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Abstract of the Dissertation

Measurement of simultaneous Υ + J/ψ production in PbPb collisions at
√
sNN = 5.02 TeV with the CMS detector

The yield of simultaneous uncorrelated production of Υ+J/ψ mesons in Pb + Pb

collisions at
√
sNN = 5.02 TeV is measured for the first time using data collected

by the CMS experiment. Reconstructed Υ and J/ψ candidates are paired to-

gether to make a two-dimensional invariant mass distribution, which is fitted with

a four-component model that accounts for total signal of correlated+uncorrelated

Υ+J/ψ, single-quarkonia Υ+µµ and J/ψ+µµ, and pure background µµ+µµ. The

total signal of correlated+uncorrelated Υ+J/ψ directly from the fit is consistent

with zero. A new method is devised to calculate the uncorrelated Υ+J/ψ yield

alone from the three other fit components, thereby reducing the statistical un-

certainty. Using this method, the yield of uncorrelated Υ+J/ψ in the kinematic

range (pµµT < 30 GeV, yµµ < 2.4) is measured to be 1325 ± 378(stat.) ± 437(sys.),

which is a statistically significant signal of over 3σ. We compare our result to the-

oretical predictions from a model of correlated and uncorrelated production based

on double-parton scattering, and to Glauber Monte Carlo simulations. We find

that the model and simulations are consistent with our result within systematic

uncertainties. The methods used in this first measurement of Υ+J/ψ in heavy-ion

collisions may be useful for future analyses with greater quantities of data.

xvii



Chapter 1

Theoretical Background

1.1 Standard Model

The Standard Model of particle physics is the preeminent theory describing the

electromagnetic, strong, and weak forces. This model is the culmination of work

from many scientists over more than half a century, and is the most successful

model to date for the fundamental forces it covers. It has been supported by

numerous experiments, most recently the discovery of the Higgs boson [35, 36]. The

Standard model is not all-encompassing: it does not explain some phenomena such

as dark matter and dark energy, and notably it entirely excludes the fundamental

force of gravity. Despite this, the Standard Model is a remarkable achievement

that describes a vast portion of known interactions in our universe.

The Standard Model establishes a set of fundamental particles, shown in the

chart in Fig. 1.1. They are divided into two categores: Fermions, with half-integer

spin; and bosons, with integer spin. The fermions are further subdivided into

quarks and leptons. Quarks are the only fundamental fermions to feel the strong

force. They also interact via the electromagnetic force (known as Quantum Elec-

trodynamics or QED in the Standard Model) as well as the weak force. There

are six “flavors” of quark: up (u), down (d), strange (s), charm (c), bottom (b),

and top (t), and also their corresponding antiquarks with opposite electric charge.

The masses of quarks vary greatly, from 2 MeV for the u to 173 GeV for t. The
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next category is the leptons, which are fundamental fermions that do not inter-

act by the strong force. They are the electron (e−), muon (µ−), tau (τ−), their

positively-charged antiparticles, and also three neutrinos νe, νµ, and ντ . Electrons

are the most common lepton that we are familiar with, as they surround the nuclei

of atoms in everyday matter. The muon and tau are similar to the electron, but

much more massive and unstable. Charged leptons interact through QED and the

weak force, while neutrinos interact through only the weak force. There are five

fundamental bosons in the Standard Model. The first four are force carriers for

the fundamental forces: gluons (g) mediate the strong force, the photon (γ) is

a massless particle that propagates the electromagnetic force, and the W and Z

bosons carry the weak force. Lastly, the Higgs boson (H) is responsible for how

all the fundamental particles obtain their mass.

Figure 1.1. Chart of the fundamental particles of the Standard Model [1].
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This thesis will focus on the interactions of quarks and gluons, which will be

further described in the following sections. Muons will also play a key role in the

experimental method, as we search for unstable particles made of cc̄ and bb̄ which

decay into muon pairs.

1.2 Quark-Gluon Plasma

In the Standard Model, the strong force is described by Quantum Chromodynamics

(QCD). This force governs the behavior of quarks and gluons. In addition to

electric charge (+2/3 for u, c, and t, -1/3 for d, s, and b), quarks also possess a

“color” charge. There are three different color charges, arising because QCD is

invariant under SU(3) symmetry [37, 38]. To distinguish the three types of charge

they were given the names red, green, and blue; or for antiquarks, the colors are

antired, antigreen, and antiblue. This naming scheme is the source of the name

Chromodynamics in QCD, and has led the strong force to also be called the color

force. Gluons are the fundamental force-carrier boson for the strong force, and they

possess color themselves. Having color charge notably means that gluons interact

with each other, unlike the neutral photon that mediates the electromagnetic force.

Another consequence of SU(3) symmetry is that there are eight different gluons,

each of them a different superposition of color and anticolor states [38].

A significant feature of QCD is color confinement. The magnitude of the inter-

action between colored particles increases with the distance between them, which

causes the particles to bind together into colorless objects called hadrons. The

allowed colorless states in QCD lead to two categories of hadrons: baryons, which

are a bound state of three quarks; and mesons, which are a bound state of a quark

and antiquark. If the quarks are pulled apart from each other, the potential energy

from the strong force increases so much that, out of this energy, new quarks and

gluons can be produced to bind with the quarks what were pulled apart such that

they are once again bound into a hadron and the fields are “confined.” This state

of matter is what makes up the universe today, with baryons making up the nuclei
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of all atoms in the form of protons (uud) and neutrons (udd). Light mesons (pions)

serve as a long-range mediator of the strong force between hadrons and thereby

bind the atomic nucleus together.

However, hadronic matter is not the only phase of QCD matter. At very high

energy density, the system undergoes a phase transition to a different form of

matter called the quark-gluon plasma (QGP). In the QGP phase, the quarks and

gluons are deconfined and interact freely without binding into hadrons. This can

be thought of as analogous to an electromagnetic plasma, where electrons disso-

ciate from nuclei to travel freely and interact throughout the medium. Figure 1.2

illustrates the phase transition between hadronic matter and QGP in a lattice

QCD calculation [2]. There is an increase in ε/T 4 with rising T , where ε is the

energy density and T is the temperature of the system. This corresponds to a pro-

portional increase in the number of degrees of freedom in the system, arising from

individual quarks and gluons that are no longer bound within hadrons. The rise

is steepest at a temperature of approximately 154 MeV, indicating that the phase

transition occurs around this temperature. Because there is no discontinuity, this

rise is characteristic of a crossover transition, and so Tc = 154 MeV is called the

“crossover temperature” of the QGP.

The nature of the phase transition from hadron gas to QGP varies. Lattice

QCD calculations are at a baryon chemical potential of µB = 0, which corresponds

to zero net baryon density (number of baryons minus antibaryons per unit volume

of space). Depending on the net baryon density in the system, the transition could

be first-order or crossover [39]. A first-order phase transition is characterized by a

discontinuity in the relevent thermodynamic variable, while a crossover is a smooth

transition with no discontinuity as seen in the lattice calculation in Fig. 1.2. The

phases of QCD matter and the different phase transitions are shown in Fig. 1.3.

Ordinary nuclear matter at room temperature (about 2.5 × 10−3 eV ) is in the

hadronic phase. At extremely high baryon density, more exotic phases of QCD

matter such as color superconductors may exist [40].
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Figure 1.2. Results of lattice QCD calculations with several lattice sizes (Nt),
using 2+1 flavors (u, d, and s) and realistic quark masses [2]. The horizontal
axis represents the temperature T of the system, and the vertical axis represents
the ratio of energy density ε over T 4. The inset panel shows the temperature
range 100–250 MeV of the same plot for greater detail in that region.

Heavy-ion collisions are used to probe the QCD phase space. The matter in

these high-energy collisions thermalizes to produce QGP, with the exact location

in phase space depending on the collision that produced it. At the Large Hadron

Collider (LHC), high-energy collisions of lead nuclei produce QGP at very high

temperature and relatively low net-baryon density. This QGP, located near the

vertical axis of Fig. 1.3, would then go through a crossover transition with prop-

erties very close to those studied with lattice QCD. At the Relativistic Heavy Ion

Collider (RHIC), collisions are produced with various parameters to probe different

regions of phase space and search for the critical point [41]. This thesis uses data

from Pb + Pb collisions at the LHC. The following section will describe heavy-ion

collisions in further detail.

1.3 Heavy-ion collisions

In a relativistic heavy-ion collision, the energy from two colliding nuclei traveling

near the speed of light is converted into an expanding fireball of dense color matter
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Figure 1.3. Phase diagram of QCD matter. The vertical axis represents the
temperature of the system, and the horizontal axis represents the net baryon
density (number of baryons minus antibaryons per unit volume of space). The
lower left region is the hadronic matter or hadron gas phase, in which quarks and
gluons are confined, and the upper region is the QGP phase, where the quarks
and gluons are deconfined. The solid line separating these two phases indicates
a first-order phase transition, while the dashed line indicates a crossover tran-
sition. The critical point between these two types of transition is located at
approximately T ≈ 154 MeV. The far right region is where QCD matter may
take more exotic phases. For reference, ordinary nuclear matter such as protons
and neutrons are indicated on the diagram at room temperature, approximately
(2.5× 10−3 eV ).

and energy. This fireball evolves through several stages, as illustrated in Fig. 1.4.

First, the system reaches thermal equilibrium and forms the QGP in less than

1 fm/c (∼ 3 × 10−24 s). The QGP then expands and cools. As it reaches the

crossover temperature Tc ≈ 154 MeV, the quarks and gluons begin to hadronize.

For collisions at the LHC this is a crossover phase transition, so hadronization

occurs gradually over a temperature range. The timescale for hadronization is on

the order of ∼ 10 fm/c. The system, now a hadron gas, continues expanding and

cooling. Soon after hadronization it reaches the stage of chemical freezeout, where

inelastic collisions between the hadrons cease. At this point, all particle identities

are fixed except for electromagnetic and weak decays. After further expansion,

approximately 20–30 fm/c since the initial collision, the system reaches kinetic
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freezeout, where elastic collisions cease as well. At this point the momenta of

outgoing particles are fixed, and they continue to travel outward to the various

particle detectors surrounding the collision point.

Figure 1.4. Space-time schematic of a heavy-ion collision at the LHC [3]. The
horizontal axis represents distance along the axis of the colliding beams, and
the vertical axis represents time. The fireball thermalizes into a QGP at time
τ0 < 1 fm/c. The QGP hadronizes over Tc, which is a range of temperatures
because this system is undergoing a crossover transition. Chemical freezeout
occurs at temperature Tchem and kinetic freezeout at Tkin. Arrows indicate
particles emitted during the fireball’s evolution, including photons and various
hadrons.

1.4 Heavy quarkonia

Quarkonia are mesons, bound states consisting of a quark and antiquark of the

same flavor, typically the heavier quarks b and c. These two families of quarko-

nia are known as bottomonia (bb̄) and charmonia (cc̄). Top quarks do not form
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quarkonia, as they decay too rapidly.

Heavy quarkonia are useful tools for studying the QGP in heavy-ion collisions.

The coupling constant of QCD decreases with increasing energy, and heavy quarko-

nia have high enough mass that they can be studied using perturbation theory.

Their high mass, especially for the Υ, also means that their production is domi-

nated by initial hard-scattering in the collision rather than thermal production [42],

and the formation time for a qq̄ to form a quarkonium state is . 0.1 fm/c [43].

In addition, these quarkonia have long enough lifespans (> 1000 fm/c) to outlast

the QGP before they decay. This means they experience the full evolution of the

QGP and can be used to probe its properties. Finally, quarkonia have a significant

decay mode to muon pairs, which can then be measured by appropriate detectors.

Section 2.2 will discuss detectors in more detail. Masses and dimuon branching

ratios for relevent quarkonia are shown in Table 1.1.

Table 1.1. Mass and dimuon branching ratio for relevent quarkonia [34].

State Mass (MeV/c2) Dimuon branching ratio (%)

Υ(1S) 9460.40± 0.09± 0.04 2.48± 0.04

J/ψ 3096.900± 0.006 5.961± 0.033

This thesis studies two quarkonia, the Υ(1S) and the J/ψ, which are the ground

states of bottomonium and charmonium respectively. Figure 1.5 displays the bot-

tomonium (left) and charmonium (right) families with their excited states. As seen

in the figure, higher mass quarkonium states can decay to lower mass states and

contribute to their final yields. These processes are referred to as “feed-down”. The

Υ(4S) and higher excited states of bottomonium that are above the BB̄ thresh-

old in mass instead decay strongly to BB̄, where the B is a meson consisting of

a b or b̄ quark and another light quark or antiquark. Likewise, excited states of

charmonium above the DD̄ threshold decay strongly to DD̄, where the D is a

meson consisting of a c or c̄ quark and another light quark or antiquark. These

strong decays are energetically forbidden below their respective mass thresholds,
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but above the threshold they occur very rapidly due to the strength of the strong

force. Therefore, they do not contribute to feed-down to the lower quarkonium

states.

Figure 1.5. Diagram of bottomonia (left) and charmonia (right) states [4]. The
vertical axis represents mass and the horizontal axis denotes the quantum num-
bers of the quarkonium state. Arrows indicate decay channels between states.
The BB̄ threshold (left) indicates at what mass a bottomonium is energetically
permitted to decay to BB̄, while the DD̄ (right) threshold indicates a similar
threshold to decay into DD̄ for charmonia.

1.5 Nuclear Modification

One phenomenon that has been studied in quarkonium is the suppression of their

yields in heavy-ion collisions relative to p + p collisions [5, 6, 44]. Figure 1.6

illustrates this suppression as measured for the Υ family in Pb + Pb (left) and

p + Pb (right) collisions. We see that Υ yields are significantly lower than would

otherwise be expected without suppression, especially in Pb + Pb. Measurements

of the ratio of yields in Pb + Pb and p + Pb collisions versus p + p collisions,

referred to as nuclear modification factors RPbPb and RpPb respectively, are shown

in Fig. 1.7. These measurements show numerically the suppression in Υ compared

to p + p. Moreover, they also indicate that excited states of quarkonia exhibit

progressively greater suppression.

There are several mechanisms by which the presence of a medium may cause

suppression of quarkonia. Some suppression is from interaction with the QGP
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Figure 1.6. Dimuon invariant mass distributions in Pb+Pb (left) [5] and p+Pb
(right) [6] collisions. The black dots are data points, and the dashed red lines
are the expected distributions assuming that there is no suppression of Υ yields.

Figure 1.7. Nuclear modification factors.

effects, while some is caused by the presence of the nucleus itself. These will

be described further below. Since p + Pb collisions are not expected to produce

significant QGP, comparing both Pb+Pb and p+Pb helps to separate the different
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sources of suppression.

1.5.1 QGP effects

One model proposed to explain the suppression of quarkonia in a QGP is color

screening [45], analogous to Debye screening in electromagnetism. This model

suggests that when a cc̄ (or bb̄) pair is within a QGP medium, the color field of

the plasma “screens” the quark and antiquark from each other, preventing them

from binding to form a quarkonium.

At a temperature of T = 0, the potential of a qq̄ bound state is modeled with

a Cornell potential,

V (r) = σr − α

r
, (1.1)

where r is the distance between the quark and the antiquark, σ ' 0.192 GeV2

is the strength of the linear term, and α = 0.471 is the strength of the Coulomb

term [7]. In the presence of a medium with nonzero temperature, both terms of

the potential are modified. The modified potential can be written as

V (r, T ) = σrD
(
1− e−r/rD

)
−
(
α

rD
+
α

r
e−r/rD

)
, (1.2)

in which rD(T ) is the temperature-dependent Debye radius [7]. The Debye radius

here is parameterized as

r−1
D (T ) = T

[
2παs

2Nc +Nf

6

]1/2

, (1.3)

where Nc = 3 is the number of QCD colors, Nf = 3 is the number of QCD flavors,

and αs is the coupling constant of the strong force, which at the Υ(1S) mass is

∼ 0.2 [7]. When the Debye radius is small enough compared to the binding radius

of the quarkonium state, the q and q̄ are screened from each other, preventing

the state from forming. The effect of screening on the wave functions of Υ states

is visualized in Fig. 1.8. Notably, the excited states are affected more strongly

by screening. This leads to a sequence in which a QGP medium of increasing

temperature “melts” the states in order, starting with Υ(3S), then (2S), then (1S).
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Figure 1.8. Radial wave functions of Υ(1S), (2S), and (3S) states (red solid,
blue dashed, and green dotted lines respectively.) calculated from the screened
Cornell potential for T = 0 MeV (lower) and T = 200 MeV (upper) [7]. The
RMS radius is labeled for each state.

Figure 1.9. Diagram of quarkonia states as a thermometer of the QGP [8]. As
the temperature of the QGP rises above the critical temperature Tc, quarkonium
states progressively melt and disappear.

Sequential melting of quarkonia can thereby be used as a thermometer to measure

the temperature of the QGP, as illustrated by the simplified cartoon in Fig 1.9.

There have also been studies that consider color screening in more detail by

examining both real and imaginary portions of the potential [9]. Graphs of these

real and imaginary parts of the potential are shown in Fig. 1.10 for various tem-
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peratures, from purple (coolest) to red (hottest). The plot of the real part of the

potential (left) shows the linear term flattening as the temperature rises, allowing

the q and q̄ to separate further and increasing the radius of the quarkonium as seen

in Fig. 1.8. The right plot of Fig. 1.10 shows the imaginary part of the potential,

which affects the width of the quarkonium state and correspondingly its lifetime. It

is also related to gluo-dissociation where gluons break up the quarkonium state [9],

leading to another mechanism of quarkonium suppression.

Figure 1.10. Real (left) and imaginary (right) parts of the qq̄ potential in a
QGP medium of various temperatures. [9].

In addition to color screening, quarkonia yields may be influenced by effects

known as regeneration and recombination [46]. This refers to formation of quarko-

nia after the initial hard scattering from qq̄ pairs present in the QGP close enough

in phase space to bind together. These could be uncorrelated q and q̄ produced

thermally in the plasma [47], or they might be from the dissociation of former

quarkonia. This process leads to an enhancement in the quarkonium yield. Statis-

tical recombination is much less significant for Υ than for J/ψ, as there are fewer

bb̄ present in the QGP [48].

1.5.2 Cold nuclear matter effects

Even without the formation of a QGP, the presence of a nucleus in a heavy-ion

collision can influence the yield of quarkonia. Referred to as cold nuclear matter

(CNM) effects, there are several mechanisms by which this can happen.
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The first CNM effect is shadowing and anti-shadowing, which refers to the

modification of parton distribution functions within a nucleus [49]. A parton dis-

tribution function indicates what fraction of a nucleon’s momentum is carried by

each parton within it, as seen for a proton in Fig. 1.11 (left). The proton does

not only consist of three quarks, uud, but also numerous gluons and sea quarks.

The valence uud quarks of the proton are exhibited in Fig. 1.11 by the u and d

curves, where the u PDF is approximately twice as large as the d PDF, and they

both peak at x ≈ 1/3. Meanwhile, the sea quarks and gluons tend to carry small

x. Gluons are extremely dominant at small x, so much that the distribution is

divided by 10 to fit on the plot.

Figure 1.11. Left: Parton distribution function of a proton [10]. The horizontal
axis is the momentum fraction x, and the vertical axis is the value of the distri-
bution function multiplied by x. The u and d are valence quarks, g is the gluon
distribution, and the rest are sea quarks. The gluon distribution is divided by
10 to fit in the plot. Right: Modification of parton distribution functions in a
208Pb nucleus compared to a deuteron.

The right plot of Fig. 1.11 shows an example of modifications to the parton

distribution functions in a 208Pb nucleus relative to those in a deuteron. The effect

at small x, where the ratio is < 1, is called shadowing. At medium x where the

modification is > 1, the effect is called anti-shadowing. The local minimum at

large x is called the EMC effect, named as such because it was first discovered

by the European Muon Collaboration (EMC) [50]. Shadowing is considered an
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“initial-state” effect, as it affects partons from the colliding nucleons before they

hadronize into a new quarkonium.

Two more CNM mechanisms are energy loss by particles travelling though

the nucleus [51] and interactions with comovers [52]. As opposed to shadowing,

comover interaction is a “final-state” effect, while energy loss can be both initial-

and final-state.

1.6 Double quarkonia

In rare cases, multiple quarkonia may be produced in a single collision. Processes

that produce two quarkonia can be categorized into two types: single parton scat-

tering (SPS) and double parton scattering (DPS). In SPS for proton-proton col-

lisions, a single parton from each of the two colliding protons take part in the

process, where those two partons interact to produce two quarkonia. In DPS, two

partons from each colliding proton take part in the process, such that the four par-

tons scatter to produce the two quarkonia in the final state. Figure 1.12 illustrates

these two processes. In heavy ion collisions multiple nucleons may participate from

Figure 1.12. Diagram of SPS (left) and DPS (right) in a proton-proton colli-
sion [11]. In SPS, one parton from each proton interact in a single scattering
process (dark circle) to produce two final-state particles. In DPS, two partons
from each proton interact in two seperate scattering processes that each produce
one final-state particle.

each nucleus, which expands the possibilities for DPS processes. There are three

contributions to DPS in these collisions, illustrated in Fig. 1.13, each with cross

sections that scale differently as described by [53] and briefly summarized below.
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Figure 1.13. Sketch of three different DPS processes in a collision between
two large nuclei containing A nucleons, each resulting in the production of two
quarkonia. Upper: two partons from one nucleon interact with two partons
from another nucleon. Middle: two partons from one nucleon interact with two
partons from two different nucleons. Lower: two partons from two nucleons
interact with two partons from two different nucleons.

In the first case, two partons from one nucleon interact with two partons from

another nucleon, as shown in Fig. 1.13 (upper). The cross section from this inter-

action scales with the A of the colliding nuclei, as

σDPS,1
AA→ab = A2 · σDPS

NN→ab, (1.4)
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where σDPS
NN→ab is the cross section in a nucleon-nucleon collision such as p+ p.

In the second case, two partons from one nucleon interact with two partons

from two different nucleons, as shown in Fig. 1.13 (middle). For central, head-on

collisions of large nuclei in which A − 1 ≈ A, the cross section of this interaction

is approximately

σDPS,2
AA→ab ≈ 2A · σDPS

NN→ab · σeff,pp · TAA (0) , (1.5)

where σeff,pp is a normalization cross section that has been experimentally mea-

sured [54, 55, 56], and TAA (0) is the nuclear overlap function [4, 57] at an impact

parameter of b = 0.

Finally, in the third case, two partons from two nucleons interact with two

partons from two different nucleons, as shown in Fig. 1.13 (lower). The cross

section of this interaction is approximately

σDPS,2
AA→ab ≈

A2

2
· σDPS

NN→ab · σeff,pp · TAA (0) , (1.6)

under the same assumptions as the previous case.

The total DPS cross section can be described using the “pocket formula”

from [53],

σDPS
AA→ab =

m

2

σSPS
NN→a · σSPS

NN→b
σeff,AA

, (1.7)

where the DPS contributions of the three interactions from above are contained in

the normalization factor

σeff,AA =
1

A2
[
σ−1

eff,pp + 2
A
TAA (0) + 1

2
TAA (0)

] . (1.8)

The relative contributions of the three terms in the denominator are 1 : 4 : 200. The

dominant third term, which is present only in collisions of heavy nuclei on heavy

nuclei, represents quarkonia pairs produced by independent nucleon-nucleon inter-

actions and therefore indicates that uncorrelated double-quarkonia would dominate

relative to correlated production in Pb + Pb collisions. The inclusion of the third

term also suggests that DPS may be significantly enhanced in Pb + Pb collisions
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as compared to p+p collisions, potentially leading to a nuclear modification factor

of double quarkonia much greater than unity. This is tempered by the suppression

of quarkonia in heavy-ion collisions, as described in Sec. 1.5, which would reduce

double-quarkonia yields. Neither of these possibilies have yet been tested experi-

mentally, as there have been no measurements of double quarkonia in collisions of

heavy ions. This thesis will serve as a first measurement of simultaneous Υ+J/ψ

production in Pb + Pb collisions.
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Chapter 2

Experimental facilities

2.1 The LHC at CERN

The Large Hadron Collider (LHC), operated by the European Center for Nuclear

Research (CERN), is the world’s largest particle accelerator. Located on the border

of France and Switzerland and buried undergrand at an average depth of 100 m,

it extends into both countries with its 27 km circumference. Figure 2.1 shows an

aerial photo of the LHC and surrounding countryside.

The LHC is a type of accelerator known as a Synchrotron, which directs charged

particles around a circular ring while accelerating them to higher energy. It is ca-

pable of colliding both protons and also heavy ions such as lead at greater energies

than any other collider, in great quantities. The LHC has achieved center-of-mass

collision energies of
√
s = 13.6 TeV for p+ p collisions with an integrated luminos-

ity of 63.7 fb−1, and
√
sNN = 5.02 TeV for Pb + Pb collisions with an integrated

luminosity of 1.6 nb−1. These quantities will be discussed further below in this

section.

Operation of the LHC begins with the particle source, most commonly protons

or lead ions. Protons are ionized from a bottle of hydrogen gas, while lead ions

are extracted from isotropically pure solid lead that is vaporized and ionized. See

Fig. 2.2 for photos of the ion sources. The particles are then sent through the

CERN accelerator complex, a series of sequentially larger accelerators that boost
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Figure 2.1. An aerial photo of the location where the LHC is buried [12]. The
LHC ring is drawn in yellow, and smaller accelerators in the complex are in
blue and red. The dashed white line indicates the border between France and
Switzerland. Also labeled are the two main CERN laboratory sites, as well as
the sites for the four main experiments.

the particles to higher and higher energies. A schematic of the accelerator complex

is shown in Fig. 2.3.

The protons are directed through

• LINAC2, a linear accelerator that accelerates them to 50 MeV;

• the Proton Synchrotron Booster (PSB), which accelerates the protons to

1.4 GeV;

• the Proton Synchrotron (PS), which accelerates them to an energy of 26 GeV;

• the Super Proton Synchrotron (SPS), which accelerates to 450 GeV;

• the LHC, which accelerates the protons to a maximum of 6.5 TeV, or lower

if desired.
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Figure 2.2. Left: Proton source for the LHC [13]. The hydrogen bottle has a
capacity of 750 ml, enough to supply the LHC for 200,000 years [14]. Right:
Block of isotropically pure lead, used as a source of lead ions in the LHC [15].
One block is 2 cm long and 500 mg. The LHC consumes about 2 mg of lead
per hour to produce lead ion beams [16].

Lead ions follow a similar sequence through

• LINAC3, which accelerates them to 4.2 MeV per nucleon;

• the Low Energy Ion Ring (LEIR), which further accelerates the lead ions to

72 MeV per nucleon;

• the Proton Synchrotron (PS), which accelerates them to an energy of 5.9 GeV

per nucleon;

• the Super Proton Synchrotron (SPS), which accelerates to 177 GeV per nu-

cleon;

• the LHC, which accelerates the lead ions to a maximum of 2.51 TeV per

nucleon, or lower if desired.
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Figure 2.3. A schematic of the CERN accelerator complex [17]. The labels on
the individual accelerators show their year of first operation and their length
or circumference in meters. The key accelerators used for producing heavy-ion
collisions are LINAC3, the LEIR, the PS, the SPS, and LHC.

These numbers are for Run 2 of the LHC, which took place from 2015 to 2018.

The accelerator complex has gone through numerous upgrades over time, most

recently during Long Shutdown 2 between 2018 and 2022. For instance, LINAC2

was replaced in 2020 with the new LINAC4 (as seen in Fig. 2.3), which boosts

protons to 160 MeV prior to injection to the PSB, and the maximum proton

energy in the LHC has risen to 6.8 TeV. This and many other upgrades take effect

in Run 3 of the LHC, which began in 2022.

Lead ions have a lower maximum energy than protons due to their charge-

to-mass ratio. The LHC uses 208Pb, with 82 positively-charged protons and 126

neutrally-charged neutrons. Since both nucleons have similar mass but only pro-

tons interact with magnetic fields, this means that the lead ions will only experience

approximately 82/208 ≈ 40% of the acceleration that a proton would. With less
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acceleration to keep them bent in a circular path, the lead ions cannot be raised

to as high an energy as protons. In general, the center-of-mass collision energy per

nucleon pair
√
sNN in a heavy ion collision compared to the collision energy

√
s of

a p+ p collision with the same LHC magnetic field strength is

√
sNN =

√
s

√
Z1Z2

A1A2

, (2.1)

where Z1 and Z2 are the number of protons in each nucleus and A1 and A2 are

the total number of nucleons (protons + neutrons) in each nucleus. During Run 2

the p+ p collision energy of the LHC was
√
s = 13 TeV, so its maximum collision

energy for Pb+Pb would have been (13 TeV) · 82/208 = 5.12 TeV. However, it was

instead decided to lower the collision energy to match the previous p+Pb collision

energy from 2013. The LHC collision energy for p+ p in 2013 was
√
s = 8 TeV, so

the corresponding energy for p+Pb was (8 TeV) ·
√

82/208 = 5.02 TeV. Therefore,

the collision energy for Pb + Pb collisions during Run 2 in 2018 was also 5.02 TeV.

The LHC itself consists two parallel beam pipes that form the 27 km ring.

Around this ring are located 1,232 superconducting dipole magnets, each 15 m

long and weighing 35 tons, which produce strong magnetic fields of up to 8.3 T

to bend charged particles around the ring. The nominal field strength of 8.3 T

corresponds a beam energy of 7 TeV which the LHC was designed to reach, though

it has not yet attained this energy during operation as of this writing. Photos of a

dipole magnet are shown in Figs. 2.4 and 2.5, taken while I was at CERN in 2018.

An additional 474 quadrupole magnets of similar size are used to focus the charged

particles into tight beams. The beams are accelerated by 16 radio-frequency (RF)

cavities, which over a time of approximately 20 minutes gradually ramp up the

beams from their injection energy coming from the SPS to their final maximum

energy. The beams are not uniform, but rather divided into pulses or “bunches”.

For proton beams, these bunches consist of about 1011 protons each, while for lead

ion beams the bunches contain about 108 lead ions. At interaction points where

the opposing beams cross paths, pairs of bunches from the two beams cross every

25 ns.
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Figure 2.4. Photo of UC Davis graduate students and LHC dipole magnet (blue
cylinder) at the magnet test facility at CERN in 2018. From left to right: Ota
Kukral, Santona Tuli, Graham Waegel, and Jared Jay.

There are four interaction points around the LHC ring where the beams cross

to produce collisions. These locations house detectors for the four major collab-

orations at CERN: the Compact Muon Solenoid (CMS) experiment, A Toroidal

LHC ApparatuS (ATLAS), A Large Ion Collider Experiment (ALICE), the Large

Hadron Collider beauty (LHCb) experiment. This thesis uses data gathered by the

CMS experiment in 2018. The CMS detector will be described in further detail

below in Sec. 2.2.

The ability of the accelerator to produce particle interactions is characterized

by the quantity L, called luminosity [58]. This quantity is defined as the proportion

between the rate of collisions dN/dt (written as dR/dt in Ref. [58]) and the cross

section σ of the interaction,
dN

dt
= L · σ, (2.2)

which therefore gives luminosity the units of cm−2s−1. An especially useful quantity
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Figure 2.5. Photo of LHC dipole magnet at the magnet test facility at CERN in
2018, viewed from one end. The two capped pipes in the center are the parallel
beam pipes through which the particles travel.

for characterizing datasets is the integrated luminosity Lint, defined as the integral

of luminosity over time

Lint =

∫ t2

t1

L (t) dt, (2.3)

where the interval of integration is over the times at which collision data is taken.

The integrated luminosity is typically expressed in units of nb−1, where the “barn”

is defined as

1b = 10−24cm2. (2.4)

This integrated quantity can be used to calculate the total number of occurances

of a particular interaction. For instance, the total number of p+ p collisions N in

a dataset would be

Npp = Lint · σinel
pp , (2.5)

where σinel
pp is the total inelastic p+ p cross section. Note that not every proton in

a bunch crossing collides; the protons are so small relative to the beam width that
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only a small fraction interact, and the majority pass through unaffected.

Along with the integrated luminosity, another important characteristic of datasets

collected by the LHC is the collision energy. For p+ p collisions this is denoted by
√
s, the center-of-mass collision energy, while for Pb + Pb collisions it is denoted

as
√
sNN , the center-of-mass collision energy per nucleon-nucleon interaction.

The dataset analyzed in this thesis is of Pb+Pb collisions at
√
sNN = 5.02 TeV,

and has an integrated luminosity of 1.6 nb−1. Using a glauber model to estimate

the Pb + Pb hadronic cross section as σPbPb = 7 b, we can then calculate

NPbPb = Lint · σPbPb = 1.6nb−1 · 7b = 1.1× 1010. (2.6)

The total number of Pb + Pb collisions in this dataset is approximately 1.1× 1010.

2.2 The CMS detector

The Compact Muon Solenoid (CMS) detector is one of the detectors operated

at CERN, located at Point 5 of the LHC near Cessy, France, in a cavern 100 m

underground. A photograph of the detector is shown in Fig. 2.6. It is a large

general-purpose detector, 28.7 m long and 15 m tall and with a mass of 14,000

metric tons. The name of the detector comes from three sources: it is very dense

and compact, despite its size; it is designed to measure muons with great precision;

and it features the most powerful solenoid magnet for its size ever made.

The CMS detector is built in a cylindrical shape, with many components lay-

ered inside each other to measure different aspects of the collisions that occur at the

center. Figure 2.7 shows a cutaway diagram of the detector and its various com-

ponents, and Fig. 2.8 illustrates paths that different particles could take through a

cross section of the detector. Starting from the collision point at the center of the

detector (left side of the Fig. 2.8), the particles first pass through the inner tracker,

which records tracks of charged particles positions as they pass through. Next they

reach the electromagnetic calorimeter (ECAL), where the electron (red line) and

photon (dashed blue line) stop and produce showers, which can be detected by

the calorimeter to measure their energy. The hadron (green line) keeps going to
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Figure 2.6. Photo of a cross section of the CMS detector [18].

the hadronic calorimeter (HCAL), where it similarly is stopped and produces a

shower. Finally, the muon (light blue line) passes through all these components.

The curvature inverts after passing through the solenoid, as the direction of the

magnetic field is reversed. Muons are the only charged particles to reach and pass

through the muon detectors. Neutrinos (not pictured) also pass through the entire

detector.

The following sections will introduce the coordinate system commonly used for

measurements with the CMS detector, and further describe the components of the

detector. A complete description of the CMS detector can be found in Ref. [22].

2.2.1 Coordinate system

Due to the cylindrical geometry of the CMS detector, it naturally follows that

cylindrical coordinates are the most convenient method of representing spatial

positions of particles, tracks, or other objects in the detector. These cylindrical

coordinates are the transverse distance r from the beam line, the azimuthal angle

φ, and the distance z from the interaction point parallel to the beam axis.
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Figure 2.7. Diagram of the CMS detector [19], with a cutaway to show the
internal components. Key components for this thesis are highlighted in red
boxes: the silicon trackers, muon chambers, and solenoid.

Particles in the detector are very commonly characterized by their momentum,

which is represented by a different special coordinate system. The transverse

momentum pT is the component of momentum along the plane transverse to the

beam axis, and φ is the azimuthal angle of the momentum vector in the transverse

plane.

The third component, for the longitudinal direction, can be represented several

ways. The most direct is θ, which is the angle from between the momentum vector

and the positive direction of the beam axis. However, for relativistic particles

a different representation is more convenient. Longitudinal momentum is often

expressed using a quantity known as rapidity. The rapidity y of a particle is

defined as

y =
1

2
ln
E + pzc

E − pzc
, (2.7)

where E is the total energy of the particle, pz is the longitudinal momentum (par-

allel to the beam line), and c is the speed of light. For particles with small momen-
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Figure 2.8. Diagram of CMS detector cross section. [20]. From the inside
out: all particles pass through the silicon tracker; the electron (red line) and
photon (dashed blue line) stop and produce showers in the electromagnetic
calorimeter; the charged and neutral hadrons (solid and dashed green lines)
stops and produce showers in the hadronic calorimeter, and the muon (light
blue line) travels all the way out to and through the muon detectors.

tum, the rapidity is approximately equal to β (velocity divided by c). Rapidity is a

useful measure for relativistic particles because it is additive under Lorentz boosts.

However, rapidity does not directly correspond to the spatial dimensions of the de-

tector. We instead look to a similarly defined quantity η, called pseudorapidity,

which is defined as

η =
1

2
ln
|p|+ pzc

|p| − pzc
= −ln

(
tan

(
θ

2

))
. (2.8)

This quantity η is directly related to the geometric angle θ, as illustrated in Fig. 2.9.

Being purely geometric also makes η particularly useful for describing unidentified

particles, as it does not depend on the particle’s mass. Pseudorapidity and rapidity

are very similar for high momentum particles, and in the limit |p| � mc they

become identical. Because of this, the pseudorapidity η is the most commonly

used coordinate to represent the longitudinal component of momentum for particles
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inside the CMS detector. In total, the conversion of the 3-momentum of a particle

between Cartesian coordinates and the detector coordinates pT , φ, and η is

px = pT cos φ,

py = pT sin φ,

pz = pT sinh η.

(2.9)

θ = 45°

θ = 90°

θ = 0°

θ = 30°

θ = 60°

𝜂 = ∞

𝜂 = 0
𝜂 = 0.55

𝜂 = 0.88

𝜂 = 1.32

𝜂 = 2.03

θ = 15°

Figure 2.9. Examples of the relation between pseudorapidity η and the angle
θ from the beam axis. The angle θ = 0 is parallel to the beam axis, corre-
sponding to η = ∞, and the angle θ = 90◦ is perpendicular to the beam axis,
corresponding to η = 0.

2.2.2 Solenoid magnet

The superconducting solenoid is the central feature of the CMS detector. At 12.5 m

long, an internal diameter of 6.3 m, and 12,000 tons, it is the largest and most

powerful superconducting magnet ever built. It is capable of producing a magnetic

field of up to 4.0 T, though typically it is operated 3.8 T. To accomplish this, the

solenoid is built with 4 winding layers of niobium-titantium conductor reinforced

with aluminum alloy. The magnet is cryogenically cooled to a temperature of 4.5 K

for superconductivity, permitting a current of 18,500 amps through the coils. In

addition to the solenoid magnet itself, The CMS detector incorporates an iron

return yoke with an outer diameter of 14 m. This yoke helps maintain a strong
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and uniform field outside the solenoid, which aids in detection of muons in the outer

region. The iron yoke itself weighs 10,000 tons, which comprises the majority of

the weight of the solenoid system and the CMS detector as as whole.

The purpose of the strong magnetic field is to bend the trajectories of parti-

cles, which aids in momentum measurement, tracking, and particle identification.

Charged particles traveling in a uniform magnetic field are bent in a circular path

within a plane perpendicular to the field. The radius R of this curved path is

R =
pT
qB

(2.10)

where pT is the momentum of the particle in the transverse plane, q is the charge

of the particle, and B is the strength of the magnetic field. Thus, by knowing

the strength of the field and the charge of the particle, and measuring the radius

of the particle’s curved path, the transverse momentum pT of the particle can be

determined. This measurement also relies on good tracking systems to precisely

measure the particle’s location along its path.

2.2.3 Silicon tracker

The silicon tracker is the innermost component of the CMS detector, located closest

to the interaction point, as seen in Figs. 2.7 and 2.8. The purpose of this component

is to record the precise positions of particles emitted by the collisions in 3D space.

By combining multiple points recorded from a single particle, the particle’s track

through the detector can be reconstructed. In combination with the solenoid, which

causes particles to follow curved trajectories, this allows for precise momentum

measurements as described in the previous section.

The silicon detectors operate using ionization. Charged particles passing through

excite electrons in the silicon, which leave a positively-charged hole behind. An

electric field applied through the detector causes these electron-hole pairs to move

towards the positive and negative electrodes respecively, thereby generating a small

electric current. This current can be read as an electronic signal, thereby register-

ing the passage of the charged particle.
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The tracker is made of multiple layers, allowing it to record the location of

a particle several times as it passes through. The three innermost layers are the

silion pixel detectors, which have the greatest precision. They contain 65 million

pixels in total, each with dimensions 100 µm × 150 µm. Outside these are the

silicon strip detectors, beginning with four inner barrel (TIB) layers assembled in

shells. These are capped by two inner endcaps (TID), each composed of three

small disks. On the outside of the TIB and TID are six more layers of the outer

barrel (TOB), which itself has two endcaps (TEC). See Fig 2.10 for a schematic of

the silicon detector layers. The coverage of the tracking system extends over the

pseudorapidity range |η| < 2.5.

Due to intense radiation in the innermost region of the detector, the tracking

system and associated electronics are cooled to -20 ◦C. This minimizes disorder in

the silicon and prevents spreading of any damage caused by the radiation.

Figure 2.10. Schematic of one quadrant of the CMS silicon tracker system [21].
The lower left corner of the figure is the collision point at the center of the
detector. The x axis represents longitudinal distance along the beamline, and
the y axis represents radial distance from the beam. Pseudorapidity values are
displayed at the top and right of the figure. The pixel tracker and all parts of
the strip tracker are seen: the inner barrel (TIB), the inner endcap (TID), the
outer barrel (TOB) and the outer endcap (TEC). Components marked A and
B are alignment tubes and beam splitters for a laser alignment system used to
calibrate the position of the detector.
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2.2.4 Calorimeters

In addition to tracking, it is also important that the CMS detector is able to

measure the energy of particles produced in collisions. To do this, the detector

contains two different calorimeters: the electromagnetic calorimeter (ECAL) for

measuring electrons and photons, and the hadronic calorimeter (HCAL) for mea-

suring hadrons. These calorimeters must be very dense in order to stop particles

completely while being compact enough to fit inside the solenoid.

The ECAL consists of lead-tungstate (PbWO4) crystals with attached pho-

todetectors. Each crystal is 230 mm long, with a cross section of 22 × 22 mm2

at the front face and 26 × 26 mm2 at the rear face. The crystals act as a scin-

tillator, a material that absorbs energy from ionizing particles and emits light in

response. High-energy electrons or photons that enter the crystal produce “show-

ers” via Bremsstrahlung radiation and pair-production: the high-energy electrons

undergoing Bremsstrahlung produce high-energy photons, which then pair produce

electrons and positron, which radiate further, and so on. Lead tungstate was cho-

sen for its high Z in order to maximize cross sections for the showering processes,

and also for its fast scintillation rate in order to keep up with the LHC’s very fast

collision rate. The photodetectors serve to measure the photons resulting from the

showers and therefore the energy from the original particle. Figure 2.11 shows a

PbWO4 crystal with attached photodetector (left), and a module of 1700 of these

crystals (right).

The ECAL is made of a barrel section and two endcaps. The barrel covers the

pseudorapidity range |η| < 1.479, using 61,200 PbWO4 crystals that weigh a total

of 67 tons. The endcaps cover the range 1.479 < |η| < 3.0 using a total of 7324

crystals, weighing 24 tons.

The HCAL lies between the ECAL and the solenoid. The purpose of this

calorimeter is to measure the energy of hadrons, which requires stopping them

completely before they penetrate all the way through. With the limited space

inside the solenoid, this means the HCAL must be made from a very dense, high-
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Figure 2.11. Left: Photo of polished PbWO4 crystal with attached photodetec-
tor. Right: ECAL module containing 1700 crystals [22].

A material to maximize nuclear interactions with outgoing hadrons. The material

selected for this was brass, an alloy of 70% copper (average A = 63.6) and 30%

zinc (average A = 65.5). A large portion of this brass was collected from over a

million World War 2 cartridge shells from the Russian navy. Layers of this brass

absorber are alternated with layers of plastic scintillator. Hadrons interact with

the nuclei in the brass absorber to create showers of secondary particles, which

then produce light in the scintillator. The light is collected by wavelength-shifting

fibers and brought to photodiodes for signal processing.

A schematic of the HCAL is shown in Fig. 2.12. This calorimeter is divided

into four major parts. First, the barrel (HB) is made from 36 azimuthal wedges

of brass absorber plates and scintillator, weighing 26 tons each, and covers the

pseudorapidity range |η| < 1.3. The HB alone cannot fully stop all hadrons in

the range it covers, so several more layers are placed outside the solenoid to form

the outer calorimeter (HO). Two endcaps (HE), made of another 36 wedges, cover

the range 1.3 < |η| < 3.0. Finally, two forward calorimeters (HF) extend the

pseudorapidity range to |η| < 5.2.

The HF calorimeters are designed differently than the other parts of the HCAL.

Their location at very large pseudorapidity experiences much higher particle flux,

so this calorimeter must be more resistant to radiation. Therefore, it is instead

built from grooved steel absorber plates, with quartz fibers running through the
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grooves to carry the signal for readout. The HF calorimeters are used for the

minimum-bias trigger for heavy-ion collisions, and to define the centrality of the

collisions.

Figure 2.12. Schematic of one quadrant of the CMS hadronic calorimeter [23].
The blue dot in the lower right is the collision point at the center of the detector.
The x axis represents longitudinal distance along the beam line, and the y
axis represents radial distance from the beam (not labeled). All four parts
of the HCAL are shown: the barrel (HB), the the endcap (HE), the forward
calorimeter (HF) located farther down the beam line, and the outer calorimeter
(HO) located outside the solenoid magnet. The HB is located between the radii
of 1.78 m and 2.88 m around the beam line.

2.2.5 Muon system

The muon detectors are the outermost components of the CMS detector and the

only components other than the yoke that lie outside the solenoid. These detectors

are solely for the detection of muons, which is ensured because muons are the

only charged particle that can reach them. All other particles are stopped in the

calorimeters: electrons and photons are stopped in the ECAL, while hadrons are

stopped in the HCAL. Muons are similar to electrons, but with 200 times the mass

they pass through the ECAL and all other components with little energy loss,

allowing them to reach all the way out to the muon chambers.

There are three types of muon detectors arranged in different regions. The
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barrel region contains 250 drift tube (DT) chambers that cover the pseudorapidity

range |η| < 1.2, and the endcaps contain 540 cathode strip chambers (CSCs)

covering the range 0.9 < |η| < 2.4. In addition, 610 resistive plate chambers

(RPCs) are located in both the barrel and endcap regions, interspersed between

DT and CSC layers respectively, covering a total pseudorapidity range of |η| < 1.6.

The layout of the muon system is illustrated in Fig. 2.13.

Figure 2.13. Diagram of the muon system layout in one quadrant of the CMS
detector [24] with DTs are highlighted in yellow, CSCs in green, and RPCs in
blue. The interaction point where collisions occur is in the lower left corner of
the figure. The x axis represents longitudianal distance along the beamline, and
the y axis represents radial distance from the beam. The angle θ from the beam
and equivalent η are displayed at the top and right of the figure.

Drift tubes are rectangular tubes of CO2 and Ar gas, with a straight wire

running through it that acts as an anode. When a muon passes through the tube,

it ionizes the gas and creates free electrons that drift toward the positively charged

anode wire due to the electric field it creates. Upon reaching the wire, the electrons

produce a readable electric signal. Because the drift velocity is constant, the signal

from the electrons reaching the wire can be timed to determine the location where

the muon crossed the chamber. See Fig. 2.14 for an illustration of a DT. Each DT
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chamber consists of two or three superlayers, each with four layers of DTs. The

middle superlayer is oriented to measure the position coordinate of muons along

the beam axis and the other superlayers measure the coordinate perpendicular to

the beam axis. Combined, the DT chamber can record a three-dimensional track

of passing muons. Figure 2.15 shows a diagram of these layers. Four concentric

rings of these chambers form the four DT stations of the barrel, with 60 chambers

in each of the three inner stations and 70 in the outermost station. A transverse

cross section of the barrel is shown in Fig. 2.16.

Figure 2.14. Diagram of a drift tube [22], illustrating a muon passing through
(red arrow) and inducing a signal.

Figure 2.15. Diagram of a DT chamber [25]. There are three superlayers of four
layers each, with the middle superlayer oriented perpendicularly to the outer
two.
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Figure 2.16. Transverse cross section of the DT barrel region [22]. The four
concentric DT stations are highlighted in blue.

Cathode strip chambers contain arrays of positively charged anode wires crossed

with negatively charged cathode wires within a volume of gas. The gas in these

chambers is a mixture of Ar, CO2, and CF4. When muons pass through the

chamber, they ionize the gas. The free electrons travel to the anode wires, while

the ionized gas atoms travel to the cathode wires, each causing an electrical signal

when they arrive. Because the two types of wires are oriented perpendicularly,

this provides two-dimensional coordinates to determine where the muon crossed

the chamber. Each CSC has 7 trapezoidal panels with 6 gas-filled gaps between

them, as shown in Fig. 2.17. Each station consists of either 36 or 72 of these
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chambers that form a complete azimuthal ring around the beamline. Figure 2.18

shows a photo of a complete CSC endcap.

Figure 2.17. Diagram of CSC [22] showing the trapezoidal panels, anode wires,
and cathode strips.

Resistive plate chambers are a third type of gaseous detector. They consist

of two parallel plates, one of them a positively charged anode and the other a

negatively charged cathode. The plates are made of a high-resistivity plastic and

are separated by a thin volume of gas. Muons passing through the chamber ionize

the gas, then the free electrons travel to the anode plate and the ionized gas atoms

travel to the cathode plate, leading to an electrical signal readout. A diagram of the

layout of an RPC is shown in Fig. 2.19. The RPCs have coarser spatial resolution

than the DTs and CSCs, but good time resolution and very fast responses on the

order of a nanosecond. They are designed for these fast responses times in order

to act as a basis for the muon triggers.

Similar to the inner tracker, repeated hits from muons passing through multi-

ple layers in the muon detectors allow the track of the muon to be resconstructed.

The magnetic field from the solenoid is approximately 2 T in the region of the

muon detectors, which will cause the reconstructed track to bend (though in
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Figure 2.18. Photo of CSC endcap. [22].

Figure 2.19. Diagram of resistive plate chamber [26].

the opposite direction as inside the solenoid, due to the direction of the field).

This allows the momentum of the muon to be measured, though with worse res-

olution compared to that of the more precise inner tracking system. Therefore,

tracks reconstructed in the muon detector are matched with tracks reconstructed

in the inner tracker, combining the inner tracker’s precision with the positive muon

identification of the muon detectors. It is this combination of the muon system,

silicon trackers, and solenoid that allows the CMS detector to measure muons
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with greater precision than any other experiment. For example, the measured

width of the Υ(1S) resonance is ∼70 MeV, for a mass resolution of approximately

70 MeV / 9.4 GeV ≈ 0.7% at the Υ mass.

Figure 2.20 shows an event display of an Υ candidate that decayed to two

muons. The red lines are the reconstructed muon tracks and the red wireframes

represent the muon chambers that registered hits used to reconstruct the muon

tracks. The yellow lines are other tracks registered by the silicon tracker in the

same event and the green squares represent energy deposited in the calorimeters.

This event is the first Υ candidate seen in the 2018 Pb + Pb dataset, selected by

me while on-site at CERN monitoring event displays of the incoming data stream.

Figure 2.20. Event display of an Υ decay candidate in the CMS detector. [27].
The red lines are the reconstructed muon tracks, and the red wireframes are
the muon chambers that registered muon tracks. The yellow lines are other
tracks registered by the silicon tracker in the same event, and the green squares
represent energy deposits in the calorimeters. Event selected by me during 2018
Pb + Pb data taking at CERN.

2.2.6 Trigger system

The quantity of data collected by the CMS detector is far too great to store in

its entirety. Raw collision data is on the order of 1 MB of digital storage per

collision event, and with bunch crossings occuring at a rate of 40 Mhz the amount

of storage required would quickly become untenable. Therefore, a trigger system
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is used to rapidly analyze incoming data and save only events of specific interest,

immediately discarding the rest.

The trigger system consists of two tiers [59]. The first tier, known as the L1

trigger, is a fast hardware trigger using custom processor chips to decide within

4 µs whether to accept or reject each event. Figure 2.21 shows a diagram of

the L1 trigger system. Data from the ECAL and HCAL are combined in the

regional calorimeter trigger, then sent to the global calorimeter trigger and then

the global trigger. For instance, the minimum-bias trigger for heavy-ions requires

simultaneous energy deposits of at least 3 GeVon both sides of the HF calorimeter.

Meanwhile, muon candidates are selected using tracks calculated from DT, CSC,

and RPC data. The global muon trigger chooses the best 4 muons and sends them

to the global trigger. Finally, the global trigger evaluates the muon candidates and

calorimeter data based on a menu of algorithms or “trigger paths”. Any muons

satisfying the requirements of a trigger path are forwarded to the next tier of the

trigger system.

The second tier of the trigger system is the high-level trigger (HLT), run on a

farm of approximately 30,000 standard computer processors as of 2018. While the

L1 has access to only coarse data from the calorimeters and muon detectors, and

none from the silicon tracker, the HLT runs a version of the full event reconstruction

software. The HLT computes “HLT paths”, algorithms similar to the trigger paths

used in the L1 trigger. HLT paths are much more complex, including sequences

of reconstruction algorithms to reconstruct objects from detector data, and filters

to apply selections on those objects and data. These paths become increasingly

sophisticated as they progress, and are cut off at any point of failure to save

processing time. Any event that passes a complete HLT path is sent for permanent

storage.

Muon algorithms in the HLT are composed of two steps: level-2 (L2), which

uses information from the muon detectors only, and level-3 (L3) which also com-

bines measurements from the silicon tracker. In the L2 stage, muon tracks are
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reconstructed from hits in the DT and CSC segments using a Kalman filter tech-

nique [60]. Various filters are applied to the reconstructed L2 muons, most com-

monly on their pT or the number muon chamber hits used for reconstruction.

The L3 stage leverages the precision of the CMS silicon tracker for improved

resolution. Full reconstruction is not performed due to time and processing con-

straints; instead, tracks are seeded by muon candidates from the L2 stage. Simple

reconstruction algorithms are run first, progressing to more complicated ones only

if the initial algorithms fail to reconstruct. Energy deposits from the ECAL and

HCAL are also examined in a cone around the L3 candidate to isolate the muon.

After successful reconstuction, the L3 muons are then filtered according to various

criteria, most commonly their pT , their track goodness-of-fit (χ2), or their impact

parameter. Some HLT paths may require multiple reconstructed muons in a single

event.

Finally, any event that passes the full trigger process, from L1 through HLT,

is sent for permanent storage. Information on which trigger paths were satisfied is

included for each event. The specific trigger used for this thesis will be discussed

in Sec. 3.3.
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Figure 2.21. Diagram of the L1 trigger system of CMS. [28]. Data from the
ECAL and HCAL are combined in the regional calorimeter trigger, then sent
to the global calorimeter trigger and then the global trigger. The global muon
trigger selects muon candidates using data from the DTs, CSCs, and RPCs.
The global trigger combines the calorimeter and muon triggers and uses a menu
of trigger paths to decide whether to accept or reject the event. For heavy ions,
the minimum-bias trigger is based on the HF calorimeter.
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Chapter 3

Data selection and simulated

samples

Figure 3.1. Event display of an Υ+J/ψ double-quarkonia candidate. The yellow
and orange lines represent tracks in the inner tracker. The green blocks represent
energy deposited in the calorimeter, with a segment removed from this display
for visibility. The large transparent segments are the muon detectors. The
muons from the Υ candidate are highlighted in purple and the muons from the
J/ψ candidate are highlighted in blue, with a more noticeable curvature due to
their lower pT . Figure produced by me using Fireworks software [29].

3.1 Dataset

This analysis uses data from Pb + Pb collisions at an energy of
√
sNN = 5.02 TeV

collected by CMS at the LHC in November and December of 2018. The quantity
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of data recorded corresponds to an integrated luminosity of 1.6 nb−1.

Collision data at CMS is stored in multiple tiers. The first tier is named RAW,

and contains the detector data and trigger results. Reconstruction algorithms then

process this information to produce candidates for physics objects such as muons.

This, along with a subset of RAW data, is stored in another data tier named

RECO. Finally, there is the Analysis Object Data (AOD) tier that is a subset of

RECO easily accessible for direct use by analyses, containing high-level objects

and summaries of RECO data [61]. The AOD dataset used in this thesis is shown

in Table 3.1

Table 3.1. Dataset for Pb + Pb 2018 5.02 TeV collisions.

Type Dataset

Double Muon /HIDoubleMuon/HIRun2018A-04Apr2019-v1/AOD

For quarkonia analyses, a further step is taken to process the AOD data into

a compact and more easily readable “Onia” tree format, named for “quark-onia”.

These trees are named as such because they are made to contain information on

reconstructed muons and dimuons, triggers, and other global event information

most relevant to studies of quarkonia. The Onia trees used in this analysis are

stored in the following location at CERN’s Open Storage (EOS) service:

/eos/cms/store/group/phys heavyions/dileptons/Data2018/PbPb502TeV/

TTrees/ReReco/AOD/DoubleMuon/ReReco Oniatree addvn part*.root

These ‘DoubleMuon’ Onia trees are typically used for quarkonia and B meson

analyses. Specific selections made on this dataset for this thesis are described in

Sec 3.3.

3.2 Monte Carlo

Monte Carlo (MC) simulations are used to estimate the performance of the detec-

tor. The detector can fail to record particles for several reasons, including phys-

ical coverage, unsuccessful track reconstruction, and others, described further in
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Sec 4.2. The fraction of particles produced in a collision that the detector does not

record can be estimated by simulating both the collision events and the detector

response.

This analysis uses two MC samples officially produced by CMS, one for Υ

and one for prompt J/ψ. Both samples consist of their respective bottomonia

or charmonia events simulated in pythia8.212 Tune CP5 [62], which are then

embedded into simulated Pb + Pb backgrounds generated by HYDJET1.9, tune

Drum5F [63]. The CMS detector response is simulated using GEANT4 [64],

and the full sequence of triggers and reconstruction algorithms is run over these

simulated events. The completed samples are stored in a format named AODSIM,

or Analysis Object Data Simulation. This format is equivalent to the AOD format

used for real data. The samples used in this thesis are shown in Table 3.2. There

are two samples for Υ which are added together for a greater total sample size.

Table 3.2. Monte Carlo samples for Pb + Pb 2018 5.02 TeV collisions.

Process Sample

Upsilon
/Upsilon1S pThat-2 TuneCP5 HydjetDrumMB 5p02TeV Pythia8/

HINPbPbAutumn18DR-mva98 103X upgrade2018 realistic HI v11 ext1-v1/AODSIM

Upsilon
/Upsilon1S pThat-2 TuneCP5 HydjetDrumMB 5p02TeV Pythia8/

HINPbPbAutumn18DR-mva98 103X upgrade2018 realistic HI v11-v1/AODSIM

J/ψ
/JPsi pThat-2 TuneCP5 HydjetDrumMB 5p02TeV Pythia8/

HINPbPbAutumn18DR-mva98 103X upgrade2018 realistic HI v11-v1/AODSIM

3.3 Selections

Muon candidates are selected according to particular criteria. The first important

selection is the trigger, which is used both to help identify Υ candidates and to

dintiguish between Υ and J/ψ candidates. The invariant mass distributions for

three triggers relevant to quarkonia are shown in Fig 3.2 [30]. They are

• HLT HIL1DoubleMuOpen v1 (inclusive double-muon trigger),

• HLT HIL3Mu0NHitQ10 L2Mu0 MAXdR3p5 M1to5 v1 (J/ψ-region trigger),
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• HLT HIL3Mu2p5NHitQ10 L2Mu2 M7toinf v1 (Υ-region trigger).

From Fig 3.2 we can already see the resonance peaks for the J/ψ, the Υ, and the Z

boson in the invariant-mass distributions of all three triggers. Two of these triggers

feature mass gates to focus on regions surrounding particular resonances. Event

counts for these triggers drop rapidly outside these respective regions, although

notably not to zero: The Υ-region trigger still contains events at masses lower

than its threshold. This will be discussed later in Sec. 3.4.1. We may also note

from the figure that all three triggers have comparable event counts, despite the

inclusive double-muon trigger being more permissive and therefore much higher

frequency. This is because some triggers have ‘prescales’ that are used reduce the

amount of data to a manageable level by discarding events periodically: e.g., a

trigger with a prescale of 3 would discard two out of every three events. Here,

the inclusive double-muon trigger has a large prescale so that the event count is

comparable to the others.

For this analysis we choose to use the Υ-region trigger, which is notably gated

to high mass. This trigger requires one muon from the pair to individually pass

a level-2 (L2) trigger and the other muon to pass a level-3 (L3) trigger, and then

requires this L2-L3 pair to have an invariant mass of at least 7 GeV. The L2

muons are reconstructed from track fits in the outer muon spectrometer and have

a minimum pT threshold of 2 GeV. The L3 muons also require at least 10 high-

quality hits in the inner tracker, and have a minimum pT threshold of 2.5 GeV.

The full invariant-mass spectrum of all dimuons in the Υ-region trigger is shown in

yellow on Fig 3.2 [30]. For the purpose of this double-dimuon analysis we consider

dimuons that pass this trigger to be Υ candidates and those that do not to be

potential J/ψ candidates.

Next there are acceptance cuts corresponding to the geometrical limitations of

the CMS detector. As noted in Sec.[TODO: Detector chapter], the geometrical

coverage for muons in the CMS detector extends to a pseudorapidity of 2.4 in both

directions, so we have only muons within the range |ηµ| < 2.4. There is also a
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Figure 3.2. Invariant mass distributions of dimuons in Pb + Pb 2018 data for
various triggers: The Υ-region trigger (yellow) the J/ψ-region trigger (red), and
the inclusive double-muon trigger (blue) [30].

minimum transverse momentum necessary for muons to be detected, or else they

will only spiral inside the detector without reaching the barrel. We apply two

different pT cuts: for muons that are reconstructed as arising from decay of Υ

candidates, we apply a flat cut at pµT > 3.5 GeV, visible in Fig. 3.3 (left) as the

red line. Muons from J/ψ candidate decays are instead required to be within the

acceptance region given in Ref. [31] for untriggered muons, also defined below in

Sec. 4.2. This cut is displayed as the green line in Fig. 3.3 (right). This analysis

uses a single integrated analysis bin of pµµT < 30 GeV and |yµµ| < 2.4, within which

all dimuons are required to fall.

Muons are also subject to several additional selections in order to identify them
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Figure 3.3. Plots of single muons from simulations of quarkonium decays. The
horizontal and vertical axes on both plots represent the η and pT of the muons,
respectively. Left: Transverse momentum and |η| of single muons from MC
simulated Υ decays, with the acceptance cut shown as the red line. Color from
blue to yellow indicates muon count. Right: Single muon acceptance×efficiency
from MC simulated J/ψ decays [31]. The acceptance cut for 2018 Pb + Pb
data is displayed as the green line, located below the black line. The black line
represents older acceptance cuts used for 2015 Pb+Pb data. Color from blue to
red indicates the ratio of reconstructed muons passing acceptance and efficiency
selections divided by the generated muons, where a value of 1 means they agree
perfectly.

with higher confidence. This analysis uses a set of cuts called HybridSoft. There

exist other sets of muon identification cuts used by CMS: The strictest set of

cuts, called Tight Muon ID, and the loosest, called Soft Muon ID. HybridSoft falls

between these two, providing good background rejection without sacrificing too

much efficiency. The HybridSoft cuts require

• at least 6 valid hits in the silicon strip layers,

• at least one valid hit in the silicon pixel detectors,

• that the distance of closest approach between the muon and the event vertex

must be less than 20 cm in the longitudinal (z-axis) direction and less than

0.3 cm in the transverse plane,

• that the muon is reconstructed as both a ‘tracker muon’ and a ‘global muon’.

A tracker muon is a muon that is reconstructed “inside-out”, first in the
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silicon tracker and then matched to the muon detectors; while a global muon

is reconstructed “outside-in”, first in the muon detectors and then matched to

the silicon tracker. A muon that is reconstructed only in the muon detectors

and not the tracker is called a stand-alone muon.

In addition to the HybridSoft muon ID cuts above, we also require additional

cuts on the dimuon candidates. As we are looking for muons from quarkonium

decays, we require that the muons in a pair have opposite charges, and also that

the probability they share a common vertex is greater than 1%.

3.4 Double dimuons

Because the goal of this analysis is to measure double-quarkonia production, we

want to find and consider independent pairs of dimuons. To this end, we select

only collision events containing at least four muons (two positive and two negative)

that pass the muon selections described above. For each collision event satisfying

this, all dimuons surviving the selections are arranged into pairs of every possible

combination. Any dimuon pair that shares one or more muons between them is

discarded, as it could not possibly be from two separate quarkonium decays. These

steps leave us with a dataset of only independent dimuon pairs, as desired. Then,

in addition, we require that at least one dimuon in the pair satisfies the mass-gated

trigger; that is, that there is at least one Υ candidate in the pair. If both dimuons

satisfy the trigger, then the dimuon with greater invariant mass is chosen as the

Υ candidate and the dimuon with the lesser mass as the J/ψ candidate.

Examples of various dimuon combinations and how they are added or excluded

are shown in Fig 3.4 for events with two positive muons (blue circles) and two

negative muons (red circles) that pass selections. The lines connecting the muons,

labeled 1 through 4, represent opposite-sign dimuons that satisfy the vertex proba-

bility selection. Purple lines indicate dimuons that pass the mass-gated trigger and

green lines indicate dimuons that do not pass the trigger. The “pairs added” cells

show which dimuon pairs in each case satisfy all requirements and would be added
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to the final dataset. The color of these cells indicate which dimuon is categorized

as a Υ candidate, denoted by m1, and which is categorized as a J/ψ candidate,

denoted by m2. The cells are grey when both dimuons pass the trigger; as noted

above, they are categorized by mass in this case.
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Figure 3.4. Examples of dimuon pair combinations for events with two posi-
tive muons (blue circles) and two negative muons (red circles) that pass selec-
tions. The lines connecting the muons, labeled 1 through 4, represent opposite-
sign dimuons that satisfy the vertex probability selection. Purple lines indicate
dimuons that pass the mass-gated trigger and green lines indicate dimuons that
do not pass the trigger. The “pairs added” cells show which dimuon pairs in
each case satisfy all requirements and would be added to the final dataset, with
the color indicating which dimuon is sorted into the m1 category (purple) and
which is sorted into the m2 category (green). Grey-colored cells denote that the
dimuons of that pair will be sorted into the m1 and m2 categories according to
their mass.

After all these selections are complete, the invariant mass distributions of the

two categories are shown in Fig. 3.5. We can see that the effect of the mass

threshold at 7 GeV in the trigger is visible, but that some low-mass dimuons also

do pass the trigger and some high-mass dimuons do not. There is no visible Υ peak

in the not-triggered dimuons (green), suggesting that all Υ candidates are being

captured by the trigger as desired. Moreover, since pairs in which both dimuons

pass the trigger have the lower-mass dimuon sorted into the not-triggered category,

the lack of an Υ peak here also means that we do not see any sign of Υ+Υ pairs in
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Figure 3.5. Invariant mass distribution of paired dimuons. The dimuon in the
pair that passed the trigger (Υ candidate) is in purple, and the dimuon in the
pair that did not pass the trigger (J/ψ candidate) is in green. If both dimuons
in a pair passed the trigger, the higher mass dimuon is purple and the lower
mass dimuon is green.

this data. However, among the triggered dimuons (purple) we do see a visible J/ψ

resonance. We hypothesize this is due to the construction of the Onia tree used in

this analysis and not an issue with the trigger itself, which we will describe in more

detail below in Sec. 3.4.1. The extraneous dimuons should not have a significant

effect on this analysis.

The paired dimuon invariant masses are next arranged into a two-dimensional

dataset, with the masses of Υ candidates, m1, on one axis and the masses of J/ψ

candidates, m2, on the other axis, as displayed in Fig. 3.6. Our region of interest

is the lower-right quadrant, where we can see a peak at the expected locations of

the dual Υ and J/ψ mass resonances. We will select the range 6–14 GeV and 2–

4 GeV respectively on the triggered and not-triggered axes for the signal extraction

process described next in Section 4.1.
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Figure 3.6. Invariant mass distribution of paired dimuons. The mass of the
dimuon in the pair that passed the trigger (Υ candidate) is on the horizontal
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3.4.1 Triggers in Onia trees

We noted an excess of low-mass dimuons passing the mass-gated trigger as seen

in Fig. 3.5. We hypothesize that this excess is due to the Onia tree used in this

analysis. As mentioned earlier in this chapter, Onia trees are produced from a

higher data tier called AOD. The AOD contains all the necessary information on

the muons seen by the detector, but muon pairs (dimuons) are a more specific

concept that is not present in this tier. It is during production of the Onia trees

that dimuons are constructed, by taking all possible pairs of muons in each given

event.

As part of making the dimuons in the Onia tree, the trigger status of each

dimuon is assigned. For single-muon triggers, the dimuon is flagged as passing the

trigger if either of its constituent muons pass the trigger. For double-muon triggers,

the dimuon is flagged as passing the trigger if both of its constituent muons pass
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the trigger. However, this causes an issue with the mass-gated trigger used for

this analysis: during production of the Onia tree only the individual muon triggers

are considered, and not any pairwise kinematic information. It is possible to pair

together two muons that each pass the mass-gated trigger—that is, they are both

part of a dimuon with invariant mass greater than 7 GeV—but when paired with

each other, form a dimuon with invariant mass below 7 GeV.

Figure 3.7 illustrates an example of the situation. In this example, an event

has four muons and three dimuons that pass selections. The pairwise invariant

mass of the two muons on the left and the two muons on the right are each

greater than 7 GeV, and the diagonal pairing in the center is less than 7 GeV. In

trigger processing all four muons were seen as part of a pair with invariant mass

greater than 7 GeV, so the individual trigger status of each of the four muons

stored in the AOD is that they passed the mass-gated trigger. Later during Onia

tree production the center dimuon is assigned the status of passing the trigger

despite having invariant mass less than 7 GeV, since both constituent muons are

individually flagged as having passed the trigger.

This issue cannot be resolved with the current Onia trees used for this analysis

as they do not contain the neccesary information. However, while these additional

passing dimuons may increase the amount of background, our choice to sort pairs

of dimuons that both pass the trigger by high and low mass means that any J/ψ

sorted in the “passing trigger” category will be paired with lower mass dimuons,

and therefore we will not be losing any potential Υ+J/ψ pairs. In addition, trig-

gered dimuons of low mass will be ignored, as we are focused on the mass region of

the Υ. Extraneous dimuons from this issue therefore should not have a significant

effect on this analysis.
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Figure 3.7. Illustration of dimuon trigger assignment for the case of an event
with four muons and three dimuons passing selections. The pairwise invari-
ant mass of the two muons on the left and the two muons on the right are
each greater than 7 GeV, and the diagonal pairing in the center is less than
7 GeV. The individual trigger status of each of the four muons stored in the
AOD is that they passed the mass-gated trigger. In the Onia tree the center
dimuon is marked as passing the trigger despite having invariant mass less than
7 GeV, since both constituent muons are individually flagged as having passed
the trigger.
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Chapter 4

Analysis

4.1 Signal extraction

The raw yield of double quarkonia is extracted through multiple steps, beginning

with unbinned maximum-likelihood fits of both Υ and J/ψ data. These preliminary

one-dimensional fits obtain shape parameters for the probability density functions

(PDFs) that are then used for a subsequent two-dimensional fit of Υ+J/ψ candi-

date dimuon pairs. The results of the two-dimensional fit are then used to calculate

the final double-quarkonia yields.

The signal PDF used for both Υ and J/ψ is a sum of two Crystal Ball [65]

functions. This function is a Gaussian that smoothly transitions to a power law

at low mass, given by

CB (x, x̄, n, α, σ) = N ·

exp
(
− (x−x̄)2

2σ2

)
for x−x̄

σ
> −α

A ·
(
B − x−x̄

σ

)−n
for x−x̄

σ
< −α

(4.1)

where

A =

(
n

|α|

)n
exp

(
−|α|

2

2

)
,

B =
n

|α|
− |α|.

(4.2)

The power law feature of this function helps to describe radiative energy loss. This

energy loss could be from bremsstrahlung radiation by the muons in the detector
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or from radiative next-to-leading-order decay processes where a muon from the

dimuon decay radiates a photon, thereby reducing the invariant mass of the muon

pair. The two Crystal Balls used are constrained to the same shape, differing only

by width. This accounts for differing resolution in different regions of the detector,

as the resolution determines the width of the signal. The resulting Double Crystal

Ball (DCB) is then

S (mµµ;m0, n, α, σ, f, x) = f · CB1 (mµµ;m0, n, α, σ) +

(1− f) · CB2 (mµµ;m0, n, α, x · σ)
(4.3)

where mµµ is the dimuon invariant mass, m0 is the most probable value of the

PDF, n, α, and σ are the shape parameters of the Crystal Balls, f is the fraction

of one Crystal Ball relative to the other, and x is the relative width of CB2 with

respect to the width of CB1.

In addition, because the quantity of data used for the one-dimensional fits is

sufficient to resolve the Υ(2S) and Υ(3S) resonance peaks, two more double-CB

functions are added, of the form

SΥ(nS)

(
mµµ;mΥ(1S), n, α, σ, f, x

)
= SΥ(1S)

(
mµµ;mΥ(1S) ·

mPDG
Υ(nS)

mPDG
Υ(1S)

, n, α, σ ·
mPDG

Υ(nS)

mPDG
Υ(1S)

, f, x

)
,

(4.4)

where SΥ(1S) is the same as S for the Υ(1S). The additional CB functions for the

excited states are constrained to use the same shape parameter values as for the

ground state. To reduce the number of fit parameters, the means of the excited

states are set to be equal to the m0 of the ground state, multiplied by the ratio

of their world-average measured masses. As the widths are expected to rise with

increasing mass, the widths of the excited states are likewise set to the width of

the ground state multiplied by the same mass ratios. The total signal PDF for the

three Υ(nS) states combined is then

SΥ

(
mµµ;NΥ(1S), NΥ(2S), NΥ(3S),mΥ(1S), n, α, σ, f, x

)
= NΥ(1S) · SΥ(1S) (mµµ) +NΥ(2S) · SΥ(2S) (mµµ) +NΥ(3S) · SΥ(3S) (mµµ) .

(4.5)
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The background PDFs each consist of an error function and a decaying expo-

nential, given by

B (mµµ;µ, σ, λ) = exp
(
−mµµ

λ

)
·

1 + Erf
(
mµµ−µ√

2σ

)
2

. (4.6)

Sources of background include combinatorics and dimuons from the Drell-Yan pro-

cess and cc̄ and bb̄ production. The exponential in the PDF describes the com-

binatorial background, which is the dominant background component. The error

function accounts for the rise in the background at low mass caused by the pT

restriction on the muons and, in the case of the Υ, the mass-gated trigger.

For the one-dimensional fits, the combined PDFs are the sum of signal and

background. The PDF for Υ is

F1D,Υ =SΥ

(
mµµ;NΥ(1S), NΥ(2S), NΥ(3S),mΥ(1S), n, α, σ, f, x

)
+Nbkg · B (mµµ;µ, σ, λ)

(4.7)

and the PDF for J/ψ is

F1D,J/ψ = Nsig · S (mµµ;m0, n, α, σ0, f, x) +Nbkg · B (mµµ;µ, σ, λ) . (4.8)

Using these PDFs we perform two independent one-dimensional fits of the Υ

and the J/ψ data, as shown in Fig. 4.1. After the one-dimensional fits to Υ and

J/ψ are completed, we fix the shape parameters of the signal PDFs and denote

them as SΥ and SJ/ψ.

We then proceed to the two-dimensional fits. At this stage the amount of data

remaining has decreased drastically, from 7×105 and 2×106 for the 1D datasets of

Υ and J/ψ down to 26,000 pairs in the 2D dataset. Because of this the SΥ(2S) and

SΥ(3S) signal components for the excited states of the Υ are now dropped, as the

data in the 2D dataset are insufficient to resolve these additional resonance peaks.

From these fixed signal PDFs and the two background PDFs, the final combined
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Figure 4.1. Invariant mass plots of one-dimensional fits of the Υ (left) and the
J/ψ (right).

PDF for the two-dimensional fit is

F2D

(
m1,m2;NΥ,J/ψ, NΥ,bkg, NJ/ψ,bkg, Nbkg,bkg, µ1, σ1, λ1, µ2, σ2, λ2

)
=

NΥ,J/ψ · SΥ (m1)× SJ/ψ (m2)

+NΥ,bkg · SΥ (m1)× B (m2;µ2, σ2, λ2)

+NJ/ψ,bkg · SJ/ψ (m2)× B (m1;µ1, σ1, λ1)

+Nbkg,bkg · B (m1;µ1, σ1, λ1)× B (m2;µ2, σ2, λ2) .

(4.9)

In this fitting model m1 and m2 are the two independent axes of Υ and J/ψ

candidate invariant masses, respectively, considered over the ranges 6–14 GeV for

m1 and 2–4 GeV for m2. The four terms are the four fitting components that each

account for different pairings of signal and background, illustrated in Fig. 4.2. The

parameter NΥ,J/ψ is the raw total number of Υ+J/ψ pairs (corresponding to the

upper left panel of Fig. 4.2), NΥ,bkg is the number of Υ paired with background

dimuons (upper right panel), NJ/ψ,bkg is the number of J/ψ paired with background

dimuons (lower left), and Nbkg,bkg is the number of purely background dimuon pairs

(lower right). The remaining parameters define the shape of the background as in

Eq. 4.6. This two-dimensional fit is shown in Fig. 4.3. Projections of this fit onto

each of the two axes are seen in Fig. 4.4.

The total yield of Υ+J/ψ is given by the signal component of the two-dimensional
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Figure 4.2. Components of two-dimensional fit to dimuon pairs in data: pure
signal component of Υ+J/ψ pairs (upper left panel), ridge component of Υ
paired with background dimuons (upper right), ridge component of J/ψ paired
with background dimuons (lower left), and pure background component of back-
ground dimuons paired with other background dimuons (lower right).

fit. This total includes two types of simultaneous production: correlated (produced

in the same nucleon-nucleon interaction) and uncorrelated (produced in separate

nucleon-nucleon interactions). The correlated component is expected to be very

small, less than 1% of the uncorrelated component, so we will consider it to be

negligible. The uncorrelated Υ+J/ψ yield alone can also be calculated by instead

using the ridge and background components of the two-dimensional fit, rather than

the signal component itself. Assuming that the probability of each dimuon in a

pair coming from an Υ or J/ψ respectively is independent, the probability PDQ of
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Figure 4.3. Two-dimensional fit of dimuon pairs in data. The bars represent
data and the red wireframe represents the fitted model.

double quarkonia production can be written as

PDQ = PΥPJ/ψ =
N true

Υ

N true
total

N true
J/ψ

N true
total

, (4.10)

so that the total number N true
DQ of double-quarkonia productions is

N true
DQ = N true

totalPDQ =
N true

Υ N true
J/ψ

N true
total

. (4.11)

The notation ‘true’ is used to indicate that the counts are prior to any losses

to acceptance or efficiency. To account for these losses, we can introduce the

correction factors aΥ, εΥ, aJ/ψ εJ/ψ to represent the Υ and J/ψ acceptance and

efficiency factors. The background dimuons may have their own factors, which

we will represent here with aBkg1 and εBkg1 for Υ background and with aBkg2 and
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Figure 4.4. Projections of two-dimensional fit of dimuon pairs in data. The
left panel shows the projection onto the Υ axis and the right panel shows the
projection onto the J/ψ axis.

εBkg2 for J/ψ background. Because the quantities in Eq. 4.11 above each include

dimuons from multiple sources, they must be split into separate terms so that the

appropriate correction factors can be applied. The quantity N true
Υ includes both Υ

that are paired with background dimuons, which we denote as N true
Υ,bkg, and also Υ

that are paired with J/ψ, denoted N true
DQ , so we will rewrite it as

N true
Υ = N true

Υ,bkg +N true
DQ . (4.12)

Similarly, we will rewrite

N true
J/ψ = N true

J/ψ,bkg +N true
DQ . (4.13)

The total count N true
total we will write out as all four possible pairings,

N true
total = N true

DQ +N true
Υ,bkg +N true

J/ψ,bkg +N true
bkg,bkg. (4.14)

With these substitutions, we now have

N true
DQ =

(
N true

Υ,bkg +N true
DQ

) (
N true
J/ψ,bkg +N true

DQ

)
N true

DQ +N true
Υ,bkg +N true

J/ψ,bkg +N true
bkg,bkg

. (4.15)

Next, we include the correction factors. Each “true” term in Eq. 4.15, which rep-

resents counts before efficiency and acceptance losses, is rewritten as the quantity
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post-losses and then corrected by acceptance and efficiency factors. Each term has

two factors of a and ε in the denominator, corresponding to the two sources of

dimuons for that term. We leave N true
DQ as-is with no substitutions or correction

factors, because it is the variable we wish to solve for. After rewriting with the

correction factors, we have

N true
DQ =

(
NΥ,bkg

aΥεΥ abkg2εbkg2
+N true

DQ

)(
NJ/ψ,bkg

aJ/ψεJ/ψ abkg1εbkg1
+N true

DQ

)
N true

DQ +
NΥ,bkg

aΥεΥ abkg2εbkg2
+

NJ/ψ,bkg

aJ/ψεJ/ψ abkg1εbkg1
+

Ntrue
bkg,bkg

abkg1εbkg1 abkg2εbkg2

(4.16)

Solving for N true
DQ , the final equation is

N true
DQ =

NΥ,Bkg NJ/ψ,Bkg

aΥεΥ aJ/ψεJ/ψ Nbkg,bkg

, (4.17)

where N true
DQ is the yield of uncorrelated Υ+J/ψ, NΥ,Bkg is the yield of the Υ

ridge, NJ/ψ,Bkg is the yield of the J/ψ ridge, Nbkg,bkg is the yield of the background

component, and aΥ, εΥ, aJ/ψ, and εJ/ψ are the acceptance and efficiency correction

factors for Υ and J/ψ. The statistical uncertainty of this formula is

σ
(
N true

DQ

)
=

[(
NJ/ψ,bkg

aΥεΥ aJ/ψεJ/ψ Nbkg,bkg

)2

σ2 (NΥ,bkg)

+

(
NΥ,bkg

aΥεΥ aJ/ψεJ/ψ Nbkg,bkg

)2

σ2
(
NJ/ψ,bkg

)
+

(
NΥ,bkg NJ/ψ,bkg

aΥεΥ aJ/ψεJ/ψ N
2
bkg,bkg

)2

σ2 (Nbkg,bkg)

]1/2

,

(4.18)

where we ignore the statistical uncertainty from the acceptance and efficiency cor-

rections that are negligible due to the large MC samples used to estimate them.

Because the ridge and background components from the fit are larger and have

smaller relative statistical uncertainty than the pure signal component, using this

formula will provide smaller statistical uncertainty in the measurement of the un-

correlated double-quarkonia yield.

4.2 Acceptance and efficiency corrections

There are two correction factors that must be accounted for in this measurement.

The first is the acceptance, which reflects the physical coverage where the detector
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can measure particles. Because of the limited coverage it is possible for Υ or J/ψ

produced in collisions to go unrecorded by the detector if one or both of their muons

fall outside the area of acceptance. We therefore need to estimate the fraction of

all produced dimuons that are accepted in order to correct for this loss. We call

this fraction the acceptance correction factor.

To estimate the acceptance factor, a pythia [62] simulation is used to gen-

erate Υ and J/ψ mesons and simulate their decays into muon pairs. The kine-

matics of the simulated muons are then checked to determine if they fall within

the acceptance of the detector. For muons from Υ decays this kinematic region

is pµT > 3.5 GeV and |ηµ| < 2.4. Muons from J/ψ decays must fall in the region

defined by Ref. [31] for untriggered muons, which is

• |ηµ| < 2.4;

• if |ηµ| < 0.3, then pµT > 3.4 GeV;

• if 0.3 < |ηµ| < 1.1, then pµT > 3.3 GeV;

• if 1.1 < |ηµ| < 1.4, then pµT > 7.7− 4.0 · |ηµ| GeV;

• if 1.4 < |ηµ| < 1.55, then pµT > 2.1 GeV;

• if 1.55 < |ηµ| < 2.2, then pµT > 4.25− 1.39 · |ηµ| GeV;

• if 2.2 < |ηµ|, then pµT > 1.2 GeV.

The acceptance factor is defined as the fraction of generated Υ or J/ψ whose

daughter muons both fall within their acceptance region. For Υ this is

aΥ =
NGEN(pµµT < 30 GeV, yµµ < 2.4, pµT > 3.5 GeV, ηµ < 2.4)

NGEN(pµµT < 30 GeV, yµµ < 2.4)
. (4.19)

For J/ψ the equation is identical except for the different acceptance region for

muons in the numerator, as noted above. Integrated over the entire kinematic

range studied (pµµT < 30 GeV, yµµ < 2.4), the acceptance factor for Υ is measured as
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0.37±0.01 and for J/ψ it is measured as 0.044±0.013. The systematic uncertanties

quoted here are explained in Sec. 4.4.1.

Because this analysis is limited to a specific region of phase space, another

type of acceptance correction is also useful. The phase space acceptance factor

estimates what fraction of all quarkonia produced in collisions will fall within the

studied kinematic range. This factor is found by taking the ratio of generated Υ

or J/ψ (i.e. the denominator from Eq. 4.19) within the kinematic range of the

analysis as the numerator over the total number generated in all phase space. The

phase space correction factor is measured as 0.83 for Υ and 0.77 for J/ψ.

The second correction factor is the efficiency. This factor comes from multiple

sources: the efficiency of the muon quality selections, of the trigger, and of the

reconstruction algorithm. To estimate the efficiency, we use the Monte Carlo

samples described in Sec. 3.2. The efficiency factor is defined as

ε =
NRECO(Acc,muID, trigger,VtxProb)

NGEN(Acc)
⊗ SF(pµ

+

T , ηµ
+

)× SF(pµ
−

T , ηµ
−

), (4.20)

where the denominator is the number of generated dimuons that are within the

acceptance, as described above, and the numerator is the number of matched re-

constructed dimuons that also satisfy the selection criteria. This ratio would be

sufficient if the simulated Monte Carlo samples matched the data perfectly, but typ-

ically they do not. We therefore multiply the ratio by “scale factors” SF(pµ
+

T , yµ
+

)

and SF(pµ
−

T , yµ
−

) for the two respective daughter muons of each dimuon, which

account for differences between simulation and data.

The scale factors were obtained at CMS by the tag-and-probe method. In

this method two objects are paired, one labeled the “tag” and the other the

“probe”. For finding muon efficiencies, the tag and the probe are two daugh-

ter muons matched to the same decay of a resonance such as J/ψ or Z. The tag is

subjected to very strict selection criteria so as to identify it as a muon with very

high confidence. The probe is instead subject to much looser selections intended to

be as unbiased as possible. Ideally, if the probe criteria were completely unbiased,

we could measure the absolute efficiency of the probe selections; in practice it is
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not exact but close. By reconstructing the tag and probe pair and verifying that

they originate from the same decay point and that their 4-momentum sum results

in an invariant mass consistent with a J/ψ or Z as noted above, the probe can

be identified with high confidence by its association to the tag despite the loose

selection. The dimuon resonance is then fitted and the yield extracted. This is

done twice: first for “passing probes”, which are tag-and-probe pairs whose probe

passes a particular selection; second, the fit is performed for all probes irrespective

of that selection. By dividing the resonance yield from the passing probes by the

resonance yield from all probes, the efficiency of the probe’s selection criteria can

be measured. This method only measures the efficiency out of the known muons

identified by tags, not all muons, so it finds only a relative efficiency. Therefore,

the process is conducted twice, once for real data and once for MC. One can then

obtain a quantitative estimate of the difference between data and MC by taking a

ratio of these two efficiencies. If the ratio is 1, the MC matches the data. Depar-

tures from 1 can then be taken into account as a correction “scale factor”. This

scale factor is defined as

SFµµ =
εµµ (data)

εµµ (MC)
. (4.21)

For this analysis of double-quarkonia, which studies pairs of Υ and J/ψ can-

didates, several different scale factors are applied. For the Υ candidate, the scale

factors for trigger, reconstruction, and muon identification are used. The trigger

scale factor is further broken down into two parts, the L2 efficiency and the L3

efficiency. Both muons are required to pass the L2 trigger. Only one muon is re-

quired to pass the L3 trigger, which is a subset of the L2. To properly account for

the probabilities of every combination of these two triggers among the two muons,

the trigger efficiency scale factor is calculated using the formula

SFtrig
µµ =

εtrig
µµ (data)

εtrig
µµ (MC)

, (4.22)
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where

εtrig
µµ = εL3

1 ε
L2
2 +

(
εL2

1 − εL3
1

)
εL3

2 . (4.23)

The trigger efficiency scale factor is then multiplied by the reconstruction and

muon identification scale factors for the same two muons of the Υ candidate. The

J/ψ candidate is not required to pass any trigger, so only the reconstruction and

muon identification scale factors from its daughter muons are needed and can be

simply multiplied together.

After all of these steps for efficiency calculations, the overall efficiency factors

integrated over the entire kinematic range were measured to be 0.49± 0.02 for Υ

and 0.39± 0.02 for J/ψ. The systematic uncertanties quoted here are explained in

Sec. 4.4.2.

The measured efficiencies are also compared with previous efficiency measure-

ments from other analyses of Υ [30]and J/ψ [32]. These comparisons are of effi-

ciencies plotted as a function of pµµT for particular centralities used by those other

analyses. The comparison of Υ efficiency is shown in Fig. 4.5 in 0–10% centrality,

and the comparison of J/ψ efficiency is shown in Fig. 4.6 in 0–100% centrality.

Note that the red points on the right plot of Fig. 4.6 are for 0–100% centrality but

the legend displays 0–10%.

Figure 4.5. Comparison of measured Υ efficiency vs pµµT (left) with efficiency
measurement from Ref. [30].
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Figure 4.6. Comparison of measured J/ψ efficiency vs pµµT (left) with efficiency
measurement from Ref. [32]. The comparable efficiency on the right plot is
shown by the red points. Note that the red points on the right plot are for
0–100% centrality, but the legend displays 0–10%.

4.3 Prompt and non-prompt J/ψ

There are three categories of J/ψ that we observe in the detector. First, there are

“direct” J/ψ produced in the initial nucleon-nucleon interactions. Second, excited

states such as ψ (2S) and χc produced in the initial nucleon-nucleon interactions

can decay to the ground state J/ψ. These are radiative (electromagnetic) decays

which occur so quickly that the resulting “feed-down” J/ψ are indistinguishable

from direct J/ψ. These first two categories are collectively known as “prompt”

J/ψ. The third category is J/ψ produced by the decay of B hadrons. This is a

weak decay process that is much slower than the radiative decays from the previous

category, taking approximately 1.5× 10−12 s.

Measurements of J/ψ typically use prompt J/ψ (direct and feed-down), so

for our measurement of Υ+J/ψ production we are primarily interested in pairs

that include a prompt J/ψ. Therefore, we would like to estimate the ratio of

non-prompt to prompt J/ψ production.

One distinguishable factor of non-prompt J/ψ is the distance traveled by the

B hadron prior to decay. This distance is measureable in the detector and is

typically denoted as cτ , where c is the speed of light and τ is the decay time
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needed to travel the observed distance. By requiring that cτ be within 3σ of zero,

as shown in Fig. 4.7, where σ is the standard deviation of the measured cτ , we

can reduce the number of J/ψ we measure from secondary decays. To estimate

the impact of this selection, we perform two J/ψ fits for comparison, one requiring

cτ < 3σ and one without this cut, and measure the yield in both cases. These fits

are shown in Fig. 4.8. From the ratio of their yields, we find that the selection on

cτ reduces the overall J/ψ yield by 24%.
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Figure 4.7. Distribution of cτ in units of standard deviation for dimuons in the
mass range of the J/ψ, 3.0 < mµµ < 3.2. The range of the cut on cτ is indicated
by the red lines.
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Figure 4.8. Fit of J/ψ with no cτ cut (left) and with cτ < 3σ (right).
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4.4 Systematic uncertainties

4.4.1 Acceptance

The systematic uncertainty for the acceptance correction is estimated in two ways.

First, the pT spectrum of the MC sample is weighted to match data. This is

done by dividing the kinematic range into pT bins and comparing the signal count

between data and MC. The MC contains only signal and so the count can be taken

directly. For data, the signal is extracted using band subtraction. Examples of

this subtraction are illustrated in Fig. 4.9, where all counts to the left, right, and

below the peak are removed. In each pT bin the ratio of data to MC is then used to

weight the MC. The ratios obtained for both Υ and J/ψ as functions pT are shown

in Fig. 4.10. The acceptance factor is determined once by using the reweighted

MC, and once without this weighting, and the difference in the resulting correction

factor is calculated.

Figure 4.9. Invariant mass plots of Υ (left) and J/ψ (right) from data. All
events below and beside the signal peak are subtracted, as delineated by the
red lines.
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Figure 4.10. Ratios of data/MC vs pT for Υ (left) and J/ψ (right) signal counts
used for reweighting the MC for acceptance estimation.
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The second way of estimating the systematic uncertainty of the acceptance

correction is by adjusting the pT setting of the pythia MC sample. The nominal

MC sample uses a minimum invariant pT of 1 GeV, while the alternative sample

is set at 2 GeV. The acceptance is determined twice using both samples and the

difference between them is calculated.

For a conservative estimate, the systematic uncertainty of the acceptance factor

is taken as the larger of the two differences calculated in the above methods. This

uncertainty was measured to be 3.1% for Υ and 29% for J/ψ. Out of all systematic

uncertainties, the uncertainty in acceptance for J/ψ is dominant. This is because

the CMS detector has little coverage at low pT for the J/ψ, so any modification to

the pT spectrum will have a large effect on the estimated acceptance.

4.4.2 Efficiency

The efficiency correction has a similar source of systematic uncertainty as the

acceptance correction: from the pT spectrum of the MC sample. To estimate the

uncertainty we again use a pT reweighting procedure to match the pT spectrum of

the MC sample to that of data. This procedure is the same as for acceptance, using

band subtraction to obtain the yields from data. Figure 4.11 shows the obtained

ratios for both Υ and J/ψ as functions of pT .
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Figure 4.11. Ratios of data/MC as functions of pT for Υ (left) and J/ψ (right)
signal counts used for reweighing the MC for efficiency estimation.

The systematic uncertainty of the efficiency correction factor is taken as the dif-

ference in the resulting correction factor with and without weighting. We measured

this uncertainty to be 5.1% for Υ and 4.6% for J/ψ.
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4.4.3 Signal PDF

Since we are not absolutely certain that the PDF we chose to model the signal is

the true PDF, this introduces a systematic uncertainty in the signal extraction. We

estimate the size of this systematic uncertainty by comparing our nominal result

to a result obtained using an alternative signal PDF.

For the alternative signal PDF, we choose the Hypatia function [66]. This

function is defined as

Hypatia2 (x, µ, σ, λ, ζ, β, al, nl, ar, nr) =



G(µ−alσ,µ,σ,λ,ζ,β)(
1− x

nlG(...)/G′(...)−alσ

)nl if x−µ
σ

< −al

G (x, µ, σ, λ, ζ, β) otherwise

G(µ+arσ,µ,σ,λ,ζ,β)(
1− x
−nrG(...)/G′(...)−arσ

)nr if x−µ
σ

> ar

(4.24)

where

G (x, µ, σ, λ, ζ, β) =

(
(x− µ)2 + A2

λ (ζ)σ2
) 1

2
λ− 1

4 eβ(x−µ)Kλ− 1
2

ζ
√

1 +

(
x− µ
Aλ (ζ)σ

)2
 ,

(4.25)

The ratio A2
λ (ζ) is

A2
λ (ζ) =

ζKλ (ζ)

Kλ+1 (ζ)
, (4.26)

and Kλ are cylindrical harmonics or special Bessel functions of the third kind. For

more details, see Ref. [66]. The Hypatia function resembles the nominal Crystal

Ball function and has parameters for the peak location, width, and tails for the

lower and upper ends, and so is reasonable to use as an alternative signal PDF.

To distinguish the systematic uncertainty of the PDF choice from the statistical

uncertainty of the fit, 100 pseudoexperiments are performed using pseudodata

generated from the nominal fit. Each set of pseudodata is fitted twice, once using

the nominal signal PDF and again using the alternative signal PDF. The relative

difference in double-quarkonia yield is measured and stored in a histogram that

contains all 100 entries from the pseudoexperiments, as seen in Fig. 4.12 The mean

and the RMS of this histogram both describe how the two results differ, so we take
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their quadratic sum as a conservative estimate of the systematic uncertainty. This

uncertainty due to variation of the signal PDFs was measured to be 2.2% for Υ

and 5.4% for J/ψ.
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Figure 4.12. Percentage differences in double-quarkonia yield between nominal
and alternate signal PDF for Υ (left) and J/ψ (right).

4.4.4 Background PDF

The uncertainty due to the choice of background PDF is estimated in the same

way as for the signal PDF, by substituting an alternative background PDF and

performing 100 pseudoexperiments. In this case, the alternative background PDF

is a 4th-order Chebychev polynomial.

The results of the pseudoexperiments are shown in Fig. 4.13. From this, the

systematic uncertainty due to variation of the background PDFs was measured to

be 5.8% for Υ and 7.0% for J/ψ.

4.4.5 Fixed parameters

When the shape parameters of the signal PDFs in the two-dimensional fit are

first fixed by preliminary one-dimensional fits, this specific choice of fixed param-

eters may introduce another source of systematic uncertainty. To estimate this

uncertainty, the parameters are fixed by an alternative method: performing the

preliminary fits on the MC samples from Sec. 3 instead of on data. The shape

parameters from both methods for the Υ and J/ψ signal PDFs are tabulated in
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Figure 4.13. Percentage differences in double-quarkonia yield between nominal
and alternate background PDF for Υ (left) and J/ψ (right).

Parameter Υ Data Υ MC J/ψ Data J/ψ MC

n 3.7179 1.3509 3.7138 1.5223

α 3.281 1.9027 1.5109 2.0011

σ 0.21917 0.17534 0.023636 0.030704

f 0.40638 0.20939 0.29781 0.77713

x 0.35977 0.45872 2.0227 2.1067

Table 4.1. Shape parameters of Υ and J/ψ signal PDFs obtained from 1D fits
to data and MC.

Table 4.1. Variation in the shape parameters between fits data and to MC are ex-

pected due from differences in the invariant mass distributions, as the MC is not an

exact match to data. Pseudoexperiments are again used, fitting each set of pseu-

dodata twice using the signal shape parameters determined from both methods

and comparing the difference in double-quarkonia yield.

The results of the pseudoexperiments are shown in Fig. 4.14. The uncertainty

due to variation of the signal shape parameters was measured to be 6.9% for Υ

and 5.0% for J/ψ.
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Figure 4.14. Percentage differences in double-quarkonia yield between nominal
and alternate signal parameters for Υ (left) and J/ψ (right).

4.5 Closure test

To verify that the calculational procedure derived in Sec. 4.1 properly describes

the yield of double quarkonia, a closure test is performed by creating and analyzing

a MC sample that has a known quantity of double quarkonia.

To begin, the sample is created by generating many dimuon-mass pairs that

represent paired Υ and J/ψ candidates. For each mass pair, two random probabil-

ities, pΥ and pJ/ψ, are independently evaluated to determine if the first mass will

represent an Υ or background dimuon, and if the second mass will represent a J/ψ

or background dimuon. These two probabilities are tunable parameters that de-

termine the signal-to-background ratio of the sample, but do not directly represent

any physical cross sections. Then, the masses for the dimuon pair are generated

by sampling the one-dimensional PDFs, Υ signal, J/ψ signal, Υ background, and

J/ψ background, which were obtained from the nominal fit to data.

Next, acceptance and efficiency losses are also simulated. Four tunable “effi-

ciency” parameters—εΥ
sig, εΥ

bkg, ε
J/ψ
sig , and ε

J/ψ
bkg —are used to represent the consoli-

dated acceptance and efficiency: εΥ
sig for Υ signal, εΥ

bkg for Υ background, ε
J/ψ
sig for

J/ψ signal, and ε
J/ψ
bkg for J/ψ background. Each generated dimuon is evaluated

using the corresponding efficiency parameter as a random probability to decide if
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it remains or is lost. If either dimuon in a pair is lost, the entire pair is lost.

This process creates a two-dimensional sample of dimuon masses with the same

shape of distributions as in data, but with exactly known quantities of each quarko-

nium generated and how many are lost to inefficiency. Most importantly, this in-

cludes knowledge of the number of uncorrelated double-quarkonia generated, which

is the quantity for which we wish to verify our yield extraction process.

Finally, the generated sample is analyzed using the same process as is done for

real data, by fitting and calculating the extracted yields. The fitting model by

construction matches the shape of the sample exactly, but with statistical fluctua-

tions. This process of generating and analyzing the sample is repeated in numerous

pseudoexperiments. The calculated yields are then compared to the known signal

counts from the sample generation across all pseudoexperiments to evaluate the

accuracy of the analysis procedure.

Two test cases were conducted. Case 1 generated 106 pairs using the following

parameters:

• pΥ = 0.1

• pJ/ψ = 0.25

• εΥ
sig = 0.237

• εΥ
bkg = 0.0223

• εJ/ψsig = 0.8

• εJ/ψbkg = 0.45

After running many pseudoexperiments for this case, we compare the results in

Figs. 4.15 and 4.16. From the left plot of Fig. 4.15 we see that the mean difference

between the double quarkonia yield calculated from Eq. 4.17 and the known yield

in the MC sample is approximately 0.2% and the width of the distribution is

7.1%, which indicates that the calculated yield has no significant bias. The right
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plot shows the same differences but in units of standard deviation of the double

quarkonia yield calculated from the fit. The width of this plot is very nearly

1, indicating that the error calculation for the fitted double quarkonia yield is

accurate. Comparatively, we see in Fig. 4.16 that the yield extracted directly from

the pure signal component of the fit (NΥ,J/ψ from Eq. 4.9) has a mean of 4% and

but much greater width of 43%, so although still unbiased this method is less

precise.

This test case supports that the analysis procedure is effective for extracting

the double quarkonia yield, and has smaller statistical uncertainty than extracting

the yield from the pure signal component of the fit.
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Figure 4.15. Case 1: Difference between the true number of uncorrelated double
quarkonia generated in Monte Carlo and the uncorrelated yield calculated from
the fit using Eq. 4.17 The differences are recorded from many pseudoexperiments
and plotted twice, in units of percentage of the true number (left) and standard
deviation from the fit (right).

Next, Case 2 also generates 106 pairs using the same parameters as in Case 1,

but then in addition adds 5× 104 Υ+J/ψ directly into the sample. This simulates

the presence of correlated Υ+J/ψ not accounted for by the procedure in Sec. 4.1,

which calculates only the uncorrelated yield. This case tests for the possibility

of a large portion of correlated double quarkonia and how our analysis procedure

would be sensitive to it.

Figure 4.17 shows the difference between the yield of double quarkonia ex-
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Figure 4.16. Case 1: Difference between the true number of all double quarko-
nia generated in Monte Carlo and the yield extracted from the pure signal
component NΥ,J/ψ of the fit. The differences are recorded from many pseudo-
experiments and plotted twice, in units of percentage of the true number (left)
and standard deviation from the fit (right).

tracted from the pure signal component of the fit and the known total Υ+J/ψ

count in the sample. We see that the width of this distribution is 13%, compared

to the width of 43% seen for Case 1 in Fig. 4.16. This smaller width is expected,

given the larger yield in Case 2 that can be more precisely fitted.
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Figure 4.17. Case 2: Difference between the true number of all double quarko-
nia generated in Monte Carlo and the yield extracted from the pure signal
component NΥ,J/ψ of the fit. The differences are recorded from many pseudo-
experiments and plotted twice, in units of percentage of the true number (left)
and standard deviation from the fit (right).
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In addition, since the yield calculated using Eq. 4.17 is of uncorrelated Υ+J/ψ

only, while the pure signal yield NΥ,J/ψ from Eq. 4.9 is of both correlated and

uncorrelated Υ+J/ψ, we can subtract them to measure the yield of correlated

Υ+J/ψ alone. Figure 4.18 shows this subtraction compared to the known count of

correlated Υ+J/ψ added to the sample. We see that this distribution has a mean

of -2.2% and width of 20%, indicating that our analysis method is capable of effec-

tively measuring the yield of correlated Υ+J/ψ without bias if enough statistics

are available. While the current data are insufficient for this measurement, it may

be possible in the future with larger datasets.
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Figure 4.18. Case 2: Difference between the true number of correlated double
quarkonia generated in Monte Carlo and the yield of the pure signal component
NΥ,J/ψ minus the uncorrelated yield calculated from Eq. 4.17. The differences
are recorded from many pseudoexperiments and plotted twice, in units of per-
centage of the true number (left) and standard deviation from the fit (right).

80



Chapter 5

Results

Using the two-dimensional fit and calculation method described in 4.1, we have

measured the yield of Υ+J/ψ pairs in Pb + Pb collisions. The plots of the two-

dimensional fit and the corresponding projections onto the two axes have been

shown in Sec. 4.1, and are reproduced here as Figs. 5.1 and 5.2 for discussion.

The lower panels beneath each plot in Fig. 5.2 show the “pull” of the fit in these

projections, which is a tool to help gauge how well the model fits the data. The

pull displays the differences between the fitted model and binned data points, in

units of the standard deviation of each datum point. We see that the points in

these pulls are within two standard deviations and are not systematically high or

low, indicating that the model fits the data well. Figure 5.3 shows the pull of the

fit in two dimensions. This pull has three points that are 2–3 standard deviations

away, but out of 120 bins this is not unreasonable. There is also no systematic

shift high or low, so this pull is consistent with a uniform distribution and indicates

that the model fits the data reasonably well.

The raw yields of the four fit components as defined in Eq. 4.9 are:

• NΥ,J/ψ = 6± 7

• NΥ,bkg = 114± 20

• NJ/ψ,bkg = 92± 20
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Figure 5.1. Two-dimensional fit of dimuon pairs in data. The bars represent
data and the red wireframe represents the fitted model.

• Nbkg,bkg = 2528± 56

where NΥ,J/ψ is the total number of Υ+J/ψ pairs, NΥ,bkg is the number of Υ paired

with background dimuons, NJ/ψ,bkg is the number of J/ψ paired with background

dimuons, and Nbkg,bkg is the number of purely background dimuon pairs. Using

Eq. 4.17, we measure the yield of uncorrelated Υ+J/ψ to be

NDQ = 1325± 378(stat.)± 437(sys.)

We see that we were able to obtain a statistically significant nonzero result

for the uncorrelated yield, while the total number Υ+J/ψ pairs directly from the

fit is consistent with zero. Our method of calculation was able to extract greater
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Figure 5.2. Projections of two-dimensional fit of dimuon pairs in data. The
left panel shows the projection onto the Υ axis and the right panel shows the
projection onto the J/ψ axis.

7 8 9 10 11 12 13
)2) (GeV/c-µ+µ (1m

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4)
2

) 
(G

eV
/c

- µ
+ µ

 (
2

m

3−

2−

1−

0

1

2

2D Pull

Figure 5.3. Pull of two-dimensional fit of dimuon pairs in data. The z-axis
represents the difference between the fit and data, divided by the statistical
uncertainty of the data in each bin.

statistical precision for the uncorrelated yield compared to obtaining the total

double-quarkonium yield directly as a fit parameter. The yield of correlated double-

quarkonium, which would be the difference between the total and uncorrelated, is

therefore also consistent with zero by our measurement. An observation of this

correlated signal will require an analysis with more data.

We found that the process of measuring double quarkonia in Pb + Pb collisions

differed significantly from prior measurements in p + p collisions, due the large
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amount of background present in Pb + Pb. Figure 5.4 illustrates this difference

by comparing a previous measurement of Υ+Υ production in p+ p collisions [33]

with our result. While p + p collisions (left) exhibited a clear, distinct peak at

the (mΥ,mΥ) mass coordinates, in Pb + Pb (right) the defining features are the

two ridges indicating independent Υ and J/ψ production paired with background

dimuons. This difference required us to develop our new method of measurement

in 4.1 using these ridges, as the background was too great to resolve the presence

of a central signal peak.
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Figure 5.4. Left panel: Two-dimensional plot of dimuon pairs in p + p data
from [33]. Right panel: Two-dimensional plot of dimuon pairs in Pb + Pb data
from this thesis, where the bars represent data and the red wireframe represents
the fitted model.

5.1 Comparison to theory and simulation

We can compare our result to theoretical predictions. As noted in Sec. 1.6, the

DPS cross section in Pb + Pb collisions includes contributions from three terms,

accounting for three cases. In the first case, two partons from one nucleon in the

first nucleus interact with two partons from one nucleon in the second nucleus. In

the second case, two partons from one nucleon in the first nucleus interact with

two partons from two different nucleons in the second nucleus. Finally, in the third

case, two partons from two nucleons in the first nucleus interact with two partons

from two different nucleons in the second nucleus. The “pocket-formula” [53, 67]
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for DPS is

σDPS
AA→ab =

m

2

σSPS
NN→a · σSPS

NN→b
σeff,AA

, (5.1)

where the contributions from the three terms outlined above for Pb + Pb collisions

is contained in

σeff,AA =
1

A2
[
σ−1

eff,pp + 2
A
TAA (0) + 1

2
TAA (0)

] . (5.2)

From this, the DPS cross section for Υ+J/ψ in Pb + Pb collisions at 5.5 TeV is

predicted to be 28 mb [67].

In addition, the yield of Υ+J/ψ is also predicted in Ref. [67] under a particular

set of assumptions. These assumptions include a collision energy of
√
sNN =

5.5 TeV, an integrated luminosity of 1 nb−1, and branching ratios of 6% for J/ψ

and 2.5% for Υ for dimuon and dielectron decay. Their calculation uses combined

acceptance and efficiency factors a × ε of 0.01 for J/ψ over the rapidity range of

0 < |y| < 2, and 0.2 for Υ over the range 0 < |y| < 2.5. Suppression of the yield in

the Pb + Pb collisions is neglected. With all these conditions, their predicted yield

of Υ+J/ψ after acceptance and efficiency losses is ∼ 340. This does not include

any uncertainty estimate, which we will discuss further below.

To compare with this prediction, we need to account for differences between

their assumptions and the conditions of our measurement. We do this by multi-

plying their predicted yield by several factors.

First, the predicted yield includes both the dimuon and dielectron decay chan-

nels, but our analysis measures only quarkonia from dimuon decays, so we divide

by a factor of 4 to compensate for using half the number of decay channels for Υ

and for J/ψ.

To account for changes in quarkonium yields from differing collision energy, we

multiply by the ratios of cross sections at
√
sNN = 5.02 TeV over

√
sNN = 5.5 TeV

for both b and c quarks in p + p collisions. Using cross-section calculations from

a fixed-to-next-to-the-leading-order (FONLL) model [68, 69], we estimate these

factors to be 0.92 and 0.95 for b and c quarks respectively.
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Next, we adjust for the difference in luminosities. The integrated luminosity of

our data is 1.7 nb−1compared to the 1 nb−1used in the prediction, so we multiply

by 1.7.

The predicted yield is then divided by their simplified acceptance and efficiency

factors, 0.01 and 0.2 as noted earlier, to return the yield to what it would be before

losses. In addition, because their phase space is different from that in our analysis,

we need to multiply by the ratio of our phase space factors, 0.55 and 0.66, over their

corresponding factors. We estimate their phase space factors in a similar fashion to

as we did in Sec 4.2, by dividing the number of J/ψ falling within 0 < |y| < 2 and

Υ falling within 0 < |y| < 2.5 over the total number of each quarkonia generated

in a Monte Carlo simulation using Pythia. These factors for their phase space are

found to be 0.46 for J/ψ and 0.69 for Υ.

Finally, we also consider the suppression of quarkonia in heavy-ion collisions.

Guided by a Glauber Monte-Carlo simulation that estimates the distribution of the

number by participating nucleons, Npart, which is then mapped to measurements

the nuclear modification factor of Υ [5] and J/ψ [44] in Pb + Pb collisions as a

function of centrality within our same phase space coverage, we estimate integrated

suppression factors RAA of approximately 0.4 for both Υ and J/ψ.

After all adjustments for making the comparison to our measurement, the final

predicted double-quarkonia yield is

N theory
DQ =340×

N channels
Υ,data

N channels
Υ,theory

×
N channels
J/ψ,data

N channels
J/ψ,theory

× σb (5.02TeV)

σb (5.5TeV)
× σc (5.02TeV)

σc (5.5TeV)
× Ldata

Ltheory

×

aεdata
Υ

aεtheory
Υ

×
aεdata

J/ψ

aεtheory
J/ψ

×
aphase

Υ,data

aphase
Υ,theory

×
aphase
J/ψ,data

aphase
J/ψ,theory

×RAA (Υ)×RAA (J/ψ)

=340× 1

2
× 1

2
× 0.92× 0.95× 1.7×

0.37× 0.49

0.2
× 0.044× 0.39

0.01
× 0.66

0.69
× 0.55

0.46
× 0.42

=36

(5.3)

For comparison, our measured yield after efficiency and acceptance losses (that

86



is, without applying correction factors) is NDQ = 4.1± 1.1(stat.)± 1.4(sys.). This

value predicted by theory is larger than our measured yield, but we note that

the prediction has no uncertainty estimates associated to it. It is likely that the

uncertainty of this value is quite high. For instance, this prediction relies on the

SPS cross sections of Υ and J/ψ. From NLO [70] and FONLL calculations [68, 69],

we see that the uncertainties of these cross sections are greater than 40% even if

only considering renormalization and factorization scales and variation of the b

and c quark masses. Other sources of uncertainty, such as from the quarkonium

production model or the phase space, would contribute even further. While the

authors did not provide a full uncertainty estimation in their paper, we expect that

known sources of uncertainty, such as uncertainties in the underlying cross section

(which are correlated for the Υ and the J/ψ) could explain roughly a factor of 2–3

of the difference. An additional factor 2–3 would be needed from variation in the

model assumptions to fully bring it into agreement with our data.

Another comparison can be made with a Glauber Monte Carlo model designed

to simulate double-quarkonia production. For this model, independent probabili-

ties of Υ and J/ψ production calculated are as

pQ =
σQ
σinel

pp

· 1

F direct
Q

× BR
(
Q → µ+µ−

)
(5.4)

where Q is either Υ or J/ψ, BR is the branching ratio of that quarkonium to

dimuon decay, σQ is the cross section of that quarkonium, σinel
pp is the inelastic

p + p cross section, and F direct
Q is the fraction of these quarkonia that are from

direct production [71]. A Glauber Monte Carlo model is used to simulate 1010

nucleus-nucleus collisions, matching the expected number of Pb + Pb collisions in

the 2018 data collected by CMS. For each simulated nucleus-nucleus collision, the

probabilities defined in Eq. 5.4 are randomly evaluated for every nucleon-nucleon

interaction to determine if an Υ is produced and whether a J/ψ is produced. If

both an Υ and a J/ψ are produced in the same nucleus-nucleus collision, it is

counted as a double-quarkonia. The Npart value of each simulated collision event

is also determined by the Glauber Monte Carlo, and this Npart is then used to
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assign an nuclear modification factor to account for suppression as described above.

Acceptance and efficiency losses are also simulated. The total double-quarkonia

count after these suppression, acceptance, and efficiency losses is the final Υ+J/ψ

yield of the simulation.

For conditions matching our measurement, this simulation predicts an Υ+J/ψ

yield of 11± 3(stat.). Because this simulation relies on Υ and J/ψ cross sections,

it will also be subject to the same 40% uncertainties noted above, which together

amount to a factor of 1.42 ≈ 2. As above, we compare this again to our uncorrected

measured yield of NDQ = 4.1±1.1(stat.)±1.4(sys.). This predicted yield from the

simulation is greater than our measurement, but the limited uncertainty estimate

from cross sections alone accounts for this difference and brings the model to

agreement with our data.

The main finding of this thesis is that we have observed double-quarkonia pro-

duction for the first time in heavy-ion collisions. Our result is consistent with

uncorrelated production of quarkonium pairs being the dominant mechanism, and

that these quarkonia are then suppressed in the Quark Gluon Plasma. The un-

correlated production takes advantage of the many nucleon-nucleon interactions

in each individual Pb + Pb collision, so that these double-quarkonium events are

much more common than in p+ p collisions.
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Chapter 6

Conclusion

Using Pb + Pb collision data at
√
sNN = 5.02 TeV collected by the CMS detec-

tor, we have measured for the first time the yield of simulataneous uncorrelated

Υ+J/ψ production in heavy-ion collisions. This measurement was accomplished

by pairing Υ and J/ψ candidates reconstructed from dimuon decays into a two-

dimensional distribution of invariant masses. This distribution was fitted with

a four-component model accounting for total signal of correlated+uncorrelated

Υ+J/ψ, single-quarkonia Υ+µµ and J/ψ+µµ, and pure background µµ+µµ. The

yield of total correlated + uncorrelated Υ+J/ψ directly from this fit was con-

sistent with zero. To overcome low statistics for this rare double-production, we

devised a method to calculate the uncorrelated double-quarkonia yield using the

Υ+µµ, J/ψ+µµ, and µµ+µµ components of the fit. The higher yields of these

components provided reduced stastistical uncertainty in the calculated Υ+J/ψ

yield compared to the direct signal component of the fit. With this method our

yield of uncorrelated Υ+J/ψ in the kinematic range (pµµT < 30 GeV, yµµ < 2.4)

was measured as 1325 ± 378(stat.) ± 437(sys.), which is a statistically significant

signal at over 3σ. We compared our uncorrelated Υ+J/ψ result with theoretical

predictions from NLO calculations and with Glauber Monte Carlo simulations, and

found they are consistent within systematic uncertainties. A closure test that we

performed suggests that with sufficient data, the method used in this analysis is

able to discern correlated from uncorrelated double-quarkonia. The techniques of
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this first measurement of Υ+J/ψ in heavy-ion collisions will be useful for future

analyses with greater quantities of data.
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Appendix A

Scale factors for asymmetric

dimuons

As described in Sec 4.2, the efficiency factor is defined as

ε =
NRECO(Acc,muID, trigger,VtxProb)

NGEN(Acc)
⊗ SF(pµ

+

T , ηµ
+

)× SF(pµ
−

T , ηµ
−

), (A.1)

where the denominator of the ratio is the number of dimuons in the Monte Carlo

simulation that are within acceptance and the numerator is the number of matched

reconstructed dimuons that also satisfy the selection criteria. Since Monte Carlo

simulations typically differ from data, we multiply by scale factors to correct for

these differences.

The scale factors are associated with individual muons. We could simply mul-

tiply our dimuon efficiency ratio by the scale factors of each constituent muon

individually if the selections on those muons were symmetric, but in the case of

the Υ trigger efficiency they are not. The trigger selection is broken down into two

parts: the L2 trigger and the L3 trigger. Both muons are required to pass the L2

trigger, but only one muon from the Υ decay is required to pass the L3 trigger,

which is a strict subset of the L2.

To make the combined scale factor we use the procedure outlined by [72]. This

procedure is illustrated by the probability tree in Fig. A.1. The probability t

denotes the efficiency of the L2 trigger, and t′ the efficiency of the L3 trigger,
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where passing the L3 trigger implies passing the L2 trigger. We first consider one

muon, denoted µ1, and branch into three possibilities: it passes both the L2 and

L3 triggers, it passes only the L2 trigger, or it passes neither trigger. The third

branch immediately disqualifies the dimuon from passing the trigger, but the first

two branches depend on the second muon µ2. If µ1 passes both L2 and L3, then

the dimuon passes if µ2 either passes L2 and L3 or just passes L2. If µ1 passes

only L2, then the dimuon only passes if µ2 passes both L2 and L3.

𝜇1 t1 - t′1

1 - t1

t′1 t2 - t′2

t′2

1 - t′2

t2 - t′2

t′2

1 - t′2

𝜇2 ✔

✔

✖

✔

✖

✖

✖

Figure A.1. Probability tree of asymmetric dimuons. Green denotes branches
that pass the efficiency, and red denotes branches that do not pass.

By multiplying each stage of probability and adding branches together, we find

εµµ = t′1 (t′2 + t2 − t′2) + (t1 − t′1) t′2

= t′1t2 + (t1 − t′1) t′2.
(A.2)

Rewriting t and t′ back in terms of L2 and L3 efficiencies, we have the formula

εtrig
µµ = εL3

1 ε
L2
2 +

(
εL2

1 − εL3
1

)
εL3

2 (A.3)

which we can use to produce the combined Υ trigger scale factor out of the single-

muon scale factors.
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