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Abstract

This paper deals with statistical inferences based on the generalized varying-coeÆcient mod-

els proposed by Hastie and Tibshirani (1993). Local polynomial regression techniques are used

to estimate coeÆcient functions and the asymptotic normality of the resulting estimators is

established. The standard error formulas for estimated coeÆcients are derived and are empir-

ically tested. A goodness-of-�t test technique, based on a nonparametric maximum likelihood

ratio type of test, is also proposed to detect whether certain coeÆcient functions in a varying-

coeÆcient model are constant or whether any covariates are statistically signi�cant in the model.

The null distribution of the test is estimated by a conditional bootstrap method. Our estima-

tion techniques involve solving hundreds of local likelihood equations. To reduce computation

burden, a one-step Newton-Raphson estimator is proposed and implemented. We show that

the resulting one-step procedure can save computational cost in an order of tens without dete-

riorating its performance, both asymptotically and empirically. Both simulated and real data

examples are used to illustrate our proposed methodology.

Key Words: Asymptotic normality; bootstrap; generalized linear models; goodness-of-�t; local

polynomial �tting; one-step procedure.

�Partially supported by NSF Grant DMS-9803200 and NSA 96-1-0015.



1 Introduction

Generalized linear models are widely used in many statistical applications. They are based on

two fundamental assumptions: the conditional distributions belong to an exponential family and a

known transform of the underlying regression function is linear. Various attempts have been made

to relax the above model assumptions and hence widen their applicability, since a wrong model

on the regression function can lead to excessive modeling biases and hence erroneous conclusions.

For example, generalized additive models (Hastie and Tibshirani 1990) extend traditional linear

assumptions by allowing nonparametric additive contributions to a known transform of the regres-

sion function, and generalized varying-coeÆcient models (Hastie and Tibshirani 1993) widen the

scope of applications by allowing regression coeÆcients to depend on certain covariates.

A motivation of this study comes from an analysis of an environmental data set, collected in

Hong Kong from January 1, 1994 to December 31, 1995 (Courtesy of Professor T. S. Lau), which

consists of weekly measurements of pollutants and other environmental factors. Of interest is to

examine the association between the levels of pollutants and the number of weekly total hospital

admissions for circulationary and respirationary problems. It is natural to allow the association to

change over time (see Figure 3(a) below). Such a problem can be modeled as follows

gfm(u; x)g =
pX

j=1

aj(u)xj (1.1)

for some given link function g(�), where x = (x1; : : : ; xp)
T , and m(u; x) is the mean regression

function of the response variable Y given the covariates U = u and X = x. For the aforementioned

example, the log-link is used, U is the time covariate, and X denotes the levels of pollutants. The

conditional distribution of the number of weekly hospital admissions given the covariates can be

modeled reasonably as a Poisson distribution with the mean function given by (1.1). This is an

example of generalized varying-coeÆcient models. In another context, one is interested in studying

how the variables such as burn area and gender a�ect survival probabilities for di�erent age of burn

victims. This is another example of the generalized varying-coeÆcient models. Detailed analyses

of these two data sets will be reported in x4.

By regarding X1 � 1, (1.1) permits varying intercept term in the model. In particular, when

the coeÆcient functions aj(�) � aj (2 � j � p) and X1 � 1, the model becomes a generalized

partially linear model

gfm(u; x)g = a1(u) +

pX
j=2

aj xj (1.2)

studied, for example, by Chen (1988), Speckman (1988), Green and Silverman (1994), and Carroll,

Fan, Gijbels and Wand (1997), among others. If we assume further that the function a1(�) is also a
constant, the model reduces to a familiar parametric generalized linear model (see McCullagh and

Nelder 1989)

gfm(u; x)g =
pX

j=1

aj xj: (1.3)
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In the least-squares setting, model (1.1) with the identity link was introduced by Cleveland,

Grosse and Shyu (1992) and extended by Hastie and Tibshirani (1993) to various aspects. Further-

more, a two-step estimation procedure was proposed by Fan and Zhang (1997) to deal with the

situations where coeÆcient functions admit di�erent degrees of smoothness. An advantage of the

model (1.1) is that via allowing coeÆcients a1(�); : : : ; ap(�) to depend on U, the modeling bias can

be reduced signi�cantly and the \curse of dimensionality" is avoided.

Generalized varying-coeÆcient models are a simple and useful extension of classical linear mod-

els. This extension admits simple interpretability. The models are particularly appealing in lon-

gitudinal studies where they allow one to explore the extent to which covariates a�ect responses

changing over time. See Hoover et al. (1998), Brumback and Rice (1998) and Fan and Zhang

(1998) for details on novel applications of the varying-coeÆcient models to longitudinal data. For

nonlinear time series applications, see Chen and Tsay (1993) and Cai, Fan and Yao (1998) for

statistical inferences based on functional-coeÆcient autoregressive models.

Estimation of coeÆcient functions in (1.1) is obtained by using local smoothing technique. By

localizing data around the covariate u, model (1.1) is approximately a generalized linear model

and one can �nd its estimate by using a local maximum likelihood method. The local likelihood

method relies on an iterative algorithm. In order to obtain estimated coeÆcient functions, we

need to solve hundreds of local maximum likelihood problems. This can be expensive to compute,

depending on the convergence criterion. Computational burden becomes even more severe when a

cross-validation method is used to select a smoothing parameter. To attenuate this drawback, we

propose a one-step local maximum likelihood estimator (MLE). Although the idea is not entirely

new, our implementation is novel. Computational cost in a factor of tens can be saved and the

resulting one-step estimator is demonstrated, both asymptotically and empirically, to be as eÆcient

as the fully iterative MLE.

Associated with inferences on generalized varying-coeÆcient models are the standard errors

of the estimated coeÆcient functions. Consistent estimates are derived. We further show that

our estimated standard errors are indeed accurate enough for most of applications via empirical

studies. Another important issue arises whether some of coeÆcient functions in model (1.1) are

really varying, e.g., testing (1.3) against (1.1) or (1.2) versus (1.1), or whether some of covariates

are statistically signi�cant. A nonparametric maximum likelihood ratio test is proposed and its

null distribution is estimated by using a conditional bootstrap method. Our simulation shows that

the resulting testing procedure is indeed powerful and the bootstrap method gives the right null

distribution.

The paper is organized as follows. In x2, generalized varying-coeÆcient models are introduced.

x3 discusses estimation methods and inference tools. In particular, formulas for standard errors

of estimated coeÆcient functions are derived, a maximum likelihood ratio test is proposed, and

strategies are given for implementation of a one-step estimator. In x4, we study some �nite sam-

ple properties of the one-step and local MLEs using two simulated examples. Furthermore, our

methodology is illustrated through the aforementioned environmental dataset and a data set on

survival probability of burn victims. x5 presents some asymptotic properties of the one-step and

local MLEs. Finally, technical proofs are given in the Appendix.
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2 Generalized varying-coeÆcient models

In generalized linear models, the conditional density of Y given covariate (U; X) belongs to the

canonical exponential family:

f(yju; x) = exp
n
[�(u; x) y � bf�(u; x)g]=a(�) + c(y; �)

o
(2.1)

for given functions a(�), b(�) and c(�; �). See McCullagh and Nelder (1989) and x5.4 of Fan and

Gijbels (1996). Under model (2.1), one can easily show that the conditional mean and conditional

variance are given respectively by m(u; x) = E(Y jU = u; X = x) = b
0f�(u; x)g, and Var(Y jU =

u; X = x) = a(�) b00f�(u; x)g. Since our primary interest focuses on estimating the mean function,

without loss of generality, the factors related to the dispersion parameter � are omitted. This leads

to the following conditional log-likelihood function

`fm(u; x); yg = �(u; x) y � bf�(u; x)g:

Generalized varying-coeÆcient models extend the traditional generalized linear models by allowing

coeÆcients to depend on a covariate. Namely, the linear predictor is

�(u; x) = gfm(u; x)g =
pX

j=1

aj(u)xj (2.2)

for some given link function g. In practice, the canonical link g(�) = (b0)�1(�) is frequently used.

Our goal is to estimate eÆciently the coeÆcient functions faj(�)g by using a nonparametric

method. Our methods are directly applicable to the situation where one can not specify fully

the conditional likelihood function `(v; y), but one can model the relationship between the mean

function and variance function as Var(Y jU = u; X = x) = �
2
V fm(u; x)g for a given variance

function V (�) and unknown �. In this case, one needs only to replace the likelihood function `(v; y)
by the quasi-likelihood function Q(�; �), de�ned by @

@�
Q(�; y) = y��

V (�)
.

3 Estimation

For simplicity, we consider only the case that u in (2.2) is one-dimensional. Extension to multi-

variate u involves no fundamentally new ideas. However, implementations with u more than two

dimensions are not very useful due to the \curse of dimensionality".

3.1 Local MLE

We will use a local linear modeling scheme, though general local polynomial methods are also

applicable. The local linear �ttings have several nice properties such as high statistical eÆciency

(in an asymptotic minimax sense) and being design-adaptive (Fan 1993). Furthermore, they auto-

matically correct edge e�ects (Ruppert and Wand 1994; and Fan and Gijbels 1996). Suppose that

the second derivative of aj(�) exists and is continuous. For each given point u0, we approximate

function aj(u) locally by a linear function aj(u) � aj + bj (u � u0) for u in a neighborhood of u0.
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Note that aj and bj depend on u0. Based on a random sample f(Ui; Xi; Yi)gni=1
from model (2.1),

we use the following local likelihood method to estimate the coeÆcient functions

`(a;b) =
1

n

nX
i=1

`

24g�1
8<:

pX
j=1

(aj + bj(Ui � u0))Xij

9=; ; Yi

35 Kh(Ui � u0); (3.1)

where Kh(�) = K(�=h)=h with K(�) being a kernel function, h = hn > 0 is a bandwidth, a =

(a1; : : : ; ap)
T and b = (b1; : : : ; bp)

T . Maximizing the local likelihood function `(a; b) gives es-

timates ba(u0) and bb(u0). The components in ba(u0) give an estimate of a1(u0); : : : ; ap(u0). For

simplicity of notation, we will denote � = �(u0) = (a1; : : : ; ap; b1; : : : ; bp)
T and write the local

likelihood function (3.1) as `(�). Likewise, the local MLE will be denoted by b�
MLE

(u0).

3.2 One-step local MLE

The local MLE can be costly to compute. This is particularly the case for the varying-coeÆcient

models. In order to obtain functions fbaj(�)g, one needs to maximize the local likelihood (3.1)

for many (usually in an order of hundreds) distinct values of u0. Each maximization requires an

iterative algorithm. The computational cost of this iterative method depends also on the number

of covariates p: the larger the more expensive. To reduce the computational cost, we propose to

replace the iterative local MLE by an explicit non-iterative estimator. An excellent candidate is

the one-step Newton-Raphson scheme, which has been frequently used in parametric models (see,

for example, Bickel 1975; and Lehmann 1983). However, computational gain for the parametric

models is not as signi�cant as for our local likelihood estimation since the local likelihood method

involves �nding hundreds of parametric MLEs. Like in parametric models, it will be shown (see

Theorem 2 below) that the one-step local MLE does not lose any statistical eÆciency provided that

the initial estimator is good enough.

We now describe our one-step iterative estimator, called one-step local MLE. Let `0(�) and

`
00(�) be the gradient and Hessian matrix of the local likelihood `(�). Given an initial estimatorb�
0
(u0) =

�ba(u0)T ; bb(u0)T�T , the Newton-Raphson algorithm is to �nd an updated estimator

b�
OS
(u0) = b�

0
(u0)�

n
`
00

�b�
0
(u0)

�o
�1

`
0

�b�
0
(u0)

�
: (3.2)

This one-step estimator inherits clearly the computation expediency from least-squares local poly-

nomial �tting.

In univariate generalized linear models, properties of the local one-step estimator were carefully

studied by Fan and Chen (1999). In that setting, the least-squares estimate serves a natural

candidate as an initial estimator. In the multivariate setting, however, it is not clear how an initial

estimator can be constructed. Our implementation of the one-step local likelihood estimator is

given in x3.5.

Note that `00(b�0(u0)) can be nearly singular for certain u0, due to possible data sparsity in

certain local regions. This is particularly the case when the bandwidth is small. A method to

annihilate this drawback is the ridge regression. In the univariate setting, this idea was explored

by Seifert and Gasser (1996) and Fan and Chen (1999). We will extend their ideas in x4.
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3.3 Standard Errors

Standard errors are very useful for assessing sampling variability. It is frequently used in construct-

ing pointwise con�dence intervals. As shown in Theorem 2, the one-step estimator admits the

same asymptotic variance as that of the local MLE. Therefore, the two estimators share the same

estimated standard error.

Note that the local MLE (3.1) is really a weighted likelihood function of a corresponding para-

metric generalized linear model. Therefore, the covariate matrix can be estimated from the con-

ventional technique. Let qj(s; y) =
�
@
j
=@s

j
�
`
�
g
�1(s); y

	
and

b�(u0) = � 1

n

nX
i=1

q2

24 pX
j=1

fbaj(u0)Xij + bbj(u0)(Ui � u0)g; Yi
35 Kh(Ui � u0)

�
Xi

Vi

�

2

; (3.3)

where Vi = Xi (Ui � u0)=h and A

2 denotes AA

T for a matrix or vector A. Then, the covariance

matrix of b�
MLE

(ui0) can be estimated as

b��(u0) = b�(u0)�1 b�(u0) b�(u0)�1; (3.4)

where

b�(u0) = h

n

nX
i=1

q
2

1

24 pX
j=1

fbaj(u0)Xij + bbj(u0)(Ui � u0)g; Yi
35 K

2

h(Ui � u0)

�
Xi

Vi

�

2

:

The estimated asymptotic variance of baj(u0) is just the j
th diagonal element of b��(u0). In our

implementation, a ridge regression technique will be employed and hence the matrix b�(u0) in (3.4)

will be slightly modi�ed to re
ect this change.

The explicit formula for the asymptotic covariance matrix (see (5.3) below) provides an alter-

native estimate. The asymptotic covariance matrix is given by

�(u0) = �2 �
�1(u0)=fU(u0); (3.5)

where �k =
R
u
k
K(u) d u for k = 1 and 2, fU(�) is the marginal density of U ,

�(u) = E

n
�(U; X)XXT jU = u

o
; (3.6)

and

�(u; x) = [g1fm(u; x)g]2 VarfY jU = u; X = x)g (3.7)

with g1(s) = g
0

0
(s)=g0(s) and g0(�) being the canonical link. Note that �(u; x) = V fm(u; x)g for

the canonical link function. Therefore, a direct estimate of �(u0) is e�(u0) = �2
b�S(u0)�1, whereb�S(u0) is the p� p upper corner submatrix of b�(u0) given by (3.3).
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3.4 Hypothesis testing

After �tting a generalized varying-coeÆcient model, one naturally asks whether the coeÆcient

functions are really varying or whether any particular covariate is signi�cant in the model. For

simplicity of description, we only consider the �rst hypothesis testing problem

H0 : a1(u) � a1; � � � ; ap(u) � ap; (3.8)

though the technique also applies to other testing problems. A useful procedure is based on the

nonparametric likelihood ratio test statistic

T = 2f`(H1)� `(H0)g; (3.9)

where `(H0) and `(H1) are respectively the log-likelihood functions computed under the null hy-

pothesis and the whole parametric space.

For parametric models, the likelihood ratio statistic follows asymptotically a �
2-distribution

with degrees of freedom f � r, where r and f are the number of parameters under the null and

alternative hypotheses. For the nonparametric alternative, the e�ective number of parameters f

tends to in�nite. Thus, the test statistic will be asymptotically normal, independent of the values

a1; � � � ; ap. This in turn suggests that we can use the following conditional bootstrap to construct

the null distribution of T . Let ba1; � � � ; bap be the MLE under the null hypothesis. Given the

covariates (Ui; Xi), i = 1; : : : ; n, generate a bootstrap sample Y �

i
from model (2.1) with

b�(Ui; Xi) =

pX
j=1

bajXij

and compute the test statistic T � in (3.9). Use the distribution of T � as an approximation to the

distribution of T . This method is valid since the asymptotic null distribution does not depend on

the values of a1; � � � ; ap. The statement will be veri�ed in x4.

Note that the above conditional bootstrap method applies readily to the Poisson and Bernoulli

distributions, since in these cases (2.1) does not involve with any dispersion parameters. It is really

a simulation approximation to the conditional distribution of T given observed covariates under the

particular null hypothesis: H0 : aj(u) = baj (j = 1; � � � ; p). As pointed above, this approximation

is valid under both H0 and H1 as the null distribution does not asymptotically depend on the

values of aj(j = 1; � � � ; p). In the case where model (1.1) involves a dispersion parameter (e.g., the

Gaussian model), the dispersion parameter should be estimated based on the residuals from the

alternative hypothesis.

For testing the hypothesis such as ap(�) = 0. The above conditional bootstrap idea continues

to apply. In this case, the data should be generated from the mean function

gfm(u; x)g =
p�1X
j=1

baj(u)xj ;
where baj(�) is an estimate under the alternative hypothesis.
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3.5 Implementation of one-step local MLE

Suppose that we wish to evaluate the functions ba(�) at grid points uj; j = 1; : : : ; ngrid. Our idea

of �nding initial estimators is as follows. Take a point ui0 , usually the center of the grid points.

Compute the local MLE b�
MLE

(ui0). Use this estimate as the initial estimate for the point ui0+1

and apply (3.2) to obtain b�
OS
(ui0+1). Now, use b�OS(ui0+1) as the initial estimate at the point ui0+2

and apply (3.2) to obtain b�
OS
(ui0+2) and so on. Likewise, we can compute b�OS(ui0�1), b�OS(ui0�2),

etc. In this way, we obtain our estimates at all grid points.

There are a couple of possible variations to the above technique. The �rst one is to calculate a

fresh local MLE as a new initial value after iterating along the grid points for a while. For example,

if we wish to evaluate the functions at 200 grid points and are willing to compute the local maximum

likelihood at �ve distinct points. A sensible placement of these points is u20; u60; u100; u140 and

u180. Use for example b�MLE(u60) along with the idea in the last paragraph to compute b�
OS
(ui) for

i = 40; : : : ; 79. In our implementation, this modi�ed technique is used.

Another useful modi�cation is to use a two-step method. We use the scenarios given in the last

paragraph as an illustration. After obtaining b�
MLE

(u60), say, we apply (3.2) to obtain b�
OS
(u61).

Regarding b�
OS
(u61) as an initial value, we use (3.2) to obtain a \two-step" estimator b�TS(u61). Now,

use b�
TS
(u61) as an initial value for the grid point u62 and iterate (3.2) twice to obtain b�TS(u62) and

so on. This implementation requires approximately twice as much e�ort to compute the estimates as

the one-step method. However, our empirical studies show that there are no signi�cant di�erences

between the two procedures. See x4 for details.

The theoretical basis for the above \one-step" and the \two-step" procedures is as follows.

When the grid points are suÆcient �ne, b�
MLE

(ui0) will be very close to
b�
MLE

(ui0+1). Indeed, when

the grid span is of order O
n
h
2

n + (nhn)
�1=2

o
which usually is true for most applications, b�

MLE
(ui0)

satis�es the condition given in Theorem 2. Therefore, b�
OS
(ui0+1) is as eÆcient as the fully-iterative

local MLE at the point ui0+1. Using the same reasoning, b�
OS
(ui0+2) is as eÆcient as the local

MLE at the point u = ui0+2 and so on. The same arguments are still applicable for the two-step

estimator. A refresh start is needed because of stochastic error accumulation as iterations along

grid points march on.

4 Simulations and applications

In this section, we �rst discuss how to implement the one-step procedure for two important models,

the Bernoulli and the Poisson models. We then illustrate the performance of the proposed one-

step method and compare it with the two-step estimator and the fully-iterative local MLE. The

performance of estimator baj(�) is assessed via the square-Root of Average Square Errors (RASE):

RASE2

j = n
�1

grid

n
gridX
k=1

fbaj(uk)� aj(uk)g2; j = 1; � � � ; p; (4.1)

7



where fuj ; j = 1; : : : ; ngridg are the grid points at which the functions faj(�)g are estimated.

Similarly the performance of the joint estimator ba(u) is evaluated by

RASE2 =

pX
j=1

RASE2

j : (4.2)

In the following two simulated examples, the covariates X1 and X2 are standard normal random

variables with correlation coeÆcient 2�1=2 and U is uniformly distributed over [0; 1], independent

of (X1; X2). Three bandwidths will be employed, which represent approximately the situations of

undersmooth, about right amount of smooth and oversmooth. For this wide range of bandwidths,

we compare the performances among the one-step, the two-step and the fully iterative local MLE

methods. The Epanechnikov kernel K(u) = 0:75(1 � u
2)+ and ngrid = 200 are used.

4.1 Logistic Regression

For a Bernoulli distribution with a logit link, the local likelihood `(a; b) in (3.1) now becomes

1

n

nX
i=1

"
Yi

pX
j=1

faj + bj(Ui � u0)gXij � log

(
1 + exp

 
pX

j=1

(aj + bj(Ui � u0))Xij

!)#
Kh(Ui � u0):

and the one-step estimator is given by

b�
OS

= b�
0
+

�
Hn;0; Hn;1

Hn;1; Hn;2

�
�1 �

vn;0
vn;1

�
; (4.3)

where
Hn;j =

P
n

i=1
Kh(Ui � u0)bpi0(1� bpi0)(Ui � u0)

jXiX
T
i ; j = 0; 1; 2;

vn;j =
P

n

i=1
Kh(Ui � u0)(Yi � bpi0)(Ui � u0)

jXi; j = 0; 1

with bpi0 satisfying
logit (bpi0) = pX

j=1

nbaj;0 + bbj;0(Ui � u0)
o
Xij :

The two-step estimator b�
TS

is obtained by iterating twice the equation (4.3) and the local MLE is

simply iterated using equation (4.3) until convergence.

In practical implementations, the matrix in (4.3) can be singular or nearly singular when the

local data are sparse. To attenuate the diÆculty, one may follow the idea of ridge regression

(Seifert and Gasser 1996; and Fan and Chen 1999). Then an issue arises on how to choose the ridge

parameters. Note that the k-th diagonal element of Hn;j (j = 0 and 2) is approximately of order

E

�
X

2

k jU = u0

� bp0(1� bp0)hj�1 Z u
j
K(u) du N with bp0 = exp(baT

0
X)

1 + exp(baT
0
X)

; (4.4)

where N = nh fU(u0) and X = 1

n

P
n

i=1
Xi. The parameter N can be intuitively understood as the

e�ective number of local data points. This motivates us to use the ridge parameter

rj;k =

 
1

n

nX
i=1

X
2

ik

! bp0(1� bp0)hj�1 Z u
j
K(u) du

8



for the k-th diagonal element of Hn;j. Using such a ridge parameter will not alter the asymptotic

behavior and will prevent the matrix from nearly singular when N is small.

Example 1. Take X = (1; X1; X2)
T and the coeÆcient functions in (1.1) are given by

a0(u) = exp(2u� 1); a1(u) = 8u(1� u); and a2(u) = 2 sin2(2�u): (4.5)

Figure 1(a) depicts the marginal distributions for the ratios of the overall RASE de�ned in (4.2),

using three bandwidths h = 0:1, 0:2 and 0:4. The ratios based on individual RASE de�ned in (4.1)

were also computed and the results are not reported here since they are similar to Figure 1(a). It

is evident that the performance of the one-step, the two-step and the fully iterative estimators are

comparable for a wide range of bandwidths. As expected, the performance of the two-step estimator

is closer to that of the local MLE. Figures 1(b){(d) give a typical estimate of the coeÆcient functions.

Table 1 summarizes the simulation results with � and � denoting the mean and standard deviation

Table 1. Bivariate summary of simulation results for logistic regression model

MLE One-step Two-step

n h � � � � �� � � ��

0.10 2.2278 2.0874 1.8537 0.9759 0.8656 2.1244 1.5315 0.8274

400 0.20 1.0669 0.4491 1.0576 0.4378 0.9991 1.0669 0.4491 1.0000

0.40 0.9454 0.1600 0.9447 0.1593 1.0000 0.9454 0.1600 1.0000

0.075 1.2451 0.6639 1.1644 0.3767 0.8342 1.2256 0.5301 0.9656

800 0.15 0.7280 0.2573 0.7234 0.2459 0.9993 0.7280 0.2573 1.0000

0.30 0.7433 0.1009 0.7429 0.1005 1.0000 0.7433 0.1009 1.0000

of the RASE in 400 simulations. Here, �� indicates the correlation coeÆcient between the RASE of

the MLE and the RASE of the one-step (or two-step) method. Note that the correlation coeÆcients

are close to one which indicates that the one-step and two-step methods follow closely the MLE.

Note also that the larger the bandwidths, the larger the correlation coeÆcients. This is due to the

fact that a larger bandwidth implies more local data points, which makes the asymptotic theory

more relevant. As expected, the correlation coeÆcients for the two-step method are larger than

those of the one-step method, since the former is closer to the MLE.

We now test the accuracy of our standard error formula (3.4). The standard deviation, denoted

by SD in Table 2, of 400 estimated baj(u0), based on 400 simulations, can be regarded as the true

standard errors. The average and the standard deviation of 400 estimated standard errors, denoted

by SDa and SDstd, summarize the overall performance of the standard error formula (3.4). Table

2 presents the results at the points u0 = 0:25, 0.50 and 0.75. It suggests that our standard error

formula somewhat underestimates the true standard deviation, though the di�erence is within two

standard deviations of the Monte Carol errors. The bias becomes smaller as the number of local

data points nhn goes up (see the last two situations). This is consistent with our asymptotic theory.

Next, we conduct a simulation study to verify the statements that the asymptotic null distri-

bution of the test statistic T de�ned in (3.9) does not depend on the values of fajg under H0 (see

(3.8)) and that the limiting conditional null distributions are independent of the covariate values.
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Table 2. Standard deviations of estimators for logistic regression model

ba0(u) ba1(u) ba2(u)
n h u SD SDa (SDstd) SD SDa (SDstd) SD SDa (SDstd)

0.25 0.3185 0.2673 (0.0470) 0.4890 0.4069 (0.0776) 0.5082 0.3986 (0.0893)

400 0.2 0.50 0.3410 0.2782 (0.0451) 0.5413 0.4330 (0.0809) 0.4135 0.3568 (0.0591)

0.75 0.4315 0.3542 (0.0776) 0.5372 0.4542 (0.0996) 0.5809 0.4431 (0.0969)

0.25 0.2294 0.2051 (0.0231) 0.3424 0.3201 (0.0447) 0.3317 0.2956 (0.0403)

400 0.3 0.50 0.2570 0.2315 (0.0315) 0.3931 0.3538 (0.0527) 0.3490 0.3122 (0.0431)

0.75 0.2850 0.2686 (0.0423) 0.3929 0.3581 (0.0557) 0.3788 0.3328 (0.0500)

0.25 0.2418 0.2214 (0.0214) 0.3638 0.3460 (0.0501) 0.3804 0.3486 (0.0532)

800 0.15 0.50 0.2249 0.2196 (0.0233) 0.4040 0.3569 (0.0512) 0.3124 0.2812 (0.0356)

0.75 0.3146 0.2928 (0.0478) 0.4209 0.3804 (0.0667) 0.3987 0.3781 (0.0631)

To this end, we compute the unconditional null distribution of T with n = 400, via 1000 Monte

Carlo simulations, for 5 di�erent sets of values of fajg. These sets of parameters are quite far

apart. The resulting 5 densities are depicted in Figure 1(e) (thick curves). They are nearly the

same, which suggest that the asymptotic null distribution does not depend on the values of fajg.
To validate our conditional bootstrap method, �ve typical data sets were selected from our previous

400 simulations. The estimated conditional bootstrap null distributions, based on 1000 bootstrap

samples, are plotted as thin curves in Figure 1(e). Six empirical percentiles for �ve di�erent sets of

values of fajg and covariates are listed in Table 3. Both Figure 1(e) and Table 3 shows that they

Table 3. Six empirical percentiles for logistic model

10 25 50 75 90 95

Conditional bootstrap

7.9579 10.7189 14.2569 18.2625 22.2566 24.9903

8.2450 11.0170 14.6601 18.4897 22.4177 25.5829

8.0004 10.9871 14.2667 18.0413 22.5517 25.1661

8.7738 11.4311 14.8061 18.5209 22.7029 25.3781

8.7906 11.4672 14.9130 18.6168 22.3256 24.7104

Unconditional bootstrap

7.6381 10.7167 14.5487 18.6276 22.2205 24.4597

7.3478 10.1290 13.9934 17.9622 21.8270 24.4429

7.7238 11.3849 14.6151 18.4796 22.5899 24.7270

8.8042 11.3762 14.8076 18.7571 22.0560 25.1550

8.7865 11.3472 14.5975 18.5198 23.1476 25.8297

are very close to the true null distribution. This demonstrates that our bootstrap method gives the

correct null distribution even when the data were generated from an alternative model (4.5).

To examine the power of the proposed test, we consider the following null hypothesis

H0 : aj(u) = �j; j = 0; 1; 2;

namely a generalized linear model, versus the alternative

H1 : aj(u) 6= �j; for at least one j:

The power functions are evaluated under a sequence of the alternative models indexed by �

H1 : aj(u) = aj0 + �(a0j (u)� aj0); j = 0; 1; 2 (0 � � � 0:8);
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where fa0
j
(u)g are given in (4.5) and aj0 = Efaj(U)g. Figure 1(f) depicts the �ve power func-

tions based on 1000 simulations for the sample size n = 400 at �ve di�erent signi�cant levels:

0:5; 0:25; 0:10; 0:05, and 0:01. When � = 0, the special alternative collapses into the null hypoth-

esis. The powers at � = 0 for the above 5 signi�cant levels are respectively 0:532, 0:281, 0:101,

0:047 and 0:012. This shows that the conditional bootstrap method gives the right levels of test.

The power functions increase rapidly as � increases. This in turn shows that the test proposed in

x3.4 is indeed powerful.

4.2 Poisson regression

For a Poisson model with the canonical link, the log-likelihood function is given by

`(a;b) =
1

n

nX
i=1

Kh(Ui � u0)

"
Yi

(
pX

j=1

(aj + bj(Ui � u0))Xij

)
� exp

(
pX

j=1

(aj + bj(Ui � u0))Xij

)#
:

By straightforward calculation, the one-step estimator is given similarly to (4.3) but now

Hn;j =
nX
i=1

Kh(Ui � u0)b�i0(Ui � u0)
jXiX

T

i ; j = 0; 1; 2;

and

vn;j =
nX

i=1

Kh(Ui � u0)(Yi � b�i0)(Ui � u0)
jXi; j = 0; 1;

where b�i0 = exp
hPp

j=1
fbaj0 + bbj0(Ui � u0)gXij

i
. Using the same arguments as in the previous

section, the ridge parameters

rj;k =

 
1

n

nX
i=1

X
2

ik

! b�0 hj�1 Z u
j
K(u) du with b�0 = exp

�baT
0
X
�

(4.6)

are employed against the possible singularity of matrix Hn;j (j = 0 and 2) in (4.3).

Example 2. The conditional distribution of Y given covariates U; X1 and X2 is taken to be

Poisson with the following linear predictor

�(u; x) = 5:5 + 0:1fa0(u) + a1(u)x1 + a2(u)x2g;

where the coeÆcient functions a0(u); a1(u) and a2(u) are the same as those in Example 1. The

coeÆcients 5.5 and 0.1 are chosen so that the range of simulated data is close to that of the

environmental data in x4.3.

Figure 2 and Table 4 summarize the result for n = 200. It shows again that the one-step, two-

step and the iterative local MLE have comparable performance. A typical estimated function with

bandwidth h = 0:15 is presented in Figures 2(b){(d). Because of di�erent noise-to-signal ratios, the

functions here are indeed estimated better than those given in Example 1. Similar to Example 1,

we summarize the performance of our estimated standard error formula (3.4) in Table 5. Clearly,

our estimated standard errors are very close to the true ones.
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Table 4. Bivariate summary of simulation output for Poisson regression model

MLE One-step Two-step

n h � � � � �� � � ��

0.075 0.3632 0.0692 0.3468 0.0562 0.8691 0.3632 0.0692 1.0000

200 0.15 0.3220 0.0510 0.3202 0.0504 0.9925 0.3220 0.0510 1.0000

0.30 0.5852 0.0425 0.5835 0.0426 0.9990 0.5852 0.0425 1.0000

0.075 0.2309 0.0352 0.2279 0.0347 0.9866 0.2309 0.0352 1.0000

400 0.15 0.2581 0.0325 0.2571 0.0322 0.9942 0.2581 0.0325 1.0000

0.30 0.5603 0.0292 0.5581 0.0293 0.9988 0.5603 0.0292 1.0000

Table 5. Standard deviations of estimators for Poisson regression model

ba0(u) ba1(u) ba2(u)
n h u SD SDa (SDstd) SD SDa (SDstd) SD SDa (SDstd)

0.25 0.0105 0.0092 (0.0013) 0.0148 0.0118 (0.0024) 0.0156 0.0126 (0.0026)

200 0.15 0.50 0.0094 0.0088 (0.0011) 0.0148 0.0112 (0.0022) 0.0150 0.0118 (0.0024)

0.75 0.0100 0.0088 (0.0011) 0.0142 0.0112 (0.0023) 0.0151 0.0119 (0.0023)

0.25 0.0094 0.0085 (0.0012) 0.0130 0.0106 (0.0021) 0.0136 0.0107 (0.0022)

400 0.075 0.50 0.0093 0.0083 (0.0011) 0.0127 0.0104 (0.0022) 0.0130 0.0105 (0.0021)

0.75 0.0090 0.0081 (0.0011) 0.0137 0.0101 (0.0022) 0.0133 0.0102 (0.0022)

Similar to Example 1, the procedure of testing hypothesis is applied to this example. Both

unconditional and conditional estimated densities of T are displayed in Figure 2(e). Six empirical

percentiles are listed in Table 6. The corresponding power functions are presented in Figure 2(f).

The same conclusions as those in Example 1 can be drawn for the Poisson regression models. In

particular, the test has the correct levels of signi�cance. See the power functions in Figure 2(e) at

� = 0.

4.3 Real-data examples

Example 3. We in this example illustrate our proposed procedure via an application to the envi-

ronmental data set mentioned in the introduction. Of interest is to study the association between

levels of pollutants and number of total hospital admissions for circulationary and respirationary

Table 6. Six empirical percentiles for Poisson model

10 25 50 75 90 95

Conditional bootstrap

12.1646 15.1401 18.6981 22.6260 26.1432 28.8494

11.7506 14.5010 18.0994 22.3809 26.1237 29.4936

11.7946 14.7005 18.3495 22.2918 26.0064 29.2165

11.4662 14.6917 18.2475 22.4623 27.0587 29.6887

11.9894 14.7869 18.5571 22.3593 26.7014 29.7923

Unconditional bootstrap

11.9492 14.7920 18.5509 22.3383 26.7474 28.8094

11.1599 14.7156 18.7054 22.2915 26.6170 28.9831

11.4378 14.8132 18.4080 22.3890 26.5858 29.4816

11.8238 14.6817 18.5090 22.7050 26.4776 29.3814

11.8365 14.9721 18.7674 22.9402 26.5929 28.9815
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problems on every Friday from January 1, 1994 to December 31, 1995 and to examine the extent to

which the association varies over time. The covariates are taken as the levels of pollutants Sulfur

Dioxide X2 (in �g=m
3), Nitrogen Dioxide X3 (in �g=m

3) and dust X4 (in �g=m
3). It is reasonable

to use the Poisson regression model with the mean �(t; x) given by

logf�(t; x)g = a1(t) + a2(t)x2 + a3(t)x3 + a4(t)x4: (4.7)

Both the one-step and local likelihood methods were employed to estimate the coeÆcient functions

aj(�) and the results are similar.

A multifold cross-validation method was used to select a bandwidth. We partitioned the data

into 20 groups | the jth group consisting of data points with indices

dj = f20k + j; k = 1; 2; � � �g; j = 0; � � � ; 19:

For each given j, the j-th group of data were deleted and the model (4.7) was �tted for the remaining

data. Then the deviance (see, e.g., page 34 of McCullagh and Nelder 1989) or the sum of squares

of Pearson's residuals were computed. This leads to two cross-validation criteria:

CV1(h) =
19X
j=0

X
i2dj

2
h
yi logfyi=by�dj (Ui; Xi)g � fyi � by�dj (Ui; Xi)g

i
;

and

CV2(h) =
19X
j=0

X
i2dj

8<:yi � by�dj (Ui; Xi)qby�dj (Ui; Xi)

9=;
2

;

where by�dj (Ui; Xi) is a �tted value with the data in dj deleted. Figure 3(b) depicts the cross-

validation functions CV1(h) and CV2(h) and results in the optimal bandwidth h = 0:1440 � 105.

The estimated coeÆcient functions are summarized in Figure 4. They describe the extent to which

the association between the pollutants and the number of hospital admissions vary over time. The

�gure shows clearly that the coeÆcient functions vary with time. The two dashed curves are the

estimated function plus/minus twice of the estimated standard errors. They give us an idea of the

pointwise con�dence intervals with bias ignored.

A question arises whether or not the data are highly correlated. To check for the serial corre-

lation, Pearson's residuals are computed. The time series plot of the residuals is given in Figure

5(a) and the plot of the corresponding autocorrelation coeÆcients against time lag is presented in

Figure 5(b). There is no pattern in Figure 5(a), which, together with Figure 5(b), concludes that

there is no evidence that the data are serially correlated.

We now apply the procedure proposed in x3.4 to testing whether the coeÆcients are really

time varying. The MLE under the null hypothesis is (5:4499; �0:0025; 0:0015; �0:0005) with
an estimated standard deviation (0:0195; 0:0006; 0:0006; 0:0005). The test statistic (3.9) is T =

389:41, which suggests that varying-coeÆcient model is a much better �t. Based on 1000 bootstrap

replications, the distribution of T is estimated (see Figure 6). The sample mean and sample

variance of T � are 26.64 and 48:40, respectively, which suggests that the underlying distribution
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may be approximated by a �2 distribution with degrees of freedom 27 (see Figure 6). The p-value

is zero, which strongly rejects the null hypothesis.

The parametric Poisson model suggests that the dust level (X4) is not statistically signi�-

cant. We would have concluded that X4 can be deleted from the parametric �t should the para-

metric Poisson model be used. To examine if the variable X4 is signi�cant in the generalized

varying-coeÆcient model, we apply the idea in x3.4 to testing the hypothesis: the function a4(�)
is zero. The maximum likelihood ratio test statistic is T = 20:1847. Based on 1000 bootstrap

samples, the p-value is 0:321 (the sample mean and variance of T � are 17:7352 and 37:1976, re-

spectively). Therefore, the variable X4 should be dropped from the generalized varying-coeÆcient

model. After deleting the variable dust level (X4), the MLE for the parametric Poisson model is

(5:4523; �0:0025; 0:0010) with an estimated standard deviation (0:0193; 0:0006; 0:0004), which

implies that both covariates Sulfur Dioxide (X2) and Nitrogen Dioxide (X3) are statistically signif-

icant. Finally, we apply the same procedure as above to test whether X3 is statistically signi�cant

in the generalized varying-coeÆcient model. That is to test H0 : logf�(t; x)g = a1(t) + a2(t)x2

against H1 : logf�(t; x)g = a1(t) + a2(t)x2 + a3(t)x3. As a result, the maximum likelihood ratio

test statistic is T = 39:7473 and the p-value is 0:039 (the sample mean and variance of T � are

27:5071 and 39:5808, respectively), based on 1000 bootstrap samples. Therefore, the variable Ni-

trogen Dioxide (X3) is signi�cant at level 0:05. The conclusion is consistent with the parametric

analysis.

Example 4. Now we apply the methodology proposed in this paper to analyze the data set:

Burns data, collected by General Hospital Burn Center at the University of Southern California.

The binary response variable Y is 1 for those victims who survived their burns and 0 otherwise, and

covariates X1=age, X2=sex, X3 = log(burn area+1) and binary variable X4=Oxygen (0 normal, 1

abnormal) are considered. We are interested in studying how burn areas and the other variables

a�ect survival probabilities for victims at di�erent age groups. This leads to naturally following

varying-coeÆcient model:

logitfp(x1; x2; x3; x4)g = a1(x1) + a2(x1)x2 + a3(x1)x3 + a4(x1)x4: (4.8)

Figure 7 presents the estimated coeÆcients for model (4.8) via the one-step approach with band-

width h = 65:7882, selected by a cross-validation method.

A natural question arises whether the coeÆcients in (4.8) are really varying. To see this, we

consider the parametric logistic regression model

logitfp(x1; x2; x3; x4)g = �0 + �1x1 + �2x2 + �3x3 + �4x4 (4.9)

as the null model. The MLE of (�0; � � � ; �4) and its standard deviation for model (4.9) are

(23:2213;�6:1485;�0:4661;�2:4496;�0:9683) and (1:9180; 0:6647; 0:2825; 0:2206; 0:2900), respec-

tively. The test statistic T proposed in x3.4 is 54:9601 with p-value 0:000, based on 1000 bootstrap

samples (the sample mean and variance of T � are 5:9756 and 10:7098, respectively). This implies

that the varying-coeÆcient logistic regression model �ts the data much better than the parametric

�t. It also allows us to examine the extent to which the regression coeÆcients vary over di�erent

ages.
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From Figure 7, it can be observed that both functions a2(�) and a4(�) are nearly constant.

This leads us to testing hypothesis H0 : both a2(�) and a4(�) are constant under model (4.8). The
corresponding test statistic T is 3:2683 with p-value 0:7050, based on 1000 bootstrap samples. This

in turn suggests that the coeÆcient functions a2(�) and a4(�) are independent of age and indicates

that there are no gender di�erences for di�erent age groups.

Finally, we examine whether both covariates sex andOxygen are statistically signi�cant in model

(4.8). The likelihood ratio test for this problem is T = 11:2727 with p-value 0:0860, based on 1000

bootstrap samples (the sample mean and variance of T � are 5:2867 and 9:7630, respectively). Both

covariates sex and Oxygen are not signi�cant at level 0.05. This is intuitively expected: gender and

oxygen do not play a signi�cant role in determining the survival probability of a victim.

5 Asymptotic theory

In this section, we derive the asymptotic distributions of the local MLE b�
MLE

and the one-step

estimator b�
OS
. We demonstrate that the one-step estimator performs as well as the local MLE as

long as the initial estimator b�
0
is reasonably accurate (see (5.4) below). In other words, the one-

step estimator reduces computational cost of the local MLE without downgrading its asymptotic

performance.

Denote by �k =
R
u
k
K

2(u) du for k = 0, 1, and 2. Let H = diag(1; h) 
 Ip with 
 denoting the

Kronecker product. Now we state our theorems here but their proofs are relegated in the Appendix.

Also the conditions for the theorems are listed in the Appendix.

Theorem 1. Suppose that Conditions (1) { (7) in the Appendix hold and that h = hn ! 0 and

nh!1 as n!1. Then

p
nh

"
H
nb�

MLE
(u0)� �(u0)

o
� h

2

2(�2 � �2
1
)

�
(�2

2
� �1 �3)a

00(u0)

(�3 � �1 �2)a
00(u0)

�
+ op(h

2)

#
D�! N

�
0; ��1 ���1

�
; (5.1)

where with �(u0) given by (3.7),

� = fU(u0)

�
1 �1

�1 �2

�

 �(u0) and � = fU(u0)

�
�0 �1

�1 �2

�

 �(u0): (5.2)

Furthermore, if K(�) is symmetric,
p
nh

"baMLE(u0)� a(u0)� h
2
�2

2
a00(u0) + op(h

2)

#
D�! N (0; �(u0)) ; (5.3)

where �(u0) is de�ned in (3.5).

Theorem 2. Under the assumptions in Theorem 1, then b�
OS

has the same asymptotic distribution

as b�
MLE

, provided that the initial estimator b�
0
satis�es

H
�b�

0
� �

�
= Op

n
h
2 + (nh)�1=2

o
: (5.4)

In other words, (5.1) and (5.3) hold true for b�
OS
.
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Appendix: Proofs

We �rst impose some regularity conditions. Note that qk(�; �) is linear in y for �xed s such that

q1[gfm(u; x)g; m(u; x)] = 0 and q2[gfm(u; x)g; m(u; x)] = ��(u; x); (A.1)

where �(u; x) is de�ned in (3.7).

Conditions:

(1) The function q2(s; y) < 0 for s 2 < and y in the range of the response variable.

(2) The functions fU(u), �(u), V (m(u; x)), V
0(m(u; x)) and g000(m(u; x)) are continuous at the

point u = u0. Further, assume that fU(u0) > 0 and �(u0) > 0.

(3) K(�) has a bounded support.

(4) a
00

j
(�) is continuous in a neighborhood of u0 for j = 1; : : : ; p.

(5) E
�jXj3 jU = u

	
is continuous at the point u = u0.

(6) E(Y 4 jU = u; X = x) is bounded in a neighborhood of u = u0.

Condition (1) guarantees that the local likelihood function (3.1) is concave. It is satis�ed by

the model (2.1) with a canonical link. Note that Condition (2) implies that q1(�; �), q2(�; �), q3(�; �),
�
0(�; �) and m

0(�; �) are continuous.

Proof of Theorem 1:

Recall that b�
MLE

maximizes (3.1). Let �(u0; u; x) = �(u0; u; x1; : : : ; xp) =
Pp

j=1
faj(u0) +

a
0

j
(u0)(u� u0)gxj , and

�� = 

�1

n

�
�1 � a1(u0); : : : ; �p � ap(u0); hf�p+1 � a

0

1
(u0)g; : : : ; hf�2p � a

0

p(u0)g
�T

;

where 
n = (nh)�1=2. It can easily be seen that

pX
j=1

faj + bj(Ui � u0)gXij = �(u0; Ui; Xi) + 
n �
�T Zi;
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where Zi =
�
XT

i ; (Ui � u0)=hX
T
i

�T
. Then, the local likelihood function `(�) de�ned in (3.1)

becomes

`(�) =
1

n

nX
i=1

`

h
g
�1

n
�(u0; Ui; Xi) + 
n �

�T Zi

o
; Yi

i
Kh(Ui � u0);

which is a function of ��, denoted by `(��). Let

b�� = 

�1

n

�b�1 � a1(u0); : : : ; b�p � ap(u0); h
nb�p+1 � a

0

1
(u0)

o
; : : : ; h

nb�2p � a
0

p(u0)
o�T

:

Then b�� maximizes `(��) since b� maximizes (3.1). Equivalently, b�� maximizes the following
normalized function

`n(�
�) =

nX
i=1

�
`

h
g
�1

n
�i(u0) + 
n �

�T Zi

o
; Yi

i
� `

h
g
�1 f�i(u0)g ; Yi

i�
K f(Ui � u0)=hg ;

where �i(u0) = �(u0; Ui; Xi).

We remark that Condition (1) implies that `n(�) is concave in ��. Using the Taylor expansion
of `

�
g
�1(�); y	, we have

`n(�
�) = 
n

nX
i=1

q1 f�i(u0); Yig ��T ZiK f(Ui � u0)=hg

+


2

n

2

nX
i=1

q2 f�i(u0); Yig
�
��

T
Zi

�
2

K f(Ui � u0)=hg

+


3

n

6

nX
i=1

q3 f�i; Yig
�
��

T
Zi

�
3

K f(Ui � u0)=hg ; (A.2)

where �i is between �i(u0) and �i(u0) + 
n �
�T Zi. Let

Wn = 
n

nX
i=1

q1 f�i(u0); Yig ZiK f(Ui � u0)=hg ; (A.3)

and

�n =


2

n

2

nX
i=1

q2 f�i(u0); Yig ZiZ
T

i K f(Ui � u0)=hg :

Then, (A.2) becomes

`n(�
�) =W

T

n �
� +

1

2
��

T �n �
� +



3

n

6

nX
i=1

q3 f�i; Yig
�
��

T
Zi

�
3

K f(Ui � u0)=hg : (A.4)

Note that

(�n)ij = (E�n)ij +Op

h
fVar(�n)ijg1=2

i
:

Now the mean in the above expression equals

E(�n) = h
�1

E

h
q2 f�(u0; U; X); m(U; X)g K f(U � u0)=hg ZZT

i
:
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By a Taylor series expansion of �(u; x) with respect to u around ju � u0j < h and the �rst result

in (A.1), we have

�(u; x) = �(u0; u; x) +
h
2 (u� u0)

2

2
�
00

u(u0; x) + o(h2);

where �00u(u; x) = (@2=@u2)�(u; x) =
Pp

j=1
a
00

j
(u)xj , which implies that

q1f�(u0; u; x); m(u; x)g = �(u; x)
h
2 (u� u0)

2

2
�
00

u(uo; x) + o(h2); (A.5)

and

q2f�(u0; u; x); m(u; x)g = ��(u; x) + o(1): (A.6)

Then, using the second equality of (A.1) and (A.6), we obtain

E(�n) ! � fU(u0)

�
1 �1

�1 �2

�

 �(u0) = ��; (A.7)

where �(u0) is given in (3.6) and � is de�ned in (5.2). Similar arguments show that Varf(�n)ijg =
O
�
(nh)�1

	
. Therefore,

�n = ��+ op(1): (A.8)

Since K(�) is bounded, q3(�; �) is linear in Y1 and E(jY1j jU1; X1) < 1, the expected value of the

absolute value of the last term in (A.4) is bounded by

O

�
n


3

nE

���q3(�1; Y1)X3

1
K f(U1 � u0)=hg

���� = O(
n)

by Condition (5). Therefore, the last term in (A.4) is of order Op(
n). This, in conjunction with

(A.4), (A.7) and (A.8), implies that

`n(�
�) =W

T

n �
� � 1

2
��

T
��� + op(1):

An application of the quadratic approximation lemma (see, for example, Fan and Gijbel 1996,

p.210) leads to b�� = ��1
Wn + op(1); (A.9)

if Wn is a sequence of stochastically bounded random vectors. The asymptotic normality of b��
follows from that of Wn. Hence, it remains to establish the asymptotic normality of Wn.

Note that the random vector Wn is a sum of i.i.d. random vectors. In order to establish its

asymptotic normality, it suÆces to compute the mean and covariance matrix of Wn and check the

Lyapounov condition. To this end, by (A.5), we have

E(Wn) = n
nE [q1 f�(u0; U; X); m(U; X)g ZK f(U � u0)=hg]
=

h
2
fU(u0)

2 
n

�
�2

�3

�

 �(u0)a

00(u0) f1 + o(1)g : (A.10)

Similarly, by (A.10) and the de�nition of q1(�; �), one has
Var(Wn) = n


2

nVar [q1 f�(u0; U; X); Y )g ZK f(U � u0)=hg]
= h

�1
E

h
q
2

1
f�(u0; U; X); Y )g ZZT

K
2 f(U � u0)=hg

i
= fU(u0)

�
�0 �1

�1 �2

�

 �(u0) f1 + o(1)g

= �+ o(1); (A.11)
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where � is de�ned in (5.2). We now employ the Cram�er-Wold device to derive the asymptotic

normality of Wn. For any unit vector d 2 <2p, ifn
dT Var(Wn)d

o
�1=2 n

dT Wn � dT E(Wn)
o

D�! N(0; 1); (A.12)

then

fVar(Wn)g�1=2 (Wn �E(Wn))
D�! N(0; I2p): (A.13)

Combining (A.9), (A.10), (A.11) and (A.13), we obtain

b�� � (nh5)1=2

2
��1

fU(u0)

�
�2

�3

�

 �(u0)a

00(u0) f1 + o(1)g D�! N

�
0; ��1 ���1

�
: (A.14)

Therefore, the assertion in (5.1) holds true. To prove (A.12), we need only to check Lyapounov's

condition for that sequence, which can be easily veri�ed. If K(�) is symmetric, then �1 = 0, so that

(5.3) holds true. This completes the proof of the theorem. 2

Proof of Theorem 2:

For the sake of simplicity, in the process of derivations, some of the notation will be simpli-

�ed by dropping some of its arguments involved, here and in the sequel. Recall that `(�) =
1

n

P
n

i=1
`

n
g
�1

�Pp

j=1
(aj + bj (Ui � u0))Xij

�
; Yi

o
Kh(Ui � u0). For any e� satisfying H

�e� � �
�
=

Op

�
h
2 + (nh)�1=2

�
, one can easily show that

H�1
`
00

�e�� H�1 = H�1
`
00(�)H�1 + op(1)

=
1

n

nX
i=1

q2

neZT

i �; Yi

o
H�1 eZi

eZT

i H
�1

Kh(Ui � u0) + op(1); (A.15)

where eZi =
�
XT

i ; (Ui � u0)X
T

i

�T
. By computing the mean and variance of H�1

`
00(�)H�1, we

obtain

H�1
`
00

�e�� H�1

= E

"
q2

neZT

�; Y
o  1 U�u0

h

U�u0

h

(U�u0)
2

h2

!

 XXT

Kh(U � u0)

#
+ op(1)

= E

"
q2

neZT

�; m(U; X)
o  1 U�u0

h

U�u0

h

(U�u0)
2

h2

!

 XXT

Kh(U � u0)

#
+ op(1)

= ��+ op(1); (A.16)

where � is de�ned in (5.2). Recall that b�
OS

= b�
0
�
n
`
00

�b�
0

�o
�1

`
0

�b�
0

�
(see (3.2)). By the Taylor

expansion, we have

`
0

�b�
0

�
= `

0(�) + `
00

�e��� �b�
0
� �

�
;
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where e�� lies between � and b�0 and hence satis�es H
�e�� � �

�
= Op

�
h
2 + (nh)�1=2

�
. Then,

some algebraic computations show that

H
�b�

OS
� �

�
= H

�b�
0
� �

�
�H

n
`
00

�b�
0

�o
�1

H H�1
`
0

�b�
0

�
=

�
I�H

n
`
00

�b�
0

�o
�1

HH�1
`
00

�e��� H�1

�
H
�b�

0
� �

�
�H

n
`
00

�b�
0

�o
�1

H H�1
`
0(�): (A.17)

Therefore, by (A.16) and (A.17), we have

H
�b�

OS
� �

�
= ��1H�1

`
0(�) f1 + op(1)g + op

�
h
2 + (nh)�1=2

�
;

which, in conjunction with (A.3), (A.9), (A.13) and (A.14), implies that

p
nhH

�b�
OS
� �

�
= ��1

Wn + op(1) = b�� + op(1): (A.18)

Therefore, b�
OS

has the same asymptotic distribution as b�
MLE

. 2
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Figure 1: Simulation results for Example 1 with sample size 400. (a) The boxplots for the ratios of

RASE of the one-step and two-step local likelihood approaches to that of the local MLE of a(u), using

bandwidths (from left to right) h = 0:10, 0:20 and 0:40. (b), (c) and (d) Typical estimates of a0(u),

a1(u) and a2(u), respectively, with bandwidth h = 0:2. Solid curve | true function; dashed curves

(from shortest to longest dash) are the one-step, two-step and local MLE, respectively. (e) The

estimated densities of T for unconditional null distributions (thick solid lines) and for conditional

null distributions (thin solid curves). (f) The power functions of the test statistic T .
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Figure 2: Simulation results for Example 2 with sample size 200. The caption is similar to Figure

1.
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Figure 3: (a) The scatterplot of log transformation of environmental data set studied in x4.3. The
curve is the estimate of a1(t) + a2(t) �x1 + a3(t) �x2 + a4(t) �x3, where �xj is the average pollutant level

xj. (b) The plot of the cross validation functions CV1(h) (solid line) and CV2(h) (dashdot line)

against bandwidth.
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Figure 4: The estimated coeÆcient functions via the one-step approach with bandwidth chosen by

the CV. The dot curves are the estimated function plus/minus twice estimated standard errors.
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Figure 5: (a) The time series plot of Pearson's residuals. (b) The plot of the autocorrelation

coeÆcients versus time lag. The two dot lines are �1:96=pn, where n is the sample size.
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Figure 6: The estimated density of T by Monte Carlo simulation. The solid curve is the estimated

density, and the dot curve stands for the density of chi-squared distribution with degrees of freedom

27.
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Figure 7: The estimated coeÆcient functions (the solid curves) via one-step approach with bandwidth

chosen by the CV. The dot curves are the estimated functions plus/minus twice estimated standard

errors.
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