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Abstract

Evolution by natural selection eliminates maladaptive traits from a species, and yet Alzheimer’s 

Disease (AD) persists with rapidly increasing prevalence globally. This apparent paradox begs an 

explanation within the framework of evolutionary sciences. Here, I summarize and critique 

previously proposed theories to explain human susceptibility to AD, grouped into 8 distinct 

hypotheses based on the concepts of novel extension of the lifespan; lack of selective pressure 

during the post-reproductive phase; antagonistic pleiotropy; rapid brain evolution; delayed 

neuropathy by selection for grandmothering; novel alleles selected to delay neuropathy; byproduct 

of selection against cardiovascular disease; and thrifty genotype. Subsequently, I describe a new 

hypothesis inspired by the concept of mismatched environments. Many of the factors that enhance 

AD risk today may have been absent or functioned differently before the modem era, potentially 

making AD a less common affliction for age-matched individuals before industrialization and for 

the majority of human history. Future research is needed to further explore whether changes in 

environments and lifestyles across human history moderate risk factors and susceptibility to AD.

Keywords
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1. INTRODUCTION

From the perspective of evolutionary sciences, Alzheimer’s Disease (AD) represents an 

enigma. AD is highly prevalent (Wimo and Prince, 2010), highly deleterious with no 

offsetting benefit, and has some genetic basis (Licastro et al., 2007). On the surface, it would 
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appear that natural selection (henceforth “selection”) should eliminate AD from the human 

species, but instead incidence is rapidly increasing (Brookmeyer et al., 2007; Rocca et al., 

2011). Thus the persistence and prevalence of AD requires evolutionary explanation. This 

two-part manuscript first summarizes and critiques evolutionary scientific theories for the 

persistence and prevalence of AD tendered by previous authors, and subsequently, suggests a 

new evolutionary hypothesis explained in greater detail than the others because no paper has 

yet been devoted to its complete description. The hypotheses are all presented with reference 

to AD, although many of the ideas could be similarly argued for other geriatric non- 

communicable chronic diseases. Previous theorists have proposed the following premises:

1) Novel extension of the lifespan, i.e., that before the advent of Western medicine, 

individuals did not live beyond the fifth decade of life;

2) Age-related selection bias, i.e., that traits affecting younger individuals are more 

sensitive to selective pressure because they are more likely to influence 

reproductive success;

3) Antagonistic pleiotropy (Williams, 1957), i.e., that genes that are beneficial in 

one way or during certain phases of the life cycle may be detrimental in other 

ways or at other phases;

4) That AD is a by-product of rapid brain evolution;

5) That AD neuropathy is delayed in humans compared to ancestral species due to 

selection for grandmothering;

6) That novel alleles protective against AD were selected to delay disease onset;

7) That AD is a by-product of selection against cardiovascular disease;

8) That AD is caused by a thrifty genotype (Neel, 1962), i.e., the idea that 

sacrificing energetically costly traits is adaptive in conditions of caloric stress.

The new hypothesis described here invokes the concept of environmental mismatch (Eaton 

et al., 1988), i.e., that novel features of modem human environments may promote disease 

states that were absent or at lower frequency in the pre-modem world. The modem 

epidemiological era to which I refer is defined by the transition to industrialized human 

habitats beginning approximately 200 years ago (Steams, 2012), with stark contrast to the 

hunting-gathering (foraging) lifestyles that characterized the vast majority (−93.4%) of 

human history (Bar- Yosef and Belfer-Cohen, 1989), acknowledging the intervening period 

of agricultural subsistence (12.5 thousand to 200 years ago) as a transitional phase for 

chronic degenerative disease propensity (Abbott and Peters, 1988; Ludwig, 2011). Some 

relevant information to which I refer comes from research among contemporary societies 

that practice hunting-gathering subsistence acquisition, as an imperfect proxy to help 

approximate disease risk factors in previous human environments, conceding the inherent 

limitations in this approach (Lee, 1992).

AD imposes extraordinary challenges to the research community as both an urgent threat, 

inflicting immeasurable suffering on its victims and their loved ones, as well as a scientific 

quandary, involving dysfunction across multiple physiological pathways, spanning central 
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and peripheral systems, with limited treatment effectiveness (Casey et al., 2010). The 

ubiquity, complexity, and in efficacy of currently-available therapeutics for AD necessitate a 

broad range of perspectives to unravel the biomechanisms, evolutionary history, and suite of 

interacting risk factors that give rise to relevant phenotypes. Evolutionary medicine can offer 

unique insights that may contribute to public health and medical disease prevention, 

treatment, and eradication strategies (Nesse, 2001; Nesse and Williams, 1996).

2. PREVIOUS HYPOTHESES

2.1 Alzheimer’s was not subject to selection because human ancestors had shorter 
lifespans

A widely held idea is that longevity beyond life’s fourth decade is a recent trend, making 

geriatric diseases modem phenomena (Davies, 1986; Garcia-Ruiz and Espay, 2017; Karasik, 

2008; Steams et al., 2010). This line of thought suggests that AD persists in our species 

because there has not been ample time for selection to influence the frequency of associated 

alleles. The logical extension would be that AD is the result of normal brain senescence 

during this new extension of the lifespan, and not a pathological condition.

A weakness of this hypothesis is that—despite dramatic increases in life expectancy at birth

—the adult mortality curve has probably much retained a similar shape across human history 

(Marlowe, 2005). We can approximate pre-modem mortality hazards by observing 

contemporary hunter-gatherers because of their limited use of Western medicine, lifestyles, 

and environments that more closely resemble our pre-modern antecedents. Among a 

composite of contemporary hunter-gatherer groups, modal age of adult death was over 70 

years, and two-thirds of those who survived to sexual maturity lived to age 70 (Gurven and 

Kaplan, 2007; Hawkes and Paine, 2006). Among the !Kung (Biesele and Howell, 1981) and 

Hadza (Hawkes, 2010) —10% of the population was over 60 years. If our pre-modem 

predecessors exhibited similar lifespans, traits that emerge after age 60 years would have 

been prevalent and subject to selection.

As for the possibility that AD is normal senescence rather than pathology, some researchers 

suggest that if all people lived to age 130 years then essentially all people would have AD 

(Terry and Katzman, 2001). However, distinguishing aging and diseases of aging may be a 

theoretical exercise that does not have empirical relevance. Rather than conceiving of AD as 

a by-product of normal aging, it can be considered instead as a set of biochemical and 

neuropathological changes that can be activated by age-related mechanisms (Ashford et al., 

2005).

2.2 Antagonistic pleiotropy

Genes that are beneficial in one way may be detrimental in another, and genes that are 

beneficial during certain phases of the life cycle may be detrimental later. This phenomenon 

of “antagonistic pleiotropy’ is hypothesized to account for senescence to the extent that age-

related selection bias favors the beneficial characteristics of genes with age-dependent 

effects (Williams, 1957). AD may be conserved in the human population not because it is 

invisible to selection, as the above hypothesis would suggest, but rather because 
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susceptibility genes may have pleiotropic effects, serving adaptive functions in other 

processes or at other times. Evidence for cancer-related genes promoting fecundity (Kang et 

al., 2009; Smith et al., 2011) and coronary artery disease-related genes positively associated 

with fertility (Byars et al., 2017) provides support for the possibility that antagonistic 

pleiotropy may be relevant for understanding the evolutionary context of other non- 

communicable chronic diseases (review (Corbett et al., 2018)).

It was postulated that AD may be the result of selection for genes related to cerebral cortex 

neuronal activity, especially neuroplasticity, which could make the brain better at learning 

but more vulnerable to AD-type dysfunction (Bufill and Blesa, 2006). However, no evidence 

has been presented to support this hypothesis to date. Further, the observation that during 

early and middle adulthood, individuals who will later develop AD perform more poorly on 

cognitive assessments (Twamley et al., 2006) opposes the hypothesis of AD as the result of 

pleiotropic cognitive benefits earlier in the lifespan.

It has also been suggested that the ΑΡΟΕ-ε4 allele confers pleiotropic effects via protection 

against hepatitis-C associated liver damage (Wozniak et al., 2002), cardiovascular stress 

(Ravaja et al., 1997), miscarriage (Zetterberg et al., 2002), age-related macular degeneration 

(Klaver et al., 1998), better outcomes for children with diarrhea (Oria et al., 2005), and 

protection against malaria (Wozniak et al., 2004). The ε4 allele was also associated with 

greater completed fertility in a high (but not low) pathogen exposed population in rural 

Ghana (van Exel et al., 2017), and higher eosinophil (Trumble et al., 2017) and C-reactive 

protein concentrations (Vasunilashom et al., 2011) among forager-horticulturalists in 

Bolivia, suggesting anti-parasitic effects. However, the disease- promoting effect of ε4 is 

evident not only in AD but also in cardiovascular disease (Martins et al., 2006), HIV and 

herpes simplex virus infections (Kuhlmann et al., 2010).

Amyloid-β (Αβ), the protein comprising senile plaques characteristic of AD, may itself have 

pleiotropic effects (Finch and Martin, 2016). Αβ exhibits antimicrobial properties (Soscia et 

al., 2010), such as in vitroprotection of cultured cells against influenza A virus (White et al., 

2014), herpes simplex virus (Bourgade et al., 2015; Eimer et al., 2018)1, and pathogenic 

yeast, and in vivo protection in murine models of AD against herpes simplex vims (Eimer et 

al., 2018), meningitis and in transgenic C. elegans against pathogenic yeast (Kumar et al., 

2016). Interestingly, oligomerization of Αβ is necessary for enacting these antimicrobial 

properties (Kumar et al., 2016). On the other hand, evidence is converging to suggest that 

soluble oligomeric Αβ may be responsible for AD neuropathy, and Αβ plaque formation 

may be an adaptive, neuroprotective response that staunches damage (Finch and Martin, 

2016; Glass and Arnold, 2016; Hefti et al., 2013; Lee et al., 2005). Additionally, fibrilization 

is necessary for Αβ to enact its antiherpetic function (Eimer et al., 2018), suggesting that 

fibrilized Αβ may be both neuroprotective via viral entrapment and damaging via neuritic 

plaques.

Wick et al. refer to possible pleiotropic effects of the immune system in AD etiology. 

Activation of innate immune response initially protects neurons against Αβ toxicity, but, 

chronic activation has destructive effects (Wick et al., 2003). Not only are the relevant 

cytokines toxic when produced chronically and at high concentrations (Jeohn et al., 1998), 
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but also they stimulate the production of amyloid precursor-protein (APP) (Goldgaber et al., 

1989) and, in certain combinations, Αβ (Blasko et al., 1999). Similarly, activation of 

adaptive immune response initially targets and clears Αβ (Trieb et al., 1996) even in 

aggregated form (Schmitt et al., 1997), but chronic activation leads to neuroinflammatory 

damage (Grubeck-Loebenstein et al., 2000). Summarily, it is plausible that balancing 

selection (Kojima and Yarbrough, 1967) could lead to retention of alleles that confer both 

protection and risk, and further research is needed to discern their advantages and 

disadvantages in different contexts.

2.3 Alzheimer’s is a result of rapid brain evolution

Over the past approximately three million years, our ancestors’ brains more-than-tripled in 

average volume from afarensis’ 400 cm3 to sapiens’ 1450 cm3 (Boyd and Silk, 2015). Some 

authors have suggested that AD neuropathy could be considered a phylogenetic feature, as 

the parts of the brain most damaged in the course of AD are those that were subject to the 

most extreme enlargement during our ancestral species’ shift from chimpanzee-like brains to 

modern ones (Bruner and Jacobs, 2013; Powell, 2010; Rapoport, 1989) (e.g. frontal, parietal, 

temporal neocortices, hippocampus). This idea would require that at least some of the same 

(or linked) genetic variants that caused enhanced encephalization across hominin history are 

also, themselves, the causal agents of the features of those brain regions (e.g. frontal, 

parietal, temporal, neocortices, hippocampus) that make them more vulnerable to AD insult 

compared to other brain regions. I would posit a likely candidate feature would be structural 

location of these regions. The first step in testing this hypothesis may include consideration 

of genes that are strongly implicated in human-specific expansion, e.g. NOTCH2NL (Fiddes 

et al., 2018), HARE5 and promotor Fzd8 (Silver, 2016), to test whether they confer 

differential AD vulnerability.

Strong selection on encephalization-promoting genetic variants could, hypothetically, 

override deleterious effects of the same genetic variants if the selection pressure benefits 

outweigh costs. This hypothesis seeks evidence that the same (or functionally linked) alleles 

promoted encephalization across the hominin lineage and AD risk.

2.4 Alzheimer’s is not subject to selection because it is typically restricted to post-
reproductive individuals

A few publications have suggested that AD persists in the human population despite its 

obvious deleterious effects because it manifests after reproductive cessation, and therefore is 

not responsive to selective pressure because it wouldn’t alter the number of offspring an 

individual produces (Bufill and Blesa. 2006; Nesse et al.. 2017; Reser. 2009). Recently. 

Nesse et al. proposed the hypothesis that because AD does not manifest until the sixth 

decade of life, it is not subject to meaningful selective pressure, and may be the by-product 

of selection for shorter sleep duration compared to our species’ ancestors, highlighting the 

ways in which sleep deprivation and disruption promote AD neuropathy (Nesse et al.. 2017). 

The authors acknowledge an alternative or simultaneous pathway by which AD instigates 

sleep deprivation and disturbance.
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Contrary to the supposition that AD evades selection because it manifests after reproductive 

cessation, propensity to later develop AD may impose disadvantage during the reproductive 

phase of the lifespan. Longitudinal studies evince that during early and middle adulthood, 

individuals who will later develop AD perform more poorly on assessments of attention, 

verbal learning and memory, executive functioning, processing speed, and language, 

compared to peers who will not develop AD (reviewed by (Twamley et al.. 2006)). For 

example, the well-known Nun Study demonstrated that low linguistic ability in early adult 

life was a strong predictor of AD in later life (Snowdon et al.. 1996). A genetic risk for AD 

also promotes risk of cardiovascular disease during mid-life (Martins et al.. 2006).

Furthermore, a long period of geriatric dependence would have deleterious impact upon the 

rest of the family, thus undermining inclusive fitness (Flamilton. 1964). i.e.. perpetuation of 

genes across generations via survival of kin. Individuals with AD gradually lose their 

autonomy as the disease progresses, and eventually are dependent on their families for 

support with every aspect of living. Importantly, anthropological theory argues that 

grandmothers are not essentially post-reproductive, as there are still many ways in which 

they can influence their inclusive fitness (Flawkes et al.. 1997; Flawkes et al.. 2000). 

Grandmothers who are able to pass down valuable information, perform domestic duties that 

subsidize the energetic and time limitations of reproductive adult children, and care for 

grandchildren are able to enhance their number of descendants (Fox. 2012; Reiches et al.. 

2009). Unlike geriatric diseases that bring about sudden increases in mortality, upon AD 

diagnosis typical remaining lifespan is 7–10 years (Zanetti et al.. 2009). implying a 

prolonged, costly burden on kin as well as loss of opportunity to benefit kin. Summarily, 

selective pressure may resist AD-promoting genes due to pre- reproductive disadvantages 

and post-reproductive burden on kin and inclusive fitness detriments.

2.5 Alzheimer’s neuropathy is delayed in humans compared to other animals because of 
the adaptiveness of grandmothering

Sapolsky and Finch (Finch and Sapolsky. 1999; Sapolsky and Finch. 2000) suggest that as 

the primate lifespan extended, maternal care was needed at progressively later ages, creating 

a selective pressure to delay AD onset until after maternal care had concluded. They 

hypothesize that the estradiol associated with reproductive activity may be a contributing 

mechanism for the delay of AD neuropathy. Among primates, reproductive success requires 

not only giving birth, but also raising offspring to independence (Williams. 1957). 

Therefore, selection among primates may delay AD neuropathy until after females have 

raised their last offspring to independence (Finch and Sapolsky. 1999; Sapolsky and Finch. 

2000). But human AD onset is typically decades after reproductive cessation. The authors 

(and others) account for this by arguing that grandmothering continues to increase an 

individual’s inclusive fitness and thus human females must rear their youngest grandchild to 

independence before they can develop AD without experiencing fitness detriments (Glass 

and Arnold. 2016; Sapolsky and Finch. 2000). Their proposed mechanism for how our 

species manages to delay AD onset decades after estradiol diminishes follows below, along 

with a critique of both parts of their hypothesis.
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Glass and Arnold further Sapolsky and Finch’s argument by including not only late age at 

independence, but also increased altriciality of infants among hominins compared to 

chimpanzee-like ancestors (Glass and Arnold. 2012). The prolonged period of altriciality 

resulted in prolonged need for parental care. Post-menopausal women would have been 

competent allomothers only if they remained cognitively competent (Glass and Arnold. 

2012). This hypothesis confounds altriciality with cooperative breeding, as duration of 

offspring dependence does not obligate grandmatemal (or any allomatemal) care.

2.6 ΑΡΟΕ-ε2 and ε3 are new isoforms in humans that were selected for protection against 
AD

There is consensus in the medical research community that the ε4 allelic variant of APOE is 

the primary genetic risk factor for late-onset AD (Corder et al.. 1993). ΑΡΟΕ-ε4 is the 

ancestral allele, and all other primates have only one APOE allele that is nearly identical to 

ε4 with arginine codons at positions 112 and 158 (Ashford. 2002; Finch and Sapolsky. 1999; 

Flanlon and Rubinsztein. 1995). After the Pan/Homo split. ΑΡΟΕ-ε3 emerged from a single 

base mutation (C→T) approximately 300 thousand years ago. and a second similar mutation 

occurred at amino acid position 158 creating ΑΡΟΕ-ε2 approximately 200 thousand years 

ago (Ashford. 2002; Glass and Arnold. 2012; Singh et al.. 2006).

Being that the ε3 and ε2 alleles emerged relatively recently, they are more common than 

would be expected for neutral substitutions, suggesting that they have been actively selected 

(Glass and Arnold. 2012). While 28° o of people carry a copy of ε4. only 1–2% are 

homozygotes, and approximately 95% of all living people are estimated to carry at least one 

copy of ε3 (Gerdes. 2003). It appears unlikely that these allelic frequencies could be 

attributed to drift, as their gene product’s involvement in disease-related processes argues 

against selective neutrality, and even if the allelic variance were neutral, over the many 

generations and relatively small population sizes of ancestral hominins, neutral variation 

would likely be lost due to sampling error, resulting in either extinction or fixation of neutral 

alleles (Keller and Miller, 2006). And yet ΑΡΟΕ-ε4 persists despite its role in increasing AD 

risk as well as cardiovascular disease risk.

Sapolsky and Finch’s hypothesis implies that AD neuropathy should begin at roughly the 

same time in homozygous ε4 humans as it does in non-human primates who all carry ad-like 

alleles, and progressively later in humans who have ε3 and/or ε2 alleles. While the second 

part of this prediction is supported by evidence - people with at least one ε3 or ε2 allele have 

later AD onset than ε4 homozygotes (Blacker et al., 1997) - the first part of the prediction 

does not entirely hold. Among female non-human primates, AD brain changes begin to 

occur shortly after their last pregnancy if not before it (reviewed in (Finch and Sapolsky, 

1999)), while in ε4 homozygous humans, these changes are somehow kept at bay for two 

decades after the last pregnancy, with age 66.4 as the average onset in ε4 homozygotes 

(Blacker et al., 1997). Average age at last birth in natural fertility populations is 41 years 

(Beets et al., 2011; te Velde and Pearson, 2002) and ovarian hormones cease production on 

average at age 50.5 (McKinlay et al., 1992). Therefore, there are two asymptomatic decades 

that are unaccounted for in Sapolsky and Finch’s model.
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2.7 Delay of Alzheimer’s is a by-product of selection for protections against 
cardiovascular disease.

Finch and Stanford posit that selection against ΑΡΟΕ-ε4 occurred in hominid history with 

the shift from herbivory to meat eating (Finch and Stanford, 2004). ApoE regulates 

cholesterol uptake, and individuals who have ε4 alleles have higher cholesterol, more 

oxidized blood lipids, and increased risk of coronary artery disease (Finch, 2010). While 

orangutans and gorillas are largely herbivorous, chimpanzee and human diets contain more 

meat. This theory posits that the trend of meat eating enhanced risk for atherosclerotic 

disease, and thus created a selective pressure on cholesterol regulators. The emergence and 

increasing prevalence of ΑΡΟΕ-ε3 may have been in response to the selective pressures of 

cardiovascular disease caused by the high cholesterol content of meat (Finch and Stanford, 

2004).

Support for this hypothesis comes from a consideration of the APOE allelic frequencies 

between world populations. ΑΡΟΕ-ε3 has its highest frequencies among groups that have 

practiced agriculture for the longest time, such as Mediterraneans (Corbo and Scacchi, 

1999), who, they argue, would have had a more consistent food supply and thus perhaps 

greater longevity and higher risk of cardiovascular disease. ΑΡΟΕ-ε4, the ancestral allele, is 

found at its highest frequencies amongst contemporary hunter-gatherers and other 

populations with inconsistent food supply at least until recently (Corbo and Scacchi, 1999), 

for whom increased cholesterol absorption could provide a survival advantage.

However, the emergence of ε3 300 thousand years ago pre-dates the advent of agriculture by 

approximately 288 thousand years (Fev-Yadun et al., 2000; Shelach, 2000), making it 

difficult to justify that the shift to agriculture explains selection for this allele. Also, if 

atherosclerosis risk from meat eating explained positive selection on ε3, it would be 

surprising (although possible due to stochasticity of mutation) that the ε3 variant emerged 

not in chimpanzees, the first regularly meat consuming apes (Stanford, 1999), but in 

humans, who consumed progressively less meat (Cordain et al., 2002). Furthermore, the 

shift from hunting-gathering to agricultural food acquisition may at first glance support the 

hypothesis, but upon deeper reflection undermines it. The hypothesis suggests that meat 

eating plus agriculture-induced lifespan extension caused fitness costs for ε4 (compared to 

ε3) carriers due to greater atherosclerosis risk. Flowever, hunter-gatherers rely more on meat 

than do agriculturalists and so they may have stronger selection than agriculturalists for 

adaptations avoiding atherosclerotic disease, depending on age at atherosclerosis onset. 

Exemplifying the likelihood that hunter- gatherers were indeed at risk of atherosclerotic 

disease to any meaningful extent at pre-geriatric ages, CT scans of mummies from 

agricultural and hunter-gatherer populations in a geographically, culturally, and temporally 

diverse range of individuals show atherosclerosis in all groups (Thompson et al., 2013). 

Three Unangan hunter- gatherers from the Aleutian Islands mummies of individuals ages 

25–51 exhibited definite atherosclerosis (while the two Unangan mummies of individuals 

ages 4–5 and 18–24 did not) which is preliminary pilot evidence of potentially higher 

disease prevalence among hunter-gatherers than among horticulturalist and agriculturalist 

populations estimated from ancient Egyptian (38% atherosclerosis rate), ancient Peruvian 

(25%), and Ancestral Puebloan (40%) mummies (Thompson et al., 2013), and also among 
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forager-horticulturalists in Bolivia (16%) (Kaplan et al., 2017). If hunter-gatherers have 

stronger selection against cardiovascular disease than agriculturalists, the hypothesis would 

predict that ε4 alleles should be less frequent in hunter-gatherers compared to 

agriculturalists. But in fact the opposite is true, with ε4 more frequent among contemporary 

hunter-gatherers (Corbo and Scacchi, 1999). Further research is necessary to explore 

atherosclerosis risk, APOE genotypes, and age-specific rates among hunter-gatherer 

populations either using forensic remains (Thompson et al., 2013) or with contemporary 

populations who practice traditional subsistence strategies (Kaplan et al., 2017).

2.8 Pre-clinical Alzheimer’s is an adaptive sacrifice during times of caloric stress

Reser proposes that pre-clinical AD is an adaptive way to limit metabolic expenditure on the 

brain, because in the simple lives of hunter-gatherers, activities become rote and repetitive 

by old age, and there is not the same need to maintain the ability to learn or improve skills 

(Reser, 2009). Fie suggests that in a person’s fourth decade, they are no longer as skillful at 

obtaining food as they were previously, and thus become calorically restricted. The near-

starvation advantages those who conserve energetic resources by sacrificing brain function 

(Reser, 2009). This idea describes a “thrifty genotype’ (Neel, 1962) approach to 

understanding AD.

The importance of higher cognitive function in our species, mortality scheduling in hunter-

gatherers, intellectual challenges of foraging lifestyle, and physiological prioritization of 

brain function are in conflict with this hypothesis (Dunbar, 2003; Gurven and Kaplan, 2007).

3. MISMATCH HYPOTHESIS FOR ALZHEIMER’S

The theories described above assume that AD risk functions in much the same way as it 

would have in the past, and people are at the same age-specific risk of AD today as we might 

have been before the industrial revolution 200 years ago. These theories assume, for 

instance, that carrying an ΑΡΟΕ-ε4 allele would confer similar AD risk then as it does 

today. However, there is reason to suspect that age-matched people in the preindustrial world 

would have been less susceptible to AD than they are today. Here, I present a hypothesis 

based on the evolutionary medicine concept of mismatch, i.e., the idea that novel features of 

modem life in the developed world may induce or enhance incidence of diseases that were 

absent or rare during previous phases of human history. I emphasize that in addition to 

inducing or enhancing disease incidence, modem factors may hasten onset of diseases that 

would have occurred significantly later in the lifespan (therefore with less influence on 

fitness) in pre-modem environments. With more immune stimulation, better insulin 

sensitivity, and different female reproductive life-histories, our pre-industrial counterparts 

may have been at lower age-matched AD risk (Fox, 2012). If AD is indeed a “disease of 

civilization” and today’s risk factors did not confer risk in pre-industrial environments, this 

would relieve evolutionary scientists of the onus to account for the maintenance of the AD 

phenotype or of the ε4 allele, which has been the focus of several of the hypotheses 

chronicled above.
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3.1 Insulin resistance

The role of insulin resistance is so central to AD risk that some researchers have referred to 

AD as “type- 3 diabetes” or “diabetes of the brain” (Steen et al., 2005). The malfunction of 

glucose utilization and energy metabolism in the brain may be a proximate mechanistic 

explanation for much of AD neuropathology (Meneilly and Hill, 1993; Watson and Craft, 

2004). Individuals with type-2 diabetes mellitus exhibit brain insulin resistance, cognitive 

impairment, and enhanced AD risk (de la Monte and Wands, 2008; Haan, 2006), 

demonstrating the connection between peripheral and central energy metabolism.

Like contemporary hunter-gatherers, pre-modem people would have been unlikely to 

frequently exhibit insulin resistance, and therefore may have been less susceptible to the 

glucose metabolism malfunctions characteristic of AD pathogenesis (Cordain et al., 2002; 

Pontzer et al., 2012). Based on patterns of contemporary hunter-gatherers, it has been 

estimated that our hunter-gatherer antecedents would have expended −3000 kcal per day and 

consumed —1.5% of the diet as simple sugars, compared to contemporary people in the 

developed world who expend only −2000 kcal per day and consume —20% of the diet as 

simple sugars (Cordain et al., 1998; Eaton, 1992; Eaton et al., 2002). Metabolic syndrome, 

obesity, and type-2 diabetes are at epidemic levels in the industrialized world today 

compared to probable low levels in the pre-industrialized world, and have overlapping risk 

factors and biological manifestation with AD (Glass and Arnold, 2016), suggesting the 

likelihood that these contributors to AD risk would have been lower in the past (Fox, 2012).

3.2. Estrogenic neuroprotection

Estrogens have myriad neuroprotective functions that defend against the AD pathological 

cascade. Estrogens have been shown to inhibit Αβ formation (Amtul et al.. 2010; Manthey et 

al.. 2001). promote Αβ clearance (Bruce-Keller et al.. 2000; Rogers et al.. 2002). inhibit 

neuronal apoptosis (Pike. 1999; Stoltzner et al.. 2001). inhibit tau hyperphosphorylation 

(Goodenough et al.. 2005). and reduce brain oxidative stress and inflammation (Garcia-

Estrada et al.. 1993; Nilsen et al.. 2007; Rice-Evans et al.. 1996; Subbiah et al.. 1993). 

among other neuroprotective functions.

Pre-modem women likely exhibited divergent ovarian hormone profiles compared to women 

in the industrialized world. Pre-modem women were likely exposed to a shorter timespan of 

estrogen exposure due to later menarche (estimated by mean 17 years among contemporary 

hunter-gatherers (Goodman et al.. 1985; Elowell. 1979)) than industrialized populations 

(U.S. 1980s mean 12 years (Demerath et al.. 2004)). Pre-modem women were also likely 

exposed to lower baseline levels of estrogen compared to industrialized populations 

(estimated by comparisons with contemporary hunter-gatherers (Eaton et al.. 1994; van der 

Walt et al.. 1978)). Elowever. pre-modem women were also likely exposed to repeatedly 

higher doses of estrogen compared to women in industrialized environments, due to higher 

parity (reviewed in (Eaton et al.. 1994)). Estrogen levels during pregnancy are the highest 

experienced in the lifespan, during the third trimester averaging 14.5 ng/ml (Tulchinsky and 

Little. 1994) compared to 0.33 ng/ml during the peak of a typical ovulatory cycle (Hall. 

1986). This increase of nearly 44-fold minimizes all other fluctuations in hormone levels 

including menarche and menopause. In a cohort of elderly British women, our lab found that 
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women who spent more cumulative months pregnant across the lifespan were at lower risk 

of AD than those who spent fewer months pregnant (Fox et al.. 2013a). Women in the pre-

modem past would have experienced more time spent with pregnancy’s high estrogen levels 

due to higher parity. While among the British cohort, median cumulative months pregnant, 

including incomplete pregnancies, was 21 months, the mean computed from a set of 

contemporary hunter-gatherer groups is 70.8 months pregnant in lifetime and this is only 

measuring full-term pregnancies (range: !Kung 56.4 months - Ache 96 months) (Eaton et al.. 

1994). This is preliminary evidence that women in the past would have been at lower AD 

risk to the extent that pregnancy-associated estrogens are neuroprotective. However, the 

relative influence of timespan. baseline levels, and pregnancy levels of estrogen exposure on 

AD risk should be explored further in order to elucidate whether historical changes in 

women’s estrogen profiles have increased or decreased AD risk across human history.

3.3. Inflammation

Inflammation is an important contributor to AD pathogenesis. Decades before symptom 

onset, there is upregulated type-1 inflammation (Schwarz et al.. 2001). potentially due to 

insufficient repositories of immunosuppressive regulatory T-cells (TRegs) (Pellicano et al.. 

2012). Such immune dysregulation is typical of autoimmunities that have previously been 

attributed to insufficient immunological challenge during early life (Kivity et al., 2009; 

Rook, 2010). As our hunter-gatherer ancestors likely experienced more, constant, low levels 

of immune activation due to more contact with animals, feces, and soil, it is likely they 

would have developed higher concentrations of TRegs (Rook, 2007, 2009). In the developed 

world today, low stimulation from benign microorganisms may lead to low rates of 

lymphocyte turnover during the life course, which subsequently may cause insufficient 

development of TRegs compared to pre-industrial populations. This “old friends hypothesis’ 

(Rook, 2010) could be extended to include AD at least to the extent that low pathogen 

exposure could increase risk of AD by virtue of an insufficient immunosuppressive 

lymphocyte repository.

Evidence for this hypothesis comes from our lab’s previous observation that countries 

characterized by generally low pathogen exposure exhibit higher age-adjusted rates of AD 

(Fox et al., 2013b). Rates of infectious disease, urbanization, and percent population with 

access to decontaminated drinking water and toilet infrastructure may serve as proxies for 

exposure to diverse (including benign) microorganisms. Importantly, public health 

infrastructure and antibiotic therapies have been critical for protection against deadly 

infectious pathogens, but an unintended side effect may be diminished exposure to benign 

microorganisms that are essential for development of immunoregulatory capacity. The 

observed correlations between historical (corresponding to the years during which the 

contemporary geriatric population would have spent their childhoods) scores on these 

proxies indicating low immune stimulation and contemporary AD risk provides the first 

evidence suggestive of links between loss of diverse microorganism exposure, 

immunodysregulation, and AD risk (Fox et al., 2013b). Further research is needed to 

establish biomechanistic causality.
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Early-life immune stimulation from benign microbes encountered during critical stages of 

development are beneficial for immune education, helping to avoid excessive inflammation 

later in the life course. The inflammation that results from either acute or chronic infections 

throughout the life course may induce brain insults that exacerbate AD risk or pathogenesis. 

For example, evidence has suggested that chronic infection with Helicobacter pylori 

(Kountouras et al., 2006; Roubaud-Baudron et al., 2012), Chlamydia pneumoniae (Balin et 

al., 1998), or herpes simplex vims type 1 (Itzhaki et al., 1997; Readhead et al., 2018; 

Wozniak and Itzhaki, 2010)[ may enhance AD risk via neuroinflammation. The “old friends 

hypothesis’ would imply that infection-related inflammatory brain insult may be even worse 

if the immune system lacks the regulatory mechanisms that would otherwise limit 

inflammation-related damage to the host.

3.4. Environmental toxins

The Industrial Revolution brought about both novel and increased exposures to 

environmental toxins (Allan et al., 2015; Clapp, 2014). Pre-industrial human history would 

have been characterized by AD rates lower by whatever degree industrialization-related 

environmental toxins enhance AD risk. A similar argument has been made for Parkinson’s 

Disease: industrial toxicants have been argued as a major candidate accounting for higher 

rates of Parkinson’s Disease in the industrialized era and industrialized world regions 

(Goldman, 2014).

Various industrial or occupational toxins that would have been absent from pre-modem 

environments have been implicated in AD risk. It is plausible that environmental agents 

could produce insults to the central nervous system in ways that exacerbate AD risk because 

endogenous neurotoxic agents play a crucial role in AD pathogenesis (Gao and Hong, 2008). 

Support is emerging that air pollution (Block and Calderon-Garciduenas, 2009), and heavy 

metal exposure including lead, mercury (Monnet-Tschudi et al., 2006), and cadmium 

(Notarachille et al., 2014) may enhance AD risk, while others found no relation between 

exposure to toxic chemicals or heavy metals and AD risk (Albert et al., 1984). Evidence 

remains ambiguous regarding aluminum exposure (Colombia and Peris-Sampedro, 2017; 

Gupta et al., 2005) and herbicide, insecticide, and pesticide exposures (Baldi et al., 2003; 

Gauthier et al., 2001).

3.5. ApoE

Environmental mismatch between the formative environment of human evolution and 

contemporary environments in which people experience inadequate early-life 

immunodevelopment may render pro- inflammatory alleles that were neutral or even 

adaptive in previous environments deleterious in certain contemporary environments.

ΑΡΟΕ-ε4 is considered by the medical community to be the primary genetic risk factor for 

sporadic AD (Coon et al., 2007; Liu et al., 2015). The way in which the ApoE protein 

modifies AD risk is probably not through lipid metabolism, its first identified function—

indeed, studies have found that even after statistically adjusting for cholesterol level and 

blood pressure, carrying an ε4 allele remained a risk factor for AD and the extent to which 

carrying an ε4 allele accounted for variance in AD risk was unaltered (Kivipelto et al., 2002; 
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Minihane et al., 2007). More likely, APOE genotype modifies AD risk through its effect on 

inflammation. The ε4 allele has been associated with increased risk and poorer outcomes in 

other conditions characterized by neuroinflammation (Jofre-Monseny et al., 2008) including 

traumatic brain injury (Friedman et al., 1999), post-operative cognitive dysfunction (Lelis et 

al., 2006), multiple sclerosis (Pinholt et al., 2006), HIV-associated dementia (Corder et al., 

1998), as well as psoriasis (Campalani et al., 2006).

However, the studies establishing APOE as an AD risk factor were all conducted in 

developed, relatively wealthy countries (Coon et al., 2007; Liu et al., 2015). These are the 

kinds of environments in which insufficient immune stimulation in early life leads to 

excessive inflammatory response in adulthood, as has been extensively discussed as a 

contributing factor in atopic and autoimmune conditions (Kivity et al., 2009; Rook, 2010; 

Rook, 2007, 2009). Consistent with a mismatch hypothesis, non-industrialized societies 

appear to exhibit little connection between the ε4 allele and AD risk while industrialized 

societies exhibit a strong connection, even given massive geographic and cultural diversity 

of each set of environments. The ε4 allele had no association with AD risk among geriatric 

Ibadan Yoruba Nigerians (Gureje et al., 2005), Nyeri Kenyans, Tanzanians (Sayi et al., 

1997), Wadi Ara Arab Israelis (Farrer et al., 2003), Bantu and Nilotic African cohorts (Chen 

et al.), or with mid-life AD risk factors among the Khoi San (Sandholzer et al., 1995). This 

was not the case for Americans with a wide range of ethnic ancestry, for whom ε4 conferred 

significantly increased AD risk (Farrer et al., 1997). It is conceivable that ΑροΕ-ε4 does not 

cause inflammation in non-industrialized environments in which individuals’ 

immunoregulatory capacity is stronger. In support of this possibility, a recent study in rural 

Ghana observed that ε4 status was not correlated with C-reactive protein or interleukin-6 

levels (van Exel et al., 2017). We can speculate that carrying an ε4 allele may not have 

conferred AD risk in pre-modem peoples whose environments closer resembled those of 

non-industrialized societies today. Further research is needed to explore this intriguing 

possibility.

APOE alleles are present at different frequencies across global populations today, e.g. within 

Europe ε4 is most frequent at high-latitudes with decreasing frequency further south, ε3 is 

highest in low-latitude and ε2 is at highest frequencies in mid-latitude Europe (Siest et al., 

2000). Because when ε3 and ε2 emerged during the Middle Paleolithic, Europe was 

populated by other species of hominins (e.g. Neanderthals), not Homo sapiens (Roebroeks, 

2001), it is impossible to attribute initial emergence and distribution of alleles among Homo 

sapiens to local selection. Flowever, it is conceivable that subsequent selection on APOE 

within Europe explains latitude- associated allelic gradients. Given the differential influence 

of APOE alleles on risks of not only AD but also infection (Kuhlmann et al., 2010), 

cardiovascular disease (Martins et al., 2006), and miscarriage (Zetterberg et al., 2002), it is 

difficult to attribute geographic allelic variation to some of these risks over others. In order 

to attribute these patterns to AD as a force of selection, the time-depth of latitude-associated 

APOE allelic gradients would have to be compared against the time-depth of AD incidence. 

Flere it is argued that understanding the history of AD incidence requires information on 

demographic and life-history patterns as well as the population history of risk factors such as 

inflammatory and metabolic dysregulation.
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4. CONCLUSION

Evolutionary perspectives have generated a series of hypotheses and predictions regarding 

AD. Assertions that AD is invisible to selection are undermined by evidence that human 

lifespans regularly extended into the geriatric phase throughout pre-modem history (with 

short life expectancy largely attributable to high early-life mortality risk) (Gurven and 

Kaplan, 2007; Flawkes and Paine, 2006) and geriatric individuals are not fundamentally 

post-reproductive because of inclusive fitness benefits they can bestow (Flamilton, 1964; 

Reiches et al., 2009) and detriments they can impose (Fox, 2012). Several possible 

pleiotropic features of AD deserve further research and have implications for understanding 

how selection has shaped the AD phenotype, particularly the balance of protective and 

pathological influences of Αβ, ΑροΕ-ε4 (Finch and Martin, 2016; Glass and Arnold, 2016; 

Lee et al., 2005), and AD-associated neuroinflammation (Wick et al., 2003). Additionally, I 

propose the hypothesis that AD may be a mismatch disease and describe preliminary 

evidence supporting the possibility that AD risk factors, including insulin resistance, 

estrogenic neuroprotection, inflammation, and ApoE may have functioned differently in pre-

modem human environments, such that age-matched AD risk may have been far lower for 

the vast majority of human history compared to today. If age-matched risk were lower in the 

past, disease onset would have been later in the lifespan closer to age at mortality, 

diminishing the fitness effect of disease. The possibility that AD is a “disease of civilization” 

would undermine the need for evolutionary explanations for persistence of the AD 

phenotype and the ε4 allele across human history.

Unravelling the evolutionary story behind AD could have implications for medical and 

public health research and practices, for instance, by helping distinguish between the body’s 

functional, adaptive, protective responses to pathological insult versus dysfunctional disease 

processes in which intervention could benefit patients. By identifying features of our modem 

environments or lifestyles that enhance risk, we may be able to recognize new opportunities 

for public health intervention or explore new therapeutic targets.
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Highlights

• ‘Evolutionary medicine’ explores why we as humans are susceptible to 

diseases

• Alzheimer’s is an evolutionary enigma in being both harmful and ubiquitous

• Various theories have been proposed for how natural selection affects 

Alzheimer’s

• An alternative possibility is that Alzheimer’s is a ‘disease of civilization’

• Risk factors like chronic inflammation and insulin resistance are novel in 

human history
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