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State-dependent diffusion coefficients and free energies for nucleation processes
from Bayesian trajectory analysis
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ABSTRACT
The rate of nucleation processes such as the freezing of a supercooled liquid or the condensation of
supersaturated vapour is mainly determined by the height of the nucleation barrier and the diffu-
sion coefficient for the motion across it. Here, we use a Bayesian inference algorithm for Markovian
dynamics to extract simultaneously the free energy profile and the diffusion coefficient in the nucle-
ation barrier region from shortmolecular dynamics trajectories. The specific examplewe study is the
nucleation of vapour bubbles in liquidwater under strongly negative pressures, forwhichweuse the
volume of the largest bubble as a reaction coordinate. Particular attention is paid to the effects of
discretisation, the implementation of appropriate boundary conditions and the optimal selection of
parameters. We find that the diffusivity is a linear function of the bubble volume over wide ranges of
volumes and pressures, and is mainly determined by the viscosity of the liquid, as expected from
the Rayleigh–Plesset theory for macroscopic bubble dynamics. The method is generally applica-
ble to nucleation processes and yields important quantities for the estimation of nucleation rates
in classical nucleation theory.
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1. Introduction

The mechanism and kinetics of first-order phase tran-
sitions can be conceptually understood in the frame-
work of classical nucleation theory (CNT). In this model,
the phase transition occurs via the formation of a small
nucleus of the new, thermodynamically favoured phase
within the old phase. Initially, growth of the nucleus is
impeded by a free energy barrier arising from the cost of

CONTACT Christoph Dellago christoph.dellago@univie.ac.at Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
∗Present address: Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

creating an interface between the two phases. For larger
nuclei, however, this free energetic cost is outweighed by
the favourable contribution of the new phase. As a con-
sequence, the thermodynamically stable phase evolves
to macroscopic scales only if the nucleus grows to the
so-called critical size due to a rare thermal fluctuation.

The statistical character of the nucleation process is
captured by Kramers’ theory of barrier crossing [1,2], in
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which one imagines that the system evolves stochastically
along a reaction coordinate q under the influence of a
free energy G(q) and a state-dependent diffusivity D(q)
(frequently replaced, however, by assuming a uniform
diffusion constant D). While the kinetics of nucleation is
in large part governed by the free energy landscape G(q)
and much work has been done to determine nucleation
free energies using computer simulations [3–5], also the
diffusivity D(q) plays a fundamental role in predicting
how the nucleation process unfolds [3,6].

In this work, we simultaneously calculate the nucle-
ation free energy and state-dependent diffusion coeffi-
cient near the nucleation barrier using a Bayesian analysis
approach devised by Hummer [7]. In this method, which
assumesMarkovian dynamics, a ratematrix is introduced
that describes the kinetics of transitions between discre-
tised bins of a given reaction coordinate. The rate matrix,
from which both the free energy profile G(q) and the
diffusivity D(q) can be determined, is adapted to repro-
duce the dynamics observed in dynamical trajectories
obtained from simulations as closely as possible. In apply-
ing this procedure, particular attention needs to be paid
to the effects of discretisation on systematic and statistical
errors arising from a limited set of input data.

We apply this method to analyse the free energy and
dynamics of cavitation in liquid water under tension, i.e.
at negative pressures [8–14]. While liquid water under
tension is metastable, it can sustain negative pressures
exceeding −120MPa for long periods due to the strong
cohesion between watermolecules [15]. Eventually, how-
ever, vapour bubbles will nucleate and the system relaxes
to the vapour phase. For cavitation, the size of the largest
bubble has been shown to be a good reaction coordi-
nate capable of capturing the essential transition mech-
anism [8,16,17]. The volume of the largest bubble is a
collective variable and the influence of many underlying
degrees of freedom gives rise to diffusive dynamics (as
illustrated in Figure 1). By applying Hummer’s Bayesian
analysis approach to dynamical barrier crossing trajec-
tories obtained earlier from molecular simulations [8],
we compute the diffusivity over a wide range of bubble
sizes for various pressures. We find that the diffusivity
depends linearly on bubble volume and is mainly deter-
mined by the viscosity of the liquid as predicted by the
Rayleigh–Plesset equation, which describes the dynamics
of a macroscopic gas-filled bubble in an incompress-
ible fluid [18]. In addition to the diffusion coefficient,
our analysis also yields the free energy profile near the
top of the barrier. Its curvature is related to the so-
called Zeldovich factor, which encodes the dynamics of
nucleus growth in CNT and is needed for the calcu-
lation of nucleation rates, for instance in the seeding
method [6].

Figure 1. Examples for the time evolution of the largest bubble
volume, v, in cavitating water at a pressure of p = −135MPa.
The trajectories, obtained with molecular dynamics (MD) simula-
tions [8], start from equilibrium configurations near the top of the
nucleation barrier. After leaving the proximity of the maximum,
v tends to shrink or grow swiftly, determining whether the sys-
tem subsequently reaches the metastable liquid or relaxes to the
vapour phase. A snapshot taken from an MD simulation is shown
in the inset.

The remainder of the article is organised as follows.
In Section 2 the Bayesian approach of Hummer is briefly
reviewed. The method is then tested in Section 3 for
synthetic data generated with a simple one-dimensional
model of nucleation. Here, we focus especially on dis-
cretisation effects and the optimal selection of parame-
ters. In Section 4, we extract free energy and diffusion
profiles from simulation data, followed by our conclu-
sions in Section 5.

2. Bayesian inference of rate matrices

To extract the diffusivity and free energy landscape from
MD trajectories, we employ an algorithm developed by
Hummer based on Bayesian inference [7]. As a start-
ing point consider a one-dimensional Fokker–Planck
equation [19], which describes the stochastic dynamics
of a system subjected to dragging forces and diffusion in
terms of a time-dependent probability density p(q, t),

∂tp(q, t) = ∂q

[
D(q) e−βG(q)∂q

[
eβG(q)p(q, t)

]]
. (1)

Here, D(q) and G(q) denote the diffusion coefficient and
the free energy, respectively, both of which are a func-
tion of the reaction coordinate q. One then discretises
this equation by imposing a grid consisting of n bins of
equal width, �q, on the reaction coordinate. The centre
of bin j is denoted as qj, and we write fj = f (qj) for arbi-
trary functions f (q). A possible spatial discretisation of
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the Fokker–Planck equation (1) reads [20]

∂tpj(t) = Rj,j−1pj−1(t) + Rj,j+1pj+1(t)

− (Rj−1,j + Rj+1,j)pj(t) + O(�q2), (2)

where the rate coefficients Rij are related to the diffusion
constant and the probability density by

Rj,j±1 = Dj + Dj±1

2�q2

(
pj
pj±1

)1/2
. (3)

Note that while the reaction coordinate q is now discre-
tised, time t is still continuous. Equation (2) has the form
of a master equation for a discrete Markovian system

ṗi(t) =
∑
j
Rijpj(t), (4)

which governs the time evolution of the probabilities
pi(t) to find the system in bin i.

The master equation (4) can be formally solved in
terms of a matrix exponential

pi(t) =
∑
j

(etR)ijpj(0). (5)

In order to conserve probability, etR needs to satisfy
all properties of a stochastic matrix. If the stochastic
matrix is irreducible, a unique equilibrium distribution
peqj exists, corresponding to eigenvalue one, and related
to the free energy viaGj = −β ln peqj . Starting from these
expressions, we proceed to outline the general idea of
the Bayesian inference algorithm employed here to deter-
mine the rate coefficients Rij that best fit a set of empirical
data.

This goal can be achieved by applying Bayes’ theorem,
which relates conditional and marginal probabilities,

P(A |B)P(B) = P(B |A)P(A). (6)

Here,A and B each indicate an arbitrary event. In the fol-
lowing, we will identify A with a set of parameters, i.e.
the elements of the rate matrix Rij, and B with empirical
data extracted from simulated trajectories. More specifi-
cally, by slicing a trajectory in steps of a selected lag time
τ we count the number of transitions Nij(τ ) from bin j
to bin i occurring during a particular simulation. The lag
time τ should be chosen large enough so that the dynam-
ics expressed in terms of such transitions is Markovian.
Given a sufficiently large amount of data, either from
a single long equilibrium trajectory or numerous short
ones, one obtains a statistically significant matrix of tran-
sition events, {Nij}. The columns of this matrix represent
the transition histogram of the respective bin.

Comparing the matrix of transition events, {Nij}, with
the formal solution, Equation (5), it is evident that
individual empirical transition probabilities Nij/

∑
i Nij

should approximate the elements of the matrix expo-
nential, i.e. p(j → i, τ) = (eτR)ij. Provided that transition
events are statistically independent, the likelihood L to
observe a certain set of data given some rate coefficients
can be expressed as a product

L = P(Nij |Rij, τ) =
∏
i,j

(eτR)Nij
ij . (7)

Bayes’ theorem then implies P(Rij |Nij, τ) ∝ P(Nij |
Rij, τ)P(Rij).

Typically, the marginal distribution P(Rij) of the
parameters is not known a priori, but may be utilised as
a means to introduce bias to a simulation. For instance,
one can use it to impose continuity, or to bias param-
eters to stay close to some reference estimates. In the
simplest implementation of the approach, however, one
may assume a uniform distribution [7]. By maximising
the scalar likelihood function L in the space of ratematri-
ces, one obtains estimates forD(qj + �q/2) andG(qj) via
Equation (3). This maximisation can be carried out by
steepest descent methods or similar algorithms, but also
by Markov chain Monte Carlo (MCMC) sampling [21].

In a one-dimensional problem such as the one con-
sidered here, the number of independent parameters
is considerably reduced since R fulfils the following
conditions:

Rij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rij if i > j,

−
∑
i(�=j)

Rij if i = j,

Rji
pi
pj

if i < j.

(8)

The second relation in Equation (8) emerges from
total probability conservation, making the exponential
a stochastic matrix. The third one is a direct result
of the transition rates obeying detailed balance (see
Equation (3)). Furthermore, Equation (2) implies that R
is tridiagonal for reflective or absorbing boundary condi-
tions, as the system evolves continuously through coor-
dinate space, i.e. transitions between non-neighbouring
bins do not occur for sufficiently small τ . Note that the
number of parameters scales linearly with the number of
bins in the simulation.

The trajectories we aim to analyse are initiated close
to the top of the free energy barrier and, as they evolve
in time, will leave the region of interest and end up
in a (meta)stable basin. As a consequence, it is nat-
ural to implement absorbing boundary conditions by
terminating trajectories once they leave a certain range
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of q-values. However, doing so adds new elements to
the rate matrix with indices 0 and (n + 1) that vio-
late the detailed balance condition mentioned above,
because once a trajectory is absorbed at the boundary
it cannot return. So while transitioning to these bound-
ary bins occurs with finite probability, Ri0 = Ri,(n+1) =
0 holds for the respective reverse transitions. The rate
matrix becomes necessarily singular, and efficient treat-
ment of the matrix exponential becomes slightly more
involved. For details on this point, we refer the reader to
Appendix 1.

To maximise our likelihood function L, we conducted
an MCMC simulation that randomly displaces a sin-
gle independent parameter (either Rij or ln pi) by a
small amount at every step. We impose the necessary
conditions expressed in Equation (8) before computing
the likelihood function via Equation (7). The genera-
tion probability of such a move is symmetric and the
Metropolis rule was used for the acceptance probability

p(Rij → R′
ij) = min[1, eα(ln L′−ln L)]. (9)

Here, the parameter α corresponds to an artificial recip-
rocal temperature that is initially set to a low value
to accelerate equilibration, allowing one to transverse
a rough likelihood landscape. As the simulation pro-
gresses, we increase α. The sampling is then expected to
relax towards a point of high likelihood, yielding good
approximations for the best set of parameters consistent
with all desired conditions.

3. Discretisation effects in artificial nucleation
processes

Before applying theBayesian analysismethod to results of
molecular simulations, we test it using dynamical trajec-
tories obtained for a simple one-dimensional nucleation
model. For this model, we will investigate in detail how
the results of the calculation depend on parameters such
as the number and width of the bins as well as the lag
time. The main goal here is to find a good compromise
between accuracy and computational effort.

3.1. Test model

Our test model consists of a one-dimensional variable, v,
representing the volume of a vapour bubble in a liquid,
evolving stochastically according to a Langevin equation
on a free energy surfaceG(v)with diffusivityD(v). Here,
multiplicative noise arises from a state-dependent D(v),
so that one needs to include an appropriate drift term
to preserve the equilibrium distribution proportional to
e−βG(v). Specifically, we use the Itô form of the Langevin

equation, and accordingly trajectories are generated with
a simple Itô integrator [7]

v(t + �t) = v(t) + [D′(v) − βG′(v)D(v)]�t

+ gt
√
2D(v)�t, (10)

where �t is the time step and both G(v) and D(v) are
assumed to be continuously differentiable. Besides the
thermodynamic force, −βDG′, there is a drift term, D′,
originating from the state-dependent diffusivity. In the
above equation, gt represents a random variable drawn
from a Gaussian distribution with unit variance and zero
mean.

The specific forms ofG(v) andD(v) for our testmodel
were chosen tomimic the behaviour of cavitation bubbles
in metastable water [8]:

G(v) = 4πγ0r2(v) + pv, (11)

D(v) = 3kBT
4η

v. (12)

Here, γ0 denotes the surface tension of the vapour–liquid
interface, p is the pressure, kB is the Boltzmann constant,
T is the temperature, and η is the viscosity of the liq-
uid. The quantity r(v) = (3v/4π)1/3 corresponds to the
radius of a spherical bubble with volume v. For negative
pressures p, the free energy G(v) exhibits a maximum at
position

vmax = 32πγ 3
0

3|p|3 . (13)

If not explicitly stated otherwise, the following param-
eters were used to obtain the subsequent simulation
results: surface tension γ0 = 17.09 kBT/nm2, dynamic
viscosity of the liquid medium η = 1.00mPa s, tempera-
ture T = 296.4 K and pressure p = −135MPa. Energies
are given in units of the thermal energy, kBT. The value
of the surface tension γ0 is based on a computational esti-
mate for TIP4P/2005water [22]. Note that the free energy
expressed above does not include curvature effects on the
surface tension [8].

We consider trajectories in a v-interval centred around
the barrier top and selected so that the corresponding free
energy,G(v), spans a few kBT. To obtain estimates for the
transition probabilities, a large number of short trajecto-
ries are initiated near the barrier top. The trajectories are
advanced until they encounter one of the absorbing walls
placed at the interval’s boundaries. The system is propa-
gated with a time step of �t = 1.0 fs and transitions are
evaluated in intervals of a selected lag time, τ . Coordi-
nate bins have a constant width �v, but the position of
their centre shifts according to the current value of v at
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Figure 2. Free energy, G(v), and diffusivity, D(v), determined
from2 × 104 trajectories generated for the testmodel. The results
shown correspond to analyses with n= 24 and n= 48 bins,
obtained for a lag time of τ = 0.50 ps. The absorbing boundary
conditions were placed at the end points of an interval of width
n�v = 2.60 nm3 centred at the top of the barrier. Gref and Dref ,
indicated by grey lines, are the reference functions from Equa-
tions (11) and (12), respectively. Larger errors of some data points
for n= 48 indicate an insufficient number of transitions in the
respective bin.

the beginning of a transition move. A shift of up to�v/2
in either direction is sufficient to ensure any step starts
with the trajectory at the centre of a bin in the uniformly
shifted set, thereby reducing discretisation errors.

3.2. Discretisation parameters

Results obtained by analysing 2 × 104 trajectories gener-
ated for our testmodel are shown in Figure 2.Henceforth,
all error bars depicted correspond to standard deviations
of results obtained from five independent MCMC sim-
ulations. The retrieved free energy, shown in the top
panel, agrees rather well with the reference free energy
G(v) even with a moderate number of discretisation bins
(n=24). Especially around the barrier top the curvature
of the free energy is reproduced well. Yet, these estimates

are consistently higher than the reference line, which
hints at systematic errors arising in the analysis. Results
for n=48 bins lie significantly closer to the expected val-
ues, indicating that these deviations from the reference
curve need to be attributed to discretisation errors. Sim-
ilar observations apply to the estimates of diffusion coef-
ficients, D(v), shown in the lower panel. Considerable
deviations in close proximity to the boundaries appear
due to the thermodynamic force term, −βDG′: Many
trajectories reach an absorbing wall before a transition
event in a bin close to the barrier edge can be regis-
tered, effectively lowering the quality of near-boundary
histograms and introducing larger statistical deviations.
Just like the free energy, the estimated diffusion coef-
ficients suffer from systematic discretisation errors (for
n=24 the estimate is considerably larger than the refer-
ence curve), which decay quickly as the number of bins
is increased.

The degree of agreement of the simulation results with
the prescribed landscapes depends sensibly on the inter-
play of the discretisation parameters�v and τ . As shown,
for a fixed τ and fixed range of the reaction coordinate
v, the quality of the estimates improves with a growing
number of bins n. Nevertheless, increasing n is costly
as the computational effort scales cubically with n due
to the evaluation of a matrix exponential at every step.
To obtain good numerical estimates at acceptable com-
putational expense, it is important to make appropriate
choices for the reaction coordinate spacing�v alongwith
the lag time τ . A suitable set of discretisation parame-
ters allows one to compensate greatly for the deviations
caused by a small number of bins.

The optimum choice of τ depends on the selected
bin size �v. Figure 3 demonstrates the typical behaviour
of the estimated diffusion coefficient, D(v), obtained for
different lag times with constant �v and a small num-
ber of trajectories. Evidently, the estimates are strongly
affected by the particular choice of τ : Simulations with
the shortest lag time of 50 fs result in severely inaccu-
rate approximations for the diffusion coefficients, with
these deviations becoming smaller for larger lag times.
Since the statistical deviations indicated by the error bars
are small, the errors must be due to discretisation or
short-time memory effects, which become less severe for
growing τ .

Nevertheless, τ cannot be made arbitrarily large
either: Besides trajectories reaching the absorbing edge
of the sampling range within finite time, increasing τ

noticeably thins out the number of uncorrelated transi-
tion events from limited data. Such a decrease in informa-
tional content negatively affects the transition histograms
for each bin, but especially in regions of large thermo-
dynamic force, that is, high average velocity. This leads
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Figure 3. Comparison of estimates ofD(v) for different lag times,
τ , averaged over five simulations of 2000 trajectories each. The
width of the v-interval was n�v = 2.00 nm3 and the number
of bins n= 24. Symbols refer to the results of the calculation
while the solid line indicates the reference diffusion coefficient
of Equation (12). For short lag times, τ , results show small statis-
tical but large systematic deviations. For large τ this situation is
reversed.

to large statistical errors, which are particularly appar-
ent for τ = 3 ps as shown in Figure 3. It needs to be
stressed, however, that even though the statistical errors
are large, the results lie appreciably closer to the reference
values than for short τ . Differences between the simu-
lations with τ = 0.50 ps and 1.00 ps appear to be minor,
but most of the τ = 1.00 ps results assume values closer
to the reference curve except for the rightmost points.
This illustrates the statistical deterioration due to a larger
thermodynamic force, inducing a tendency to skip bins,
especially if they are situated close to the boundary. Oth-
erwise, transition histograms are still sufficiently accurate
to yield results with small deviations.

We underline at this point that in practical appli-
cations the free energy and especially the diffusivity
are rarely known beforehand even as rough approxi-
mations. Therefore, it becomes necessary to check the

self-consistency of the calculated estimates by conduct-
ing multiple simulations at progressively larger τ values.
This procedure has the advantage that, with increasing
τ , short-time correlations that are not captured by the
simplified diffusive dynamics are effectively integrated
out, thereby ensuring that the dynamics is Markovian, as
required.

3.3. Mean first passage times

As discussed above, the lag time τ is a crucial parame-
ter for an accurate retrieval of free energies and diffusion
coefficients fromdynamical trajectories. In the following,
we will discuss an analysis based on mean first passage
times (MFPT) [2,23] that helps to choose appropriate lag
times to strike a good balance between systematic and
statistical errors.

We consider the MFPT for trajectories started at the
top of a free energy barrier. To determine the MFPT for
these trajectories, one measures the time it takes to first
reach a certain distance, b, from its initial position and
then averages this time over the set of trajectories. The
MFPT as a function of b then yields important informa-
tion on the dynamics of the systemas it crosses the barrier
and gives an estimate for the local diffusion coefficient.

Figure 4. Mean first passage time MFPT as a function of
(b/vmax)

2 obtained from 5000 trajectories of our test model for
a pressure of p = −135MPa. Here, vmax = 4.659 nm3 is the posi-
tion of the free energymaximumat this pressure. Results for three
different cases are shown: both G(v) and D(v) obey the expres-
sions specified in Equations (11) and (12), respectively (crosses);
G(v) is variable, but the diffusion coefficient is fixed at D(vmax)

(diagonal crosses); both the free energy and thediffusion constant
are fixed at G(vmax) and D(vmax) (stars). Furthermore, theoreti-
cal a priori estimates are shown, corresponding to diffusion on
an inverted parabola approximating G(v)with constant diffusion
coefficient. The quadratic order approximation of this solution
corresponds to the flat free energy case.
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Mean first passage times obtained from 5000 trajecto-
ries generated for our test model are shown in Figure 4
as crosses. In addition, the figure includes also results for
which the diffusion coefficient (diagonal crosses) or both
the diffusion coefficient and the free energy (stars) are
held fixed at their values at the position of the free energy
maximum, vmax. For the case where the system evolves
with constant diffusivity on a flat free energy landscape,
the MFPT is simply given by MFPT(b) = b2/2D. At
small distances from the barrier top the remaining two
cases follow this behaviour due to an almost flat free
energy, G′(v) ≈ 0, and small local differences in the dif-
fusion coefficient, D(v) ≈ D(vmax). For larger values of
b, the MFPT is primarily governed by the thermody-
namic force term proportional to G′(v), the magnitude
of which grows as the system moves away from the top
of the barrier, decreasing the slope of MFPT(b). In com-
parison, including a variableD(v) only has aminor effect.
The small increase of theMFPT observed in this instance
with respect to the fixed diffusivity case is caused by a
decrease of the diffusion coefficient as the bubble volume
v approaches zero.

For slowly varying diffusion coefficients, it is use-
ful to approximate the shape of the barrier as an
inverted parabola around v = vmax with curvature ω =√

|d2G/dv2|. This allows one to arrive at an explicit
expression for the MFPT

MFPT(b) = b2

2D 2F2
(
1, 1; 2,

3
2
; −βω2b2

2

)

= b2

2D

(
1 − βω2b2

6

)
+ O(b6), (14)

that closely approximates the constant diffusion case
depicted in Figure 4 over the whole range shown. Here,
2F2 denotes a generalised hypergeometric function. For
a more detailed derivation of this formula, we refer to
Appendix 2.

The typical bin widths �v employed in the algorithm
tend to fall in the regime where the MFPT depends
quadratically on b. Thus, a value around τ = MFPT(�v)

= �v2/2D(vmax) may serve as a good starting point
for the discretisation, as this is the typical time scale of
permanence in one bin near the free energy maximum.
However, these values should be considered a lower limit
of practically relevant transition lag times: The MFPT
represents ameasure of when the trajectory is expected to
cross to an adjacent bin, but it is desirable to select a tem-
poral discretisation that allows for even farther transi-
tionswith decent probability, in order to spread transition
histograms.

4. Diffusivity of cavitation bubbles in water at
negative pressures

We will now turn to the analysis of cavitation trajecto-
ries obtained previously using MD simulations [8]. First,
we will provide a brief overview of these simulations,
referring the reader to Ref. [8] for the full simulation
details. Then, we will extract diffusion coefficients and
free energies from these trajectories.

4.1. Model and simulations

In Ref. [8], the molecular mechanism for cavitation
in water at negative pressures was studied using the
TIP4P/2005 model of water [22]. Simulations were car-
ried for 2000 water molecules in the isothermal-isobaric
ensemble at temperature T = 296.4 K and pressures in
the range of p = −(165 · · · 105)MPa in steps of 15MPa.
Constant temperature and pressure were imposed with a
Nosé-Hoover thermostat chain [24] in conjunction with
an Andersen barostat [25]. The trajectories we analyse
here were originally obtained to compute cavitation rates
using a variant of the reactive flux approach [8,26].

For this system, the Gibbs free energy G(v) as a func-
tion of the largest bubble volume v in the system follows
very closely the expression

G(v) = 4πr2(v)
γ0

1 + 2δ/r(v)
+ pv. (15)

Here, we use γ0 = 20.24 kBT/nm2 and δ = 0.195 nm,
as obtained by fitting free energy profiles [8] harvested
with a combination of umbrella sampling and a hybrid
Monte Carlo scheme [27]. The above expression holds
for all pressures in the range p = −(165 · · · 105)MPa.
The surface free energy contribution, i.e. the first term
on the right-hand side of Equation (15), includes a
Tolman-like correction that takes the curvature depen-
dence of the surface tension into account (compare with
Equation (11)). The free energy maximum is located at

vmax = 4π
3

(
γ0

|p|
)3
(
1 − 4δ

r0
+
√
1 + 4δ

r0

)3

, (16)

where r0 = 2γ0/|p| corresponds to the radius of the bub-
ble at the free energy maximum predicted by CNT with-
out curvature correction as in Equation (13).

4.2. Mean first passage times

To obtain useful estimates for the lag time, we computed
the MFPT for reaching a certain distance b from the free
energy maximum. MFPTs as a function of b2 are shown
in Figure 5 for different pressures. Since bin widths �v
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Figure 5. Mean first passage times at different pressures p aver-
aged over 5000 MD trajectories as a function of the quadratic
barrier distance b2. Trajectories were initialised atop the barrier at
vmax.

are typically small, only accordingly low b values are rele-
vant in practice. TheMFPTs in this range are highlighted
separately in the figure’s inset. For all further analysis, we
select bin widths for a lag time of either τ = 0.40 ps or
τ = 0.50 ps based on these MFPTs.

4.3. Free energy and diffusivity landscapes

In the following, we will discuss the reconstruction of the
free energy and diffusivity landscapes from MD data. In
order to shorten the time needed to converge theMCMC
procedure, the calculation was started with the analytic
expression for G(v) from Equation (15) as initial val-
ues. If no such estimate were available, one could also
start with the simple CNT estimate of Equation (11) or
even a flat free energy profile. Diffusion coefficientsD(v)

were initialised as constants. During the calculation, both
G(v) and D(v) evolve according to the likelihood land-
scape until convergence is reached. We consider a set
of parameters as sufficiently converged once the likeli-
hood function does no longer rise appreciably and only
fluctuates weakly.

The diffusivity D(v), determined from MD tra-
jectories generated at a pressure of p = −105MPa,
is shown as a function of bubble volume v in the
top panel of Figure 6 together with the prediction
of the Rayleigh–Plesset equation [8], as expressed in
Equation (12). Remarkably, the diffusion coefficient
obtained from the Rayleigh–Plesset equation is quite
close to the behaviour of the reconstructed diffusion coef-
ficient, despite being a purely macroscopic model for the
dynamics of vapour-filled bubbles based on continuum
hydrodynamics.

Figure 6. Diffusivity D(v) (top) and free energy G(v) (bottom)
obtained from MD trajectories of cavitation at pressure p =
−105MPa. The analysis was carried out for bin number n= 48,
sampling range n�v = 6.00 nm3, 6500 trajectories, and lag time
τ = 0.50 ps, amounting to approximately 1.5 times the corre-
sponding MFPT. The diffusion coefficients are shown for both
prescribed and variable free energy. In the lower panel, the recon-
structed free energy G(v) (symbols), the free energy obtained
directly in Ref. [8] from simulations via umbrella sampling (solid
line), and the estimate of Equation (15) (dashed line) are depicted.

For comparison, we also determined the diffusion
coefficient with prescribed free energy profileG(v) rather
than reconstructing the free energy together with the dif-
fusivity. Results of this calculation, for which we used
the free energy given by Equation (15) as a reference, are
shown in the top panel of Figure 6 as square symbols. As
can be inferred from the figure, the diffusion coefficients
obtained with fixed and variable free energy essentially
do not differ from each other and only near the bound-
ary statistically discernible differences occur. This close
agreement is particularly noteworthy when one consid-
ers that the reconstructed free energy differs notably from
Equation (15), as can be seen in the bottom panel of
Figure 6. Nonetheless, the computed results lie remark-
ably close to the respective simulation estimates obtained
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Figure 7. Diffusion coefficient D(v) as a function of bubble vol-
ume v retrieved for different pressures. Results obtained with
prescribed free energy profiles are shown in the inset and, addi-
tionally, in the main plot as grey symbols. For all pressures, the
obtaineddiffusion coefficients follow the same linear dependence
on the bubble volume with slight deviations for small bubbles.
A linear fit to the diffusion coefficients obtained for all pressures
(solid line) yields a slope of (4.678 ± 0.029) × 10−3 nm3 ps−1

and a D-axis intercept of (1.553 ± 0.099) × 10−2 nm6 ps−1.

in Ref. [8], demonstrating the consistency of our Bayesian
inference analysis.

Before examining further results pertaining to differ-
ent, even lower p values, let us briefly comment on the
particular choice of parameters. In all subsequent calcu-
lations, n=24 bins were used, which allow us to generate
well-converged, self-consistent estimates with moderate
computational effort. Our choice of τ = 0.40 ps for the
lag time limits the range of permissible bin widths, but
in return avoids excessive thinning out of the number of
bin-to-bin transitions. Bin widths vary from 0.080 nm3

for−165MPa to 0.108 nm3 for−120MPa and are appro-
priately adapted to the correspondingMFPTs of approxi-
mately 0.30 · · · 0.32 ps, i.e. a value a little smaller than the
actually used τ .

Diffusion coefficients obtained for different pressures
are shown Figure 7 as a function of bubble volume.
Remarkably, all diffusion coefficients lie on the same lin-
ear fit and agree well where the curves overlap. Devia-
tions from linearity occur only for very small bubbles
with a volume v < 2 nm3. Essentially the same results
(with some exceptions at the boundaries) are obtained if
the free energy is prescribed according to Equation (15)
rather than optimising it together with the diffusion coef-
ficients. Such linear behaviour of the diffusion coeffi-
cient D(v) without significant pressure dependence is
predicted by the macroscopic Rayleigh–Plesset equation
when augmented with appropriate thermal fluctuations.
Note, however, that the diffusion coefficient derived from

the Rayleigh–Plesset equation does not have a finite
intercept on the D-axis. Its slope of 3kBT/4η ≈ 3.069 ×
10−3 nm3 ps−1, on the other hand, evaluated for a vis-
cosity 1.00mPa s [8], differs only by about 35% from
the simulation results. This observation indicates that
the macroscopic Rayleigh–Plesset theory holds down to
approximately nanoscopic bubbles, despite not capturing
all aspects of bubble dynamics in this regime.

5. Conclusions

In this work, we have applied a Bayesian inference
algorithm [7] to extract state-dependent diffusion coeffi-
cients and free energies from dynamical barrier crossing
trajectories of nucleation processes. In particular, we have
determined these quantities for cavitation occurring in
liquid water at strongly negative pressures. During this
process, vapour bubbles form and grow stochastically,
eventually leading to the decay of the metastable liquid
phase. Analysis of the time evolution of the bubble vol-
ume, which has previously been shown to be a good
reaction coordinate for this process [8], yields the respec-
tive diffusivity and free energy profile on the nucleation
barrier.

In applying the Bayesian inference algorithm, which is
based on a discretisation of the Fokker–Planck equation,
it is important to choose appropriate discretisation
parameters to yield sufficient accuracy at an affordable
computational cost. For the cavitation problem studied
here, discretising the reaction coordinate into several
dozens of bins combined with an appropriate lag time,
estimated using a first passage time analysis, yields satis-
fying results both for the diffusion coefficient as well as
for the free energy.

Our results indicate that the method should be gen-
erally applicable to nucleation processes provided the
dynamics of the selected reaction coordinate is Marko-
vian, as assumed in CNT. It should be noted, however,
that the existence of a good reaction coordinate already
implies at least approximately Markovian dynamics [28].
As a practical example, Bayesian inference can be used to
analyse trajectories generated in the seeding approach to
nucleation processes [6]: Applied to crystallisation trajec-
tories, such a calculation would provide the attachment
rate, the Zeldovich factor as well as the size of the crit-
ical cluster needed for the calculation of crystallisation
rates. Furthermore, computing the diffusion coefficient
as a function of nucleus or bubble size allows one to ver-
ify the often made assumption of constant diffusivity in
the barrier region.

Knowledge of the diffusion coefficient as a function
of the reaction coordinate is not only important for esti-
mating nucleation rates in the framework of CNT but
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also provides useful information on the molecular mech-
anism controlling the growth and decay of nuclei in the
early stages of nucleation. In the case of cavitation in
water under tension, for instance, our analysis of dynam-
ical trajectories has shown that the dependence of the
diffusivity on the bubble volume is basically consistent
with predictions based on the Rayleigh–Plesset equation
[8]. Residual discrepancies between our estimates and
theory also hint at a curvature-dependent viscosity, as
originally introduced by Dzubiella [29,30]. To examine
this notion, it is necessary to investigate further into the
low-volume regime, where departure from the postu-
lated linear behaviour is already apparent by the diffusiv-
ity profiles shown here. Nonetheless, our results suggest
that the mechanism posited in Rayleigh–Plesset theory is
essentially correct even on the nanoscale, implying that
the viscosity of the liquid is the main factor to determine
the dynamics of bubble growth and decay in water under
strong tension.
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Appendix 1. Transition probabilities in presence
of absorbing boundaries

In this appendix, we will demonstrate an efficient way to calcu-
late the matrix exponential eτR of a rate matrix R in a system
with absorbing boundary conditions. As noted in Section 2,
absorbing boundary conditions violate detailed balance, com-
plicating the diagonalisation of R. Without this complication,
one could follow the same approach as used by Hummer in
Ref. [7]: Applying a similarity transformation to R one arrives
at R′

ij = p−1/2
i Rijp

1/2
j , which is a symmetric matrix if detailed

balance holds. Symmetric matrices can be diagonalised effi-
ciently and in a computationally stable fashion by orthogonal
transformations, e.g. by utilising the QR algorithm [31]. Then,
one calculates the exponentials of the computed eigenvalues
and reverses all similarity transformations, obtaining the final
result. Although one cannot avoid that such a computation
scales like O(n3), where n is the number of (non-absorbing)
bins, this procedure is much more efficient than working out
the exponential via its series expansion, for instance.
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To achieve similar computation speeds for absorbing
boundary conditions, we aim to adapt the described approach
to this particular case of broken symmetry. Consider the
slightly larger (n + 2) × (n + 2) matrix R. Indices 0 and (n +
1) now pertain to absorbing boundaries, and the respective
columns strictly vanish. For clarity, we show an example for
a system with n= 5 inner bins, where asterisks indicate non-
vanishing elements:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0 0 0 0
0 ∗ ∗ 0 0 0 0
0 ∗ ∗ ∗ 0 0 0
0 0 ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that although this matrix does not satisfy detailed balance
as a whole, the submatrix R̄ij = Rij, where i, j ∈ {1, . . . , n} does.
We can utilise the diagonalisation procedure outlined above on
this submatrix, and all orthogonal transformations Ūk accumu-
lated in the course of this computation are summarised as a
single one denoted by Ū = ∏

k Ūk. Furthermore, we expand
this transformation in a block diagonal fashion, so that it can
be applied to R as a whole, i.e.

Uij =
{
Ūij if i, j ∈ {1, . . . , n},
δi0 + δi,(n+1) else,

(A1)

where δij is the Kronecker-delta. Doing so yields a matrix A of
the form

A = UT(τR)U =

⎛
⎜⎝

0 	a0 0
... D

...
0 	an+1 0

⎞
⎟⎠ . (A2)

Here, 	a0 and 	an+1 denote row vectors, dii henceforth indicates
the elements of diagonal matrixD, corresponding to the eigen-
values of R̄, and UT signifies the transpose of U. An expression
for the kth power of A can be derived inductively and one
obtains

Ak =

⎛
⎜⎝

0 a0idk−1
ii 0

... Dk ...
0 an+1,idk−1

ii 0

⎞
⎟⎠ ∀ n > 0. (A3)

Inserting this expression into the definition of the matrix expo-
nential as series yields

eA =
∞∑
k=0

Ak

k!
=
⎛
⎝ 1 a0id−1

ii (edii − 1) 0
0 eD 0
0 an+1,id−1

ii (edii − 1) 1

⎞
⎠ , (A4)

where we used that
∞∑
k=1

ajidk−1
ii
k!

= aji
dii

[(
1 +

∞∑
k=1

dkii
k!

)
− 1

]

= aji
dii

(edii − 1). (A5)

The last step consists of undoing the orthogonal transfor-
mations, so that one finally obtains eτR = UeAUT. Overall,
this procedure avoids the initial problems of absorbing rate
matrices, and increases the computational effort only by an
insignificant amount, so that it is just as efficient and stable as
the original method for symmetric matrices.

Appendix 2. MFPT on parabolic free energy
barriers

In the following, we derive Equation (14) as an approximation
for the mean first passage time on a barrier. More specifically,
we consider the MFPT of trajectories started at the top of a
parabolic free energy barrierG(q) = −(1/2)ω2q2 and evolving
given a constant diffusion coefficient,D. As a special case of the
general formula derived by Schulten et al. [32], theMFPT in the
presence of a constant diffusion coefficient can be conveniently
expressed as

MFPT(x, b) = 1
D

∫ b

x
dy eβG(y)

∫ y

a
dz e−βG(z). (A6)

Here, x denotes the initial position of a trajectory, b is the posi-
tion of the absorbing wall, where trajectories are terminated
and a corresponds to the location of a reflective barrier, which
ensures that the MFPT remains finite. Without imposing this
second boundary, a trajectory could evolve towards either side
of the free energy parabola.

Starting our trajectories at the maximum of G(q), we set
x= 0 and select also a= 0, which is equivalent to putting
another absorbing wall at position −b, symmetrically located
on the other side of the barrier. For the special case of a
parabolic energy landscape, the inner integral can be solved
easily in terms of the imaginary error function, yielding∫ y

0
dz eβω2z2/2 =

√
π

2βω2 erfi

(√
βω2

2
y

)
. (A7)

Furthermore, we use that∫
dz e−z2erfi(z) = 1√

π
z22F2

(
1, 1; 2,

3
2
; −z2

)
, (A8)

where 2F2 is a generalised hypergeometric function. From
Equations (A7) and (A8) one arrives directly at an explicit
solution for the MFPT as reported in Equation (14)

MFPT(0, b) = b2

2D 2F2
(
1, 1; 2,

3
2
; −βω2b2

2

)

= b2

2D

∞∑
k=0

(−βω2b2)k

(k + 1)(2k + 1)!!

= b2

2D

(
1 − βω2b2

6
+ · · ·

)
. (A9)

This equation may also serve to obtain the diffusion coeffi-
cient at the top of free energy barriers from measurements of
the MFPT. Diffusivity estimates of these positions evaluated
through Equation (A9) are quantitatively consistent with the
ones given in the main text [8].
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