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Abstract
Metaheuristics are widely applied to solve optimization problems. Numerous metaheuristic 
algorithms inspired by natural processes have been introduced in the past years. Studying 
and comparing the convergence of metaheuristics is helpful in future algorithmic devel-
opment and applications. This study focuses on bee-inspired metaheuristics and identifies 
seven basic or root algorithms applied to solve continuous optimization problems. They are 
the bee system, mating bee optimization (MBO), bee colony optimization, bee evolution 
for genetic algorithms (BEGA), bee algorithm, artificial bee colony (ABC), and bee swarm 
optimization. The algorithms’ performances are evaluated with several benchmark prob-
lems. This study’s results rank the cited algorithms according to their convergence effi-
ciency. The strengths and shortcomings of each algorithm are discussed. The ABC, BEGA, 
and MBO are the most efficient algorithms. This study’s results show the convergence rate 
among different algorithms varies, and evaluates the causes of such variation.

Keywords Metaheuristics · Swarm intelligence · Evolutionary algorithms · Optimization · 
Bee inspired algorithms

1 Introduction

The task of optimization arises in a wide range of problems relevant to machine learn-
ing (Darwish et  al. 2019; Xu et  al. 2016), robotics and animation (Starke et  al. 2019; 
Dereli and Koker et al. 2019), supply chains and logistics (Rabe and Deininger 2012), 
transportation (Moradipari and Alizadeh 2018), urban infrastructures (Solgi et al. 2016; 
Bozorg-Haddad et al. 2016a) and other fields. Optimization is simply defined as finding 
the best feasible solution based on some criteria and constraints among a set of plausi-
ble alternatives. Yet, optimization problems cannot always be easily solved. A variety 
of techniques have been introduced to solve different kinds of optimization problems 
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including linear programming, dynamic programming, non-linear convex optimization 
and so forth (Hillier and Lieberman 1995; Boyd and Vandenberghe 2004).

Metaheuristics are other kinds of optimization algorithms that are useful to find 
a near optimal solution when the problem is not approachable by other techniques 
(Bozorg-Haddad et  al. 2017a, b). Metaheuristic are defined as “a system of adaptive 
heuristics which are adjusted through concurrent learning”. Many metaheuristic algo-
rithms have been applied successfully in a broad range of domains, from computer sci-
ence to healthcare and across all engineering fields (Abualigah and Hanandeh 2015; 
Bozorg-Haddad et al. 2016b; 2017a; b; Abualigah et al. 2017, 2018a, b; Ashghari and 
Navimipour, 2019a, b; Hajimirzaei and Navimipour 2019, Panahi and Navimipour 2019; 
Zanbouri and Navimipour 2019, Abualigah 2019, Abualigah and Diabat 2020).

Sorensen et  al. (2017) reported that formal studies on techniques used in modern 
metaheuristic algorithms can be traced back to world war II with the advent of opera-
tions research long before the term metaheuristic emerged. Hooke and Jeeves (1961) 
introduced pattern search (PS), which is one of the early and well-known metaheuris-
tics. The emergence of metaheuristics has gone hand in hand with the revolutionary 
emergence of evolutionary computation (EC). De Jong et al. (1997) presented a recent 
history of EC starting from the mid 1950s, citing the endeavors of pioneers like Box 
(1957), Friedberg (1958), Barker (1958), and Bremermann (1962), who implement 
evolutionary processes in enhancing industrial productivity, mathematical program-
ming, and machine learning. After a relatively short period of skepticism the power of 
EC was demonstrated by the notable works of Rechenberg (1965), Fogel et al. (1966), 
and Holland (1967) who invented evolutionary strategies (ESs), evolutionary program-
ming (EP), and genetic algorithms (GAs), respectively. A variety of metaheuristics were 
introduced inspired by different metaphors following the introduction of the well-known 
GA by Holland (1975). Simulated annealing (SA) by Kirkpatrick et  al. (1983), tabu 
search by Glover (1986), ant colony optimization (ACO) by Dorigo et al. (1991, 1996), 
particle swarm optimization (PSO) by Kennedy and Eberhart (1995), and differential 
evolution (DE) by Storn and Price (1997) are among the early metaheuristics. Since 
then the metaheuristics and EC gained popularity and many other algorithms have been 
developed (Abualigah 2020; Abualigah et al. 2020a, b).

One of the metaphors inspiring metaheuristics is bees’ behavior. Bees’ social and mat-
ing rituals are unique and constitutes a kind of swarm intelligence that has survived for 
nearly 100 million years. Normally these species live in well-organized colonies which 
maximize efficiency by division of labor for tasks like foraging, and for reproduction. 
Numerous algorithms have been recently inspired from bee swarming behavior (Karaboga 
and Akay 2009). The first metaheuristic explicitly claimed to be inspired by bees was the 
bee system (BS) developed by Sato and Hagiwara (1997). Next, a number of bee inspired 
metaheuristics were proposed including but not limited to mating bee optimization (MBO) 
by Abbass (2001), bee colony optimization (BCO; Lucic 2002), bee evolution for genetic 
algorithms (BEGA; Jung 2003), BeeHive (Wedde et al. 2004), bee algorithm (BA; Pham 
et al. 2005), artificial bee colony (ABC; Karaboga 2005), honey bee social foraging (Qui-
jano and Passino 2010), bee swarm genetic algorithm (BSGA; Xu et  al. 2008), bumble-
bees (Comellas and Martinez-Navarro 2009), virtual bee algorithm (VBA; Khan et  al. 
2010), bee swarm optimization (BSO; Akbari et  al. 2010), and queen honey bee migra-
tion (QHBM; Jong et  al. 2017). The aforementioned list cites a few algorithms which 
have undergone modifications and hybridizations after development, and which have been 
implemented in solving a variety of problems that cannot be recounted in a length-limited 
paper.
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Our study of bee inspired algorithms revealed that among an extensive number of bee-
inspired metaheuristics, many of which have been tied to a specific kind of problem, only 
a few basic ideas have been proposed for global optimization in the continuous domain. 
Yet, there is no comparison of these algorithmic ideas. This work presents an experimental 
study of the performance of bee-inspired metaheuristic algorithms. Hence, the bee sys-
tem (BS), mating bee optimization (MBO), bee colony optimization (BCO), bee evolution 
for genetic algorithms (BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee 
swarm optimization (BSO) are selected and their performance has been compared under 
several benchmark function. This work contributes to algorithmic development by high-
lighting pathways for future studies in the field of metaheuristics.

In the following, first the methodology of this study is presented. Next, the bees’ charac-
teristics that have been used for algorithmic development are briefly described. This is fol-
lowed by a description of the metaheuristic algorithms studied in this work and the steps of 
each algorithm. The performances of the algorithms are evaluated with continuous-domain 
problems and the results are presented in the section “experiments and results”. A discus-
sion on the algorithms and pathways for future developments closes this paper.

2  Methodology

This work presents an experimental study of the performance of bee-inspired metaheuris-
tic algorithms for global optimization. A literature review was conducted to find the bee-
inspired metaheuristics that solve continuous problems, and which can be rated as original 
or basic (root) ideas. Our review went beyond reliance titles or keywords and considered 
the conceptual contexts of published works. Moreover, the characteristics and steps of the 
algorithms in numerous articles were meticulously evaluated. Our review compiled all bee-
inspired metaheuristics. Hundreds of journals, book chapters, and conference proceedings 
were found in which either a new algorithm under a new title was developed or former 
algorithms were modified or applied. Our search was narrowed down to only bee-inspired 
metaheuristics which were capable of solving continuous optimization problems.

Once an algorithm is introduced it may undergo modifications seeking to improve its 
efficiency. Sometimes these modifications amount to changing or adding a function or an 
operator, but they rarely constitute a completely new search strategy. Therefore, this work 
reviewed modified algorithms looking for novel metaheuristics even if the designers them-
selves did not present their idea under a new name. Some of the bee inspired algorithms 
available in the literature were initially presented for combinatorial problems, and many of 
them were developed to solve specific problems. The search operators in such algorithms 
are only appropriate for the specific kind of problems which they were designed for and not 
for continuous functions. However, there are some algorithms which initially were devel-
oped for combinatorial problems, such as the BCO, and were later modified to solve con-
tinuous problems. Another example is the MBO that initially was designed for the traveling 
salesman problem (TSP) but later was applied to continuous functions. This work selected 
bee-inspired metaheuristics that have been used for solving continuous problems.

The list of selected algorithms for analysis consists of the bee system (BS), mating bee 
optimization (MBO), bee colony optimization (BCO), bee evolution for genetic algorithms 
(BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee swarm optimization 
(BSO). There are modified versions for some of these algorithms, yet this work evaluated 
their first versions because many of the modifications, hybridizations, and adaptations rely 
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heavily on the basic characteristics or ideas. Also, the selected algorithms seem to be con-
structively different from each other, whereas their modifications commonly replace one or 
two heuristic functions, or adjust probabilities involved in the search process, and introduce 
other minor changes. In addition, some of the modified versions are devoted to solving spe-
cific kind of problems, or their modifications are not inspired by bees thus making modifi-
cation not pertinent to this study. It is worthy of notice that numerous algorithmic modifi-
cations seem to be more efficient algorithms because they reach a better solution or find an 
optimum with fewer function evaluations. However, many of the modifications have been 
made at the expense of adding extra user-defined parameters that increased the difficulty of 
application. Therefore, this work focused on the eight cited, basic but distinct, and original 
bee-inspired metaheuristics.

There were some challenges encountered while completing this review that may affect 
the completeness of the selected list of metaheuristic algorithms. For example, some of the 
names of the algorithms were used interchangeably, and some algorithms were given more 
than one name by different authors. It is possible that algorithms that qualify as basic and 
novel were not evaluated in our study. This work, therefore, does not claim to be an exhaus-
tive survey of all the bees-inspired metaheuristics. Nevertheless, this study presents a rep-
resentative review and evaluation of bee-inspired, metaheuristic algorithms.

The codes of the evaluated algorithms were herein written in Python version 3.7.0 based 
on the published papers. All the codes are available online at [https:// github. com/ rmsol gi/ 
bee- inspi red- metah euris tics] for those who may wish to reproduce or validate our findings.

Each algorithm herein studied has a number of parameters that must be adjusted usually 
by conducting a sensitivity analysis. Parameter setting is a key disadvantage of metaheuris-
tics algorithms that hinder their application. In many previous studies algorithmic compar-
isons resorted to meticulous parameter adjustments. Such careful parameter adjustments 
may render the comparative results biased because commonly it is not reported how much 
time and effort is spent in parameter setting. This is pertinent in the realm of metaheuris-
tics because the algorithms are expected to be clever and self-adjusting and thus capa-
ble of removing the burden of parameter calibration to users of metaheuristics. For this 
reason, one of the primary goals of this study is determining the power of basic ideas in 
metaheuristics in a truly unguided search. This means this work’s algorithmic analysis did 
not involve parameter setting. Rather, algorithmic parameters were set equal to the values 
reported by their original developers. This is consistent with this work’s intent to evaluate 
basic search ideas in terms of their inherent capabilities, such as ease of implementation 
and search efficiency. Therefore, for each algorithm a single set of parameters is used in 
solving all the benchmark problems.

This work begins with an overview of bee-inspired metaheuristics, followed by the pres-
entation of results from the implementation of the algorithms, and it ends with a discus-
sion of the algorithms’ performances, highlighting pathways for future related studies in 
the field of metaheuristics.

3  Bee inspired metaheuristics

Metaheuristics consists mainly of two repetitive phases: generation of new tentative solu-
tions, and selection of a set of solutions to advance the search towards a global optimum. 
Every algorithm initially generates a set of possible or tentative solutions randomly or 
deterministically. The generated solutions are evaluated based on some predefined criteria 
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and some of them are selected to form the basis for generating newly improved solutions. 
Bee metaheuristics commonly generate initial solutions randomly. Next, selection and gen-
eration of new solutions are repeated iteratively until some termination criteria are met. 
The algorithms generally converge to a near optimum eventually. But the convergence 
rate and accuracy of the algorithms differ, which has led to the development of a vari-
ety of algorithms seeking the highest search efficiency. Exploration and exploitation are 
two important factors in population-based metaheuristics, which must be balanced well 
otherwise the algorithm would experience either premature convergence (trapping in a 
local optimum) or stagnation. This balance is implicitly provided by probabilistic func-
tions applied for selecting and generating new solutions. Primarily the major differences 
between algorithms are the functions or procedures implemented in selecting and generat-
ing new solutions. Proportionate selection and simulated annealing are among the selection 
techniques. Random walk and genetic operators such as crossover and mutation are among 
the functions used for generating new solutions. A mixture of these techniques and other 
novel heuristic functions lead to a variety of algorithms.

This study identified eight metaheuristics with basic characteristics that clearly differ-
entiate one from each other as distinct, bee-inspired, metaheuristics. The identified algo-
rithms are: the bee system (BS), mating bee optimization (MBO), bee colony optimization 
(BCO), bee evolution for genetic algorithms (BEGA), bee algorithm (BA), artificial bee 
colony (ABC), and bee swarm optimization (BSO). It is noteworthy that there are two dis-
tinct sources of inspiration for these algorithms, namely, bee foraging behavior and bee 
mating rituals.

Most of the bee inspired metaheuristics were developed based on the foraging behav-
ior of bees including the ABC, BCO, BSO, and BA. There exist in nature three types of 
bee foragers responsible for collecting tasks and feeding a bee colony. These are employed 
(experienced), onlookers (unemployed), and scouts each of which has a unique way of 
searching for new food sources. Employed foragers are those who already discovered a 
good food source and return to that frequently. Due to randomness they may visit nearby 
neighborhood points and occasionally discover a better source. The employed bees may 
share their information to unemployed bees through a waggle dance and attract some unem-
ployed bees to follow them. These followers are called onlookers who watch the dance of 
some experienced foragers and follow them. The number of unemployed bees attracted by 
each experienced forager is proportional to the quality of their dance. Onlookers follow-
ing an experienced forager search neighboring location of the already discovered source. 
The third groups of foragers are scouts which look for food resources totally unguided and 
search randomly all across the space. An experienced forager may be initially an onlooker 
or a scout, and after finding a good food source it may stick to it and advertise it through 
waggle dancing.

A solution to the optimization problem achieved by bee-foraging metaheuristics is 
represented by an N dimensional vector (where N denotes the number of control vari-
ables) defining the position of an agent (bee forager). Each point in the decision space 
has a degree of desirability with respect to a criterion. That degree of desirability is 
measured by the fitness function.1 Agents are looking for a location which has the most 
food (the global optimum). Starting from initial random locations the agents update 
their positions through search procedures and gradually move toward the best position. 

1 Fitness function refers to a penalized objective function, that is, the objective function with constraints 
added to it as penalty.
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Experienced foragers, onlookers, and scouts are all agents that update their positions 
with different heuristic functions. The selection phase in these algorithms generally 
refers to tasks about dividing populations of bees (i.e., solutions) into the three catego-
ries of foragers, selecting experienced foragers by onlookers, and deciding whether or 
not agent must move to a new position.

Bees’ mating and reproduction processes have also inspired other metaheuristics 
such as MBO and BEGA. From mating ritual and reproduction perspectives a colony 
of bees is composed of a queen, drones, and workers. The queen and drones are respon-
sible for reproduction so that the queen is the mother of the hive and the drones are 
the fathers. Workers are primarily responsible for brood caring. The broods made by 
a queen bee can be both haploid and diploid. Diploid broods stem from fertilized eggs 
produced by the mating of the queen with drones. However, the queen can also lay eggs 
without any mating giving birth to diploid broods which inherit their genotype only 
from the queen. During the mating season a queen mates with several drones to fill its 
spermatheca through a mating dance. Among many drones vying for queen only a few 
succeed in mating and passing their sperms to its spermatheca. The more attractive the 
drone, the better the chance it has to mate with the queen. The drones which mate with 
the queen usually die immediately after mating and fall to the ground. The queen goes 
back to the hive after its spermatheca is full or when it has lost her mating strength. The 
rest of the drone population is forbidden from entering the hive at the end of mating 
season and die from exposure and famine. Only the productive queen and the workers 
remain in the hive until the queen makes new broods.

In the metaheuristics inspired by mating rituals each solution is represented as the 
genotype of a bee. The hive’s queen is the best solution that can be found; drones are 
other trial or random solutions. Workers in these algorithms are related to specific heu-
ristic functions. They do not concern the solution, but, rather, become functions for gen-
erating a new solution. This resembles the role of worker bees which feed and grow the 
broods. In these algorithms new solutions (offspring) are usually generated by genetic 
operators such as crossover and mutation. Selection refers to the process by which the 
queen (female bee) selects some drones (male bees) for reproduction.

In the following a summary of the development and later modifications of the studied 
algorithms is provided. This is followed by a brief description of the algorithmic steps. 
For brevity, if a function or step is the same between two algorithms, it is referred to 
the first time it is presented whenever it is used again. This summary is helpful to high-
light the differences, similarities, and the performances of the reviewed algorithms. For 
a complete description of the underlying techniques the reader is referred to the cited 
works and to the Python codes provided online.

3.1  Bee system (BS)

The Bee system was introduced by Sato and Hagiwara (1997). The BS is inspired by the 
foraging behavior of bees. Yet, considering the other algorithms inspired by bees’ forag-
ing behavior it is debatable to state that this algorithm actually resembles the foraging 
behavior of bees. This work reviews this algorithm because BS constitutes one of the 
first efforts to design a metaheuristic based on bees’ behavior. The algorithm consists of 
a global search by means of a simple GA and a local search which is designed based on 
the sharing information by a swarm of bees.



4973Bee‑inspired metaheuristics for global optimization: a…

1 3

Steps of the BS:

1. A global search is executed by running a simple GA Gsc times, and the best solution of 
each run is memorized. To produce a population (set) of possible solution vectors M 
(M = Gpop) N-dimensional vectors are generated randomly as follows:

where r
(
ld, ud

)
 = a random number in [ ld, ud ], ld and ud = lower boundary an upper 

boundary, respectively, of the d-dimensional solution space.
  Each vector or member Xi of the population is known as a chromosome and assigned 

a probability using Eq. (3):

where fi = normalized fitness function and m = M.
  A roulette wheel is implemented based on the calculated probabilities. P vectors 

(P < M) are selected2 as the parent population using the roulette wheel, and the rest of the 
vectors are removed from the population. M-P new vectors are generated to reconstitute 
the population. Hence, first a mating pool (the active parent population) is constructed so 
that every vector in the parent population has a chance equal to the crossover probability, 
Pc (0 < Pc < 1, a predefined parameter) of entering the mating pool. Next, two vectors 
are repetitively selected from the mating pool with the uniform distribution, and two 
new vectors are generated applying the crossover and mutation functions successively.

  Let two parent vectors or solutions X = (x1, x2,… , xN) and X�

= (x
�

1
, x

�

2
,… , x

�

N
) be 

selected for crossover.3 Two new offspring are generated as follows:

where C denotes the crossover point.
  By mutation each component of a solution has a chance equal to Pm (0 < Pm < 1 a 

predefined parameter) to be replaced by a random value within the feasible space.
  The M-P newly generated vectors as offspring and the parent population constitute 

the new population. The steps of selecting P parents followed by reproduction continues 
until a termination criterion is met. The best achieved solution is saved after the GA is 
terminated in a set called superior chromosomes (SC). This memorized set of solutions 
each of which is a vector in N dimensional space is applied for a local search which 
starts in step 2 below. A new GA is implemented until Gsc superior chromosomes are 
achieved and the SC set is full.

(1)Xi = (xi,1,… , xi,N) ∀i = 1,2,… ,M

(2)xi,d = r
(
ld, ud

)
∀d = 1,2,… ,N

(3)Probi =
fi

∑m

i=1
fi

(4)Xnew
2

= (x
�

1
, x

�

2
,… , x

�

C
, xC+1, xC+2,… , xN)

(5)Xnew
1

=
(
x1, x2,… , xC, x

�

C+1
, x

�

C+2
,… , x

�

N

)
.

2 In this manuscript selections always are done with replacement.
3 This work applies uniform crossover in all algorithms in which the crossover function is used. The num-
ber and place of crossover points are random and uniformly distributed (Bozorg-Haddad et al. 2017a, b).
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2. For each member of set SC a separate (local) population is constructed. Each local 
population consists of M (M = Lpop) vectors in an N dimensional space which are initially 
generated randomly using Eq. (1).

3. For each local population:
3.1.  First the population is modified by a concentrated crossover function between each 

member of the population and the superior chromosome, and the new generated solution 
replaces the previous one. This is called concentrated crossover because one side of the 
crossover is always the superior chromosome.

3.2. The three best vectors of each local population are saved as X′

1
,X′

2
 , and X′

3
 . Next, the pro-

cedure of the (standard) GA is applied to each local population to execute parent selec-
tion, by roulette wheel, and reproduction. Reproduction generates M-P-2 new vectors as 
offspring by genetic operators. Next, a conditional statement called migration criterion 
is applied. If the migration criterion is met the algorithm goes to step 3.3. Otherwise, 
it goes to step 3.4. The migration criterion is simply a predefined number such as Gmig 
whereby the migration procedure is activated after Gmig iterations of the GA.

3.3. Two vectors are exchanged between two neighboring local populations so that the local 
nth population gives a vector to the n + 1st population and receives one vector in turn. 
This step resembles the exchange of information among bees.

3.4.  Two new vectors are generated based on the simplex method with the three already 
selected vectors X′

1
,X′

2
 , and X′

3
 as follows:

Xref  and Xcont = two new solutions added to the population, � and � = values in the 
range [0,1], which are parameters of the algorithm.

4. The algorithm stops once the termination criterion is met. Otherwise, it goes to step 3.2 
(Sato and Hagiwara 1997).

  The user-defined parameters of the BS are Gsc, Gpop, Lpop, Pmg (Pm for global search), 
Pml (Pm for local search), Gmig, Pc (probability of crossover), Ppop (parent population), 
� , � , and the total NFE (TNFE, termination criterion). Sato and Hagiwara (1997) did 
not cite some of these parameters (e.g., Pc) and underestimated the number of the BS’s 
parameters. This algorithm applies the GA, which features its own parameters, thus 
adding to the number of required parameters to be set.

3.2  Mating bee optimization (MBO)

Abbass (2001) proposed mating bee optimization (MBO) inspired by the mating ritual 
of honey bees. The algorithm implemented simulated annealing function for selection 
and genetic operators for the reproduction phases. Abbass and Teo (2003) replaced the 
original annealing function used in the selection phase of the MBO with a more con-
ventional simulated annealing method. The MBO has been modified as honey bee mat-
ing optimization (HBMO, Bozorg-Haddad et al. 2006). Yang et al. (2007) introduced 

(6)Xref = (1 + �)X
�

0
+ �X

�

3

(7)Xcont = (1 − �)X
�

0
+ X

�

3

(8)X
�

0
=

X
�

1
+ X

�

2

2
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the fast marriage in honey bee optimization (FMBO) in which the annealing process 
was removed and all randomly generated solutions were accepted in the selection pro-
cess without any filtering. Poolsamran and Thammano (2011) proposed new heuristic 
functions to generate new solutions for the MBO. Celik and Ulker (2013) applied the 
levy flight algorithm in the mating step (selection) of the MBO and called it improved 
marriage in honey bees optimization (IMBO). Solgi et al. (2017) reported a modified 
HBMO in which the simulated annealing function is replaced by proportionate selec-
tion and a new heuristic function was introduced.

Steps of the MBO:

1. M vectors (solutions) in an N dimensional space are generated randomly (Eq. (1)) and 
form a population of possible solution vectors.

2. The best vector in the population is saved as Q. The Q refers to a queen bee.
3. The population is discarded. It sets Energy = 1 ; Counter = 0 ; and � = 1.
4. One random vector is generated. The new solution is saved in the memory called queen’s 

spermatheca probabilistically based on the following annealing function:

where Δf  = absolute difference between the fitness of new random vector and the 
best vector in the current population. After the annealing function is applied it sets 
Energy = Energy − � and � = � × � ; if the new vector is successful it is added to the 
queen’s spermatheca, Counter = Counter + 1 . 0 < 𝜇 ≤ 1 and 0 ≤ � ≤ 1 are predefined 
parameters of the algorithm and respectively are called the queen speed parameter and 
energy decay rate.

5. If Energy > 0 and Counter < SC the algorithm goes to step 4. Otherwise, it goes to 
step 6. Step 4 and 5 resemble the mating flight of a queen bee during which the queen 
mates with several drones successively until its spermatheca fills with drones’ sperm 
or its energy is completely depleted. SC denotes the size of the queen’s spermatheca, a 
predefined parameter of the algorithm. During the mating flight the speed of the queen 
is gradually reduced by parameter � ; which increase the selection pressure (makes the 
queen to be pickier).

6. In this step M new vectors are generated as broods. If Counter > 0 (i.e., the spermatheca 
is not empty) broods are generated with the crossover (Eq. (4)) and mutation functions, 
successively. Notice that in the MBO, one side of the crossover is always Q and the other 
side is randomly selected from the vectors saved in the queen’s spermatheca with the 
uniform distribution. Mutation adds more diversity to the generated vectors by crosso-
ver. However, if Counter = 0 (this signals the queen’s energy is used up and no drone is 
selected during the mating flight) new vectors are generated by mutation applied to the 
vector Q.

7. The best newly generated vector replaces Q if is better than Q.
8. The algorithm goes to step 3 if the termination criterion is not met; otherwise, it ends 

(Abbass 2001).

The parameters of the MBO which must be set are M (population size), Pm (prob-
ability of mutation), � , � , SC, and the number of algorithmic iterations (denoted by 
TNIt).

(9)Prob = e−Δf∕�
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3.3  Bee evolution for genetic algorithms (BEGA)

Jung (2003) introduced the queen bee evolution for genetic algorithm (BEGA). Ming et al 
(2010) applied a self-adaptive selection operator resulting in the improved bee evolutionary 
genetic algorithm (IBEGA). The BEGA can be seen as a modification on the GA by modi-
fying the selection and reproduction steps.

Steps of the BEGA:

1. M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a popu-
lation of tentative solution vectors.

2. P vectors must be selected and form a parent population in the GA. The BEGA selects 
half of the parents using a roulette wheel described by Eq. (3). The other half of the 
parent population is filled by copying the best vectors of the current population.

3. M − P new vectors are generated by crossover and mutation successively as is done 
in the standard GA (see step 1 of the BS). The BEGA has two types of mutation func-
tions: normal and strong mutations. A portion θ of the population, which is a predefined 
parameter, undergoes normal mutation and the rest is subjected to strong mutation. The 
difference is that in the strong mutation functions the probability of changing the value 
of an element in a vector is higher than in normal mutation.

4. If the termination criterion is not met the algorithm goes to step 2; otherwise, it stops 
(Jung 2003).

The parameters of the BEGA are M (the population size), θ, Pmn (normal mutation prob-
ability), Pms (strong mutation probability), Pc (crossover probability), Ppop (the number of 
parents), and the total number of iterations (TNIt).

3.4  Artificial bee colony (ABC)

The Ant Bee Colony (ABC) algorithm was developed by Karaboga (2005). Karaboga 
et al. (2012) presented a literature review on the implementation of the ABC algorithm 
in a wide range of problems. Later on, researchers continued to apply the ABC algo-
rithm for solving numerous problems (Mernik et al. 2015). Tsai et al. (2009) applied 
the Newtonian law of gravitation to update the position of onlookers in the ABC. Zhu 
and Kwong (2010) enhanced the ABC algorithm by implementing the information 
achieved from the best solution in the population of solutions to generate new solu-
tions, and called it gbest guided ABC (GABC). Banharnsakun et  al. (2011) updated 
the way new solutions are generated by onlooker bees that steers the search towards 
the best solution more rapidly. Wang and Wang (2012) reasoned that the GABC may 
increase the probability of trapping at a local optimum and proposed a pbest guided 
ABC (PABC). Gao et  al. (2012) implemented chaotic system and opposition-based 
learning method for generating the initial population in a global best guided ABC 
algorithm. Xiang and An (2013) modified initialization, selection, and generating new 
solutions in the ABC. Gao et  al. (2013a, b) proposed new functions and orthogonal 
learning for generating new neighborhood solutions for the ABC. Gao et  al. (2015) 
proposed a multi-population strategy for the ABC. Qin et  al. (2015) applied a time-
varying strategy to balance the ratio between the number of onlookers and employed 
bees. Cui et al. (2018) applied a dual population framework in which greedy search by 
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employed bees was done near a better portion of the population (and not on the whole 
of population as is done in the original ABC). Aslan (2019) modified the selection 
process of the ABC applying a transition control mechanism in which not all employed 
bees advertise the food source they found; only a portion of employed bees attempt to 
attract onlookers. Aslan et al. (2019) proposed improved artificial bee colony (iqABC) 
in which a new exploitation technique has been applied. Chen et al. (2019) applied dif-
ferential search strategies to update more variables using combination of crossover and 
mutation operators and introduced self-adaptive differential ABC (sdABC). Gupta and 
Deep (2019) used sin cosine algorithm (SCA) to improve the performance of the ABC.

Steps of the ABC:

1. M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a 
population of possible solution vectors; Define ne which is the number of employed 
(experienced) bees, as a parameter of the algorithm.

2. For every vector i, another vector j is randomly selected ( i ≠ j and 1 ≤ j ≤ ne ) using the 
uniform distribution. Next, a neighborhood point is generated by changing the magni-
tude of vector i in a randomly selected direction d:

in which xnew
i,d

= new value of the dth element of the ith vector and r = a random value 
in [0,1]. The new vector replaces the old vector if the former has a better fitness than 
the latter. This process is analogous to the movement of actual employed bees to a new 
position where there is more food.

3. A roulette wheel is constructed using probabilities calculated by the Eq. (3) for the 
employed bee’s population already modified in step 2. M − ne vectors from the popula-
tion of employed bees are selected with the constructed roulette wheel. For each selected 
vector i another employed bee j is selected using the uniform distribution, and a new 
neighbor point is generated with Eq. (10).

  If the new vector’s fitness function is improved it replaces the old vector. This step 
resembles actual onlooker bees following the employed bees and exploring the neighbor-
ing locations of food sources already found by employed bees. The actual experienced 
agents which discover better food sources attract more onlookers; therefore, this step 
implements a roulette wheel selection function. The numbers of onlookers and experi-
enced foragers (ne and no, respectively) are usually selected to be the same and are equal 
to one half of the population size (M/2). Each experienced agent examines only one 
neighborhood point in its position, whereas the frequency of search near the positions 
of onlookers is proportional to the desirability of their positions.

4. S vectors of employed bees which have not been improved by neighborhood search for 
at least a predetermined number of iterations (limit) are replaced by a vector randomly 
generated. This step resembles scouts in a bee swarm (unlike onlookers, scout bees move 
randomly and do not follow experienced foragers).

5. The algorithm goes to step 2 if the termination criteria are not met. Otherwise, the 
algorithm stops (Karaboga and Basturk 2008).

The parameters of the ABC are M (the population size), limit, ne , S (the number of 
scouts), and the total number of iterations (TNIt).

(10)xnew
i,d

= xi,d + (r − 0.5) ×
|||
xi,d − xj,d

|||
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3.5  Bee algorithm (BA)

The bee algorithm (BA) was introduced by Pham et al. (2005). Koc (2010) studied the 
effect of several modifications of the BA named dynamic recruitment, proportional 
shrinking, and abandonment strategies. Hussein et  al. (2016) studied several variants 
of the BA including basic, standard, and shrinking-based BAs. Pham et al. (2011) pre-
sented a modified version of the BA that implemented several operators for generating 
new solutions and also a slight modification on the criteria for initializing scout bees. 
Yuce et  al. (2013) proposed an adaptive neighborhood size change and site abandon-
ment (ANSSA) for the BA. Pham and Darwish (2008) proposed a fuzzy greedy selec-
tion to adjust the parameters of the algorithm automatically. Nasrinpour et  al. (2017) 
also developed a grouped version of the BA (GBA) for reducing the number of param-
eters that must be adjusted.

Steps of the BA:

1. M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a 
population of possible solution vectors. The parameters nelit , nb,nen , nbn are set so that 
nbn < nen and ne + nb < M.

2. The population of solutions is sorted in descending order according to the solutions’ 
fitness functions’ desirability.

3. For each of the first nelit vectors  nen new vectors are generated as follows:

where R(�d, xi,d) = symmetric random walk starting from xi,d with step �d ; and r is a 
random value uniformly distributed in [0,1]; � is a predefined parameter of the algo-
rithm that refers to the maximum distance a bee can fly away from its original position; 
nn = nen (number of trail vectors); andn = nelit . If the best vector among the nn newly 
trial vectors is better than the current one the best one replaces the current one.

4. For each of the next nb vectors in the population nbn new vectors are generated with 
Eq. (11) where nn = nbn and n ≤ i ≤ n + nb . The best trial vector replaces the current one 
if its fitness function is better than the current one’s. Thus, the only difference between 
step 3 and 4 is the number of neighborhood points nbn and nen that are evaluated.

5. The rest of the population ( M − nb ) is replaced by random vectors as scouts.
6. If the termination criterion is not met the algorithm goes to step 2; otherwise, it stops 

(Pham et al. 2005).

The parameters of the BA are M, nelit , nb,nen , nbn , � , and the total number of iterations 
(TNIt).

3.6  Bee swarm optimization (BSO)

Bee swarm optimization (BSO) developed by Akbari et al. (2010) is an optimization algo-
rithm inspired by the foraging strategies of honey bees.

Steps of the BSO:

(11)x
j

i,d
= R(�d, xi,d) ∀ 1 ≤ i ≤ n 1 ≤ d ≤ N 1 ≤ j ≤ nn

(12)�d = r × (�∕2)
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1. M vectors in an N dimensional space are generated randomly (with Eq. (1)) and form a 
population of possible solution vectors. The population of solutions is sorted in descend-
ing order based on the solutions’ fitness functions’ desirability.

3. nf  new vectors are generated as follows:

where �b and �e = a predetermined parameter in [0,1]; rb and re random values in 
[0,1]; bi,d = dth component of the best ever experienced position by vector i (the best 
experienced positions and corresponding fitness functions are updated each iteration 
and saved); and ed = the best vector in the current population. These new vectors refer 
to the new positions of actual foragers in nature.

4. A roulette wheel using probabilities calculated by Eq. (3) is applied to the nf  newly 
generated vectors, where m = nf .

5. nl new vectors are generated as follows:

where gi,d = the dth component of a vector selected from nf  previously generated vec-
tors in step 3. The selection is done by replacement and using the already constructed 
roulette wheel function in step 4. This step resembles actual onlooker bees who follow 
an experienced forager. Obviously, vectors with a relatively superior fitness function 
have more chance to be selected by roulette wheel selection.

6. M − nf − n
l
 new vectors are generated as follows:

in which R(�, xi,d) = a symmetric random walk from xi,d with step � . ρt = ρmax initially 
and is reduced to ρmin linearly through iterations where ρmax and ρmin are in [0,1].

7. The new population is sorted in descending order based on the solutions’ fitness func-
tions’ desirability.

8. The fitness of the newly generated vectors are compared with their previous values. The 
new vectors replace the old ones if their fitness functions are better than those of the old 
vectors.

9. The algorithm stops if the termination criterion is met; otherwise, it proceeds to step 3, 
(Akbari et al. 2010).

The parameters of the BSO are M, �b , �e , nf  , nl , ρmax , ρmin , and the total number of itera-
tions (TNIt).

3.7  Bee colony optimization (BCO)

The bee colony optimization (BCO) was introduced by Lucic (2002) to solve transpor-
tation problems. The algorithm was initially named bee system but was later renamed 
BCO. This algorithm is different from the BS developed by Sato and Hagiwara 
(1997). The original BCO was designed to solve combinatorial problems. Nikolic and 

(13)xnew
i,d

= xi,d + �brb
(
bi,d − xi,d

)
+ �ere(ed − xi,d) ∀ 1 ≤ d ≤ N 1 ≤ i ≤ nf

(14)xnew
i,d

= xi,d + 𝜔ere(gi,d − xi,d) ∀ 1 ≤ d ≤ N nf < i ≤ nf + nl

(15)xnew
i,d

= xi,d +R(𝜏, xi,d) ∀ 1 ≤ d ≤ N nf + nl < i ≤ M

(16)� = ρt(ud − ld) ∀ 1 ≤ d ≤ N
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Teodorovic (2013) presented a version of BCO for solving continuous problems; yet, 
the continuous version did not become ubiquitous in the manner the combinatorial ver-
sion did.

Steps of the BCO:

1. M vectors in an N dimensional space are generated randomly (Eq. (1)) and form a popu-
lation of possible solution vectors.

2. Based on probabilities calculated by Eq. (3) a roulette wheel is applied and one vector 
from the population is selected. The whole population is updated as follows:

where V  = selected vector. This is step is executed because this algorithm was primar-
ily designed for combinatorial problems so that all artificial bees (agents) start moving 
and gradually build a path to a solution. The algorithm is designed in a way that at the 
start of each iteration the population consists of equal solutions. The algorithm also 
sets � = (ud − ld) initially and Counter = 0.

3. For every vector i in the population a single dimension d from N is randomly selected 
using the uniform distribution and the dth component of the vector i is modified as fol-
lows:

where R(�, xi,d) = symmetric random walk starting from xi,d with step � ; r = a random 
number in [0,1]; and Δ = the distance from the current value of the dth component of 
vector i from either the lower or upper boundary based on the direction of the random 
walk. It sets Counter = Counter + 1.

4. The algorithm updates � = � × � where �  is a positive value less than one. If � is less 
than a predefined value � , it sets � = (ud − ld) again.

5. While Counter < np : If Counter modulo nc is not zero the algorithm goes to step 3; oth-
erwise, the algorithm continues to step 5.1. If Counter = np then the algorithm proceeds 
to step 6.

5.1. For every vector i in the population the algorithm decides if the vector must keep its 
current value and search in the neighborhood of the current position (a recruiter bee) 
or must abandon the current position (becoming an uncommitted bee) and follows a 
recruiter (experienced forager). For this, probabilities are calculated as follows:

where fe = fitness function of the best vector in the population, and fi = fitness func-
tion of vector i. A random number in [0,1] is generated for each vector and a vector 
remains recruiter if Probi is larger than the random number; otherwise, it abandons the 
current position and becomes an uncommitted agent.

5.2. Once recruiters and uncommitted vectors are determined a recruiter is selected for each 
uncommitted vector (onlooker) by applying a roulette wheel function based on Eq. (3) 
in which m = number of recruiters. The algorithm goes to step 3.

6. If the termination criterion is met the algorithm terminates; otherwise, it goes to step 2 
(Nikolic and Teodorovic, 2013).

(17)Xi = V ∀ 1 ≤ i ≤ M

(18)xnew
i,d

= xi,d +R(�, xi,d) ∀ 1 ≤ i ≤ M

(19)� = r ×Min(�,Δ)

(20)Probi = e−(fe−fi) ∀ 1 ≤ i ≤ M
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The parameters of the BCO are M, � , � , np , nc , and the total number of iterations (TNIt).

4  Experiments and Results

The studied algorithms were implemented for solving nine benchmark functions listed in 
Table 1 (Molga and Smutnicki, 2005), where  X = (x1, x2,… , xd,… xN) and N denotes the 
decision variable and the dimension of the decision space, respectively. The minima of all 
of these functions equal zero, except for the optimal solution of the Michalewicz function 
which changes depending on its dimensionality. The 5-dimensional Michalewicz’ func-
tion has optimal value equal to (-4.687658). The parameters of the algorithms are listed in 
Table 2. It is noteworthy that algorithms’ parameters were mostly set equal to the values 
recommended by the developers of the algorithms. The number of iterations in all the algo-
rithms corresponds to about 500,000 functional evaluations executed in solving the same 
problems for the purpose of comparison. The number of functional evaluations (NFE) is 
widely used for algorithmic comparison because estimating the fitness function for one 
trial solution may be as computationally intense as tens of iterations of a metaheuristic 
algorithm. Many previous studies multiply the number of iterations by the average number 
of generated solutions in each iteration. This work counted exactly the number of times the 
fitness function is executed. The fitness function is called when generating a new solution, 
and if the fitness is going to be used later its value must be saved, thus avoiding calling it 
again. These precautions might seem obvious, but they are in fact necessary to ensure the 
underestimation or overestimation of functional evaluations (Mernick et al. 2015).

The algorithms first were used to solve the problems in 5-dimensional space. Each algo-
rithm was run five times and the average and standard division of each algorithm are listed 
in Tables 3 and 4, respectively. Figure 1 shows the average of the runs of the algorithms 
for problems with 5-dimensional space. Figure 2 shows the number of times each problem 

Table 1  List of the test functions

Function’s name Function’s equation Domain

Ackley
f1 (X) = −20EXP

⎛
⎜
⎜
⎜
⎝

−0.2

�
∑N
d=1

x2
d

N

⎞
⎟
⎟
⎟
⎠

− EXP

⎛
⎜
⎜
⎜
⎝

�
∑N
d=1

Cos
�
2�xd

�

N

⎞
⎟
⎟
⎟
⎠

+ 20 + EXP(1)

−32.768 < xd < 32.768

Griewank f2(X) = 1 +
1

4000

∑N

d=1
x2
d
−
∏N

d=1
Cos(

xd√
d
) −600 < xd < 600

Michalewicz
f3(X) = −

∑N

d=1
Sin

�
xd
��

Sin
�

dx2
d

�

��20 0 < xd < 𝜋

Restrigin f4(X) =
∑N

d=1
(x2

d
− 10Cos

�
2�xd

�
+ 10) −5.12 < xd < 5.12

Rosenbrock f5(X) =
∑N−1

d=1
100(xd+1 − x2

d
)
2
+ (xd − 1)2 −50 < xd < 50

Schaffer
f6(X) = 0.5 +

(Sin(
∑N

d=1
x2
d
))
2
−0.5

(1+0.001(
∑N

d=1
x2
d
))
2

−100 < xd < 100

Sphere f7(X) =
∑N

d=1
x2
d

−100 < xd < 100

Schwefel
f8(X) = 418.9829N −

∑N

d=1
xdSin(

�
��xd��

−500 < xd < 500

Weierstrass f9(X) =
∑N

d=1

�∑20

k=0
0.5

kCos(2�3k (xd + 0.5)) − N
∑20

k=0
0.5

kCos(�3k )
�

−0.5 < xd < 0.5



4982 R. Solgi, H. A. Loáiciga 

1 3

Ta
bl

e 
2 

 A
lg

or
ith

m
ic

 p
ar

am
et

er
s

B
S

B
SO

BA
B

EG
A

M
BO

B
CO

A
B

C

G
sc

3
M

10
0

M
50

0
M

10
0

M
10

0
M

50
M

10
0

G
po

p
10

0
�
b

0.
5

n
el
it

5
θ

0.
8

P m
0.

3
�

0.
99

8
lim

it
n
e
×
N

L p
op

10
0

�
e

0.
5

n
b

15
P m

n
0.

05
�

0.
99

�
0.

00
1

n
e

50
P m

g
0.

05
n
f

48
n
en

50
P m

s
1

�
0.

01
n
p

1
S

1
P m

l
0.

5
n
l

48
n
b
n

30
P c

0.
6

SC
25

n
c

50
TN

It
5,

00
0

G
m

ig
5

ρ
m
a
x

1
�

0.
01

P p
op

0.
3

TN
It

2,
50

0
TN

It
10

,0
00

P c
0.

5
ρ
m
in

0.
1

TN
It

50
0

TN
It

10
,0

00
P p

op
0.

3
TN

It
10

,0
00

�
,�

0.
4

TN
FE

50
0,

00
0



4983Bee‑inspired metaheuristics for global optimization: a…

1 3

solved successfully in nine runs. The ABC, MBO and BEGA were selected based on the 
result of these runs, and their performance was studied further in higher-dimensional 
spaces. The NFE and the number of runs remained the same as those used in 5-dimentional 
space. The results of these runs are reported in Tables 5, 6, 7, and 8, and in Figs. 3 and 4.

It is seen in Table  3 that the best performance belongs to the ABC. The solutions 
found by the ABC for all the test functions are significantly better than those calculated 
by the other algorithms. The ABC also found a near global optimal solution for all func-
tions, whereas each of the other algorithms did not achieve good convergence to the global 
optimum in at least one of the problems. MBO and BEGA had good performances but 
were inferior to the ABC. Their solutions are not as good as those of the ABC but they 
approached the global optimum except for Rosenbrock function, which all of the algo-
rithms failed to solve, except the ABC. The accuracies of the solutions found by the MBO 
and BEGA were also better than those of the BA, BCO, BS, and BSO. The performances 
of the MBO and BEGA were almost identical, while for some problems one of them found 
a slightly better solution than the other. Table 4 establishes the smaller standard deviation 
(STD) in most cases belongs to the ABC. We also see the same pattern when comparing 
the MBO and BEGA with respect to their STDs.

Table 3  Average of five runs of the algorithms for the test functions with 5-dimensional decision space 
(absolute zeros refer to any number less than 1.0E-17)

Function ABC BA BCO BS BSO MBO BEGA

Ackley − 4.4E-16 7.5E+00 6.4E+00 2.1E-01 7.9E-01 6.3E-04 3.2E-04
Griewank 0.0E+00 1.7E+00 3.6E-01 2.9E-01 2.9E-01 1.8E-02 2.1E-02
Michalewicz − 4.7E+00 − 4.7E+00 − 4.4E+00 − 4.7E+00 − 4.3E+00 − 4.7E+00 − 4.7E+00
Rastrigin 0.0E+00 2.6E+00 2.2E+00 1.9E+00 2.2E+00 1.4E-04 1.4E-04
Rosenbrock 3.6E-02 8.1E+02 1.3E+01 1.9E+01 8.9E+00 1.9E+00 1.6E+01
Schaffer 3.9E-03 1.5E-01 3.3E-01 9.8E-02 9.7E-03 2.1E-02 2.6E-02
Sphere 0.0E+00 1.1E+02 2.6E-02 1.2E+00 8.3E-03 4.0E-04 5.4E-04
Schwefel 6.4E-05 2.5E+02 2.5E+01 1.5E-01 4.9E+02 5.1E-04 9.6E-04
Weierstrass 0.0E+00 9.0E-01 8.2E-01 2.1E-01 3.6E-01 3.9E-02 4.6E-02

Table 4  Standard deviation of five runs of the algorithms for test functions with 5-dimensional decision 
space (absolute zeros refer to any number less than 1.0E-17)

Function ABC BA BCO BS BSO MBO BEGA

Ackley 0.0E+00 2.4E+00 7.3E+00 1.4E-01 4.6E-01 5.3E-04 1.6E-04
Griewank 0.0E+00 4.9E-01 5.2E-02 8.2E-02 1.7E-01 1.1E-02 9.1E-03
Michalewicz 7.9E-16 1.7E-02 8.1E-02 1.4E-02 3.0E-01 4.1E-06 7.5E-06
Rastrigin 0.0E+00 1.2E+00 3.9E-01 6.8E-01 7.4E-01 1.2E-04 1.0E-04
Rosenbrock 2.5E-02 1.0E+03 1.9E+01 7.3E+00 1.0E+01 2.2E+00 1.6E+01
Schaffer 4.8E-03 4.0E-02 7.8E-02 1.6E-02 0.0E+00 1.3E-02 1.3E-02
Sphere 0.0E+00 4.2E+01 1.9E-02 2.2E+00 1.1E-02 2.0E-04 4.3E-04
Schwefel 0.0E+00 3.1E+01 7.9E+00 1.5E-01 8.5E+01 3.3E-04 4.4E-04
Weierstrass 0.0E+00 4.8E-01 3.6E-01 5.9E-02 2.9E-01 7.4E-03 1.4E-02
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Fig. 1  Average objective function of runs of all algorithms for 5-dimensional test functions
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Fig. 2  The number of 5-dimen-
sional test functions among nine 
test functions for which each 
algorithm found a near global 
optimum within a margin of 
2.00E-01 with 500,000 func-
tional evaluations (NFE)
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Table 5  Average of five runs of 
the algorithms for test functions 
with 10-dimensional decision 
space (absolute zeros refer to any 
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 4.00E+00 2.00E+01 1.60E+01
Griewank 0.00E+00 1.16E-01 6.54E-02
Michalewicz − 9.66E+00 − 9.66E+00 − 9.66E+00
Rastrigin 0.00E+00 5.54E-03 7.23E-04
Rosenbrock 2.55E-02 2.47E+01 1.30E+01
Schaffer 1.52E-02 2.20E-01 8.95E-02
Sphere 0.00E+00 2.02E-02 3.08E-03
Schwefel 1.27E-04 4.51E-02 6.07E-03
Weierstrass 0.00E+00 2.62E-01 1.25E-01

Table 6  Standard deviation 
of five runs of the algorithms 
for test functions with 
10-dimensional decision space 
(absolute zeros refer to any 
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 8.00E+00 4.00E-03 8.00E+00
Griewank 0.00E+00 2.20E-02 2.94E-02
Michalewicz 7.94E-16 1.50E-03 5.56E-05
Rastrigin 0.00E+00 1.42E-03 2.42E-04
Rosenbrock 1.66E-02 1.67E+01 1.30E+01
Schaffer 1.10E-02 5.32E-02 3.41E-02
Sphere 0.00E+00 7.80E-03 1.53E-03
Schwefel 0.00E+00 2.95E-02 2.09E-03
Weierstrass 0.00E+00 5.20E-02 1.92E-02

Table 7  Average of five runs of 
the algorithms for test functions 
with 50-dimensional decision 
space (absolute zeros refer to any 
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 2.00E+01 2.09E+01 2.00E+01
Griewank 0.00E+00 1.54E+02 1.01E+00
Michalewicz − 4.95E+01 − 3.16E+01 − 4.92E+01
Rastrigin 0.00E+00 2.58E+02 1.44E+00
Rosenbrock 1.59E-01 8.83E+07 4.48E+02
Schaffer 4.57E-01 5.00E-01 4.42E-01
Sphere 0.00E+00 1.74E+04 2.38E+00
Schwefel 6.36E-04 6.58E+03 8.63E+00
Weierstrass 1.42E-14 4.05E+01 2.88E+00
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Defining a margin equal to 2.0E-1 in the objective space about the exact global opti-
mum as a near global optimum implied the BA, BCO, BS, and BSO did not converge to 
within the marginal space so defined for several functions. The BA and BCO approached 
the global optima of the Michalewicz and Sphere functions, respectively. The BS and BSO 
did slightly better and approached the global optima of the two problems. Also, even for 
the functions for which these algorithms approached the global optima correctly, they did 
not find a competitive solution in comparison to the ABC, MBO, and BEGA. Figure  2 
depicts the number of problems solved correctly by each algorithm.

Tables 5 and 7 list the average of the five runs for the algorithms for 10- and 50- dimen-
sional spaces, respectively. It is seen in Tables 5 and 7 that the performance of the ABC 
was the best and approached the global optima better in comparison to the other algo-
rithms. The MBO and BEGA did not show similar performance in higher dimensional 
spaces as they did in 5-dimensional space. BEGA performed more accurately and faster 
than the MBO. By comparing the STD of the runs in Table  6 and 8 it follows that the 
MBO had a lower (better) STD, yet this does not mean it had a better performance. For 
example, it is seen in Table 6 that the STD of the ABC and BEGA for function Ackley 
is larger than the MBO’s. As seen in Table 5 the averages of the ABC and BEGA were 
closer to the global optima. In fact, this implies the MBO was trapped in a local optimum 
whereas the BEGA and ABC converged to the global optimum in several but not all runs. 
This obviously reduces the average obtained but increases the STD. Table 8 indicates that 
none of the algorithms approached the global optimum for the Ackley function; at the same 
time the STD was low for all of them. For most of the functions even in higher dimensions 
MBO, BEGA, and ABC approached well the global optima with the same NFE like the 
5-dimensional decision space. However, this was not the case for the Ackley function. The 
results confirm that larger search spaces require more computational effort. For example, 
if instead of NFE = 500,000 the algorithms conduct at least 1,000,000 NFE, then the aver-
age of five runs of the ABC, MBO, and BEGA are 9.12E-04, 2.00E+01, and 2.00E+01, 
respectively. The STD of ABC, MBO, and BEGA are in this case 1.73E-03, 2.32E-03, 
and 6.12E-08, respectively. Small STDs demonstrate the convergence of the algorithm 
to common optima. However, not all of them converge to the global optimum. A larger 
NFE results in ABC being able to converge to the global optimum well, but the MBO and 
BEGA were trapped at local optima even after doubling the number of NFE, and expe-
rienced premature convergence. The lesson here is that although all of these algorithms 
could be shown to eventually converge to the global optimum (Rudolph 2012), in practice, 
however, it may take them an impractically long computational time to escape from a local 
optimum.

Table 8  Standard deviation 
of five runs of the algorithms 
for test functions with 
50-dimensional decision space 
(absolute zeros refer to any 
number less than 1.0E-17)

Function ABC MBO BEGA

Ackley 3.92E-05 2.45E-02 1.65E-05
Griewank 0.00E+00 2.42E+01 2.29E-02
Michalewicz 1.44E-02 7.99E-01 6.38E-02
Rastrigin 0.00E+00 1.58E+01 1.26E-01
Rosenbrock 1.12E-01 2.33E+07 1.18E+02
Schaffer 9.84E-03 1.18E-05 1.52E-02
Sphere 0.00E+00 9.98E+02 7.46E-01
Schwefel 1.46E-12 4.74E+02 1.71E+00
Weierstrass 8.99E-15 7.90E-01 7.50E-02
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Fig. 3  Average objective function of runs of ABC, MBO, and BEGA for 10-dimensional test functions
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Fig. 4  Average objective function of runs of ABC, MBO, and BEGA for 50-dimensional test functions (* 
refers to functions for which MBO did not approach the optimum and is out of the range of the graph)
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Overall, the ABC has been shown by our evaluation to be a powerful algorithm that 
solved the problems with different dimensions accurately even without any parameter 
adjustment. MBO and the BEGA performed fairly and were successful in solving the 
majority of problems. MBO and the BEGA can be categorized as efficient algorithms 
although they did not perform as well as ABC in the test problems. The other metaheuris-
tics herein evaluated failed in solving most of the test problems.

5  Discussion

This study’s results confirm the findings of previous works except for the BCO and BSO, 
in which case differences may arise by the fact that no parameter adjustment was affected 
in this study. It is common for the algorithms’ developers to conduct a meticulous param-
eter adjustment for the algorithm. This work presented an unbiased comparison of sev-
eral metaheuristics insofar as parameters adjustment is concerned. This work’s results are 
implicitly supported by the relevant literature, wherein the ABC and MBO (or later called 
HBMO) have been reported more frequently than the other algorithms. Other versions of 
these algorithms such as the BCO may exhibit good performance for special problems of 
a combinatorial nature, for example. This work’s purpose is not to judge previous works; 
rather, its primary goal is to implement several algorithms and compare their performances 
emphasizing the user perspective.

The comparison of foraging-inspired algorithms with those inspired by mating behavior 
of bees revealed that all mating inspired-algorithms provide a fair solution, whereas the 
algorithms developed based on the foraging behavior of bees were herein found to be more 
likely to fail in the search for optimal solutions. The better performance of mating-inspired 
algorithms may be explained by the fact that BSO, BA, and BCO apply a random walk 
in which the length of the steps is a parameter of the algorithm, directly or indirectly. On 
the other hand, the ABC generates a trial point between two selected solutions. Recall all 
metaheuristics can be divided into two phases of generating new solutions and selection. 
Functions used in these phases determine the success or failure of the search. The BSO and 
BA do not have any established and firm strategy for generating new solutions. Therefore, 
the result of the algorithm heavily depends on parameters adjustment that determines the 
length of the random walk. In the BCO this is worse because the length of the steps is 
dynamic, which makes the algorithm more complex when the gradual adjustment rate is 
determined by user-defined parameters. The mating-inspired algorithms on the other hand, 
implement the crossover operator when generating new solutions. The method used in the 
ABC is also a crossover function in the continuous domain. However, why does the ABC 
work better than its mating-inspired rivals, the MBO and BEGA? An initial guess is that 
the MBO and the BEGA conduct a concentrated search near the best solution found. MBO 
features one side of the crossover function as the best solution; the BEGA features half 
of the parent population of a simple GA as copies of the best solution. The ABC, on the 
other hand, performs a more scattered search: it gives more attention to the better solutions 
but does not dedicate the majority of its search capacity to the best solution. Therefore, 
the superiority of the ABC on its mating-inspired rivals seems to stem from the selection 
functions applied by rival algorithms. The ABC in general balances exploitation and explo-
ration quite well in comparison to other algorithms. Table 9 provides a summary of the 
strengths and shortcomings of each algorithms.
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The BS’s performance was herein found not to be exceptional among the evaluated 
algorithms. However, this algorithm has an interesting trait. The BS is one of the first algo-
rithms, developed in 1997, and introduced the idea of sharing information among batches 
of solutions. An idea very similar to what later inspired well-known shuffled frog-leaping 
algorithm (SFLA; Eusuff and Lansey 2003). BS has not been widely applied according to 
our literature review. The main reason could be its complexity. Coding this algorithm was 
the most difficult among all the bee-inspired metaheuristics herein evaluated. Its number of 
parameters is also relatively large.

The MBO was the first algorithm that accurately simulated the bees’ behavior to solve 
optimization problems. Its performance is competitive although is not the best among the 
evaluated algorithms. The MBO’s selection method is computationally inefficient due to 
the application of simulated annealing. The simulated annealing selection method gener-
ates a random solution. If that random solution’s fitness is good enough to pass a random 
criterion it enters the search; otherwise, the trial solution is deleted and another random 
solution is generated until the energy of the queen vanishes or a predefined number of solu-
tions is selected. This is inefficient because whenever a totally random solution is gener-
ated its fitness function is evaluated, whereas most of the trial solutions are not successful 
in entering the search due to their low fitness and are eliminated immediately. Thus, a large 
amount of computational effort is invested in evaluating the fitness function of unsuccess-
ful drones whose characteristic never participate in the search procedure. Yang et al. (2007) 
presented the fast marriage in honeybee optimization (FMBO) in which the simulated 
annealing process is eliminated, and all randomly generated solutions are accepted in the 
selection process without any filtering. Solgi et al. (2016) modified the MBO (or HBMO) 
and replaced the simulated annealing with a Boltzmann proportionate selection function.

The BEGA is a modified GA based on bee mating rituals. There are two differences 
between the standard GA and the BEGA. First, half of the parent population in the BEGA 
consists of copies of the queen (the best solution) and the remaining half is selected using a 
selection function, whereas in the simple GA all parents are selected randomly. The second 
difference is that part of the population is modified with strong mutation rather than normal 
or weak mutation. The BEGA is simple and effective. Its main disadvantage is determining 
the rates of normal and strong mutation and their probabilities, which are parameters that 
determines the BEGA’s performance.

Table 9  Summary of the strengths and weaknesses of the studied algorithms

Algorithm Summary of the results

ABC ABC is fast, efficient, and easy to implement
MBO MBO has a high capability of approaching the global optimum but suffers from some inef-

ficiency due to simulated annealing applied in its selection method
BEGA BEGA is simple and effective but has more user defined parameters in comparison to its rivals
BS BS is slow and inefficient but introduced the idea of sharing information among batches of 

solutions
BSO BSO suffers from the lack of established strategy for generating new solutions
BA BA has several serious design flaws
BCO Unlike its combinatorial version, the continuous version of BCO is far from a mature and 

efficient algorithm
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The BA is straightforward, and its basic idea is searching near the best and other 
good solutions, and replacing previous solutions with newly found, superior, solutions. 
Also, it devotes part of the population to search the decision space randomly. The main 
shortcoming with this algorithm is that it rests on the assumption that generating ran-
dom solutions ensures good population diversity. This assumption is not true because 
randomly generated solutions does not ensure improvement from one generation to the 
next if they do not mix with the existed solutions appropriately. The probability of find-
ing an improved solution by generating totally random vectors is very low. Diversity is 
enhanced by mixing random solutions with other solutions that exist in the population, 
which allows the algorithm search subspaces that are impossible to access with only 
resorting to combinations of existing solutions. The randomly generated solutions in 
the BA usually are not mixed with existing ones and thus have a very low chance of 
improving the new solutions. Another BA disadvantage is assigning a step for neighbor-
hood search. This is problem-dependent, and the step specification is difficult to adjust 
properly without good knowledge of the decision space, which is usually unavailable. 
Another BA disadvantage is that a roulette wheel or other selection functions are not 
applied to assign onlookers to the good solutions in this algorithm. It is non-trivial for 
the user to decide the number of neighborhood solutions assigned to the elite and good 
solutions. Also, repetitive solutions in the population cause elite and good solutions to 
be nearly identical. Therefore, searching near them with different ratios is not effective.

The BCO leaves defining the strategy of generating new solutions almost entirely to 
the user. Kruger et al. (2016) proved the convergence of the BCO, but they also stated 
that generating new solutions with this algorithm is problem dependent. The primary 
question concerns the capacities of this algorithm. The reason metaheuristics are used 
is mostly for solving problems with unknown domains. Finding the best way to generate 
new solutions in unknown domains may be as difficult as finding the optimal solution. 
The BCO has been used in solving combinatorial problems frequently. Our results show 
the continuous version is far from being an effective and reliable algorithm.

Surprisingly, the best performance in our evaluation belongs to the algorithms which 
have the least number of parameters (i.e., the ABC, MBO, and BEGA). Parameters 
specification has a significant effect on algorithmic performance and hinders their appli-
cability and their desirability. Most new varieties of algorithms added new user-defined 
parameters, and a few featured automatic parameter adjustments. From a coding per-
spective the ABC is the simplest to code among the evaluated algorithm. One of the 
appealing features of the ABC reported frequently in the literature is its simplicity. Most 
of the modified versions of the ABC have added extra parameters left to the user to 
adjust, and generally have rendered it more complex. This runs contrary to the fact that 
the ABC’s popularity is partly explained by its relative simplicity. This work recom-
mends that new versions of the algorithm must improve its performance while reduc-
ing the number of parameters and the algorithmic complexity. This recommendation is 
consistent with the law of parsimony (or Occam’s philosophical razor) which posits that 
entities should not be multiplied without necessity.

Last but not least, slow convergence and trapping in local optima are common prob-
lems found in several evaluated metaheuristics. The convergence of metaheuristics has 
been assessed in several studies (i.e. Yang 2011; Rudolph, 2012; Kruger, et al. 2016); 
yet, the hitting time (convergence rate) of the algorithms is not easily predictable. This 
issue has rendered the metaheuristic development akin to an art more than a science. 
One phenomenon, bees’ behavior, has inspired multiple metaheuristics. Our analysis 
of such metaheuristics suggests that the gained experience in algorithmic development 
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played a greater role in the appearance of new algorithms than newly gained knowledge 
of natural phenomena. Therefore, it appears timely to further study the metaheuristics’ 
convergence rate theoretically and empirically.

6  Concluding remarks

This work studied bee-inspired metaheuristics for global optimization. Several basic 
search strategies have been developed claiming to be inspired from one single meta-
phor among which seven algorithms herein evaluated were the bee system (BS), mat-
ing bee optimization (MBO), bee colony optimization (BCO), bee evolution for genetic 
algorithms (BEGA), bee algorithm (BA), artificial bee colony (ABC), and bee swarm 
optimization (BSO). The latter algorithms feature original or basic (root) ideas or char-
acteristics that have been shown to solve continuous problems. The performances of 
the algorithms were evaluated with nine benchmark functions. Strengths and shortcom-
ings of each algorithm were discussed. The ABC had the best performance among all 
the bee-inspired algorithms and found a near global optimum for all problems, whereas 
other algorithms did not solve at least one problem each. The BEGA and MBO, each 
of which solved eight problems among nine problems, were the best performing algo-
rithms after the ABC. The BEGA showed a better performance than the MBO when the 
dimensionality of the test problems increased. The ABC is the simplest algorithm with 
the smallest number of user-defined parameters (i.e., it is parsimonious). The ABC’s 
simplicity and its good performance make it notable among its rivals. The BEGA and 
MBO are also relatively simple algorithms to code and execute. Dividing the source of 
inspiration of the bees’ metaheuristics into the foraging behavior of bees and the mat-
ing rituals of bees revealed that all the latter algorithms yielded reliable performances, 
whereas the former features only one successful algorithm (i.e., the ABC). Our study of 
several bee-inspired algorithms indicates that successive development did not arise from 
a better understanding of natural phenomena, but, rather, from the cumulative experi-
ence gained from years of algorithmic trials and human ingenuity. Algorithm developers 
continue to relate their intuitions to natural phenomena. Yet, it seems timely to investi-
gate more profoundly the reasoning behind the metaheuristics’ convergence rate.
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