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ABSTRACT OF THE DISSERTATION

Securing the Standards: Bringing Cryptographic Security Proofs Closer to the Real World

Hannah Elizabeth Davis

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Mihir Bellare, Chair

Cryptographic standards published by organizations like NIST, ISO, and the IETF
provide guidance for developers choosing and implementing cryptographic algorithms for their
applications. In recent years, formal proofs of security have become an important part of validation
for standardized algorithms; however, these proofs rely on abstractions which sometimes differ
significantly from the schemes and protocols used in practice.

In this work, I will begin with a study of the ongoing NIST standardization process of
post-quantum key-encapsulation mechanisms and highlight vulnerabilities in several (former)
candidate algorithms which arise from a systematic mismatch between abstract primitives used
in cryptographic models and their actual instantiation in implementations. I will then present a

library of secure instantiation techniques and a way to extend schemes’ existing proofs to their

xvii



instantiations. Next, I will address the Transport Layer Security (TLS 1.3) Handshake Protocol
and demonstrate by a concrete evaluation that prior work fails to prove practical security levels
for many of the standardized parameter sets. I will then show tighter proofs that do justify these
parameter sets and which additionally give the first fully justified abstraction of the TLS 1.3 key
schedule in the random oracle model, and I will explain how certain parts of the TLS 1.3 design
hinder the application of useful abstractions.

I will also explain how inaccurate portrayals of hash functions in the random oracle
model impact the security analysis of the standardized EADSA signature scheme and present an
improved proof of security with better tightness and modularity. I conclude by introducing my
work on the proposed standard for privacy-preserving measurement, including a new security
model for Verifiable Distributed Aggregation Functions. Within this model, I discuss results for
Prio3, an optimized version of the massively scalable, widely used Prio construction for private

data collection, and Doplar, a new construction for private histogram generation.
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Introduction

The cryptographic algorithms that protect our data in the Internet age are not, by and
large, developed by cryptographers. Instead, many Internet applications rely on cryptographic
standards for guidance. These standards documents are published by organizations like the
National Institute of Standards and Technology (NIST) and the Internet Engineering Task Force
(IETF) as authoritative references on how to implement secure cryptography. Standards ensure
interoperability between Internet applications, and give developers a trusted source for their
cryptographic needs. Standardized algorithms like the Transport Layer Security protocol (TLS
1.3) currently protect roughly to 85 percent of all Internet traffic [211].

Because standardized cryptography is often used at large scale, any vulnerabilities have
significant consequences. Furthermore, adopting a new standard is a slow, expensive process, so
updates and patches are relatively rare. Before standards are published, they therefore undergo
a vigorous vetting process, complete with extensive public scrutiny. In recent years, this process
often includes formal proofs of security among other validation methods. In this work, we provide
new and improved proofs of security for several current and future cryptographic standards.

Security proofs establish bounds on the success probability of an adversary interacting
with a target scheme in an abstract model that defines the attack surface. The exact limit on this
probability depends both on the resources of the adversary and on the security of any underlying
cryptographic primitives or mathematical assumptions. If a scheme’s security is close to that of
its components’ security for all resource levels, we say that the bounds are “tight”. Tight bounds
can be used to help select parameter sizes for cryptographic components; other bounds may
provide heuristic guarantees about a scheme’s security. Once a scheme has a valid security proof,
an attacker can only successfully attack it with high probability by violating the assumptions

made by the proof or model, or by using enough resources to vacate the bounds.



We consider the existing proofs for current and future standards, and identify certain
ways they do not rule out attacks: loose bounds and gaps between abstract threat models and
implementations. Wherever possible, we seek to repair the existing proofs or leverage prior work

in a modular way, rather than replace them entirely.

Hash functions, indifferentiability and the ROM.

One place where many proofs break down is in their treatment of hash functions. The
random oracle model (ROM) of Bellare and Rogaway [40] is a powerful model in which hash
functions are treated as publicly accessible random functions, often with infinite domains. Of
course, such functions are unrealizable, and thus proofs in the ROM offer only heuristic evidence
of security. However, the ROM is a commonly used assumption, relied on by security proofs for
many standards [99, 198, 65, 53, 80] and other widely-used cryptographic primitives, and there
are few natural examples of schemes which are secure in the ROM but insecure in practice.

Not all hash functions can be suitably modeled as random oracles. The standardized
hash functions are constructed by iterating an underlying compression function or random
permutation, and it is essential to make sure that this underlying structure does not admit
additional vulnerabilities. Maurer et al. developed the indifferentiability framework, which can
be used to evaluate whether a particular construction can be used to securely instantiate a
random oracle [171]. They proved a powerful composition theorem. If a scheme is proven secure
(for most common definitions of security) in the random oracle model, and it is instantiated with
an indifferentiable construction from some compression function, then the scheme is also secure

when only the compression function is modeled as a random oracle.

Key encapsulation mechanisms.

We begin in Chapter 1 with a case study of the ongoing NIST standardization process for
post-quantum key encapsulation mechanisms (KEMs). Of the initial, now-eliminated, candidates,
we identify highly efficient key recovery attacks on three schemes. These attacks fall in a gap
between a security model with three independent random oracles, and implementations which
instantiate them using a single (indifferentiable) hash function. Because our attacks circumvent

the candidates’ security proofs rather contradicting them, they went unnoticed for more than a



year of intense public scrutiny as proposed standards.

The failure of the attacked schemes was in a task we call oracle cloning: constructing
multiple independent random oracles given access to a single RO. We highlight thirteen other
candidate KEM schemes which do not approach oracle cloning with care and whose proofs also
exhibit gaps, and ten schemes that performed oracle cloning well. We then collect a library of
simple and secure oracle cloning techniques, including domain separation, and validate them in a
new framework called read-only indifferentiability. Using these results, we extend the existing
proofs of twelve of the thirteen questionable schemes to cover their oracle cloning methods, thus
closing the gap. The thirteenth scheme was updated in a subsequent round of the standardization

process to use one of our techniques [11].

Authenticated key exchange.

Over the next two chapters, we study the Transport Layer Security 1.3 Handshake
Protocol [201]. This protocol is used establish secret, pseudorandom session keys for billions of
Internet connections per day. As part of its standardization process, the handshake protocol
received its first proof of security from Dowling et al. [104] in 2015. Although this proof
provides heuristic evidence of security for the handshake protocol, we empirically demonstrate in
Chapters 2 and 3 (for the full handshake and pre-shared key modes respectively) that its bounds
are too loose to justify the standardized parameter sets for global usage scales.

The quadratic loss in the number of sessions in the Dowling bound is common to many
contemporary proofs for authenticated key exchange protocols based on the Diffie-Hellman (DH)
problem. The first fully tight bounds for this style of key exchange were given by Cohn-Gordon
et al. [78] for a custom-designed key exchange protocol. The cost of this advancement was a
change in assumption: the Cohn-Gordon proof relied on the interactive Strong DH assumption
rather than more standard noninteractive DH assumptions.

In Chapter 2, we apply the Cohn-Gordon technique to the full TLS 1.3 handshake protocol
and to the SIGMA key exchange protocol [152] and achieve a full justification of standardized
parameter sets. We also justify the change of assumption in two ways: by evaluating the hardness
of Strong DH in the generic group model, and by highlighting that the proof of Dowling et al.

also assumes Strong DH implicitly. Diemert and Jager [98] gave a concurrent and independent



analysis of the TLS 1.3 handshake with similar final bounds.

In Chapter 3, we build on the work of Chapter 2 and that of Diemert and Jager to
tightly prove security for the pre-shared key modes of the TLS 1.3 handshake protocol. As
an intermediate step, we establish the first justification of the TLS 1.3 key schedule in the
indifferentiability framework. This approach is not only more rigorous than previous abstractions;
it also simplifies the remaining proof and helps establish independence for the derived keys.
However, we also highlight an obstacle in the poor domain separation of the key schedule that
prevents an indifferentiability proof for one choice of mode and hash function (PSK-only mode
with SHA384). Finally, we treat handshake encryption as a modular transform applied to a

generic key exchange protocol and provide general results on the composition of such a transform.

EdDSA signatures. We address the EADSA signature scheme [51] in Chapter 4. EADSA is a
tweaked variant of the Schnorr signature scheme [206] that hardens it against randomness reuse
and certain side-channel attacks. It’s a standardized signature algorithm for TLS 1.3, and is also
used by many blockchain applications and encrypted messaging services, including WhatsApp
and Signal.

Over the years, Schnorr signatures have received several proofs of security [199], including
some recent tighter proofs from non-standard assumptions [33, 115]. Ed25519, however, was
first proven secure in 2020 by Brendel et al. [65]. Like the initial proofs of Schnorr signatures,
their reduction is not tight and models its hash function as a random oracle. The latter quality
presents a concern because Ed25519 uses SHA512, an MD-style hash function which is known to
be differentiable from a random oracle [80] and subject to length-extension attacks.

We define a generic transform called Derive-then-Derandomize, that captures the hard-
ening tweaks applied by Bernstein et al. for EADSA. We prove that it works from standard
assumptions. We then give a general lemma showing indifferentiability of Shrink-MD), a class of
constructions that apply a shrinking output transform to an Merkle-Damgard-style hash function.
The particular usage of SHA512 within Ed25519 falls within this class. Using these, we give a
direct, fully tight reduction from EdDSA signatures to Schnorr signatures. Our proof enables
tighter bounds for EADSA that leverage both historic trust and recent analysis of Schnorr; it

also captures the use of SHA512 as a hash function and includes length-extension attacks in its



threat model.

Verifiable Distributed Aggregation Functions.

Finally in chapter 5, we make the first provable security contribution to an ongoing
standardization process. The IETF’s working group on privacy preserving measurement (PPM) [1],
in their draft standard, defines a class of cryptographic primitives called “Verifiable Distributed
Aggregation Functions (VDAFs)” [26]. VDAFs are a class of multi-party computation protocols
that enable a collector, with the help of several third-party aggregators, to learn an aggregate
statistic about a population of clients without compromising the privacy of individual client
measurements. The Prio protocol by Corrigan-Gibbs and Boneh [81], an example of the VDAF
paradigm has already been used at global scale as part of the Exposure Notification Private
Analytics (ENPA) program during the Covid-19 pandemic [13].

We give the first provable security treatment for VDAFs, This includes a formal framework
of syntax and game-based definitions capturing privacy, robustness, and correctness, and analysis
of two constructions within this framework. The first is Prio3, a variant of Prio incorporating
optimizations by Boneh et al. [60] and a candidate for standardization within the PPM draft.
The second, called Doplar, we introduce as a way to reduce the round complexity of the Poplar
system of Boneh et al. [61], itself a candidate for standardization. To achieve this improvement,

Doplar requires slightly greater overall bandwidth and computation.



Chapter 1

Separate Your Domains

1.1 Introduction

Theoretical works giving, and proving secure, schemes in the random oracle (RO)
model [41], often, for convenience, assume access to multiple, independent ROs. Implemen-
tations, however, like to implement them all via a single hash function like SHA256 that is
assumed to be a RO.

The transition from one RO to many is, in principle, easy. One can use a method
suggested by BR [41] and usually called “domain separation.” For example to build three random

oracles H,H,,Hs from a single one, H, define
Hyi(x) =H((1)||lx), Ha(x)=H((2)|lx) and H3(x) =H((3)|lx), (1.1)

where (i) is the representation of integer i as a bit-string of some fixed length, say one byte. One
might ask if there is justifying theory: a proof that the above “works,” and a definition of what
“works” means. A likely response is that it is obvious it works, and theory would be pedantic.

If it were merely a question of the specific domain-separation method of Equation (1.1),
we’d be inclined to agree. But we have found some good reasons to revisit the question and look
into theoretical foundations. They arise from the NIST Post-Quantum Cryptography (PQC)
standardization process [191].

We analyzed the KEM submissions. We found attacks, breaking some of them, that
arise from incorrect ways of turning one random oracle into many, indicating that the process is

error-prone. We found other KEMs where methods other than Equation (1.1) were used and



whether or not they work is unclear. In some submissions, instantiations for multiple ROs were
left unspecified. In others, they differed between the specification and reference implementation.

Domain separation as per Equation (1.1) is a method, not a goal. We identify and name
the underlying goal, calling it oracle cloning— given one RO, build many, independent ones.
(More generally, given m ROs, build n > m ROs.) We give a definition of what is an “oracle cloning

“work,” in a framework we call read-only

method” and what it means for such a method to
indifferentiability, a simple variant of classical indifferentiability [171]. We specify and study many
oracle cloning methods, giving some general results to justify (prove read-only indifferentiability
of) certain classes of them. The intent is not only to validate as many NIST PQC KEMs as
possible (which we do) but to specify and validate methods that will be useful beyond that.
Below we begin by discussing the NIST PQC KEMs and our findings on them, and then

turn to our theoretical treatment and results.

NIST PQC KEMs. In late 2016, NIST put out a call for post-quantum cryptographic algo-
rithms [191]. In the first round they received 28 submissions targeting IND-CCA-secure KEMs,
of which 17 remain in the second round [193].

Recall that in a KEM (Key Encapsulation Mechanism) KE, the encapsulation algorithm
KE.E takes the public key pk (but no message) to return a symmetric key K and a ciphertext
C* encapsulating it, (C*,K)<+-sKE.E(pk). Given an IND-CCA KEM, one can easily build an
IND-CCA PKE scheme by hybrid encryption [82], explaining the focus of standardization on the
KEMs.

Most of the KEM submissions (23 in the first round, 15 in the second round) are
constructed from a weak (OW-CPA, IND-CPA, ...) PKE scheme using either a method from
Hofheinz, Hévelmanns and Kiltz (HHK) [133] or a related method from [95, 205, 146]. This
results in a KEM KE4, the subscript to indicate that it uses up to four ROs that we’ll denote
H,y, Hy, H3, Hy. Results of [133, 95, 205, 146] imply that KE4 is provably IND-CCA, assuming the
ROs Hy, Hy, Hy, Hy are independent.

Next, the step of interest for us, the oracle cloning: they build the multiple random oracles
via a single RO H, replacing H; with an oracle F[H](i,-), where we refer to the construction F as

a “cloning functor,” and F[H| means that F gets oracle access to H. This turns KE4 into a KEM



KE; that uses only a single RO H, allowing an implementation to instantiate the latter with a
single NIST-recommended primitive like SHA3-512 or SHAKE256 [192]. (In some cases, KE; uses
a number of ROs that is more than one but less than the number used by KE4, which is still
oracle cloning, but we’ll ignore this for now.)

Often the oracle cloning method (cloning functor) is not specified in the submission
document; we obtained it from the reference implementation. Our concern is the security of
this method and the security of the final, single-RO-using KEM KE;. (As above we assume the

starting KE4 is secure if its four ROs are independent.)

ORACLE CLONING IN SUBMISSIONS. We surveyed the relevant (first- and second-round) NIST
PQC KEM submissions, looking in particular at the reference code, to determine what choices of
cloning functor F was made, and how it impacted security of KE;. Based on our findings, we
classify the submissions into groups as follows.

First is a group of successfully attacked submissions. We discover and specify attacks,
enabled through erroneous RO cloning, on three (first-round) submissions: BIG QUAKE [25],
DAGS [24] and Round2 [116]. (Throughout the paper, first-round submissions are in gray, second-
round submissions in bold.) Our attacks on BIG QUAKE and Round?2 recover the symmetric key
K from the ciphertext C* and public key. Our attack on DAGS succeeds in partial key recovery,
recovering 192 bits of the symmetric key. These attacks are very fast, taking at most about the
same time as taken by the (secret-key equipped, prescribed) decryption algorithm to recover the
key. None of our attacks needs access to a decryption oracle, meaning we violate much more
than IND-CCA.

Next is submissions with questionable oracle cloning. We put just one in this group,
namely NewHope [11]. Here we do not have proof of security in the ROM for the final instantiated
scheme KE;. We do show that the cloning methods used here do not achieve our formal notion
of rd-indiff security, but this does not result in an attack on KE;, so we do not have a practical
attack either. We recommend changes in the cloning methods that permit proofs.

Next is a group of ten submissions that use ad-hoc oracle cloning methods —as opposed,
say, to conventional domain separation as per Equation (1.1)— but for which our results (to

be discussed below) are able to prove security of the final single-RO scheme. In this group are



BIKE [14], KCL [217], LAC [169], Lizard [76], LOCKER [15], 0dd Manhattan [197], ROLLO-II [172],
Round5 [20], SABER [86] and Titanium [214]. Still, the security of these oracle cloning methods
remains brittle and prone to vulnerabilities under slight changes.

A final group of twelve submissions did well, employing something like Equation (1.1). In
particular our results can prove these methods secure. In this group are Classic McEliece [48],
CRYSTALS-Kyber [18], EMBLEM [210], FrodoKEM [185], HQC [174], LIMA [213], NTRU-HRSS-KEM [135],
NTRU Prime [49], NTS-KEM [10], RQC [173], SIKE [144] and ThreeBears [129)].

This classification omits 14 KEM schemes that do not fit the above framework. (For
example they do not target IND-CCA KEMs, do not use HHK-style transforms, or do not use

multiple random oracles.)

LESSONS AND RESPONSE. We see that oracle cloning is error-prone, and that it is sometimes
done in ad-hoc ways whose validity is not clear. We suggest that oracle cloning not be left to
implementations. Rather, scheme designers should give proof-validated oracle cloning methods
for their schemes. To enable this, we initiate a theoretical treatment of oracle cloning. We
formalize oracle cloning methods, define what it means for one to be secure, and specify a
library of proven-secure methods from which designers can draw. We are able to justify the
oracle cloning methods of many of the unbroken NIST PQC KEMs. The framework of read-only
indifferentiability we introduce and use for this purpose may be of independent interest.

The NIST PQC KEMs we break are first-round candidates, not second-round ones, and
in some cases other attacks on the same candidates exist, so one may say the breaks are no longer
interesting. We suggest reasons they are. Their value is illustrative, showing not only that errors
in oracle cloning occur in practice, but that they can be devastating for security. In particular,
the extensive and long review process for the first-round NIST PQC submissions seems to have
missed these simple attacks, perhaps due to lack of recognition of the importance of good oracle

cloning.

INDIFFERENTIABILITY BACKGROUND. Let SS,ES be sets of functions. (We will call them the
starting and ending function spaces, respectively.) A functor F: SS — ES is a deterministic

algorithm that, given as oracle a function s € SS, defines a function F|[s] € ES. Indifferentiability



of F is a way of defining what it means for F[s] to emulate e when s, e are randomly chosen from
SS,ES, respectively. It permits a “composition theorem” saying that if F is indifferentiable then
use of e in a scheme can be securely replaced by use of F([s].

Maurer, Renner and Holenstein (MRH) [171] gave the first definition of indifferentia-
bility and corresponding composition theorem. However, Ristenpart, Shacham and Shrimpton
(RSS) [202] pointed out a limitation, namely that it only applies to single-stage games. MRH-
indiff fails to guarantee security in multi-stage games, a setting that includes many goals of
interest including security under related-key attack, deterministic public-key encryption and
encryption of key-dependent messages. Variants of MRH-indiff [80, 202, 94, 179] tried to address

this, with limited success.

RD-INDIFF. Indifferentiability is the natural way to treat oracle cloning. A cloning of one function
into n functions (n =4 above) can be captured as a functor (we call it a cloning functor) F that
takes the single RO s and for each i € [1..n] defines a function F[s](i,-) that is meant to emulate
a RO. We will specify many oracle cloning methods in this way.

We define in Section 1.4 a variant of indifferentiability we call read-only indifferentiability
(rd-indiff). The simulator —unlike for reset-indiff [202]— has access to a game-maintained state
st, but —unlike MRH-indiff [171]— that state is read-only, meaning the simulator cannot alter it
across invocations. Rd-indiff is a stronger requirement than MRH-indiff (if F is rd-indiff then it
is MRH-indiff) but a weaker one than reset-indiff (if F is reset-indiff then it is rd-indiff). Despite
the latter, rd-indiff, like reset-indiff, admits a composition theorem showing that an rd-indiff F
may securely substitute a RO even in multi-stage games. (The proof of RSS [202] for reset-indiff
extends to show this.) We do not use reset-indiff because some of our cloning functors do not

meet it, but they do meet rd-indiff, and the composition benefit is preserved.

GENERAL RESULTS. In Section 1.4, we define translating functors. These are simply ones whose
oracle queries are non-adaptive. (In more detail, a translating functor determines from its input
W a list of queries, makes them to its oracle and, from the responses and W, determines its
output.) We then define a condition on a translating functor F that we call invertibility and

show that if F is an invertible translating functor then it is rd-indiff. This is done in two parts,
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Theorems 1.1 and 1.2, that differ in the degree of invertibility assumed. The first, assuming
the greater degree of invertibility, allows a simpler proof with a simulator that does not need
the read-only state allowed in rd-indiff. The second, assuming the lesser degree of invertibility,
depends on a simulator that makes crucial use of the read-only state. It sets the latter to a
key for a PRF that is then used to answer queries that fall outside the set of ones that can be
trivially answered under the invertibility condition. This use of a computational primitive (a
PRF) in the indifferentiability context may be novel and may seem odd, but it works.

We apply this framework to analyze particular, practical cloning functors, showing that
these are translating and invertible, and then deducing their rd-indiff security. But the above-
mentioned results are stronger and more general than we need for the application to oracle

cloning. The intent is to enable further, future applications.

ANALYSIS OF ORACLE CLONING METHODS. We formalize oracle cloning as the task of designing
a functor (we call it a cloning functor) F that takes as oracle a function s € SS in the starting
space and returns a two-input function e = F[s] € ES, where e(i,-) represents the i-th RO for
i € [1..n]. Section 1.5 presents the cloning functors corresponding to some popular and practical
oracle cloning methods (in particular ones used in the NIST PQC KEMs), and shows that they
are translating and invertible. Our above-mentioned results allow us to then deduce they are
rd-indiff, which means they are safe to use in most applications, even ones involving multi-stage
games. This gives formal justification for some common oracle cloning methods. We now discuss
some specific cloning functors that we treat in this way.

The prefix (cloning) functor Fyy ) is parameterized by a fixed, public vector p such that
no entry of p is a prefix of any other entry of p. Receiving function s as an oracle, it defines
function e = Fpp)[s] by e(i,X) = s(p[i]||X), where p[i] is the ith element of vector p. When pli]
is a fixed-length bitstring representing the integer i, this formalizes Equation (1.1).

Some NIST PQC submissions use a method we call output splitting. The simplest case
is that we want e(i,-),...,€(n,-) to all have the same output length L. We then define e(i,X) as
bits (i — 1)L+1 through iL of the given function s applied to X. That is, receiving function s
as an oracle, the splitting (cloning) functor Fgy returns function e = Fgp[s| defined by e(i,X) =

sOO[(i— 1)L+1..4L].

11



An interesting case, present in some NIST PQC submissions, is trivial cloning: just
set e(i,X) = s(X) for all X. We formalize this as the identity (cloning) functor Fig defined by
Fia[s](i,X) = s(X). Clearly, this is not always secure. It can be secure, however, for usages that
restrict queries in some way. One such restriction, used in several NIST PQC KEMs, is length
differentiation: e(i,-) is queried only on inputs of some length ;, where [y,... [, are chosen to be
distinct. We are able to treat this in our framework using the concept of working domains that

we discuss next, but we warn that this method is brittle and prone to misuse.

WORKING DOMAINS. One could capture trivial cloning with length differentiation as a restriction
on the domains of the ending functions, but this seems artificial and dangerous because the
implementations do not enforce any such restriction; the functions there are defined on their full
domains and it is, apparently, left up to applications to use the functions in a way that does
not get them into trouble. The approach we take is to leave the functions defined on their full
domains, but define and ask for security over a subdomain, which we called the working domain.
A choice of working domain W accordingly parameterizes our definition of rd-indiff for a functor,
and also the definition of invertibility of a translating functor. Our result says that the identity
functor is rd-indiff for certain choices of working domains that include the length differentiation
one.

Making the working domain explicit will, hopefully, force the application designer to
think about, and specify, what it is, increasing the possibility of staying out of trouble. Working
domains also provide flexibility and versatility under which different applications can make
different choices of the domain.

Working domains not being present in prior indifferentiability formalizations, the com-
parisons, above, of rd-indiff with these prior formalizations assume the working domain is the
full domain of the ending functions. Working domains alter the comparison picture; a cloning

functor which is rd-indiff on a working domain may not be even MRH-indiff on its full domain.

APPLICATION TO KEMS. The framework above is broad, staying in the land of ROs and not
speaking of the usage of these ROs in any particular cryptographic primitive or scheme. As such,

it can be applied to analyze RO instantiation in many primitives and schemes. In Section 1.6,
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we exemplify its application in the realm of KEMs as the target of the NIST PQC designs.

This may seem redundant, since an indifferentiability composition theorem says exactly
that once indifferentiability of a functor has been shown, “all” uses of it are secure. However,
prior indifferentiability frameworks do not consider working domains, so the known composition
theorems apply only when the working domain is the full one. (Thus the reset-indiff composition
theorem of [202] extends to rd-indiff so that we have security for applications whose security
definitions are underlain by either single or multi-stage games, but only for full working domains.)

To give a composition theorem that is conscious of working domains, we must first ask
what they are, or mean, in the application. We give a definition of the working domain of a
KEM KE. This is the set of all points that the scheme algorithms query to the ending functions
in usage, captured by a certain game we give. (Queries of the adversary may fall outside the
working domain.) Then we give a working-domain-conscious composition theorem for KEMs
(Theorem 1.3) that says the following. Say we are given an IND-CCA KEM KE whose oracles
are drawn from a function space KE.FS. Let F: SS — KE.FS be a functor, and let KE be the
KEM obtained by implementing the oracles of the KE via F. (So the oracles of this second
KEM are drawn from the function space KE.FS =SS.) Let W be the working domain of KE,
and assume F is rd-indiff over W. Then KE is also IND-CCA. Combining this with our rd-indiff
results on particular cloning functors justifies not only conventional domain separation as an
instantiation technique for KEMs, but also more broadly the instantiations in some NIST PQC
submissions that do not use domain separation, yet whose cloning functors are rd-diff over the
working domain of their KEMs. The most important example is the identity cloning functor
used with length differentiation.

A key definitional element of our treatment that allows the above is, following [30], to
embellish the syntaz of a scheme (here a KEM KE) by having it name a function space KE.FS
from which it wants its oracles drawn. Thus, the scheme specification must say how many ROs
it wants, and of what domains and ranges. In contrast, in the formal version of the ROM in [41],
there is a single, scheme-independent RO that has some fixed domain and range, for example
mapping {0,1}* to {0,1}. This leaves a gap, between the object a scheme wants and what the

model provides, that can lead to error. We suggest that, to reduce such errors, schemes specified
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in standards include a specification of their function space.

1.2 Oracle Cloning in NIST PQC Candidates

NoraTiON. A KEM scheme KE specifies an encapsulation KE.E that, on input a pub-
lic encryption key pk returns a session key K, and a ciphertext C* encapsulating it, written
(C*,K)<+sKE.E(pk). A PKE scheme PKE specifies an encryption algorithm PKE.E that, on
input pk, message M € {0,1}PKE™ and randomness R, deterministically returns ciphertext
C < PKE.E(pk,M;R). For neither primitive will we, in this section, be concerned with the
key generation or decapsulation / decryption algorithm. We might write KE[X],X>,...] to indi-
cate that the scheme has oracle access to functions X1, Xa, ..., and correspondingly then write

KE.E[X;,X,...], and similarly for PKE.
1.2.1 Design process

The literature [133, 95, 205, 146] provides many transforms that take a public-key
encryption scheme PKE, assumed to meet some weaker-than-IND-CCA notion of security we
denote Spie (for example, OW-CPA, OW-PCA or IND-CPA), and, with the aid of some number
of random oracles, turn PKE into a KEM that is guaranteed (proven) to be IND-CCA assuming
the ROs are independent. We'll refer to such transforms as sound. Many (most) KEMs submitted
to the NIST Post-Quantum Cryptography standardization process were accordingly designed as

follows:
(1) First, they specify a Spie-secure public-key encryption scheme PKE.

(2) Second, they pick a sound transform T and obtain KEM scheme KE4[H;, Hy, H3, Hy] =
T[PKE, Hy, H3, Hy]. (The notation is from [133]. The transforms use up to three random
oracles that we are denoting H,, H3, Hy, reserving H, for possible use by the PKE scheme.)
We refer to KE4 (the subscript refers to its using 4 oracles) as the base KEM, and, as we

will see, it differs across the transforms.

(3) Finally —the under-the-radar step that is our concern— the ROs Hj,..., Hy are constructed
from cryptographic hash functions to yield what we call the final KEM KE;. In more detail,

the submissions make various choices of cryptographic hash functions Fi,..., F,, that we call
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the base functions, and, for i = 1,2,3,4, specify constructions C; that, with oracle access to
the base functions, define the H;, which we write as H; < C;[F},..., F,]. We call this process
oracle cloning, and we call H; the final functions. (Common values of m are 1,2.) The
actual, submitted KEM KE; (the subscript because m is usually 1) uses the final functions,

so that its encapsulation algorithm can be written as:

KElE[FlaaFm](pk)

For i=1,2,3,4 do H; + Ci[F},...,Fy]
(C*,K) «sKE4.E[H,, Hy, Hy, Hy](pk)

Return (C*,K)

The question now is whether the final KE; is secure. We will show that, for some submissions,
it is not. This is true for the choices of base functions Fi,..., F,, made in the submission, but
also if these are assumed to be ROs. It is true despite the soundness of the transform, meaning
insecurity arises from poor oracle cloning, meaning choices of the constructions C;. We will then
consider submissions for which we have not found an attack. In the latter analysis, we are willing
to assume (as the submissions implicitly do) that Fi,..., F,, are ROs, and we then ask whether

the final functions are “close” to independent ROs.
1.2.2 The base KEM

We need first to specify the base KE4 (the result of the sound transform, from step (2)
above). The NIST PQC submissions typically cite one of HHK [133], Dent [95], SXY [205] or
JZCWM [146] for the sound transform they use, but our examinations show that the submissions
have embellished, combined or modified the original transforms. The changes do not (to best
of our knowledge) violate soundness (meaning the used transforms still yield an IND-CCA KE4
if Hy, H3, Hy are independent ROs and PKE is Syi.-secure) but they make a succinct exposition
challenging. We address this with a framework to unify the designs via a single, but parameterized,
transform, capturing the submission transforms by different parameter choices.

Figure 1.1 (top) shows the encapsulation algorithm KE4.E of the KEM that our parame-
terized transform associates to PKE and Hy,H,,Hs,Hs. The parameters are the variables X,Y,Z

(they will be functions of other quantities in the algorithms), a boolean D, and an integer k*.
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Algorithm KE4.E[H|, Hy, H3, Hy](pk):

1 M<s{0,1}PKEMI - R ¢
2 If (D =true) then R|| K’ + Hy(X) // |K'|=k*
3 C <« PKE.E[H||(pk,M;R)
4 C*«+CJ|Y
5 K < Hy(Z) ; Return (C*,K)
] | D [ k| X Y] Z \ Used in
LIMA,
T true 0 M € M 0dd Manhattan
T, || true | O pk||M € pk||M ThreeBears
Ty || true | 0 M € Milc Blllzgg—cizc:?im
T4 || true | O M| pk € M| C SIKE
Ts true 0 M H(X) M||C HQC, RQC, ROLLO-II, LOCKER
T || true | >0 M| Hs(pk) € K'|C SABER
T7 || true | >0 | H3(pk)||Hz(M) € K'|H3(C) CRYSTALS-Kyber
Tg || true | O M Hy(X) M DAGS, NTRU-HRSS-KEM
BIG QUAKE, EMBLEM,
Ty true 0 M H3(X) Miiclly Lizard, Titanium
Ty || true | >0 | Hi(M)|| Ha(pk) Hi(X) K'||Ha(C||Y) NewHope
, FrodoKEM, Round2
Ty || true | >0 M| pk H3(X) K'|C||)Y Rounds
Typ || true | >0 pk”M H3(X) K’”C KCL
T3 || true | >0 Hx(pk)|M € C||K' FrodoKEM
T4 || false | O 1 Hy(M) M|C||Y Classic McEliece
Ts || true | O M € R[M NTS—-KEM
T || false | O 1 Hz(M||pk) M|C|lY Streamlined NTRU Prime
T7 || true | O M Hz(M||pk) M|C|lY NTRU LPRime

Figure 1.1. Top: Encapsulation algorithm of the base KEM scheme produced by our parameter-
ized transform. Bottom: Choices of parameters X,Y,Z, D, k* resulting in specific transforms used
by the NIST PQC submissions. Second-round submissions are in bold, first-round submissions
in gray. Submissions using different transforms in the two rounds appear twice.

When choices of these are made, one gets a fully-specified transform and corresponding base
KEM KE4. Each row in the table in the same Figure shows one such choice of parameters,
resulting in 15 fully-specified transforms. The final column shows the submissions that use the
transform.

The encapsulation algorithm at the top of Figure 1.1 takes input a public key pk and

has oracle access to functions Hy,H,,Hs,Hy. At line 1, it picks a random seed M of length the
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message length of the given PKE scheme. Boolean D being true (as it is except in two cases)
means PKE.E is randomized. In that case, line 2 applies H, to X (the latter, determined as
per the table, depends on M and possibly also on pk) and parses the output to get coins R for
PKE.E and possibly (if the parameter k* # 0) an additional string K’. At line 3, a ciphertext C
is produced by encrypting the seed M using PKE.E with public key pk and coins R. In some
schemes, a second portion of the ciphertext, Y, often called the “confirmation", is derived from X
or M, using Hj, as shown in the table, and line 4 then defines C*. Finally, Hy is used as a key
derivation function to extract a symmetric key K from the parameter Z, which varies widely
among transforms.

In total, 26 of the 39 NIST PQC submissions which target KEMs in either the first or
second round use transforms which fall into our framework. The remaining schemes do not use
more than one random oracle, construct KEMs without transforming PKE schemes, or target

security definitions other than IND-CCA.
1.2.3 Submissions we break

We present attacks on BIG QUAKE [25], DAGS [24], and Round?2 [116]. These attacks succeed
in full or partial recovery of the encapsulated KEM key from a ciphertext, and are extremely
fast. We have implemented the attacks to verify them.

Although none of these schemes progressed to Round 2 of the competition without
significant modification, to the best of our knowledge, none of the attacks we described were
pointed out during the review process. Given the attacks’ superficiality, this is surprising
and suggests to us that more attention should be paid to oracle cloning methods and their

vulnerabilities during review.

RANDOMNESS-BASED DECRYPTION. The PKE schemes used by BIG QUAKE and Round?2 have the
property that given a ciphertext C «+— PKE.E(pk,M;R) and also given the coins R, it is easy to
recover M, even without knowledge of the secret key. We formalize this property, saying PKE
allows randomness-based decryption, if there is an (efficient) algorithm PKE.DecR such that
PKE.DecR(pk, PKE.E(pk,M;R),R) = M for any public key pk, coins R and message m. This will

be used in our attacks.
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ATTACK ON BIG QUAKE. The base KEM KE,[H;,H,Hs,Hy] is given by the transform Ty in the
table of Figure 1.1. The final KEM KE;[F] uses a single function F to instantiate the random
oracles, which it does as follows. It sets H3 = Hy = F and H, = W[F|oF for a certain function
W (the rejection sampling algorithm) whose details will not matter for us. The notation W|F]
meaning that W has oracle access to F. The following attack (explanations after the pseudocode)

recovers the encapsulated KEM key K from ciphertext C*<—sKE;.E[F](pk)—

Adversary A[F|(pk,C*) // Input public key and ciphertext, oracle for F

1. C||Y <+~ C* J/ Parse C* to get PKE ciphertext C and Y = H3(M)
2. R+ WI[F](Y) // Apply function W[F] to Y to recover coins R
3. M + PKE.DecR(pk,C,R) // Use randomness-based decryption for PKE

4. K<+ F(M) ; Return K

As per Ty we have Y = H3(M) = F(M). The coins for PKE.E are R=H>(M) = (W[F]oF)(M) =
WIF|(F(M)) =WIF](Y). Since Y is in the ciphertext, the coins R can be recovered as shown
at line 2. The PKE scheme allows randomness-based decryption, so at line 3 we can recover
the message M underlying C using algorithm PKE.DecR. But K = Hy(M) = F (M), so K can now
be recovered as well. In conclusion, the specific cloning method chosen by BIG QUAKE leads to

complete recovery of the encapsulated key from the ciphertext.

ATTACK ON Rounp2. The base KEM KE,[H,,H3,Hy] is given by the transform Ty; in the
table of Figure 1.1. The final KEM KE;[F] uses a single base function F to instantiate the final
functions, which it does as follows. It sets Hy = F. The specification and reference implementation
differ in how Hp,H3 are defined: In the former, Hy(x) = F(F(x)) || F(x) and Hz(x) = F(F(F(x))),
while, in the latter, Hy(x) = F(F(F(x))) || F(x) and H3(x) = F(F(X)). These differences arise from
differences in the way the output of a certain function W[F] is parsed.

Our attack is on the reference-implementation version of the scheme. We need to also
know that the scheme sets k* so that R||K’ + Hy(X) with Hy(X) = F(F(F(X)))||F(X) results in
R=F(F(F(X))). But Y =H;3(X)=F(F(X)), so R=F(Y) can be recovered from the ciphertext.
Again exploiting the fact that the PKE scheme allows randomness-based decryption, we obtain the

following attack that recovers the encapsulated KEM key K from ciphertext C* <—sKE;.E[F](pk)—
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Adversary A[F](pk,C*) // Input public key and ciphertext, oracle for F

1. Cl)Y < C*; R+ F(Y)
2. M < PKE.DecR(pk,C,R) ; K <~ F(M) ; Return K

This attack exploits the difference between the way H,,Hs; are defined across the specification
and implementation, which may be a bug in the implementation with regard to the parsing of
W[F](x). However, the attack also exploits dependencies between H, and Hz, which ought not to
exist when instantiating what are required to be distinct random oracles.

Round2 was incorporated into the second-round submission Round5, which specifies a
different base function and cloning functor (the latter of which uses the secure method we call
“output splitting") to instantiate oracles H, and H3. This attack therefore does not apply to

Round5.

ATTACK ON DAGS. If x is a byte string we let x[i] be its i-th byte, and if x is a bit string we let
x; be its i-th bit. We say that a function V is an extendable output function if it takes input a
string x and an integer ¢ to return an ¢-byte output, and ¢; < ¢, implies that V(x,¢;) is a prefix
of V(x,63). If v=vivav3vavsvev7vg is a byte then let Z(v) = 00v3v4vsvev7vg be obtained by zeroing
out the first two bits. If y is a string of ¢ bytes then let Z'(y) = Z(y[1])||--- [|Z(¥[¢]). Now let
V' (x,0) =2Z'(V(x,£)).

The base KEM KE; [H|,H,,Hs,H,] is given by the transform Tg in the table of Figure 1.1.
The final KEM KE,[V] uses an extendable output function V to instantiate the random oracles,
which it does as follows. It sets Hp(x) =V'(x,512) and Hz(x) =V'(x,32). It sets Hy(x) =V (x,64).

As per Tg we have K = Hy(M) and Y = H3(M). Let L be the first 32 bytes of the 64-byte
K. Then Y =Z'(L). So Y reveals 32-6 = 192 bits of K. Since Y is in the ciphertext, this results
in a partial encapsulated-key recovery attack. The attack reduces the effective length of K from
64 -8 =512 bits to 512 — 192 = 320 bits, meaning 37.5% of the encapsulated key is recovered.
Also R=H,(M), so Y, as part of the ciphertext, reveals 32 bytes of R, which does not seem

desirable, even though it is not clear how to exploit it for an attack.
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1.2.4 Submissions with unclear security

For the scheme NewHope [11], we can give neither an attack nor a proof of security.
However, we can show that the final functions Hy, H3, Hy produced by the cloning functor Fyeutope
with oracle access to a single extendable-output function V are differentiable from independent
random oracles. The cloning functor Fyewnope sets Hi(x) = V(x,128) and Hy =V (x,32). It
computes Hy and H3 from V using the output splitting cloning functor. Concretely, KE, parses
V(x,96) as Hy(x)|| H3(x), where H, has output length 64 bytes and Hz has output length 32 bytes.
Because V is an extendable-output function, Hy(x) will be a prefix of H,(x) for any string x.

We do not know how to exploit this correlation to attack the IND-CCA security of the
final KEM scheme KE;[V], and we conjecture that, due to the structure of T, no efficient attack
exists. We can, however, attack the rd-indiff security of functor Fyeunope, showing that that the
security proof for the base KEM KE;[H,, H3, Hs] does not naturally transfer to KE;[V]. Therefore,
in order to generically extend the provable security results for KE; to KE;, it seems advisable to

instead apply appropriate oracle cloning methods.
1.2.5 Submissions with provable security but ambiguous specification

In their reference implementations, these submissions use cloning functors which we can
and do validate via our framework, providing provable security in the random oracle model
for the final KEM schemes. However, the submission documents do not clearly specify a
secure cloning functor, meaning that variant implementations or adaptations may unknowingly
introduce weaknesses. The schemes BIKE [14], KCL [217], LAC [169], Lizard [76], LOCKER [15],
0dd Manhattan [197], ROLLO-II [172], Round5 [20], SABER [86] and Titanium [214] fall into this
group.

LENGTH DIFFERENTIATION. Many of these schemes use the “identity" functor in their reference
implementations, meaning that they set the final functions Hy = H, = H; = Hy = F for a single
base function F. If the scheme KE|[H|,H,,H3,Hs| never queries two different oracles on inputs of
a single length, the domains of Hy,...,Hy are implicitly separated. Reference implementations
typically enforce this separation by fixing the input length of every call to F. Our formalism

calls this query restriction "length differentiation" and proves its security as an oracle cloning

20



method. We also generalize it to all methods which prevent the scheme from querying any two
distinct random oracles on a single input.

In the following, we discuss two schemes from the group, ROLLO-II and Lizard, where
ambiguity about cloning methods between the specification and reference implementation jeopar-
dizes the security of applications using these schemes. It will be important that, like BIG QUAKE
and RoundTwo, the PKE schemes defined by ROLLO-II and Lizard allow randomness-based
decryption.

The scheme ROLLO-II [172] defines its base KEM KE;[H},H,,Hs, H,] using the Ts trans-
form from Figure 1.1. The submission document states that Hy, H», H3, and Hy are “typically"
instantiated with a single fixed-length hash function F', but does not describe the cloning functors
used to do so. If the identity functor is used, so that Hy = Hy = Hy = Hy = F, (or more generally,
any functor that sets H, = H3), an attack is possible. In the transform Ts, both H, and H; are
queried on the same input M. Then Y = H3(M) = F(M) = Hy(M) = R leaks the PKE’s random

coins, so the following attack will allow total key recovery via the randomness-based decryption.

Adversary A[F](pk,C*) // Input public key and ciphertext, oracle for F

1. C||Y «~C* ; M <~ PKE.DecR(pk,C,Y) // (Y =R is the coins)

2. K< FM|CJY) ; Return K

In the reference implementation of ROLLO-II, however, H, is instantiated using a second,
independent function V instead of F, which prevents the above attack. Although the random
oracles H|,Hs and H,; are instantiated using the identity functor, they are never queried on
the same input thanks to length differentiation. As a result, the reference implementation of
ROLLO-II is provably secure, though alternate implementations could be both compliant with the
submission document and completely insecure. The relevant portions of both the specification and
the reference implementation were originally found in the corresponding first-round submission

(LOCKER).

Lizard [76] follows transform Ty to produce its base KEM KE; [Hy, H3, Hs]. Its submission
document suggests instantiation with a single function F as follows: it sets H3 = Hy = F, and

it sets Hy = W o F for some postprocessing function W whose details are irrelevant here. Since,
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in Ty, Y =H;(M)=F(M) and R= Hy(M) =W oF (M) =W(Y), the randomness R will again be
leaked through Y in the ciphertext, permitting a key-recovery attack using randomness-based
decryption much like the others we have described. This attack is prevented in the reference
implementation of Lizard, which instantiates H3 and Hs using an independent function G. The
domains of H3 and Hj4 are separated by length differentiation. This allows us to prove the security
of the final KEM KE,[G, F], as defined by the reference implementation.

However, the length differentiation of H3 and Hy breaks down in the chosen-ciphertext-
secure PKE variant specification of Lizard, which transforms KE;. The PKE scheme, given a
plaintext P, chooses a random message M, computes R = Hy(M) and Y = H3(M) according to T,
but it computes K = Hs(M), then includes the value B= K @ P as part of the ciphertext C*. Both
the identity functor and the functor used by the KEM reference implementation set Hz = Hy, so

the following attack will extract the plaintext from any ciphertext—

Adversary A(pk,C*) // Input public key and ciphertext

1. C|B||Y +~C* /] Parse C* to get Y and B=P®K

2. P<Y®B;Return P // Y =H3(M)=Hs(M) =K is the mask.

The reference implementation of the public-key encryption schemes prevents the attack by
cloning Hs and H4 from G via a third cloning functor, this one using the output splitting method.
Yet, the inconsistency in the choice of cloning functors between the specification and both
implementations underlines that ad-hoc cloning functors may easily “get lost” in modifications

or adaptations of a scheme.
1.2.6 Submissions with clear provable security

Here we place schemes which explicitly discuss their methods for domain separation and
follow good practice in their implementations: Classic McEliece [48], CRYSTALS-Kyber [18],
EMBLEM [210], FrodoKEM [185], HQC [174], LIMA [213], NTRU-HRSS-KEM [135], NTRU Prime [49)],
NTS-KEM [10], RQC [173], SIKE [144] and ThreeBears [129]. These schemes are careful to account
for dependencies between random oracles that are considered to be independent in their security
models. When choosing to clone multiple random oracles from a single primitive, the schemes in

this group use padding bytes, deploy hash functions designed to accommodate domain separation,
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or restrictions on the length of the inputs which are codified in the specification. These explicit
domain separation techniques can be cast in the formalism we develop in this work.

HQC and RQC are unique among the PQC KEM schemes in that their specifications warn
that the identity functor admits key-recovery attacks. As protection, they recommend that H,

and H3 be instantiated with unrelated primitives.

SIGNATURES. Although the main focus of this paper is on domain separation in KEMs, we
wish to note that these issues are not unique to KEMs. At least one digital signature scheme
in the second round of the NIST PQC competition, MQDSS [74], models multiple hash functions
as independent random oracles in its security proof, then clones them from the same primitive
without explicit domain separation. We have not analyzed the NIST PQC digital signature
schemes’ security to see whether more subtle domain separation is present, or whether oracle
collisions admit the same vulnerabilities to signature forgery as they do to session key recovery.
This does, however, highlight that the problem of random oracle cloning is pervasive among more

types of cryptographic schemes.

1.3 Preliminaries

BASIC NOTATION. By [i..j] we abbreviate the set {i,...,j}, for integers i < j. If x is a vector then
|x| is its length (the number of its coordinates), x[i] is its i-th coordinate and [x] = {x[i] : i € [1..|x]|]}
is the set of its coordinates. The empty vector is denoted (). If S is a set, then S* is the set of
vectors over S, meaning the set of vectors of any (finite) length with coordinates in S. Strings are
identified with vectors over {0, 1}, so that if x € {0,1}* is a string then |x| is its length, x[i] is its
i-th bit, and x[i..j] is the substring from its i-th to its j-th bit (including), for i < j. The empty
string is €. If x,y are strings then we write x <y to indicate that x is a prefix of y. If § is a finite
set then |S| is its size (cardinality). A set S C {0,1}* is length closed if {0,1}* C S for all x € .

We let y < A[Oy,...](x1,...;r) denote executing algorithm A on inputs xj,... and coins
r, with access to oracles Oy, ..., and letting y be the result. We let y<-sA[Oy,...](x1,...) be the
resulting of picking r at random and letting y <— A[O1,...](x1,...;r). We let OUT(A[Oy,...|(x1,...))

denote the set of all possible outputs of algorithm A when invoked with inputs x,... and access
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to oracles Oy,.... Algorithms are randomized unless otherwise indicated. Running time is worst
case. An adversary is an algorithm.

We use the code-based game-playing framework of [44]. A game G (see Figure 1.2 for
an example) starts with an init procedure, followed by a non-negative number of additional
procedures, and ends with a fin procedure. Procedures are also called oracles. Execution of
adversary A with game G consists of running A with oracle access to the game procedures, with
the restrictions that A’s first call must be to init, its last call must be to fin, and it can call
these two procedures at most once. The output of the execution is the output of fin. We write
Pr[G(A)] to denote the probability that the execution of game G with adversary A results in the
output being the boolean true. Note that our adversaries have no output. The role of what in
other treatments is the adversary output is, for us, played by the query to fin. We adopt the
convention that the running time of an adversary is the worst-case time to execute the game with

the adversary, so the time taken by game procedures (oracles) to respond to queries is included.

FUNCTIONS. As usual g: 2 — Z indicates that g is a function taking inputs in the domain set
2 and returning outputs in the range set Z. We may denote these sets by Dom(g) and Rng(g),
respectively.

We say that g: Dom(g) — Rng(g) has output length ¢ if Rng(g) = {0,1}. We say that g
is a single output-length (sol) function if there is some ¢ such that g has output length ¢ and also
the set 2 is length closed. We let SOL(Z, /) denote the set of all sol functions g: 2 — {0,1}".

We say g is an extendable output length (xol) function if the following are true: (1)
Rng(g) = {0,1}* (2) there is a length-closed set Dom,(g) such that Dom(g) = Dom,(g) x N (3)
|g(x,0)| = ¢ for all (x,¢) € Dom(g), and (4) g(x,¢) < g(x,¢') whenever £ <¢'. We let XOL(Z) denote

the set of all xol functions g: 2 — {0,1}*.
1.4 Read-only indifferentiability of translating functors

We define read-only indifferentiability (rd-indff) of functors. Then we define a class of
functors called translating, and give general results about their rd-indiff security. Later we will
apply this to analyze the security of cloning functors, but the treatment in this section is broader

and, looking ahead to possible future applications, more general than we need for ours.
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1.4.1 Functors and read-only indifferentiability

A random oracle, formally, is a function drawn at random from a certain space of functions.
A construction (functor) is a mapping from one such space to another. We start with definitions

for these.

FUNCTION SPACES AND FUNCTORS. A function space FS is simply a set of functions, with
the requirement that all functions in the set have the same domain Dom(FS) and the same
range Rng(FS). Examples are SOL(Z,¢) and XOL(Z). Now f<-sFS means we pick a function
uniformly at random from the set FS.

Sometimes (but not always) we want an extra condition called input independence. It
asks that the values of f on different inputs are identically and independently distributed when
f<sFS. More formally, let 2 be a set and let Out be a function that associates to any W € Z a
set Out(W). Let Out(Z) be the union of the sets Out(W) as W ranges over . Let FUNC(Z,0Out)
be the set of all functions f: Z — Out(Z) such that f(W) € Out(W) for all W € 2. We say that
FS provides input independence if there exists such a Out such that FS = FUNC(Dom(FS),Out).
Put another way, there is a bijection between FS and the set S that is the cross product of the
sets Out(W) as W ranges over Dom(FS). (Members of S are |Dom(FS)|-vectors.) As an example
the function space SOL(Z,/) satisfies input independence, but XOL(Z) does not satisfy input
independence.

Let SS be a function space that we call the starting space. Let ES be another function
space that we call the ending space. We imagine that we are given a function s € SS and want to
construct a function e € ES. We refer to the object doing this as a functor. Formally a functor is
a deterministic algorithm F that, given as oracle a function s € SS, returns a function F[s| € ES.

We write F: SS — ES to emphasize the starting and ending spaces of functor F.

RD-INDIFF. We want the ending function to “emulate” a random function from ES. Indifferentia-
bility is a way of defining what this means. The original definition of MRH [171] has been followed
by many variants [80, 202, 94, 179]. Here we give ours, called read-only indifferentiability, which
implies composition not just for single-stage games, but even for multi-stage ones [202, 94, 179].

Let ES and SS be function spaces, and let F: SS — ES be a functor. Our variant of
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Game Gch‘lﬁ—Sigc’lliEf;W‘Sim priv(W):
5 If W € W then return e, (W)

init: 6 Else return L
1 §¢sSS

pub(U):
7 if (b=1) then return s(U)
8 else return Sim.Ev[eg](st,U)

fin(b):
9 return (b=10")

2 e + F[s] ; eg«sES
3 b+s{0,1}
4 st <sSim.Setup()

Figure 1.2. Game defining read-only indifferentiability.

indifferentiability mandates a particular, strong simulator, which can read, but not write, its
(game-maintained) state, so that this state is a static quantity. Formally a read-only simulator Sim
for F specifies a setup algorithm Sim.Setup which outputs the state, and a deterministic evaluation
algorithm Sim.Ev that, given as oracle a function e € ES, and given a string st € OUT(Sim.Setup)
(the read-only state), defines a function Sim.Ev[e](st,-): Dom(SS) — Rng(SS).

The intent is that Sim.Ev[e](st,-) play the role of a starting function s € SS satisfying
F|[s] = e. To formalize this, consider the read-only indifferentiability game G%‘ijsig(}gg,W,Sim of

Figure 1.2, where W C Dom(ES) is called the working domain. The adversary A playing this

game is called a distinguisher. Its advantage is defined as
d-indiff d-indiff
AdvESEs wsim(4) =2 Pr[GESS ES w sim (A)] — 1.

To explain, in the game, b is a challenge bit that the distinguisher is trying to determine. Function
ep is a random member of the ending space ES if b =0 and is F[s](-) if b= 1. The query W to
oracle priv is required to be in Dom(ES). The oracle returns the value of e, on W, but only if
W is in the working domain, otherwise returning 1. The query U to oracle pub is required to
be in Dom(SS). The oracle returns the value of s on U in the b =1 case, but when b =0, the
simulator evaluation algorithm Sim.Ev must answer the query with access to an oracle for ep.
The distinguisher ends by calling fin with its guess b’ € {0,1} of b and the game returns true if
b' = b (the distinguisher’s guess is correct) and false otherwise.

The working domain W C Dom(ES), a parameter of the definition, is included as a way

to allow the notion of read-only indifferentiability to provide results for oracle cloning methods
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like length differentiation whose security depends on domain restrictions.

The Sim.Ev algorithm is given direct access to ey, rather than access to priv as in other
definitions, to bypass the working domain restriction, meaning it may query ey at points in
Dom(ES) that are outside the working domain.

All invocations of Sim.Ev[eg| are given the same (static, game-maintained) state st as
input, but Sim.Ev|eg] cannot modify this state, which is why it is called read-only. Note init does

not return sf, meaning the state is not given to the distinguisher.

DiscussioN. To compare rd-indiff to other indiff notions, we set W = Dom(ES), because prior
notions do not include working domains. Now, rd-indiff differs from prior indiff notions because it
requires that the simulator state be just the immutable string chosen at the start of the game. In
this regard, rd-indiff falls somewhere between the original MRH-indiff [171] and reset indiff [202]
in the sense that our simulator is more restricted than in the first and less than in the second. A
construction (functor) that is reset-indiff is thus rd-indiff, but not necessarily vice-versa, and a
construct that is rd-indiff is MRH-indiff, but not necessarily vice-versa. Put another way, the
class of rd-indff functors is larger than the class of reset-indiff ones, but smaller than the class of
MRH-indiff ones. Now, RSS’s proof [202] that reset-indiff implies security for multi-stage games
extends to rd-indiff, so we get this for a potentially larger class of functors. This larger class

includes some of the cloning functors we have described, which are not necessarily reset-indiff.

1.4.2 Translating functors

TRANSLATING FUNCTORS. We focus on a class of functors that we call translating. This class
includes natural and existing oracle cloning methods, in particular all the effective methods used
by NIST KEMs, and we will be able to prove general results for translating functors that can be
applied to the cloning methods.

A translating functor T: SS — ES is a functor that, with oracle access to s and on input
W € Dom(ES), non-adaptively calls s on a fixed number of inputs, and computes its output
T[s](W) from the responses and W. Its operation can be split into three phases which do not
share state: (1) a pre-processing phase which chooses the inputs to s based on W alone (2)

the calls to s to obtain responses (3) a post-processing phase which uses W and the responses

27



collected in phase 2 to compute the final output value T[s](W).

Proceeding to the definitions, let SS,ES be function spaces. A (SS,ES)-query translator
is a function (deterministic algorithm) QT: Dom(ES) — Dom(SS)*, meaning it takes a point W
in the domain of the ending space and returns a vector of points in the domain of the starting
space. This models the pre-processing. A (SS,ES)-answer translator is a function (deterministic
algorithm) AT: Dom(ES) x Rng(SS)* — Rng(ES), meaning it takes the original W, and a vector of
points in the range of the starting space, to return a point in the range of the ending space. This
models the post-processing. To the pair (QT,AT), we associate the functor TFqt aT: SS — ES,

defined as follows:

Algorithm TFqt a1[s](W) // Input W € Dom(ES) and oracle s € SS

U« QT (W)
For j=1,...,|U| do V[j] + s(U[j]) // U[j] € Dom(SS)
Y+~ AT(W,V) ; Return Y

The above-mentioned calls of phase (2) are done in the second line of the code above, so that this
implements a translating functor as we described. Formally we say that a functor F: SS — ES
is translating if there exists a (SS,ES)-query translator QT and a (SS,ES)-answer translator AT

such that F = TFqQT AT.

INVERSES. So far, query and answer translators may have just seemed an unduly complex way
to say that a translating oracle construction is one that makes non-adaptive oracle queries. The
purpose of making the query and answer translators explicit is to define invertibility, which
determines rd-indiff security.

Let SS and ES be function spaces. Let QTI be a function (deterministic algorithm)
that takes an input U € Dom(SS) and returns a vector W over Dom(ES). We allow QTI to
return the empty vector (), which is taken as an indication of failure to invert. Define the
support of QTI, denoted sup(QTI), to be the set of all U € Dom(SS) such that QTI(U) # (). Say
that QTI has full support if sup(QTI) = Dom(SS), meaning there is no U € Dom(SS) such that
QTIU) = (). Let ATI be a function (deterministic algorithm) that takes U € Dom(SS) and a

vector Y over Rng(ES) to return an output in Rng(SS). Given a function e € ES, we define the
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function Ple]qTi aTi: Dom(SS) — Rng(SS) by

Function Ple]qriaTi(U) // U € Dom(SS)

W —QTIU) ; Y < e(W); V«+ATI(U,Y) ; Return V

Above, e is applied to a vector component-wise, meaning e(W) is defined as the vector (e(WT[1]),
- e(W[WI])).

We require that the function Ple]qT aTi belong to the starting space SS. Now let QT be a
(SS,ES)-query translator and AT a (SS,ES)-answer translator. Let W C Dom(ES) be a working
domain. We say that QTI, ATl are inverses of QT,AT over W if two conditions are true. The

first is that for all e € ES and all W € W we have

TFqr at[Ple]lQriaTi](W) =e(W) . (1.2)

This equation needs some parsing. Fix a function e € ES in the ending space. Then s =P[e]qTi ATI
is in SS. Recall that the functor F = TFqt a1 takes a function s in the starting space as an oracle
and defines a function ¢/ = F[s] in the ending space. Equation (1.2) is asking that ¢ is identical
to the original function e, on the working domain W. The second condition (for invertibility) is
that if U € {QT(W)[i] : W € W} —that is, U is an entry of the vector U returned by QT on some
input W— then QTI(U) # (). Note that if QTI has full support then this condition is already
true, but otherwise it is an additional requirement.

We say that (QT,AT) is invertible over W if there exist QTI, ATl such that QTI, ATl are
inverses of QT,AT over W, and we say that a translating functor TFqt aT is invertible over W
if (QT,AT) is invertible over W.

In the rd-indiff context, function P[e]qTi a1 Will be used by the simulator. Roughly, we
try to set Sim.Evle](st,U) = P[e]qTiaTi(U). But we will only be able to successfully do this for
U € sup(QTI). The state st is used by Sim.Ev to provide replies when U ¢ sup(QTI).

Equation (1.2) is a correctness condition. There is also a security metric. Consider
the translation indistinguishability game GtSiS,ES,QTL a7y of Figure 1.3. Define the ti-advantage of

adversary B via

Advis s qriam(B) =2 Pr[Gls gs qriam(B)] — 1.
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t
Game GSS,ES,QTI,ATI

init:

1 b<=s{0,1} ; e<sES

2 51455 ; 50 < Ple]qTiaTi
pub(U): // U € Dom(SS)

3 If QTI(U) = () then return L
4 return s,(U)

fin(b):
5 return (b=10")

Figure 1.3. Game defining translation indistinguishability.

In reading the game, recall that () is the empty vector, whose return by QTI represents an
inversion error. TI-security is thus asking that if e is randomly chosen from the ending space, then
the output of Ple]qTiaTi on an input U is distributed like the output on U of a random function
in the starting space, but only as long as QTI(U) was non-empty. We will see that the latter
restriction creates some challenges in simulation whose resolution exploits using read-only state.
We say that (QTI,ATI) provides perfect translation indistinguishability if Advtsi&ES’QTL AaTi(B)=0
for all B, regardless of the running time of B.

Additionally we of course ask that the functions QT,AT,QTI, ATl all be efficiently com-
putable. In an asymptotic setting, this means they are polynomial time. In our concrete setting,
they show up in the running-time of the simulator or constructed adversaries. (The latter, as per

our conventions, being the time for the execution of the adversary with the overlying game.)
1.4.3 Rd-indiff of translating functors

We now move on to showing that invertibility of a pair (QT,AT) implies read-only
indifferentiability of the translating functor TFqt aT. We start with the case that QTI has full

support.

Theorem 1.1. Let SS and ES be function spaces. Let W be a subset of Dom(ES). Let QT,AT be
(SS,ES) query and answer translators, respectively. Let QTI ATl be inverses of QT,AT over W.

Assume QTI has full support. Define read-only simulator Sim as per the top panel of Figure 1.4.
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Algorithm Sim.Setup: Algorithm Sim.Ev[e](st,U):
i Return € L W QTI(U) ; Y « e(W) ; V + ATI(U,Y)
2 Return V
Algorithm Sim.Setup: Algorithm Sim.Ev[e](st,U):
1 s14s{0,1}6K 1 W« QTI(U)
2 Return st 2 If W = () then return Ggyle](U)
3 Y ¢ e(W); V< ATI(U,Y)
4 Return V

Figure 1.4. Simulators for Theorem 1.1 (top) and Theorem 1.2 (bottom).

Games Gy, G; Game Gy
init: init:

1 §4+sSS // Game Gy 1 eg<+sES

2 ey ES M P[e()]QTIA,ATI // Game G1 2 54 P[eo]QTLAﬂ
priv(W): priv(W):

3 If W e W then return F[s](W) 3 If W e W then return eg(W)

4 Else return L 4 Else return L
pub(U): pub(U):

5 return s(U) 5 return s(U)
fin(b'): fin(b'):

6 return (b’ =1) 6 return (b =1)

Adversary B:

1 init() privi(W):
2 Alinit’, pub’, priv’, fin']() 5 if W ¢ W then return L
init': 6 U<« QT(W)
3 Return 7 For j=1,...,|[U[ do V[j] = pub(U[}])
8 return AT(W,V)
pub’ (U):
4 return pub(U) fin' (b'):

9 fin(b)

Figure 1.5. Top: Games for proof of Theorem 1.1. Bottom: Adversary for proof of Theorem 1.1.

Let F = TFQt aT. Let A be any distinguisher. Then we construct a ti-adversary B such that

d-indiff t'
AdvESSEs 1w sim(A) < Advss s qriati(B) -

Let £ be the mazimum output length of QT. If A makes qpriv,qpu» queries to its priv, pub oracles,

respectively, then B makes £ - qpriv + qpu» queries to its pub oracle. The running time of B is

about that of A.
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Proof:[Theorem 1.1] Consider the games of Figure 1.5. In the left panel, line 1 is included

only in Gy and line 2 only in Gy, and this is the only way the games differ. Game Gy is the real

game, meaning the case b =1 in game Gi&ijsig‘?gg7szim. In game Gy, oracle priv is switched to a

random function eyp. From the description of the simulator in Figure 1.4 we see that
Sim.Ev[eo](g,U) = Pleo]qTiaTi(U)

for all U € Dom(SS) and all ¢y € ES, so that oracle pub in game G, is responding according to

the simulator based on eg. So game G; is the case b =0 in game Grl,iijsiré‘?iEfgW’Sim. Thus

AAVESEES w sim(A) = Pr[Go(4)] — Pr[Ga(4)]

= (Pr[Go(A)] = Pr[Gi (A)]) + (Pr[Gi(A)] = Pr[G2(A4)]) -
We define translation-indistinguishability adversary B in Figure 1.5 so that
Pr[Go(A)] —Pr[G(A)] < Advis gs qriam(B) -

Adversary B is playing game GtSiS7ES7QTI, AT~ Using its pub oracle, it presents the interface of
Gop and G to A. In order to simulate the priv oracle, B runs TFqr at[pub]. This is consistent
with Gg and G;. If b=1 in GtSiS./ES’QTLATl, then B perfectly simulates Gg for A. If b=1, then B

correctly simulates G; for A. To complete the proof we claim that
Pr[G;(A4)] =Pr[G2(4)] .

This is true by the correctness condition. The latter says that if s <— Plep]qTi.aTI then F[s] is just
eo itself. So e; in game Gy is the same as ey in game Gy, making their priv oracles identical. And

their pub oracles are identical by definition. ([l

The simulator in Theorem 1.1 is stateless, so when W is chosen to be Dom(ES) the theorem is
establishing reset indifferentiability [202] of F.

For translating functors where QTI does not have full support, we need an auxiliary
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prf .
Ggsses RO(W):
6 Return e(W)

init():

1 b+s{0,1} FnO(U):

5 e+sES 7 V%sb(U)

3 st«s{0 I}G.kl 8 Return V

4 51+ Gle](st,") fin(b):

5 50¢sSS 9 Return (V' =)

Figure 1.6. Game to define PRF security of (SS,ES)-oracle aided PRF G.

primitive that we call a (SS,ES)-oracle aided PRF. Given an oracle for a function e € ES, an
(SS,ES)-oracle aided PRF G defines a function Gle]: {0,1}%* x Dom(SS) — Rng(SS). The first
input is a key. For C' an adversary, let Adv%r’fs&ES(C) = 2Pr[GngS7ES(C)] — 1, where the game
is in Figure 1.6. The simulator uses its read-only state to store a key st for G, then using G(st,-)
to answer queries outside the support sup(QTI).

We introduce this primitive because it allows multiple instantiations. The simplest is
that it is a PRF, which happens when it does not use its oracle. In that case the simulator is
using a computational primitive (a PRF) in the indifferentiability context, which seems novel.
Another instantiation prefixes st to the input and then invokes e to return the output. This

works for certain choices of ES, but not always. Note G is used only by the simulator and plays

no role in the functor.

Theorem 1.2. Let SS and ES be function spaces, and assume they provide input independence.
Let W be a subset of Dom(ES). Let QT,AT be (SS,ES) query and answer translators, respectively.
Let QTI,ATI be inverses of QT,AT over W. Define read-only simulator Sim as per the bottom
panel of Figure 1.4. Let F = TFqrar. Let A be any distinguisher. Then we construct a

ti-adversary B and a prf-adversary C such that
-indi ' of
Adv I 1 im(A) < Advs gs qriami(B) +Advg ss(C) .

Let { be the mazimum output length of QT and ¢ the mazimum output length of QTIl. If A
makes qpriv,qpup queries to its priv, pub oracles, respectively, then B makes {-qpriy +qpup queries

to its pub oracle and C makes at most E-B’-qpriv-i-qpub queries to its RO oracle and at most
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Games Gy, G; Game Gj,G3
init: init:
1 81 4sSS 1 enp+sES
2 $43SS // Game G 2 s <_P[60]QTI,ATI
3 el <—F[S]] 3 $ <SS // Game Gy
priv(W): e F.‘[Sl]
4 If W e W then return e (W) 5 st<sSim.Setup() // Game G3
5 Else return | priv(W):
pub(U): 6 If W € W then return e (W)
6 if QTI(U) = () then 7 Else return L
7 return $(U) // Game G| pub(U):
8 return s (U) s if QTI(U) = () then
Fin(0): 9  return $(U) // Game G,
9 return (b = 1) 10 return Ggleg](U) // Game Gj
11 return s (U)
fin(b):
12 return (&' =1)
Game Gy pub(U):
init: 6 if QTI(U) = () then
1 ey<sES 7 return Gleg|y (V)

2 51+ Pleo]QTiaTi 8 return s (U)

3 st+sSim.Setup() fin(b'):

priv(W): 9 return (b' =1)

4 If W € W then return eg(W)
5 FElse return L

Figure 1.7. Games for proof of Theorem 1.2.

Gpub + - Gpriv queries to its FnO oracle. The running times of B, C are about that of A.

Proof:[Theorem 1.2] We will rely on the sequence of games in Figure 1.7. The first game
Gy is the real game, meaning the case b =1 in game G%jjsigf‘gg7w’5im. Game G differs from Gy
because it samples an additional function s, from the starting space. When an inversion error
occurs in the pub oracle, game G; answers using s instead of s;. Since the starting space SS
provides input independence, both s; and s, are drawn from FUNC(Dom(SS),Out) for some Out.
Then on any input U, the outputs of s; and s, are identically and independently distributed. The
adversary can therefore only tell that queries outside the support of QTI are not being answered
by s; if the pub oracle becomes inconsistent with the priv oracle. This happens only if the priv

oracle, while computing F[s;] = TFqT aT[51], queries s; on some point outside the support of

34



Adversary B: Adversary C:
1 init() 1 init()
2 Alinit’, pub’, priv’, fin']() 2 Alinit’, pub’, priv’, fin']()
init': init':
3 Return 3 Return
pub' (U): pub' (U):
4 if T[U] # L then return T[U] 4 if QTIU) = () then
5 W<« pub(U) 5  return FnO(U)
6 if W= 1 then 6 return P[RO]qTi ATI(U)
7 (i,X) <~ U priv'(W):
8 T[U]+sO0u(U) 7 IfWe W then
9 W« T[U] 8 return F[pub'|(W)
10 return W 9 Else return L
privi(W): fin'(b'):
11 if W € W then return F[pub](W) 0 fin(b)
12 Else return L
fin' (b):
13 fin(b')

Figure 1.8. Adversaries for proof of Theorem 1.2.

QTI, which is impossible by the first condition in the definition of invertibility. Hence
Pr[Go(A)] = Pr[G;(A)].

Between games G; and G;, we draw a function ey from the ending space and replace s; with

PqTiaTi[eo]. We construct the translation-indistinguishability adversary B in Figure 1.7 so that
Pr(G;(A4)] = Pr[Gy(4)] < AthSiS,ES,QTI,ATI(B)'

This adversary simulates the interface of G; and G, for A, using its pub oracle to implement s;
and check for inversion errors. It lazily samples s, which is consistent with G; and G, by the
input independence of SS. Its priv’ oracle runs F[pub], which is consistent. When the challenge
bit b =1 in game G§S7ES7QTL a7y adversary B simulates game G perfectly, and when b =0 it
perfectly simulates game G.

In game Gj3, we replace s, with an (SS, ES)-oracle-aided pseudorandom function G and

sample a PRF key st in the init oracle. We construct an adversary C' in Figure 1.7 against the
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PRF-security of G. This adversary plays game GIS’rSf7ES7G and simulates the interface of games
G; and Gj for A. It uses its RO oracle to simulate ey, and it uses its FnO oracle to answer
pub queries outside the support of QTI. When b =0 in game Ggrsf_’ES,G, the adversary perfectly

simulates G, for A, and when b =1 it perfectly simulates G3. Therefore
of
Pr[G,(A)] —Pr[G3(A)] < AdVE&ES,G(C)'

In Game Gy4, we answer priv queries with ey directly, instead of with F[PqtiaTi[eo]]. By the

correctness condition of invertibility, these two functions are identical, so
Pr[G3(A)] = Pr[G4(A4)].

Looking at the pseudocode for simulator Sim in the bottom panel of Figure 1.4, we see
that Sim.Evle] first runs QT on its input U. If QTI(U) = (), then it returns Gy[e](U). Otherwise,
it runs Ple]qTiaTi(U) and returns the output. This is identical to lines 6-8 of game Gy, so A
wins Gy if and only if it loses the ideal game (meaning the case b =0), of the rd-indiff game

rd—indiff
GF 55,65, W sim- Thus

AdVEESEET, g (A) = PrGo(A)] —Pr[Gy(A)
= Pr[Gy ()] — Pr[Gs(A)]
— (PF[Gi(A)] — Pr{Ga(A)]) + (PrIGa(4)] — Pr{Ga(4))]

i "
< Advgs s qriami(B) +Adves g5 (O).

This completes the proof. ]
1.5 Analysis of cloning functors

Section 1.4 defined the rd-indiff metric of security for functors and give a framework
to prove rd-indiff of translating functors. We now apply this to derive security results about

particular, practical cloning functors.
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ARITY-n FUNCTION SPACES. The cloning functors apply to function spaces where a function
specifies sub-functions, corresponding to the different random oracles we are trying to build.
Formally, a function space FS is said to have arity n if its members are two-argument functions f
whose first argument is an integer i € [1..n]. For i € [1..n] we let f; = f(i,-) and FS; = {f; : f € FS},
and refer to the latter as the i-th subspace of FS. We let Dom;(FS) be the set of all X such that
(i,X) € Dom(FS).

We say that FS has sol subspaces if FS; is a set of sol functions with domain Dom;(FS),
for all i € [1..n]. More precisely, there must be integers OL;(FS),...,OL,(FS) such that FS; =
SOL(Dom;,(FS),0L;(FS)) for all i € [1..n]. In this case, we let Rng;(FS) = {0,1}°5(FS). This is the
most common case for practical uses of ROs.

To explain, access to n random oracles is modeled as access to a two-argument function f
drawn at random from FS, written f<-sFS. If FS has sol subspaces, then for each i, the function
fi is a sol function, with a certain domain and output length depending only on i. All such
functions are included. This ensures input independence as we defined it earlier. Thus if f<-sFS,
then for each i and any distinct inputs to f;, the outputs are independently distributed. Also
functions fi,..., f, are independently distributed when f<-sFS. Put another way, we can identify

FS with FSy x--- x FS,,.

DOMAIN-SEPARATING FUNCTORS. We can now formalize the domain separation method by
seeing it as defining a certain type of (translating) functor.

Let the ending space ES be an arity n function space. Let F: SS — ES be a translating
functor and QT,AT be its query and answer translations, respectively. Assume QT returns a
vector of length 1 and that AT((i,X), V) simply returns V[1]. We say that F is domain separating
if the following is true: QT(i},X;) # QT (i,Xz) for any (i1,X)), (i2,X2) € Dom(ES) that satisfy
i # in.

To explain, recall that the ending function is obtained as e <— F[s], and defines ¢; for
i € [1..n]. Function e; takes input X, lets () - QT(i,X) and returns s(u#). The domain separation
requirement is that if (u;) <= QT (i,X;) and (u;j) < QT(/,X;), then i # j implies u; # u;, regardless
of X;,Xj. Thus if i # j then the inputs to which s is applied are always different. The domain of s

has been “separated” into disjoint subsets, one for each i.
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PRACTICAL CLONING FUNCTORS. We show that many popular methods for oracle cloning in

practice, including ones used in NIST KEM submissions, can be cast as translating functors.
In the following, the starting space SS = SOL({0,1}*,0L(SS)) is assumed to be a sol

function space with domain {0,1}* and an output length denoted OL(SS). The ending space ES

is an arity n function spaces that has sol subspaces.

PREFIXING. Here we formalize the canonical method of domain separation. Prefixing is used in
the following NIST PQC submissions: ClassicMcEliece, FrodoKEM, LIMA, NTRU Prime, SIKE,
QC-MDPC, ThreeBears.

Let p be a vector of strings. We require that it be prefiz-free, by which we mean that
i # j implies that pli] is not a prefix of p[j]. Entries of this vector will be used as prefixes to
enforce domain separation. One example is that the entries of p are distinct strings all of the
same length. Another is that a p[i] = E(i) for some prefix-free code E like a Huffman code.

Assume OL;(ES) = OL(SS) for all i € [1..n], meaning all ending functions have the same
output length as the starting function. The functor Fpgp): SS — ES corresponding to p is
defined by Fpp)[s](i,X) = s(pli][|X). To explain, recall that the ending function is obtained as
e + Fppp[s], and defines e; for i € [1..n]. Function e; takes input X, prefixes pli] to X to get a
string X', applies the starting function s to X’ to get Y, and returns Y as the value of ¢;(X).

We claim that Fpgp) is a translating functor that is also a domain-separating functor as
per the definitions above. To see this, define query translator QT psp) by QT psp) (i, X) = (P[i][|IX),
the 1-vector whose sole entry is p[i][|X. The answer translator AT ), on input (i,X), V, returns
V1], meaning it ignores i,X and returns the sole entry in its 1-vector V.

We proceed to the inverses, which are defined as follows:

Algorithm QTlygp) (U) Algorithm ATl (U,Y)
W () IfY # () then V + Y[1]
Fori=1,...,n do Else V «+ (OL(S9)

If p[i] 2 U then p[i]||X < U ; W]l] + (i,X) | Return V
Return W

The working domain is the full one: W = Dom(ES). We now verify Equation (1.2). Let
QT,QTLAT,ATI be QT y(p) QT lpp)» ATpip), AT lpg(p), Tespectively. Then for all W = (i,X) €
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Dom(ES), we have:

TFqt at[Ple]qmiam] (W) = Ple]qriami(P[i][1X)
= ATI(p[i][|X, (e(i,X)))

=e(i,X).

We observe that (QTlyfp), AT lpe(p)) provides perfect translation indistinguishability. Since QT ly¢p)
does not have full support, we can’t use Theorem 1.1, but we can conclude rd-indiff via Theo-

rem 1.2.

IDENTITY. Many NIST PQC submissions simply let €;(X) = s(X), meaning the ending functions
are identical to the starting one. This is captured by the identity functor Fi: SS — ES, defined
by Fia[s](i,X) = s(X). This again assumes OL;(ES) = OL(SS) for all i € [1..n], meaning all ending
functions have the same output length as the starting function. This functor is translating,
via QTiq(i,X) = X and ATi((i,X),V) = V[1]. It is however not, at least in general, domain
separating.

Clearly, this functor is not, in general, rd-indiff. To make secure use of it nonetheless,
applications can restrict the inputs to the ending functions to enforce a virtual domain separation,
meaning, for i # j, the schemes never query e; and e; on the same input. One way to do this
is length differentiation. Here, for i € [1..n], the inputs to which e; is applied all have the same
length [;, and [y,...,l, are distinct. Length differentiation is used in the following NIST PQC
submissions: BIKE,EMBLEM, HQC, RQC, LAC, LOCKER, NTS-KEM, SABER, Round2, Round5,Titanium.
There are, of course, many other similar ways to enforce the virtual domain separation.

There are two ways one might capture this with regard to security. One is to restrict the
domain Dom(ES) of the ending space. For example, for length differentiation, we would require
that there exist distinct /y,...,l, such that for all (i,X) € Dom(ES) we have |X|=1;. For such an
ending space, the identity functor would provide security. The approach we take is different.
We don’t restrict the domain of the ending space, but instead define security with respect to a
subdomain, which we called the working domain, where the restriction is captured. This, we

believe, is better suited for practice, for a few reasons. One is that a single implementation of the
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ending functions can be used securely in different applications that each have their own working
domain. Another is that implementations of the ending functions do not appear to enforce any
restrictions, leaving it up to applications to figure out how to securely use the functions. In this
context, highlighting the working domain may help application designers think about what is
the working domain in their application and make this explicit, which can reduce error.

But we warn that the identity functor approach is more prone to misuse and in the end
more dangerous and brittle than some others.

As per the above, inverses can only be given for certain working domains. Let us say
that W C Dom(ES) separates domains if for all (i,X)), (i2,X2) € W satisfying i; # ip, we have
X; # X,. Put another way, for any (i,X) € W there is at most one j such that X € Dom;(ES).
We assume an efficient inverter for W. This is a deterministic algorithm Iny, that on input
X €{0,1}* returns the unique i such that (i,X) € W if such an i exists, and otherwise returns L.
(The uniqueness is by the assumption that W separates domains.)

As an example, for length differentiation, we pick some distinct integers Iy, ..., [, such that
{0,1} C Dom;(ES) for all i € [1..n]. We then let W = {(i,X) € Dom(ES) : |X| =;}. This separates
domains. Now we can define Inyy (X) to return the unique i such that |X| =1; if |X| € {l1,...,1,},
otherwise returning L.

The inverses are then defined using Inyy, as follows, where U € Dom(SS) = {0, 1}*:

Algorithm QTli4(U) Algorithm ATli4(U,Y)

W () ;i< Inw(U) If Y # () then V + Y[1]
If i # 1 then W[1] + (i,U) | Else V « QOL(SS)

Return W Return V

The correctness condition of Equation (1.2) over W is met, and since Iny (X) never returns
1 for X € W, the second condition of invertibility is also met. (QTlkg,ATliq) provides perfect
translation indistinguishability. Since QTliy does not have full support, we can’t use Theorem 1.1,

but we can conclude rd-indiff via Theorem 1.2.

OUuTPUT-SPLITTING. We formalize another method that we call output splitting. It is used
in the following NIST PQC submissions: FrodoKEM, NTRU-HRSS-KEM, 0dd Manhattan,QC-MDPC,

Round2, Round5.
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Adversary Ainit,pub,priv, fin

init ()

y < pub(0) ; d<=s{1,2} ; yqs + priv(d,0)

If (yq4[1..256]) = y[1..256] then fin(1) else fin(0)

Figure 1.9. Adversary against the rd-indiff security of Fyeunope-

Let ¢; = OL{(ES) +--- 4+ OL;(ES) for i € [1..n]. Let £ = OL(SS) be the output length of
the sol functions s € SS, and assume ¢ = /,. The output-splitting functor Fgy: SS — ES is
defined by Fp[s](i,X) = s(X)[li1+1..4;]. That is, if e <= Fgy[s], then ¢;(X) lets Z < s(X) and
then returns bits ¢;_;+1 through ¢; of Z. This functor is translating, via QT (i,X) =X and
AT ((1,X), V) = V[1][li-1+1..4;]. It is however not domain separating.

The inverses are defined as follows, where U € Dom(SS) = {0, 1}*:

Algorithm QTlgy(U) Algorithm ATl (U,Y)

Fori=1,...,ndo WIi|]« (;,U) | V< Y[1]||---||Y[n]

Return W Return V
The correctness condition of Equation (1.2) over W = ES is met, and (QTlgp, ATlsp) provides
perfect translation indistinguishability. Since QTlg, has full support, we can conclude rd-indiff

via Theorem 1.1.

RD-INDIFF OF NewHope. We next demonstrate how read-only indifferentiability can highlight
subpar methods of oracle cloning, using the example of NewHope [11]. The base KEM KE; defined
in the specification of NewHope relies on just two random oracles, G and Hy. (The base scheme
defined by transform T;g, which uses 3 random oracles H,, H3, and Hy, is equivalent to KE; and
can be obtained by applying the output-splitting cloning functor to instantiate H, and Hz with
G. NewHope’s security proof explicitly claims this equivalence [11].)

The final KEM KE; instantiates these two functions through SHAKE256 without explicit
domain separation, setting Hy(X) = SHAKE256(X,32) and G(X) = SHAKE256(X,96). For consis-
tency with our results, which focus on sol function spaces, we model SHAKE256 as a random
member of a sol function space SS with some very large output length L, and assume that the
adversary does not request more than L bits of output from SHAKE256 in a single call. We let ES

be the arity-2 sol function space defining sub-functions G and Hy. In this setting, the cloning
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functor Fyewtope : SS — ES used by NewHope is defined by Fyewnope[s](1,X) = s(X)[1..256] and
Feutiope [8](2,X) = s(X)[1..768]. We will show that this functor cannot achieve rd-indiff for the
given oracle spaces and the working domain W = {0,1}*. In Figure 1.9, we give an adversary A

d-indiff

which has high advantage in the rd-indiff game Gj SS.ES. W Sim for any indifferentiability

NewHope »

rd-indiff

simulator Sim. When b =1 in game GrFNempe

SS.ES. W Sim» We have that

va[1..256] = Fregttope[s] (d,0)[1..256] = s(0)[1..256] = y[1..256],

so adversary A will always call fin on the bit 1 and win. When b =0 in game Gﬁ:}fﬁiss,E&Wﬁim,

the two strings y; = ep(1,X) and y, = ¢y(2,X) will have different 256-bit prefixes, except with
probability € =272, Therefore, when A queries pub(0), the simulator’s response y can share
the prefix of most one of the two strings y; and y,. Its response must be independent of d, which
is not chosen until after the query to pub, so Pry[1..256] = y,4[1..256]] < 1/2+ ¢, regardless of the
behavior of Sim. Hence, A breaks the indifferentiability of QV"HP® with probability roughly 1/2,
rendering NewHope’s random oracle functor differentiable.

The implication of this result is that NewHope’s implementation differs noticeably from the
model in which its security claims are set, even when SHAKE256 is assumed to be a random oracle.
This admits the possibility of hash function collisions and other sources of vulnerability that are
not eliminated by the security proof. To claim provable security for NewHope’s implementation,
further justification is required to argue that these potential collisions are rare or unexploitable.
We do not claim that an attack on read-only indifferentiability implies an attack on the IND-
CCA security of NewHope, but it does highlight a gap that needs to be addressed. Read-only
indifferentiability constitutes a useful tool for detecting such gaps and measuring the strength of

various oracle cloning methods.

1.6 Oracle Cloning in KEMs

Having shown rd-indiff of various practical cloning functors, we’d like to come back
around and apply this to show IND-CCA security of KEMs (as the target primitive of the NIST

PQC submissions) that use these functors. At one level, this may seem straightforward and
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unnecessary, for it is a special case of a general indifferentiability composition theorem, which
says that once indifferentiability of a functor has been shown, “all” uses of it are secure. In
particular, the composition theorems of [171, 202] for MRH-indefferentiability apply also to
rd-indiff and guarantee security when the latter is measured via a single-stage game, which is
true for IND-CCA KEMs. This, however, fails to account for working domains, which are not
present in prior indifferentiability formulations; the existing composition results only guarantee
security when the working domain is the full domain of the ending space. But this fails to be
the case for some oracle cloning methods like length differentiation that are used in NIST PQC
KEMs. We want a composition theorem that can allow us to conclude security of such usages.

For this, we first must ask what is the meaning or definition of the working domain in
the context of the application, here IND-CCA KEMSs. Below, we define this. Then we give a
working-domain-conscious composition theorem for IND-CCA KEMs that allows us to draw the
conclusions mentioned above. The starting point for this treatment is to enhance the syntax of

KEMs to allow them to say precisely what types of ROs they want and use.

KEM syNTAX. In the formal version of the ROM in [41], there is a single random oracle that has
some fixed domain and range, for example mapping {0,1}* to {0,1}. Schemes, however, often
want multiple random oracles, and also want their oracles to have particular domains and ranges
that depend on the scheme. To capture this, we have the scheme syntax include a specification
of the desired function space from which the random oracle is then drawn by games defining
security. We suggest that schemes specified in standards include a specification of this space, to
avoid errors.

Formally, a key-encapsulation mechanism (KEM) KE specifies the following. First is a
function space KE.FS. Now as usual there is a key-generation algorithm KE.K that, given access
to an oracle H € KE.FS, returns a public encryption key and matching secret decryption key,
(pk,dk)<—sKE.K[H]. Next there is an encapsulation algorithm KE.E that, given input pk, and

MKEK and a ciphertext C encapsulating it,

given oracle H, returns a symmetric key K € {0,1
(C,K) «+sKE.E[H](pk), where KE.kl is the symmetric-key length of KE. The randomness length
of KE.E is denoted KE.rl. Finally, there is a deterministic decapsulation algorithm KE.D that,

given inputs dk,C, and given oracle H, returns KE.D[H](dk,C) € {0, 1}¥EKU{1}.
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Game Gid—cca Dec(C):
init: 6 If (C=C") then return L
1 H<sKEFS ; b+s{0,1} 7 K« KE.D[RO|(dk,C)
2 (pk,dk)<sKE.K[RO] 8 return K
3 (C*,K{) +sKE.E[RO](pk) RO(W):
4 K} {0, 1}KEK 9 return H(W)
5 return pk,C*, K} fin(b'):
10 return (b=10")

Figure 1.10. KEM security game for indistinguishability under chosen-ciphertext attacks.

SECURITY DEFINITIONS. We cast the standard security notion of indistinguishability under
chosen-ciphertext attack (IND-CCA) for KEMs [82] in our extended syntax in Figure 1.10.
Adversary A gets a challenge ciphertext C* and a challenge key K that is either the key K}
underlying C* or a random key Kjj, and, to win, must determine b. Decapsulation oracle Dec

allows it to decapsulate any non-challenge ciphertext of its choice. We let
Advigee(4) = 2Pr(Gle] 1
to be the ind-cca advantage of adversary A.

WORKING DOMAIN OF A KEM. Let KE be a KEM. Let W C Dom(KE.FS) be a subset of
Dom(KE.FS). Consider game G‘Q%"% in Figure 1.11. The intent is that, at the end of the game,
the set % contains all queries made to RO by the scheme algorithms, while excluding ones made
by the adversary A but no