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RESEARCH Open Access

VALENCIA: a nearest centroid classification
method for vaginal microbial communities
based on composition
Michael T. France1,2, Bing Ma1,2, Pawel Gajer1,2, Sarah Brown1,3, Michael S. Humphrys1,2, Johanna B. Holm1,2,
L. Elaine Waetjen4, Rebecca M. Brotman1,3 and Jacques Ravel1,2*

Abstract

Background: Taxonomic profiles of vaginal microbial communities can be sorted into a discrete number of categories
termed community state types (CSTs). This approach is advantageous because collapsing a hyper-dimensional taxonomic
profile into a single categorical variable enables efforts such as data exploration, epidemiological studies, and statistical
modeling. Vaginal communities are typically assigned to CSTs based on the results of hierarchical clustering of the
pairwise distances between samples. However, this approach is problematic because it complicates between-study
comparisons and because the results are entirely dependent on the particular set of samples that were analyzed. We
sought to standardize and advance the assignment of samples to CSTs.

Results: We developed VALENCIA (VAginaL community state typE Nearest CentroId clAssifier), a nearest centroid-based
tool which classifies samples based on their similarity to a set of reference centroids. The references were defined using a
comprehensive set of 13,160 taxonomic profiles from 1975 women in the USA. This large dataset allowed us to
comprehensively identify, define, and characterize vaginal CSTs common to reproductive age women and
expand upon the CSTs that had been defined in previous studies. We validated the broad applicability of
VALENCIA for the classification of vaginal microbial communities by using it to classify three test datasets
which included reproductive age eastern and southern African women, adolescent girls, and a racially/ethnically and
geographically diverse sample of postmenopausal women. VALENCIA performed well on all three datasets despite the
substantial variations in sequencing strategies and bioinformatics pipelines, indicating its broad application to vaginal
microbiota. We further describe the relationships between community characteristics (vaginal pH, Nugent score) and
participant demographics (race, age) and the CSTs defined by VALENCIA.

Conclusion: VALENCIA provides a much-needed solution for the robust and reproducible assignment of vaginal
community state types. This will allow unbiased analysis of both small and large vaginal microbiota datasets,
comparisons between datasets and meta-analyses that combine multiple datasets.
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Introduction
It is human nature to group objects and observations
into categories based on their commonalities [1]. Doing
so allows us to identify similarities and provides a uni-
fied framework for thought. This approach is particularly
useful when the underlying set of objects or observations
are multidimensional and difficult to grasp through in-
tuition. When confronted with the diversity present in
the microbial communities that inhabit the human
body, microbiome scientists have often turned toward
categorization [2]. These communities routinely include
hundreds of species with a long tail of taxonomic diver-
sity [3]. Variation in the community composition be-
tween specific body sites and individuals can be high,
leading many to suggest that each person has their own
“microbial fingerprint” [4]. Yet commonalities exist in
the taxonomic compositions of these diverse communi-
ties and have enabled their categorization into types.
This approach has been widely applied to human en-
teric [5, 6], vaginal [7, 8], skin [9], lung [10], and oral
microbial communities [11] and has provided critical
insights into the structure, function, and epidemiology
of the human microbiome.
Hierarchical clustering (HC) is perhaps the most com-

mon approach used to categorize microbiota based on
their composition and is performed on a matrix contain-
ing the distance between all pairwise combinations of
samples. This approach is problematic for at least two
reasons. First, the samples are typically clustered only
within the study, complicating the interpretation of the
findings in the context of other studies. This is especially
problematic given the increasing volume of studies pub-
lished on the human microbiome [12]. Second, because
HC relies on pairwise distances between samples, the
categories provided are entirely dependent on the particular
set of samples included in the clustering. This means that
assignments derived from HC can be unstable [13]. Re-
moving a single sample from the dataset has a cascad-
ing effect on the assignment of the remaining samples.
To overcome these limitations, we developed a nearest
centroid classification algorithm to reproducibly place
microbial communities into categories based on their
composition and structure. This approach leverages a
training dataset to define the centroid of each category
and then places new data into categories based on the
centroid to which they bear the highest similarity. It
has been used previously to categorize proteins based
on mass spectrometry data [14] and tumor subtypes
based on gene expression patterns [15]. The resulting
assignments are not dependent on within-study com-
parisons and therefore do not suffer from the same
limitations as those provided by HC. Nearest centroid
classification assignments are generally robust and can
be compared across studies.

To demonstrate the utility of the nearest centroid clas-
sification, we implemented it for the assignment of vagi-
nal microbial community profiles to community state
types (CSTs). The concept of CSTs was introduced in
2011 by Ravel et al. to categorize vaginal microbial com-
munities routinely observed among reproductive age
women [7], and built upon prior methods to categorize
these communities [16]. That study, and many subse-
quent studies [7, 17–21], have indicated that there are at
least five vaginal CSTs, four of which are each domi-
nated by different Lactobacillus spp. and another charac-
terized by a more even community of facultative and
obligate anaerobic bacteria (some studies have also dis-
tinguished subtypes within this CST [22]). Additional
longitudinal studies have demonstrated that there can be
a high degree of variation in community composition
within a reproductive age woman over time [22–24],
making it more appropriate to think of CSTs as a snap-
shot of the community at the time of sampling (i.e. state
type) rather than a “type” which implies it is static over
time. The dimensionality reduction provided by the CST
approach has allowed epidemiologists to link variation in
the vaginal microbiota with vaginal inflammation [25],
STI occurrence [21, 26, 27], Candida detection [28],
signs of vaginal atrophy [29], and increased risk of pre-
term birth [30].
To develop our nearest centroid classifier, we lever-

aged a large dataset of vaginal bacterial community pro-
files as defined by 16S rRNA gene amplicon sequencing
(> 13,000 samples from > 1900 women). This dataset allowed
us to comprehensively identify, define, and characterize
vaginal CSTs common to North American reproductive
age women using HC. In doing so, we recapitulated and
expanded upon the CSTs that had been defined in pre-
vious studies. We then constructed reference centroids
and applied the nearest centroid classification
algorithm for the assignment of vaginal microbiota pro-
files to CSTs. We demonstrated the utility and robust-
ness of the resulting tool, VALENCIA (VAginaL
community state typE Nearest CentroId clAssifier),
using several publicly available test datasets that con-
tained vaginal samples from adolescent girls [31], post-
menopausal women (from the Study of Women’s
Health Across the Nation (SWAN)), and eastern and
southern African women [32]. These test datasets were
also derived from the sequencing of different 16S rRNA
variable regions and different bioinformatics pipelines.
Finally, we examine relationships between vaginal
CSTs, as defined by VALENCIA, and host (race, age)
and community (pH, Nugent score) characteristics. We
anticipate that VALENCIA will prove a critical tool for
vaginal microbiota research and potential future clinical
application by providing robust and reproducible
assignments of samples to CSTs.
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Results
Assemblage of the largest dataset of human vaginal
microbiota profiles
We compiled a dataset of vaginal community composi-
tions from 13,160 vaginal swab or lavage specimens that
had been collected by our research group from three lo-
cations around the USA: Baltimore, MD; Birmingham,
AL; and Atlanta, GA. The samples originated from 1975
North American women and included participants who
self-identified as Black (n = 1343, 68%), White (n = 403,
20.4%), Hispanic (n = 110, 5.6%), Asian (n = 95, 4.8%),
as well as 17 women who identified as a different race
and 7 women who did not self-identify. Many of the
women had participated in longitudinal studies (n =
916) and therefore contributed more than one sample to
the compiled dataset; the median number of samples
contributed per participant was three and ranged from
one to seventy. All of the women included in this study
were of reproductive age as defined by recent menstru-
ation and were not pregnant at the time of sampling.
The participant age range was 13–53 with a median par-
ticipant age of 25. Eleven of the women were younger
than 15 and two were older than 49. The composition of
their vaginal microbiota was established by deep sequen-
cing of the V3–V4 region of the 16S rRNA gene with
an average of 54,898 reads per sample (range 1005–
411,805).

Construction of community state type reference centroids
The compiled dataset of 13,160 vaginal microbiota pro-
files includes representations of all previously identified
CSTs and was used as a comprehensive training dataset.
We first defined the CSTs in the training dataset using
hierarchical clustering of the pairwise Bray-Curtis dis-
tances between samples with Ward linkage (Fig. 1). We
then identified seven CSTs, four of which had a high
relative abundance of Lactobacillus species. These seven
CSTs could be further broken down into thirteen sub-
CSTs. To conform with previous studies, we name these
as follows: CST I—L. crispatus dominated, CST II—L.
gasseri dominated, CST III—L. iners dominated, and
CST V—L. jensenii dominated. CSTs I and III were
more common in this dataset than CSTs II and V and
were each split into two sub-CSTs denoted with A and
B. The “A” version represents samples that had a higher
relative abundance of the focal species, with the “B” ver-
sion representing samples with a somewhat lower rela-
tive abundance of that species. We also identified three
CSTs which did not have a high relative abundance of
lactobacilli which we term CST IV-A, IV-B, and IV-C.
CST IV-A had a high relative abundance of Candidatus
Lachnocurva vaginae (formerly known as BVAB1 [33])
and a moderate relative abundance of G. vaginalis, while
IV-B had a high relative abundance of G. vaginalis and

low relative abundance of Ca. L. vaginae. Both IV-A and
IV-B had moderate relative abundances of Atopobium
vaginae. Samples assigned to CST IV-C had a low rela-
tive abundance of Lactobacillus spp., G. vaginalis, A. va-
ginae, and Ca. L. vaginae and were instead characterized
by the abundance of a diverse array of facultative and
strictly anaerobic bacteria. We thus further split CST
IV-C into 5 sub-CSTs as follows: CST IV-C0—an even
community with moderate amount of Prevotella, CST
IV-C1—Streptococcus dominated, CST IV-C2—Entero-
coccus dominated, CST IV-C3—Bifidobacterium domi-
nated, and CST IV-C4—Staphylococcus dominated.
Samples assigned to CST IV-C represented 6% (n = 802)
of the training dataset.
We next constructed a reference centroid for each of

the thirteen sub-CSTs identified in the training dataset
by averaging the relative abundances of each taxa across
the samples assigned to the sub-CST. These centroids
represent the average community composition of each
sub-CST, as defined by the training dataset, and can be
used as a stable reference for the assignment of vaginal
microbiota profiles to CSTs (Fig. 2).

VALENCIA: a novel method for assigning samples to
community state types
We implemented a nearest centroid classification algo-
rithm, which we term VALENCIA, to leverage the train-
ing dataset for reproducible and robust assignment of
vaginal microbiota to community state types. The simi-
larity of a vaginal microbiota profile to each of the thir-
teen reference centroids is evaluated using Yue and
Clayton’s θ [34], a similarity measure based on species
proportions. This yields an array of thirteen similarity
scores, ranging from 0.0 (no shared taxa) to 1.0 (all taxa
shared and at the same relative abundance) for each
sample. The reference centroid to which the sample
bears the highest similarity provides an optimal assign-
ment to a sub-CST. These similarity scores can also be
used to gauge confidence in the assignment and are
particularly useful for handling cases where the sample
either does not match any of the centroids or has close
matches to multiple centroids. For these cases, VALE
NCIA yields a low confidence score to indicate the de-
gree of ambiguity in the CST assignment.
We first used VALENCIA to reassign CSTs to our

training dataset. The taxonomic composition of samples
assigned to each CST generally matched that of the as-
sociated reference centroid (Fig. 3a). As expected, differ-
ences in Shannon diversity (H) were observed among
the sub-CSTs (Fig. 3b). Samples assigned to sub-CSTs
defined by the dominance of a single phylotype were
found to have lower values of H. A comparison between
the initial hierarchal clustering and the assignments pro-
vided by VALENCIA revealed 1454 disagreements (11%
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of the samples). Discordant samples largely originated
from communities which bore some degree of similarity
to multiple CSTs. These communities exist in the grey
areas between two or more community state types and
are therefore difficult to classify. Based on the taxonomic
profiles for these discordant samples, we have more con-
fidence in the assignment provided by VALENCIA than
that provided by hierarchical clustering (Additional file
1). For example, a number of samples were assigned to
CST V by the hierarchical clustering but only contained
~ 20% relative abundance of L. jensenii and were instead
majority L. iners. VALENCIA assigned these samples to
CST III-B, which we find more agreeable. A similar pat-
tern can be seen for discordant sample hierarchical

clustering assigned to CST II which, based on the refer-
ence centroid for this community state type, should have
a majority of L. gasseri. In this case, the discordant CST
II samples had either a majority L. iners, which VALE
NCIA assigned to CST III-B or a majority G. vaginalis,
which VALENCIA assigned to CST IV-B.

Validation of VALENCIA against outside datasets
To further demonstrate the broad applicability of VALE
NCIA, we applied it to a number of test datasets that
had not been included in the training dataset. These test
datasets are from studies which had sampled women
outside the age range of the training dataset, from non-
North American populations, or had sequenced different

Fig. 1 Heatmap displaying the taxonomic composition of 13,160 vaginal microbial communities using the 25 most abundant phylotypes across
all samples. Hierarchical clustering was performed using Bray-Curtis dissimilarity with Ward linkage. Seven community state types were defined,
four of which were dominated by a single species of Lactobacillus and three which were not. This dataset was used to train VALENCIA
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16S rRNA gene variable regions. Here we present our
analysis of three such datasets: Test dataset 1 contained
publicly available microbiota profiles from adolescent
girls (n = 245, aged 10 to 15) derived from sequencing
the 16S rRNA gene V1–V3 region [31]. Test dataset 2
was generated from SWAN analyzed in-house and con-
tained microbiota profiles from postmenopausal women
(n = 1380, aged 60 to 72) derived from sequencing the
16S rRNA gene V3–V4 region. Finally, test dataset 3
contained publicly available microbiota profiles from

eastern and southern African reproductive age women
(n = 110) derived from sequencing the 16S rRNA gene
V4 region [32]. For test dataset 2, we applied our own
taxonomic annotation pipeline to the data while for test
datasets 1 and 3 we relied on the taxonomic annotations
provided in the original studies. We assigned all of the
samples in each of these three datasets to community
state types using VALENCIA. In general, we find the
CST assignments made by VALENCIA to be acceptable,
although there is no “ground truth” from which to

Fig. 2 Average relative abundance of twelve key taxa across all of the samples used to define each of the thirteen sub-CSTs. Error bars represent
the standard error of the mean as defined using 100 bootstraps of ten percent of the training dataset. These “average” communities define the
reference centroids used by VALENCIA to assign new samples to sub-CSTs. Sub-CST IV-C0 is not dominated by any one species. CST V has 20%
relative abundance of L. iners in addition to L. jensenii, indicating these two species can co-occur. This relationship is maintained over extended
periods of time in some longitudinal profiles

Fig. 3 Taxonomic composition of all samples (n = 13,160) in the training data set categorized by sub-CST assignment according to VALENCIA (a).
Distribution of Shannon diversity index values by sub-CST assignment (b). Shannon diversity was calculated using the log base 2
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benchmark (Fig. 4). The distributions of similarity scores
between the samples and their matching reference cen-
troid for outside datasets 1 and 3 did not substantially
differ from the same distribution provided by the reclas-
sification of the training dataset (Fig. 4). Similarity scores
for test dataset 2 were typically lower than those for the
training dataset, although this is primarily driven by the
high prevalence of CST IV-C and low prevalence of
Lactobacillus spp.-dominant CSTs in postmenopausal
women. For test dataset 1, the authors made their CST
assignments (which were derived from hierarchical clus-
tering) publicly available [31]. We find 17 instances of
discordance between our and the original assignments
(6.7%). As was the case for the reclassification of the

training dataset, these discordant samples occupy the
grey space between CSTs. For example, six instances of
discordance come from communities which were
assigned to CST I by Hickey et al. but had more L. iners
than L. crispatus—VALENCIA assigned these samples to
CST III-B.

Relationships between VALENCIA-defined community
state types, Nugent score, and vaginal pH
Prior to the application of amplicon sequencing to de-
fine microbiota composition, and still today, researchers
and clinicians used the Nugent scoring system to evalu-
ate and categorize vaginal microbial communities for the
diagnosis of bacterial vaginosis (BV), a common vaginal

Fig. 4 Validation of VALENCIA using three test datasets of vaginal taxonomic profiles derived from sequencing of the 16S rRNA gene. For each
dataset, the similarity of each sample to its assigned sub-CST is plotted as a normalized histogram (left, a red, b blue, c green) versus that for the
training dataset (dark grey). The taxonomic composition of each sample in the dataset is also provided (right). Test dataset 1 (a) was published by
Hickey et al., contained 245 samples, was derived from sequencing of the V1V3 region, and contained samples from adolescent girls. Test dataset
2 (b) contained 1380 samples from menopausal women and was derived from sequencing of the V3V4 region. Test dataset 3 (c) was published
by McClelland et al., contained 110 samples from eastern and southern African women, and was derived from sequencing of the V4 region
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condition [35]. The Nugent score is primarily based on
the morphology of Gram-stained bacterial cells viewed
under light microscopy. An abundance of Lactobacillus
morphotypes, large Gram-positive rods, yields a low
Nugent score while the presence of Gram-variable small
(G. vaginalis) and/or curved rods (Ca. L. vaginae [36],
Mobiluncus spp.) yields a high Nugent score, indicating
Nugent-BV. We examined the relationship between
VALENCIA-defined CSTs and Nugent score categories
and observed high concordance (Fig. 5a). Lactobacillus-
dominant CSTs typically have low Nugent scores, while
communities assigned to other CSTs have higher
Nugent scores. CST IV-A VALENCIA-assigned commu-
nities, which are enriched of Ca. L. vaginae, had the
highest Nugent scores, consistent with the Nugent scor-
ing system [37]. However, we were interested to see how
the Nugent score system evaluated communities VALE
NCIA assigned to CST IV-C. These communities do not
have a high relative abundance of Lactobacillus spp., G.
vaginalis, or Ca. L. vaginae and instead have a high rela-
tive abundance of Streptococcus, Enterococcus, Staphylo-
coccus, Prevotella, and Bifidobacterium. We find that the

Nugent scoring system does not reliably assign these
communities to a single category and instead gives
mixed results. Of the five subtypes of CST IV-C, CST
IV-C2 (Enterococcus), and IV-C4 (Staphylococcus) are
most often assigned low Nugent scores although these
communities are not dominated by Lactobacillus spp.
Besides the ambiguities observed for these CST IV-C
communities, VALENCIA-defined CSTs and the Nugent
scoring system are largely in accordance with the defin-
ition of the Nugent score.
The microbiota is thought to be the primary driver of

vaginal pH through the release of acidic fermentation
end products. A low vaginal pH (≤ 4.5) has been associ-
ated with decreased risk of adverse health outcomes and
is usually achieved via the production of lactic acid by
lactobacilli [38–40]. Not surprisingly then, we found that
the communities VALENCIA assigned to CSTs which
are dominated by Lactobacillus spp. were associated
with lower vaginal pH than those VALENCIA assigned
to other CSTs (Fig. 5b, see supplemental figure 2 for
odds of vaginal pH > 4.5 for each sub-CST). Communi-
ties which were dominated by L. crispatus (CST I) had

Fig. 5 The relationship between each VALENCIA-assigned sub-CST and Nugent score (a) and vaginal pH (b). Nugent score was separated into
high (score 8–10), intermediate (score 4–7), and low (score 0–3) categories. Vaginal pH was split into four categories: less than or equal to 4.5,
between 4.5 and 5.0, between 5.0 and 5.5, and greater than or equal to 5.5

France et al. Microbiome           (2020) 8:166 Page 7 of 15



the lowest pH (78% of samples had a pH ≤ 4.5) with
those dominated by L. iners (CST III) and L. jensenii
(CST V) following close behind. L. gasseri-dominated
communities (CST II) were associated with the highest
vaginal pH among the Lactobacillus spp.-dominant
CSTs. Also as expected, communities which were defi-
cient in Lactobacillus spp. typically had a higher vaginal
pH. Communities VALENCIA assigned to CST IV-A
had the highest pH followed closely by those assigned to
CST IV-B. Due to the large number of samples included
in this dataset, we were also able to examine pH for
samples assigned to the less common CSTs. Among the
subtypes of CST IV-C, we find that communities with
Enterococcus, Staphylococcus, or Bifidobacterium were
associated with lower vaginal pH while the majority of
Streptococcus communities typically had a higher pH.
None of these CST IV-C sub-CSTs (percent of samples
with pH ≤ 4.5: IV-C0 24%; IV-C1 15%; IV-C2 42%; IV-
C3 28%; IV-C4 39%) consistently reach the low vaginal
pH achieved by CSTs I, III, or V (percent of samples
with pH ≤ 4.5: I-A 83%; III-A 61%; V 61%, Fig. 5b).

Associations between community state types and
participant’s race and age
Statistical associations between CSTs and demographic,
medical, and/or behavior data have been used to identify
factors that influence the composition of vaginal micro-
biota. Our training dataset contained microbiota composi-
tions from over 1900 allowing us to re-examine some
previously observed associations with more statistical
power. We sought to determine whether a participant’s
race or age influenced their likelihood of having particular
community state types. For each community state type

with sufficient sample size (I, II, III, IV-A, IV-B, IV-C), we
modeled their presence or absence as a binomial response
variable with race and age as fixed predictor variables and
the subject as a random variable (Fig. 6a). We found that
women who self-identify as Black or African American
were less likely to have CST I than women who identify as
White or Asian (z = 4.6, p < 0.001; z = 2.9, p = 0.0235).
Black women were also more likely to have CST IV-A
than White women (z = 4.9, p < 0.001) and CST IV-B than
women who identified as White or Asian (odds ratios 6.91
versus 0.96 and 0.05; p < 0.001, p < 0.001). None of the
Asian women included in this study were found to have
CST IV-A. CST IV-B was also more common for Hispanic
women than White women (z = 3.3, p = 0.006). Finally,
we found that Asian women were more likely to have
CST III than either Black or White women, although this
association was weaker (odds ratios 1.72 versus 0.34 and
0.36; p = 0.025, p = 0.050). No significant associations with
race were found for CSTs II, V, or IV-C, which may be
due to sample size limitations as these three CSTs are less
prevalent than the others. Our results agree with previous
studies [7, 41] and show a more refined association be-
tween raise and the prevalence of CSTs.
We were also able to examine associations between a

participant’s age and their likelihood of having each CST
using the same logistic regression models. Our analyses
indicate that the representation of CST III varies with
age, after adjusting for race (Fig. 6b). Among reproduct-
ive age women, we observed that older women were less
likely to have L. iners-dominated CSTs than younger
women (z = − 3.589, p < 0.001). The probability of hav-
ing CST III ranged from 40% for the youngest women
included in the study, down to 20% for the oldest

Fig. 6 The relationship between the prevalence of each VALENCIA-assigned sub-CST and a woman’s self-identified race (a). Each bar represents the
proportion of samples assigned to each CST in women whose race is Asian (n = 95), Black (n = 1,343), Hispanic (n = 110), White (n = 403), or Other (n = 17).
For subjects who contributed multiple samples, the within subject relative prevalence of each CST was used in the calculation instead of their individual CST
counts. We also examined relationships between the prevalence of each CST and a woman’s age (b). Only the prevalence of CST III was found to have a
relationship with age among reproductive-age women. Bars represent the age distribution of subjects whose samples were (orange) or were not (grey)
assigned to CST III. Older reproductive age women were less likely to have communities assigned to CST III than younger reproductive age women
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women. No significant associations with age were ob-
served for the other CSTs. However, in our validation of
VALENCIA, we analyzed the SWAN dataset of post-
menopausal women between the ages of 60 and 72
(Fig. 4b). As expected, the representation of CSTs
clearly differs between this dataset of postmenopausal
women and the training dataset of reproductive age
women.

Discussion
The classification of vaginal microbial communities into
CSTs has proven to be highly valuable. Since their in-
ception in 2011 [7], studies have shown associations be-
tween vaginal CSTs and host immune profiles [25] and
have further linked particular CSTs to sexually transmit-
ted infections [18, 21, 26, 27] and experiencing spontan-
eous preterm birth [8, 42, 43]. From these studies, it is
clear that the CST classification system captures mean-
ingful information about these communities, despite its
apparent simplicity. One of the advantages of the CST
classification approach is that it enables the usage of
standard and vetted statistical models to demonstrate
these associations. On the other hand, a common criti-
cism of the CST approach is that it simplifies the com-
munities by distilling their composition down to a single
categorical variable. One alternative has been to instead
model the abundance of each taxon individually. How-
ever, these analyses are complicated by spurious correla-
tions introduced because each taxa’s abundance is
expressed relative to the others when assessed via ampli-
con sequencing [44]. Others have used species-specific
quantitative PCR assays to determine their absolute
abundances. Yet this method is expensive, requires the
development and implementation of many individual
qPCR assays, and only quantifies the targeted species.
New statistical and methodological approaches are
needed that can facilitate such taxa-level association
studies which take into account the specific statistical
challenges of compositional data [45]. Even then, there
appears to be a place for “CST-level” analyses in vaginal
microbiome research as the approach provides a higher-
level overview and epidemiological characterization of
the vaginal microbial community across populations and
serves as a guide for more in-depth analyses.
In order for a classification scheme to be useful, it

must be reproducible. It immediately becomes difficult
to compare the results from multiple studies if the sam-
ples were not assigned to categories in the same manner.
Prior work on assignment of vaginal microbial commu-
nities to CSTs has primarily been accomplished through
within-study hierarchical clustering of the pairwise dis-
tances between samples, which does not yield reprodu-
cible assignments. Other studies have used taxa-specific
relative abundance thresholds to assign CSTs (e.g.,

communities with > 30% relative abundance of L. crispa-
tus are assigned to CST I [19, 46]). However, this ap-
proach does not consider the entire microbial
community and may offer a limited view of the vaginal
microbiota when only a few taxa are considered. VALE
NCIA provides a unified method to accomplish this task
which is based on the overall structure and composition
of the community. The CST assignments provided by
VALENCIA are robust and reproducible across studies
and will enable researchers to leverage the numerous
existing vaginal microbiota datasets for use in large-scale
meta-analyses. On the other end of the scale, we also ex-
pect that VALENCIA will assist the analysis of small
datasets, which are often plagued by poor CST assign-
ments. Because VALENCIA is reference-based, every
sample is treated independently, making it scalable to
large or small datasets—VALENCIA can even be used to
assign a single sample to a CST. The structured nature
of VALENCIA CSTs also allows the researcher to tune
the number of CSTs considered to the size of the study
(e.g., five, seven, nine or thirteen). Unlike previous classi-
fication methods, VALENCIA also provides an estimate
of confidence derived from similarity of each sample to
each reference centroid. These values can be used in a
resampling scheme to investigate the effect of shuffling
communities which bear similarity to multiple CSTs.
Overall, there is an astonishing concordance in the

makeup of the vaginal microbiota. Most women were
found to have communities which fit neatly within the
CSTs that we have defined, driving the broad applicabil-
ity of VALENCIA for the classification of vaginal micro-
biota. Despite this, we and others have shown that there
are differences in the prevalence of particular CSTs that
are associated with a woman’s race [7, 41]. Care should
be taken in conveying precisely what these differences
are and what they are not. In particular, we have found
that women of African descent are less likely to have a
L. crispatus-dominated community and more likely to
have CST IV-B than women of European or Asian des-
cent. It is important to note that these results are not
consistent with there being distinct or systematic differ-
ences in the taxonomic composition of the communities.
In this study, we identified every CST in women from
each self-identified racial category with the exception of
CST IV-A in Asian women. It is merely that some CSTs
are more prevalent in women of a certain race while
other CSTs are less prevalent. The factors that drive
these differences in the representation of vaginal
CSTs have yet to be determined, are likely to be
multifaceted, and could depend on host and/or mi-
crobial factors. For example, our recent study indi-
cated that there may be racial differences in the
interplay between vaginal microbial communities and
the host immune system [43].
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The number of samples included in our training
dataset allowed us to define and investigate some of the
less prevalent types of Lactobacillus-deficient vaginal
communities. We placed these communities into CST
IV-C, and further defined five subtypes. Of these, CST
IV-C1 (Streptococcus-dominated) and CST IV-C3 (Bifi-
dobacterium-dominated) were the most common among
reproductive age women. The Nugent scoring system
was not designed with either of these taxa in mind [35]
and it is not clear how they relate to vaginal health [47].
While group B Streptococcus is a known neonatal patho-
gen, it is not known whether its pathogenic potential is
at all realized in the vaginal environment [48]. Like the
lactobacilli, many Streptococcus spp. can produce lactic
acid as a fermentation end product [49] and therefore
might be able to lower vaginal pH to a similar degree.
Alas, we found these communities to instead be associ-
ated with high vaginal pH, indicating that vaginal
Streptococcus spp. might produce other fermentation
end products in the vagina. Bifidobacterium, on the
other hand, has a reputation for being a “healthy” mi-
crobe based on its activity in the gut environment [50].
Due to its rarity, associations between Bifidobacterium-
dominated communities and vaginal health have yet to
be assessed. Although they are generally capable of pro-
ducing L-lactic acid [51], we found that only about a
quarter of women with Bifidobacterium-dominated com-
munities had a vaginal pH ≤ 4.5, indicating it likely does
not provide the same level of pH-mediated protection as
a Lactobacillus-dominated community. Going forward,
we hope that VALENCIA will enable association studies
between these two uncommon CSTs and vaginal health.
However, both the Streptococcus and Bifidobacterium
genera include a diverse array of described species. Spe-
cies- and strain-level characterization using metage-
nomic approaches may be necessary to understand their
ecology in the vaginal environment.
As other reference-based approaches, one potential

limitation of VALENCIA is that it is not able to classify
communities which were not included in the training
dataset. Though VALENCIA was demonstrated to be
applicable on different populations, age ranges, and 16S
rRNA regions, misclassification could happen for sam-
ples with novel bacteria or different community struc-
tures. The only potential issues we observed were
related to the presence of community profiles which did
not completely match those in the reference. For ex-
ample, CST IV communities from some African popula-
tions tend to have a higher relative abundance of
Prevotella spp. than CST IV communities from North
American women [21, 25, 32]. We have shown, in our
analysis of test dataset 3, that VALENCIA assigns these
communities to one of the subtypes of CST IV depend-
ing on the presence and abundance of other taxa.

However, an argument could be made for the addition
of a novel CST and reference centroid which is Prevo-
tella-dominated as defined by samples from African
women. VALENCIA can be expanded by the addition of
novel CSTs not found in the training dataset, when ap-
propriate. This could be achieved either by adding data
defining these novel CSTs to the existing training data-
set or by constructing new training datasets from sam-
ples originating from a specific population of interest. As
we collect more data from women across the globe, we
plan to expand, update, and maintain VALENCIA.
We used the nearest centroid categorization approach

to assign vaginal microbiota profiles to community state
types. Our training and test datasets were all derived
from 16S rRNA gene amplicon sequencing, but VALE
NCIA could also be used to categorize vaginal commu-
nities based on composition as established by shotgun
metagenome data. This would likely not require add-
itional changes to the tool or training dataset. In
addition to this natural extension, a similar nearest cen-
troid approach could be applied to the classification of
other microbial communities into types. In many ways,
vaginal microbiota are perhaps the easiest to categorize
based on taxonomic composition because of their ten-
dency to be dominated by a single species, which results
in fairly distinct lines between community state types.
The microbial communities which inhabit other body
sites [52] or other environments (e.g., soil [53], ocean
water [54]) tend to have communities which are more
even and species rich. This is likely to blur the lines be-
tween community types and may complicate the use of
the nearest centroid approach for their categorization.
Microbial communities could also be categorized based
on their functional and metabolomic composition. Clas-
sification of these multidimensional microbiome datasets
would likely make their analysis and interpretation less
complicated. A reference-based approach like the near-
est centroid classification used here would provide
robust and reproducible assignments.

Conclusion
We used a large dataset of over 13,160 vaginal micro-
biota profiles to train a nearest centroid classifier (VALE
NCIA) to infer community state types. The large train-
ing dataset allowed us to define CSTs which represent
more uncommon vaginal microbiota compositions (e.g.,
those dominated by Bifidobacterium spp.). Our valid-
ation efforts demonstrated that VALENCIA provides ro-
bust and reproducible assignments of vaginal microbiota
profiles to CSTs that are insensitive to a women’s age or
geographic location. VALENCIA assignments are also
largely unaffected by which variable region of the 16S
rRNA gene was sequenced or which bioinformatics pipe-
line was used to taxonomically identify the resulting
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sequences. We expect that VALENCIA will enable epi-
demiological investigations into the factors that drive
changes in the vaginal microbiota and associations be-
tween these communities and vaginal health. The repro-
ducibility of this approach will allow for much-needed
meta-analyses that combine the results of the myriad of
existing studies on the vaginal microbiota.

Methods
Participants and sampling procedures
The training dataset of 13,160 vaginal microbiota profiles
originated from several different studies, all of which have
been published previously [7, 22, 55–59]. A detailed ex-
planation of the sample procedures and study populations
can be found in the original publications. Samples were ei-
ther self-collected or physician-collected by swabbing the
mid-vagina (n = 11,387) or physician collected via a vagi-
nal lavage with 3mL of sterile deionized water (n = 1844).
Vaginal swabs and vaginal lavage samples were frozen at −
80 °C. Participants also provided behavior and lifestyle in-
formation. Nugent scoring was performed as previously
described [7, 35]. Vaginal pH was established using the
VpH glove (Inverness Medical) and binned into categories
(≤ 4.5, greater than 4.5 but less than 5.0, between 5.0 and
5.5 inclusive, and ≥ 5.5). All studies were performed under
Institutional Review Board-approved protocols, and sam-
ples were collected after obtaining written informed con-
sent from all the participants.

DNA extraction
DNA was extracted from the samples using a combin-
ation of enzymatic digestion and mechanical disruption
as described in Holm et al. [60]. Briefly, vaginal swab or
lavage specimens were resuspended in phosphate buffer
saline solution. A 0.5 mL aliquot of the cell suspension
was incubated at 37 °C for 30 min following the addition
of an enzymatic digestion cocktail (contents: 5 μl of lyso-
zyme at 10mg/ml, EMD Chemicals, Gibbstown, NJ; 13 μl
of mutanolysin at 11,700U/ml; Sigma-Aldrich, St. Louis,
MO; and 3.2 μl of lysostaphin a 1mg/ml; Ambi Products,
LLC, Lawrence, NY). This was followed by the addition of
10 μl of Proteinase K (20mg/ml; Invitrogen), 50 μl of 10%
SDS (Sigma-Aldrich, St. Louis, MO), and 2 μl of RNase A
(10mg/ml; Invitrogen, Carlsbad, CA) and a further 45min
of incubation at 55 °C. Mechanical disruption was then
performed using a FastPrep homogenizer at 6m/s for 40 s.
DNA was then purified from the crude lysates using the
QS DSP virus/pathogen midi kit on the QIAsymphony ro-
botic platform (Qiagen, Hilden, Germany) according to
the manufacturer’s specifications.

16S rRNA gene amplification, sequencing, and analysis
PCR amplification of the V3V4 region of the 16S rRNA
gene was conducted using either the “one-step” or the

“two-step” amplification protocols described and vali-
dated in Holm et al. [60]. Primer sequences can be
found in supplemental table 1. For the one-step proto-
col, extracted DNA (0.5 μl) was added to Phusion Taq
master mix (ThermoFisher, Waltham) with 3% dimethyl-
sulfoxide (DMSO) and each primer (final concentration
0.4 μM). Initial denaturation was performed at 98 °C for
30 s, followed by 30 cycles of denaturation (98 °C, 15 s),
annealing (58 °C, 15 s), and extension (72 °C, 15 s). Final
extension was conducted at 72 °C for 60 s. The two-step
protocol utilized two rounds of PCR amplification: the
first amplifies the V3V4 region of the 16S rRNA gene
and adds Illumina sequencing primers, and the second
adds 8-bp barcode sequences. Both two-step reactions
utilized the same Phusion Taq master mix with 3%
DMSO and primers at 0.4 μM. The first round also in-
cluded 0.5 μl of extracted DNA. Initial denaturization
was conducted at 94 °C for 3 min, followed by 20 cycles
of denaturation (94 °C, 30 s), annealing (58 °C, 30 s), ex-
tension (72 °C, 1 min), and a final extension step at 72 °C
for 7 min. The second round of amplification used 1 μl
of 1:20 diluted PCR product from the first round as in-
put. Initial denaturation was conducted at 94 °C for 30 s,
followed by 10 cycles of denaturation (94 °C, 30 s), an-
nealing (58 °C,30 s), extension (72 °C, 60 s), and then a
final extension (72 °C, 5 min). Deep sequencing was ac-
complished on either an Illumina MiSeq or an Illumina
HiSeq 2500 [60]. The resulting paired end sequences
were processed using DADA2 [61] to identify amplicon
sequence variants (ASVs) and remove chimeric se-
quences following general practices (https://benjjneb.
github.io/dada2/bigdata.html). Following processing by
DADA2, each sample had an average of 54,898 reads
(range 1005–411,805). Taxonomy was assigned to each
ASV using the RDP Naïve Bayesian Classifier [62]
trained with the SILVA 16S rRNA gene database [63].
For several key genera (e.g., Lactobacillus, Prevotella,
Sneathia, Mobiluncus), the ASVs were further classified
to the species level using speciateIT (version 1.0, http://
ravel-lab.org/speciateIT). Read counts for ASVs that
were assigned to the same phylotype were combined.
The final dataset contained 199 taxa following removal
of those we identified as contaminants as well as those
taxa present at a frequency of less than 10−5 study wide.
The same bioinformatics procedures were used to
analyze the in-house test dataset 2.

Construction of the reference centroids
Hierarchical clustering of the 13,160 taxonomic profiles
using Bray-Curtis distances and ward linkage was first
employed to define the vaginal CSTs (Fig. 1). This ana-
lysis recovered the canonical five CSTs as described in
Ravel et al. [7] but went further in delineating subtypes
among the five CSTs. Cluster selection was made using
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the cutree function from the R stats package (version
3.6.0) on the dendrogram produced by hierarchical clus-
tering. Cluster numbers from 2 to 20 were produced and
then evaluated using the Davies Bouldin score. Support
was found for nine clusters (Supplemental Figure 3c).
For the L. crispatus-dominated CSTs, we were able to
distinguish between communities which had mostly just
L. crispatus (CST I-A) and those that had a lower, mod-
erate relative abundance of the species (CST I-B). The
same paradigm was observed for L. iners-dominated
communities. Communities dominated by L. gasseri and
L. jensenii more uncommon and were therefore not split
into sub-CSTs. We were also able to distinguish three
non-CSTs with a paucity of lactobacilli: CST IV-A,
which contained Ca. L. vaginae, G. vaginalis, A. vaginae,
and Prevotella; CST IV-B which contained G. vaginalis,
A. vaginae, and Prevotella; and CST IV-C which was
characterized by a paucity of Lactobacillus spp., G. vagi-
nalis, Ca. L. vaginae, and A. vaginae. A second round of
hierarchical clustering was performed (Bray-Curtis dis-
tances, ward linkage) on just the CST IV-C communities
to further split this diverse collection of communities
into additional sub-CSTs. Cutree was used on the result-
ing dendrogram to split IV-C into five subtypes, four of
which had a characteristic phylotype and one which had
a more even taxonomic composition. This decision im-
proved assignments to IV-C, enhanced the interpretation
of these communities, and resulted in a better Davies
Bouldin score (Supplemental Figure 3). Reference cen-
troids were constructed by averaging the relative abun-
dances of each phylotype across the samples in training
dataset which were included in each of the 13 sub-CSTs.
Shannon diversity of samples assigned to each sub-CST
was calculated using the log base 2.

Implementation of the nearest centroid classification
VALENCIA uses the nearest centroid approach to classi-
fication to assign new samples to sub-CSTs based on
their taxonomic composition and was implemented in
python (version 3.6) and has the pandas module as a de-
pendency [64]. The similarity of each sample to each ref-
erence centroid is assessed using Yue-Clayton’s θ [34],
which considers the number and proportion of shared
and unique phylotypes in its measure of similarity.
Compared to Bray-Curtis or Jensen-Shannon, the Yue-
Clayton θ measure depends more on the high relative
abundance phylotypes than those that are at lower rela-
tive abundances. Samples are assigned to the sub-CST
to which they bear the highest similarity and the degree
of similarity to that sub-CST can be taken as a measure
of confidence in the assignment. VALENCIA reports
which sub-CST a sample was assigned to, as well as the
set of similarity scores to each of the thirteen sub-CSTs.
Also included in the output is a higher-order CST

assignment which does not differentiate between the
subtypes of I, III, or IV.

Running VALENCIA
The expected input of VALENCIA is a table of taxa read
counts in each sample with the phylotypes as columns
and the samples as rows. The first column should con-
tain a unique identifier for the sample with the column
heading “sampleID”. The second column should contain
the total read count for the sample with the column
name “read_count”. The remaining columns should con-
tain the read count for each phylotype in the dataset. It
is imperative that phylotype column headings match
those used by the VALENCIA reference centroids which
generally take the form of “phylotype rank underscore
phylotype name” (e.g., g_Bifidobacterium). All phylo-
types should be summarized to the genus rank or higher
except for the following: Lactobacillus spp., Gardnerella
spp., Prevotella spp., Atopobium spp., Sneathia spp,
Mobiluncus spp. These key phylotypes appear as “Genus
underscore species” (e.g., Lactobacillus_crispatus, Gard-
nerella_vaginalis). The other required input is a provided
file which contains the reference centroids. The expected
output is a modified version of the input data table with
added columns indicating the CST and sub-CST desig-
nations, the similarity of the sample to the assigned
CST, and the array of similarities scores to all of the ref-
erence centroids. The tool also generates a figure illus-
trating the performance of VALENCIA on the dataset
which displays the distribution of similarity scores for
samples assigned to each sub-CST, compared to the me-
dian similarity score for the sub-CST in the training
dataset. Substantial differences may indicate either an in-
congruence in taxonomic names or the need for an add-
itional sub-CST and associated centroid. VALENCIA,
the reference centroids, and the training dataset are all
available at github.com/ravel-lab/VALENCIA.

Validation efforts
Although there is no “gold-standard” to benchmark
VALENCIA against, we did perform a number of tests to
validate its use for the classification of vaginal microbial
communities. First, we reclassified the training dataset
using VALENCIA and compared the new assignments to
those provided by the initial HC. We also tested the use of
VALENCIA on other populations and on taxonomic com-
positions that had been generated by the sequencing of
other 16S rRNA variable regions and other bioinformatics
pipelines. Three datasets were used—two were published
and made available by other groups and one which had
been generated in-house. Test dataset 1 was published by
Hickey et al in 2015 [31] and contained samples from ado-
lescent girls aged 12–15. Test dataset 2 was generated in-
house and contained samples from menopausal women
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above the age of 60. These data are available at github.
com/ravel-lab/VALENCIA. Test dataset 3 was published
by McClelland et al. [32] and contained samples from re-
productive age eastern and southern African women. Test
dataset 1 was derived from sequencing the V1V3 region of
the 16S rRNA gene, test dataset 2 from the V3V4 region,
and test dataset 3 from the V4 region. For test datasets 1
and 3, the published taxonomic assignments were used
with adjustments to match the phylotype naming scheme
used by VALENCIA. The in-house data included in test
dataset 2 was generated via the same methods used in the
generation of the training dataset. All three test datasets
were classified using VALENCIA, the results of which are
shown in Fig. 4. Although many factors can introduce bias
in the assessment of taxonomic composition (e.g., DNA
extraction, PCR primer selection [65, 66]), we did not find
substantial irregularities in the assignment of CSTs by
VALENCIA on these test datasets.

Statistical analysis
Associations between the representation of each CST (I,
II, III, IV-A, IV-B, IV-C, V) and a participant’s race and
age were tested using separate generalized logistic re-
gression models. The presence or absence of each CST
was used as a response variable and the participant’s
race and age were included as categorical and continu-
ous predictor variables, respectively. Because many of
the participants had included multiple samples, partici-
pant was also included as a random effect. The glmer
function from the lme4 package [67] (version 1.1-21) for
R [68] (version 3.6.0) was used with the bobyqa
optimization function and 105 iterations. Effect sizes
were exponentiated using the R package broom.mixed
[69] (version 0.2.4). All scripts used in the statistical ana-
lysis are available at github.com/ravel-lab/VALENCIA.
The same approach was used to model the association
between vaginal pH and each sub-CST. A single general-
ized logistic regression model was used to model vaginal
pH as a binary variable with categories: ≤ 4.5 or > 4.5.
The VALENCIA-defined sub-CST was used as a fixed
predictor variable along with the subject as a random
effect.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00934-6.

Additional file 1: Supplemental Figure 1. Illustration of cluster
selection for construction of VALENCIA sub-CST centroids. Stretched ver-
sion of dendrogram from Figure 1 with horizontal line indicating chosen
cluster threshold (a). Subset heatmap and dendrogram of samples in CST
IV-C (b). Hierarchical clustering was performed on this subset using Bray-
Curtis dissimilarity with Ward linkage and the horizontal line indicating
cluster threshold. Silhouette and Davies-Bouldin scores for a range of
number of clusters (c). Horizontal lines indicate the values for the final 13
sub-CSTs, after sub-clustering the CST IV-C samples.

Additional file 2: Supplemental Figure 2. Odds of women with each
sub-CST having a vaginal pH >4.5.

Additional file 3. Supplemental Figure 3.

Additional file 4. Table S1
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