
UC Irvine
ICS Technical Reports

Title
1995 high level synthesis design repository

Permalink
https://escholarship.org/uc/item/4xn5g41j

Authors
Panda, Preeti Ranjan
Dutt, Nikil

Publication Date
1995-04-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xn5g41j
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

1995 High Level Synthesis Design
Repository

Preeti Ranjan Panda
Nikil Dutt

Technical Report #95-04
April 11, 1995

University of California, Irvine
Irvine, CA 92717

(714) 824-7219

dutt@ics.uci.edu

iieajS,

Abstract

In this report we briefly describe a set of designs that can serve as examples for High Level Synthesis
(HLS) systems. The designs vary in complexity from simple behavioral finite state machines to more
complex designs such as microprocessors and floating point units. Most of the designs are described
in the VHDL language at the behavioral level. The report describes two categories of designs. The
first category contains designs that have documentation on the specifications of the designs along with
the strategy used to test the individual design models. The second category contains examples used in
many HLS papers, but lack comprehensive decumentation and/or test vectors.

Contents

1 Introduction

2 Overview of the Designs

Designs with complete descriptions
Floating Point Adder 4
Floating Point Multiplier 4
Floating Point Divider 5
The RT-PC Processor 5
The Prawn Microprocessor 5
Barcode Reader 6
The QRS Chip 6
Adaptive Interpolator 7
Volume System 7

3.10 Answering Machine 7

Designs with incomplete descriptions
Image Processing Applications 8
Switchable Filter 9
Period Counter 9
FFT 9

Differential Heat Release Computation 9
Beamformer 10
Jacobian 10

5 Summary

6 Acknowledgments

7 References

List of Figures

Features (in brief) of Designs with Complete Information 2
Features (in brief) of Designs with Incomplete Information 3

1 Introduction

The effort at creating a repository of High Level Synthesis (HLS) benchmark designs has been under
way since the 24th Design Automation Conference in 1987. An informal set of H-LS benchmarks was
created after the High Level Synthesis Workshop in 1988 and maintained at the SIGDA repository at
mcnc.mcnc.org. The purpose ofmaintaining this repository was to serve as a basis ofcomparison of
various approaches to High Level Synthesis and to provide a means for researchers and developers to
exercise their synthesis systems on a wide range of digital circuits.

This informal set was consolidated [DuRa92] into nine benchmark designs whose functionality and
verification schemes were well documented. These benchmarks, which include some simple controllers,
digital filters, a microprocessor slice, and a USART design among others, have been widely used as
examples by HLS researchers. In [DuRa92], guidelines for developing and submitting new benchmarks
were also formulated so as to make the benchmark collection an ongoing process. With this report we
release some of the interesting and important designs that were submitted in accordance with these
guidelines, as well as a set of designs that have complete HDL descriptions but lack comprehensive
documentation and/or test vectors.

We present a new set of design examples that augment the existing benchmark suite. Most of
these are fairly large designs with reasonably complex data and control structures. In most cases, the
models are accompanied by test patterns that were used to verify the correctness ofthe descriptions.
The tests are, of course, not exhaustive but are intended tocheck for typical behaviors. In some cases,
boundary conditions have been extensively checked, while in others (like the microprocessor example)
a few cases have been tried out for every instruction. We must mention that while the models have
all been subjected tosimulation checks, they may not all be directly synthesizable, and might require
modification when used as an example for a synthesis tool. Some of the constructs used might make
sense only for simulation. In such cases, however, the test vector set should be useful in determining
the correctness of any modifications to the design descriptions.

2 Overview of the Designs

This section presents a brief overview of the designs. Figures 1and 2summarize some ofthe important
aspects related to the functionality and verification of these designs, such as typical control features
present, style of description, major data types used and the extent to which the design example has
been tested. The number of lines of code (LOG) is mentioned to give a rough idea of the design's size.
The LOG includes lines with comments. (The lines of executable VHDL code is typically 50 %ofthe
total lines of code. The LOCfigures must be used with caution, for writing styles vary and the sizes of
the models are small enough to permit erroneous estimations about design size based on LOC alone.)

In the following sections, we describe in brief the functionality ofeach of the design examples and
mention the main testing strategy adopted. Some ofthe models are quite thoroughly tested for errors
while others have not been exercised very much.

3 Designs with complete descriptions

This section contains the descriptions of the designs that have proper documentation and test

Jit'Mgn
Name

Design
Descfipfion

Floating
Point Adder

Floating
Point

Multiplier

Roating

CPU

8-bit, 40

instructions

CPU

8-bit. 119

instructions

Barcode

Reader

E.C.G

Application
Chip

Adaptive
Interpolation
Algorithm

Bladder

Volume

Computation

Telephone
Answering
Machine

Design Control Data Test Lines Of
lillllillllii features Types ||||||||i|i||| Code

Aigorithmic
Behavior

1 VHDL

Process

Nested Ifs

For Loops
Proc/Func

Bit Vector

Integer
Enum

417 Cycles 640 (VHDL)

Algorithmic
Behavior

1 VHDL

Process

Nested Ifs

For Loops
Proc/Func

Bit Vector

Integer
Enum

169 Cycles 425 (VHDL)

Algorithmic
Behavior

1 VHDL Pro

cess. Func in

separate package

For Loop
Case Stmt

Integer
StdLogicVector

10 Cycles 410 (VHDL)

Instruction

Set

Behavior

1 VHDL

Process

Nested Ifs

Case Stmt

Bit Vector 1600 Cycles 700 (VHDL)

Instruction

Set

Behavior

Multiple Enti
ties. Functions

in sep. pack.

For Loop
While Loop
Case Stmt

Subtypes
Bit, int Array
Overloaded op

900 Cycles 3000

(VHDL)

Algorithmic/
High Level
FSM

1 VHDL

Process

Nested

Loops
Subtypes
Integer

1 Test Suite 110 (VHDL)

Algorithmic/
High Level
FSM

1 VHDL

Process

Loops
Nested Ifs

Subtypes
Integer

4300 Cycles 280 (VHDL)

Algorithmic
Behavior

Set of Silage
Functions

Func Calls,
Nested Loop

Multi Dimen

sional Integer
Arrays

6 Test

Suites

810

(Silage)

FSM with

Datapath
Set of Seq/Conc
SpecCharts
Behaviors

Transition

Arcs, For/

While Loops

Bit Vector

Integer Array
20 Test

Cases

220

(SpecCharts)

FSM with

Datapath
Set of Seq/Conc
SpecCharts
Behaviors

Transition

Arcs, For/

While Loops

Integer
Bit Vector

23 Test

Sequences
640

(SpecCharts)

Memory
(7 tnodelsi)

lacoptat)

DHRC

Applications

"Switchable"
Srd order

FIR Filter

Period

Counter

Robot

Motion

Computation

Fast Fourier

Transform

Differential

Heat

Computation

Loops

While Loop
If Stmt

Nested For

Loops
(4 levels)

For Loops

Design
I^vel

Algorithmic
Behavior

1C function

for each

example

Algorithmic
Behavior

1 Verilog
module

Algorithmic
Behavior

I Verilog
module

Vector

Product/

Summation

1 VHDL

Process

Algorithmic
Behavior

Set of C

Functions

Algorithmic
Behavior

1 VHDL

Process

Algorithmic
Behavior

1 VHDL

Process

Nested

While Loops

While Loops

2-Dimen-

sional float

Arrays

Bit Vector

Bit Vector

3-dim array
of Integer

Struct

Pointers

2-dim array
of 'double'

trigon. func

Array of
Bit Vector

Array of
Bit Vector

Test

Vectors

No Test

Suite

Available

No Test

Suite

Available

No Test

Suite

Available

No Test

Suite

Available

No Test

Suite

Available

No Test

Suite

Available

No Test

Suite

Available

35

(Verilog)

90

(Verilog)

100

(VHDL)

450 (C)

145

(VHDL)

100

(VHDL)

3.1 Floating Point Adder

Description

This model performs addition and subtraction of two floating point numbers. The IEEE Floating
Point standard is used. The two operands and the result are represented by a sign bit, a 127-biased
integer exponent in the range 0..255, and a 23-bit vector mantissa with a hidden 1 [HePa90].

The inputs to the model are the two operands, a clock and an opcode which can indicate one of
three operations - ADD, SUBTRACT and IDLE. The outputs of the model are the result of addition
and status flags indicating the special cases of zero, positive and negative infinities and Not-A-Number.
While ADD and SUBTRACT represent the corresponding operations, the IDLE operation maintains
the previous result at the output.

Testing Strategy

The test vectors to which this model is subjected include both typical cases and boundary condi
tions. The boundary conditions are exhaustively tested. The tests include boundary conditions on
the operations (such as underflow, overflow, etc.), as well as tests involving boundary conditions on
operands such as positive and negative infinity, NAN (Not-A-Number), smallest representable positive
and negative numbers, etc.

3.2 Floating Point Multiplier

Description

This model performs multiplication of two floating point numbers. The IEEE Floating Point
standard for single precision floating point numbers is used. The two operands and the result are
represented by a sign bit, a 127-biased integer exponent in the range 0..255, and a 23-bit vector
mantissa with a hidden 1.

The inputs to the model are the two operands, a clock and an opcode which can indicate one of two
operations - MULTIPLY and IDLE. The outputs of the model are the product of the two operands and
status flags indicating the special cases of zero, positive and negative infinities and Not-A-Number.
The MULTIPLY operation results in the output being updated with the product of the operands and
the IDLE operation maintains the previous result at the output.

Testing Strategy

The test vectors to which this model is subjected include both typical cases and boundary condi
tions. The boundary conditions are exhaustively tested. The tests include boundary conditions on
the operations (such as underflow, overflow, etc.), as well as tests involving boundary conditions on
operands such as positive and negative infinity, NAN (Not-A-Number), smallest representable positive
and negative numbers, etc.

3.3 Floating Point Divider

Description

This model performs division ofone floating point operand by another. The IEEE Floating Point
standard for double precision floating point numbers is used. The two operands and the result are
represented by a sign bit, a 10-bit 511-biased integer exponent in the range 0..1023, and a 53-bit vector
mantissa with a hidden 1.

TheDigit-Recurrence Algorithm [LaEr94] isemployed for the division using radix 512. Thedivision
essentially consists ofsix iterations ofa recurrence [LaEr94] in which each iteration produces nine bits
ofthe quotient (i.e., one digit in radix 512), most significant digit first. The algorithm is implemented
for the case where the divisor is a fraction between 0.5 and 1, while the dividend is a fraction between
0.25 and the divisor. Other cases can be derived by using appropriate scaling factors.

Testing Strategy

Test vectors available for verification ofthis model were generated for some typical and boundary
cases of the divisor and dividend. A C program for generating more test vectors is provided.

3.4 The RT-PC Processor

Description

This is a VHDL description of the IBM RT PC [ThDu94], a RISC processor which uses the ROMP
architecture. The description is based on the definition ofthe architecture from [RTPC85].

The architecture consists of an 8-bit processorwhich has an 8 bit data-bus and a 24 bit address-bus.
(The model actually makes the address space programmable, in order to avoid large memory arrays
which would be needed to store the entire range addressable by a 24 bit address.) The system consists
of three main-blocks: the Control unit, the Memory unit and the RTPC-Model unit.

The Control unit reads the program file and writes it to Memory. It then triggers the RTPC-Model
to start execution and the RTPC-Model indicates the completion of execution to the Control unit.

The instructions for the RT-PC include those in the category ofmemory load/store, address com
putation, conditional and unconditional branches, traps, moves and inserts, arithmetic operations,
logical opeartions, shifts and system control.

Testing Strategy

The RTPC-Model block serves as the testbench for exercising the processor and memory blocks.
An assembler was written to convert assembly code into code in the format understood by the model.
The test suite developed for testing this model includes the exercising ofevery instruction the model
is designed to handle, with two or three different operand sets.

3.5 The Prawn Microprocessor

Description

Prawn is based on the Parwan RISC processor described in [Navabi93]. The instruction set of
[Navabi93] was enhanced to include interrupt handling and conditional branches.

Prawn is an eight-bit microprocessor which has an 8-bit Data Bus and a 12-bit Address Bus for
external accesses, the address space being partitioned into sixteen pages of 256 bytes each. It has a
limited number of arithmetic and logic instructions, several jump and branch instructions, subroutine
call instructions, and interrupt instructions. Some instructions have an addressing mode that provides
for direct and indirect addressing. Prawn has an accumulator, a reduced ALU, a shifter, program
counter, and five flags (interrupt enable, overflow, carry, zero, sign). It uses a designated address of
memory as a stack pointer register.

The ports of the model consist of a clock, two interrupt ports (reset and interrupt), an 8-bit data
bus, a 12-bit address bus, signals for reading and writing to and from memory and an interrupt
acknowledge signal.

Prawn has single byte and double byte instructions. Many of the double byte instructions have two
addressing modes: direct and indirect. One of the memory pages is treated as the stack.

Testing Strategy

The test vectors basically ensure that all instructions are executed. Each test vector file consists
of two sets of memories and one process for simulation control. The first set of memories, called the
Working Set, contains the program, data, and working areas for the Prawn CPU. These are executed
and used by the Prawn CPU during simulation. The second set, called Expected Set, has the expected
contents for the set of memories when a correct simulation is finished. For every test suite the memory
at the end of the testing is compared with the expected values at the memory locations.

3.6 Barcode Reader

Description

This model performs the function of a barcode reader [BhBrDe93]. The algorithm used by the
reader essentially consists of reading in the bits that are generated by the scanner (from a single bit
input signal) and recording the width of the black and white stripes. Whenever there is a transition
from one color of stripe to another (whether black —> white or vice versa), it is recorded in a single
counter. The results are written to a memory location, whose address corresponds to the number of
transitions encountered.

Testing Strategy

A few test cases were developed to verify the functionality of the model on some random input
Barcode patterns (i.e., color of white and black bit streams.)

3.7 The QRS Chip

Description

This VHDL model describes a chip used for monitoring the heart-rate in ECG applications, called
the QRS chip [BhBrDe93] (since it detects some points called Q-R-S points in the ECG data stream).

Three different descriptions of the same chip are given, two algorithmic and one in the form of a state
machine, all expressing the same functionality.

This benchmark lacks sufficient documentation. The models all have equivalent functionality but
no documentation exists on the algorithm itself.

Testing Strategy

The model was verified with a set of test cases for which a reference expected output set has been
provided.

3.8 Adaptive Interpolator

Description

This design (written in the Silage language) implements an adaptive interpolation algorithm for
digital audio signals [VeJaVrSG]. In brief, this computation-intensive algorithm recovers a signal that
contains a burst.

Testing Strategy

Six test suites are available for verifying the functionality of the design. A set of values of the
signals, the length ofthe burst and positions ofthe burst form each test suite, along with the expected
output patterns.

3.9 Volume System

Description

This design (written in SpecCharts [VaNaGa91]) models a Volume System for measurement of
the volume of a human bladder [VaGoNa94]. The volume system controls a transducer, which is
attached toa motor, toscan the related abdominal area along two-dimensional grids. At each scanning
point, the transducer sends an ultrasonic wave into the anatomical region to be examined. When the
ultrasonic wave strikes tissues of different acoustic impedance, an echo is reflected to the transducer.
Two major peaks will be generated by the echoes from the anterior and posterior walls of the bladder.
The distance between the anterior and the posterior walls of each section of the bladder is determined
from this information and the volume of the bladder is computed.
Testing Strategy

AVHDL testbench is available to test the generated VHDL model on twenty sample inputs.

3.10 Answering Machine

Description

This design (written in SpecCharts) models the controller of a Telephone Answering Machine

[GaVaNaGo94]. The features modeled include an outgoing announcement, recording and playback of
messages, forwarding and rewinding of the message tape, display of number of messages, etc.

Testing Strategy

A VHDL testbench is available to test the generated VHDL model on about twenty typical input
sequences.

4 Designs with incomplete descriptions

This section contains the descriptions of the designs used in several publications, for which no test
suites exist and for which documentation is also incomplete. References have been provided, however,
indicating the source of these designs.

4.1 Image Processing Applications

Description

These examples implement (in the C language) a set of algorithms related to image processing
[PrTeVeF192] that were used to validate some algorithms on memory synthesis [KoNiDu94]. These
designs are characterized by their memory-intensive behavior.

SOR - This is a Successive Over-Relaxation algorithm used in evaluating partial differential equa
tions.

Wavelet This algorithm, used in image compression, implements the Debaucles 4-Coefficient Wavelet
filter.

GSR - This is an algorithm for Red-black Gauss-Seidel relaxation method.

Linear - This implements a general linear recurrence solver.

LowPass - This code applies a low-pass filter to an image. Low-pass filters accentuate low frequencies
in an image - that is, the resulting image has lower changes between neighboring color values.

Laplace - This code implements a Laplace algorithm to perform edge enhancement of northerly
directional edges in an image.

Compress - This code implements an image compression scheme by estimating the current cell based
on the neighbors' values. It then stores the difference between the prediction and the actual
value.

Testing Strategy

Test cases for verifying the functionality do not exist for these models.

4.2 Switchable Filter

Description

This model describes (in Verilog language) an Interpolating Switchable 3rd Order FIR F27ter[Ug95].
It is switchable because it samples its input either every two clock cycles or four clock cycles depending
on the swUch input. It is interpolating because although it only generates a true output value based
on the third FIR filter equation at the same frequency as it samples its input, it still updates the
output by linear interpolation in intermediate clock cycles.
Testing Strategy

No test cases are available.

4.3 Period Counter

Description

This model describes (in Verilog language) a Period Counter [Ug95]. It counts the length of a
complete cycle of an input signal in terms of the number of clock cycles it takes. The circuit is asleep
as long as reset is low. When reset is released, it computes the period by appropriately waiting for
the positive and negative edges of the signal.
Testing Strategy

No test cases are available.

4.4 FFT

Description

This design, written in VHDL, encodes the Fast Fourier Transform (FFT) algorithm for converting
information from the time domain to the frequency domain [CaSv93]. The design is a model of an
N-point FFT, consisting of Ninputs, Noutputs and log Nstages of computation, each stage requiring
N/2 butterflies where abutterfly consists of one addition, one subtraction and one multiplication. Two
consecutive stages are connected to each other via a shuffle network.
Testing Strategy

No test suites are available for this design.

4.5 Differential Heat Release Computation

Description

This design, written in VHDL, encodes a Differential Heat Release Computation algorithm that
models the heat release within a combustion engine [CaSv93]. This model has been employed in
memory mapping experiments.

Testing Strategy

No test suites are available for this design.

4.6 Beamformer

Description

This design, written in VHDL, describes the behavior of a Beamformer system, an example of
a typical DSP system [BaGa93]. The beamforming operation involves the temporal alignment and
summation of digitized signals from an N-element antenna array. The N antennas are spread over a
distance of the order of a few kilometers, hence the samples arriving at the elements corresponding
to different times (having travelled different distances.) Before these samples are summed, as the
beamformer operation requires, it is essential to interpolate the samples such that they all correspond
to the same time instant. A beam is formed by summing all the time-aligned signals.

Testing Strategy

No test suites are available for this design.

4.7 Jacobian

Description

This design, written in C language, evaluates the Jacobian of an open kinematic chain, whose
representation is based on the product-of-exponentialsioTianla, [PaMu93].

The Jacobian of a robot is the linear transformation relating joint rates to end-effector rates.
The input to the algorithm consists of a set of n joints of the robot and a set of n 4 x 4 matrices
characterizing the joints. The result of the Jacobian computation is a set of n 4 x 4 matrices.

Testing Strategy

No test suites are available for this design.

5 Summary

In this report we described in brief the functionality and testing strategy of several new High Level Syn
thesis designs. All of these designs are available from the design repository at U.C Irvine (anonymous
ftp; site: ics.uci.edu; location: pub/HLSynth95).

We welcome any feedback on the design examples and their accompanying documentation. We also
welcome the submission of more designs for future inclusion - preferably, those whose functionality
does not overlap with that of the existing designs. This variety in the design examples is important
and is in accordance with our goal of making realistic design examples available to the HLS community
as well as to serve as a reliable basis for stimulating new research^ as well as for meaningful comparison
of HLS systems and algorithms.

6 Acknowledgments

We would to thank the following people who have contributed towards the development of the de
signs: Jesse Pan and Bob McDhenny (FPAdder and FPMult), Alberto Nannarelli (FPDivide), Alfred
Thordarson (RT-PC), Tadatoshi Ishii (Prawn), Franc Brglez (Barcode and QRS), David Kolson (Im
age Processing Applications), Lode Nachtergaele (Adaptive Interpolator), Fatih Ugurdag (Filter and
Period Counter), Jie Gong (Answering Machine and Volume System) and Smita Bakshi (Beamformer
FFT, DHRC and Jacobian.) '

We also thank Manu Gulati for his useful comments and suggested improvements on the Barcode
and QRS designs.

This work was supported in part by SRC Grant 94-DJ-146. We are grateful for their support.

7 References

[Arms89] J. Armstrong, "Chip-level Modeling with VHDL," Prentice HaU 1989.

Exploration to. Th. Be.mfo,n.o, Syntem," Technical Report 93-34,

[BhBrDe93] S. Bhattacharya, F Brglez and S. Dey, "Transformations and Resynthesis for Testability of RT-Level
Control-Data Path Specifications, IEEE Transactions on VLSI Systems, September 1993.

^^^^1993 Svesnsson, "Application-Driven Architecture Synthesis," Kluwer Academic Pubhshers,

"" EoPort
[Ga^NaGo9^aD iD-^Gajski, F. Vahid, S. Narayan and J. Gong, "Specification and Design of Embedded Systems,"
[HePa90|_sJeL. Hennessy and D. A. Patterson, "Computer Architecture -aquantitative approach," Morgan Kaufman
[KoNiDu94] D. J. Kolson, A. Nocolau and N. Dutt, "Integrating Program Transformations in the Memory-Based Syn

thesis of Image and Video Algonthms," Proceedings, ICCAD'94, pp 27-30, San Jose, CA, Nov. 1994.

Ate,' • "^t-Rrcprrencc Algori.h™ „d I„ple„„..-
[Navabi93] Z. Navabi, "VHDL ; analysis and modehng of digital systems," McGraw-HiU 1993.

Recipes in C: The Art of Scientific Computing," Cambridge University

[RTPC85] IBM RT PC Hardware Technical Reference (C), 1985.
[Thl^g^U A. B. Thord^son and N. Dutt, "A VHDL Model and Testbench for the IBM RT-PC Rise Processor," UCI

CADLAB document, Univ of California, Irvine, 1994.
[Ug95] H. F. Ugurdag, Personal Communication, 1995.

^ '̂̂ r^iie^\994^^^" '̂ ^ SpecCharts/SpecSyn User's Manual," University of California,
[VaNaGa911 F. Vahid, S Narayan and D. D. Gajsld, "SpecCharts: Alanguage for system level synthesis," Proceedings

01 the International Symposium on Computer Hardware Description Languages and their Applications, 1991.
[VeJaVr8^ ^N J Veldhuis A.J.E.M. lessen and L B Vries, "Adaptive Interpolation of Discrete-Time Signals That

2 1986^ Modeled as Autoregressive Processes," IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 34, No.

