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The Effect of State Representations in Sequential Sensory Prediction: Introducing
the Shape Sequence Task
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Department of Computing, Goldsmiths, University of London

Alan Pickering (a.pickering@gold.ac.uk)
Department of Psychology, Goldsmiths, University of London

Abstract

How do humans learn models supporting decision making?
Reinforcement learning (RL) is a success story both in ar-
tificial intelligence and neuroscience. Essential to these RL
models are state representations. Based on what current state
an animal or artificial agent is in, they learn optimal actions
by maximizing future expected reward. But how are humans
able to learn and create representations of states? We introduce
a novel sequence prediction task with hidden structure where
participants have to combine learning and memory to find the
proper state representation, without the task explicitly indicat-
ing such structure. We show that humans are able to find this
pattern, while a sensory prediction error version of RL cannot,
unless equipped with appropriate state representations. Fur-
thermore, in slight variations of the task, making it more diffi-
cult for humans, the RL-derived model with simple state rep-
resentations sufficiently describes behaviour and suggests that
humans fall back on simple state representations when a more
optimal task representation cannot be found. We argue this
task allows to investigate previously proposed models of state
and task representations as well as supporting recent results
indicating that RL describes a more general sensory prediction
error function for dopamine, rather than predictions focussed
solely on reward.
Keywords: reinforcement learning; state representation; sen-
sory prediction error; computational modelling; human exper-
iment

The theory of reinforcement learning (RL) is a success
story, both in artificial intelligence and neuroscience. When
sufficiently scaled up, artificial RL systems can learn to play
board games such as Chess and Go (Silver et al., 2018) as
well as video games like Dota 2 (OpenAI et al., 2019). RL
algorithms also appear to describe accurately how dopamine
systems in mammalian brains use reward prediction errors
(RPEs) to learn (Schultz, 2015). Positive RPEs are generated
by bigger rewards than expected, while smaller than expected
rewards generate negative RPEs. These errors are reflected in
the phasic (Schultz, 2016) increases or decreases in dopamine
cell firing, respectively.

RL is a mathematical formalization of learning built on
foundational work by Rescorla and Wagner (1972) combined
with Markov Decision Processes (Sutton & Barto, 2018). In
essence, RL has four parts; states, actions, rewards and the
state transition function, describing how one state follows an-
other. With the goal of maximizing reward, an agent, biolog-
ical or artificial, moves through a world compartmentalized
into states, where each state has a set of possible actions. By
selecting actions, the state transitions to the next, the agent
receives some reward (or none) and is now ready to select a

new action. Through trial-and-error the agent learns to asso-
ciate each state-action pair with a value and can thus learn
to optimize its behaviour. Importantly, for these algorithms
to work, they rely on the Markov property (the agent does
not need to rely on explicit memory of previous experiences);
all information to select the optimal path is contained in the
current state and action values.

Previous research often take states for granted (Niv, 2019).
In computerised experimental tasks, a state is the idealized
representation of what the participant sees on the monitor
and in machine learning the state is usually a vector of pix-
els. In real world situations, however, observations are high-
dimensional and continuous. This means there is often the
need to (1) generalize between states that look different but
are actually similar and/or (2) differentiate between states that
look the same but are actually different. Real world observa-
tions also often do not have enough information to adhere to
the Markov property since many situations require memory of
previous events or inference of hidden causes. Furthermore,
most RL algorithms converge (find the optimum) for certain
only when all states and actions have been visited an infinite
number of times (Sutton & Barto, 2018). Biological organ-
isms cannot possibly try every possible sequence of actions.

Generalising RL in artificial intelligence research has
proved difficult (Justesen et al., 2018), as systems are opti-
mized for specific tasks and training on new tasks can lead
to so called catastrophic forgetting (Kirkpatrick et al., 2017).
In spite of this, machine learning systems based mainly on
RL work surprisingly well for game playing when scaled up
(OpenAI et al., 2019), because they use massive amounts
of data and computational resources. By contrast, animals
can represent states in a way that proves more efficient; this
ability probably involves interaction between many systems
(Collins, 2019; Niv, 2019). Generalization may involve atten-
tional processes (Niv, 2019) that reduce observational com-
plexity, and by inferring hidden (latent) structure (Gershman,
Blei, & Niv, 2010) generalization and differentiation may
work together to cluster experiences, forming belief state
distributions (Schuck, Wilson, & Niv, 2018; Starkweather,
Babayan, Uchida, & Gershman, 2017). In practice this could
work by constructing task-sets (rules) that differ depending
on context (Collins & Frank, 2013), perhaps supported by
processes such as working memory (Collins & Frank, 2018)
and episodic memory (Gershman & Daw, 2017).
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Representations and models

The classic view of how simple associations between states
and actions are supported by internal models of task structure
can be found in the distinction between the two main variants
of RL; model-based (MB) and model-free (MF) (Daw, Niv,
& Dayan, 2005; Doll, Simon, & Daw, 2012). Both variants
are updated based on experience of the world, but where MF
approaches work by saving state-values similar to a spread-
sheet, MB algorithms also learn the state transition function
and thus predict values of actions by simulating the future.
Importantly, if the goal and/or reward function changes, MF
algorithms have to relearn from scratch whereas MB algo-
rithms are more flexible.

These two systems appear to be intermixed to such a de-
gree in the brain that separation is difficult (Doll et al., 2012;
Schultz, 2016; Simon & Daw, 2011; Tsutsui, Grabenhorst,
Kobayashi, & Schultz, 2016). Recent work has proposed dif-
ferent solutions such as rethinking what model-based means
(Langdon, Sharpe, Schoenbaum, & Niv, 2018), or combining
MB and MF into an intermediate ”successor representation”
(Momennejad, 2020). Building on the latter is the “sensory
prediction error” (SPE) hypothesis of dopamine (Gardner,
Schoenbaum, & Gershman, 2018), suggesting dopamine cell
firing codes for more aspects than just reward.

A hierarchical approach might be useful; to frame the two
systems as top-down versus bottom-up, where top-down pre-
dictions from a world model are compared and/or integrated
with bottom-up incoming sensory information. This view
forms the basis of theories of predictive coding (Clark, 2013)
and free energy (Friston, 2010) and would appear to fit with
evidence for both model-free and model-based predictions at
many different levels of dopamine function (Doll et al., 2012).
Other hierarchical proposals add richer state representations
to RL (Langdon et al., 2018), or use machine learning sys-
tems where MF trains MB (Botvinick et al., 2019), or empha-
size how working memory seems to influence RL prediction
error (Collins & Frank, 2018).

However, even armed with this framing, it is not clear how
interacting with a task leads to changing state representations
depending on the (latent) task structure, although some ac-
counts show promise (Eckstein & Collins, 2020). We there-
fore aimed to create a task able to probe this, while being
as simple as possible to reduce instructional needs. We also
wanted to investigate whether RL based on sensory predic-
tion errors could describe behaviour in the absence of explicit
rewards (Gershman & Niv, 2013; Gershman, Radulescu, Nor-
man, & Niv, 2014), and also illustrate how changing the cod-
ing of state representations for such RL models would impact
the performance of our models. Our main contribution here is
thus to introduce our novel task, which we believe will offer
an important test-bed for the more complex approaches to RL
listed above.

Figure 1: Task setup. The participant sees a large shape on
the screen, and three options for what shape they think will
come next. The choice options are always presented in the
same spatial arrangement. When the participant has clicked,
the next shape appears, meaning the only feedback is the next
stimulus itself. In all experiments, shapes mainly repeat three
times in a row. However, the sequence of shapes depends on
experiment variant as explained in the text. Picture shown is
the task as presented in Experiments B-D.

The sequential shape task

The task is deceptively simple; participants see a large col-
ored shape on screen, together with three options for what
shape they think will come next (Figure 1). The possible
shapes are blue circle, orange triangle, and purple square and
the response option buttons are small versions of the same
shapes. The options are always presented in the same order.
The participant indicates their choice by clicking one of the
buttons and the next shape in the sequence appears.

The sequential patterns can be conceptualised by imagin-
ing three bags, where each bag has three shapes of the same
kind inside. All the shapes in one bag are drawn before shapes
from another bag are drawn1. Thus, the underlying basic pat-
tern is that each shape will be presented three times in a row.
As we explain below, there are 3 task variants which vary in
how the next bag of shapes is drawn after the current bag is
emptied.

The task is thus able to investigate the influence of higher-
order hidden state properties (what ‘bag’ are we in currently)
as well as the process of going from states as single trials (one
shape) to states as several trials (bag). More importantly, it
can investigate differentiation of states (as discussed above),
since all trial screens within the same bag look the same, but
the third repeat of a shape may require a different response,
as the latent context is now ‘last shape before next bag’.

1This idea of bags of shapes is simply to understand the task
properties and is not mentioned to participants.
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Methods
We used three different versions of the shape sequence task.
In all versions imagine that, after a bag is emptied of its 3
shapes, it is refilled. The first version (“random”) selects the
next bag at random, so that after a sequence of three shapes
of one kind, the probability was 1/3 that the next bag selected
would contain the same shape as the previous bag. Over the
duration of the task, we might therefore expect participants
to learn this pattern of ‘shifts’ in shape type (about 2/3 of
the runs of the same shape will be of length 3 and then a
shift). However, since bags are drawn at random there is a
fairly large chance that the same shape will appear in runs of
6 (about 22% of the time) or 9 (about 7.5% of the time) in a
row, and so the shape shifts will occur after varying multiples
of 3 trials and thus will be hard to predict.

The second version we call ‘bag of bags’ (bob), as we
imagine a large bag with three smaller bags in it. The small
bags are drawn randomly, without replacement, until the large
bag is empty. This means that a particular bag of shapes can-
not be re-used until the other two bags have been used. Thus,
shape shifts occur after a sequence of 3 repeats with an ex-
pected probability of 0.89 and 6 times in a row with an ex-
pected probability of 0.11. Predicting the shifts is thus ex-
pected to still be difficult for human participants, but some-
what easier than for the random version.

The third version of the task we call ‘bag of bags with-
out repeat’ (bob-wr). It is basically the same as the ‘bob’
version, with the additional constraint that when drawing the
first small bag after returning all 3 bags to the ‘bag of bags’,
it must differ from the last small bag used. In other words,
the same shape can be shown a maximum of three times in a
row. We predicted this would be the easiest version for par-
ticipants.

Although these 3 versions of the task were expected to
elicit differential shift prediction behaviour in human partic-
ipants, analysis and preliminary simulations led us to pre-
dict that our basic RL model (see simulations section below)
would learn all 3 versions of the task in a similar way. This
prediction was based on using a state coding for the task in
which each shape was coded using a vector of 3 bits with one
bit coding the presence of a specific shape on each trial.

Experiments
Experiment A had a total of 270 trials, or 90 bags, taking
around 10-15 minutes. In this experiment, considered a pilot
study, we had only the circle shape and instead used differ-
ent colors to differentiate bags. For Experiment B-D there
were 99 trials, or 33 bags, for an average run time of 5 min-
utes. Here we had three different shapes; circle, triangle and
square, and each shape was also differentiated by being of a
different but consistent color. Experiment B-D (as in Figure
1) also included a slight delay of one second for the choice
options to appear, in order to discourage participants clicking
through the experiment without effort. Participants in Exper-
iment B-D were excluded from final analysis if they had an

average response time below one second or left the experi-
ment window for more than 30 seconds in total during the
experiment. Experiment B-D also included a free text entry
at the end asking if the participant had spotted a pattern.

Experiment A: 27 people were recruited via Amazon Me-
chanical Turk. They were paid approximately £10/h for par-
ticipating, and we set a condition that they had to have at least
100 previously approved submissions to Amazon Mechanical
Turk to participate. They did the random version of the task,
with the same fixed random sequence for all participants de-
termined by a single random seed. In this random sequence
there were 45 sequences of 3 identical shapes in a row, 16 of
6 in a row, 3 of 9 in a row and 1 of 12.

Experiment B: 39 people (mean age 28 (SD 8), 18 females)
were recruited for the bob-wr version of the task via Prolific,
of which 7 had to be excluded.

Experiment C: 40 people (mean age 28 (SD 9), 17 females)
were recruited for the bob version of the task via Prolific, of
which 2 had to be excluded.

Experiment D: 40 people (mean age 30 (SD 11), 18 fe-
males) were recruited for the random version of the task via
Prolific, of which 1 had to be excluded.

In B to D, seeds were randomized, meaning that a unique
random sequence (subject to the constraints of the different
versions) was used for each participant.

Scoring If the prediction on the previous trial was correct,
and the prediction on the current trial matched that of previ-
ous trial it was scored as win-stay. If the prediction of the
previous trial was wrong, and the prediction on the current
trial was different from the previous prediction, it counted as
lose-shift. Additionally we scored a “shift prediction” when-
ever the prediction of the next shape was different from the
current shape. Finally, we scored for accuracy, i.e. when the
prediction of the next shape was correct. All scores were each
calculated for every trial.

Code availability Code for the experiment, results (includ-
ing graphs not shown here) and simulations can be found at
https://github.com/fohria/cogsci2020

Simulations

Simulations of the task were based on Q-learning (Watkins &
Dayan, 1992). Choices used softmax applied to the Q-values
of the three actions (predict shape A, B or C on the next trial).
The QL algorithm was adapted to calculate the prediction er-
ror as the difference between the next shape and the predic-
tion of the next shape, i.e. the choice made on the current
trial. This means we had three parameter values; learning
rate alpha (0 < α < 1), temperature beta (0 < β < 5) and
discount parameter gamma (0 < γ < 1). For each task, simu-
lations used a total of 250 parameter combinations, and were
run 100 times for each parameter combination. The simula-
tion runs were then checked if they fulfilled the relaxed crite-
ria of ‘solving’ the task which were that average accuracy on
the first and second shape of each bag should be more than
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Figure 2: Numbers on y axis represent probability and is averaged across participants. From left to right; S1, S2 and S3.
Upper row: Experiment A (random version with fixed sequence for all participants). Lower Row: Simulation A (random bags

with unique random sequence for each participant) using BQL

50% while the ‘shift prediction’ on the third shape of each
bag should be more than 50%. We also scored each trial with
win-stay, lose-shift as for the human participants.

State codings In the ‘basic’ QL model (BQL), we simply
coded each shape as a binary array of length three, where
circle was [1, 0, 0], triangle [0, 1, 0] and square [0, 0, 1].
For the state enhanced QL model (SEQL) we used the same
coding for the shapes but added three bits for position, so for
example the first circle in a bag was [1, 0, 0, 1, 0, 0], the
second circle [1, 0, 0, 0, 1, 0] and the third circle [1, 0, 0, 0,
0, 1].

Results
We define S1 as the first occurrence in a set of 3 repeats of
the same shape; S2 is the second repeat of the shape, and S3
the third. In other words, S1 is the first shape in a bag, S2
the second and S3 the third. All scores are averaged across
participants unless otherwise specified.

Experiment A: random bags with fixed sequence for all
participants Participants had high accuracy on S1 and S2
(Figure 2, upper row), with an average accuracy of .89 (SD
.17) for S1, .90 (SD .17) for S2 and .30 (SD .03) for S3.
Shift prediction had an average of .11 (SD .17) on S1, .10
(SD .17) on S2 and .19 (SD .19) for S3. For shift prediction,
there was a significant difference between S3 and S2 (paired
t-test; t(26) = 2.75, p = 0.01) as well as S3 and S1 (paired t-
test; t(26) = 2.30, p = 0.03). Meanwhile, lose-shift was high
on S1 (mean .66, SD .06) and win-stay high on S2 (.85, SD
.20) and S3 (.76, SD .25), as can be seen in Figure 2. This
shows participants did not learn the underlying pattern and

instead adopted a win-stay, lose-shift behaviour quite quickly
and stayed with that throughout the task (see code repository).

Simulation A: random bags with fixed sequence (BQL)
Many parameter combinations could show qualitatively sim-
ilar behaviour as the human subjects in Experiment A. The
one shown in Figure 2 uses α = 0.41,β = 0.01,γ = 0.61 for
270 trials. Our QL model takes slightly longer to learn (but
still within 99 trials, to compare with experiments B-D, see
code repository) and similar shift prediction for S1 (.15, SD
.12), S2 (.13, SD .12) and S3 (.12, SD .12) as the human
participants. It is worth noting that the slightly higher shift
prediction on S3 in experiment A is not reproduced here.

Experiment B: bag of bags without repeat In the bag of
bags without repeat version of the task, participants had ac-
curacy .73 (SD .34) for S1, .75 (SD .32) for S2 and .40 (SD
.16) for S3. As we can see in Figure 3, participants show a
similar pattern as in Experiment A for accuracy on S1 and
S2, but here we see for S3 that participants show a strong ten-
dency to pick another shape than the one they are currently
seeing. In other words, they have spotted the pattern of shape
shifts. This is supported by a majority answering positively
about finding the pattern, a few even being able to describe
precisely the ‘meta’ pattern that the bags would not repeat.

Simulation B1: bag of bags without repeat (BQL) Aver-
age accuracy across simulated participants were .76 (SD .11)
for S1, .85 (SD .12) for S2 and .03 (SD .05) for S3. This
example simulation uses α = .61,β = .01,γ = .01. No sim-
ulations were able to solve this task, i.e. show the same be-
haviour as the human participants, or manage the relaxed con-
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Figure 3: Numbers on y axis represent probability and is averaged across participants. From left to right; S1, S2 and S3.
Upper row: Experiment B (bag of bags without repeat). Middle row: Simulation B1 (bag of bags without repeat using BQL).

Lower row: Simulation B2 (bag of bags without repeat using SEQL)

dition of more than .5 accuracy on S1 and S2 and more than .5
shift prediction on S3. Just as in Simulation A, they showed
win-stay, lose-shift behaviour (Figure 3, middle row).

Simulation B2: bag of bags without repeat (SEQL)
When enhancing the QL algorithm with states that include
the position in each bag however, we do get behaviour that is
qualitatively similar to the human data in Experiment B (Fig-
ure 3, bottom row). The particular simulation shown, using
parameters α = .41,β = .01,γ = .01, reveals almost optimal
performance for several simulated participants. Average ac-
curacy was for S1 .82 (SD .12), for S2 .81 (SD .14) and for
S3 .45 (SD .08). Shift prediction was .18 (SD .12) on S1, .19
(SD .14) on S2 and .92 (SD .07) on S3.

Experiment C: bag of bags Experiment C performance
(not shown) was somewhere in-between Experiment A and
B. Some individuals were able to spot the pattern, which can
be seen in both the data and free text responses. But others
were not able to, indicating a considerable degree of individ-
ual differences. Overall participants are generally accurate on
S1 (mean .78, SD .29) and S2 (mean .79, SD .31) and showed

a mean shift prediction of .59 (SD .30) on S3.

Simulation C1: bag of bags (BQL) Overall, Simulation
C1 (not shown) shows the same pattern again as Simulation
B1, meaning no simulation solved the task. Average accuracy
for artificial participants using α = .61,β = .01,γ = .21, was
.76 (SD .10) on S1, .85 (SD .11) on S2, while on S3 the shift
prediction had mean .09 (SD .08).

Simulation C2: bag of bags (SEQL) In Simulation C2
(not shown), as for Simulation B2, the SEQL model now
has no issue learning the proper actions. Using α = .41,β =
.01,γ = .01 as our simulation example, accuracy for S1 was
.80 (SD .15), for S2 .83 (SD .13) and for shift prediction on
S3 .84 (SD .15). We see that on average S3 shift prediction is
higher here than for the human participants in Experiment C
(unpaired t-test; t(122) = 5.87, p = 3.8 ·10−8).

Experiment D: random version (randomly seeded se-
quence) Just as in Experiment A, participants here fall back
to win-stay, lose-shift. These results (not shown) are not as
clearcut as in Experiment A; instead, we see the effect of ran-
dom variation in the task sequence across participants. Some
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participants had sequences with higher frequencies of the
longer runs (e.g. 6 or 9 repeats) of the same shape, and oth-
ers had sequences that were closer to the bag of bags variants
used in Experiment B or C. Accuracy was .71 (SD .23) for
S1, .76 (SD .26) for S2 and .35 (SD .09) for S3. Winstay for
S2 was .65 (SD .27) and .55 (SD .27) for S3. Shift prediction
was .37 (SD .23) for S3, significantly lower than frequency of
winstay for S3 (paired t-test; t(38) = 3.05, p = 0.006). Simu-
lations of this experiment (not shown) are equivalent to sim-
ulation A for the BQL model.

Simulation D: random version with SEQL In Simulation
D (not shown), the results are generally unlike those of the
human participants in Experiment D because they achieve
a higher rate of shift prediction on S3, at a level similar to
participants in Experiment C. For parameters α = .41,β =
.01,γ = .01 we get S1 accuracy .82 (SD .12), S2 accuracy .83
(SD .11) and S3 shift prediction .65 (SD .28).

Summary The main finding is the striking difference in hu-
man participants’ ability to anticipate the state shifts in Ex-
periment B in contrast to in Experiments A and D, and the
role of enhanced state coding to allow SEQL to capture this
behaviour. Experiment C was clearly easier (in terms of mak-
ing the shift on S3) than the random version in Experiment A
or D, but there seems to be a high degree of individual dif-
ferences in performance. These results indicate that humans
may enhance their representations of the world to solve tasks.
If they do so, we also show how subtle changes in the task
structure can impact the extent to which humans are able to
create such representations. Additionally, our SPE version
of RL is able to capture human behaviour in this task where
explicit rewards are omitted.

Discussion

Our results suggest that humans are able to quickly employ
suitable task representations to solve a task that requires them
to do so. We also show that our SPE RL model can describe
human behaviour in all three versions of the task, depend-
ing on the state representations used. This gives support for
proposals suggesting a more general sensory prediction error
view of RL. State representations are indeed important, and
here we exemplify how model free RL can solve a task if it
has access to appropriate state representations.

The most surprising aspect of these findings is the contrast
between human performance across conditions: most of the
humans quickly learn to adapt their state representations to
solve the task in the bag of bags without repeat version. By
contrast, many participants were not able to deploy the same
enhanced state representations on the bag of bags variant and
thus achieved prediction accuracies well below those of the
simulations of the SEQL model. It seems participants unable
to spot the pattern instead rely on a winstay-loseshift strategy,
which can be seen as ”good enough” as it is accurate in two
thirds of the cases overall.

The shape sequence task thus looks promising for inves-

tigating previous proposals for how state representations are
created and shaped through interaction with tasks (Collins &
Frank, 2013; Eckstein & Collins, 2020). In such future work,
we will also apply models such as the SPE proposed by Gard-
ner et al. (2018) and episodic RL (Gershman & Daw, 2017),
as well as belief state representations (Schuck et al., 2018;
Babayan, Uchida, & Gershman, 2018) to try to fit our shape
sequence task data.

It is easy to imagine further variants of this task including
adding explicit rewards for successful shape shift prediction,
and using fMRI and/or EEG to identify neural substrates. The
task can also be expanded in several ways, like including mul-
tiple dimensions, and such expansions may be needed to tease
out differences in the models we plan to test. It is possible the
approach of task sets as in (Collins & Frank, 2013) would
fit our task by using the count of repeated shapes (first, sec-
ond, third etc) as contexts which trigger differing task sets.
Another view would be that our participants do not in fact
employ different state representations here but instead learn
compounded action sequences, as in the options framework
(Botvinick, Niv, & Barto, 2009). Working memory also prob-
ably plays a part in the learning here (Collins & Frank, 2012),
perhaps especially contributing to the individual differences
found for the bob version of the task.

Our SEQL version shows how relevant (if very simpli-
fied) state coding can enable MF algorithms to solve the task.
However, to investigate the mechanism of how states and task
structures are learned we might need artificial neural network
approaches; for example where MF RL teaches a recurrent
network the appropriate dynamics (Botvinick et al., 2019).
We can investigate whether these dynamics are similar to be-
lief states (Schuck et al., 2018; Babayan et al., 2018) that de-
velop a task set representation (Collins & Frank, 2013) use-
ful for RL and similar to that used in our SEQL model. In
other words, once the statistical pattern of the transitions in
the shape sequence task have been acquired, MF algorithms
can perhaps use the emergent properties of the hidden layers
to serve as an enhanced state representation.

In conclusion, our results show the value of this simple
shape sequence task, especially for differentiating states with
nominally identical stimuli, perhaps via rule sets depending
on sequential context. Along with the successful simulations
using SPE variants of basic QL, over a longer time-frame this
might help us come closer to connecting the applied world of
RL with the theoretical universe of predictive coding and free
energy.
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