
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Bee-inspired metaheuristics for global optimization: a performance
comparison

Permalink
https://escholarship.org/uc/item/4xm0c4pz

Journal
Artificial Intelligence Review, 54(7)

ISSN
0269-2821

Authors
Solgi, Ryan
Loáiciga, Hugo A

Publication Date
2021-10-01

DOI
10.1007/s10462-021-10015-1

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xm0c4pz
https://escholarship.org
http://www.cdlib.org/

Vol.:(0123456789)

Artificial Intelligence Review (2021) 54:4967–4996
https://doi.org/10.1007/s10462-021-10015-1

1 3

Bee‑inspired metaheuristics for global optimization:
a performance comparison

Ryan Solgi1  · Hugo A. Loáiciga2

Published online: 20 May 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Metaheuristics are widely applied to solve optimization problems. Numerous metaheuristic
algorithms inspired by natural processes have been introduced in the past years. Studying
and comparing the convergence of metaheuristics is helpful in future algorithmic devel-
opment and applications. This study focuses on bee-inspired metaheuristics and identifies
seven basic or root algorithms applied to solve continuous optimization problems. They are
the bee system, mating bee optimization (MBO), bee colony optimization, bee evolution
for genetic algorithms (BEGA), bee algorithm, artificial bee colony (ABC), and bee swarm
optimization. The algorithms’ performances are evaluated with several benchmark prob-
lems. This study’s results rank the cited algorithms according to their convergence effi-
ciency. The strengths and shortcomings of each algorithm are discussed. The ABC, BEGA,
and MBO are the most efficient algorithms. This study’s results show the convergence rate
among different algorithms varies, and evaluates the causes of such variation.

Keywords  Metaheuristics · Swarm intelligence · Evolutionary algorithms · Optimization ·
Bee inspired algorithms

1  Introduction

The task of optimization arises in a wide range of problems relevant to machine learn-
ing (Darwish et al. 2019; Xu et al. 2016), robotics and animation (Starke et al. 2019;
Dereli and Koker et al. 2019), supply chains and logistics (Rabe and Deininger 2012),
transportation (Moradipari and Alizadeh 2018), urban infrastructures (Solgi et al. 2016;
Bozorg-Haddad et al. 2016a) and other fields. Optimization is simply defined as finding
the best feasible solution based on some criteria and constraints among a set of plausi-
ble alternatives. Yet, optimization problems cannot always be easily solved. A variety
of techniques have been introduced to solve different kinds of optimization problems

 *	 Ryan Solgi
	 Solgi@ucsb.edu

1	 University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
2	 Department of Geography, University of California Santa Barbara (UCSB), Santa Barbara, CA,

USA

http://orcid.org/0000-0002-7560-5210
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-021-10015-1&domain=pdf

4968	 R. Solgi, H. A. Loáiciga

1 3

including linear programming, dynamic programming, non-linear convex optimization
and so forth (Hillier and Lieberman 1995; Boyd and Vandenberghe 2004).

Metaheuristics are other kinds of optimization algorithms that are useful to find
a near optimal solution when the problem is not approachable by other techniques
(Bozorg-Haddad et al. 2017a, b). Metaheuristic are defined as “a system of adaptive
heuristics which are adjusted through concurrent learning”. Many metaheuristic algo-
rithms have been applied successfully in a broad range of domains, from computer sci-
ence to healthcare and across all engineering fields (Abualigah and Hanandeh 2015;
Bozorg-Haddad et al. 2016b; 2017a; b; Abualigah et al. 2017, 2018a, b; Ashghari and
Navimipour, 2019a, b; Hajimirzaei and Navimipour 2019, Panahi and Navimipour 2019;
Zanbouri and Navimipour 2019, Abualigah 2019, Abualigah and Diabat 2020).

Sorensen et al. (2017) reported that formal studies on techniques used in modern
metaheuristic algorithms can be traced back to world war II with the advent of opera-
tions research long before the term metaheuristic emerged. Hooke and Jeeves (1961)
introduced pattern search (PS), which is one of the early and well-known metaheuris-
tics. The emergence of metaheuristics has gone hand in hand with the revolutionary
emergence of evolutionary computation (EC). De Jong et al. (1997) presented a recent
history of EC starting from the mid 1950s, citing the endeavors of pioneers like Box
(1957), Friedberg (1958), Barker (1958), and Bremermann (1962), who implement
evolutionary processes in enhancing industrial productivity, mathematical program-
ming, and machine learning. After a relatively short period of skepticism the power of
EC was demonstrated by the notable works of Rechenberg (1965), Fogel et al. (1966),
and Holland (1967) who invented evolutionary strategies (ESs), evolutionary program-
ming (EP), and genetic algorithms (GAs), respectively. A variety of metaheuristics were
introduced inspired by different metaphors following the introduction of the well-known
GA by Holland (1975). Simulated annealing (SA) by Kirkpatrick et al. (1983), tabu
search by Glover (1986), ant colony optimization (ACO) by Dorigo et al. (1991, 1996),
particle swarm optimization (PSO) by Kennedy and Eberhart (1995), and differential
evolution (DE) by Storn and Price (1997) are among the early metaheuristics. Since
then the metaheuristics and EC gained popularity and many other algorithms have been
developed (Abualigah 2020; Abualigah et al. 2020a, b).

One of the metaphors inspiring metaheuristics is bees’ behavior. Bees’ social and mat-
ing rituals are unique and constitutes a kind of swarm intelligence that has survived for
nearly 100 million years. Normally these species live in well-organized colonies which
maximize efficiency by division of labor for tasks like foraging, and for reproduction.
Numerous algorithms have been recently inspired from bee swarming behavior (Karaboga
and Akay 2009). The first metaheuristic explicitly claimed to be inspired by bees was the
bee system (BS) developed by Sato and Hagiwara (1997). Next, a number of bee inspired
metaheuristics were proposed including but not limited to mating bee optimization (MBO)
by Abbass (2001), bee colony optimization (BCO; Lucic 2002), bee evolution for genetic
algorithms (BEGA; Jung 2003), BeeHive (Wedde et al. 2004), bee algorithm (BA; Pham
et al. 2005), artificial bee colony (ABC; Karaboga 2005), honey bee social foraging (Qui-
jano and Passino 2010), bee swarm genetic algorithm (BSGA; Xu et al. 2008), bumble-
bees (Comellas and Martinez-Navarro 2009), virtual bee algorithm (VBA; Khan et al.
2010), bee swarm optimization (BSO; Akbari et al. 2010), and queen honey bee migra-
tion (QHBM; Jong et al. 2017). The aforementioned list cites a few algorithms which
have undergone modifications and hybridizations after development, and which have been
implemented in solving a variety of problems that cannot be recounted in a length-limited
paper.

4969Bee‑inspired metaheuristics for global optimization: a…

1 3

Our study of bee inspired algorithms revealed that among an extensive number of bee-
inspired metaheuristics, many of which have been tied to a specific kind of problem, only
a few basic ideas have been proposed for global optimization in the continuous domain.
Yet, there is no comparison of these algorithmic ideas. This work presents an experimental
study of the performance of bee-inspired metaheuristic algorithms. Hence, the bee sys-
tem (BS), mating bee optimization (MBO), bee colony optimization (BCO), bee evolution
for genetic algorithms (BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee
swarm optimization (BSO) are selected and their performance has been compared under
several benchmark function. This work contributes to algorithmic development by high-
lighting pathways for future studies in the field of metaheuristics.

In the following, first the methodology of this study is presented. Next, the bees’ charac-
teristics that have been used for algorithmic development are briefly described. This is fol-
lowed by a description of the metaheuristic algorithms studied in this work and the steps of
each algorithm. The performances of the algorithms are evaluated with continuous-domain
problems and the results are presented in the section “experiments and results”. A discus-
sion on the algorithms and pathways for future developments closes this paper.

2 � Methodology

This work presents an experimental study of the performance of bee-inspired metaheuris-
tic algorithms for global optimization. A literature review was conducted to find the bee-
inspired metaheuristics that solve continuous problems, and which can be rated as original
or basic (root) ideas. Our review went beyond reliance titles or keywords and considered
the conceptual contexts of published works. Moreover, the characteristics and steps of the
algorithms in numerous articles were meticulously evaluated. Our review compiled all bee-
inspired metaheuristics. Hundreds of journals, book chapters, and conference proceedings
were found in which either a new algorithm under a new title was developed or former
algorithms were modified or applied. Our search was narrowed down to only bee-inspired
metaheuristics which were capable of solving continuous optimization problems.

Once an algorithm is introduced it may undergo modifications seeking to improve its
efficiency. Sometimes these modifications amount to changing or adding a function or an
operator, but they rarely constitute a completely new search strategy. Therefore, this work
reviewed modified algorithms looking for novel metaheuristics even if the designers them-
selves did not present their idea under a new name. Some of the bee inspired algorithms
available in the literature were initially presented for combinatorial problems, and many of
them were developed to solve specific problems. The search operators in such algorithms
are only appropriate for the specific kind of problems which they were designed for and not
for continuous functions. However, there are some algorithms which initially were devel-
oped for combinatorial problems, such as the BCO, and were later modified to solve con-
tinuous problems. Another example is the MBO that initially was designed for the traveling
salesman problem (TSP) but later was applied to continuous functions. This work selected
bee-inspired metaheuristics that have been used for solving continuous problems.

The list of selected algorithms for analysis consists of the bee system (BS), mating bee
optimization (MBO), bee colony optimization (BCO), bee evolution for genetic algorithms
(BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee swarm optimization
(BSO). There are modified versions for some of these algorithms, yet this work evaluated
their first versions because many of the modifications, hybridizations, and adaptations rely

4970	 R. Solgi, H. A. Loáiciga

1 3

heavily on the basic characteristics or ideas. Also, the selected algorithms seem to be con-
structively different from each other, whereas their modifications commonly replace one or
two heuristic functions, or adjust probabilities involved in the search process, and introduce
other minor changes. In addition, some of the modified versions are devoted to solving spe-
cific kind of problems, or their modifications are not inspired by bees thus making modifi-
cation not pertinent to this study. It is worthy of notice that numerous algorithmic modifi-
cations seem to be more efficient algorithms because they reach a better solution or find an
optimum with fewer function evaluations. However, many of the modifications have been
made at the expense of adding extra user-defined parameters that increased the difficulty of
application. Therefore, this work focused on the eight cited, basic but distinct, and original
bee-inspired metaheuristics.

There were some challenges encountered while completing this review that may affect
the completeness of the selected list of metaheuristic algorithms. For example, some of the
names of the algorithms were used interchangeably, and some algorithms were given more
than one name by different authors. It is possible that algorithms that qualify as basic and
novel were not evaluated in our study. This work, therefore, does not claim to be an exhaus-
tive survey of all the bees-inspired metaheuristics. Nevertheless, this study presents a rep-
resentative review and evaluation of bee-inspired, metaheuristic algorithms.

The codes of the evaluated algorithms were herein written in Python version 3.7.0 based
on the published papers. All the codes are available online at [https://​github.​com/​rmsol​gi/​
bee-​inspi​red-​metah​euris​tics] for those who may wish to reproduce or validate our findings.

Each algorithm herein studied has a number of parameters that must be adjusted usually
by conducting a sensitivity analysis. Parameter setting is a key disadvantage of metaheuris-
tics algorithms that hinder their application. In many previous studies algorithmic compar-
isons resorted to meticulous parameter adjustments. Such careful parameter adjustments
may render the comparative results biased because commonly it is not reported how much
time and effort is spent in parameter setting. This is pertinent in the realm of metaheuris-
tics because the algorithms are expected to be clever and self-adjusting and thus capa-
ble of removing the burden of parameter calibration to users of metaheuristics. For this
reason, one of the primary goals of this study is determining the power of basic ideas in
metaheuristics in a truly unguided search. This means this work’s algorithmic analysis did
not involve parameter setting. Rather, algorithmic parameters were set equal to the values
reported by their original developers. This is consistent with this work’s intent to evaluate
basic search ideas in terms of their inherent capabilities, such as ease of implementation
and search efficiency. Therefore, for each algorithm a single set of parameters is used in
solving all the benchmark problems.

This work begins with an overview of bee-inspired metaheuristics, followed by the pres-
entation of results from the implementation of the algorithms, and it ends with a discus-
sion of the algorithms’ performances, highlighting pathways for future related studies in
the field of metaheuristics.

3 � Bee inspired metaheuristics

Metaheuristics consists mainly of two repetitive phases: generation of new tentative solu-
tions, and selection of a set of solutions to advance the search towards a global optimum.
Every algorithm initially generates a set of possible or tentative solutions randomly or
deterministically. The generated solutions are evaluated based on some predefined criteria

https://github.com/rmsolgi/bee-inspired-metaheuristics
https://github.com/rmsolgi/bee-inspired-metaheuristics

4971Bee‑inspired metaheuristics for global optimization: a…

1 3

and some of them are selected to form the basis for generating newly improved solutions.
Bee metaheuristics commonly generate initial solutions randomly. Next, selection and gen-
eration of new solutions are repeated iteratively until some termination criteria are met.
The algorithms generally converge to a near optimum eventually. But the convergence
rate and accuracy of the algorithms differ, which has led to the development of a vari-
ety of algorithms seeking the highest search efficiency. Exploration and exploitation are
two important factors in population-based metaheuristics, which must be balanced well
otherwise the algorithm would experience either premature convergence (trapping in a
local optimum) or stagnation. This balance is implicitly provided by probabilistic func-
tions applied for selecting and generating new solutions. Primarily the major differences
between algorithms are the functions or procedures implemented in selecting and generat-
ing new solutions. Proportionate selection and simulated annealing are among the selection
techniques. Random walk and genetic operators such as crossover and mutation are among
the functions used for generating new solutions. A mixture of these techniques and other
novel heuristic functions lead to a variety of algorithms.

This study identified eight metaheuristics with basic characteristics that clearly differ-
entiate one from each other as distinct, bee-inspired, metaheuristics. The identified algo-
rithms are: the bee system (BS), mating bee optimization (MBO), bee colony optimization
(BCO), bee evolution for genetic algorithms (BEGA), bee algorithm (BA), artificial bee
colony (ABC), and bee swarm optimization (BSO). It is noteworthy that there are two dis-
tinct sources of inspiration for these algorithms, namely, bee foraging behavior and bee
mating rituals.

Most of the bee inspired metaheuristics were developed based on the foraging behav-
ior of bees including the ABC, BCO, BSO, and BA. There exist in nature three types of
bee foragers responsible for collecting tasks and feeding a bee colony. These are employed
(experienced), onlookers (unemployed), and scouts each of which has a unique way of
searching for new food sources. Employed foragers are those who already discovered a
good food source and return to that frequently. Due to randomness they may visit nearby
neighborhood points and occasionally discover a better source. The employed bees may
share their information to unemployed bees through a waggle dance and attract some unem-
ployed bees to follow them. These followers are called onlookers who watch the dance of
some experienced foragers and follow them. The number of unemployed bees attracted by
each experienced forager is proportional to the quality of their dance. Onlookers follow-
ing an experienced forager search neighboring location of the already discovered source.
The third groups of foragers are scouts which look for food resources totally unguided and
search randomly all across the space. An experienced forager may be initially an onlooker
or a scout, and after finding a good food source it may stick to it and advertise it through
waggle dancing.

A solution to the optimization problem achieved by bee-foraging metaheuristics is
represented by an N dimensional vector (where N denotes the number of control vari-
ables) defining the position of an agent (bee forager). Each point in the decision space
has a degree of desirability with respect to a criterion. That degree of desirability is
measured by the fitness function.1 Agents are looking for a location which has the most
food (the global optimum). Starting from initial random locations the agents update
their positions through search procedures and gradually move toward the best position.

1  Fitness function refers to a penalized objective function, that is, the objective function with constraints
added to it as penalty.

4972	 R. Solgi, H. A. Loáiciga

1 3

Experienced foragers, onlookers, and scouts are all agents that update their positions
with different heuristic functions. The selection phase in these algorithms generally
refers to tasks about dividing populations of bees (i.e., solutions) into the three catego-
ries of foragers, selecting experienced foragers by onlookers, and deciding whether or
not agent must move to a new position.

Bees’ mating and reproduction processes have also inspired other metaheuristics
such as MBO and BEGA. From mating ritual and reproduction perspectives a colony
of bees is composed of a queen, drones, and workers. The queen and drones are respon-
sible for reproduction so that the queen is the mother of the hive and the drones are
the fathers. Workers are primarily responsible for brood caring. The broods made by
a queen bee can be both haploid and diploid. Diploid broods stem from fertilized eggs
produced by the mating of the queen with drones. However, the queen can also lay eggs
without any mating giving birth to diploid broods which inherit their genotype only
from the queen. During the mating season a queen mates with several drones to fill its
spermatheca through a mating dance. Among many drones vying for queen only a few
succeed in mating and passing their sperms to its spermatheca. The more attractive the
drone, the better the chance it has to mate with the queen. The drones which mate with
the queen usually die immediately after mating and fall to the ground. The queen goes
back to the hive after its spermatheca is full or when it has lost her mating strength. The
rest of the drone population is forbidden from entering the hive at the end of mating
season and die from exposure and famine. Only the productive queen and the workers
remain in the hive until the queen makes new broods.

In the metaheuristics inspired by mating rituals each solution is represented as the
genotype of a bee. The hive’s queen is the best solution that can be found; drones are
other trial or random solutions. Workers in these algorithms are related to specific heu-
ristic functions. They do not concern the solution, but, rather, become functions for gen-
erating a new solution. This resembles the role of worker bees which feed and grow the
broods. In these algorithms new solutions (offspring) are usually generated by genetic
operators such as crossover and mutation. Selection refers to the process by which the
queen (female bee) selects some drones (male bees) for reproduction.

In the following a summary of the development and later modifications of the studied
algorithms is provided. This is followed by a brief description of the algorithmic steps.
For brevity, if a function or step is the same between two algorithms, it is referred to
the first time it is presented whenever it is used again. This summary is helpful to high-
light the differences, similarities, and the performances of the reviewed algorithms. For
a complete description of the underlying techniques the reader is referred to the cited
works and to the Python codes provided online.

3.1 � Bee system (BS)

The Bee system was introduced by Sato and Hagiwara (1997). The BS is inspired by the
foraging behavior of bees. Yet, considering the other algorithms inspired by bees’ forag-
ing behavior it is debatable to state that this algorithm actually resembles the foraging
behavior of bees. This work reviews this algorithm because BS constitutes one of the
first efforts to design a metaheuristic based on bees’ behavior. The algorithm consists of
a global search by means of a simple GA and a local search which is designed based on
the sharing information by a swarm of bees.

4973Bee‑inspired metaheuristics for global optimization: a…

1 3

Steps of the BS:

1.	 A global search is executed by running a simple GA Gsc times, and the best solution of
each run is memorized. To produce a population (set) of possible solution vectors M
(M = Gpop) N-dimensional vectors are generated randomly as follows:

where r
(
ld, ud

)
 = a random number in [ ld, ud ], ld and ud = lower boundary an upper

boundary, respectively, of the d-dimensional solution space.
	  Each vector or member Xi of the population is known as a chromosome and assigned

a probability using Eq. (3):

where fi = normalized fitness function and m = M.
	  A roulette wheel is implemented based on the calculated probabilities. P vectors

(P < M) are selected2 as the parent population using the roulette wheel, and the rest of the
vectors are removed from the population. M-P new vectors are generated to reconstitute
the population. Hence, first a mating pool (the active parent population) is constructed so
that every vector in the parent population has a chance equal to the crossover probability,
Pc (0 < Pc < 1, a predefined parameter) of entering the mating pool. Next, two vectors
are repetitively selected from the mating pool with the uniform distribution, and two
new vectors are generated applying the crossover and mutation functions successively.

	  Let two parent vectors or solutions X = (x1, x2,… , xN) and X�

= (x
�

1
, x

�

2
,… , x

�

N
) be

selected for crossover.3 Two new offspring are generated as follows:

where C denotes the crossover point.
	  By mutation each component of a solution has a chance equal to Pm (0 < Pm < 1 a

predefined parameter) to be replaced by a random value within the feasible space.
	  The M-P newly generated vectors as offspring and the parent population constitute

the new population. The steps of selecting P parents followed by reproduction continues
until a termination criterion is met. The best achieved solution is saved after the GA is
terminated in a set called superior chromosomes (SC). This memorized set of solutions
each of which is a vector in N dimensional space is applied for a local search which
starts in step 2 below. A new GA is implemented until Gsc superior chromosomes are
achieved and the SC set is full.

(1)Xi = (xi,1,… , xi,N) ∀i = 1,2,… ,M

(2)xi,d = r
(
ld, ud

)
∀d = 1,2,… ,N

(3)Probi =
fi

∑m

i=1
fi

(4)Xnew
2

= (x
�

1
, x

�

2
,… , x

�

C
, xC+1, xC+2,… , xN)

(5)Xnew
1

=
(
x1, x2,… , xC, x

�

C+1
, x

�

C+2
,… , x

�

N

)
.

2  In this manuscript selections always are done with replacement.
3  This work applies uniform crossover in all algorithms in which the crossover function is used. The num-
ber and place of crossover points are random and uniformly distributed (Bozorg-Haddad et al. 2017a, b).

4974	 R. Solgi, H. A. Loáiciga

1 3

2.	 For each member of set SC a separate (local) population is constructed. Each local
population consists of M (M = Lpop) vectors in an N dimensional space which are initially
generated randomly using Eq. (1).

3.	 For each local population:
3.1.	 First the population is modified by a concentrated crossover function between each

member of the population and the superior chromosome, and the new generated solution
replaces the previous one. This is called concentrated crossover because one side of the
crossover is always the superior chromosome.

3.2.	The three best vectors of each local population are saved as X′

1
,X′

2
 , and X′

3
 . Next, the pro-

cedure of the (standard) GA is applied to each local population to execute parent selec-
tion, by roulette wheel, and reproduction. Reproduction generates M-P-2 new vectors as
offspring by genetic operators. Next, a conditional statement called migration criterion
is applied. If the migration criterion is met the algorithm goes to step 3.3. Otherwise,
it goes to step 3.4. The migration criterion is simply a predefined number such as Gmig
whereby the migration procedure is activated after Gmig iterations of the GA.

3.3.	Two vectors are exchanged between two neighboring local populations so that the local
nth population gives a vector to the n + 1st population and receives one vector in turn.
This step resembles the exchange of information among bees.

3.4.	 Two new vectors are generated based on the simplex method with the three already
selected vectors X′

1
,X′

2
 , and X′

3
 as follows:

Xref and Xcont = two new solutions added to the population, � and � = values in the
range [0,1], which are parameters of the algorithm.

4.	 The algorithm stops once the termination criterion is met. Otherwise, it goes to step 3.2
(Sato and Hagiwara 1997).

	  The user-defined parameters of the BS are Gsc, Gpop, Lpop, Pmg (Pm for global search),
Pml (Pm for local search), Gmig, Pc (probability of crossover), Ppop (parent population),
� , � , and the total NFE (TNFE, termination criterion). Sato and Hagiwara (1997) did
not cite some of these parameters (e.g., Pc) and underestimated the number of the BS’s
parameters. This algorithm applies the GA, which features its own parameters, thus
adding to the number of required parameters to be set.

3.2 � Mating bee optimization (MBO)

Abbass (2001) proposed mating bee optimization (MBO) inspired by the mating ritual
of honey bees. The algorithm implemented simulated annealing function for selection
and genetic operators for the reproduction phases. Abbass and Teo (2003) replaced the
original annealing function used in the selection phase of the MBO with a more con-
ventional simulated annealing method. The MBO has been modified as honey bee mat-
ing optimization (HBMO, Bozorg-Haddad et al. 2006). Yang et al. (2007) introduced

(6)Xref = (1 + �)X
�

0
+ �X

�

3

(7)Xcont = (1 − �)X
�

0
+ X

�

3

(8)X
�

0
=

X
�

1
+ X

�

2

2

4975Bee‑inspired metaheuristics for global optimization: a…

1 3

the fast marriage in honey bee optimization (FMBO) in which the annealing process
was removed and all randomly generated solutions were accepted in the selection pro-
cess without any filtering. Poolsamran and Thammano (2011) proposed new heuristic
functions to generate new solutions for the MBO. Celik and Ulker (2013) applied the
levy flight algorithm in the mating step (selection) of the MBO and called it improved
marriage in honey bees optimization (IMBO). Solgi et al. (2017) reported a modified
HBMO in which the simulated annealing function is replaced by proportionate selec-
tion and a new heuristic function was introduced.

Steps of the MBO:

1.	 M vectors (solutions) in an N dimensional space are generated randomly (Eq. (1)) and
form a population of possible solution vectors.

2.	 The best vector in the population is saved as Q. The Q refers to a queen bee.
3.	 The population is discarded. It sets Energy = 1 ; Counter = 0 ; and � = 1.
4.	 One random vector is generated. The new solution is saved in the memory called queen’s

spermatheca probabilistically based on the following annealing function:

where Δf = absolute difference between the fitness of new random vector and the
best vector in the current population. After the annealing function is applied it sets
Energy = Energy − � and � = � × � ; if the new vector is successful it is added to the
queen’s spermatheca, Counter = Counter + 1 . 0 < 𝜇 ≤ 1 and 0 ≤ � ≤ 1 are predefined
parameters of the algorithm and respectively are called the queen speed parameter and
energy decay rate.

5.	 If Energy > 0 and Counter < SC the algorithm goes to step 4. Otherwise, it goes to
step 6. Step 4 and 5 resemble the mating flight of a queen bee during which the queen
mates with several drones successively until its spermatheca fills with drones’ sperm
or its energy is completely depleted. SC denotes the size of the queen’s spermatheca, a
predefined parameter of the algorithm. During the mating flight the speed of the queen
is gradually reduced by parameter � ; which increase the selection pressure (makes the
queen to be pickier).

6.	 In this step M new vectors are generated as broods. If Counter > 0 (i.e., the spermatheca
is not empty) broods are generated with the crossover (Eq. (4)) and mutation functions,
successively. Notice that in the MBO, one side of the crossover is always Q and the other
side is randomly selected from the vectors saved in the queen’s spermatheca with the
uniform distribution. Mutation adds more diversity to the generated vectors by crosso-
ver. However, if Counter = 0 (this signals the queen’s energy is used up and no drone is
selected during the mating flight) new vectors are generated by mutation applied to the
vector Q.

7.	 The best newly generated vector replaces Q if is better than Q.
8.	 The algorithm goes to step 3 if the termination criterion is not met; otherwise, it ends

(Abbass 2001).

The parameters of the MBO which must be set are M (population size), Pm (prob-
ability of mutation), � , � , SC, and the number of algorithmic iterations (denoted by
TNIt).

(9)Prob = e−Δf∕�

4976	 R. Solgi, H. A. Loáiciga

1 3

3.3 � Bee evolution for genetic algorithms (BEGA)

Jung (2003) introduced the queen bee evolution for genetic algorithm (BEGA). Ming et al
(2010) applied a self-adaptive selection operator resulting in the improved bee evolutionary
genetic algorithm (IBEGA). The BEGA can be seen as a modification on the GA by modi-
fying the selection and reproduction steps.

Steps of the BEGA:

1.	 M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a popu-
lation of tentative solution vectors.

2.	 P vectors must be selected and form a parent population in the GA. The BEGA selects
half of the parents using a roulette wheel described by Eq. (3). The other half of the
parent population is filled by copying the best vectors of the current population.

3.	 M − P new vectors are generated by crossover and mutation successively as is done
in the standard GA (see step 1 of the BS). The BEGA has two types of mutation func-
tions: normal and strong mutations. A portion θ of the population, which is a predefined
parameter, undergoes normal mutation and the rest is subjected to strong mutation. The
difference is that in the strong mutation functions the probability of changing the value
of an element in a vector is higher than in normal mutation.

4.	 If the termination criterion is not met the algorithm goes to step 2; otherwise, it stops
(Jung 2003).

The parameters of the BEGA are M (the population size), θ, Pmn (normal mutation prob-
ability), Pms (strong mutation probability), Pc (crossover probability), Ppop (the number of
parents), and the total number of iterations (TNIt).

3.4 � Artificial bee colony (ABC)

The Ant Bee Colony (ABC) algorithm was developed by Karaboga (2005). Karaboga
et al. (2012) presented a literature review on the implementation of the ABC algorithm
in a wide range of problems. Later on, researchers continued to apply the ABC algo-
rithm for solving numerous problems (Mernik et al. 2015). Tsai et al. (2009) applied
the Newtonian law of gravitation to update the position of onlookers in the ABC. Zhu
and Kwong (2010) enhanced the ABC algorithm by implementing the information
achieved from the best solution in the population of solutions to generate new solu-
tions, and called it gbest guided ABC (GABC). Banharnsakun et al. (2011) updated
the way new solutions are generated by onlooker bees that steers the search towards
the best solution more rapidly. Wang and Wang (2012) reasoned that the GABC may
increase the probability of trapping at a local optimum and proposed a pbest guided
ABC (PABC). Gao et al. (2012) implemented chaotic system and opposition-based
learning method for generating the initial population in a global best guided ABC
algorithm. Xiang and An (2013) modified initialization, selection, and generating new
solutions in the ABC. Gao et al. (2013a, b) proposed new functions and orthogonal
learning for generating new neighborhood solutions for the ABC. Gao et al. (2015)
proposed a multi-population strategy for the ABC. Qin et al. (2015) applied a time-
varying strategy to balance the ratio between the number of onlookers and employed
bees. Cui et al. (2018) applied a dual population framework in which greedy search by

4977Bee‑inspired metaheuristics for global optimization: a…

1 3

employed bees was done near a better portion of the population (and not on the whole
of population as is done in the original ABC). Aslan (2019) modified the selection
process of the ABC applying a transition control mechanism in which not all employed
bees advertise the food source they found; only a portion of employed bees attempt to
attract onlookers. Aslan et al. (2019) proposed improved artificial bee colony (iqABC)
in which a new exploitation technique has been applied. Chen et al. (2019) applied dif-
ferential search strategies to update more variables using combination of crossover and
mutation operators and introduced self-adaptive differential ABC (sdABC). Gupta and
Deep (2019) used sin cosine algorithm (SCA) to improve the performance of the ABC.

Steps of the ABC:

1.	 M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a
population of possible solution vectors; Define ne which is the number of employed
(experienced) bees, as a parameter of the algorithm.

2.	 For every vector i, another vector j is randomly selected ( i ≠ j and 1 ≤ j ≤ ne ) using the
uniform distribution. Next, a neighborhood point is generated by changing the magni-
tude of vector i in a randomly selected direction d:

in which xnew
i,d

= new value of the dth element of the ith vector and r = a random value
in [0,1]. The new vector replaces the old vector if the former has a better fitness than
the latter. This process is analogous to the movement of actual employed bees to a new
position where there is more food.

3.	 A roulette wheel is constructed using probabilities calculated by the Eq. (3) for the
employed bee’s population already modified in step 2. M − ne vectors from the popula-
tion of employed bees are selected with the constructed roulette wheel. For each selected
vector i another employed bee j is selected using the uniform distribution, and a new
neighbor point is generated with Eq. (10).

	  If the new vector’s fitness function is improved it replaces the old vector. This step
resembles actual onlooker bees following the employed bees and exploring the neighbor-
ing locations of food sources already found by employed bees. The actual experienced
agents which discover better food sources attract more onlookers; therefore, this step
implements a roulette wheel selection function. The numbers of onlookers and experi-
enced foragers (ne and no, respectively) are usually selected to be the same and are equal
to one half of the population size (M/2). Each experienced agent examines only one
neighborhood point in its position, whereas the frequency of search near the positions
of onlookers is proportional to the desirability of their positions.

4.	 S vectors of employed bees which have not been improved by neighborhood search for
at least a predetermined number of iterations (limit) are replaced by a vector randomly
generated. This step resembles scouts in a bee swarm (unlike onlookers, scout bees move
randomly and do not follow experienced foragers).

5.	 The algorithm goes to step 2 if the termination criteria are not met. Otherwise, the
algorithm stops (Karaboga and Basturk 2008).

The parameters of the ABC are M (the population size), limit, ne , S (the number of
scouts), and the total number of iterations (TNIt).

(10)xnew
i,d

= xi,d + (r − 0.5) ×
|||
xi,d − xj,d

|||

4978	 R. Solgi, H. A. Loáiciga

1 3

3.5 � Bee algorithm (BA)

The bee algorithm (BA) was introduced by Pham et al. (2005). Koc (2010) studied the
effect of several modifications of the BA named dynamic recruitment, proportional
shrinking, and abandonment strategies. Hussein et al. (2016) studied several variants
of the BA including basic, standard, and shrinking-based BAs. Pham et al. (2011) pre-
sented a modified version of the BA that implemented several operators for generating
new solutions and also a slight modification on the criteria for initializing scout bees.
Yuce et al. (2013) proposed an adaptive neighborhood size change and site abandon-
ment (ANSSA) for the BA. Pham and Darwish (2008) proposed a fuzzy greedy selec-
tion to adjust the parameters of the algorithm automatically. Nasrinpour et al. (2017)
also developed a grouped version of the BA (GBA) for reducing the number of param-
eters that must be adjusted.

Steps of the BA:

1.	 M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a
population of possible solution vectors. The parameters nelit , nb,nen , nbn are set so that
nbn < nen and ne + nb < M.

2.	 The population of solutions is sorted in descending order according to the solutions’
fitness functions’ desirability.

3.	 For each of the first nelit vectors nen new vectors are generated as follows:

where R(�d, xi,d) = symmetric random walk starting from xi,d with step �d ; and r is a
random value uniformly distributed in [0,1]; � is a predefined parameter of the algo-
rithm that refers to the maximum distance a bee can fly away from its original position;
nn = nen (number of trail vectors); andn = nelit . If the best vector among the nn newly
trial vectors is better than the current one the best one replaces the current one.

4.	 For each of the next nb vectors in the population nbn new vectors are generated with
Eq. (11) where nn = nbn and n ≤ i ≤ n + nb . The best trial vector replaces the current one
if its fitness function is better than the current one’s. Thus, the only difference between
step 3 and 4 is the number of neighborhood points nbn and nen that are evaluated.

5.	 The rest of the population ( M − nb ) is replaced by random vectors as scouts.
6.	 If the termination criterion is not met the algorithm goes to step 2; otherwise, it stops

(Pham et al. 2005).

The parameters of the BA are M, nelit , nb,nen , nbn , � , and the total number of iterations
(TNIt).

3.6 � Bee swarm optimization (BSO)

Bee swarm optimization (BSO) developed by Akbari et al. (2010) is an optimization algo-
rithm inspired by the foraging strategies of honey bees.

Steps of the BSO:

(11)x
j

i,d
= R(�d, xi,d) ∀ 1 ≤ i ≤ n 1 ≤ d ≤ N 1 ≤ j ≤ nn

(12)�d = r × (�∕2)

4979Bee‑inspired metaheuristics for global optimization: a…

1 3

1.	 M vectors in an N dimensional space are generated randomly (with Eq. (1)) and form a
population of possible solution vectors. The population of solutions is sorted in descend-
ing order based on the solutions’ fitness functions’ desirability.

3.	 nf new vectors are generated as follows:

where �b and �e = a predetermined parameter in [0,1]; rb and re random values in
[0,1]; bi,d = dth component of the best ever experienced position by vector i (the best
experienced positions and corresponding fitness functions are updated each iteration
and saved); and ed = the best vector in the current population. These new vectors refer
to the new positions of actual foragers in nature.

4.	 A roulette wheel using probabilities calculated by Eq. (3) is applied to the nf newly
generated vectors, where m = nf .

5.	 nl new vectors are generated as follows:

where gi,d = the dth component of a vector selected from nf previously generated vec-
tors in step 3. The selection is done by replacement and using the already constructed
roulette wheel function in step 4. This step resembles actual onlooker bees who follow
an experienced forager. Obviously, vectors with a relatively superior fitness function
have more chance to be selected by roulette wheel selection.

6.	 M − nf − n
l
 new vectors are generated as follows:

in which R(�, xi,d) = a symmetric random walk from xi,d with step � . ρt = ρmax initially
and is reduced to ρmin linearly through iterations where ρmax and ρmin are in [0,1].

7.	 The new population is sorted in descending order based on the solutions’ fitness func-
tions’ desirability.

8.	 The fitness of the newly generated vectors are compared with their previous values. The
new vectors replace the old ones if their fitness functions are better than those of the old
vectors.

9.	 The algorithm stops if the termination criterion is met; otherwise, it proceeds to step 3,
(Akbari et al. 2010).

The parameters of the BSO are M, �b , �e , nf  , nl , ρmax , ρmin , and the total number of itera-
tions (TNIt).

3.7 � Bee colony optimization (BCO)

The bee colony optimization (BCO) was introduced by Lucic (2002) to solve transpor-
tation problems. The algorithm was initially named bee system but was later renamed
BCO. This algorithm is different from the BS developed by Sato and Hagiwara
(1997). The original BCO was designed to solve combinatorial problems. Nikolic and

(13)xnew
i,d

= xi,d + �brb
(
bi,d − xi,d

)
+ �ere(ed − xi,d) ∀ 1 ≤ d ≤ N 1 ≤ i ≤ nf

(14)xnew
i,d

= xi,d + 𝜔ere(gi,d − xi,d) ∀ 1 ≤ d ≤ N nf < i ≤ nf + nl

(15)xnew
i,d

= xi,d +R(𝜏, xi,d) ∀ 1 ≤ d ≤ N nf + nl < i ≤ M

(16)� = ρt(ud − ld) ∀ 1 ≤ d ≤ N

4980	 R. Solgi, H. A. Loáiciga

1 3

Teodorovic (2013) presented a version of BCO for solving continuous problems; yet,
the continuous version did not become ubiquitous in the manner the combinatorial ver-
sion did.

Steps of the BCO:

1.	 M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a popu-
lation of possible solution vectors.

2.	 Based on probabilities calculated by Eq. (3) a roulette wheel is applied and one vector
from the population is selected. The whole population is updated as follows:

where V = selected vector. This is step is executed because this algorithm was primar-
ily designed for combinatorial problems so that all artificial bees (agents) start moving
and gradually build a path to a solution. The algorithm is designed in a way that at the
start of each iteration the population consists of equal solutions. The algorithm also
sets � = (ud − ld) initially and Counter = 0.

3.	 For every vector i in the population a single dimension d from N is randomly selected
using the uniform distribution and the dth component of the vector i is modified as fol-
lows:

where R(�, xi,d) = symmetric random walk starting from xi,d with step � ; r = a random
number in [0,1]; and Δ = the distance from the current value of the dth component of
vector i from either the lower or upper boundary based on the direction of the random
walk. It sets Counter = Counter + 1.

4.	 The algorithm updates � = � × � where � is a positive value less than one. If � is less
than a predefined value � , it sets � = (ud − ld) again.

5.	 While Counter < np : If Counter modulo nc is not zero the algorithm goes to step 3; oth-
erwise, the algorithm continues to step 5.1. If Counter = np then the algorithm proceeds
to step 6.

5.1.	For every vector i in the population the algorithm decides if the vector must keep its
current value and search in the neighborhood of the current position (a recruiter bee)
or must abandon the current position (becoming an uncommitted bee) and follows a
recruiter (experienced forager). For this, probabilities are calculated as follows:

where fe = fitness function of the best vector in the population, and fi = fitness func-
tion of vector i. A random number in [0,1] is generated for each vector and a vector
remains recruiter if Probi is larger than the random number; otherwise, it abandons the
current position and becomes an uncommitted agent.

5.2.	Once recruiters and uncommitted vectors are determined a recruiter is selected for each
uncommitted vector (onlooker) by applying a roulette wheel function based on Eq. (3)
in which m = number of recruiters. The algorithm goes to step 3.

6.	 If the termination criterion is met the algorithm terminates; otherwise, it goes to step 2
(Nikolic and Teodorovic, 2013).

(17)Xi = V ∀ 1 ≤ i ≤ M

(18)xnew
i,d

= xi,d +R(�, xi,d) ∀ 1 ≤ i ≤ M

(19)� = r ×Min(�,Δ)

(20)Probi = e−(fe−fi) ∀ 1 ≤ i ≤ M

4981Bee‑inspired metaheuristics for global optimization: a…

1 3

The parameters of the BCO are M, � , � , np , nc , and the total number of iterations (TNIt).

4 � Experiments and Results

The studied algorithms were implemented for solving nine benchmark functions listed in
Table 1 (Molga and Smutnicki, 2005), where X = (x1, x2,… , xd,… xN) and N denotes the
decision variable and the dimension of the decision space, respectively. The minima of all
of these functions equal zero, except for the optimal solution of the Michalewicz function
which changes depending on its dimensionality. The 5-dimensional Michalewicz’ func-
tion has optimal value equal to (-4.687658). The parameters of the algorithms are listed in
Table 2. It is noteworthy that algorithms’ parameters were mostly set equal to the values
recommended by the developers of the algorithms. The number of iterations in all the algo-
rithms corresponds to about 500,000 functional evaluations executed in solving the same
problems for the purpose of comparison. The number of functional evaluations (NFE) is
widely used for algorithmic comparison because estimating the fitness function for one
trial solution may be as computationally intense as tens of iterations of a metaheuristic
algorithm. Many previous studies multiply the number of iterations by the average number
of generated solutions in each iteration. This work counted exactly the number of times the
fitness function is executed. The fitness function is called when generating a new solution,
and if the fitness is going to be used later its value must be saved, thus avoiding calling it
again. These precautions might seem obvious, but they are in fact necessary to ensure the
underestimation or overestimation of functional evaluations (Mernick et al. 2015).

The algorithms first were used to solve the problems in 5-dimensional space. Each algo-
rithm was run five times and the average and standard division of each algorithm are listed
in Tables 3 and 4, respectively. Figure 1 shows the average of the runs of the algorithms
for problems with 5-dimensional space. Figure 2 shows the number of times each problem

Table 1   List of the test functions

Function’s name Function’s equation Domain

Ackley
f1 (X) = −20EXP

⎛
⎜
⎜
⎜
⎝

−0.2

�
∑N
d=1

x2
d

N

⎞
⎟
⎟
⎟
⎠

− EXP

⎛
⎜
⎜
⎜
⎝

�
∑N
d=1

Cos
�
2�xd

�

N

⎞
⎟
⎟
⎟
⎠

+ 20 + EXP(1)

−32.768 < xd < 32.768

Griewank f2(X) = 1 +
1

4000

∑N

d=1
x2
d
−
∏N

d=1
Cos(

xd√
d
) −600 < xd < 600

Michalewicz
f3(X) = −

∑N

d=1
Sin

�
xd
��

Sin
�

dx2
d

�

��20 0 < xd < 𝜋

Restrigin f4(X) =
∑N

d=1
(x2

d
− 10Cos

�
2�xd

�
+ 10) −5.12 < xd < 5.12

Rosenbrock f5(X) =
∑N−1

d=1
100(xd+1 − x2

d
)
2
+ (xd − 1)2 −50 < xd < 50

Schaffer
f6(X) = 0.5 +

(Sin(
∑N

d=1
x2
d
))
2
−0.5

(1+0.001(
∑N

d=1
x2
d
))
2

−100 < xd < 100

Sphere f7(X) =
∑N

d=1
x2
d

−100 < xd < 100

Schwefel
f8(X) = 418.9829N −

∑N

d=1
xdSin(

�
��xd��

−500 < xd < 500

Weierstrass f9(X) =
∑N

d=1

�∑20

k=0
0.5

kCos(2�3k (xd + 0.5)) − N
∑20

k=0
0.5

kCos(�3k)
�

−0.5 < xd < 0.5

4982	 R. Solgi, H. A. Loáiciga

1 3

Ta
bl

e 
2  

A
lg

or
ith

m
ic

 p
ar

am
et

er
s

B
S

B
SO

BA
B

EG
A

M
BO

B
CO

A
B

C

G
sc

3
M

10
0

M
50

0
M

10
0

M
10

0
M

50
M

10
0

G
po

p
10

0
�
b

0.
5

n
el
it

5
θ

0.
8

P m
0.

3
�

0.
99

8
lim

it
n
e
×
N

L p
op

10
0

�
e

0.
5

n
b

15
P m

n
0.

05
�

0.
99

�
0.

00
1

n
e

50
P m

g
0.

05
n
f

48
n
en

50
P m

s
1

�
0.

01
n
p

1
S

1
P m

l
0.

5
n
l

48
n
b
n

30
P c

0.
6

SC
25

n
c

50
TN

It
5,

00
0

G
m

ig
5

ρ
m
a
x

1
�

0.
01

P p
op

0.
3

TN
It

2,
50

0
TN

It
10

,0
00

P c
0.

5
ρ
m
in

0.
1

TN
It

50
0

TN
It

10
,0

00
P p

op
0.

3
TN

It
10

,0
00

�
,�

0.
4

TN
FE

50
0,

00
0

4983Bee‑inspired metaheuristics for global optimization: a…

1 3

solved successfully in nine runs. The ABC, MBO and BEGA were selected based on the
result of these runs, and their performance was studied further in higher-dimensional
spaces. The NFE and the number of runs remained the same as those used in 5-dimentional
space. The results of these runs are reported in Tables 5, 6, 7, and 8, and in Figs. 3 and 4.

It is seen in Table 3 that the best performance belongs to the ABC. The solutions
found by the ABC for all the test functions are significantly better than those calculated
by the other algorithms. The ABC also found a near global optimal solution for all func-
tions, whereas each of the other algorithms did not achieve good convergence to the global
optimum in at least one of the problems. MBO and BEGA had good performances but
were inferior to the ABC. Their solutions are not as good as those of the ABC but they
approached the global optimum except for Rosenbrock function, which all of the algo-
rithms failed to solve, except the ABC. The accuracies of the solutions found by the MBO
and BEGA were also better than those of the BA, BCO, BS, and BSO. The performances
of the MBO and BEGA were almost identical, while for some problems one of them found
a slightly better solution than the other. Table 4 establishes the smaller standard deviation
(STD) in most cases belongs to the ABC. We also see the same pattern when comparing
the MBO and BEGA with respect to their STDs.

Table 3   Average of five runs of the algorithms for the test functions with 5-dimensional decision space
(absolute zeros refer to any number less than 1.0E-17)

Function ABC BA BCO BS BSO MBO BEGA

Ackley − 4.4E-16 7.5E+00 6.4E+00 2.1E-01 7.9E-01 6.3E-04 3.2E-04
Griewank 0.0E+00 1.7E+00 3.6E-01 2.9E-01 2.9E-01 1.8E-02 2.1E-02
Michalewicz − 4.7E+00 − 4.7E+00 − 4.4E+00 − 4.7E+00 − 4.3E+00 − 4.7E+00 − 4.7E+00
Rastrigin 0.0E+00 2.6E+00 2.2E+00 1.9E+00 2.2E+00 1.4E-04 1.4E-04
Rosenbrock 3.6E-02 8.1E+02 1.3E+01 1.9E+01 8.9E+00 1.9E+00 1.6E+01
Schaffer 3.9E-03 1.5E-01 3.3E-01 9.8E-02 9.7E-03 2.1E-02 2.6E-02
Sphere 0.0E+00 1.1E+02 2.6E-02 1.2E+00 8.3E-03 4.0E-04 5.4E-04
Schwefel 6.4E-05 2.5E+02 2.5E+01 1.5E-01 4.9E+02 5.1E-04 9.6E-04
Weierstrass 0.0E+00 9.0E-01 8.2E-01 2.1E-01 3.6E-01 3.9E-02 4.6E-02

Table 4   Standard deviation of five runs of the algorithms for test functions with 5-dimensional decision
space (absolute zeros refer to any number less than 1.0E-17)

Function ABC BA BCO BS BSO MBO BEGA

Ackley 0.0E+00 2.4E+00 7.3E+00 1.4E-01 4.6E-01 5.3E-04 1.6E-04
Griewank 0.0E+00 4.9E-01 5.2E-02 8.2E-02 1.7E-01 1.1E-02 9.1E-03
Michalewicz 7.9E-16 1.7E-02 8.1E-02 1.4E-02 3.0E-01 4.1E-06 7.5E-06
Rastrigin 0.0E+00 1.2E+00 3.9E-01 6.8E-01 7.4E-01 1.2E-04 1.0E-04
Rosenbrock 2.5E-02 1.0E+03 1.9E+01 7.3E+00 1.0E+01 2.2E+00 1.6E+01
Schaffer 4.8E-03 4.0E-02 7.8E-02 1.6E-02 0.0E+00 1.3E-02 1.3E-02
Sphere 0.0E+00 4.2E+01 1.9E-02 2.2E+00 1.1E-02 2.0E-04 4.3E-04
Schwefel 0.0E+00 3.1E+01 7.9E+00 1.5E-01 8.5E+01 3.3E-04 4.4E-04
Weierstrass 0.0E+00 4.8E-01 3.6E-01 5.9E-02 2.9E-01 7.4E-03 1.4E-02

4984	 R. Solgi, H. A. Loáiciga

1 3

Fig. 1   Average objective function of runs of all algorithms for 5-dimensional test functions

4985Bee‑inspired metaheuristics for global optimization: a…

1 3

Fig. 2   The number of 5-dimen-
sional test functions among nine
test functions for which each
algorithm found a near global
optimum within a margin of
2.00E-01 with 500,000 func-
tional evaluations (NFE)

9
8 8

2 2

1 1

0

1

2

3

4

5

6

7

8

9

10

ABC MBO BEGA BS BSO BA BCO

N
um

be
r

of
 fu

nc
tio

ns

Name of the algorithm

Table 5   Average of five runs of
the algorithms for test functions
with 10-dimensional decision
space (absolute zeros refer to any
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 4.00E+00 2.00E+01 1.60E+01
Griewank 0.00E+00 1.16E-01 6.54E-02
Michalewicz − 9.66E+00 − 9.66E+00 − 9.66E+00
Rastrigin 0.00E+00 5.54E-03 7.23E-04
Rosenbrock 2.55E-02 2.47E+01 1.30E+01
Schaffer 1.52E-02 2.20E-01 8.95E-02
Sphere 0.00E+00 2.02E-02 3.08E-03
Schwefel 1.27E-04 4.51E-02 6.07E-03
Weierstrass 0.00E+00 2.62E-01 1.25E-01

Table 6   Standard deviation
of five runs of the algorithms
for test functions with
10-dimensional decision space
(absolute zeros refer to any
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 8.00E+00 4.00E-03 8.00E+00
Griewank 0.00E+00 2.20E-02 2.94E-02
Michalewicz 7.94E-16 1.50E-03 5.56E-05
Rastrigin 0.00E+00 1.42E-03 2.42E-04
Rosenbrock 1.66E-02 1.67E+01 1.30E+01
Schaffer 1.10E-02 5.32E-02 3.41E-02
Sphere 0.00E+00 7.80E-03 1.53E-03
Schwefel 0.00E+00 2.95E-02 2.09E-03
Weierstrass 0.00E+00 5.20E-02 1.92E-02

Table 7   Average of five runs of
the algorithms for test functions
with 50-dimensional decision
space (absolute zeros refer to any
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 2.00E+01 2.09E+01 2.00E+01
Griewank 0.00E+00 1.54E+02 1.01E+00
Michalewicz − 4.95E+01 − 3.16E+01 − 4.92E+01
Rastrigin 0.00E+00 2.58E+02 1.44E+00
Rosenbrock 1.59E-01 8.83E+07 4.48E+02
Schaffer 4.57E-01 5.00E-01 4.42E-01
Sphere 0.00E+00 1.74E+04 2.38E+00
Schwefel 6.36E-04 6.58E+03 8.63E+00
Weierstrass 1.42E-14 4.05E+01 2.88E+00

4986	 R. Solgi, H. A. Loáiciga

1 3

Defining a margin equal to 2.0E-1 in the objective space about the exact global opti-
mum as a near global optimum implied the BA, BCO, BS, and BSO did not converge to
within the marginal space so defined for several functions. The BA and BCO approached
the global optima of the Michalewicz and Sphere functions, respectively. The BS and BSO
did slightly better and approached the global optima of the two problems. Also, even for
the functions for which these algorithms approached the global optima correctly, they did
not find a competitive solution in comparison to the ABC, MBO, and BEGA. Figure 2
depicts the number of problems solved correctly by each algorithm.

Tables 5 and 7 list the average of the five runs for the algorithms for 10- and 50- dimen-
sional spaces, respectively. It is seen in Tables 5 and 7 that the performance of the ABC
was the best and approached the global optima better in comparison to the other algo-
rithms. The MBO and BEGA did not show similar performance in higher dimensional
spaces as they did in 5-dimensional space. BEGA performed more accurately and faster
than the MBO. By comparing the STD of the runs in Table 6 and 8 it follows that the
MBO had a lower (better) STD, yet this does not mean it had a better performance. For
example, it is seen in Table 6 that the STD of the ABC and BEGA for function Ackley
is larger than the MBO’s. As seen in Table 5 the averages of the ABC and BEGA were
closer to the global optima. In fact, this implies the MBO was trapped in a local optimum
whereas the BEGA and ABC converged to the global optimum in several but not all runs.
This obviously reduces the average obtained but increases the STD. Table 8 indicates that
none of the algorithms approached the global optimum for the Ackley function; at the same
time the STD was low for all of them. For most of the functions even in higher dimensions
MBO, BEGA, and ABC approached well the global optima with the same NFE like the
5-dimensional decision space. However, this was not the case for the Ackley function. The
results confirm that larger search spaces require more computational effort. For example,
if instead of NFE = 500,000 the algorithms conduct at least 1,000,000 NFE, then the aver-
age of five runs of the ABC, MBO, and BEGA are 9.12E-04, 2.00E+01, and 2.00E+01,
respectively. The STD of ABC, MBO, and BEGA are in this case 1.73E-03, 2.32E-03,
and 6.12E-08, respectively. Small STDs demonstrate the convergence of the algorithm
to common optima. However, not all of them converge to the global optimum. A larger
NFE results in ABC being able to converge to the global optimum well, but the MBO and
BEGA were trapped at local optima even after doubling the number of NFE, and expe-
rienced premature convergence. The lesson here is that although all of these algorithms
could be shown to eventually converge to the global optimum (Rudolph 2012), in practice,
however, it may take them an impractically long computational time to escape from a local
optimum.

Table 8   Standard deviation
of five runs of the algorithms
for test functions with
50-dimensional decision space
(absolute zeros refer to any
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 3.92E-05 2.45E-02 1.65E-05
Griewank 0.00E+00 2.42E+01 2.29E-02
Michalewicz 1.44E-02 7.99E-01 6.38E-02
Rastrigin 0.00E+00 1.58E+01 1.26E-01
Rosenbrock 1.12E-01 2.33E+07 1.18E+02
Schaffer 9.84E-03 1.18E-05 1.52E-02
Sphere 0.00E+00 9.98E+02 7.46E-01
Schwefel 1.46E-12 4.74E+02 1.71E+00
Weierstrass 8.99E-15 7.90E-01 7.50E-02

4987Bee‑inspired metaheuristics for global optimization: a…

1 3

Fig. 3   Average objective function of runs of ABC, MBO, and BEGA for 10-dimensional test functions

4988	 R. Solgi, H. A. Loáiciga

1 3

Fig. 4   Average objective function of runs of ABC, MBO, and BEGA for 50-dimensional test functions (*
refers to functions for which MBO did not approach the optimum and is out of the range of the graph)

4989Bee‑inspired metaheuristics for global optimization: a…

1 3

Overall, the ABC has been shown by our evaluation to be a powerful algorithm that
solved the problems with different dimensions accurately even without any parameter
adjustment. MBO and the BEGA performed fairly and were successful in solving the
majority of problems. MBO and the BEGA can be categorized as efficient algorithms
although they did not perform as well as ABC in the test problems. The other metaheuris-
tics herein evaluated failed in solving most of the test problems.

5 � Discussion

This study’s results confirm the findings of previous works except for the BCO and BSO,
in which case differences may arise by the fact that no parameter adjustment was affected
in this study. It is common for the algorithms’ developers to conduct a meticulous param-
eter adjustment for the algorithm. This work presented an unbiased comparison of sev-
eral metaheuristics insofar as parameters adjustment is concerned. This work’s results are
implicitly supported by the relevant literature, wherein the ABC and MBO (or later called
HBMO) have been reported more frequently than the other algorithms. Other versions of
these algorithms such as the BCO may exhibit good performance for special problems of
a combinatorial nature, for example. This work’s purpose is not to judge previous works;
rather, its primary goal is to implement several algorithms and compare their performances
emphasizing the user perspective.

The comparison of foraging-inspired algorithms with those inspired by mating behavior
of bees revealed that all mating inspired-algorithms provide a fair solution, whereas the
algorithms developed based on the foraging behavior of bees were herein found to be more
likely to fail in the search for optimal solutions. The better performance of mating-inspired
algorithms may be explained by the fact that BSO, BA, and BCO apply a random walk
in which the length of the steps is a parameter of the algorithm, directly or indirectly. On
the other hand, the ABC generates a trial point between two selected solutions. Recall all
metaheuristics can be divided into two phases of generating new solutions and selection.
Functions used in these phases determine the success or failure of the search. The BSO and
BA do not have any established and firm strategy for generating new solutions. Therefore,
the result of the algorithm heavily depends on parameters adjustment that determines the
length of the random walk. In the BCO this is worse because the length of the steps is
dynamic, which makes the algorithm more complex when the gradual adjustment rate is
determined by user-defined parameters. The mating-inspired algorithms on the other hand,
implement the crossover operator when generating new solutions. The method used in the
ABC is also a crossover function in the continuous domain. However, why does the ABC
work better than its mating-inspired rivals, the MBO and BEGA? An initial guess is that
the MBO and the BEGA conduct a concentrated search near the best solution found. MBO
features one side of the crossover function as the best solution; the BEGA features half
of the parent population of a simple GA as copies of the best solution. The ABC, on the
other hand, performs a more scattered search: it gives more attention to the better solutions
but does not dedicate the majority of its search capacity to the best solution. Therefore,
the superiority of the ABC on its mating-inspired rivals seems to stem from the selection
functions applied by rival algorithms. The ABC in general balances exploitation and explo-
ration quite well in comparison to other algorithms. Table 9 provides a summary of the
strengths and shortcomings of each algorithms.

4990	 R. Solgi, H. A. Loáiciga

1 3

The BS’s performance was herein found not to be exceptional among the evaluated
algorithms. However, this algorithm has an interesting trait. The BS is one of the first algo-
rithms, developed in 1997, and introduced the idea of sharing information among batches
of solutions. An idea very similar to what later inspired well-known shuffled frog-leaping
algorithm (SFLA; Eusuff and Lansey 2003). BS has not been widely applied according to
our literature review. The main reason could be its complexity. Coding this algorithm was
the most difficult among all the bee-inspired metaheuristics herein evaluated. Its number of
parameters is also relatively large.

The MBO was the first algorithm that accurately simulated the bees’ behavior to solve
optimization problems. Its performance is competitive although is not the best among the
evaluated algorithms. The MBO’s selection method is computationally inefficient due to
the application of simulated annealing. The simulated annealing selection method gener-
ates a random solution. If that random solution’s fitness is good enough to pass a random
criterion it enters the search; otherwise, the trial solution is deleted and another random
solution is generated until the energy of the queen vanishes or a predefined number of solu-
tions is selected. This is inefficient because whenever a totally random solution is gener-
ated its fitness function is evaluated, whereas most of the trial solutions are not successful
in entering the search due to their low fitness and are eliminated immediately. Thus, a large
amount of computational effort is invested in evaluating the fitness function of unsuccess-
ful drones whose characteristic never participate in the search procedure. Yang et al. (2007)
presented the fast marriage in honeybee optimization (FMBO) in which the simulated
annealing process is eliminated, and all randomly generated solutions are accepted in the
selection process without any filtering. Solgi et al. (2016) modified the MBO (or HBMO)
and replaced the simulated annealing with a Boltzmann proportionate selection function.

The BEGA is a modified GA based on bee mating rituals. There are two differences
between the standard GA and the BEGA. First, half of the parent population in the BEGA
consists of copies of the queen (the best solution) and the remaining half is selected using a
selection function, whereas in the simple GA all parents are selected randomly. The second
difference is that part of the population is modified with strong mutation rather than normal
or weak mutation. The BEGA is simple and effective. Its main disadvantage is determining
the rates of normal and strong mutation and their probabilities, which are parameters that
determines the BEGA’s performance.

Table 9   Summary of the strengths and weaknesses of the studied algorithms

Algorithm Summary of the results

ABC ABC is fast, efficient, and easy to implement
MBO MBO has a high capability of approaching the global optimum but suffers from some inef-

ficiency due to simulated annealing applied in its selection method
BEGA BEGA is simple and effective but has more user defined parameters in comparison to its rivals
BS BS is slow and inefficient but introduced the idea of sharing information among batches of

solutions
BSO BSO suffers from the lack of established strategy for generating new solutions
BA BA has several serious design flaws
BCO Unlike its combinatorial version, the continuous version of BCO is far from a mature and

efficient algorithm

4991Bee‑inspired metaheuristics for global optimization: a…

1 3

The BA is straightforward, and its basic idea is searching near the best and other
good solutions, and replacing previous solutions with newly found, superior, solutions.
Also, it devotes part of the population to search the decision space randomly. The main
shortcoming with this algorithm is that it rests on the assumption that generating ran-
dom solutions ensures good population diversity. This assumption is not true because
randomly generated solutions does not ensure improvement from one generation to the
next if they do not mix with the existed solutions appropriately. The probability of find-
ing an improved solution by generating totally random vectors is very low. Diversity is
enhanced by mixing random solutions with other solutions that exist in the population,
which allows the algorithm search subspaces that are impossible to access with only
resorting to combinations of existing solutions. The randomly generated solutions in
the BA usually are not mixed with existing ones and thus have a very low chance of
improving the new solutions. Another BA disadvantage is assigning a step for neighbor-
hood search. This is problem-dependent, and the step specification is difficult to adjust
properly without good knowledge of the decision space, which is usually unavailable.
Another BA disadvantage is that a roulette wheel or other selection functions are not
applied to assign onlookers to the good solutions in this algorithm. It is non-trivial for
the user to decide the number of neighborhood solutions assigned to the elite and good
solutions. Also, repetitive solutions in the population cause elite and good solutions to
be nearly identical. Therefore, searching near them with different ratios is not effective.

The BCO leaves defining the strategy of generating new solutions almost entirely to
the user. Kruger et al. (2016) proved the convergence of the BCO, but they also stated
that generating new solutions with this algorithm is problem dependent. The primary
question concerns the capacities of this algorithm. The reason metaheuristics are used
is mostly for solving problems with unknown domains. Finding the best way to generate
new solutions in unknown domains may be as difficult as finding the optimal solution.
The BCO has been used in solving combinatorial problems frequently. Our results show
the continuous version is far from being an effective and reliable algorithm.

Surprisingly, the best performance in our evaluation belongs to the algorithms which
have the least number of parameters (i.e., the ABC, MBO, and BEGA). Parameters
specification has a significant effect on algorithmic performance and hinders their appli-
cability and their desirability. Most new varieties of algorithms added new user-defined
parameters, and a few featured automatic parameter adjustments. From a coding per-
spective the ABC is the simplest to code among the evaluated algorithm. One of the
appealing features of the ABC reported frequently in the literature is its simplicity. Most
of the modified versions of the ABC have added extra parameters left to the user to
adjust, and generally have rendered it more complex. This runs contrary to the fact that
the ABC’s popularity is partly explained by its relative simplicity. This work recom-
mends that new versions of the algorithm must improve its performance while reduc-
ing the number of parameters and the algorithmic complexity. This recommendation is
consistent with the law of parsimony (or Occam’s philosophical razor) which posits that
entities should not be multiplied without necessity.

Last but not least, slow convergence and trapping in local optima are common prob-
lems found in several evaluated metaheuristics. The convergence of metaheuristics has
been assessed in several studies (i.e. Yang 2011; Rudolph, 2012; Kruger, et al. 2016);
yet, the hitting time (convergence rate) of the algorithms is not easily predictable. This
issue has rendered the metaheuristic development akin to an art more than a science.
One phenomenon, bees’ behavior, has inspired multiple metaheuristics. Our analysis
of such metaheuristics suggests that the gained experience in algorithmic development

4992	 R. Solgi, H. A. Loáiciga

1 3

played a greater role in the appearance of new algorithms than newly gained knowledge
of natural phenomena. Therefore, it appears timely to further study the metaheuristics’
convergence rate theoretically and empirically.

6 � Concluding remarks

This work studied bee-inspired metaheuristics for global optimization. Several basic
search strategies have been developed claiming to be inspired from one single meta-
phor among which seven algorithms herein evaluated were the bee system (BS), mat-
ing bee optimization (MBO), bee colony optimization (BCO), bee evolution for genetic
algorithms (BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee swarm
optimization (BSO). The latter algorithms feature original or basic (root) ideas or char-
acteristics that have been shown to solve continuous problems. The performances of
the algorithms were evaluated with nine benchmark functions. Strengths and shortcom-
ings of each algorithm were discussed. The ABC had the best performance among all
the bee-inspired algorithms and found a near global optimum for all problems, whereas
other algorithms did not solve at least one problem each. The BEGA and MBO, each
of which solved eight problems among nine problems, were the best performing algo-
rithms after the ABC. The BEGA showed a better performance than the MBO when the
dimensionality of the test problems increased. The ABC is the simplest algorithm with
the smallest number of user-defined parameters (i.e., it is parsimonious). The ABC’s
simplicity and its good performance make it notable among its rivals. The BEGA and
MBO are also relatively simple algorithms to code and execute. Dividing the source of
inspiration of the bees’ metaheuristics into the foraging behavior of bees and the mat-
ing rituals of bees revealed that all the latter algorithms yielded reliable performances,
whereas the former features only one successful algorithm (i.e., the ABC). Our study of
several bee-inspired algorithms indicates that successive development did not arise from
a better understanding of natural phenomena, but, rather, from the cumulative experi-
ence gained from years of algorithmic trials and human ingenuity. Algorithm developers
continue to relate their intuitions to natural phenomena. Yet, it seems timely to investi-
gate more profoundly the reasoning behind the metaheuristics’ convergence rate.

Funding  Not relevant.

Availability of data and material  Not relevant.

Code availability  The codes are available at https://​github.​com/​rmsol​gi/​bee-​inspi​red-​metah​euris​tics.

Declaration 

Conflict of interest  The authors declare that they have no conflict of interest.

https://github.com/rmsolgi/bee-inspired-metaheuristics

4993Bee‑inspired metaheuristics for global optimization: a…

1 3

References

Abbass HA (2001) MBO: marriage in honey bees optimization a haplometrosis polygynous swarm-
ing approach. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat.
No.01TH8546), 27–30 May, Seoul, South Korea

Abbass H, Teo J (2003) A true annealing approach to the marriage in honey-bees optimization algo-
rithm. Int J Comput Intell Appl 3(2):199–211

Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document cluster-
ing. Studies in computational intelligence. Springer, Berlin

Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and
applications. Neural Comput Appl 32:12381–12401

Abualigah L, Diabat A (2020) A novel hybrid antlion optimization algorithm for multi-objective task
scheduling problems in cloud computing environments. Clust Comput. https://​doi.​org/​10.​1007/​
s10586-​020-​03075-5

Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms to information retrieval using vector
space model. Int J Comput Sci Eng Appl 5(1):19

Abualigah LM, Khader AT, Hanandeh ES (2017) A new feature selection method to improve the document
clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

Abualigah LM, Khader AT, abd Hanandeh ES (2018a) Hybrid clustering analysis using improved krill herd
algorithm. Appl Intell 48:4047–4071

Abualigah LM, Khader AT, Hanandeh ES (2018b) A combination of objective functions and hybrid krill
herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

Abualigah L, Diabat A, Geem ZW (2020a) A comprehensive survey of the harmony search algorithm in
clustering applications. Appl Sci 10(11):3827

Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2020b) Ant lion optimizer: a compre-
hensive survey of its variants and applications. Arch Comput Methods Eng. https://​doi.​org/​10.​1007/​
s11831-​020-​09420-6

Akbari R, Mohammadi A, Ziarati K (2010) A novel bee swarm optimization algorithm for numerical func-
tion optimization. Commun Nonlinear Sci Number Simulat 15:3142–3155

Ashghari S, Jafari Navimipour N (2019a) Cloud service composition using an inverted ant colony optimiza-
tion algorithm. Int J Bio-Inspir Comput 13(4):257

Ashghari S, Jafari Navimipour N (2019b) Resource discovery in the peer to peer networks using an inverted
ant colony optimization algorithm. Peer Peer Netw Appl 12:129–142

Aslan S (2019) A transition control mechanism for artificial bee colony (ABC) algorithm. Comput Intell
Neurosci 2019:5012313

Aslan S, Badem H, Karaboga D (2019) Improved quick artificial bee colony (iqABC) algorithm for global
optimization. Soft Comput 23:13161–13182

Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algo-
rithm. Appl Soft Comput 11:2888–2901

Barker JSF (1958) Simulation of genetic systems by automatic digital computers. Aust J Biol Sci
11(4):603–612

Box GEP (1957) Evolutionary operation: a method for increasing industrial productivity. Appl Stat
6(2):81–101

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge Uni. Press, Cambridge
Bozorg-Haddad O, Afshar A, Marino MA (2006) Honey-bees mating optimization (HBMO) algorithm: a

new heuristic approach for water resources optimization. Water Resour Manag 20:661–680
Bozorg-Haddad O, Hoseini-Ghafari S, Solgi M, Loaiciga HA (2016a) Intermittent urban water supply with

protection of consumer’s welfare. J Pipeline Syst Eng Pract 7(3):04016002
Bozorg-Haddad O, Ghajarnia N, Solgi M, Loaiciga HA (2016b) A DSS based honey bee mating optimi-

zation (HBMO) algorithm for single- and multi-objective design of water distribution networks. In:
Metaheuristic and optimization in civil engineering. Springer, Cham, pp 199–233

Bozorg-Haddad O, Ghajarnia N, Solgi M, Loaiciga HA, Marino MA (2017a) Multi-objective design
of water distribution systems based on the fuzzy reliability index. J Water Supply Res Technol
66(1):36–48

Bozorg-Haddad O, Solgi M, Loaiciga HA (2017b) Meta-heuristic and evolutionary algorithms for engineer-
ing optimization. Wiley, New York

Bremermann HJ (1962) Optimization through evolution and recombination. In: Yovits MC, Jacobi GT,
Goldstein GD (eds) Self-organized systems. Spartan Books, Washington

Celik Y, Ulker E (2013) An improved marriage in honey bees optimization algorithm for single objective
constrained optimization. Sci World J 2013:370172

https://doi.org/10.1007/s10586-020-03075-5
https://doi.org/10.1007/s10586-020-03075-5
https://doi.org/10.1007/s11831-020-09420-6
https://doi.org/10.1007/s11831-020-09420-6

4994	 R. Solgi, H. A. Loáiciga

1 3

Chen X, Tianfield H, Li K (2019) Self-adaptive differential bee colony algorithm for global optimization
problem. Swarm Evol Comput 45:70–91

Comellas F, Mrtinez-Navaro J (2009) Bumblebees: a multiagent combinatorial optimization algorithm
inspired by social insect behavior. In: Proceedings of the first ACM/SIGEVO summit on genetic evolu-
tionary computation, 12–14 June, Shanghai, China

Cui L, Li G, Luo Y, Chen F, Ming Z, Lu N, Lu J (2018) An enhanced artificial bee colony algorithm with
dual-population framework. Swarm Evol Comput 43:184–206

Darwish A, Hassanien AE, Das S (2019) A survey of swarm and evolutionary computing approaches for
deep learning. Artif Intell Rev 53:1767–1812

De Jong K, Fogel DB, Schwefel HP (1997) A history of evolutionary computation. In: Back T, Fogel DB,
Michalewicz Z (eds) Handbook of evolutionary computation. IOP publishing Ltd and Oxford Univer-
sity Press, Oxford

Dereli S, Koker R (2019) A metaheuristic proposal for inverse kinematics solution of 7-DOF serial robotic
manipulator: quantum behaved particle swarm algorithm. Artif Intell Rev 53:949–964

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Dipartimento di Elettron-
ica, Politecnico di Milano, Milano, Technical Report No 91-016

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a colony of cooperating ants.
IEEE Trans Syst Man Cybern Part B 26(1):29–42

Eusuff MM, Lansey KE (2003) Application of the shuffled frog leaping algorithm for the optimization of a
general large-scale water supply system. Water Resour Manag 23(4):797–823

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York
Friedberg RM (1958) A learning machine: part I. IBM J Res Dev 2(1):2–13
Gao WF, Liu SY, Huang LL (2013a) A novel artificial bee colony algorithm based on modified search equa-

tion and orthogonal learning. IEEE Trans Cybern 43(3):1011
Gao W, Liu S, Huang L (2013b) A global best artificial bee colony algorithm for global optimization. J

Comput Appl Math 236:2741–2753
Gao WF, Huang LL, Liu SY, Dai C (2015) Artificial bee colony algorithm based on information learning.

IEEE Trans Cybern 45(12):2827
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res

13:533–549
Gupta S, Deep K (2019) Hybrid sin cosine artificial bee colony algorithm for global optimization and image

segmentation. Neural Comput Appl 32:9521–9543
Hajimirzaei B, Jafari Navimipour N (2019) Intrusion detection for cloud computing using neural networks

and artificial bee colony optimization algorithm. ICT Express 5(1):56
Hillier FS, Liberman GJ (1995) Introduction to operations research, 6th edn. McGraw-Hill, New York
Holland JH (1967) Nonlinear environments permitting efficient adaptation. Computer and information sci-

ences II. Academic Press Inc, New York
Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM

8(2):212–229
Hussein WA, Sahran S, Sheikh Abdullah SNH (2016) The variants of the bees algorithm (BA): s survey.

Artif Intell Rev 47(1):67
Jong GJ, Horng GJ (2017) A novel queen honey bee migration (QHBM) algorithm for sink repositioning in

wireless sensor network. Wirel Pers Commun 95:3209–3232
Jung SH (2003) Queen-bee evolution for genetic algorithms. Electron Lett 39(6):575
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University,

Technical Report-TR06, Kayseri, Turkey
Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev

31:61–85
Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft

Comput 8:687–698
Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial bee colony

(ABC) algorithm and applications. Artif Intell Rev 42:21–57
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of international conference on

neural networks, Perth, Australia, November 27 to December 1, Institute of Electrical and Electronics
Engineers (IEEE), Piscataway, NJ, pp 1942–1948

Khan L, Ullah I, Saeed T, Lo KL (2010) Virtual bees algorithm based design of damping control system for
TCSC. Aust J Basic Appl Sci 4(1):1–18

Kirkpatrick S, Gelatte CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4589):671–680

4995Bee‑inspired metaheuristics for global optimization: a…

1 3

Koc (2010) The bees algorithm theory, improvements and applications. PhD thesis, Cardiff University, Car-
diff, UK

Kruger TJ, Davidovic T, Teodorovic D, Selmic M (2016) The bee colony optimization algorithm and its
convergence. Int J Bio Inspir Comput 8(5):340

Lucic P (2002) Modeling transportation problems using concepts of swarm intelligence and soft computing.
PhD thesis, Virginia Polytechnic Institute and State University, Virginia, USA

Mernik M, Liu SH, Karaboga D, Crepinsek M (2015) On clarifying misconceptions when comparing vari-
ants of the artificial bee colony algorithm by offering a new implementation. Inf Sci 291:115–127

Ming H, Baohui J, Xu L (2010) An improved bee evolutionary genetic algorithm. In: IEEE international
conference on intelligent computation and intelligent systems, 29–31 October, Xiamen, China

Molga M, Smutnicki C (2005) Test functions for optimization needs. http://​www.​zsd.​ict.​pwr.​wroc.​pl/​
files/​docs/​funct​ions.​pdf. Accessed Nov 2020

Moradipari A, Alizadeh M (2018) Pricing differentiated services in an electric vehicle public charging
station network. In: 57th IEEE conference on decision and control (CDC), December 17–19, FL,
USA

Nasrinpour HR, Bavani MA, Teshnehlab M (2017) Grouped bees algorithm: a grouped version of the
bees algorithm. Computers 6(1):5

Nikolic M, Teodorovic D (2013) Empirical study of the bee colony optimization (BCO) algorithm.
Expert Syst Appl 40:4609–4620

Panahi V, Jafari Navimipour N (2019) Join query optimization in the distributed database system using
an artificial bee colony algorithm and genetic operators. Concurr Comput Pract Exp 31(17):e5218

Pham DT, Darwish AH (2008) Fuzzy selection of local search sites in the bees algorithm. In: Pham DT,
Eldukhri EE, Soroka AJ (eds) Innovative production machines and systems. Cardiff University, Cardiff

Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) Bee algorithm a novel approach to
function optimization. Technical Note: MEC 0501, Cardiff University, Cardiff, UK

Pham QT, Pham DT, Castellani M (2011) A modified bees algorithm and a statistics-based method for
tuning its parameters. Proc Inst Mech Eng Part I J Syst Control Eng 226:287–301

Poolsamran P, Thammano A (2011) A modified marriage in honey-bee optimization for function optimi-
zation problems. Procedia Comput Sci 6:335–342

Qin Q, Cheng S, Zhang Q, Li L, Shi Y (2015) Artificial bee colony algorithm with time varying strategy.
In: Discrete Dynamics in Nature and Society, 2015, 674595

Quijano N, Passino KM (2010) Honey bee social foraging algorithms for resource allocation: theory and
Application. Eng Appl Artif Intell 23(6):845

Rabe M, Deininger M (2012) State of art and research demands for simulation modeling of green supply
chains. Int J Autom Technol 6(3):296

Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment
Library Translation 1122

Rudolph G (2012) Stochastic convergence. In: Rozenberg G, Back T, Kok JN (eds) Handbook of natural
computing. Springer, Berlin, pp 847–869

Sato T, Hagiwara M (1997) Bee system: finding solution by a concentrated search. In: IEEE interna-
tional conference on systems, man, and cybernetics. computational cybernetics and simulation,
12–15 October, Orlando, FL, USA

Solgi M, Bozorg-Haddad O, Seifollahi Aghmiuni S, Ghasemi-Abiazani P, Loaiciga HA (2016) Optimal
operation of water distribution networks under water shortage considering water quality. J Pipeline
Syst Eng Pract 7(3):04016005

Solgi M, Bozorg-Haddad O, Loaiciga HA (2017) The enhanced honey-bee mating optimization algo-
rithm for water resources optimization. Water Resour Manag 31:885–901

Sorensen K, Sevaux M, Glover F (2017) A history of metaheuristics. In: Marti R, Pardalos P, Resende M
(eds) Handbook of heuristics. Springer, Berlin

Starke S, Hendrich N, Zhang J (2019) Memetic evolution for genetic full-body inverse kinematics in
robotics and animation. IEEE Trans Evol Comput 23(3):406

Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization
over continuous spaces. J Glob Optim 11(4):341–359

Tsai P, Chu SC, Pan JS (2009) Enhanced artificial bee colony optimization. Int J Innov Comput Inf Con-
trol 5(12):5081

Wang B, Wang L (2012) A novel artificial bee colony algorithm for numerical function optimization. In:
Fourth international conference on computational and information sciences, 17–19 August, Chong-
qing, China

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

4996	 R. Solgi, H. A. Loáiciga

1 3

Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by
honey bee behavior. In: Dorigo M, Birattari M, Blum C, Gambardella LM, Mondada F, Stutzle Th
(eds) Ant colony optimization and swarm intelligence. Springer, Berlin

Xiang W, An M (2013) An efficient and robust artificial bee colony algorithm for numerical optimiza-
tion. Comput Oper Res 40:1256–1265

Xu C, Zhang Q, Li J, Zhao X (2008) A bee swarm genetic algorithm for the optimization of DNA
encoding. In: The 3rd international conference on innovative computing information and control
(ICICIC’08), 18–20 June, Dalian, China

Xu B, Zhang M, Browne WM, Yao X (2016) A survey on evolutionary computation approached to fea-
ture selection. IEEE Trans Evol Comput 20(4)

Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Pardalos PM,
Rebennack S (eds) SEA 2011, LNCS 6630. Springer, Berlin

Yang C, Chen J, Tu X (2007) Algorithm of fast marriage in honey bees optimization and convergence anal-
ysis. In: Proceedings of IEEE international conference on automation and logistics, August 18–21,
Jinan, China

Yuce B, Packianather MS, Mastrocinque E, Pham DT, Lambiase A (2013) Honey bees inspired optimiza-
tion method: the bees algorithm. Insects 4:646–662

Zanbouri K, Jafari Navimipour N (2019) A cloud service composition method using a trust-based clustering
algorithm and honeybee mating optimization algorithm. Int J Commun Syst 33:e4259

Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization.
Appl Math Comput 217:3166–3172

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Bee-inspired metaheuristics for global optimization: a performance comparison
	Abstract
	1 Introduction
	2 Methodology
	3 Bee inspired metaheuristics
	3.1 Bee system (BS)
	3.2 Mating bee optimization (MBO)
	3.3 Bee evolution for genetic algorithms (BEGA)
	3.4 Artificial bee colony (ABC)
	3.5 Bee algorithm (BA)
	3.6 Bee swarm optimization (BSO)
	3.7 Bee colony optimization (BCO)

	4 Experiments and Results
	5 Discussion
	6 Concluding remarks
	References

