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a b s t r a c t

We review recent developments and advances in the synthesis of thin-film multiferroic and magneto-
electric heterostructures. Driven by the promise of new materials with built-in useful phenomena (i.e.,
electric field control of ferromagnetism), extensive research has been centered on the search for and char-
acterization of new single-phase multiferroic materials. In this review we provide a brief overview of
recent developments in the synthesis of thin film versions of these materials. Advances in modern film
growth processes have provided access to high-quality materials for in-depth study. We highlight the
use of epitaxial thin-film strain to stabilize metastable phases, drive multiferroic properties, and produce
new structures and properties in materials including case studies of EuTiO3 and BiFeO3.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Overview

Complex oxides represent a broad class of materials that have a
wide range of crystal structures and properties. Among them, the
study of magnetic, ferroelectric, and, more recently, multiferroic
properties has stimulated considerable interest. This work has
been driven, in part, by the development of new thin-film growth
techniques and the access to high-quality materials that has
resulted. In this review, we focus on the synthesis of thin films of
these materials and routes to control these properties with special
attention to the use of epitaxial thin-film strain. Such epitaxial
strain can give rise to complex and diverse physical phenomena
that result from the coupling of lattice, orbital, spin, and charge
degrees of freedom.

Creating novel materials is thus a critical component that en-
ables the exploration of such fascinating phenomena. The power
of advanced materials synthesis has been repeatedly demon-
strated in materials science. For example, in semiconductor epi-
taxy, advanced thin-film synthesis has led to not only a large
range of technologies, but has also led to several Nobel prizes.
Researchers in oxide and multiferroic science have taken a page
out of the semiconductor lexicon and consequently, materials syn-
thesis plays a critical role in enabling the study of such novel
materials. In this article, recent advances in the synthesis of epi-
taxially strained multiferroic and magnetoelectric oxide materials

(in particular systems such as EuTiO3 and BiFeO3) are reviewed.
We highlight the importance of advanced synthesis techniques
and the interplay between synthesis, theory, and experimental
probes [2].

1.2. Multiferroic materials systems

Metal oxide materials have been the focus of much research
based on the broad range of structures, properties, and exciting
phenomena that are manifested in these materials [3,4]. The
perovskite structure, which has the chemical formula ABO3 (e.g.,
CaTiO3, SrRuO3, BiFeO3) (Fig. 1), is made up of corner-sharing octa-
hedra with the A-cation coordinated with twelve oxygen ions and
the B-cation with six. The structure can easily accommodate a wide
range of valence states on both the A- and B-sites (i.e., A+1B+5O3,
A+2B+4O3, A+3B+3O3) and can exhibit complex defect chemistry
(including accommodation of a few percent of cation non-stoichi-
ometry, large concentrations of oxygen vacancies, and exotic
charge accommodation modes ranging from disproportionation
to cation ordering) [5]. Selection of the appropriate A- and B-site
cations can dramatically impact structural, electronic, magnetic,
polar, and other properties. In the end, the electronic structure
and coordination chemistry of the cationic species control the wide
range of physical phenomena manifested in these materials.

1.2.1. Multiferroics – definition
Over the past several years, the exploration of these individual

functional responses has evolved into the exploration of coupled
order, namely the existence of multiple order parameters, as exem-
plified by multiferroics. By definition, a single-phase multiferroic

1359-0286/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cossms.2012.03.001

⇑ Corresponding author. Tel.: +1 217 244 9162; fax: +1 217 333 2736.
E-mail address: lwmartin@illinois.edu (L.W. Martin).

Current Opinion in Solid State and Materials Science 16 (2012) 199–215

Contents lists available at SciVerse ScienceDirect

Current Opinion in Solid State and Materials Science

journal homepage: www.elsevier .com/locate /cossms



Author's personal copy

[6] is a material that simultaneously possesses two or more of the
so-called ‘‘ferroic’’ order parameters: ferroelectricity, ferromagne-
tism, and/or ferroelasticity (note that the current trend is to extend
the definition to include materials possessing the corresponding
antiferroics as well, e.g., antiferromagnetic ferroelectrics such as
BiFeO3, as there are so few ferromagnetic ferroelectrics). Magneto-
electric coupling typically refers to the linear magnetoelectric ef-
fect manifested as an induction of magnetization by an electric
field or polarization by a magnetic field [7]. Only a small subgroup
of all magnetically and electrically polarizable materials are either
ferromagnetic or ferroelectric and fewer still simultaneously exhi-
bit both order parameters (Fig. 2) [8]. The ultimate goal for device
functionality is a single-phase multiferroic with strong coupling
between ferroelectric and ferromagnetic order parameters en-
abling electric field control of magnetism.

1.2.2. Scarcity of and pathways to multiferroism
Multiferroics are a rather rare set of materials. The scarcity of

multiferroics can be understood by investigating a number of factors
including symmetry, electronic properties, and chemistry. First, only
13 of the Shubnikov–Heesch point groups (out of 122) are compat-
ible with multiferroic behavior. Specifically, these are 1, 2, 20, m,
m0, 3, 3m0, 4, 4m0m0, m0m2, m0m02, 6, and 6m0m0 [6]. Additionally, fer-
roelectrics by definition are insulators and in 3d transition metal oxi-
des, typically possess B-cations that have a formal d0 electronic state,
while itinerant ferromagnets possess unpaired electrons (even in
double exchange ferromagnets such as the manganites, magnetism
is mediated by incompletely filled 3d shells). Thus there exists a
seeming contradiction between the conventional mechanism of
off-centering in a ferroelectric and the formation of magnetic order,
which explains the scarcity of ferromagnetic–ferroelectric multifer-
roics [9]. There are a number of pathways, however, that have been
observed to give rise to multiferroic properties (Table 1 briefly sum-
marizes some examples). In general, multiferroics can be divided

into one of two groups [10]. Type I multiferroics are materials in
which ferroelectricity and magnetism have different sources and
appear largely independent of one another as is the case in BiFeO3

[11], YMnO3 [12], and LuFe2O4 [13]. On the other hand, Type II mul-
tiferroics are materials in which magnetism causes ferroelectricity –
implying a strong coupling between the two order parameters. The
prototypical examples of this sort of behavior are TbMnO3 [14] and
TbMn2O5 [15].

1.2.3. Alternative pathways to magnetoelectricity
Because of the rare nature of multiferroism, researchers have

investigated alternative pathways by which to achieve the sought
after effects made possible by these materials including consider-
able work in the area of composite magnetoelectric systems. A
complete treatment of this rich field is beyond the scope of this
manuscript, but here we highlight a few of major discoveries. For
a thorough treatment of this field the reader is directed to Refs.
[16–18]. Composite magnetoelectrics operate by coupling the
magnetic and electric properties between two materials, generally
a ferroelectric material and a ferrimagnetic material, via strain. An
applied electric field creates a mechanical strain in the ferroelectric
via the converse piezoelectric effect, which produces a correspond-
ing strain in the ferrimagnetic material and a subsequent change in
magnetization or the magnetic anisotropy via the piezomagnetic
effect. Work started in the field several decades ago using bulk
composites [19–21]. Experimental magnetoelectric voltage coeffi-
cients were far below those calculated theoretically [22]. This sug-
gested the possibility for strong magnetoelectric coupling in a
multilayer (2–2) configuration [23] – an ideal structure to be
examined by the burgeoning field of complex oxide thin-
film growth [24]. In this spirit, researchers experimentally tested
a number of materials in a laminate thick-film geometry, including
ferroelectrics such as Pb(Zrx,Ti1�x)O3 [25–30], Pb(Mg0.33Nb0.67)O3–
PbTiO3 (PMN-PT) [31], and ferromagnets such as TbDyFe2 (Terfe-
nol-D) [25], NiFe2O4 [26,28], CoFe2O4 [30], Ni0.8Zn0.2Fe2O4 [27],
La0.7Sr0.3MnO3 [29], La0.7Ca0.3MnO3 [29], and others. These experi-
ments showed great promise and magnetoelectric voltage coeffi-
cients up to DE/DH = 4680 mV/cm Oe have been observed. In
general, however, it is thought that the in-plane magnetoelectric
interface of such heterostructures limits the magnitude of the cou-
pling coefficient due to the clamping effect of the substrate on the
ferroelectric phase [32]. Since the amount of strain that can be im-
parted by the ferroelectric phase is limited via this in-plane inter-
facial geometry, the magnetoelectric voltage coefficient can be
reduced by up to a factor of five.

This has, in turn, lead to the study of vertical nanostructures to
enhance coupling. A seminal paper by Zheng et al. [33] showed
that magnetoelectric materials could also be fabricated in a nano-
structured columnar fashion by selecting materials that spontane-
ously separate due to immiscibility, such as spinel and perovskite
phases [22]. This results in nanostructured phases made of pillars
of one material embedded in a matrix of another. In this initial
paper, researchers reported structures consisting of CoFe2O4 pillars
embedded in a BaTiO3 matrix. The large difference in lattice
parameter between these phases leads to the formation of pillars
with dimensions on the order of tens of nanometers, which ensures
a high interface-to-volume ratio, an important parameter when
attempting to couple the two materials via strain. These nanostruc-
tures, in which the interface is perpendicular to the substrate,
remove the effect of substrate clamping and allow for better
strain-induced coupling between the two phases. Nanostructured
composites with combinations of a number of perovskite (BaTiO3

[34], PbTiO3 [35], Pb(Zrx,Ti1�x)O3 [36,37], and BiFeO3 [38,39]) and
spinel (CoFe2O4 [36,37], NiFe2O4 [35,38], and c-Fe2O3 [39]) or
corundum (a-Fe2O3 [39]) structures have been investigated.

Fig. 1. Representation of the perovskite (ABO3) crystal structure. The prototype
material CaTiO3 is shown with Ca-ions shown in green, Ti-ions in light blue, and O-
ions in red.

Fig. 2. (a) Relationship between multiferroic and magnetoelectric materials.
Illustrates the requirements to achieve both in a material (adapted from Ref. [8]).
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2. Advances in the growth of multiferroic thin films

The re-emergence of interest in multiferroics has been driven,
in part, by the development of thin-film growth techniques that al-
low for the production of non-equilibrium phases of materials and
strain engineering of existing materials [40,41]. Thin films offer a
pathway to the discovery and stabilization of a number of new
multiferroics in conjunction with the availability of high quality
materials that can be produced with larger lateral sizes than single
crystal samples. In turn, this has offered researchers unprece-
dented access to new phases and insight about these materials.
In this section we discuss recent advances in the growth of multif-
erroic thin films.

2.1. The power of epitaxial thin-film strain

For at least 400 years mankind has studied the effect of pressure
(hydrostatic strain) on the properties of materials [42]. In the 1950s
it was shown that biaxial strain, where a film is clamped to a sub-
strate, but free in the out-of-plane direction, can alter the transition
temperatures of superconductors [43] and ferroelectrics [44].

What has changed in recent years is the magnitude of the biax-
ial strain that can be imparted. Bulk multiferroic oxides are brittle
and will crack under moderate tensile strains, typically 0.1%. Under
compressive strains they begin to plastically deform (or break) un-
der comparable strains [45]. One way around this limitation is the
approach of bulk crystal chemists: to apply ‘‘chemical pressure’’
through isovalent cation substitution. A disadvantage of such a
bulk approach, however, is the introduction of disorder and poten-
tially unwanted local distortions. Epitaxial strain, the trick of the
thin-film alchemist, provides a potentially disorder-free route to
large biaxial strain and has been used to greatly enhance the
mobility of transistors [46,47] and significantly increase supercon-
ducting [48,49], ferromagnetic [50–52], and ferroelectric [53–55]
transition temperatures. Strains of about ±3% are common in epi-
taxial multiferroics today [56–59], with the record to date being
a whopping 6% compressive strain achieved in thin BiFeO3 films
grown on (110) YAlO3 [60–62]. These strains are an order of mag-
nitude higher than where these materials would crack or plasti-
cally deform in bulk [63–65].

Fully coherent, epitaxial films also have the advantage that high
densities of threading dislocations (e.g., the �1011 dislocations
cm�2 observed, for example, in partially relaxed (BaxSr1�x)TiO3

films) [66,67] are avoided. Strain fields around dislocations locally

alter the properties of a film, making its ferroelectric properties
inhomogeneous and often degraded [68–70]. Of course to achieve
highly strained multiferroic films and keep them free of such
threading dislocations one needs to keep them thin, typically not
more than a factor of five beyond the Matthews–Blakeslee equilib-
rium limit [65]. Thickness-dependent studies involving the growth
of a multiferroic on a single type of substrate to study the effect of
strain in partially relaxed films are not as clean as using commen-
surate films grown on different substrates. In the former the strains
are inhomogeneous and the high concentration of threading dislo-
cations can obfuscate intrinsic strain effects.

The combination of advances in predictive theory with the abil-
ity to customize the structure and strain of oxide heterostructures
at the atomic-layer level has enabled a new era: multiferroics by
design. One success story of this approach is EuTiO3, a ferroelectric
ferromagnet predicted [71] to be the strongest known multiferroic
with a spontaneous polarization and spontaneous magnetization
each 100� superior to the reigning multiferroic it displaced, Ni3-

B7O13I [72,73]. First principles theory predicted [71] that this nor-
mally boring paraelectric and antiferromagnetic insulator (in its
unstrained bulk state) could be transformed into a colossal multif-
erroic with appropriate strain and this was indeed found to be the
case [59]. There are more recent predictions (remaining to be ver-
ified) of even stronger and higher temperature ferroelectric ferro-
magnets in strained SrMnO3 [74] and EuO [75] as well as the
prediction that an electric field of order 105 V/cm can be used to
turn on ferromagnetism in EuTiO3 when it is poised on the verge
of such a phase transition via strain [71]. Never has it been possible
to turn on magnetism in a material by applying an electric field to
it. Such an important milestone would be a key advance to the field
of multiferroics, both scientifically and technologically. Electronics
has flourished because of the ability to route voltages with ease
and on extremely small scales. If magnetism could be similarly
controlled and routed, it would impact memory devices, spin
valves and many other spintronics devices, and make numerous
hybrid devices possible. Testing these predictions requires sub-
strates that can impart the needed biaxial strain.

Fortunately for the case of perovskite multiferroics many iso-
structural substrates exist with a broad range of lattice parameters
to impart a desired strain state into the overlying film. The sub-
strate situation for non-perovskite multiferroics is not nearly as
favorable. The status of which perovskite single crystals are avail-
able commercially with substrate sizes of at least 10 mm � 10 mm
together with the pseudocubic lattice parameters of multiferroic
and related perovskite phases of interest is shown in Fig. 3. These
single crystal perovskite and perovskite-related substrates are LuA-
lO3 [76,77], YAlO3 [78], LaSrAlO4 [79], NdAlO3 [80], LaAlO3 [81,82],
LaSrGaO4 [83], (NdAlO3)0.39–(SrAl1/2Ta1/2O3)0.61 (NSAT) [84],
NdGaO3 [85,86], (LaAlO3)0.29–(SrAl1/2Ta1/2O3)0.71 (LSAT) [84,87],
LaGaO3 [88], SrTiO3 [89–92], Sr2(Al,Ga)TaO6 (SAGT), DyScO3 [93],
TbScO3 [94], GdScO3 [93], EuScO3, SmScO3 [93], KTaO3 [95], NdScO3

[93], and PrScO3 [96]; many of these substrates can be produced
with structural perfection rivaling that of conventional semicon-
ductors. The perfection of the substrate, the best of which are
grown by the Czochralski method (which is not applicable to most
multiferroics because they do not melt congruently), can be passed
on to the film via epitaxy. This has led to the growth of epitaxial
films of BiFeO3 [97], BiMnO3 [98], and strained EuTiO3 [59] with
rocking curve full width at half maximum (FWHM) 6 11 arcsec
(0.003�)—values within instrumental error identical to those of
the commercial substrates upon which they are grown and signifi-
cantly narrower (indicative of higher structural perfection) than
the most perfect single crystals of these same materials.

For the growth of high quality multiferroic films with a desired
strain state, not only are appropriate substrates needed, but also
methods to prepare smooth and highly perfect surfaces with

Table 1
Summary of pathways to multiferroic order in materials including various Type I and
II routes and prototypical materials.

Pathway to Mechanism for multiferroism Examples

Type I A-site driven Stereochemical activity of A-site
lone pair gives rise to
ferroelectricity and magnetism
arises from B-site cation

BiFeO3,
BiMnO3

Geometrically
driven

Long-range dipole–dipole
Interactions and oxygen rotations
drive the system towards a stable
ferroelectric state

YMnO3,
BaNiF4

Charge
ordering

Non-centrosymmetric charge
ordering arrangements result in
ferroelectricity in magnetic
materials

LuFe2O4

Type II Magnetic
ordering

Ferroelectricity is induced by the
formation of a symmetry-lowering
magnetic ground state that lacks
inversion symmetry

TbMnO3,
DyMnO3,
TbMn2O4
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ideally a specific chemical termination on which epitaxial growth
can be initiated. For example, chemical-mechanically polished
(001) SrTiO3 substrates display a mixture of SrO and TiO2 termi-
nated surfaces. Kawasaki et al. [99] showed that an NH4F-buffered
HF solution with controlled pH enables etching of the more basic
SrO layer and leaves a completely TiO2-terminated surface on the
substrate [99]. This method of preparing a TiO2-terminated
(001) SrTiO3 surface has been further perfected by Koster et al.
[100]. SrO-terminated (001) SrTiO3 substrates can also be pre-
pared [101]. A means to prepare low defect surfaces with
controlled termination has also been developed for (110) SrTiO3

[102], (111) SrTiO3 [102,103], (001)p LaAlO3 [104,105],
(111)p LaAlO3 [104], (110) NdGaO3 [105], (001)p LSAT, [105,106]
(110) DyScO3 [107], (110) TbScO3 [107], (110) GdScO3 [107],
(110) EuScO3 [107], (110) SmScO3 [107], KTaO3 [108], (110)
NdScO3 [107], and (110) PrScO3 [107] substrates. Here the p
subscript refers to pseudocubic indices.

2.2. Thin-film growth techniques

2.2.1. Molecular beam epitaxy
MBE is a vacuum deposition method in which well-defined

thermal beams of atoms or molecules react at a crystalline surface
to produce an epitaxial film. It was originally developed for the
growth of GaAs and (Al,Ga)As [109], but due to its unparalleled
ability to control layering at the monolayer level and compatibility
with surface-science techniques to monitor the growth process as
it occurs, its use has expanded to other semiconductors as well as
metals and insulators [110,111]. Epitaxial growth, a clean ultra-
high vacuum (UHV) deposition environment, in situ characteriza-
tion during growth, and the notable absence of highly-energetic
species are characteristics that distinguish MBE from other meth-
ods used to prepare thin films of complex oxides and multiferroics.
These capabilities are key to the precise customization of complex
oxide heterostructures at the atomic layer level. MBE is tradition-
ally performed in UHV chambers to avoid impurities. In addition
to molecular beams emanating from heated crucibles containing
individual elements, molecular beams of gases may also be intro-
duced, for example to form oxides or nitrides. This variant of

MBE is known as ‘‘reactive MBE’’ [112] in analogy to its similarity
to ‘‘reactive evaporation,’’ which takes place at higher pressures
where well-defined molecular beams are absent. Reactive evapora-
tion has also been extensively used to grow complex oxide films
[113], but here we limit our discussion to reactive MBE. Another
popular variant of MBE is the use of volatile metalorganic source
materials; this is called metal-organic MBE (MOMBE) and is being
applied to an increasing variety of complex oxides [114–116].

While there are many ways to grow epitaxial oxide films, reac-
tive MBE has the advantage of being able to prepare films of the
highest quality and with unparalleled layering control at the atom-
ic-layer level. This includes phases and perfection that are not
achievable by other techniques. A few examples are (1) the epitax-
ial growth of SrTiO3 on (100) Si [55,117–126], which has not been
achieved by any other technique to date despite the 20 year history
of this system, (2) the growth of ZnO with the highest mobility to
date [127,128] (over 125 times higher than achieved by any other
technique) [129] as expected considering that MBE has provided
the highest mobility in III–V heterostructures for decades [130–
132], and (3) the growth of thin films with the narrowest X-ray dif-
fraction rocking curves (highest structural quality) ever reported
for any oxide film grown by any technique [133–136].

MBE is renowned for its unparalleled structural control in the
growth of compound semiconductor microstructures where MBE
has provided nanoscale thickness control and exceptional device
characteristics for decades. Examples of the thickness control
achieved in semiconductors include interspersing layers as thin
as one monolayer (0.28 nm) of AlAs at controlled locations into a
GaAs film [137] and alternating monolayers of GaAs and AlAs to
make a one-dimensional superlattice [138]. This nanoscale control
has enabled tremendous flexibility in the design, optimization, and
manufacturing of new devices, especially those making use of
quantum effects [139]. Such control has also been demonstrated
by MBE for the synthesis of complex oxide superlattices with
atomic-scale thickness control and abrupt interfaces [41,140–
148] and the construction of new complex oxide phases with
atomic layer precision [41,142,149–151]. These advances in thin
film deposition technology have made it possible to customize
oxide heterostructures with sub-nanometer precision.

Fig. 3. A number line showing the pseudotetragonal or pseudocubic a-axis lattice constants in angstroms of some perovskites and perovskite-related phases of interest
including multiferroics (above the number line) and of some of the perovskite and perovskite-related substrates that are available commercially (below the number line). The
photos of exemplary single crystals used as substrates are from Ref. [96].

202 L.W. Martin, D.G. Schlom / Current Opinion in Solid State and Materials Science 16 (2012) 199–215



Author's personal copy

Additional advantages of MBE are (1) completely independent
control of the sequence in which the elemental constituents are
supplied to the substrate, (2) the availability of high purity elemen-
tal source materials, (3) no boundary layers or complicated precur-
sor reaction chemistries, and (4) it is a very low energy, gentle
deposition process in which neutral depositing species arrive at
the substrate with energies well under 1 eV from the thermally
generated molecular beams. The literature of film growth is riddled
with examples in which bombardment by high energy species re-
sults in extrinsic film properties [152–157]. MBE is a thin film
preparation technique for complex oxides that allows their intrin-
sic properties to be explored.

The controlled growth of multicomponent oxides is crucially
dependent on accurate composition control. Inadequate composi-
tion control has been a major problem for previous oxide molecu-
lar beam epitaxy (MBE) work [142]. Although improvements in
flux measurement methods continue to occur, an advantage of
many multiferroics is that they contain volatile species (e.g., bis-
muth) and can be growth in an adsorption-controlled regime
where composition control is automatic. This thermodynamically
established process is responsible for the precise composition
achieved in films of GaAs and other compound semiconductors
by MBE and MOCVD, despite their being immersed in a huge over-
pressure of arsenic-containing species during growth. Thermody-
namic calculations have aided the identification of the growth
window for the adsorption-controlled growth of BiFeO3 [97,158],
BiMnO3 [98], and their solid solution [159]. In the case of multifer-
roic oxides containing a volatile constituent, oxygen background
pressure and substrate temperature are the parameters that define
the growth window where stoichiometric film deposition occurs.

2.2.2. Pulsed-laser deposition
No other single advance in the synthesis of oxide materials has

had as deep an impact as the wide-spread implementation of laser-
ablation-based growth techniques. The reader is directed to a num-
ber of excellent books and thorough reviews on the history and
evolution of this process [160–162]. Pulsed-laser deposition
(PLD) moved complex oxide synthesis from work focused on bulk
single crystals and powder samples, to high-quality thin films.
Additionally, PLD is a far from equilibrium process and, with care-
ful control, can preserve complex stoichiometry from target to film.
It is also a flexible, high-throughput process, ideal for the research
laboratory where rapid prototyping of materials and investigating
a wide array of phase space is necessary.

Briefly, PLD is a rather simple thin film growth process that can
be carried out in reactive environments, like that for oxides where
a partial pressure of oxygen, ozone, or atomic oxygen is carefully
controlled. One of the aspects of PLD that makes it such a versatile
growth process is that the deposition is achieved by vaporization of
materials by an external energy source – the laser.

There have been a number of recent advances in PLD and great
strides have been made in utilizing the unique features of PLD to
create new multiferroics. One example is the automation of sys-
tems to enable alloy formation from multiple targets which has
been used to make multiferroics such as Bi(Fe1�xCrx)O3 [163].
Using new hardware, PLD can also be used to synthesize precisely
controlled interfaces in materials that rival the capabilities of
MBE. This has been particular aided by the development of differ-
entially pumped reflection high-energy electron diffraction
(RHEED) systems that have allowed researchers to monitor
growth processes in high partial pressures of gases (>200–
300 mTorr in some cases) [164,165], has enabled sequential
growth of binary oxide materials [166], and has allowed highly
controlled layer-by-layer growth [167–169]. Such advances have
enabled increased study of interfacial properties and interactions
in complex oxides and multiferroics. Additionally, advances have

been made in obtaining information from RHEED studies includ-
ing a technique known as RHEED–TRAXS (total-reflection-angle
X-ray spectroscopy) [170]. In this process, incident RHEED elec-
trons collide with the atoms in the sample, knocking secondary
electrons out of their shells. Electrons in the outer shells drop into
the empty inner shells, emitting X-rays whose energies are char-
acteristic of the species of atoms in the growing film. The RHEED
beam that strikes the sample thus creates a spectrum of X-rays
and collecting and analyzing the emitted X-rays provides details
about the species of atoms in the growing film and surface stoichi-
ometry. Other in situ characterization of oxide materials can be
done via time-of-flight ion scattering and recoil spectroscopy
(ToF-ISARS) [171–174]. ToF-ISARS is a non-destructive, in situ,
real-time probe of thin film composition and structure which
does not interfere with the growth process. An review of the tech-
nique is given in Ref. [171], but briefly it utilizes a low-energy
(5–15 keV) pulsed ion beam surface analysis process that can give
information on surface composition, the atomic structure of the
first few monolayers, trace element detection, lattice defect den-
sity, mean vibrational amplitude, and information on thickness
and lateral distribution of the growth region. Recent studies have
relied on ToF-ISARS to characterize the nature of interfaces with
sub-unit-cell precision [175].

There has also been a recent push to integrate other character-
ization techniques with PLD (and MBE) growth systems. This in-
cludes combining X-ray photoelectron spectroscopy (XPS),
scanning probe measurements systems (including atomic force
microscopy (see work by the Twente group) [176], piezoresponse
force microscopy, magnetic force microscopy, scanning tunneling
microscopy, etc.), and synchrotron-based techniques with growth
chambers. At the Photon Factory in Tsukuba, Japan researchers
have created a high-resolution synchrotron-radiation angle-
resolved photoemission spectrometer (ARPES) combined with a
combinatorial RHEED-assisted PLD system [177], time-resolved
X-ray diffraction studies of the PLD process have also been com-
pleted at the Advanced Photon Source [178,179], and other similar
systems have since been constructed at the European Synchrotron
Radiation Facility in Grenoble, France [180] and at the Cornell High
Energy Synchrotron Source (CHESS) [181].

2.2.3. Others techniques: sputtering, MOCVD, and ALD
Recently a number of other growth techniques have been used

to synthesize multiferroic thin films. Sputtering is a widely used
deposition technique for large-scale production. With the advent
of multi-source deposition, significant advances in sputtering of
complex chemical composition materials have been obtained
[182]. Sputtering has been used to grow multiferroics such as
YMnO3 [183], BiFeO3 [184], and others. Metal–organic chemical
vapor deposition (MOCVD) is also of great importance for large-
scale production of oxide thin films [185]. With the advent of
new metal–organic precursors for elements with high atomic num-
ber (which typically have limited vapor pressure at room temper-
ature) access to multiferroic materials has been demonstrated. This
was especially important in the development of MOCVD grown
BiFeO3 [186]. The reader is directed a review of recent work on
the deposition of multiferroics from metalorganics [187]. More re-
cently, the use of atomic layer deposition (ALD) has become impor-
tant for the controlled synthesis of oxide films. ALD relies on two
self-limiting reactions between gas-phase precursor molecules
and a solid surface and differs from standard CVD or MOCVD,
where there is mixing and thus reaction of precursor gases prior
to the substrate. ALD lends itself to more precisely grown films
due to the ability to control the order in which gases arrive. Early
work has demonstrated the promise of this technique for the
growth of complex oxides PbZr1�xTixO3 [188] and select manga-
nites [189]. As of submission of this manuscript, few reports of
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the ALD growth of multiferroics are available [190,191] including
extensive investigation of some manganites [192].

3. Changing the materials landscape – heteroepitaxy of single-
phase multiferroics

3.1. Thin-film multiferroics

A number of multiferroic thin films have been synthesized and
studied, but a detailed treatment of this extensive work is beyond
the scope of this manuscript. Here we recap some of the work on
thin-film multiferroics in the last few years. The earliest multifer-
roic thin films to be studied were the rare-earth manganites (RE-
MnO3) which are an intriguing system because depending on the
size of the RE ion the structure takes on either orthorhombic
(RE = La–Dy; only RE = Dy, Tb, and Gd are multiferroic and have
very low (�20–30 K) ferroelectric ordering temperatures
[14,193]) or hexagonal (RE = Ho–Lu, as well as Y; all exhibit multif-
erroic behavior with relatively high ferroelectric ordering temper-
atures and relatively low magnetic ordering temperatures [194])
structures [195]. Recently the REMn2O5 (RE = rare earth, Y, and
Bi) family of materials has also received attention as thin films
for the first time [196]. Researchers have investigated ferroelectric
stability in ultra-thin layers of these materials [197], have used
such multiferroic manganites to demonstrate electric field control
of exchange coupled ferromagnets [198], and have investigated the
effects of non-stoichiometry and solubility limits [199].

BiMnO3, which has also received considerable attention, is not a
stable phase at 1 atm pressure and its synthesis in bulk form re-
quires high pressure and high temperatures (on the order of
6 GPa at around 1100 K) [200–202]. An alternative approach to
synthesize BiMnO3 is to use epitaxial stabilization and lattice misfit
strain and interfacial energies to favor the desired metastable
phase over the equilibrium phase. Utilizing epitaxial stabilization
BiMnO3 thin films were first grown on SrTiO3 (001) single crystal
substrates using PLD [203]. Bulk BiMnO3 has been reported to be-
long to polar space group C2 below �450 K and undergoes an unu-
sual orbital ordering leading to ferromagnetism at �105 K [204]
while films exhibit a substrate-dependent ferromagnetic transition
temperature [205]. BiMnO3 has been used as the foundation for a
four-state memory concept [206] and has been shown to exhibit
large magnetodielectric effects [207]. Recent first-principles calcu-
lations [208] and structural refinements [209], however, find that
stoichiometric BiMnO3 belongs to the centrosymmetric C2/c space
group. If correct, this would mean that BiMnO3 is neither ferroelec-
tric nor multiferroic.

There are a number of other candidate multiferroic materials
that have been studied as thin films. BiCrO3 has been predicted
to be multiferroic [210] and thin films of BiCrO3 have been grown
on a variety of substrates and have been shown to be antiferromag-
netic (with weak ferromagnetism) with an ordering temperature of
�120–140 K. Early reports suggested that these films showed pie-
zoelectric response and a tunable dielectric constant at room tem-
perature [211] while others suggested that the films were
antiferroelectic as predicted in theory [212]. Bulk work on BiCoO3

[213] and theoretical predictions of giant electronic polarization of
more than 150 lC/cm2 [214] have driven researchers to attempt
creating films of this phase. To date, however, only solid solutions
of BiFeO3–BiCoO3 have been grown [215,216]. Another phase of
interest is PbVO3 [217]. PbVO3 films were grown on a range of sub-
strates and were found possess a highly tetragonal perovskite
phase with a c/a lattice parameter ratio of 1.32 (Fig. 4). Further
analysis of this material using second harmonic generation and
X-ray dichroism measurements revealed that PbVO3 is both a po-
lar, piezoelectric and likely antiferromagnetic below �130 K

[218]. There has also been attention given to double-perovskite
structures such as Bi2NiMnO6 which have been shown to be both
ferromagnetic (TC � 100 K) and ferroelectric with spontaneous
polarization of �5 lC/cm2 [219].

3.2. Recent advances – strain-induced effects in multiferroics

3.2.1. Strain-induced multiferroics
Recently, Fennie and Rabe proposed a new route to ferroelectric

ferromagnets [71]—transforming magnetically ordered insulators
that are neither ferroelectric nor ferromagnetic, of which there
are many, into ferroelectric ferromagnets using epitaxial strain.
The work investigated EuTiO3 which was predicted to simulta-
neously exhibit strong ferromagnetism (Ms � 7 lB/Eu) and strong
ferroelectricity (Ps � 10 lC/cm2) under sufficiently large biaxial
strain [71]. These values are orders of magnitude higher than any
known ferroelectric ferromagnet and rival the best materials that
are solely ferroelectric or ferromagnetic. To test these predictions,
commensurate EuTiO3 films were grown on three substrates:
(001) LSAT, (001) SrTiO3, and (110) DyScO3 to impart �0.9%, 0%,
and +1.1% biaxial strain, respectively. Experimental measurements
(Fig. 5) confirmed that the EuTiO3/DyScO3 was simultaneously fer-
romagnetic and ferroelectric, while on the other substrates it was
not. This work demonstrated that a single experimental parameter,
strain, simultaneously controls multiple order parameters and is a
viable alternative tuning parameter to composition for creating
multiferroics.

The physics behind this discovery makes use of spin-phonon
coupling as an additional parameter to influence the soft mode of
an insulator on the verge of a ferroelectric transition. Appropriate
materials are those (1) with a ground state in the absence of strain
that is antiferromagnetic and paraelectric, (2) on the brink of a fer-
roelectric transition (incipient ferroelectrics), and (3) with a large
spin-phonon coupling [71]. EuTiO3 meets these three criteria and
has much in common with SrTiO3 except that EuTiO3 magnetically

Fig. 4. (a) X-ray diffraction of a fully epitaxial PbVO3/LaAlO3 (001) thin film. (b)
High resolution, cross-sectional transmission electron microscopy image of the
PbVO3 structure along with a schematic illustration of the large c/a lattice
parameter distortion in this super tetragonal phase. (Adapted from Ref. [217]).
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orders at 5 K due to the existence of localized 4f moments on the
Eu2+ site [220,221]. Similar to SrTiO3, strain can be used to soften
the soft mode and drive it to a ferroelectric instability. In contrast
to SrTiO3, which is diamagnetic, the permittivity of bulk EuTiO3 is
strongly coupled with its magnetism, showing an abrupt decrease
in dielectric constant at the onset of the antiferromagnetic Eu2+

ordering [222]. This indicates that the soft mode frequency hard-
ens when the spins order antiferromagnetically; conversely it will
soften if the spins order ferromagnetically. This extra interaction
provides the coupling favoring a simultaneously ferroelectric and
ferromagnetic ground state under sufficient strain in EuTiO3.

Although testing this prediction seems straightforward, the
groups who first tested it ran into an unforeseen complication:
no matter what substrate they deposited the EuTiO3 on it was fer-
romagnetic! With its identical lattice constant (both are 3.905 Å at
room temperature), SrTiO3 is an obvious substrate for the growth
of unstrained epitaxial EuTiO3 films. Surprisingly, as-grown Eu-
TiO3�d thin films synthesized by PLD on (001) SrTiO3 substrates
exhibit expanded out-of-plane spacings (0.4–2% longer than bulk
EuTiO3) [223–226] and are ferromagnetic with a Curie temperature
of about 5 K [224,225]. Further, the negligible (<0.5%) variation in
the cubic lattice constant of oxygen deficient EuTiO3�d over its
wide single phase field [227,228], up to the EuTiO2.5 limit [227]
of the perovskite EuTiO3�d structure, is insufficient to explain the
2% variation in out-of-plane lattice spacings observed in epitaxial
EuTiO3�d films grown on (001) SrTiO3 by PLD [224–226].

One possibility is that the ferromagnetism observed in epitaxial
EuTiO3 films prepared by PLD on SrTiO3 arises from extrinsic ef-
fects. Extrinsic effects are known to occur in thin films, particularly

for deposition technologies involving energetic species, which can
induce defects. For example, some homoepitaxial SrTiO3 films
grown by PLD have been reported to be ferroelectric [229] in strik-
ing contrast to the intrinsic properties of SrTiO3, which is not fer-
roelectric at any temperature [230]. Homoepitaxial SrTiO3 films
grown by PLD are also known to exhibit lattice spacings that devi-
ate significantly from the SrTiO3 substrates they are grown on
[154,156,157], although SrTiO3�d itself exhibits negligible variation
in its cubic lattice constant up to the SrTiO2.5 limit [231,232] of the
perovskite SrTiO3�d structure in bulk. The sensitivity of EuTiO3 that
makes it an appropriate material to transmute via strain into a
multiferroic also makes it quite sensitive to defects. To overcome
this issue and see the intrinsic effect of strain on EuTiO3, a more
delicate deposition technique was needed.

Until very recently, only SrTiO3 films grown by MBE [233]
exhibited bulk behavior and none of the unusual effects reported
in SrTiO3 films grown by PLD [154,156,157,229], but recent PLD
studies have demonstrated bulk-like structure, dielectric response,
and thermal properties through careful control of film composition
in PLD growth [234]. Indeed unstrained, stoichiometric EuTiO3 thin
films grown by MBE on (001) SrTiO3 have the same lattice con-
stant as bulk EuTiO3 and are antiferromagnetic [235]. EuTiO3 films
deposited by MBE led to the results shown in Fig. 5 and, in agree-
ment with theory, produced the strongest multiferroic material
known today [59].

3.2.2. Strain-induced effects in BiFeO3

No other multiferroic thin-film material has received as much
attention as BiFeO3 which is essentially the only single-phase

Fig. 5. Observation of ferromagnetism by MOKE and ferroelectricity by SHG in strained EuTiO3 grown on (110) DyScO3, confirming predictions that under sufficient biaxial
strain EuTiO3 becomes multiferroic. Control samples with zero (EuTiO3/SrTiO3) or opposite (EuTiO3/LSAT) strain are consistent with the theoretically predicted strain phase
diagram for EuTiO3. Elemental maps of Eu and Dy as observed by STEM-EELS on the same EuTiO3/DyScO3 film, confirming an abrupt EuTiO3/DyScO3 interface with the correct
oxidation states (from Ref. [59]).
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multiferroic that simultaneously possesses both magnetic and fer-
roelectric order at and above room temperature. Although first
studied in the late 1950s [236] and extensively developed during
the subsequent decades, BiFeO3 has invigorated the scientific com-
munity in the last decade. BiFeO3 has a rhombohedral unit cell
characterized by two distorted perovskite blocks connected along
their body diagonal (h111ip) where the two oxygen octahedra of
the two cells are rotated clockwise and counterclockwise around
the h111i by ±13.8(3)� and the Fe-ion is shifted by 0.135 Å along
the same axis [237]. BiFeO3 is a robust ferroelectric (saturation
polarization of 90–100 lC/cm2, TC � 1103 K) [11,238] and antifer-
romagnetic (G-type, Néel temperature�673 K [239]) with a cycloi-
dal spin structure with a period of �620 Å [240]. The symmetry
also permits a small canting of the moments in the structure
resulting in a weak canted ferromagnetic moment of the Dzyalo-
shinskii–Moriya type [241,242].

Spurred on by a 2003 paper focusing on the growth and proper-
ties of thin films of BiFeO3 [11] dramatic advances in the study and
understanding of this material have occurred. Here we will recap
advances in the last few years. Thin-film samples of BiFeO3 has
been grown by just about every conceivable thin-film growth tech-
nique on a wide range of substrates including traditional perov-
skite oxide substrates (with lattice parameters ranging from 3.71
to 4.01 Å, covering a range from 7% compressive strain to 1.3% ten-
sile strain) as well as Si and GaN. The ability to synthesize and
manipulate these materials as thin films has provided a fine-level
of control of properties. This includes the ability to change the easy
direction of magnetization in BiFeO3 thin films by changing the
sign of thin-film strain [243] and controlling domain structures
in BiFeO3. By balancing elastic and electrostatic energy consider-
ations, researchers have demonstrated 1-dimensional nanoscale
domain arrays [244] (which possess excellent room temperature
ferroelectric properties) [245], deterministic control of polarization
variants [246], and generation of equilibrium domain structures
[247] (Fig. 6) that had been predicted nearly a decade earlier [248].

At the same time, the availability of high-quality thin-film sam-
ples of these materials has made possible a range of exciting obser-
vations. Researchers have observed a systematic dependence of the
ferroelectric domain structure in BiFeO3 films as a function of the
growth rate [249] with stripe-like and mosaic-like varieties pos-
sessing different types and densities of domain walls. The presence
of certain types of domain walls has, in turn, been related to the
overall magnetic moment observed in BiFeO3 and to exchange bias
between BiFeO3 and metallic ferromagnets [249]. Taking this idea
one step further, Daraktchiev et al. [250,251] used a thermody-
namic (Landau-type) model to examine whether the domain walls
in BiFeO3 can be magnetic and, if so, to what extent they might
contribute to the observed enhancement of magnetization. They
found that when the polarization gores from +P to �P, it is energet-
ically more favorable for the domain wall energy trajectory not to
go through the center of the landscape (P = 0, M = 0), but to take a
diversion through the saddle points at M0 – 0, thus giving rise to a
finite magnetization. Thus it is possible for a net magnetization to
appear in the middle of ferroelectric walls even when the domains
themselves are not ferromagnetic. Recent magnetotransport stud-
ies by He et al. [252] have demonstrated that certain types of do-
main walls (i.e., 109� walls) can exhibit strong temperature- and
magnetic field-dependent magnetoresistance (as large as 60%)
which is thought to be the result of local symmetry breaking at do-
main walls and the formation of magnetic moments (Fig. 7). This
work builds off of prior work [249] that demonstrated that samples
possessing 109� domain walls show significantly enhanced circular
dichroism that is consistent with collective magnetic correlations,
while samples with only 71� domain walls show no measurable
circular dichroism.

At the same time, detailed scanning probe-based studies of do-
main walls in BiFeO3 have resulted in the discovery of unantici-
pated room temperature electronic conductivity at domain walls
(Fig. 8) [253]. From combined local conductivity measurements,
electron microscopy analysis, and density functional theory calcu-
lations it has been suggested that an increased carrier density
(arising from the formation of an electrostatic potential step at
the wall) and a decrease in the band gap within the wall and cor-
responding reduction in band offset with the scanning-probe tip
could be responsible for the phenomenon. Such concepts are con-
sistent with calculation of a similar potential step at 90� domain
walls in PbTiO3 [254] that would enhance the electrical conductiv-
ity by causing carriers in the material to accumulate at the domain
wall to screen the polarization discontinuity. It is likely that that
both effects (which arise for similar reasons) may be acting simul-
taneously, since they are not mutually exclusive. Recently addi-
tional effects from oxygen vacancies have been reported in
domain walls in BiFeO3 [255], tunable conductivity and memresis-
tor-like function has been observed at such domain walls [256],
and conducting domain wall features in other ferroelectrics such
as PbZr0.2Ti0.8O3 have been observed [257].

As we have noted, epitaxy presents a powerful pathway to con-
trol the phase stability and electronic properties in thin-film sys-
tems [258]. The BiFeO3 system presents a fascinatingly complex
strain-driven structural evolution. Although the structure of BiFeO3

had been studied for many years [259–261], in 2005 the structural
stability of the parent phase had come into question [262,263].
This was followed, in turn, by a number of thin-film studies report-
ing that a tetragonally-distorted phase (derived from a structure
with P4mm symmetry, a � 3.665 Å, and c � 4.655 Å) with a large
spontaneous polarization may be possible [56,262,264]. In 2009,
so-called mixed-phase thin films possessing tetragonal- and rhom-
bohedral-like phases in complex stripe-like structures (and large
electromechanical responses) [60] dramatically changed the study
of structures in BiFeO3. It was found that the rhombohedral bulk
crystal structure of the parent phase can be progressively distorted
into a variety of unit cell structures through epitaxial strain. Ab ini-
tio calculations of the role of epitaxial strain clearly demonstrate
how it can be used to drive a strain-induced structural change in
BiFeO3 (Fig. 9a and b). These calculations suggest that at a certain
value of epitaxial strain, in the absence of misfit accommodation
through dislocation formation, the structure of BiFeO3 morphs
from the distorted rhombohedral parent phase to a tetragonal-like
(actually monoclinic) structure that is characterized by a large c/a
ratio of �1.26. Direct atomic resolution images of the two phases
(Fig. 9c and d) clearly show the difference in the crystal structures.

Much recent attention has been given to what happens when
films are grown at intermediate strain levels (e.g., �4.5% compres-
sive strain, corresponding to growth on LaAlO3 substrates). It has
been observed that the result is a nanoscale mixed-phase structure
(Fig. 9e and f). Fig. 9g is an atomic resolution TEM image of the
interface between these two phases and reveals one of the most
provocative aspects of these structures. Although there is a large
‘‘formal’’ lattice mismatch between the two phases, the interface
appears to be coherent, i.e., it shows no indication for the forma-
tion of interphase dislocations. Indeed, this mismatch appears to
be accommodated by the gradual deformation of the structure be-
tween different phases.

Considerable detail has emerged concerning the symmetry of
these phases including the fact that the so-called tetragonal-like
phase is actually monoclinically distorted (possessing Cc, Cm, Pm,
or Pc symmetry) [58,62,265,266]. Other techniques such as second
harmonic generation have been used to probe these different
structures as well [267]. Recent reports [268] have also investi-
gated the driving force for the formation of these so-called
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mixed-phase structures and have revealed a complex temperature-
and thickness-dependent evolution of phases in the BiFeO3/LaAlO3

system. A thickness-dependent transformation from the monocli-
nically distorted tetragonal-like phase to a complex mixed-phase
structure likely occurs as the consequence of a strain-induced spin-
odal instability. Additionally, a breakdown of this strain-stabilized
metastable mixed-phase structure to non-epitaxial microcrystals
of the parent rhombohedral structure of BiFeO3 is observed to oc-
cur at a critical thickness of �300 nm. Other reports have demon-
strated routes to stabilize these structures [269]. At the same time,
electric field dependent studies to these mixed-phase structures
has also revealed the capacity for large electromechanical re-
sponses (as large as 4–5%). In situ TEM studies coupled with nano-
scale electrical and mechanical probing suggest that these large
strains result from the motion of boundaries between different
phases [270]. Despite this work, a thorough understanding of the
complex structure of these phase boundaries in BiFeO3 remained
incomplete until 2011.

A perspective by Scott [271] discussed the symmetry and ther-
modynamics of the phase transition between these two phases as
well as a number of other model iso-symmetric phase transitions
in other crystal systems. Soon after, a very detailed thermody-
namic and elastic domain theory analysis of the mixed-phase
structure was completed by Ouyang et al. [272]. In that treatment,
a balance of interdomain elastic, electrostatic, and interface ener-
gies was analyzed and compared to provide an anticipated low-
energy structural configuration. Subsequent studies by Damodaran
et al. [273] helped uniquely identify and examine the numerous
phases present at these phase boundaries and resulted in the
discovery of an intermediate monoclinic phase in addition to the
previously observed rhombohedral- and tetragonal-like phases.
Further analysis determined that the so-called mixed-phase
regions of these films were not mixtures of the parent rhombohe-
dral- and tetragonal-like phases, but were mixtures of highly-
distorted monoclinic phases with no evidence for the presence of
the rhombohedral-like parent phase. This work helped confirm
the mechanism for the enhanced electromechanical response and
provide a model for how these phases interact at the nanoscale
to produce large surface strains (Fig. 10). By undertaking local elec-
tric field switching studies and navigating the hysteretic nature of

Fig. 6. Ordered arrays of ferroelectric domains and domain walls. (a) and (b) Schematics of equilibrium structure of an ordered array of 71� and 109� domain walls,
respectively. (c) and (d) Surface topography as measured by AFM of 71� and 109� domain walls samples, respectively. Out-of-plane (e) and (f) as well as in-plane (g) and (h)
PFM images for samples possessing ordered arrays of 71� and 109� domain walls. (Adapted from Ref. [248]).

Fig. 7. Magnetotransport study of 109� domain walls in BiFeO3 films. (a)
Anisotropic magnetoresistance measured at 10 K in various directions of external
magnetic field. (b) Resistance-temperature curves at two different external
magnetic fields, 8 T (red) and 0 T (blue) and the corresponding magnetoresistance
(green). (Adapted from Ref. [252]).
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electric field response in this material, a number of important fea-
tures were revealed: (1) the large surface strains (4–5%) occur any
time the material transforms form a mixed-phase structure to the
highly-distorted monoclinic phase, (2) transformations between
these two states are reversible, and (3) there are numerous path-
ways to achieve large electromechanical responses in these mate-
rials – including ones that do not need ferroelectric switching. The
key appears to be the ability to transform between the different
phases through a diffusion-less phase transition (akin to a mar-
tensitic phase). Similar discussions of the nature of the electric
field driven phase transformation have also been reported [274].
This report additionally included single-point spectroscopic

studies that suggest that the tetragonal-like to rhombohedral-like
transition is activated at a lower voltage compared to a ferroelec-
tric switching of the tetragonal-like phase and the formation of
complex rosette domain structures that have implications for fu-
ture devices.

A number of additional studies on these strain-induced phases
have been reported in recent months. This includes considerable
discussion on magnetic and magnetoelectric properties of these
materials. Researchers have investigated the emergence of an en-
hanced spontaneous magnetization in the so-called mixed phase
structures [275]. Using X-ray magnetic circular dichroism-based
photoemission electron microscopy coupled with macroscopic

Fig. 8. Piezoresponse force microscopy (a) amplitude and (b) phase images of a 109� stripe domains in a BiFeO3 sample. (c) Simultaneously acquired conducting-AFM image
of the same area showing that each 109� domain wall is electrically conductive. (Adapted from Ref. [255]).

Fig. 9. Strain-induced phase complexity in BiFeO3. First-principle calculations provide information on the strain evolution of (a) the overall energy of the system and (b) the
c/a lattice parameter ratio. High-resolution transmission electron microscopy (HRTEM) reveals the presence of two phase (c) a monoclinic version of the bulk rhombohedral
phase and a (d) high-distorted monoclinic version of a tetragonal structure. These complex phase boundaries manifest themselves on the surface of the sample as imaged via
(e) atomic force microscopy and these features correspond to dramatic surface height changes as shown from (f) the line trace. (g) HRTEM imaging of boundaries shows a
smooth transition between phases. (Adapted from Ref. [60]).
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magnetic measurements, the researchers found that the spontane-
ous magnetization of the new intermediate monoclinic phase is
significantly enhanced above the expected moment of the parent
phase as a consequence of a piezomagnetic coupling to the adja-
cent tetragonal-like phase. Soon after this report, researchers sug-
gested that the magnetic Néel temperature of the strained
BiFeO3 is suppressed to around room temperature and that the fer-
roelectric state undergoes a first-order transition to another ferro-
electric state simultaneously with the magnetic transition [276].
This has strong implications for room temperature magnetoelectric
applications. This observation, builds off of a detailed neutron scat-
tering study of a nearly phase-pure film of the highly distorted
tetragonal-like phase which confirms antiferromagnetism with lar-
gely G-type character and a TN = 324 K, a minority magnetic phase
with C-type character, and suggests that the co-existence of the
two magnetic phases and the difference in ordering temperatures
from the bulk phase can be explained through simple Fe–O–Fe
bond distance considerations [277]. At the same time, other re-
ports suggest the possibility of a reversible temperature-induced
phase transition at about 373 K in the highly distorted tetrago-
nal-like phase as studied by temperature-dependent Raman mea-
surements [278]. Similar results have been reported from
temperature dependent X-ray diffraction studies that reveal a
structural phase transition at �373 K between two monoclinic
structures [279]. Finally there are reports of a concomitant
structural and ferroelectric transformation around 360 K based
on temperature-dependent Raman studies. This work suggests that
the low-energy phonon modes related to the FeO6 octahedron
tilting show anomalous behavior upon cooling through this
temperature – including an increase of intensity by one order of
magnitude and the appearance of a dozen new modes [280]. Truly
this is an exciting and fast-moving field of study today. Such elec-
tric field and temperature induced changes of the phase admixture
is also reminiscent of the CMR manganites or the relaxor ferroelec-
trics and is accompanied by large electromechanical strains, but
there appears to be much more to these mixed-phase structures.
Such structural softness in regular magnetoelectric multiferro-
ics—i.e., tuning the materials to make their structure strongly

reactive to applied fields—makes it possible to obtain very large
magnetoelectric effects [281].

4. Future directions and conclusions

The purpose of this review was to highlight some of the exciting
new developments in the field of thin-film multiferroics and mag-
netoelectrics. This field remains highly active and new develop-
ments are occurring at a rapid pace that shine light onto the
complexities inherent to these materials. Dramatic advances in
thin-film growth technology and know-how has been a key ena-
bler fueling these discoveries as has been demonstrated here. As
we look forward at the field of thin film multiferroics there are
numerous opportunities for development.

Thin film techniques have had a major impact on perovskite
multiferroics with BiFeO3 being the prime example. The discover-
ies that BiFeO3 has a huge spontaneous polarization and that it
can be morphed into various polymorphs and polymorphic mix-
tures were all made using epitaxial films. Yet there are many other
fascinating multiferroic oxides—YMnO3, LuFe2O4, and hexaferrites
like Sr3Co2Fe24O41 [282] to name a few—that are comparatively ig-
nored by the thin film community and are the focus of the single
crystal multiferroic community. Why is this? We think the issue
is the lack of suitable substrates for these latter structures that is
the main roadblock; removing this barrier is an opportunity for
the future. Once high quality films can be made, the technological
advantage of a thin-film geometry to lower switching voltages and
enable integration into more sophisticated heterostructures, as is
now common for BiFeO3, can be exploited.

Imagine the opportunities that substrates for the non-perov-
skite multiferroic systems would bring. Substrates for YMnO3

would enable more variants of hexagonal manganite multiferroics
to be constructed. These variants include not only known materi-
als, but more interestingly enhanced variants of known materials
using strain engineering, metastable multiferroic polymorphs
(e.g., LuFeO3 that is isostructural to YMnO3 rather than its stable
centrosymmetric perovskite form) [283,284] by utilizing lattice

Fig. 10. AFM image (left) and vertical PFM image (right) of 100 nm BiFeO3/La0.5Sr0.5CoO3/LaAlO3 (001) in the (A) as-grown state and after being poled in the box at (B) 5.25 V,
(C) 10.25 V, (D) �3 V, (E) �5.25 V, (F) �9 V, (G) 4.5 V, and (H) 5.25 V. (All images are 1 � 1 lm.) (I) A schematic hysteresis loop with letters corresponding to the images in (A–
H) shows the multiple pathways to enhanced electromechanical response. (J) Illustration of the proposed mechanism for the large electromechanical response without the
need for ferroelectric switching. (Adapted from Ref. [273]).
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misfit strain energies and interfacial energies to favor the desired
metastable phase over the equilibrium phase (epitaxial stabiliza-
tion) [285–288], or the prospect of interfacial multiferroicity that
has been predicted to emerge in superlattices between centrosym-
metric components [289]. Similarly substrates with the LiNbO3

structure would enable the growth of the LiNbO3-polymorph of
FeTiO3 and related multiferroics [290,291]. A range of appropriate
substrates, like the range of substrates available for perovskites
shown in Fig. 3, for each multiferroic system of interest would al-
low the powerful toolbox of the epitaxial engineer to be freely ap-
plied to a much larger set of multiferroic building blocks. These
tools include strain engineering, epitaxial stabilization, polariza-
tion engineering [145,292], and superlattice formation.

Looking forward there are a number of challenges that face the
multiferroics/magnetoelectrics community. First, although excite-
ment has been riding high for nearly 30 years about the promise
of complex, functional oxide materials such as high-temperature
superconductivity, ferroelectrics, colossal magnetoresistance
materials, and now multiferroics, transitioning these fundamental
materials discoveries into real products has remained difficult.
Although there are some exciting success stories, the complexity
of these materials is compounded by the many steps involved in
fabrication scalable devices. With current funding opportunities
from the United States government meant to address manufactur-
ing and the process of scaling materials from basic science to prod-
uct, the outlook will hopefully be very positive.

Nonetheless, one of the biggest challenges facing the field of mul-
tiferroics today is the need for room temperature function. Thus, it is
essential that the field works to include both thin-film heterostruc-
ture and bulk synthesis methods and broadens the search for new
candidate multiferroics. This additionally relies on the interplay of
theoretical approaches, advanced growth techniques, and charac-
terization. As this mini-series of articles highlights, these concepts
have found a home in multiferroics. As the field progresses, it is ex-
pected that thin films with appropriately designed and controlled
heteroepitaxial constraints (such as strain, clamping, and possibly
surface termination) are important variables that will provide addi-
tional control of properties and a challenging set of interdisciplinary
condensed matter research problems.

To address these challenges, the community will need to attack a
number of limitations. One example of an area ripe for development
is the synthesis of substrates that would enable production and
fine-level epitaxial control of non-perovskite multiferroic systems
(e.g., LuFe2O4, YMnO3, hexaferrites such as Sr3Co2Fe24O41 [282],
and materials with the LiNbO3 structure such as the LiNbO3-poly-
morph of FeTiO3 and related multiferroics [290,291]). At the same
time, taking the approach of an epitaxial engineer, it would be
interesting to examine new routes to develop additional variants
of hexagonal ferrites using a superlattice layering approach – in es-
sence asking if we can extend our unit-cell level control beyond ba-
sic perovskite structures – as opposed to the atomic substitution
approach of a solid state chemist. Such advances would allow the
tricks-of-the-trade of the epitaxial engineer including strain engi-
neering, epitaxial stabilization of metastable multiferroic poly-
morphs (e.g., LuFeO3 that is isostructural to YMnO3 rather than a
its stable centrosymmetric perovskite form) [283,284], and super-
lattice formation to be applied to these exciting multiferroics.

Yet another pathway to overcome the limitations in room-
temperature functionality is to move to composite heterostructures
that make use of exchange biased structure. One possible solution is
to utilize heterostructures of existing multiferroic materials and to
take advantage of two different types of coupling in materials –
intrinsic magnetoelectric coupling as demonstrated in single-phase
multiferroic materials which will allow for electrical control of
antiferromagnetism (as in the case of BiFeO3) and the extrinsic ex-
change coupling between ferromagnetic and antiferromagnetic

materials – to create new functionalities in materials. By utilizing
these different types of coupling we can then effectively couple
ferroelectric and ferromagnetic order at room temperature and
create an alternative pathway to electrical control of ferromagne-
tism Among the earliest work in this area was a study of hetero-
structures of the soft ferromagnet permalloy on YMnO3 [293] that
demonstrated that a multiferroic layer could be used as an antifer-
romagnetic pinning layer that gives rise to exchange bias and en-
hanced coercivity. Subsequently Marti et al. [294] reported the
observation of exchange bias in all-oxide heterostructure of the fer-
romagnet SrRuO3 and the antiferromagnetic, multiferroic YMnO3

(albeit only at very low temperatures). Around the same time, stud-
ies using BiFeO3 as the multiferroic, antiferromagnetic layer by Dho
et al. [295] showed the existence of exchange bias in spin-valve
structures based on permalloy and BiFeO3 at room temperature
and Béa et al. [296] extended this idea to demonstrate how BiFeO3

films could be used in first generation spintronics devices. In turn,
Martin et al. [297] reported the growth and characterization of ex-
change bias and spin valve heterostructures based on Co0.9Fe0.1/
BiFeO3 heterostructures on Si substrates. These initial studies estab-
lished, was that exchange bias with antiferromagnetic multiferroics
was possible in a static manner, but these studies had not yet dem-
onstrated dynamic control of exchange coupling in these systems.

In this spirit, Borisov et al. [298] reported that they could affect
changes on the exchange bias field in Cr2O3 (111)/(Co/Pt)3 hetero-
structures by using the magnetoelectric nature of the substrate
(Cr2O3) and a series of different cooling treatments with applied
electric and magnetic fields. Dynamic switching of the exchange
bias field with an applied electric field, however, remained elusive
until a report by Laukhin et al. [299] focusing on YMnO3 at 2 K.
Studies focusing again on BiFeO3-based heterostructures illus-
trated the importance of domains and domain walls in controlling
the magnetic coupling in these structures [249,300]. In addition to
identifying the importance of 109� domain walls in creating ex-
change bias, this work served as the foundation for the observation
of room temperature electric field control of ferromagnetic domain
structures. Using high quality Co0.9Fe0.1/BiFeO3/SrRuO3/SrTiO3

(001) heterostructures, researchers have been able to determinis-
tically change the direction of ferromagnetic domains in the
Co0.9Fe0.1 by 90� upon application an applied electric field to the
BiFeO3 [301]. Recently attention has turned back Cr2O3 and excit-
ing work in electric field control of ferromagnetism. Using a com-
bination of modern thin film growth techniques, magnetometry,
spin-polarized photoemission spectroscopy, symmetry arguments,
and first-principles He et al. [302] studied Pd/Co multilayers
deposited on (0001) surface of the antiferromagnet Cr2O3 and
demonstrated reversible, room temperature isothermal switching
of the exchange bias field from positive to negative values by
reversing the electric field under a constant magnetic field. Still
further, all-oxide interfaces have been examined including
La0.7Sr0.3MnO3–BiFeO3 epitaxial heterostructures where the forma-
tion of a novel ferromagnetic state in the antiferromagnet BiFeO3 at
the interface was reported [303].

In the end, as we look back at the development of complex
oxide research we see a series of exciting discoveries from high
TC superconductivity to multiferroism have propelled the greater
field of oxides to the forefront of condensed matter physics. The
diverse functionality of oxide materials means that this break-
through could drive the field towards many of the major scientific
questions that face us today – from energy, to medicine, to commu-
nications, and beyond.
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