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Summary: Lot Quality Assurance Sampling (LQAS) plans are widely used for health monitoring 

purposes. We propose a systematic approach to design multiple-objective LQAS plans that meet user-

specified type 1 and 2 error rates and targets for selected diagnostic accuracy metrics. These metrics 

may include sensitivity, specificity, positive predictive value, and negative predictive value in high or 

low anticipated prevalence rate populations. We use Mixed Integer Nonlinear Programming (MINLP) 

tools to implement our design methodology. Our approach is flexible in that it can directly generate 

classic LQAS plans that control error rates only and find optimal LQAS plans that meet multiple 

objectives in terms of diagnostic metrics. We give examples, compare results with the classic LQAS 

and provide an application using a malaria outcome indicator survey in Mozambique. This article is 

protected by copyright. All rights reserved 
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 1

1. Introduction

Lot Quality Assurance Sampling (LQAS) plans were developed in the 1950’s using statistical

tools developed around 1920-30 to control the quality at a production line. At its core, a

LQAS plan is a decision making process whether to accept a lot or not based on the quality of

the selected sample. The methodology quickly found wide-spread applications in health care

surveys. For example, public health authorities want to monitor whether people in a region

are benefiting sufficiently from a health care community program or people in a village or

district have been exposed to an infectious agent. The sampling plans vary in sophistication

in design and execution. Robertson and Valadez (2006) reviews health care surveys using

LQAS and Lemeshow and Taber (1991) reviews sampling methods and compares merits of

having a single or double-sampling plan.

LQAS is commonly used in both public health research and global health research to

determine if a health policy or a community program is working for the intended purpose.

Some specific applications of LQAS are monitoring immunization programmes to ascertain

their cost effectiveness (Sandiford, 1993), monitoring elimination leprosy programs in a region

(Gupte et al., 2004) and examining effectiveness of community intervention programs of

capital and management systems on maternal and child health behavior change (Valadez

et al., 2005). Vanamail et al. (2006) discussed operation feasibility and implementation of

LQAS as a tool for routine monitoring in filariasis control programs. Deitchler et al. (2007),

Olives et al. (2009), Olives and Pagano (2010) used LQAS to assess the prevalence of acute

malnutrition and Biedron et al. (2010) applied LQAS plans to monitor malaria outcome

indicators programs in Mozambique. Applications of LQAS continue to this day with Hund

(2014) noting that they are increasingly popular in global health care applications. For

example, Olives et al. (2012) applied ideas to incorporate ordinal outcomes with more than

two categories (i.e. not just exposed or not to a disease) with application to Schistosomiasis

This article is protected by copyright. All rights reserved
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2 Biometrics,

control and Brown et al. (2013) reported a LQAS plan to monitor quality of supplemental

immunization activities as a tool for polio eradication in Nigeria. Interestingly, in 2013, the

Medina Gates Foundation funded an innovative study that used LQAS-based methodology

to estimate rates of adoption of agricultural technologies in Ethiopia.

The key statistical question in designing a LQAS plan is choosing the sample size that

allows estimate the characteristics of the whole population and the threshold value for the

acceptance so that pre-specified type 1 and type 2 error rates are attained. Practically, the

LQAS sets the sample size required from the population and the required number of subjects

testing positive in the sample to declare the population is exposed (or not) to an infectious

disease or is in compliance with certain health care guidelines.

The design of LQAS plans for health monitoring is similar to Acceptance Sampling plans by

variables or attributes for quality control purposes. Both can be formulated as optimization

problems and frequently the sought solution is the smallest sample size to control cost, see

for example, Duarte and Saraiva (2008, 2013). Alternatively, one may seek to minimize the

Average Sampling Number (ASN) that meets user-specified constraints at the controlled

points of the operating characteristic (OC) curve. We recall the OC curve describes the

probability of accepting a lot as a function of the quality of the lot, measured by the

proportion of nonconforming items, and the curve increases as the proportion of conforming

cases increases.

Some common test diagnostic performance metrics in biomedical studies are (i) Specificity ;

(ii) Sensitivity ; (iii) Negative Predicted Value (NPV); and (iv) Positive Predictive Value

(PPV). Interestingly, such measures have not been directly incorporated at the design stage

of LQAS plans. Our aim in this paper is to provide a systematic approach to construct LQAS

plans that meet both error rates and accuracy requirements in the diagnostic performance

metrics. This differs from the classic LQAS plans where they are designed to guarantee to

This article is protected by copyright. All rights reserved
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 3

meet type 1 and 2 error rates only and the various diagnostic metrics are then computed

a posteriori, see for example, Olives and Pagano (2013); Hund (2014) among many others.

Motivation for this work comes partly from the literature that seems to suggest that PPV and

specificity tend to under-perform compared to other measures for LQAS; see for example,

Olives and Pagano (2013). This prompted us to design a LQAS that meets selected diagnostic

accuracy metrics requirements at the onset and forms the basis of our work here.

Section 2 provides background for our approach and Section 3 introduces the Mixed Integer

Nonlinear Linear Programming (MINLP) formulation for designing LQAS plans that satisfy

the OC-curve constraints and diagnostic metrics criteria. Section 4 presents our LQAS

plans and discusses the case when all the target requirements are too stringent and not

all objectives can be attained simultaneously. This issue arises because the objectives are

frequently competitive and much of one may have to be given up for a small gain in another.

Under such circumstance, the user needs to arrive at a compromised LQAS plan by relaxing

some the metrics requirements or allow for higher values in one or more of the error rates.

We also construct and compare our LQAS plan with a classic plan implemented to monitor

malaria control in Mozambique. Section 5 concludes with a summary.

2. Background

This Section reviews LQAS plans, diagnostic metrics and how to formulate and solve the

design problem via MINLP. Subsections 2.1 and 2.2 discuss LQAS plans and diagnostic

performance metrics, respectively. In Subsection 2.3, we briefly review the fundamentals

of MINLP and how they can be applied to solve two types of LQAS design problems. In

Section 6 we provide information about the computer codes for the user to input pre-defined

objectives and find the multiple-objective optimal LQAS, and when necessary, vary the

requirements to arrive at a compromised LQAS plan.

This article is protected by copyright. All rights reserved
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4 Biometrics,

2.1 LQAS plans

Throughout, we assume that (i) the probability of selecting a nonconforming or conforming

individual is independent of the sampling method; and (ii) the population that we sample

from is large enough that it is not impacted by the sample drawn.

We represent a sampling plan by S(n, r), where n is the sample size and r is the acceptance

threshold to declare whether a lot/population is acceptable or not. If there are more than

r individuals in the sample with the sought characteristic after testing, the population is

deem to be acceptable; otherwise, it is unacceptable. Depending on the study, the sought

characteristic may be whether the individual is tested negative for an infectious disease or

is in compliance with certain health care guidelines. If there are r or more such subjects in

the sample, the population is deemed disease free or is in compliance with the guidelines;

otherwise, the population is declared unacceptable.

In practice, there are risks to misclassifying the population and we control them using user-

specified error rates α and β. For example, we pre-specify that the probability of incorrectly

classifying a population with high proportion of individuals with the sought characteristic,

say pU , as unacceptable should be smaller than α (type 1 error). Similarly, the probability of

incorrectly classifying a population with small proportion of individuals having the sought

characteristic, pL, as acceptable should be smaller than β (type 2 error). In monitoring

studies pL is the unacceptable coverage level, and pU is the acceptable coverage level. If x

is the number of conforming individuals in the sample and P (x > r|p) is the probability of

accepting the population when the proportion of individuals of the population having the

sought characteristic is p, we want

P (x > r|pL) 6 β (1a)

and P (x > r|pU) > 1− α. (1b)

To fix ideas, we assume from now on our research concerns public health and the sought

This article is protected by copyright. All rights reserved

 
 

  
 A

cc
ep

te
d

   A
rt

ic
le

 

 

 

 

 

 

 

 

  

 
 
 



Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 5

characteristic is binary so that it models whether an individual is disease free or not. We

use the binomial model to study the probability of obtaining a fixed number x of disease

free individuals in a sample of size n from a population. If p is the unknown proportion of

disease free individuals in the population, we denote such a probability by

P(x) =

(
n

x

)
px (1− p)n−x, x = 0, · · · , n. (2)

The OC curve represents the probability of acceptance of the population as a function of

p. For the binomial distribution (2), the OC curve is given by

F (p|n, r) =
n∑

x=r

P(x) =
n∑

x=r

(
n

x

)
px (1− p)n−x = I(p, n− r + 1, r), (3)

where I(p, n − r + 1, r) =
∫ p

0
zn−r (1 − z)r−1dz/

∫ 1

0
zn−r (1 − z)r−1dz is the cumulative

regularized Beta function, see DiDonato and Jarnagin (1967) and Press et al. (1996, Chap.

6) for details on the numerical computation.

An early strategy used to design LQAS plans is based on the OC curve. The sample

size and the acceptance constant are determined so that the user-stipulated risk constraints

F (pL|n, r) 6 β and F (pU |n, r) > 1 − α are met for pre-defined levels pL, pU , α and β.

The interval pL 6 p 6 pU represents a grey region of indecision, where consequences of a

misclassification error are expected to have a lower impact. However, there are recognized

risks incompletely accounted for in the classic LQAS plans, see for example, Olives and

Pagano (2010, 2013), and it is helpful to have diagnostic measures to further evaluate the

usefulness of a LQAS plan.

2.2 Diagnostic performance metrics

Results from the LQAS can be summarized in a 2 × 2 table with columns and rows repre-

senting disease status and test results from the LQAS plan. The 2× 3 Table 1, a version of

the 2× 2 table including the grey region, displays the definitions of the expected risks in our

This article is protected by copyright. All rights reserved
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6 Biometrics,

plan, where entries in the table are probabilities of accepting (or not) the populations based

on the sample results.

[Table 1 about here.]

Our work considers the following diagnostic metrics expressed in terms of the entries

displayed in Table 2 and broken down into two categories, LAPR and HAPR populations,

discussed in Lemeshow and Taber (1991). Populations with a low proportion of disease free

individuals, i.e. p 6 pL, and are called low anticipated prevalence rate (LAPR) populations,

and populations with a high proportion of disease free individuals, i.e. p > pU , are called

high anticipated prevalence rate (HAPR) populations. Given a uniform prior distribution on

the prevalence rate p on [0, 1], the following diagnostic metrics can be defined and expressed

in terms of the joint probabilities in Table 2.

Sens(p 6 pL) = P (lot declared acceptable|p 6 pL) = P (x > r|p 6 pL) =
a

pL
(4a)

Sens(p > pU) = P (lot declared unacceptable|p > pU) = P (x 6 r − 1|p > pU) =
f

1− pU
(4b)

Spec(p 6 pL) = P (lot declared unacceptable|p > pL) = P (x 6 r − 1|p > pL) =
e+ f

1− pL
(4c)

Spec(p > pU) = P (lot declared acceptable|p 6 pU) = P (x > r|p 6 pU) =
a+ b

pU
(4d)

PPV(p 6 pL) = P (p 6 pL|lot declared acceptable) = P (p 6 pL|x > r) =
a

a+ b+ c
(4e)

PPV(p > pU) = P (p > pU |lot declared unacceptable) = P (p > pU |x 6 r − 1) =
f

d+ e+ f

(4f)

NPV(p 6 pL) = P (p > pL|lot declared unacceptable) = P (p > pL|x 6 r − 1) =
e+ f

d+ e+ f

(4g)

NPV(p > pU) = P (p 6 pU |lot declared acceptable) = P (p 6 pU |x > r) =
a+ b

a+ b+ c
, (4h)

This article is protected by copyright. All rights reserved
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 7

where (4a), (4c), (4e) and (4g) are for LAPR populations and (4b), (4d), (4f) and (4h) are

for HAPR populations, respectively.

[Table 2 about here.]

The metrics in (4) are conditional in nature and its expectation can be constructed using

Bayes theorem, where π(p) is a user-selected prior distribution for the proportion of disease

free individuals in the population. It is convenient to work with uniform prior distributions

for p, i.e. π(p) = U[0, 1]. This prior distribution is appropriate when the decision maker has

no or little prior knowledge of p. Another reason for the choice of a uniform prior distribution

is that closed formulae become available for the entries in Table 2 and they are shown below.

When the prior distribution is not a uniform distribution, the entries in (4) are computed

numerically using Gaussian quadratures to evaluate the integrals in (5) below. The terms

in (5) can be interpreted as selected areas under or above a OC curve. Figure 1 displays

them using the OC curve for a specific set of choices of pL, pU and target requirements.

The figure also shows geometrically that a + d = pL, b + e = pU − pL, c + f = 1 − pU and

a+ d+ b+ e+ c+ f = 1.

a =

∫ pL

0

n∑
x=r

(
n

x

)
px (1− p)n−x π(p) dp =

n∑
x=r

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
px+k+1
L

x+ k + 1
(5a)

b =

∫ pU

pL

n∑
x=r

(
n

x

)
px (1− p)n−x π(p) dp =

n∑
x=r

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
px+k+1
U − px+k+1

L

x+ k + 1

(5b)

c =

∫ 1

pU

n∑
x=r

(
n

x

)
px (1− p)n−x π(p) dp =

n∑
x=r

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
1− px+k+1

U

x+ k + 1
(5c)

d =

∫ pL

0

r−1∑
x=0

(
n

x

)
px (1− p)n−x π(p) dp =

r−1∑
x=0

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
px+k+1
L

x+ k + 1
(5d)

This article is protected by copyright. All rights reserved
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8 Biometrics,

e =

∫ pU

pL

r−1∑
x=0

(
n

x

)
px (1− p)n−x π(p) dp =

r−1∑
x=0

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
px+k+1
U − px+k+1

L

x+ k + 1

(5e)

f =

∫ 1

pU

r−1∑
x=0

(
n

x

)
px (1− p)n−x π(p) dp =

r−1∑
x=0

n−x∑
k=0

(−1)k
(
n

x

)(
n− x
k

)
1− px+k+1

U

x+ k + 1
(5f)

2.3 Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming methods aim to optimize a nonlinear function with

both continuous and discrete variables under user-specified constraints. Such optimization

problems occur commonly in real applications, such as in chemical engineering, finance, and

management and are typically solved by MINLP solvers. The website of NEOS Server Team

(2018) gives an introduction to MINLP and has a link to various types of state-of-the art

solvers for numerical optimization. The general form of a MINLP is

min
x,y

f(x,y) (6a)

subject to hi(x,y) = 0, ∀i ∈ E (6b)

gi(x,y) 6 0, ∀i ∈ I (6c)

x ∈ X, y ∈ Y, (6d)

where each function hi(x,y) and gi(x,y) is a map from Rnx × Rny to R where nx and ny

stand for the number of continuous and integer variables, respectively, E is the set of equality

constraints, I the set of inequalities, X ∈ Rnx is a continuous compact domain, Y ∈ Nny
0

is a discrete domain containing integer values, x represents the continuous variables and y

represents the non-negative integer variables. In our design context the variables a, b, c, d, e

and f are treated as continuous variables, and both n and r are positive integers.

The fundamentals of MINLP are well described in the literature, see for example, Floudas

(2002), who also provided illustrative examples. Typical algorithms in MINLPs are the outer

This article is protected by copyright. All rights reserved
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 9

approximation method (Duran and Grossmann, 1986), the extended cutting plane method

(Westerlund and Pettersson, 1995) and the branch and bound method (Fletcher and Leyffer,

1998). In our paper, we apply the branch and bound based algorithm using the solver SBB

(GAMS Development Corporation, 2013b) from the General Modeling System GAMS 24.2.1

(GAMS Development Corporation, 2013a). The solver SBB combines the standard branch

and bound method from Mixed Integer Linear Programming and a standard NLP solver

supported by GAMS 24.2.1 to solve the relaxed optimization problems. It uses the solver

CONOPT for solving the relaxed nonlinear programs (Drud, 1985) and CPLEX for solving

the local integer linear programs (GAMS Development Corporation, 2013b). Because our

optimization problem is not convex by definition, SBB only guarantees local optimal solutions.

However, in our problems, there is usually a single optimum and this suggests the solution

may be the global optimum. The algorithm requires the gradient and hessian information to

solve the local NLP problems, and automatic differentiation techniques are used to internally

compute them. In all our problems, we use absolute and relative tolerances of 1× 10−5 for

converging the solution.

All computations in this paper are carried out using an Intel Core i7 computer (Intel

Corporation, Santa Clara, CA) running 64 bits Windows 10 operating system with 2.80 GHz.

3. Optimal LQAS formulations

We now present the MINLP formulations for designing LQAS plans. In Section 3.1 we address

the problem of finding a LQAS plan that assures the conditions in (1) at the controlled points

of the OC curve are satisfied, and in Subsection 3.2, we consider the problem of designing

plans that incorporate a combination of diagnosis performance criteria where lower bound

thresholds for the metrics are pre-specified. The former problem is designated as a OC

curve-constrained design problem and the latter as a performance criteria-constrained design

This article is protected by copyright. All rights reserved
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10 Biometrics,

problem. In both cases the main objective is to minimize the sample size and reduce cost. In

§3.3 we compare the goals for using both schemes in practical applications.

3.1 Formulation for OC curve-constrained LQAS plans

The typical algorithms used to design OC curve-constrained LQAS plans are enumerative

procedures where n and r are successively iterated until the constraints at the controlled

points of the OC curve are met (Lemeshow and Taber, 1991). Here, given the risks α and

β and the target proportions required for LAPR and HAPR populations, the goal is to use

MINLP to determine the minimum sample size that meet conditions (1) with Equation (3)

as the defining OC curve. The optimization problem is

min
n,r

n (7a)

subject to I(pU , n− r, r − 1) > 1− α (7b)

I(pL, n− r, r − 1) 6 β (7c)

n > 2 (7d)

r > 1 (7e)

n, r ∈ N, (7f)

where equations (7b-7c) are the constraints at the OC points, and (7d) and (7e) are natural

lower bounds for n and r, respectively. The problem (7) allows finding designs that have

specific (imposed) type 1 and type 2 errors at pL and pU , respectively, as primary constraints.

3.2 Formulation for performance-constrained LQAS plans

Suppose we have known targets for one or more of the diagnostic performance criteria listed

in Subsection 2.2. Let us designate the Sensitivity target for the diseased subjects in the

populations as σL for LAPR and the corresponding target for the diseased subjects in the

population as σU for HAPR. Similarly, let the corresponding Specificity targets for the two

groups be θL and θU , respectively; the corresponding PPV targets for the two groups be πL

This article is protected by copyright. All rights reserved
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 11

and πU , respectively, and the corresponding NPV targets for the two groups be %L and %U ,

respectively. Using Table 2 and user-specified targets, our goal is to design a LQAS plan that

satisfies one or more of the following performance constraints:

Sensitivity for LAPR a > σLpL (8a)

Sensitivity for HAPR f > σU(1− pU) (8b)

Specificity for LAPR e+ f > θL(1− pL) (8c)

Specificity for HAPR a+ b > θUpU (8d)

PPV for LAPR a > πL(a+ b+ c) (8e)

PPV for HAPR f > πU(d+ e+ f) (8f)

NPV for LAPR e+ f > %L(d+ e+ f) (8g)

NPV for HAPR a+ b > %U(a+ b+ c). (8h)

Clearly, the above formulations comes from Table 2 and the MINLP formulation for the

performance criteria-constrained design problem is:

min
n,r

n (9a)

subject to Equations (5) (9b)

Combination of equations (8) (9c)

n > 2 (9d)

r > 1 (9e)

n, r ∈ N (9f)

a, b, c, d, e, f ∈ [0, 1]. (9g)

This formulation is quite general as it can also incorporate in the plan the constraints in

§3.1 to control the points at the OC curve and the diagnostic performance requirements in

(8). The complete problem formulation to include the user-specified type 1 and 2 error rates

This article is protected by copyright. All rights reserved
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12 Biometrics,

is shown below and its solution can be found similarly using MINLP.

min
n,r

n (10a)

subject to Equations (5) (10b)

Combination of equations (8) (10c)

Equations (7b) and (7c) (10d)

n > 2 (10e)

r > 1 (10f)

n, r ∈ N (10g)

a, b, c, d, e, f ∈ [0, 1]. (10h)

We note that this more inclusive problem may not result in a feasible LQAS plan because the

demands may be too stringent and no plan can satisfy all the requirements simultaneously.

3.3 Comparison of plans

The design of classic LQAS plans, addressed in §3.1, find designs that only meet preset type

1 and type 2 error rates. Our proposed LQAS plans in §3.2 provide flexibility by allowing the

user to incorporate prior information on the unknown proportion of disease free individuals

in the population and construct LQAS plans that meet user-selected diagnostic metrics

requirements. We note that some of these plans in §3.2 reduce the expected value of the

risk of wrong decision when p ∈ [0, pL] and increase it when p ∈ [pU , 1]. Consequently, such

plans may require smaller sample size, and the reduction may be substantial. LQAS plans

that emphasize only on diagnostic accuracy metrics are likely less discriminant than the

classic LQAS plans because they do not control the α and β risks directly. Our proposed

method can also control these risks directly but there may be no solution because the set

of requirements becomes too competitive. When this happens, we recommend a compromise

This article is protected by copyright. All rights reserved
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 13

among the competing goals in the study by lowering the requirements in some of the metrics

or error rates.

4. Results

We now demonstrate our approach to find LQAS plans that meet various diagnostic accuracy

metrics for the LAPR and HAPR populations. Other design problems with a combination

of criteria can be similarly formulated and solved. We also show a case when there is no

feasible solution to the problem. Specifically, we solve some OC curve-constrained design

problems and compare them with those obtained for the performance criteria-constrained

design problem using different combinations of performance criteria.

To solve problem (7) and arrive at an optimally designed LQAS plan, we consider a scenario

where α = β = 0.10 and both pL and pU vary in a user-selected region. To fix ideas, we

fix the difference between pU and pL but let their individual values vary. From Table 3, we

observe that as the proportions for LAPR and HAPR populations increase, the ratio r/n

becomes larger and the plan becomes more discriminant corresponding to steeper OC curves.

Our computational results validate what is often used in the field, which is a design with

n = 19, and r = 13 (Valadez, 1991). All our examples require less than 1.0 second of CPU

time to generate the plans suggesting that our proposed algorithm is quite efficient.

[Table 3 about here.]

Table 4 presents LQAS plans for several combinations of diagnostic performance criteria.

The same trend observed for the OC curve constrained plans applies here; as the proportions

assumed for LAPR and HAPR increase, the ratio r/n increases as well as the discrimination

ability of the plans. The performance criteria-constrained LQAS plans have smaller sample

sizes and acceptance constants but larger type 1 and 2 error rates than those imposed to

OC curve-constrained LQAS plans. This is expected as our plans focus on the diagnostic

This article is protected by copyright. All rights reserved
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14 Biometrics,

metrics. Mathematically, by changing from pL = 0.4 fixed to pL ∼ U[0, 0.4] we have effec-

tively increased the risk of wrong decision for LAPR population, i.e. accept the population.

Similarly, by changing from pU = 0.8 fixed to pU ∼ U[0.8, 1.0] the risk of unacceptance of

HAPR population increases, thereby making the situation more “extreme”, which means

that we can detect differences with smaller sample sizes.

To analyze the optimality of the solutions of the performance criteria-constrained design

problem, we revisit the LQAS plan for scenario S5 when both the criteria Sensitivity for

LAPR and for HAPR populations are to be met (line 5 of Table 4) that requires a plan

S(6, 4). The corresponding OC curve in Figure 1 depicts the regions of risk a, b, c, d, e

and f . Here, it is used to relate the terms (5) to an OC curve and check the satisfaction of

the diagnosis accuracy metrics imposed. Table 5 lists their values obtained by equations (5),

along with the Specificity for both groups, and shows that the constraints (a/pL > σL and

f/(1− pU) > σU) are both satisfied.

[Table 4 about here.]

[Figure 1 about here.]

[Table 5 about here.]

We note that, depending on the constraints imposed on the optimization problem, our

optimization problems may or may not have a feasible solution. This is attributable to the

antagonistic nature of the constraints. When there is no solution for the LQAS plan, we

either relax the various metric requirements or convert the metric inequalities (8) into a set

of equalities and solve a square system of 6 algebraic equations with respect to a, b, c, d, e

and f using the solver CNS in GAMS 24.2.1. The abbreviation CNS stands for constrained

nonlinear systems and uses the nonlinear programming solver CONOPT, which initially checks

the feasibility of the problem; some details are available GAMS Development Corporation
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 15

(2013b). Below is an example of a program that we have implemented to check feasibility of

a LQAS plan. We consider the setup where the design criteria are the Specificity for LAPR

and HAPR populations (second line in Table 4) and the threshold level is 0.95 for both

criteria, i.e. θU = θL = 0.95, pL = 0.6 and pU = 0.9. The formulation of the problem is

find a, b, c, d, e, f (11a)

subject to a+ b = θL(a+ b+ d+ e) (11b)

e+ f = θU(b+ c+ e+ f) (11c)

a+ d = pL (11d)

b+ e = pU − pL (11e)

c+ f = 1− pU (11f)

a+ b+ c+ d+ e+ f = 1 (11g)

a, b, c, d, e, f ∈ [0, 1]. (11h)

Running our code shows the problem (11) does not have feasible solution, and consequently,

a LQAS plan that satisfies all the constraints cannot be found. It is straightforward to verify

that the maximum value of θU and θL that produce a feasible solution is to have θL = θU

is 0.7692. If we allow θU 6= θL and θU = 0.95, it can be shown that the maximum value of

θL that produces a feasible plan is 0.6888. Clearly, these findings are problem-specific and

depend on the values assumed for pL and pU .

4.1 LQAS plan for monitoring the Malaria Eradication Program in Mozambique

We applied our algorithms in §3.1 and §3.2 to design new LQAS plans applied for monitoring

the malaria eradication program in Mozambique (Biedron et al., 2010). For comparison

purposes, our setup is that α + β < 0.2, pU = 0.7 and pL = 0.4, equal to that used in the

application. Next, we compute the diagnostic metrics of the LQAS plans used when applied

This article is protected by copyright. All rights reserved
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16 Biometrics,

to LAPR and HAPR populations, see Table 6. Some of the figures are poor and performance

criteria-constrained LQAS plans can be designed to specifically increase them.

[Table 6 about here.]

We next apply our methodology to construct multiple-objective optimal LQAS plans that

meet specific targets in the diagnosis metrics. First, we compute the optimal classic plan

using (7) with α = 0.03 and β = 0.1 (α + β = 0.13), and obtained S(29, 15), i.e. the

population is accepted when more than 15 individuals out of 29 is found to be disease free.

Table 7 displays optimal LQAS plans for various scenarios of performance criteria-constrained

designs. First, in scenario S1’ we consider constraints for Sensitivity in both populations,

then constraints for Specificity (S2’), constraints for PPV (S3’) and constraints for NPV

(S4’) so they can overcome the inefficiencies of the plans used. Recall that diagnosis metrics

constrained plans should be used when one or various diagnosis metrics are the focus.

The plans designed to assure 75 % of Specificity (i.e. θU = θL=0.75) and 65 % of PPV

(πU = πL=0.65) for both populations are those displayed for S2’ and S3’, and we observe

better performances than those offered by classic plans. However, the plans obtained for S2’

and S3’ have sums of risk (α + β) above the limit set for implementation.

[Table 7 about here.]

Finally, we use our formulation (10) to construct a LQAS plan where the risks at pL and

pU are constrained and a given combination of diagnosis metrics is simultaneously meet. We

also consider the case when pL = 0.4, pU = 0.7, α = 0.03 and β = 0.1 in order to compare the

resulting LQAS plan with the one obtained from formulation (7). Table 8 shows the plans,

where the first column lists the requirements imposed on the diagnostic metrics in addition

to the constraints at the points (pU , 1−α) and (pL, β). The results show that all the plans are

at least as discriminant as the one that only uses the constraints at the OC curve controlled
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 17

points (scenario S6’), and the tool is successful in finding designs where different kinds of

constraints are imposed.

[Table 8 about here.]

5. Conclusions

We are the first to use MINLP to find multiple-objective LQAS plans for monitoring health

care programmes. Our general goal is to minimize the sample size subject to a set of user-

specified requirement targets for a combination of diagnostic performance criteria and type

1 and 2 error rates. Our method is flexible in that (i) it allows designing classic LQAS

plans where only constraints on the type I and II error rates are considered; (ii) designing

performance criteria-constrained LQAS plan that are required to meet a specific combination

of diagnosis metrics. Besides the metrics considered, one can also include targets for false

omission rate, positive likelihood ratio, diagnostic odds ratio; and (iii) designing classic plans

that must also allow satisfy targets of diagnosis metrics.

We apply our method to a range of setups with different requirements on the various combi-

nations of diagnostic accuracy criteria, and compare results. We considered a real application

of LQAS to test our tool and obtained multiple-objective optimal LQAS plans ranging from

classic to diagnostic constrained plans. To deal with scenarios where the constraints are too

stringent, we propose a linear programming tool for checking the feasibility of the LQAS

design problem for that combination of anticipated prevalence proportions and threshold

bounds.

6. Supplementary Materials

The code referenced in Sections 3 and 4 is available at the Biometrics website on Wiley

Online Library.
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Figure 1. OC curve of the LQAS plan for the performance criteria-constrained design
problem for scenario S5 with imposed Sensitivity targets of σU = σL = 0.95, pL = 0.6 and
pU = 0.9 for the LAPR and HAPR populations. This figure appears in color in the electronic
version of this article.
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 23

Table 1
Expected risks of the LQAS plan.

Proportion of non-diseased individuals in the population.
0 6 p 6 pL pL 6 p 6 pU pU 6 p 6 1.0

Test Outcomes
acceptable a b c

unacceptable d e f
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24 Biometrics,

Table 2
Diagnostic metrics for different prevalence rates of diseased individuals in the population.

Anticipated prevalence
Low rate (p 6 pL) High rate (p > pU )

Performance
metrics

Sens. a
pL

f
1−pU

Spec. e+f
1−pL

a+b
pU

PPV a
a+b+c

f
d+e+f

NPV e+f
d+e+f

a+b
a+b+c
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Optimal design of multiple-objective Lot Quality Assurance Sampling (LQAS) plans 25

Table 3
LQAS plans for the OC curve-constrained design problem with α = β =0.1.

Scenario pL pU n r
S1 0.40 0.70 25 13
S2 0.45 0.75 23 13
S3 0.50 0.80 21 13
S4 0.55 0.85 21 14
S5 0.60 0.90 18 13
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26 Biometrics,

Table 4
LQAS plans for selected performance criteria-constrained design problem.

Combination of criteria Scenario pL pU n r α β

Sensitivity for LAPR & S1 0.40 0.70 8 4 0.1941 0.1737

Sensitivity for HAPR S2 0.45 0.75 9 5 0.2703 0.0994

(Constraints: (8a,8b)) S3 0.50 0.80 7 4 0.3529 0.0963

(σU = σL = 0.95) S4 0.55 0.85 8 5 0.4482 0.0498

S5 0.60 0.90 6 4 0.5798 0.0410

Specificity for LAPR & S1 0.40 0.70 12 6 0.1178 0.1582

Specificity for HAPR S2 0.45 0.75 13 7 0.1654 0.0977

(Constraints: (8c,8d)) S3 0.50 0.80 17 10 0.2248 0.0348

(θU = θL = 0.75) S4 0.55 0.85 13 8 0.3457 0.0321

S5 0.60 0.90 18 12 0.4656 0.0058

Sensitivity for LAPR & S1 0.40 0.70 3 2 0.6570 0.0640

Specificity for HAPR S2 0.45 0.75 3 2 0.6570 0.0640

(Constraints: (8a,8d)) S3 0.50 0.80 3 2 0.6570 0.0640

(θU = 0.75, σL = 0.95) S4 0.55 0.85 3 2 0.6570 0.0640

S5 0.60 0.90 4 3 0.7599 0.0256

PPV for LAPR & S1 0.40 0.70 4 2 0.3483 0.1792

PPV for HAPR S2 0.45 0.75 5 3 0.4718 0.0870

(Constraints: (8e,8f)) S3 0.50 0.80 4 3 0.7599 0.0256

(πU = πL = 0.6) S4 0.55 0.85 5 4 0.8319 0.0102

S5 0.60 0.90 8 7 0.9424 0.0007

NPV for LAPR & S1 0.40 0.70 6 3 0.2557 0.1792

NPV for HAPR S2 0.45 0.75 7 4 0.3529 0.0963

(Constraints: (8g,8h)) S3 0.50 0.80 6 4 0.5798 0.0410

(%U = %L = 0.95) S4 0.55 0.85 7 5 0.6706 0.0188

S5 0.60 0.90 5 4 0.8319 0.0102

PPV for LAPR & S1 0.40 0.70 4 2 0.3483 0.1792

NPV for LAPR S2 0.45 0.75 5 3 0.4718 0.0870

(Constraints: (8e,8g)) S3 0.50 0.80 4 3 0.7599 0.0256

(πL = 0.6, %L = 0.95) S4 0.55 0.85 5 4 0.8319 0.0102

S5 0.60 0.90 5 4 0.8319 0.0102
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Table 5
Areas of the OC curve for LQAS plan for the performance criteria-constrained design problem for scenario S5 when

we impose Sensitivity targets for LAPR and HAPR populations are σU = σL = 0.95, pL = 0.6 and pU = 0.9.
Sensitivity for LAPR Sensitivity for HAPR

a b c d e f a
pL

f
1−pU

0.5733 0.1369 0.0041 0.0266 0.1631 0.0959 0.9557 0.9590
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28 Biometrics,

Table 6
LQAS plans used for the malaria eradication monitoring program (Biedron et al., 2010).

n r Sens (LAPR) Sens (HAPR) Spec (LAPR) Spec (HAPR) PPV (LAPR) PPV (HAPR) NPV (LAPR) NPV (HAPR)

21 12 0.9902 0.6598 0.7511 0.7754 0.7262 0.6541 0.9914 0.9951

20 12 0.9938 0.6922 0.7102 0.8091 0.6957 0.6882 0.9942 0.9912

19 11 0.9892 0.6650 0.7428 0.7806 0.7195 0.6587 0.9904 0.9935

18 10 0.9817 0.6380 0.7773 0.7484 0.7461 0.6281 0.9845 0.9953

17 10 0.9882 0.6711 0.7329 0.7866 0.7115 0.6640 0.9893 0.9912

16 9 0.9794 0.6416 0.7706 0.7515 0.7400 0.6304 0.9825 0.9937

15 9 0.9870 0.6782 0.7205 0.7938 0.7018 0.6701 0.9881 0.9879

14 8 0.9766 0.6459 0.7622 0.7553 0.7324 0.6329 0.9799 0.9913
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Table 7
Alternative performance criteria-constrained LQAS plans for scenarios where pL=0.4 and pU = 0.7.

Combination of criteria Scenario pL pU n r α β α + β

Sensitivity for LAPR &

S1’ 0.40 0.70 21 11 0.0676 0.0849 0.1525
Sensitivity for HAPR

(Constraints: (8a,8b))

(σU = σL = 0.99)

Specificity for LAPR &

S2’ 0.40 0.70 12 6 0.1178 0.1582 0.2761
Specificity for HAPR

(Constraints: (8c,8d))

(θU = θL = 0.75)

PPV for LAPR &

S3’ 0.40 0.70 9 5 0.2703 0.0994 0.3697
PPV for HAPR

(Constraints: (8e,8f))

(πU = πL = 0.65)

NPV for LAPR &

S4’ 0.40 0.70 19 10 0.0839 0.0885 0.1724
NPV for HAPR

(Constraints: (8g,8h))

(%U = %L = 0.99)
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Table 8
OC curve-constrained LQAS plans for various scenarios where pL=0.4, pU = 0.7, α = 0.03 and β = 0.1 that meet

multiple diagnostic metric requirements in the first column.
Combination of criteria Scenario pL pU n r α β α + β

Specificity for LAPR &

S5’ 0.40 0.70 32 16 0.0138 0.0920 0.1058
Sensitivity for HAPR

(Constraints: (8c,8b))

(θL = 0.75, σU = 0.99)

PPV for LAPR &

S6’ 0.40 0.70 29 15 0.0293 0.0710 0.1002
NPV for HAPR

(Constraints: (8e,8h))

(πL = 0.65, %U = 0.99)

Specificity for HAPR &

S7’ 0.40 0.70 34 18 0.0268 0.0444 0.0712
PPV for HAPR

(Constraints: (8d,8f))

(θU = 0.75, πU = 0.65)
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