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Abstract 13 

Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the 14 

musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an 15 

integrative approach. Comparative experimental biology has allowed researchers to study the underlying 16 

components and some of their interactions across diverse animals. These studies have shown that 17 

locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in 18 

vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern 19 

generators (CPGs) – systems of coupled neuronal oscillators that provide coordinated rhythmic control of 20 

muscle activation that can be viewed as feedforward controllers – and multiple reflex loops that provide 21 

feedback mechanisms. These circuits are activated and modulated by descending pathways from the 22 

brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary 23 

between species and locomotor conditions remain poorly understood. Robots and neuromechanical 24 

simulations can complement experimental approaches by testing specific hypotheses and performing 25 

what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate 26 

experiments, and insights obtained from neuromechanical simulations and robotic approaches. We 27 

suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending 28 

on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. 29 

We also hypothesize that distal joints rely more on feedback control compared to proximal joints. Finally, 30 

we highlight important opportunities to address fundamental biological questions through continued 31 

collaboration between experimentalists and engineers. 32 

Summary statement: Comparative animal studies and neuromechanical modeling have revealed diversity 33 

in the integration of feedback and feedforward control, related to body size, mechanical stability, time to 34 

locomotor maturity and movement speed. 35 

 36 

Short title: Integration of feedforward and feedback control in locomotion 37 



Introduction 38 

Animal locomotion arises from complex and rich interactions between the nervous system, the 39 

musculoskeletal system and the environment (Dickinson et al., 2000; Nishikawa et al., 2007). Animal 40 

sensorimotor control involves multi-layered and distributed systems, with central networks, reflexes and 41 

mechanics all contributing to sensorimotor responses on varied timescales (Büschges, 2005; Buschmann 42 

et al. 2015; Bidaye et al. 2018; Grillner, 1985; Grillner & El Manira, 2019; Loeb et al., 1999; Nirody, 2023; 43 

Pearson, 1995; Pearson & Gramlich, 2010; Rossignol et al., 2006). Because of this inherent complexity, it 44 

has been a longstanding challenge in biology to rigorously understand the structure, function and 45 

integration of animal sensorimotor systems. Integrative approaches are needed to address this challenge. 46 

Exchange between biology, physics and engineering disciplines can be particularly useful for generating 47 

and rigorously testing hypotheses about how mechanics and control interact to produce agile locomotion. 48 

In this Review, we discuss how the exchange between comparative experimental biology, physics and 49 

engineering can provide fundamental insights into the neuromechanics (see Glossary) of vertebrate 50 

locomotion. 51 

 52 

Historically, comparative approaches have been essential for providing mechanistic understanding of the 53 

control of movement, and Journal of Experimental Biology (JEB) has been an important venue for 54 

comparative studies across diverse taxa. In the 1930s–1940s, Gray and co-authors published numerous 55 

papers on animal movement in JEB, characterizing the locomotor movements, reflex responses and 56 

locomotor pattern generation in the eel, dogfish, toad, leech and earthworm (Gray, 1933, 1936; Gray et al., 57 

1938; Gray & Lissmann, 1938, 1940; Gray & Sand, 1936). Subsequent studies continued to expand on this 58 

diversity and contribute to mechanistic understanding of sensorimotor control (e.g. Hughes, 1952; 59 

Hughes, 1957; Wilson 1965; Wilson 1967). Many of the early studies were foundational for understanding 60 

both the basic biomechanics and neural control circuitry for movement. At that time, it was often necessary 61 

to study movement mechanics and neural control together, because so little was known about both. 62 

 63 

In recent decades, the fields of comparative biomechanics and sensorimotor physiology have been 64 

relatively isolated, as each field focused on more detailed mechanistic understanding of specific systems. 65 

Simultaneously, studies of sensorimotor control have increasingly focused on a few genetic animal models, 66 

such as the mouse, zebrafish, fruit fly, and Caenorhabditis elegans, which enable the use of the most richly 67 

developed genetic and molecular tools (Bidaye et al. 2018; Fetcho & McLean, 2010; Fouad et al 2018; Kiehn, 68 

2011; Lewis & Eisen, 2003; Zhong et al., 2012; Mantziaris et al. 2020). Nonetheless, this narrow focus has 69 

its drawbacks, and important questions remain about the diversity and specialization of sensorimotor 70 

control across species. We suggest that it is important to continue to expand studies beyond the classic 71 

genetic animal models, because comparative approaches provide opportunities to address fundamental 72 

questions about the evolution and diversity of neuromechanical integration. Critical gaps in understanding 73 

remain in how the different elements of the sensorimotor system are integrated with each other, and how 74 

this integration varies with body size and among animals adapted for different locomotor environments. 75 

 76 

The interdisciplinary field of comparative neuromechanics has emerged over the last 15 years or so 77 

(Nishikawa et al., 2007; Ting & McKay, 2007), focusing on the study of mechanics and control of movement 78 

in a comparative framework. In this Review, we highlight principles and hypotheses that have emerged from 79 

this field, with a specific focus on sensorimotor and neuromechanical integration in vertebrates. We 80 

discuss current conceptualization of the role of central pattern generators (CPGs; see Glossary) and their 81 

integration with reflexes and limb mechanics, and the interactions between feedforward and feedback 82 

control mechanisms (see Glossary). In the sections below, we first summarize current understanding in 83 



biology based on both historical and recent experimental evidence, then discuss contributions from bio-84 

inspired robotics and simulations, and then highlight current open questions and future directions that are 85 

enabled through direct integration of engineering and experimental biology. Our Review focuses mainly on 86 

vertebrate locomotion; however, we note that many principles of locomotor control have parallels between 87 

vertebrates and invertebrates, and readers are directed to recent reviews of invertebrate systems (Nirody 88 

2023; Mantziaris et al. 2020; Bidaye et al. 2018). 89 

Biology: historical experimental evidence, current 90 

understanding and new hypotheses 91 

 92 

Integration of CPGs and sensory feedback in the spinal cord 93 

The spinal cord plays a key role in integrating predictive and reactive elements of vertebrate locomotor 94 

control (Grillner & El Manira, 2019; Rossignol et al., 2006). Animal control involves inherently long 95 

sensorimotor delays (see Glossary; More et al., 2010; More & Donelan, 2018). Because of these delays, 96 

animals cannot rely entirely on reactive, feedback-driven control, but must instead use a combination of 97 

predictive and reactive control mechanisms for stable movement (Fig. 1). The spinal cord contains neural 98 

circuits involved in integrating CPGs (see Box 1), reflex responses, and descending and ascending 99 

pathways to the brain (Grillner & El Manira, 2019; Pearson, 1995; Rossignol et al., 2006). CPGs in the spinal 100 

cord provide a type of predictive, feedforward controller for locomotion that helps to overcome delays. 101 

CPGs are activated by a descending ‘drive’ signal and produce predetermined motor outputs for 102 

locomotion. These outputs provide complex muscle activation for the anticipated mechanical demands, 103 

resulting in, for instance, traveling waves for undulatory locomotion and alternation of stance and swing 104 

phases for legged locomotion. CPGs therefore resemble feedforward controllers in control theory (see 105 

Glossary), because they produce complex and detailed motor commands given a simpler high-level 106 

descending signal for the desired behavior, such as movement at a specific speed. However, CPGs do not 107 

act in isolation. The CPG receives continuous modulation through descending drive commands and reflex 108 

feedback (Grillner et al., 2008; Rossignol et al., 2006). Consequently, the CPG can be thought of as a type 109 

of feedforward controller nested within a feedback control system (Holmes et al., 2006). 110 

 111 

Current evidence suggests that animal locomotion makes use of a nested, multi-layered control 112 

architecture that organizes sensing and action (Grillner & El Manira, 2019; McLean & Dougherty, 2015; 113 

Pearson, 1995; Rossignol et al., 2006). A nested architecture enables separation of task selection (starting, 114 

stopping, gait and speed), task coordination (e.g. generation of coordinated rhythmic leg movements) and 115 

stabilization in response to disturbances. As a first approximation of the hierarchical organization, CPGs 116 

generate rhythmic commands that act as feedforward signals for task coordination, whereas descending 117 

commands activate and modulate CPGs for task selection, and reflexes provide stabilizing responses to 118 

perturbations (Fig. 1). We will later see that neuromechanical models suggest more complexity, with 119 

sensory feedback also contributing to task coordination (Owaki et al., 2013; Thandiackal et al., 2021). 120 

Sensorimotor delays give rise to temporal scaling of control responses based on the spatial distribution of 121 

system elements (Fig. 1). Inner loops deal locally with perturbations, relying on fast peripheral mechanisms, 122 

including intrinsic mechanics (Brown & Loeb, 2000; Daley et al., 2007; Dickinson et al., 2000; Full & 123 

Koditschek, 1999; Jindrich & Full, 2002) and short-latency reflexes (Af Klint et al., 2010; Daley et al., 2009; 124 

Hiebert & Pearson, 1999; Moritz & Farley, 2004). Intermediate loops modify task-level variables, such as 125 

joint and leg stiffness, and outer loops integrate sensorimotor information in the brain to select and switch 126 

among different tasks and update internal models (see Glossary; Pearson & Gramlich, 2010). However, 127 



many uncertainties remain in how different control layers are integrated and modulated based on 128 

experience, learning and different locomotor contexts. 129 

 130 

There was a longstanding historical debate about the relative importance of feedforward and feedback in 131 

control of animal locomotion. Sherrington’s work on reduced animal preparations revealed that reflex 132 

actions could generate the component motions necessary for rhythmic walking (Sherrington, 1910). Thus, 133 

Sherrington argued that locomotion could be viewed as the result of a chain of reflexes (Sherrington, 1900, 134 

1906, 1910). Subsequent work by Graham Brown demonstrated that motor patterns for locomotion could 135 

be generated in deafferented preparations and did not require sensory input. Graham Brown argued that 136 

‘spinal centers’ (later named central pattern generators) acted as the primary unit of motor activity, not the 137 

reflex (Graham Brown, 1911, 1914). He suggested that the reflexes regulate rather than generate motor 138 

activity (Graham Brown, 1911). To this day, the relative roles of central and reflex-generated contributions 139 

to locomotion remain somewhat controversial; however, it has become clear that both mechanisms co-140 

exist and provide redundancy and flexibility in the system. 141 

 142 

Subsequent work has confirmed the existence and shared features of spinal CPGs across vertebrates (see 143 

Box 1). Vertebrates also share a common mechanism for descending drive to CPGs to control gait speed 144 

and initiation. Stimulation of the mesencephalic locomotor region, invokes gait initiation and gait 145 

transitions across species, inducing swimming in fish and walking in terrestrial animals (Cabelguen et al., 146 

2003; Grillner & Wallen, 1985; Shik et al., 1966; Steeves et al., 1987). As the strength of the stimulation 147 

increases, swimming speed increases in the fish, and a quadruped increases speed and transitions 148 

between gaits from a walk to trot to gallop (Shik et al., 1966; Wallén, 1982).  149 

 150 

In vertebrates, sensory feedback plays an essential role in entraining CPG rhythms to the mechanics of the 151 

body and the interaction with the environment. In the lamprey, periodic bending of the spinal cord results 152 

in entrainment (see Glossary) of the patterns of fictive locomotion (see Glossary), through sensory 153 

feedback from mechanosensitive edge cells in the spinal cord (Grillner et al., 1981; Grillner & Wallén, 1984). 154 

Similarly, proprioceptive feedback entrains gait rhythm and the timing of stance–swing transitions in 155 

quadrupedal gait (Pearson, 2008; Whelan, 1996). In decerebrate and spinal preparations (see Glossary), 156 

increasing belt speed leads to gait transitions from walk to trot and gallop, suggesting a role for sensory 157 

feedback entrainment in gait transitions (Barbeau & Rossignol, 1987; Forssberg et al., 1980; Kriellaars et 158 

al., 1994; Pearson, 2008; Whelan, 1996; Yanagihara et al., 1993). With increasing knowledge of the 159 

interneuronal networks and cellular mechanisms underlying sensorimotor control, it has become clear that 160 

sensory feedback is integrated at multiple levels: as distinct reflexes, as modulators of central pattern 161 

generation and integrating with longer-latency feedback loops to regulate navigation and task selection 162 

(Grillner & El Manira, 2019; Rossignol et al., 2006; Fig. 1). 163 

 164 

Diversity in the integration of feedforward, feedback and model-based neural control  165 

Recent evidence and modeling studies (see below) suggest that the relative contributions of feedforward 166 

and feedback can vary depending on size of the animal, speed, terrain and risks of falling. Below, we discuss 167 

emerging hypotheses about specialization and diversification of control components among vertebrates. 168 

Loosely speaking, we suggest two types of feedforward control, one in the spinal cord, based on CPGs, and 169 

one in higher brain centers, based on internal models, which we will here call (cephalized) model-based 170 

neural control (see Glossary). We call them both feedforward because they represent an anticipatory 171 

component as opposed to the reactive nature of feedback.  172 

 173 

Body size and scaling of neuromechanical delays 174 



Body size is one important source of diversity in control mechanisms for locomotion (Fig. 2). Sensorimotor 175 

loop delay increases with body size (M), in proportion to M0.21 (More et al., 2010, 2013; More & Donelan, 176 

2018). Large animals experience longer sensorimotor delays relative to movement durations compared 177 

with the same ratio in small animals. For example, at speeds near the trot–gallop transition, a shrew has a 178 

total delay of 10ms, 25% of its stance duration, but an elephant has a total delay of about 180 ms, 60% of 179 

its stance duration (More & Donelan, 2018). Delay relative to stance duration is important because this 180 

represents the time available to apply force for a corrective response to a disturbance. If an animal cannot 181 

respond to a disturbance within the stance phase, the response requires coordination of multi-step and 182 

multi-legged strategies, which involve longer-latency feedback loops. Delays therefore challenge the ability 183 

of large animals to respond effectively to perturbations, even though they have slower dynamics and step 184 

cycles compared to smaller animals (Mohamed Thangal & Donelan, 2020; More & Donelan, 2018). 185 

 186 

To compensate for the relatively longer delays, it is expected that larger animals rely more on model-based 187 

control, using sensory feedback and internal models in the brain to generate state estimates for stable 188 

movement. Internal models can allow animals to compensate for delayed and noisy sensory feedback to 189 

predict future states, enabling generation of appropriate motor outputs for stable movement (Todorov, 190 

2004; Todorov & Jordan, 2002; Wolpert & Ghahramani, 2000). The synaptic delays associated with internal 191 

model computations are a higher fraction of the total sensorimotor delay in very small animals (Thangal & 192 

Donelan, 2020; More & Donelan, 2018). Consequently, the benefits of model-based control may not 193 

outweigh the costs of increased computation times in small animals (Thangal & Donelan, 2020; More & 194 

Donelan, 2018). Thus, overall, it is expected that larger animals are likely to have more cephalized model-195 

based control, with higher brain involvement compared to small animals (Fig. 2), whereas small animals 196 

can achieve agile and robustly stable movement through more spinalized control mechanisms coupled to 197 

intrinsic mechanical preflexes (see Glossary). 198 

 199 

Spinalization versus cephalization of feedforward control may relate to mechanical stability and the time 200 

to locomotor maturity 201 

Although all vertebrates share similar component systems for locomotor control, a source of diversity 202 

among vertebrates is the degree of involvement of the brain and the complexity of descending drive 203 

modulation (Fig. 3). This distinction may be related to different developmental demands between precocial 204 

and altricial species (see Glossary). Precocial species tend to have relatively small brains as adults; 205 

whereas altricial species tend to have larger adult brain size (Bennett & Harvey, 1985; Garwicz et al., 2009). 206 

We hypothesize that these developmental differences may also be related to the relative degree of 207 

‘spinalization’ versus ‘cephalization’ of locomotor control. That is, precocial species have more spinalized 208 

locomotor control, relying mainly on spinal CPG networks as a feedforward controller, coupled to intrinsic 209 

mechanics of the body, with short-latency reflexes. In contrast, altricial species have more cephalized 210 

control, relying more on model-based control in the brain, with longer-latency reflexes updating internal 211 

models. Through experience and optimization, animals can optimize the use of efference copy (see 212 

Glossary) and sensory feedback to estimate current states and predict future states to determine desired 213 

motor outputs (Todorov, 2004; Todorov & Jordan, 2002; Wolpert & Ghahramani, 2000). Multiple brain 214 

regions may be involved in the generation, maintenance and updating of internal models, including the 215 

cerebellum and the posterior parietal cortex (Ito, 2008; McVea et al., 2009; Pearson & Gramlich, 2010). 216 

Multi-layered model-based control can overcome delays by predicting mechanical conditions over a wide 217 

range of contexts and adjusting feedforward commands through descending pathways (Nakahira et al., 218 

2021). 219 

 220 

The contrast between precocial and altricial species can be appreciated when comparing large ground 221 

birds (such as ostriches and rheas) to humans. Although birds and humans have independently evolved 222 



bipedalism, they have converged upon walking and running gaits with similar mechanical and energetic 223 

demands (Gatesy & Biewener, 1991; Roberts et al., 1998; Rubenson et al., 2004; Watson et al., 2011). Yet, 224 

they exhibit important differences in development and sensorimotor control features. Ground birds are 225 

precocial, able to walk and run very shortly after hatching (Muir et al., 1996; Muir & Chu, 2002; Y. U. Ryu & 226 

Bradley, 2009; Smith et al., 2010), whereas humans are exceptionally altricial, requiring many months of 227 

practice to walk without falling. We suggest that these developmental differences also reflect differences 228 

in spinalization versus cephalization of locomotor control. Birds have relatively more spinalized locomotor 229 

control compared to more cephalized control in mammals, including humans. Neurophysiological studies 230 

have demonstrated that spinal circuits are sufficient to generate complete locomotor patterns for self-231 

supported walking in birds (Ho & O’Donovan, 1993; Sholomenko et al., 1991; Sholomenko & Steeves, 1987; 232 

Ten Cate, 1960). Birds do possess a common descending pathway with other vertebrates, from the 233 

mesencephalic locomotor region to the spinal CPGs, but lack a direct telencephalic–spinal projection 234 

analogous to the mammalian corticospinal tract (Sholomenko & O’Donovan, 1995; Sholomenko & Steeves, 235 

1987; Steeves et al., 1987; Webster & Steeves, 1988). A recent study genetically silenced interneurons in 236 

the dorsal spinal tract in chicks, which increased kinematic variability in walking (Haimson et al., 2021), 237 

suggesting that sensory feedback and descending modulation contribute to stability of walking in birds.  238 

Nonetheless, locomotor control appears to be relatively more spinalized in birds compared to the more 239 

cephalized sensorimotor control observed in mammals. 240 

 241 

The relatively spinalized versus cephalized locomotor control in ground birds versus mammals, 242 

respectively, might represent different solutions to the problem of neural delays. Cephalization allows more 243 

sophisticated internal models and model-based control; this allows delays to be overcome by predicting 244 

mechanical conditions over a wide range of learned contexts and adjusting descending commands 245 

accordingly. In contrast, spinalization relies on simpler CPG-based feedforward control, with the feedback-246 

entrained rhythm providing estimates of current state and generation of motor output. We hypothesize that 247 

animals with more spinalized control also tend to have more intrinsically stable biomechanics (Fig. 3). 248 

Among bipeds, birds have a relatively flexed limb posture compared to humans, a forward horizontal 249 

position of the body and high elasticity in the distal leg muscles, features that increase mechanical stability 250 

(Badri-Spröwitz et al., 2022; Daley, 2018; Daley et al., 2009; Daley & Biewener, 2011; Daley & Birn-Jeffery, 251 

2018). Humans, in contrast, have a straight leg posture with the body vertically balanced over the hips, 252 

which is highly unstable without active control. 253 

 254 

Among quadrupeds there is also diversity in intrinsic mechanical stability that may relate to degree of 255 

cephalization versus spinalization of control. Large ungulates have parasagittal limb posture with relatively 256 

straight legs, a high body center of mass and a relatively narrow base of support. These features benefit 257 

locomotor economy by minimizing the active muscle force required to support body weight against gravity 258 

(Biewener, 1989). However, upright postures are relatively unstable compared to the sprawled posture and 259 

wide base of support typical of many amphibians and lizards (Alexander, 2002; Ijspeert, 2020). Note that 260 

here we mainly refer to static stability (see Glossary) rather than dynamic stability. At least at slow speeds, 261 

static stability in quadrupeds is proportional to the size of the support polygon, and inversely proportional 262 

to the ratio of body height to stance width (Alexander, 2002). We hypothesize that there is a control gradient 263 

in which mechanical stability enables spine-localized feedforward control, whereas mechanical instability 264 

is associated with brain-dominated feedforward control (Fig. 2). We also hypothesize that unstable animals 265 

require better proprioception for monitoring their posture and loads on limbs, and hence have a larger role 266 

for spinal sensing than mechanically stable animals. A similar hypothesis has been proposed in Ryczko et 267 

al. (2020). 268 

 269 

Proximo-distal differentiation in control 270 



Across diverse tetrapod animals, limbs have a proximo-distal distribution in muscle–tendon morphology, 271 

which may also result in differentiation in control mechanisms (Daley et al., 2007). The largest, most 272 

powerful muscles are proximal, concentrating mass near the body. Distal muscles have lower mass and 273 

high mass-specific force due to their short, pennate muscle fiber arrangement, and high in-series 274 

compliance (see Glossary). The pennate architecture of distal muscles leads to a load-sensitive 275 

architectural gear ratio (Azizi et al., 2008; Eng et al., 2018; Roberts et al., 2019), which is likely to make them 276 

sensitive to external perturbations. In contrast, the high inertia and lower compliance of the proximal 277 

muscles is likely to make them less sensitive to external perturbations. Based on these mechanical 278 

differences between proximal and distal muscles, we hypothesize that proximal muscles use higher-gain 279 

feedforward control, with length and position feedback entraining CPG rhythm, whereas distal muscles rely 280 

more on intrinsic mechanics (i.e. preflexes) and short-latency load and stretch reflexes (Fig. 4). Indeed, 281 

evidence from cats suggests that proximal muscles at the hip contribute to regulation of stance–swing 282 

transitions, whereas the distal ankle extensors use force feedback to regulate stance load bearing (Donelan 283 

& Pearson, 2004; Gorassini et al., 1994; Hiebert et al., 1994; Pearson et al., 1998). Modeling studies also 284 

support this hypothesis (Dzeladini et al., 2014; see below). 285 

 286 

Using neuromechanical simulations and biorobots to 287 

investigate animal motor control 288 

One theme that has emerged from neuromechanical studies is the importance of effective tuning of control 289 

to the biomechanical properties of the system and to physical interactions with the environment. However, 290 

the multi-layered, distributed and redundant nature of animal sensorimotor systems makes it challenging 291 

to rigorously understand the relationships and connections among the component systems through 292 

experiments alone. Neuromechanical simulations (i.e. numerical simulations of both neural circuits and 293 

bodies interacting with a virtual environment) can be useful tools to tackle these challenges and test 294 

hypotheses about animal motor control. Additionally, simulated neural circuits can also be tested in the 295 

real world with biomimetic robots used as physical models of animal bodies.  296 

Since the modeler is in control of all components, models are ideally suited to study motor control in 297 

animals with an integrative perspective, following Richard Feynman’s famous quote: “What I cannot create, 298 

I do not understand”. Neuromechanical simulations and biorobots present multiple interesting properties: 299 

(i) they allow the modeler to explicitly determine, implement and modify different components (e.g. 300 

feedback loops, CPGs, muscle models); (ii) they provide access to many internal states, including quantities 301 

which are impossible to measure in moving animals; (iii) they offer the option to systematically change 302 

some properties (e.g. sizes and masses); (iv) they allow for repeatable experiments; (v) they allow ‘what-if’ 303 

scenarios and testing of motor behaviors not observed in nature; and (vi) they allow for multiple types of 304 

perturbations and lesion studies. Modeling experiments benefit from an iterative approach, with iterations 305 

between animal studies, hypothesis design, model design, (numerical) experiments and predictions (Webb, 306 

2001). They are particularly useful for experiments that cannot be performed on real animals for practical, 307 

financial and/or ethical reasons.  308 

The use of neuromechanical simulations and robots to investigate animal behavior has a fairly long history 309 

and finds its roots in early work in cybernetics (Ashby, 1957; Wiener, 2019) and in robotics, for instance, 310 

with Grey Walter's tortoise robots (Walter, 1950, 1951). Other reviews have addressed the use of 311 

simulations and robots to investigate animal behavior (Dickinson et al., 2000; Floreano et al., 2014; Holmes 312 

et al., 2006; Ijspeert, 2014; Pearson et al., 2006; Webb, 2001, 2020; Ramdya and Ijspeert 2023). Here, we 313 



focus in particular on locomotion and on how simulations and robots can help in the investigation of the 314 

interactions between CPGs, sensory feedback loops and descending modulation, and more specifically on 315 

interactions between feedforward and feedback control.  316 

Models of lamprey swimming highlight the importance of the CPG in mechanically 317 

stable locomotion  318 

The lamprey represents a good example of how numerical modeling has contributed to decoding how 319 

neural circuits interact with the body to generate swimming.  A first contribution of numerical modeling has 320 

been to decipher the neuronal and network properties of rhythm generation in the local segmental circuits. 321 

The lamprey spinal cord is composed of approximately 100 segments and each segment contains neural 322 

oscillators (see Glossary) that are part of the locomotor CPG. Biophysical models of these segmental 323 

circuits have shown that several mechanisms play a role in rhythm generation, including contralateral 324 

inhibition, frequency adaptation and stretch-sensitive cells (Ekeberg et al., 1991; Hellgren et al., 1992; 325 

Traven et al., 1993; Wallén et al., 1992). The relative importance of these mechanisms likely depends on 326 

the cycle frequency, which varies extensively in the lamprey (Traven et al., 1993; Wallén et al., 1992). 327 

Numerical and mathematical models have also investigated the complete CPG circuits, and how traveling 328 

waves of neural activity are generated along the 100 segments of the spinal cord to produce forward 329 

swimming (Buchanan, 1992; Ekeberg, 1993; Ekeberg et al., 1995; Ijspeert, 1996; Williams, 1992a, 1992b; 330 

Cohen et al., 1982; Kopell et al., 1991; Kopell & Ermentrout, 1988; Williams et al., 1990). It is known that 331 

neurons in the local segmental oscillators project up and down the spinal cord, therefore creating couplings 332 

between oscillators. The models have shown that the most likely mechanisms to explain the phase lags 333 

between oscillators are asymmetries of inter-oscillator couplings, and that other potential explanations 334 

such as gradients of intrinsic frequencies and conduction delays are less likely. 335 

Finally, models of the lamprey spinal cord have also been connected to simulated bodies in the water, i.e. 336 

to form complete neuromechanical simulations (Fig. 5A), in order to relate CPG activity to actual swimming 337 

behavior (Ekeberg, 1993; Ekeberg et al., 1995; Ekeberg & Grillner, 1999; Ijspeert, 1996; Thandiackal et al., 338 

2021; Williams & McMillen, 2015). These neuromechanical simulations have demonstrated that the 339 

traveling waves of neural activity indeed generate forward swimming, and that modulating the descending 340 

drive signals applied to the CPG models can change the speed of swimming as well as induce turning, when 341 

symmetric and asymmetric left−right descending pathways are activated (Ekeberg, 1993). These 342 

simulations and robotic experiments (Ijspeert & Crespi, 2007) have shown that lamprey-like swimming can 343 

be obtained using CPG models without sensory feedback, supporting our hypothesis that CPGs play an 344 

important role in mechanically stable locomotion (Fig. 3). In this case the surrounding water provides a 345 

kind of mechanical stability (i.e. by preventing large accelerations). 346 

Note that sensory feedback still plays a useful role in lamprey swimming. Sensory feedback is necessary 347 

for handling perturbations in the water, and neuromechanical simulations have shown the role of stretch 348 

receptors (that provide feedback about curvature to the CPG) in coping with changes of flow velocity in the 349 

water (Ekeberg et al. 1995; Ijspeert et al., 1999). Thus, there are specific environments that can only be 350 

crossed when sensory feedback is included, and cannot be crossed with the CPG in open-loop. 351 

Remarkably, a lamprey-like robot (Fig. 5B; Thandiackal et al., 2021) has furthermore shown that local 352 

sensory feedback alone (in this case from pressure-sensitive cells in the lamprey skin) could synchronize 353 

the oscillators that comprise the CPG when direct coupling is removed. See Hamlet et al. (2023) for a 354 

similar finding in a neuromechanical simulation with stretch feedback. In other words, sensory feedback 355 



presents an alternative and redundant mechanism for traveling wave generation, separate from direct CPG 356 

coupling. This offers a high robustness against lesions, similar to that seen in eels, which can continue 357 

swimming despite full transection of the spinal cord (Wallén, 1982). It also suggests that inter-oscillator 358 

couplings might be less strong than previously thought (see discussion below).  359 

Models show that CPGs can induce transitions between swimming and walking in 360 

amphibians 361 

The transition between swimming and walking has been studied in the salamander using neuromechanical 362 

simulations and robots (Fig. 5C), (Bicanski et al., 2013; Ijspeert, 2001; Ijspeert et al., 2007; Karakasiliotis et 363 

al., 2013, 2016; Knüsel et al., 2020). Because of its amphibious locomotion, the salamander represents an 364 

interesting animal to study the transition from water to ground locomotion and to create a bridge between 365 

aquatic and terrestrial vertebrate studies (Ryczko et al., 2020). 366 

Modeling studies in salamanders have demonstrated that the transition from swimming to ground 367 

locomotion can, in principle, be obtained by extending an undulatory swimming circuit with neural 368 

oscillators for the limbs, rather than by creating a completely new locomotor circuit for ground locomotion 369 

(Ijspeert, 2001; Ijspeert et al., 2007). Modeling reveals that the modulation of two descending drives applied 370 

to the left and right sides of the simulated circuits can vary speed, heading and even the type of gait in the 371 

simulated and robotic bodies. Thus, the patterns generated by CPGs are not rigidly fixed but can be 372 

modulated extensively for adaptive locomotion. Modeling also shows that for simple environments, 373 

locomotion can be generated purely in open-loop, i.e. using CPG models without sensory feedback (Ijspeert 374 

et al., 2007). This is due to the high mechanical stability of the sprawling posture of salamanders, with a 375 

large support polygon and a low center of mass. This therefore supports our hypothesis that mechanically 376 

stable locomotion can largely be CPG-driven (Fig. 3). But sensory feedback loops also play an important 377 

role. Local proprioceptive (stretch) feedback can reduce the variability of intersegmental phase lags toward 378 

values appropriate for locomotion and can simplify the generation of different motor behaviors (Knüsel et 379 

al., 2020). Furthermore, sensory feedback could, in principle, also replace direct coupling of CPG oscillators 380 

(Suzuki et al., 2021), similarly to what has been found for lamprey-like swimming (Thandiackal et al., 2021) 381 

Models of mammalian legged locomotion inform our understanding of sensory 382 

feedback and task coordination  383 

The importance of sensory feedback in mammalian legged locomotion has been investigated by Ekeberg 384 

and Pearson who developed a neuromechanical simulation of cat (Fig. 5E) with a focus on hindlimbs 385 

(Ekeberg & Pearson, 2005). They studied two types of feedback involved in determining the duration of the 386 

stance in a leg: one proportional to limb loading and the other proportional to hip extension. Their model 387 

did not include a CPG. The study showed that these two types of sensory feedback can generate interlimb 388 

coordination corresponding to an alternating gait and can handle irregular terrain. The findings also 389 

suggested that limb loading is more important than hip extension in providing sensory feedback. A related 390 

study investigated the role of hip extension feedback and CPGs in rat locomotor adaptation to split-belt 391 

conditions, in which the right and left legs are on belts with different speeds (Fujiki et al., 2018). Under these 392 

conditions, hip extension could be used as a phase-resetting signal to keep the CPG entrained with the 393 

mechanical movements of the legs, such as to adapt to the split-belt conditions. These findings are 394 

consistent with the hypothesized proximo-distal differentiation in control mechanisms summarized in Fig. 395 

4. 396 



Controllers inspired by animal CPGs and reflex loops have become popular for the control of legged robots 397 

and have also provided new scientific insights (Aoi et al., 2017; Bellegarda & Ijspeert, 2022; Fukuoka et al., 398 

2003; Manoonpong et al., 2007). For instance, load feedback similar to that of Ekeberg and Pearson was 399 

used to generate different gaits on a quadruped robot (Fig. 5D) (Owaki et al., 2013; Owaki & Ishiguro, 2017). 400 

Each limb was driven by a local oscillator without direct coupling to other oscillators, representing CPGs 401 

without direct couplings. Local loading feedback was sufficient to generate stable gaits, showing the 402 

importance of the body and physical interactions as mechanisms for synchronizing CPGs. Interestingly, 403 

transitions between walking, trotting and galloping gaits could be produced by simply increasing the 404 

frequency of the oscillators, as previously shown in decerebrated cats (Shik et al., 1966). This shows the 405 

potential role of sensory feedback as a task coordination mechanism (in addition to a role in perturbation 406 

responses). Similar principles have been shown in insect models, for instance, for the stick insect (Cruse, 407 

1990; Cruse et al., 1995; Daun-Gruhn, 2011; Schilling et al., 2013). 408 

More detailed models of mammalian CPGs have been developed by Rybak and colleagues (Danner et al., 409 

2016, 2017; Markin et al., 2016; Rybak et al., 2015). These models reveal how CPG circuits with two layers, 410 

one for rhythm generation and the other for pattern formation, can produce several features of quadruped 411 

locomotion in open loop (without a body); even gait transitions can be produced by the activation of specific 412 

descending pathways (Danner et al., 2017). Thus, it appears that multiple mechanisms could explain gait 413 

transition (consistent with our view that animal neuromechanical systems show high redundancy); some 414 

transitions are mainly induced through descending modulation, whereas others are mainly driven by 415 

sensory feedback. The development of new full-body models of mammalian musculoskeletal systems (see, 416 

for instance, Tata Ramalingasetty et al., 2021), will allow the community to investigate gait generation and 417 

modulation in more detail. Overall, evidence suggests that CPGs and sensory feedback are equally 418 

important in gait generation in quadruped mammals. It is likely that gaits in complex environments require 419 

more complex modulation of descending pathways than in simple environments, and therefore involve 420 

more cephalized, rather than spinalized, control. Similarly, slow gaits might require more descending 421 

modulation than fast gaits, to allow the animal to maintain posture and balance (Fig. 3). 422 

Numerical models suggest that biped locomotion relies more on sensory feedback than 423 

on CPGs 424 

Some of the first neuromechanical simulations of biped locomotion were developed by Taga and 425 

colleagues (Taga, 1995, 1998; Taga et al., 1991). These simulations of human walking demonstrated how 426 

robust locomotion could emerge from the interaction of CPGs and reflexes. Multiple studies have since 427 

explored the interplay of CPGs and reflexes in biped locomotion with simulations and robots (Aoi et al., 428 

2019; Fujiki et al., 2015; Geyer & Herr, 2010; H. X. Ryu & Kuo, 2021; Van der Noot et al., 2018, 2019). A 429 

particularly influential neuromechanical model developed by Geyer and Herr (2010) demonstrated that a 430 

limited number of reflexes can generate stable locomotion without the need for CPG circuits (Fig. 5G). The 431 

simulated gaits closely match human gait recordings in terms of joint kinematics, ground reaction forces 432 

and muscle activities. Although the model did not include a CPG, it did depend on a finite-state machine 433 

that selectively activates and deactivates reflexes, so that they are only active at particular phases of the 434 

locomotor cycle. One could argue such a gating mechanism represents a similar function as a CPG and 435 

could in fact be implemented in a CPG circuit. 436 

The Geyer and Herr model has inspired several follow-up models to investigate gait modulation (Dzeladini 437 

et al., 2014; Ramadan et al., 2022; Russo et al., 2021; Song & Geyer, 2015), 3D walking and running (Wang 438 

et al., 2012), and locomotor pathologies (Bruel et al., 2022; Ong et al., 2019; Song & Geyer, 2018). Control 439 

of speed is difficult to achieve with a purely sensory-driven circuit, as it requires the modulation of multiple 440 



reflex gains with non-linear functions. Dzeladini et al. (2014) demonstrated that adding CPG circuits to the 441 

sensory-driven model of Geyer and Herr could simplify the control of speed (Fig. 5H). They achieved speed 442 

regulation over a large range using simple drive signals that modulated the frequencies and amplitudes of 443 

the CPG oscillations. Interestingly, they obtained the best speed control by adding oscillators only to the 444 

muscles controlling the hip joints. These simulations support the hypothesis proposed by Daley et al. 445 

(2007) – based on perturbations to running gaits of birds – that proximal joints are controlled with higher-446 

gain feedforward (CPG) signals and distal joints are controlled by higher-gain feedback signals (Fig. 4). 447 

Overall, it is clear from these simulation studies that sensory-feedback loops are essential for human 448 

locomotion, supporting our hypothesis that mechanically unstable locomotion is more sensory driven than 449 

CPG driven (Fig. 3). CPGs are likely to contribute mainly to speed and gait modulation. Interestingly, the 450 

simulations of Geyer & Herr (2010) and most follow-up simulations are not capable of producing slow and 451 

very slow walking, because the simulated models simply fall. This suggests more sophisticated balance 452 

control mechanisms are missing in the models, and hence these models do not yet properly implement the 453 

more important role of descending modulation that we hypothesize for unstable locomotion (Fig. 3). 454 

The neuromechanics of bipedal locomotion of birds has been less commonly modeled than human 455 

locomotion. One neuromechanical simulation study demonstrated that the sensory-driven control 456 

architectures of Geyer & Herr (2010) and Wang et al. (2012) could be adapted to control an ostrich-like 457 

body (Geijtenbeek et al., 2013). A number of bird-like robots have also been developed (Apgar et al., 2018; 458 

Badri-Spröwitz et al., 2022; Pratt et al., 2001). Among these, BirdBot is particularly interesting, because it 459 

implements a bird-inspired tendon system that uses mechanical coupling to control leg stiffness in the 460 

stance and swing phases (Fig. 5F). The mechanically coupled design provides self-stable and energy-461 

efficient walking and running with simple CPG-based control and no sensory feedback, highlighting 462 

intrinsically stable features of the avian distal limb. This represents therefore another source of 463 

redundancy, in which the intrinsic musculoskeletal mechanics contributes to intralimb coordination and 464 

balance, aspects that are often considered to be pure control problems. 465 

Open questions 466 

Here, we have reviewed historical and current perspectives on the organization of locomotor circuits based 467 

on experimental and modeling evidence. Although there are shared features of the component elements 468 

across vertebrates, there is also diversity in the relative contributions of these components. We have 469 

proposed several hypotheses about how the respective roles of CPGs, reflexes and descending modulation 470 

vary across vertebrates: depending on body size, the mechanical instability of gaits, the speed of 471 

locomotion and the developmental time to locomotor maturity. We have also hypothesized that these roles 472 

can vary within the body, between proximal to distal joints, and depending on the speed and gait. However, 473 

to rigorously confirm or reject these hypotheses, we need further integration of animal experiments and 474 

neuromechanical simulations. 475 

Numerical models can be particularly useful to test some of these hypotheses. For instance, 476 

neuromechanical simulations of a pendulum (which can be viewed as a very simple model of a leg) have 477 

shown that periodic behaviors can be obtained by either purely feedback or purely feedforward (CPG-478 

based) mechanisms; however, circuits that combine both feedback and feedforward contributions are 479 

more robust against unexpected disturbances and sensorimotor noise (Kuo, 2002). Similar results are 480 

obtained with a simulation of biped locomotion (Ryu & Kuo, 2021). An interesting proposition from Kuo and 481 

colleagues is that CPGs can be viewed as ‘state estimators’ that predict the state of limbs (and therefore 482 



sensory signals). Based on this, a CPG could be viewed as a “filter for processing sensory information 483 

rather than as a generator of commands” (Kuo, 2002). In our view, this perspective underestimates the role 484 

of CPGs in coordinating and modulating locomotion (e.g. for regulating speed, gait and heading), but it has 485 

the merit of analyzing the tradeoff between feedforward and feedback control using rigorous optimal 486 

estimation principles. Importantly, the potential roles of the CPG as a pattern generator and a state 487 

estimator are not necessarily mutually exclusive – CPGs may act as a type of internal model that filters 488 

sensory inputs, estimates current state and generates rhythmic outputs based on current state estimates. 489 

Another important open question is related to the degree of centralization of locomotion control and to the 490 

strength of inter-oscillator couplings within and across animals (Aoi et al., 2017; Holmes et al., 2006; Neveln 491 

et al., 2019; Revzen et al., 2009). Historically, fictive locomotion experiments gave the impression that 492 

locomotor patterns were mainly generated by CPGs, and that inter-oscillator couplings serve as the 493 

mechanism for inter-joint coordination. However, as presented above, modeling has shown that sensory 494 

feedback is another mechanism for synchronization that can replace inter-oscillator couplings (Cruse et 495 

al., 1995; Owaki et al., 2013; Thandiackal et al., 2021, Suzuki et al 2021). Biological evidence also shows 496 

that local sensory feedback is directly integrated into segmentally distributed CPGs (Grillner et al., 1981; 497 

Grillner & Wallén, 1984; Pearson, 2008; Rossignol et al., 2006; Whelan, 1996). Inter-oscillator couplings 498 

might therefore be weaker than previously thought. This relatively decentralized control organization would 499 

allow for flexible motor patterns to be adapted to environmental constraints, through sensing and 500 

modulation of descending pathways. 501 

Neveln et al. (2019) have proposed an interesting framework based on mutual information to quantify 502 

centralization in animal locomotion, which could help systematically investigate the degree of 503 

centralization across species and conditions. They suggest that locomotor coordination “could either be 504 

achieved through strong, global coupling with dense connections between components” – representing 505 

high centralization – or “through weak, local coupling with sparse connections”, representing low 506 

centralization. Furthermore, centralization can also be affected by the strength of mechanical coupling and 507 

the organization of sensory feedback, whether it is processed centrally or locally (Holmes et al., 2006). They 508 

tested their approach in simulation, with robots, and in cockroach experiments. This model-free, empirical 509 

method of quantifying centralization will be useful for analyzing future neuromechanical models and 510 

animal experiments. It is likely that the level of centralization depends on the morphology and stability of 511 

locomotion, as well as on environmental conditions (speed of locomotion and complexity of the 512 

environment). Consistent with this, the strength of coupling between legs appears to be speed-dependent 513 

in invertebrates (Drosophila), with no coupling at low speeds of walking and high coupling at high speeds 514 

(Berendes et al 2016). Further research is needed to clarify the mechanisms that enable variation in 515 

coupling strength with speed, and to understand the diversity of oscillator coupling strengths across 516 

species with varying locomotor demands. 517 

Concerning descending modulation, we do not yet know exactly how many independent descending 518 

pathways exist, how many local spinal locomotor circuits they project to (global versus local joint-specific 519 

projections), and their effect (activating oscillators, changing a joint offset or modulating reflexes, for 520 

instance). From several studies (Arber & Costa, 2022; Ferreira-Pinto et al., 2018; Rossignol et al., 2006), we 521 

know that descending projections present a mix of these properties. Modeling studies have started 522 

exploring how different aspects of legged locomotion (e.g. frequency, step size, ground clearance and 523 

others) can be modulated by descending pathways (Song & Geyer 2015, Bellegarda & Ijspeert 2022, 524 

Ramadan et al. 2022). But more studies are needed to investigate the diversity of descending pathways 525 

across species and how they relate to motor behaviors and mechanical features of the body. Decoding 526 

descending pathways will be particularly important in allowing us to understand what types of voluntary 527 



movements an animal can perform (for instance, for gait transitions and for limb placement in visually 528 

guided locomotion). Animals can smoothly switch between steady-state locomotion and highly modulated 529 

locomotion as needed when crossing a complex terrain. It is likely that this is done by switching from 530 

activating a small number of descending pathways to more complex time-varying activations of multiple 531 

descending pathways. This is related to the concept of relatively spinalized versus cephalized control, 532 

discussed above. Also, some animals appear to be better than others at performing fine-tuned movements, 533 

and this may reflect a higher number of descending pathways and a larger role of descending modulation 534 

in mammals than in amphibians, for example (Fig. 3). Integration of experimental and modeling work is 535 

needed to test these ideas.  536 

Conclusions and outlook 537 

We envision a bright future for the next 100 years of research in this area, with exciting opportunities to 538 

integrate experiments and modeling to address open questions about the neuromechanical control of 539 

locomotion. Thanks to new imaging techniques and genetic identification methods, future full atlases and 540 

connectomes of spinal circuits and descending and ascending pathways will be tremendously useful to 541 

improve our understanding of the underlying circuits involved in vertebrate locomotion. For instance, by 542 

quantifying the proportion of sensory neurons within the spinal cord and the number of independent 543 

descending pathways (Arber & Costa, 2022; Ferreira-Pinto et al., 2018), it will be possible to more 544 

quantitatively estimate the respective roles of sensory feedback, CPG and descending modulation across 545 

different vertebrate animals. We hope that these techniques will not be limited to classic genetic model 546 

animals (e.g. zebrafish and mice), but also used extensively across diverse species to allow comparison 547 

between different morphologies and locomotor modes. In particular, compared to the rich literature on 548 

terrestrial locomotion, there has been relatively little research on diversity of sensorimotor control 549 

mechanisms among flying vertebrates, which is an important area for further study.  550 

Additionally, advances in opto- and chemogenetic techniques represent a tremendous opportunity to 551 

selectively activate or deactivate specific cell types, performing experiments that were previously possible 552 

only in simulation. There are exciting opportunities for new ‘virtual twin’ experiments that combine 553 

experimental technologies and computing power for simulations; for example, by creating 554 

neuromechanical simulations that replicate animal behavior in real-time, it could become feasible to 555 

conduct state-dependent animal experiments, in which a perturbation is applied when a modeled internal 556 

state from the simulation (e.g. tension in a tendon or phase of an oscillator) reaches a specific threshold. 557 

It might also become possible to create hybrid experiments in which a spinal cord preparation is connected 558 

in closed loop with a musculoskeletal simulation moving in a virtual physics-based environment. In such 559 

an experiment, recorded activity from ventral roots would be used to activate simulated muscles, and virtual 560 

sensory signals from the simulated moving body would be used to stimulate sensory neurons. Such 561 

preparations would allow one to record and investigate spinal cord circuits with all the technologies 562 

available for controlled bench experiments while still approximating in vivo conditions of unconstrained 563 

locomotion. These kinds of integrative studies will be essential for testing hypotheses about of the 564 

fundamental principles of locomotion in vertebrates, understanding how control varies among species, and 565 

for guiding functional restoration and therapeutic approaches such as electric epidural stimulation (van 566 

den Brand et al., 2012; Wagner et al., 2018).  567 



Figure legends: 568 

Figure 1.  Schematic of the neuromechanical system of vertebrates, including the brain, descending 569 
drive, spinal networks and intrinsic musculoskeletal mechanics. Temporal scaling of control arises from 570 
the spatial distribution of the system components and delays inherent to animal sensorimotor systems.  571 
Central pattern generators (CPGs) in the spinal column receive relatively simple descending signals and 572 
generate complex rhythmic motor outputs. The CPG rhythm is entrained by sensory feedback in intact 573 
animals but generates fictive locomotor patterns in the absence of feedback. Sensory feedback acts in 574 
multiple layers, through 1) short-latency monosynaptic reflexes, 2) entraining CPGs, 3) longer latency 575 
multi-synaptic sensory feedback, and 4) ascending pathways that contribute to internal models, task 576 
planning and modulation of descending commands. Efferent copy from the spinal networks also 577 
contributes input into internal models, enabling prediction of sensory signals that are compared to 578 
sensory feedback. The plus symbol indicates summation of multiple signal paths to the motor neurons 579 
(MN).  580 
 581 
Figure 2 Hypothesized differences in the integration of mechanics and control between small and large 582 
animals. A) Estimated differences in delays between a shrew and an elephant (More and Donelan 2018; 583 
Thangal & Donelan, 2020). Small animals have faster reflex responses relative to movement durations, 584 
but synaptic delays are a larger fraction of reflex delays (More and Donelan 2018). Large animals have 585 
relatively longer inertial delays (Thangal & Donelan, 2020). B) These differences may lead small animals 586 
to rely more on reflex feedback, with higher-gain short-latency reflexes (indicated by thicker arrows in B) 587 
and intrinsic mechanical preflexes for corrective responses. C) In contrast,  inertial delays exceed reflex 588 
delays in the largest animals, suggesting that reflexes and intrinsic mechanics may not be sufficient to 589 
allow stable corrective responses. Consequently, it is expected that large animals must rely more on 590 
higher-gain sensory input to internal models for predictive control (indicated by thicker arrows in C). 591 
Predictive control is enabled by computations in the brain involving many synapses. The ratio of reflex 592 
delay to synaptic delay is much greater in large animals compared to small animals, suggesting a lower 593 
penalty for increased computational complexity. 594 
 595 
Figure 3: Hypothesized control gradients in the diversity of animal locomotion. A) We hypothesize that 596 
the relative roles of spinal sensing and reflexes, CPGs and descending modulation vary among species 597 
and between gaits depending on several factors: size, static mechanical stability/instability (estimated 598 
based on the ratio between the height of the center of mass and the size of the support polygon), cycle 599 
period, which decreases with speed, and time to locomotor maturity, which varies substantially between 600 
precocial and altricial species. Animals on the left of these axes rely more on CPGs whereas animals on 601 
the right rely more on spinal sensing and reflex, and on descending modulation. We hypothesize that the 602 
functional gradients shown exist across taxa; nonetheless, phylogenetic differences are not represented 603 
here, and the contributions of descending control likely vary substantially among taxa. The gradients 604 
should be interpreted conceptually rather than as an absolute scaling. B) Static mechanical instability is 605 
related to the ratio of the height of the center of mass compared to the size of the support polygon. 606 
 607 
Figure 4. Hypothesized proximo-distal differentiation in the balance of feedforward and feedback 608 
control of limb muscles. Due to differences in muscle–tendon architecture and inertia of the proximal 609 
versus distal limb, it is expected that proximal muscles exhibit higher-gain feedforward control, with 610 
length and position feedback entraining the rhythm of the CPG oscillators, influencing stance and swing 611 
frequencies. In contrast, distal muscles, with higher compliance and lower inertia, are expected to have 612 
higher-gain short-latency reflexes, and higher contributions from intrinsic mechanics (‘preflexes’). The 613 
width of the arrows showing the reflexes (purple) and CPG (green) are proportional to the hypothesized 614 
gains. For clarity, the peripheral circuits are drawn only for the flexors, but similar connections exist for 615 
the extensors. The plus symbol indicates summation of multiple signal paths to the motor neurons (MN).  616 
 617 
Figure 5. Robots and neuromechanical simulations. Multiple robots and neuromechanical simulations 618 
have been used to investigate the roles of CPGs, sensory feedback and mechanical properties in the 619 
generation of animal locomotion. (A) Ekeberg (1993), image used with permission from Springer Nature. 620 



(B) Thandiackal et al. (2021). (C) Ijspeert et al. (2007) and Crespi et al. (2013), image used with 621 
permission from IEEE. (D) Owaki et al. (2013), image used with permission from The Royal Society 622 
Publishing. (E) Ekeberg and Pearson (2005), image used with permission from the American 623 
Physiological Society. (F) Badri-Sprö witz et al. (2022), image reprinted with permission from AAAS. (G) 624 
Geyer and Herr (2010), image used with permission from IEEE. (H) Dzeladini et al. (2014). 625 
 626 

Glossary  

 

Altricial:  Animals that take extended time after birth to reach locomotor maturity. 

 

Central pattern generator (CPG): Neural circuits that can generate the basic rhythmic motor 

patterns for movement and breathing without any sensory inputs. These circuits produce periodic 

signals that are often mathematically modeled as oscillators (see below). A defining feature of a 

CPG is that it can generate a periodic motor output without a periodic input. 

 

Compliance: Elastic deformation of a mechanical system. Compliance can be viewed as the 

opposite of stiffness. 

 

Control theory: Field of applied mathematics that deals with the control of dynamical and 

engineered systems. 

 

Decerebrate preparations: An experimental manipulation in which cerebral brain function is 

eliminated by transection or removal of the cerebrum. The extent to which longer-latency feedback 

pathways remain intact or eliminated depends on the specific location of the transection.  

 

Dynamic stability:  Stability of a gait that requires movement to prevent falling (as opposed to static 

stability, see below). Typically, a dynamically stable gait exhibits convergence to a limit cycle 

behavior, namely periodic behavior that is robust against (small) perturbations. 

 

Efferent copy: A copy of the motor signals that are used as inputs to internal models to predict 

dynamics and sensory feedback. 

 

Entrainment: Synchronization of oscillatory dynamical systems such that they converge to the same 

frequency and therefore to constant phase differences. Two dynamical systems can mutually 

entrain each other (and converge to a frequency that is typically an average of their intrinsic 

frequencies), or one dynamical system can entrain another (and impose its intrinsic frequency on 

the other). 

 

Feedback control: A control pathway in which sensory signals are returned back to generate an error 

signal that regulates the input commands towards desired output dynamics. 

 

Feedforward control: A control pathway that generates a predefined command signal based on the 

anticipated load and dynamics of the system. In this article, we discuss two types of feedforward 

control mechanisms: spinal CPGs and supraspinal internal models. 

 

Fictive locomotion: The generation of the basic rhythmic muscle activation patterns required for 

locomotion in isolated spinal cords, such as the alternating activation of flexors and extensors in the 



leg of walking animals or the transmission of an undulatory wave down the body in swimming 

animals.  

 

Internal models: Internal neural representations that can predict the interactions between the 

nervous system, the musculoskeletal system and the environment. Forward internal models can 

predict causal relationships between actions and their consequences. Inverse internal models can 

predict which actions are needed to reach particular consequences. 

 

Model-based control: Control architecture that uses internal models for performing anticipatory (as 

opposed to reactive) movements. An example of model-based control in robotics is model-predictive 

control, which uses a model of the robot and an optimization criterion to define motor commands 

over a finite-time horizon. 

 

Neuromechanics: The scientific field focused on the interactions between biomechanics of the 

musculoskeletal system and sensorimotor control and their integration for robust and agile 

movement.  

 

Oscillators: Dynamical systems or neural networks that exhibit stable limit cycle behavior, i.e. they 

produce periodic signals.  

 

Precocial: Animals that locomote effectively shortly after birth. 

 

Preflexes: The intrinsic dynamic properties of the musculoskeletal system in its activated state that 

automatically stabilize movements through visco-elastic properties. These form a kind of zero-delay 

feedback stabilizing movement.  

 

Sensorimotor delay: The time lag between the onset of a mechanical perturbation and its reception 

by a sensory organ to the development of peak muscle force in response to the perturbation. It 

includes sensing delay, nerve conduction delay, synaptic delay, neuromuscular junction delay, 

electromechanical delay and muscle force development delay.  

 

Spinal preparations: An experimental manipulation in which the brain and brainstem function are 

completely removed by transection of the spinal cord, typically in the thoracic region. 

 

Static stability: Stability of a posture or a gait in which the center of mass is always maintained 

above the (possibly time-varying) support polygons formed by the contacts between the limbs (or 

any body parts) and the ground. An animal that is statically stable will not fall when it freezes its 

posture. 
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Box 1: Central Pattern Generators (CPGs) 

CPGs play important roles in the generation of coordinated motor patterns for both vertebrate 
and invertebrate locomotion. CPGs are neural circuits that can generate the basic rhythmic 
motor patterns for movement and breathing without any sensory inputs. Locomotor CPG 
circuits are located in the spinal cord of vertebrates (Grillner and El Manira, 2019), and in the 
ventral nerve cord of invertebrates (Mantziaris et al., 2020). The existence of CPGs has been 
demonstrated across diverse vertebrate species through the observation of fictive locomotion 
in spinal preparations, with all inputs from the brain and periphery transected (Gray, 1936; Gray 
and Lissmann, 1940; Grillner and Wallén, 1982; Ho and O’Donovan, 1993; Sholomenko et al., 
1991; Sholomenko and Steeves, 1987; Ten Cate, 1964, 1965). The CPG circuits in the isolated 
spinal cord generate fictive swimming in aquatic species (e.g. lamprey, zebrafish), fictive 
walking in terrestrial species (birds, mammals), and both fictive swimming and fictive walking 
in amphibious species (e.g. salamanders) (Chevallier et al., 2008; Fetcho and McLean, 2010; 
Grillner and El Manira, 2019; Grillner and Wallen, 1985; Ryczko et al., 2010; Whelan, 1996). 
Genetic studies have identified specific subpopulations of interneurons involved in rhythm 
generation that are conserved across vertebrates (Grillner and El Manira, 2019; Kiehn, 2016; 
Rybak et al., 2015). Locomotor CPGs are distributed segmentally along the spinal cord as 
interconnected rhythmic units (Grillner et al., 1995; Kiehn, 2016; McLean and Dougherty, 2015; 
Rybak et al., 2015), typically one per pair of antagonist muscles or even one per muscle (Cheng 
et al., 1998). Specific ventrolateral regions of the spinal cord generate flexor/extensor 
alternation, and specific ventromedial interneurons generate left/right coordination (Kiehn, 
2016; McLean and Dougherty, 2015). Note that although there is no direct evidence of CPG 
circuits in humans, there is ample indirect evidence that humans possess CPG circuits similar 
to those of other vertebrate species (Minassian et al., 2017). 
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Neuromechanical
simulation of lamprey:
CPG circuits can control
speed and heading
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