg, Aug. 2002. https://eprint.iacr.org/2002/120/. (Cited on page xii, 50,
51, 52, 53, 54, 55, 57, 107, 108, 109, 110, 111, 112.)

[73] K. Chalkias, F. Garillot, and V. Nikolaenko. Taming the many eddsas. In T. van der
Merwe, C. Mitchell, and M. Mehrnezhad, editors, Security Standardisation Research, pages
67–90, Cham, 2020. Springer International Publishing. (Cited on page 219.)

[74] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. MQDSS specifica-
tions. NIST PQC Round 2 Submission, 2019. (Cited on page 23.)

[75] Y. Chen, A. Lombardi, F. Ma, and W. Quach. Does fiat-shamir require a cryptographic
hash function? In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 334–363, Virtual Event, Aug. 2021. Springer, Heidelberg. (Cited on
page 219.)

[76] J. H. Cheon, S. Park, J. Lee, D. Kim, Y. Song, S. Hong, D. Kim, J. Kim, S.-M. Hong,
A. Yun, J. Kim, H. Park, E. Choi, K. Kim, J.-S. Kim, and J. Lee. Lizard public key
encryption. NIST PQC Round 1 Submission, 2017. (Cited on page 9, 20, 21.)

[77] K. Cohn-Gordon, C. Cremers, and L. Garratt. On post-compromise security. In 2016
Computer Security Foundations Symposium, pages 164–178. IEEE, 2016. (Cited on page 61.)

[78] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager. Highly efficient key
exchange protocols with optimal tightness. In A. Boldyreva and D. Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 767–797. Springer, Heidelberg,
Aug. 2019. (Cited on page 3, 52, 53, 54, 55, 57, 61, 63, 76, 84, 118, 119, 121, 170.)

[79] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager. Highly efficient
key exchange protocols with optimal tightness – enabling real-world deployments with
theoretically sound parameters. Cryptology ePrint Archive, Report 2019/737, 2019. https:
//eprint.iacr.org/2019/737. (Cited on page 52.)

[80] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgrard revisited: How to
construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 430–448. Springer, Heidelberg, Aug. 2005. (Cited on page 2, 4, 10, 25, 214, 215, 218,
239, 240, 242.)

[81] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 259–282, Boston, MA, Mar. 2017. USENIX Association.
(Cited on page 5, 253, 255, 256, 257, 267, 269, 272.)

[82] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–
226, 2003. (Cited on page 7, 44.)

341

https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2019/737
https://eprint.iacr.org/2019/737

[83] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated analysis and verification
of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016 IEEE Symposium on
Security and Privacy, pages 470–485. IEEE Computer Society Press, May 2016. (Cited on
page 122.)

[84] I. Damgrard. A design principle for hash functions. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 416–427. Springer, Heidelberg, Aug. 1990. (Cited on page 214,
217, 222.)

[85] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin. Smart meter aggregation
via secret-sharing. In Proceedings of the first ACM workshop on Smart energy grid security,
pages 75–80, 2013. (Cited on page 259.)

[86] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER: Mod-LWR based
KEM. NIST PQC Round 2 Submission, 2019. (Cited on page 9, 20.)

[87] A. Davidson, P. Snyder, E. Quirk, J. Genereux, B. Livshits, and H. Haddadi. Star: Secret
sharing for private threshold aggregation reporting. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 697–710, 2022.
(Cited on page 259.)

[88] H. Davis, D. Diemert, F. Günther, and T. Jager. On the concrete security of TLS 1.3
PSK mode. In O. Dunkelman and S. Dziembowski, editors, Advances in Cryptology -
EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings,
Part II, volume 13276 of Lecture Notes in Computer Science, pages 876–906. Springer,
2022. (Cited on page .)

[89] H. Davis and F. Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In 19th International Conference on Applied Cryptography and Network Security
(ACNS 2021), 2021. (Cited on page 118, 119, 120, 121, 127, 138, 190, 193, 195.)

[90] H. Davis, C. Patton, M. Rosulek, and P. Schoppmann. Verifiable distributed aggreagtion
functions. Proc. Priv. Enhancing Technol., 2023(4), 2023. (Cited on page .)

[91] H. Davis, C. Patton, M. Rosulek, and P. Schoppmann. Verifiable distributed aggregation
functions. Cryptology ePrint Archive, Paper 2023/130, 2023. (Cited on page 260.)

[92] L. de Castro and A. Polychroniadou. Lightweight, maliciously secure verifiable function
secret sharing. In O. Dunkelman and S. Dziembowski, editors, Advances in Cryptology -
EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings,
Part I, volume 13275 of Lecture Notes in Computer Science, pages 150–179. Springer, 2022.
(Cited on page 258, 278, 279, 280, 290.)

[93] C. Delpech de Saint Guilhem, M. Fischlin, and B. Warinschi. Authentication in key-
exchange: Definitions, relations and composition. pages 288–303, 06 2020. (Cited on
page 132.)

342

[94] G. Demay, P. Gaži, M. Hirt, and U. Maurer. Resource-restricted indifferentiability. In
T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
664–683. Springer, Heidelberg, May 2013. (Cited on page 10, 25.)

[95] A. W. Dent. A designer’s guide to KEMs. In K. G. Paterson, editor, 9th IMA International
Conference on Cryptography and Coding, volume 2898 of LNCS, pages 133–151. Springer,
Heidelberg, Dec. 2003. (Cited on page 7, 14, 15.)

[96] D. Diemert. On the Tight Security of the Transport Layer Security (TLS) Protocol
Version 1.3. PhD thesis, Bergische Universität Wuppertal, Wuppertal, Germany, 2023.
https://doi.org/10.25926/BUW/0-98. (Cited on page 201, 209.)

[97] D. Diemert, K. Gellert, T. Jager, and L. Lyu. More efficient digital signatures with tight
multi-user security. In J. Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
1–31. Springer, Heidelberg, May 2021. (Cited on page 118.)

[98] D. Diemert and T. Jager. On the tight security of TLS 1.3: Theoretically-sound crypto-
graphic parameters for real-world deployments. Journal of Cryptology, 2020. To appear.
Available as Cryptology ePrint Archive, Report 2020/726. https://eprint.iacr.org/2020/726.
(Cited on page 3, 55, 56, 57, 61, 63, 93, 110.)

[99] D. Diemert and T. Jager. On the tight security of TLS 1.3: Theoretically sound crypto-
graphic parameters for real-world deployments. Journal of Cryptology, 34(3):30, July 2021.
(Cited on page 2, 118, 119, 120, 121, 138.)

[100] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damgrard for practical
applications. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 371–388.
Springer, Heidelberg, Apr. 2009. (Cited on page 214, 215, 216, 236.)

[101] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or not to hash again?
(In)differentiability results for H2 and HMAC. Cryptology ePrint Archive, Report 2013/382,
2013. https://eprint.iacr.org/2013/382. (Cited on page 146.)

[102] Y. Dodis, T. Ristenpart, J. P. Steinberger, and S. Tessaro. To hash or not to hash again?
(In)differentiability results for H2 and HMAC. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 348–366. Springer, Heidelberg, Aug. 2012.
(Cited on page 141, 145, 146.)

[103] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol. Journal of Cryptology, 2021. To appear. Available as Cryptology
ePrint Archive, Report 2020/1044. https://eprint.iacr.org/2020/1044. (Cited on page xii,
50, 51, 52, 53, 54, 55, 63, 90, 108, 109, 110, 112, 113, 117, 120, 121, 127, 132, 193, 196,
197.)

[104] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In I. Ray, N. Li, and C. Kruegel, editors, ACM
CCS 2015, pages 1197–1210. ACM Press, Oct. 2015. (Cited on page 3, 50, 55, 63, 90, 117,
120, 121, 158.)

343

https://doi.org/10.25926/BUW/0-98
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2013/382
https://eprint.iacr.org/2020/1044

[105] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol candidates. Cryptology ePrint Archive, Report 2015/914, 2015.
https://eprint.iacr.org/2015/914. (Cited on page 158.)

[106] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS
1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report
2016/081, 2016. https://eprint.iacr.org/2016/081. (Cited on page 50, 55, 63, 90, 117, 121.)

[107] B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the TLS
protocol. In E. Foo and D. Stebila, editors, ACISP 15, volume 9144 of LNCS, pages
270–288. Springer, Heidelberg, June / July 2015. (Cited on page 121.)

[108] N. Drucker and S. Gueron. Selfie: reflections on TLS 1.3 with PSK. Journal of Cryptology,
34(3):27, July 2021. (Cited on page 127.)

[109] Y. Duan, J. Canny, and J. Zhan. {P4P}: Practical {Large-Scale}{Privacy-Preserving} dis-
tributed computation robust against malicious users. In 19th USENIX Security Symposium
(USENIX Security 10), 2010. (Cited on page 259.)

[110] C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. (Cited on page 289.)

[111] T. Elahi, G. Danezis, and I. Goldberg. Privex: Private collection of traffic statistics for
anonymous communication networks. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1068–1079, 2014. (Cited on page 259.)

[112] M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 1193–1204.
ACM Press, Nov. 2014. (Cited on page 56, 57, 61, 63, 112, 120, 121.)

[113] M. Fischlin and F. Günther. Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on Security and
Privacy, EuroS&P 2017, pages 60–75. IEEE, Apr. 2017. (Cited on page 50, 55, 63, 90, 117,
120, 121.)

[114] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key confirmation in key exchange:
A formal treatment and implications for TLS 1.3. In 2016 IEEE Symposium on Security
and Privacy, pages 452–469. IEEE Computer Society Press, May 2016. (Cited on page 132.)

[115] G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind schnorr signatures and signed ElGamal
encryption in the algebraic group model. In A. Canteaut and Y. Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May
2020. (Cited on page 4, 217, 232, 239.)

[116] O. Garcia-Morchon and Z. Zhang. Round2: KEM and PKE based on GLWR. NIST PQC
Round 1 Submission, 2017. (Cited on page 8, 17.)

[117] T. Geoghegan, C. Patton, E. Rescorla, and C. A. Wood. Distributed Aggregation Protocol
for Privacy Preserving Measurement. Internet-Draft draft-ietf-ppm-dap-02, Internet Engi-
neering Task Force, Sept. 2022. Work in Progress. (Cited on page 253, 255, 257, 268, 270,
289.)

344

https://eprint.iacr.org/2015/914
https://eprint.iacr.org/2016/081

[118] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS renegotiation. In A.-R.
Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 2013, pages 387–398. ACM Press,
Nov. 2013. (Cited on page 120.)

[119] N. Gilboa and Y. Ishai. Distributed point functions and their applications. In P. Q. Nguyen
and E. Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, pages 640–658,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. (Cited on page 258.)

[120] D. K. Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport
Layer Security (TLS). RFC 7919, Aug. 2016. (Cited on page 202.)

[121] K. Gjøsteen and T. Jager. Practical and tightly-secure digital signatures and authenticated
key exchange. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 95–125. Springer, Heidelberg, Aug. 2018. (Cited on page 52, 118,
121.)

[122] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.
In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 104–110. Springer,
Heidelberg, Aug. 1987. (Cited on page 215, 220.)

[123] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.
(Cited on page 64, 216, 224.)

[124] M. Green, W. Ladd, and I. Miers. A protocol for privately reporting ad impressions at scale.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, page 1591–1601, New York, NY, USA, 2016. Association for Computing Machinery.
(Cited on page 253, 259.)

[125] C. G. Günther. An identity-based key-exchange protocol. In J.-J. Quisquater and J. Vande-
walle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 29–37. Springer, Heidelberg,
Apr. 1990. (Cited on page 116.)

[126] F. Günther. Modeling Advanced Security Aspects of Key Exchange and Secure Channel
Protocols. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2018.
http://tuprints.ulb.tu-darmstadt.de/7162/. (Cited on page 121, 158.)

[127] C. Guo, J. Katz, X. Wang, and Y. Yu. Efficient and secure multiparty computation from
fixed-key block ciphers. In 2020 IEEE Symposium on Security and Privacy (SP), pages
825–841. IEEE, 2020. (Cited on page 261.)

[128] X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu. Half-tree: Halving
the cost of tree expansion in cot and dpf. Cryptology ePrint Archive, Paper 2022/1431,
2022. (Cited on page 261.)

[129] M. Hamburg. Post-quantum cryptography proposal: ThreeBears. NIST PQC Round 2
Submission, 2019. (Cited on page 9, 22.)

[130] S. Han, T. Jager, E. Kiltz, S. Liu, J. Pan, D. Riepel, and S. Schäge. Authenticated key
exchange and signatures with tight security in the standard model. In T. Malkin and
C. Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 670–700,
Virtual Event, Aug. 2021. Springer, Heidelberg. (Cited on page 118, 121.)

345

http://tuprints.ulb.tu-darmstadt.de/7162/

[131] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF RFC 2409 (Proposed
Standard), 1998. (Cited on page 49, 72.)

[132] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your ps and qs:
Detection of widespread weak keys in network devices. In T. Kohno, editor, USENIX
Security 2012, pages 205–220. USENIX Association, Aug. 2012. (Cited on page 213.)

[133] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017. (Cited on page 7, 14, 15.)

[134] S. Hohenberger, S. Myers, R. Pass, et al. Anonize: A large-scale anonymous survey system.
In 2014 IEEE Symposium on Security and Privacy, pages 375–389. IEEE, 2014. (Cited on
page 259.)

[135] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe. NTRU-HRSS-KEM: Algorithm
specifications and supporting documentations. NIST PQC Round 1 Submission, 2017.
(Cited on page 9, 22.)

[136] T. Humphries, R. Akhavan Mahdavi, S. Veitch, and F. Kerschbaum. Selective mpc:
Distributed computation of differentially private key-value statistics. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
1459–1472, 2022. (Cited on page 289.)

[137] IANIX. Things that use Ed25519. https://ianix.com/pub/ed25519-deployment.html. (Cited
on page 213, 215.)

[138] J. J. P. III, D. Charles, D. Gilton, Y. H. Jung, M. Parsana, and E. Anderson. Masked lark:
Masked learning, aggregation and reporting workflow, 2021. (Cited on page 255, 259.)

[139] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short pcps. In
Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07), pages
278–291, 2007. (Cited on page 262.)

[140] T. Jager, E. Kiltz, D. Riepel, and S. Schäge. Tightly-secure authenticated key exchange,
revisited. In EUROCRYPT 2021, 2021. To appear. Available as Cryptology ePrint Archive,
Report 2020/1279. https://eprint.iacr.org/2020/1279. (Cited on page 55, 121.)

[141] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the
standard model. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 273–293. Springer, Heidelberg, Aug. 2012. (Cited on page 51, 53, 55, 62,
63, 120, 121.)

[142] T. Jager, J. Schwenk, and J. Somorovsky. On the security of TLS 1.3 and QUIC against
weaknesses in PKCS#1 v1.5 encryption. In I. Ray, N. Li, and C. Kruegel, editors, ACM
CCS 2015, pages 1185–1196. ACM Press, Oct. 2015. (Cited on page 121.)

[143] P. Jangir, N. Koti, V. B. Kukkala, A. Patra, B. R. Gopal, and S. Sangal. Vogue: Faster
computation of private heavy hitters. Cryptology ePrint Archive, Paper 2022/1561, 2022.
(Cited on page 259.)

346

https://ianix.com/pub/ed25519-deployment.html
https://eprint.iacr.org/2020/1279

[144] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehring, J. Renes, V. Soukharev, and D. Urbanik.
Supersingular isogeny key encapsulation. NIST PQC Round 2 Submission, 2019. (Cited
on page 9, 22.)

[145] M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving statistics. In Interna-
tional Symposium on Privacy Enhancing Technologies Symposium, pages 221–238. Springer,
2012. (Cited on page 259.)

[146] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125.
Springer, Heidelberg, Aug. 2018. (Cited on page 7, 14, 15.)

[147] S. Josefsson and I. Liusvaara. Edwards-curve digital signature algorithm (EdDSA). RFC
8032, Jan. 2017. https://datatracker.ietf.org/doc/html/rfc8032. (Cited on page 213, 215.)

[148] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In Annual
International Cryptology Conference, pages 335–354. Springer, 2004. (Cited on page 280.)

[149] C. Kaufman (Ed.). Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed
Standard), Dec. 2005. Obsoleted by RFC 5996, updated by RFC 5282. (Cited on page 72.)

[150] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401
(Proposed Standard), Nov. 1998. Obsoleted by RFC 4301, updated by RFC 3168. (Cited
on page 49, 72.)

[151] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification
schemes. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 33–61. Springer, Heidelberg, Aug. 2016. (Cited on page 219.)

[152] H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman
and its use in the IKE protocols. In D. Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 400–425. Springer, Heidelberg, Aug. 2003. (Cited on page 3, 49, 53, 57, 72,
92.)

[153] H. Krawczyk. SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and
its use in the IKE protocols, 2003. Full version. https://webee.technion.ac.il/~hugo/sigma-
pdf.pdf. (Cited on page 72, 92.)

[154] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology
ePrint Archive, Report 2005/176, 2005. https://eprint.iacr.org/2005/176. (Cited on
page 131.)

[155] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg, Aug.
2010. (Cited on page 56, 90, 125.)

[156] H. Krawczyk. A unilateral-to-mutual authentication compiler for key exchange (with
applications to client authentication in TLS 1.3). In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 1438–1450. ACM
Press, Oct. 2016. (Cited on page 122.)

347

https://datatracker.ietf.org/doc/html/rfc8032
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://eprint.iacr.org/2005/176

[157] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentica-
tion. RFC 2104 (Informational), Feb. 1997. Updated by RFC 6151. (Cited on page 125.)

[158] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function
(HKDF). RFC 5869 (Informational), May 2010. (Cited on page 125.)

[159] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A
systematic analysis. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 429–448. Springer, Heidelberg, Aug. 2013. (Cited on page 120, 121.)

[160] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A
systematic analysis. Cryptology ePrint Archive, Report 2013/339, 2013. https://eprint.
iacr.org/2013/339. (Cited on page 120.)

[161] H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE European
Symposium on Security and Privacy, pages 81–96. IEEE, Mar. 2016. (Cited on page 50, 63,
117.)

[162] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-grid.
In International Symposium on Privacy Enhancing Technologies Symposium, pages 175–191.
Springer, 2011. (Cited on page 259.)

[163] B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key
exchange. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec 2007, volume 4784 of
LNCS, pages 1–16. Springer, Heidelberg, Nov. 2007. (Cited on page 55, 61.)

[164] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748 (Informa-
tional), Jan. 2016. (Cited on page 51, 202.)

[165] D. Lapidot and A. Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In
A. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, August
11-15, 1990, Proceedings, volume 537 of Lecture Notes in Computer Science, pages 353–365.
Springer, 1990. (Cited on page 278, 280.)

[166] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron
was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064, 2012. https:
//eprint.iacr.org/2012/064. (Cited on page 213.)

[167] Y. Li, S. Schäge, Z. Yang, F. Kohlar, and J. Schwenk. On the security of the pre-shared
key ciphersuites of TLS. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
669–684. Springer, Heidelberg, Mar. 2014. (Cited on page 120.)

[168] X. Liu, S. Liu, D. Gu, and J. Weng. Two-pass authenticated key exchange with explicit
authentication and tight security. In S. Moriai and H. Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 785–814. Springer, Heidelberg, Dec. 2020. (Cited on
page 121.)

[169] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, and Z. Zhang. LAC: Lattice-based cryptosystems.
NIST PQC Round 2 Submission, 2019. (Cited on page 9, 20.)

348

https://eprint.iacr.org/2013/339
https://eprint.iacr.org/2013/339
https://eprint.iacr.org/2012/064
https://eprint.iacr.org/2012/064

[170] U. M. Maurer. Abstract models of computation in cryptography (invited paper). In N. P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume
3796 of LNCS, pages 1–12. Springer, Heidelberg, Dec. 2005. (Cited on page 53, 63.)

[171] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In M. Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidelberg, Feb. 2004. (Cited on
page 2, 7, 10, 25, 27, 43, 119, 135, 136, 137, 139, 140, 142, 215, 218, 235, 237, 239.)

[172] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
A. Hauteville, O. Ruatta, J.-P. Tillich, and G. Zémor. ROLLO: Rank-ouroboros, LAKE, &
LOCKER. NIST PQC Round 2 Submission, 2018. (Cited on page 9, 20, 21.)

[173] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
and G. Zémor. Rank quasi-cyclic (RQC). NIST PQC Round 2 Submission, 2019. (Cited
on page 9, 22.)

[174] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. D. P. Gaborit, and
E. P. G. Zémor. Hamming quasi-cyclic (HQC). NIST PQC Round 2 Submission, 2019.
(Cited on page 9, 22.)

[175] L. Melis, G. Danezis, and E. De Cristofaro. Efficient private statistics with succinct sketches.
arXiv preprint arXiv:1508.06110, 2015. (Cited on page 259.)

[176] A. Menezes and N. Smart. Security of signature schemes in a multi-user setting. Designs,
Codes and Cryptography, 33(3):261–274, Nov. 2004. (Cited on page 64.)

[177] R. C. Merkle. A certified digital signature. In G. Brassard, editor, CRYPTO’89, volume
435 of LNCS, pages 218–238. Springer, Heidelberg, Aug. 1990. (Cited on page 214, 217,
222.)

[178] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential privacy.
In Annual International Cryptology Conference, pages 126–142. Springer, 2009. (Cited on
page 289.)

[179] A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer,
Heidelberg, May 2014. (Cited on page 10, 25.)

[180] A. Mittelbach and M. Fischlin. The Theory of Hash Functions and Random Oracles.
Springer Nature, Switzerland, 2021. (Cited on page 218, 240, 242.)

[181] D. Molteni. Improving the WAF with machine learning. Cloudflare blog, 2022. (Cited on
page 253.)

[182] D. Mouris, P. Sarkar, and N. G. Tsoutsos. PLASMA: Private, lightweight aggregated
statistics against malicious adversaries with full security. Cryptology ePrint Archive, Paper
2023/080, 2023. https://eprint.iacr.org/2023/080. (Cited on page 260.)

[183] Mozilla. Origin Telemetry, 2022. (Cited on page 252, 253, 254.)

349

https://eprint.iacr.org/2023/080

[184] D. M’Raïhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational alternatives to
random number generators. In S. E. Tavares and H. Meijer, editors, SAC 1998, volume
1556 of LNCS, pages 72–80. Springer, Heidelberg, Aug. 1999. (Cited on page 215, 220.)

[185] M. Naehrig, E. Alkim, J. W. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa,
I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila. FrodoKEM:
Learning with errors key encapsulation. NIST PQC Round 2 Submission, 2019. (Cited on
page 9, 22.)

[186] National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard
(SHS), 2012. (Cited on page 124.)

[187] National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signature
Standard (DSS), 2013. (Cited on page 51, 54.)

[188] National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signature
Standard (DSS), 2013. (Cited on page 202.)

[189] National Institute of Standards and Technology. Digital Signature Standard (DSS).
FIPS PUB 186-5, Oct. 2019. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-
draft.pdf. (Cited on page 213, 215, 216.)

[190] G. Neven, N. P. Smart, and B. Warinschi. Hash function requirements for schnorr signatures.
Journal of Mathematical Cryptology, 3(1):69–87, 2009. (Cited on page 219.)

[191] NIST. Post-Quantum Cryptography Standardization Process. https://csrc.nist.gov/
projects/post-quantum-cryptography. (Cited on page 6, 7.)

[192] NIST. Federal Information Processing Standard 202, SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, Aug 2015. (Cited on page 8.)

[193] NIST. PQC Standardization Process: Second Round Candidate Announcement. https:
//csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates, Jan. 2019.
(Cited on page 7.)

[194] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from
identification. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369.
Springer, Heidelberg, Aug. 1998. (Cited on page 219.)

[195] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the
security of cryptographic schemes. In K. Kim, editor, PKC 2001, volume 1992 of LNCS,
pages 104–118. Springer, Heidelberg, Feb. 2001. (Cited on page 62.)

[196] C. Patton and T. Shrimpton. Quantifying the security cost of migrating protocols to
practice. In D. Micciancio and T. Ristenpart, editors, Advances in Cryptology – CRYPTO
2020, pages 94–124, Cham, 2020. Springer International Publishing. (Cited on page 289.)

[197] T. Plantard. Odd manhattan’s algorithm specifications and supporting documentation.
NIST PQC Round 1 Submission, 2017. (Cited on page 9, 20.)

350

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates

[198] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May
1996. (Cited on page 2.)

[199] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000. (Cited on page 4, 216, 217, 219, 220, 232,
239.)

[200] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li. Privacy and accountability
for location-based aggregate statistics. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 653–666, 2011. (Cited on page 259.)

[201] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed
Standard), Aug. 2018. (Cited on page 3, 49, 53, 54, 57, 72, 89, 115, 117, 200, 201, 202, 203,
204, 206, 208.)

[202] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of
the indifferentiability framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume
6632 of LNCS, pages 487–506. Springer, Heidelberg, May 2011. (Cited on page 10, 13, 25,
27, 32, 43, 135, 136, 215.)

[203] L. Rotem and G. Segev. Tighter security for schnorr identification and signatures: A high-
moment forking lemma for Σ -protocols. In T. Malkin and C. Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 222–250, Virtual Event, Aug. 2021. Springer, Heidel-
berg. (Cited on page 217, 232, 239.)

[204] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen. Honeycrisp: Large-scale differentially
private aggregation without a trusted core. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 196–210, New York, NY, USA, 2019.
Association for Computing Machinery. (Cited on page 289.)

[205] T. Saito, K. Xagawa, and T. Yamakawa. Tightly-secure key-encapsulation mechanism in the
quantum random oracle model. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 520–551. Springer, Heidelberg, Apr. / May 2018.
(Cited on page 7, 14, 15.)

[206] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, Aug. 1990.
(Cited on page 4.)

[207] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, Jan. 1991. (Cited on page 215, 217, 230, 231.)

[208] P. Schoppmann, L. Vogelsang, A. Gascón, and B. Balle. Secure and scalable document
similarity on distributed databases: Differential privacy to the rescue. Proceedings on
Privacy Enhancing Technologies, 2:209–229, 2020. (Cited on page 289.)

[209] P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum TLS without handshake signatures.
In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1461–1480.
ACM Press, Nov. 2020. (Cited on page 127, 132.)

351

[210] M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. Proposal for NIST post-quantum
cryptography standard: EMBLEM and R.EMBLEM. NIST PQC Round 1 Submission,
2017. (Cited on page 9, 22.)

[211] N. Shah. The challenges of inspecting encrypted network traffic. https://www.fortinet.com/
blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic,
2020. (Cited on page 1.)

[212] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.
(Cited on page 53, 63, 70, 219.)

[213] N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson, and G. Peer.
LIMA: A PQC encryption scheme. NIST PQC Round 1 Submission, 2017. (Cited on
page 9, 22.)

[214] R. Steinfeld, A. Sakzad, and R. K. Zhao. Titanium: Proposal for a NIST post-quantum
public-key encryption and KEM standard. NIST PQC Round 1 Submission, 2017. (Cited
on page 9, 20.)

[215] E. Taubeneck, M. Thomson, B. Savage, B. Case, D. Masny, and R. Jain. Ipa end to end
protocol. Proposal submitted to the PATCG working group of the W3, 2022. (Cited on
page 255.)

[216] K. Yoneyama, S. Miyagawa, and K. Ohta. Leaky random oracle. IEICE transactions on
fundamentals of electronics, communications and computer sciences, 92(8):1795–1807, 2009.
(Cited on page 215, 216.)

[217] Y. Zhao, Z. Jin, B. Gong, and G. Sui. A modular and systematic approach to key
establishment and public-key encryption based on LWE and its variants. NIST PQC Round
1 Submission, 2017. (Cited on page 9, 20.)

352

https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic
https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Separate Your Domains
	Introduction
	Oracle Cloning in NIST PQC Candidates
	Design process
	The base KEM
	Submissions we break
	Submissions with unclear security
	Submissions with provable security but ambiguous specification
	Submissions with clear provable security

	Preliminaries
	Read-only indifferentiability of translating functors
	Functors and read-only indifferentiability
	Translating functors
	Rd-indiff of translating functors

	Analysis of cloning functors
	Oracle Cloning in KEMs

	Tighter Bounds for TLS 1.3 and SIGMA
	Introduction
	Qualitative and Quantitative Bounds
	Contributions
	Optimizations, Limitations, and Possible Extensions
	Concurrent Work

	AKE Security Model
	Key Exchange Protocols
	Key Exchange Security
	Security Properties

	Assumptions, Building Blocks, and Multi-User Security
	Decisional and Strong Diffie–Hellman
	Multi-User PRF Security
	Multi-User Unforgeability with Adaptive Corruptions of Signatures and MACs
	Hash Function Collision Resistance

	Proof of the Strong Diffie–Hellman GGM Bound (Theorem 2.1)
	The SIGMA Protocol
	Tighter Security Proof for SIGMA-I
	The TLS 1.3 Handshake Protocol
	Protocol Description
	Handling the TLS 1.3 Key Schedule

	Tighter Security Proof for the TLS 1.3 Handshake
	Evaluation
	Evaluation Details
	Fully-quantitative CK SIGMA Bound
	Fully-quantitative DFGS TLS 1.3 Bound

	On the concrete security of TLS 1.3 PSK Mode
	Introduction
	The TLS 1.3 Pre-shared Key Handshake Protocol
	Code-based MSKE Model for PSK Modes
	Key Exchange Syntax
	Key Exchange Security
	The indifferentiability framework

	Key-Schedule Indifferentiability
	Indifferentiability for the TLS 1.3 Key Schedule in Three Steps
	Step 1: Domain-separating the Transcript Hash
	Step 2: Applying the Indifferentiability of HMAC
	Step 3: Applying Indifferentiability to the TLS Key Schedule

	Modularizing Handshake Encryption
	Handshake Encryption as a Modular Transformation

	Tight Security of the TLS 1.3 PSK Modes
	TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol
	Tight Security Analysis of TLS 1.3 PSK-(EC)DHE
	Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

	Evaluation
	Evaluation Details

	A Careful Discussion of Domain Separation
	PSK-only mode with SHA256
	Pre-shared key with Diffie–Hellmann mode with SHA256
	Pre-shared key with Diffie–Hellmann mode with SHA384
	PSK-only mode with SHA384
	Repairing Domain Separation for TLS 1.3-like Protocols

	Derive-then-Derandomize: Stronger Security Proofs for EdDSA Signatures
	Introduction
	Preliminaries
	Functor framework
	The soundness of Derive-then-Derandomize
	Security of EdDSA
	Indifferentiability of the shrink-MD class of functors
	The unique order-p subgroup of G

	Verifiable Distributed Aggregation Functions
	Introduction
	Overview
	Constructions
	Related Work
	Full version

	Preliminaries
	Notation
	Pseudorandom Generators
	Fully Linear Proof Systems
	Incremental Distributed Point Functions

	Security Model
	Syntax
	Security
	Completeness
	Robustness
	Privacy

	Prio3
	Allowed initial states
	Consistency
	Security

	Doplar
	Verifiable IDPF
	Delayed-Input FLPs
	Construction
	Allowed initial states
	Consistency
	Security

	Performance Evaluation
	Communication overhead
	Computational overhead

	Conclusion and Future Work
	Security analysis of DAP
	Doplar improvements

	Instantiating VIDPF
	Extending to incremental DPF
	Immediate Optimizations in an Implementation

	Instantiating Delayed-Input FLP
	Proofs of Theorems
	Prio3 Robustness (Theorem 5.1)
	Prio3 Privacy (Theorem 5.2)
	Doplar Robustness (Theorem 5.3)
	Doplar Privacy (Theorem 5.4)

	Bibliography

