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Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease
in western countries both in children and adults. Metabolic dysregulation associated
with gut microbial dysbiosis may influence disease progression from hepatic steatosis
to inflammation and subsequent fibrosis. Using a multi-omics approach, we profiled
the oral and fecal microbiome and plasma metabolites from 241 predominantly Latino
children with non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver (NAFL), and
controls. Children with more severe liver pathology were dysbiotic and had increased
gene content associated with lipopolysaccharide biosynthesis and lipid, amino acid
and carbohydrate metabolism. These changes were driven by increases in Bacteroides
and concomitant decreases of Akkermansia, Anaerococcus, Corynebacterium, and
Finegoldia. Non-targeted mass spectrometry revealed perturbations in one-carbon
metabolism, mitochondrial dysfunction, and increased oxidative stress in children with
steatohepatitis and fibrosis. Random forests modeling of plasma metabolites was
highly predictive of non-alcoholic steatohepatitis (NASH) (97% accuracy) and hepatic
fibrosis, steatosis and lobular inflammation (93.8% accuracy), and can differentiate
steatohepatitis from simple steatosis (90.0% accuracy). Multi-omics predictive models
for disease and histology findings revealed perturbations in one-carbon metabolism,
mitochondrial dysfunction, and increased oxidative stress in children with steatohepatitis
and fibrosis. These results highlight the promise of non-invasive biomarkers for the
growing epidemic of fatty liver disease.

Keywords: microbiome, pediatrics, NAFLD, NASH, multiomics

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in western
countries both in children and adults (Lazo et al., 2013). The search for reliable non-invasive
biomarkers and therapeutic targets has become progressively more urgent as non-alcoholic
steatohepatitis (NASH), the most severe form of NAFLD, is quickly becoming the leading cause
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of liver transplantation (Estes et al., 2018). Intestinal microbiota
are implicated as a critical factor in the pathogenesis of NAFLD,
but the impact of bacterial metabolism on the liver requires
further elucidation. NAFLD is a multi-factorial condition that
is intimately linked to obesity and insulin resistance. This
metabolic imbalance leads to an excessive accumulation of
hepatic fat resulting in non-alcoholic fatty liver (NAFL). In
the setting of lipid-laden hepatocytes, fatty acid metabolites
cause oxidative stress and a cascade of necroinflammation
and fibrosis leading to NASH (Neuschwander-Tetri, 2010).
Increasingly, these pathologic processes are being identified
in childhood and progress during adulthood. Prevalence
varies by ethnicity with Latinos disproportionately affected,
possibly due to alterations in hepatic lipid catabolism and
genetic polymorphisms (Saab et al., 2016). Non-invasive
methods identifying NASH antecedents in childhood provide
opportunities to intervene while avoiding confounding factors
introduced by aging, alcohol use, concomitant medications,
and comorbidities.

Microbiota are implicated in the development of metabolic
derangements and inflammation that contribute to hepatic
steatosis and progression to steatohepatitis (Ley et al., 2006;
Leung et al., 2016; Loomba et al., 2017). Gut microbes
dynamically produce, degrade, and modulate metabolites
that communicate with the host, influencing the immune
response, systemic metabolism, and inflammation (Rooks
and Garrett, 2016). Alterations in intestinal microbiota
or dysbiosis can lead to changes in insulin sensitivity,
free fatty acid production, and disruption of intestinal
barrier integrity. The subsequent translocation of bacterial
products, including lipopolysaccharide, into the portal
circulation and activation of toll-like receptors promotes
inflammation and fibrosis of the liver (Henao-Mejia et al., 2012;
Pedersen et al., 2016).

Given the importance of dysbiosis and microbial metabolism
in NAFLD, we sought to define microbiome-derived
biochemicals and metagenomic functions influencing hepatic
metabolism and pathologic injury. In this study, we curated
the oral and gut microbiota together with serum and fecal
metabolites from Latino-predominant children with clinical
NAFL and biopsy-proven NASH compared to high and normal
weight controls without liver disease. Using a multi-omics
approach, we identified microbial-metabolite perturbations
influencing a number of pathways including oxidative stress,
one-carbon metabolism, tricarboxylic acid (TCA) cycle, lipid and
amino acid metabolism. These findings provide key insights for
the development of non-invasive biomarkers for the diagnosis
of NASH and histologic features, as well as identification
of potential therapeutic targets of hepatic injury worthy of
further investigation.

MATERIALS AND METHODS

Study Population
Children and adolescents were recruited at Children’s Hospital
Los Angeles (CHLA) between September 2016 and June 2017. All

participants or their legal guardians provided written informed
consent and/or assent. This study protocol was approved by the
CHLA Institutional Review Board (approval number: CHLA-15-
00395). Four cohorts were recruited: healthy individuals with
normal BMI (<85th percentile) and alanine aminotransferase
(ALT) < 2x ULN (“normal BMI control”); overweight and
obese individuals with BMI ≥ 85th percentile and ALT < 2x
ULN (“high BMI control”); overweight and obese individuals
with clinically-defined NAFL as elevated ALT ≥ 2x ULN per
current practice guidelines (Vos et al., 2017) (ALT ≥ 50 IU/L
males, ≥ 44 IU/L females) (“NAFL”); overweight and obese
individuals with NASH based on NAFLD activity score (NAS)
on clinically-indicated percutaneous liver biopsy as proposed
by Kleiner et al. (2005) (“NASH”). Subjects in the latter
three groups may have had liver imaging to characterize
steatosis. All histology was reviewed and scored by a single
pediatric pathologist blinded to clinical and laboratory data.
Clinical data was curated from electronic medical records
at the nearest time point to specimen collection, including
concomitant diagnoses, anthropometrics, medications including
any history of vitamin E or metformin, laboratory studies,
histology, and imaging. In a few cases, liver transaminases had
normalized at the data collection timepoint. There were no
dietary restrictions for any subjects, and none of the children
received antibiotics for at least 3 months prior to study entry.
Children were considered to have type 2 diabetes if they had
either HbA1C ≥ 6.5%, fasting serum glucose ≥ 126 mg/dL,
or existing clinical diagnosis of type 2 diabetes (Bullard et al.,
2013). They were classified as prediabetes if they had either
fasting serum glucose between 100 mg/dL and 125 mg/dL or
HbA1c ≥ 5.7% and <6.5%.

Sample Collection
Stool samples, rectal swabs, oral swabs, and peripheral blood were
collected. Swabs and stool were frozen neat and stored at −80◦C
within 6 h of collection. Blood was separated into plasma and
PBMC, and was frozen within 6 h of collection.

Microbial Profiling
Targeted sequencing of the V4 region of the 16S rRNA gene
was performed as previously described on all subjects’ fecal
and oral samples (Caporaso et al., 2012). DADA2 was used for
error correction, sequence inference, and chimera filtering with
default settings (Callahan et al., 2016). Taxonomic classification
was performed using the RDP naïve Bayesian classifier as
implemented in the “dada2” R package. Diversity and ordination
analyses were performed using the “phyloseq” R package
(version 1.20.0).

Metabolic Profiling
Non-targeted ultra high-performance liquid chromatography/
tandem mass spectrometry (UHPLC-MS/MS) of known
biochemicals was conducted on rectal swabs and plasma
in subsets of each cohort with well-defined complete
clinical and laboratory features [“normal BMI,” N = 20;
“high BMI,” N = 20; “NAFL,” N = 25; “NASH,” N = 15
(plasma), N = 20 (fecal)]. Metabolomics analyses were
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conducted by Metabolon Inc., R© according to published
methods (Ryals et al., 2007; Long et al., 2017). Rectal swabs
were normalized to mass.

Shotgun Metagenomics
To further characterize functional pathways potentially related to
metabolites and microbiota, whole genome shotgun sequencing
was performed from fecal samples in a subset of NASH (N = 20)
and control (N = 20) subjects who had metabolomic profiling to
an average depth of 38,984,068 ± 12,462,099 reads per sample.
Adapter trimming and quality filtering were performed using
trim galore, host sequences were removed using kneadData,
and taxonomic classification was performed with Kraken (v0.15-
beta). Functional profiling was performed using HUMAnN2.
Differentially abundant pathways were identified using the
“DESeq2” R package (version 1.16.1). FishTaco (version 1.1.1)
was used to identify taxonomic drivers of functional shifts in the
NASH microbiome.

Statistical Analysis
Zero-inflated negative binomial (ZINB) regression (“pscl”
package version 1.4.9) and ordinary linear regression were
utilized to identify specific taxa and compounds associated with
variables of interest. All p-values were corrected for multiple
testing using the Benjamini–Hochberg FDR method. An adjusted
p-value < 0.1 was considered significant. Random forests
classification models were built using the “randomForest” R
package (version 4.6-12) with genus-level relative abundances or
normalized metabolite levels, age, sex, and BMI as covariates.
Random forests is an ensemble classifier method that is
relatively robust to outliers and overfitting, and can be used
to perform feature selection on the basis of importance scores
(Statnikov et al., 2013). Taxa present at less than 1% relative
abundance in less than 10% of the samples were excluded to
reduce the size of the feature set. Mean importance scores
were computed for each covariate using 100 permutations
and 10,000 trees per forest. A sparse model was constructed
by including all covariates with a mean importance greater
than 0.001, up to a maximum of 30. Receiver-operator
characteristic (ROC) curves were drawn using the “ROCR” R
package (v1.0-7). RF model performance was measured via
several methods including classification accuracy, area under
the ROC curve (AUC) for binary classification models, and
Matthews correlation coefficient (MCC) for both binary and
multiclass models. Binary and multiclass Matthews correlation
coefficients (MCC) were computed using the “mltools” R package
(Gorman, 2018).

Multi-Omics Modeling
Multi-omics models for disease cohort and histology findings
were built by combining features from the 16S rRNA profiling
of the gut and oral compartments as well as metabolic profiling
from rectal swabs and plasma on a subset of n = 79 subjects
(Table 1) for whom all four assays were performed. Genus-
level relative abundances and normalized metabolite levels were
used as in the separate models, and age, sex, and BMI were
included as covariates.

RESULTS

Progressive Metabolic Derangements in
Children With Worsening Non-alcoholic
Fatty Liver Disease
Two-hundred forty-one predominantly Latino subjects (89%),
56% male, ages 5–21 years were enrolled in the study. The normal
body mass index (BMI) (N = 54), high BMI (N = 80), and
NAFL (N = 86) groups had median ages of 12, 11, and 12 years,
respectively. The NASH (N = 21) group was slightly older with
a median age of 13 years (p = 0.008). While controlling for BMI,
the degree of increased transaminases and prevalence of diabetes
significantly increased in subjects with worsening liver disease
(p < 0.001). A striking 23% of children with steatohepatitis had
diabetes mellitus (hemoglobin A1C ≥ 6.5) and an additional 23%
had prediabetes, which corroborate reports of children with type
2 diabetes having an increased likelihood of NASH (Newton et al.,
2016). All subjects with NASH were Latinos with a median ALT of
122 U/L (range 19-982 U/L), significantly higher than the NAFL
group (median ALT 65 U/L) and control groups (median ALT
26-29 U/L). The AST/ALT ratio decreased to 0.66–0.67 with fatty
liver disease compared to controls without liver injury (1.0–1.29)
(p < 0.001).

Biopsy-proven NASH subjects had a median NAFLD Activity
Score of 5 (range 3–7). They all had portal inflammation
and fibrosis: two-thirds with mild fibrosis (F 1–2), one-third
with moderate to advanced fibrosis (F 3–4), and one 8-year
old subject had cirrhosis. Two-thirds of high BMI and NAFL
subjects and 78% of NASH subjects had dyslipidemia, either
isolated hypertriglyceridemia or low HDL or both. A few
subjects with NAFL were empirically treated with vitamin E
(17.4%) and/or metformin (1.2%), while a larger proportion
of children with NASH received these medications (33.3%
and 28.6%, respectively) at some point during their treatment
history. Table 1 shows the demographic, clinical and biochemical
characteristics of the four cohorts. Table 2 provides detailed
histology on the 23 subjects with liver biopsies, 21 of whom were
diagnosed with NASH and 2 with NAFL.

Oral and Fecal Microbial Signatures of
Progressive Liver Disease
Gut microbiome profiling using 16S rRNA sequencing
revealed weak but statistically significant segregation by
cohort (PERMANOVA R2 = 0.02, p = 0.009, Figure 1A
and Supplementary Table 1). Advanced liver disease was
associated with an increasing Bacteroidetes:Firmicutes ratio (KW
p = 0.001) and decreasing alpha diversity (KW p = 3.06e-06)
(Figure 1B). Random forests classification with genus-level
relative abundances as well as age, sex, and BMI as covariates
revealed a marginal ability to separate the four cohorts [46.7%
accuracy, Matthew’s correlation coefficient (MCC) = 0.27], but
pairwise classification models against the normal BMI baseline
achieved excellent accuracies (Figure 1C). At the genus level, the
relative abundance of Corynebacterium (Z = −6.75, padj = 1e-09)
was significantly decreased in NASH subjects relative to normal
controls, while relative abundances of Fusobacterium (Z = 4.74,
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TABLE 1 | Baseline characteristics and multi-omic sampling for the 241 subjects enrolled in the study.

Normal BMI High BMI NAFL NASH p-value

Demographics

Total N 54 80 86 21

Age, median (range) 12 (5–20) 11 (6–18) 12 (7–19) 13 (8–21) 0.008

5–11 (%) 24 (44.4) 47 (58.8) 36 (41.9) 7 (33.3)

12–17 (%) 28 (51.9) 32 (40.0) 36 (53.5) 12 (57.1)

18–21 (%) 2 (3.7) 1 (1.2) 4 (4.7) 2 (9.5)

Male N (%) 24 (44.4) 45 (56.2) 53 (61.6) 14 (66.7) 0.18

Hispanic N (%) 47 (87.0) 68 (85.0) 78 (90.7) 21 (100) 0.23

Anthropometric, median

BMI (kg/m2 ) (range) 18.2 (13.2–24.0) 28.4 (19.2–55.1) 32 (18.8–48.4) 33 (21.5–51.7) <0.001

BMI z-score (range) 0.17 (−1.78–1.27) 2.99 (0.60–16.90) 3.15 (0.58–6.05) 3.12 (1.76–5.73) <0.001

Liver enzymes, median (range)

ALTb U/L 26 (18–41) 29 (8–48) 65 (8–391) 122 (19–982) <0.001

ASTc U/L 32 (21–52) 30.5 (14–49) 41.5 (15–174) 64 (23–639) <0.001

AST/ALT 1.29 (0.59–2) 1 (0.57–2.38) 0.66 (0.3–1.88) 0.67 (0.4–1.26) <0.001

Laboratory studies

Hemoglobin A1C, mean 5.55 5.5 5.5 5.7 0.47

Triglycerides mg/dL, median 67.5 133 142.5 141 <0.001

HDLd mg/dL, median 47 38 40 38 0.006

Hypertriglyceridemia and abnormal HDL, N (%) 1 (1.8) 29 (36.3) 33 (38.4) 11 (52.4) <0.001

Clinical N (%)

Prediabetes 2 (3.7) 17 (21.3) 22 (25.6) 4 (19) 0.004

Type II DM 0 (0) 2 (2.5) 0 (0) 5 (23.8) <0.001

Vitamin E 0 (0) 1 (1.3) 15 (17.4) 7 (33.3) <0.001

Metformin 0 (0) 3 (3.8) 1 (1.2) 6 (28.6) <0.001

Multi-omic Sampling (total N)

16Se, Oral Swab 54 80 86 21 241

16S, Rectal Swab 54 80 86 21 241

Shotgun Metagenomics, Rectal Swab 20 0 0 20 40

Metabolomics, Plasma 20 20 25 15 80

Metabolomics, Fecal 20 20 25 20 85

Multi-omics, combined 19 20 25 15 79

aSD, standard deviation; bALT, alanine aminotransferase; cAST, aspartate aminotransferase;
dHDL, high-density lipoprotein;e16S, 16S rRNA gene sequencing.

padj = 7.24e-05) and Finegoldia (Z = 2.79, padj = 0.059) were
increased in NASH (Figure 1D). Corynebacterium relative
abundance was also negatively associated with levels of ALT,
AST, and GGT (Supplementary Table 2). A similar analysis
at the species level showed slightly better multiclass predictive
accuracy (47.5%, MCC = 0.27, Supplementary Figure 1), but
failed to identify any specific bacterial species after correction for
multiple comparisons.

Oral microbiome profiling also showed distinct communities
by cohort (PERMANOVA R2 = 0.02, p = 0.003, Supplementary
Figure 2 and Supplementary Table 1), but did not reveal any
significant differences in the Bacteroidetes:Firmicutes ratio or
alpha diversity. Multiclass classification using oral microbial
composition as well as age, sex, and BMI performed better
than gut microbial composition at cohort separation (54.1%
accuracy, MCC = 0.36), but no genera were significantly
different in NASH. Intriguingly, species-level analysis of the
oral microbiome showed higher predictive accuracy (60.3%,
MCC = 0.44, Supplementary Figure 2) and identified a
number of significantly increased bacterial species including
unclassified Streptococcus (p < 0.01) and Haemophilus influenzae
(p = 0.09) in NASH.

Histologic steatosis was associated with increases of fecal
Holdemania (Z = 14.93, padj < 2.2e-16) and oral Alloprevotella
(Z = 4.27, padj = 0.001), Prevotella (Z = 2.69, padj = 0.07),
and Veillonella (Z = 3.62, padj = 0.007). Subjects with advanced
fibrosis had increases in fecal Finegoldia (Z = 2.67, padj = 0.072)
and Faecalibacterium (Z = 2.76, padj = 0.069) (Figure 1E), and
oral Veillonella (Z = 3.62, padj = 0.007) and Prevotella (Z = 2.69,
padj = 0.07) (Supplementary Figure 2).

Microbial Metagenome-Encoded
Metabolic Alterations in NASH
Recent work has highlighted the importance of understanding
both the functional shifts as well as taxonomic alterations in
various disease processes. We performed shotgun metagenomic
sequencing on a subset of normal BMI controls (N = 20) and
NASH (N = 20) subjects to characterize the taxonomic and
functional differences in intestinal microbial communities.
Only a few differences in microbial composition were observed
(Supplementary Figure 3 and Supplementary Table 4;
PERMANOVA R2 = 0.05, p = 0.09), however, changes in
specific bacteria (Supplementary Table 4) were associated

Frontiers in Microbiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 713234

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-713234 August 7, 2021 Time: 13:16 # 5

Kordy et al. Metabolomic Predictors of Pediatric NASH

TABLE 2 | Histology of a subset (N = 23) of subjects with NAFLD on liver biopsy.

Histology Binned variables N

NASa

0–2 Mild 2

3–4 Advanced 7

≥5 14

Median (range) 5 (2–7)

Steatosis

0 1 1

1 7

2 2 10

3 3 5

Median (range) 2 (0–3)

Lobular Inflammation

0 Mild 1

1 8

2 Advanced 14

3 0

Median (range) 2 (0–2)

Portal Inflammation

Yes Yes 22

No No 1

Ballooning

0 Mild 0

1 15

2 Advanced 8

Median (range) 1 (1–2)

Fibrosis

0–2 Mild 15

3–4 Advanced 8

Median (range) 2 (1–4)

Cirrhosis

Yes Yes 1

No No 22

aNAS, NAFLD Activity Score.

with significant enrichment of genes associated with lipid
metabolism, amino acid metabolism, carbohydrate metabolism,
and lipopolysaccharide (LPS) biosynthesis. These functional
shifts were associated with predominant increases of Bacteroides
species as well as decreases in Akkermansia muciniphila,
Anaerococcus prevotii, Corynebacterium sp., and Finegoldia
magna (Supplementary Figure 4).

Differential abundance analysis of functional metagenomic
pathways using a negative binomial model suggested
downregulation of L-methionine (padj = 0.18), L-threonine
(padj = 0.18), sulfur amino acid biosynthesis pathways and
anaerobic metabolism (Supplementary Table 5).

Metabolic and Multi-Omic Signatures of
Progressive Fatty Liver Disease
To assess changes associated with NAFL and NASH,
metabolomics analysis of plasma and rectal swabs was performed
on a subset of subjects (N = 85) drawn from all four cohorts
(20–25 subjects per cohort). We identified and quantified 832

and 730 compounds in plasma and fecal samples, respectively.
t-SNE projection and PERMANOVA of plasma metabolite
profiles revealed moderate separation between the four cohorts
(Figure 2A and Supplementary Table 6, PERMANOVA
R2 = 0.054, p = 0.001) as well as a significant BMI-mediated
effect (PERMANOVA R2 = 0.027, p = 0.001). Random forests
classification using normalized plasma metabolite levels as well
as age, sex, and BMI as covariates yielded a predictive accuracy
of 61.3% (MCC = 0.48) whereas random chance would be
expected to yield 25% (Figures 2B,C). To isolate the effect of
liver disease from BMI, we also constructed binary classifiers
for NAFL (80.4% accuracy, MCC = 0.61) and NASH (97%
accuracy, MCC = 0.94) compared to the high BMI control
and NASH vs. NAFL (90% accuracy, MCC = 0.78) (Figure 3).
The top biochemicals contributing to group separation were
predominantly lipids and amino acids.

Metabolites significantly associated with steatohepatitis
included biochemicals involved in metabolism for energy,
importantly alpha-ketoglutarate, glutathione synthesis,
markers of oxidative stress, methionine, phosphatidylinositol,
phosphatidylcholine, amino acids, tryptophan, sphingolipids,
and purine (Supplementary Figure 5). Metabolites associated
with NAFL included those involved with metabolism of primary
bile acid, fatty acid, glutathione, and tryptophan. Interestingly,
two subjects with a clinical diagnosis of NAFL were misclassified
by the model as NASH driven by increased abundance of
alpha-ketoglutarate and N-acetylmethionine (Figure 4).

Downregulation of biomarkers of one-carbon metabolism
in the mitochondria was observed in both our metagenomic
and metabolomics analysis of NASH subjects. Amino acids
that feed one-carbon metabolism serine and glycine were
significantly decreased in the NASH cohort (p = 0.002)
and methionine-derivatives choline and cysteine were also
decreased (Figure 2C). Oxidative stress is reflected by significant
alterations in γ-glutamyl-amino acids, cysteine-glutathione
disulfide, thioproline, serine, glycine and N-acetylmethionine in
our NASH cohort. Furthermore, four plasma metabolites were
predictive across the multiclass, NASH vs. high BMI control,
and NASH vs. NAFL models: alpha-ketoglutarate, cysteine-
glutathione disulfide, N-acetylmethionine, and citrulline. These
metabolites were not present in the model separating NAFL
from high BMI control (Supplementary Table 7), and were
also significantly associated with levels of AST, ALT, and GGT
(Supplementary Table 8).

Similar analyses using fecal metabolite profiles showed
generally weaker classification performance for the multiclass
(50.6% accuracy, MCC = 0.33), NAFL (69.6% accuracy,
MCC = 0.37), and NASH (74.4% accuracy, MCC = 0.49) models
(Supplementary Figures 6, 7). A multi-omic model including gut
and oral microbial profiles as well as plasma and fecal metabolites
yielded slightly improved predictive accuracy for disease cohort
(overall accuracy of 64.6% vs. 61.3% for plasma metabolites
alone) (Figure 5). This improvement was likely due to the
inclusion of a single fecal metabolite 1−(1−enyl−stearoyl)−GPE
(P−18:0), an antioxidant with a role in lipid metabolism (Ilievski
et al., 2016; Rebholz et al., 2018; Gu et al., 2020), which
increased with disease progression. Analogous binary classifiers
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FIGURE 1 | Gut microbiome composition in progressive fatty liver disease. (A) Principal coordinates analysis (PCoA) plot of gut microbiota composition using
Bray-Curtis distances. Ellipses show 95% confidence regions. (B) Boxplots show significantly decreased Shannon diversity (KW p = 3.06e-06) (top) and increased
log-transformed Bacteroidetes to Firmicutes ratio (KW p = 0.001) (bottom) with advancing liver disease. Pairwise comparisons using a Wilcoxon test are indicated
along the top. *p < 0.05, **p < 0.01, and ***p < 0.001. (C) Receiver operating characteristic (ROC) curves of binary random forests (RF) classification models for
each group as indicated vs. “normal BMI” baseline. (D) Distribution of BMI and genus-level relative abundances for the features selected in the multiclass RF model
(violin plots). RF model importance values are shown as shaded boxes. Red text denotes genera identified as significantly altered in zero inflated negative binomial
(ZINB) regression models. (E) Importance values for RF models of liver histology findings. Positive (red) and negative (blue) values indicate genera that are increased
and decreased with higher grades of each finding, respectively. Asterisks (*) denote genera that are also significant (p < 0.1) in ZINB regression analyses.
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FIGURE 2 | Plasma metabolite signatures of progressive fatty liver disease. (A) T-distributed stochastic neighbor embedding (t-SNE) plot of plasma metabolite
profiles. Ellipses show 95% confidence regions for each cohort. (B) Receiver operating characteristic (ROC) curves of binary RF classification models for each group
as indicated vs. “Normal BMI” baseline. (C) Distribution of BMI and metabolite values for the features selected in the multiclass RF model (violin plots). RF model
importance values are shown as shaded boxes with darker colors denoting higher mean importance. Red text denotes metabolites identified as significantly altered
in linear regression models. (D) Heatmap of importance values for RF models of liver histology findings. Positive (red) and negative (blue) values indicate metabolites
that are increased and decreased with higher grades of each finding, respectively.

for NAFL and NASH vs. high BMI controls, and for NASH vs.
NAFL also yielded small improvements in model performance.
Interestingly, the relative abundance of Prevotella in the oral

compartment was an important predictor for NASH, consistent
with previous reports of elevated oral Prevotella in adults with
NASH (Bashiardes et al., 2016; Figure 5).
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FIGURE 3 | Plasma metabolite binary classification models against “high BMI” or “NAFL” baselines. (A) ROC curves of binary RF models for each comparison as
indicated. (B) Forest plot of linear regression coefficients (“Estimate”) for features selected in the binary NAFL vs. NASH plasma metabolite RF model. Positive (red)
and negative (blue) coloring denotes metabolites significantly increased and decreased in NASH relative to NAFL, respectively. Error bars show standard errors of the
regression coefficients. RF model importance values are shown as shaded boxes.

Metabolites Predict Steatosis, Lobular
Inflammation, and Fibrosis in Fatty Liver
Disease
A set of random forest (RF) classification models for steatosis,
lobular inflammation, and fibrosis using the plasma metabolite
profiles as predictors of the histologic findings were constructed
(Supplementary Table 9). For steatosis, 15 metabolites were
selected via cross-validation including mannose sugar monomer,
peptide (gamma-glutamyl amino acid), androgenic steroids
(androstenediol), and a number of components in lipid
metabolism (Figure 2D). Fourteen important predictors for
lobular inflammation included amino acids (tryptophan,
glutamine), vitamin B6 metabolism, and components of fatty
acid and lysophospholipid metabolism (Figure 2D). These
RF models achieved a high predictive accuracy of 93.7% with
MCC = 0.909 and 0.870 for steatosis and lobular inflammation,
respectively. Only a single mild steatosis subject, driven by lipids
heptenedioate (C7:1-DC) and linoleoylcarnitine (C18:2), and a
single mild lobular inflammation subject, driven by tryptophan
betaine and sulfate, were misclassified with higher grades of these
histological features (Supplementary Figure 8).

Fibrosis had a metabolic signature consisting of 16 metabolites
with high predictive accuracy (93.7% accuracy, MCC = 0.882)
with biochemicals relevant to inflammation (Figure 2D). Overall,
subjects with advanced fibrosis had significantly higher plasma
lipids—in particular, sphingolipids and ceramides—and indole-
3-carboxylic acid compared to individuals with mild fibrosis
(0–2). Furthermore, sphingolipids were important predictors
for both fibrosis and NASH: behenoyl dihydrosphingomyelin
was present both in the RF model of fibrosis and the model
differentiating NASH and NAFL; N-stearoyl-sphingosine and

glycosyl N-stearoyl-sphingosine was predictive of fibrosis and
separated NASH from high BMI controls. Only a single subject
labeled with mild fibrosis (0–2) was misclassified as advanced
fibrosis, driven by increased ceramide (d18:1/20:0, d16:1/22:0,
d20:1/18:0) (Supplementary Figure 8).

DISCUSSION

Fatty liver disease, the hepatic manifestation of metabolic
syndrome, may begin in childhood and can progress to
cirrhosis and end-stage liver disease in adulthood, posing
a serious public health threat. The ability to distinguish
these individuals and intervene prior to the development of
advanced liver disease is critically important. Our analyses
of oral and rectal microbial communities, metagenomics
and metabolomics in well-characterized Latino-predominant
children comprehensively identify predictors of NASH and
histologic injury. We identified potential microbial contributions
to altered functional pathways and characterized perturbations
of metabolites likely contributing to disease pathogenesis
through oxidative stress. Furthermore, we identified panels of
plasma metabolites that can non-invasively identify NASH and
fibrosis with high predictive accuracy similar to the accuracy
of complex multi-omic models and performing better than
taxonomy alone. These findings increase our understanding of
the pathogenesis of pediatric fatty liver disease and suggest
potential non-invasive diagnostic markers and therapeutic targets
for NASH and fibrosis.

The progressive dysbiosis and lower alpha diversity in our
cohort of children with NASH correlated with increasing
dyslipidemia, insulin resistance, fatty liver disease severity
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FIGURE 4 | Plasma metabolite drivers of disease cohort misclassification. Ground truth classes based on original clinical diagnosis are shown along the x-axis,
predicted classes are shown as the indicated colors, and each point represents one individual. For example, three subjects in the NAFL group who were
misclassified as NASH (purple points in the “NAFL” x-axis group) show elevated levels of alpha-ketoglutarate consistent with the NASH profile.

and advanced fibrosis. NASH was associated with significant
increases in oral Streptococcus and gut Fusobacterium with
concomitant decreases in gut Corynebacterium. Interestingly,
Corynebacterium produces lipases that release antibacterial free
fatty acids from host lipids which ultimately regulate surrounding
bacterial species (Bomar et al., 2016); its depletion in NASH may
contribute to distinct alterations of the surrounding microbial
community. Oral dysbiosis is emerging as a potential source of
systemic inflammation and cirrhosis (Qin et al., 2014; Acharya
et al., 2017). Indeed, advanced fibrosis in children was associated
with increased oral Veillonella and Prevotella. In adults with
cirrhosis, oral Veillonella and Prevotella are presumed to seed
the intestinal microbiome and are correlated with progression of
fibrosis (Qin et al., 2014).

In children with NASH, we observed increases in genes
associated with upregulation of lipid, carbohydrate and amino
acid metabolism and LPS biosynthesis. Taxon level contributions
to these shifts were driven by increases of Bacteroides and
depletion of Akkermansia, Anaerococcus, Corynebacterium and
Finegoldia. The upregulation of LPS in children with NASH has
been reported by others (Alisi et al., 2010; Schwimmer et al.,
2019), and linked with progression to NASH via stimulation
of toll-like receptor (Ruiz et al., 2007; Verdam et al., 2011;
Roh and Seki, 2013; Sharifnia et al., 2015; Carpino et al.,
2019). We hypothesize that early microbial predominance of
Bacteroides in childhood along with loss of Corynebacterium,
Akkermansia and Anaerococcus with their role in stabilizing the
surrounding bacterial communities and the gut epithelial barrier
may lead to functional changes that enable the progression of
fatty liver disease.

Untargeted metabolomics profiling, in conjunction with
metagenomic analysis, has shown significant promise
as biomarkers of fatty liver disease progression in other
pediatric cohorts (Zhu et al., 2013; Del Chierico et al., 2017;

Khusial et al., 2019). We identified plasma metabolite signatures
that distinguished those who had progressed to NASH with
higher predictive accuracy than taxonomic differences alone.
Our findings underscore the roles of alpha-ketoglutarate,
cysteine-glutathione disulfide, and N-acetylmethionine in
NASH progression (Supplementary Figure 9). Upregulation
of alpha-ketoglutarate is one of the most important metabolite
predictors of NASH in our cohort and likely reflects the oxidative
stress associated with the development of steatohepatitis from
steatosis. Alpha-ketoglutarate is a derivative of glutamate that
generates ATP in the TCA cycle, and serves as a substrate for
intracellular glutathione (GSH) synthesis and turnover (Gaggini
et al., 2018). In fatty liver disease, enhanced generation of
reactive oxygen species leads to altered availability of GSH,
a hepatic antioxidant that is perturbed in both humans and
animal models of NASH (Nobili et al., 2005). The increased
alpha-ketoglutarate in our children with NASH is likely an
adaptive response to increased metabolic and oxidative stress
in the liver. Moreover, we observed upregulation of gamma-
glutamyltransferase (GGT), an enzyme that transaminates
GSH, which likely reflects increased glutathione demand in
the presence of hepatic inflammation and oxidative stress
(Gaggini et al., 2018).

Current imaging and biomarker technologies have yet to
demonstrate sufficient sensitivity and specificity to replace
liver biopsy for distinguishing between simple steatosis and
steatohepatitis as well as for staging fibrosis. Furthermore,
though several studies have found elevated alpha-ketoglutarate
in NASH, this biomarker alone has been unable to distinguish
individuals with NAFL from the approximately one-third that
will progress to NASH (Aragones et al., 2016). Using unbiased
high-throughput metabolomics, we identified a panel of serum
metabolite signatures of fatty liver disease and liver histology.
Machine learning models identified key pathways predictive
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FIGURE 5 | Multi-omic classification models using metabolomics and 16S microbiome profiling data. (A) Distribution of BMI and standardized values for the features
selected in the multiclass multi-omic RF model (violin plots). RF model importance values are shown as shaded boxes with darker colors denoting higher mean
importance. Text in brackets denote the source of each selected feature (plasma or fecal metabolite). (B) Distribution of standardized values for the features selected
in the NAFL vs. NASH multi-omic RF model (violin plots). Text in brackets denote the source of each selected feature.

of NASH (predictive accuracy 97.1%), NAFL (80.4%) and
histologically-confirmed pathologic injury (93.7%) in children
and adolescents. We were able to distinguish NAFL from NASH

with 90% accuracy using a combination of 15 metabolites
including alpha-ketoglutarate, cysteine-glutathione disulfide, and
N-acetylmethionine.

Frontiers in Microbiology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 713234

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-713234 August 7, 2021 Time: 13:16 # 11

Kordy et al. Metabolomic Predictors of Pediatric NASH

Interestingly, one 9 year-old obese Latina girl with
dyslipidemia and pre-diabetes HgbA1C of 6.0 was clinically
diagnosed with NAFL based on increased transaminases (ALT
143 U/L, AST 88 U/L, GGT 99 U/L) and steatosis on ultrasound.
However, her plasma metabolite profile was most consistent
with NASH, with substantially elevated alpha-ketoglutarate and
decreased N-acetylmethionine (Figure 4). Indeed, 8 months
after enrolling in the study, the subject underwent a liver
biopsy that demonstrated histology consistent with NASH. It
is uncertain whether the subject had undiagnosed NASH at
enrollment, given the lack of biopsy at that time, though this
is likely given her biochemical and clinical risk factors and the
fact that only 18% of children have histologic progression to
NASH over the course of 1–2 years (Xanthakos et al., 2017).
This particular example demonstrates the powerful utility of
our metabolite panel for the diagnosis of steatohepatitis, and
the high predictive accuracy for monitoring fatty liver disease
progression. Our study builds upon recent multi-omics studies of
fatty liver disease in adult cohorts and highlights key differences
in non-invasive biomarker profiles of NASH and fibrosis that
may be specific to the pediatric population (Qin et al., 2010;
Bajaj et al., 2015; Boursier et al., 2016; Loomba et al., 2017;
Schwimmer et al., 2019).

A major limitation of this study is the small sample size of
biopsy-proven NASH with histology. It is possible that some
subjects classified as NAFL may have NASH, but have not
yet undergone a diagnostic liver biopsy; as research-related
liver biopsy pose ethical and medical risks, decision to biopsy
remained with the patient’s clinician based on practice guidelines.
Such cases would likely yield conservative performance estimates
for our predictive models due to the unknown variation
introduced by these misclassification events. The homogenous
population may potentially limit generalizability. Some of the
findings may reflect differences in BMI, although this was
likely mitigated by inclusion of children with high BMI and
normal aminotransaminases as the baseline for many of the
analyses. Finally, our findings are strictly correlative; further
studies defining the mechanisms by which gut microbiota
and their metabolic activities mediate fatty liver disease
are necessary to establish a causal relationship. Longitudinal
sampling of at-risk youths across a spectrum of disease stages
may help differentiate causal drivers of progression from
underlying variance in genetic makeup or other predisposing
factors. Despite these limitations, this study is to the best
of our knowledge the largest cohort of Latino children and
adolescents across the spectrum of fatty liver disease including
biopsy-proven NASH. Our cohorts were well phenotyped,
balanced in gender, and have been characterized by multiple
-omics methods to yield a rich and detailed set of potential
biomarkers and therapeutic targets. Large, multi-center, multi-
ethnic studies are needed to validate the effect of microbiome-
derived signatures and metabolites on fatty liver disease and
progression of fibrosis.

In conclusion, our findings highlight perturbations
of the oral and intestinal microbiota, imply microbial
metagenomic alterations of metabolism, and identify
distinctive metabolites associated with hepatic derangements

in children with fatty liver disease. The ability of our
classification models to predict disease classes as well as
histologic findings supports the utility of metabolite profiling
to function as a non-invasive method for prediction of
NASH and fibrosis. Furthermore, the key biochemical and
functional pathways identified in our models may represent
clinically important therapeutic targets in a multi-prong
approach to manage the spectrum of fatty liver disease
starting in youth.
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