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ABSTRACT OF THE DISSERTATION 

 

 
Novel proteomics methods for increased sensitivity, greater proteome coverage, and 

global profiling of endogenous SUMO modification sites 

by 

 

Jesse Gerard Meyer 

Doctor of Philosophy in Chemistry 

University of California, San Diego, 2015 

 

Professor Elizabeth A. Komives, Chair 

Professor Nuno Bandeira, Co-Chair 

 

 

Proteomics, or the measurement of all proteins present in a biological system 

under defined conditions, is a relatively young field that is rapidly developing.  

Currently the best method to achieve high proteome coverage is with bottom-up 

proteomics, in which the proteome is digested into peptides that are identified 



 

 xxii 

followed by inference of their protein origin.  Several steps in the bottom-up 

proteomics workflow leave room for improvement, especially proteome digestion.  

This work investigates novel bottom-up proteomics methods for improved sensitivity, 

proteome coverage, and ultimately PTM detection. 

Chapter II investigates the effect of two chemicals on peptide electrospray 

sensitivity.  We postulated that peptide supercharging combined with ETD would 

improve the identification efficiency of peptides, especially nontryptic peptides.  We 

measured the charge state distributions, the total signal, and the number of identified 

peptides for peptides produced from trypsin, elastase, or pepsin digestion.  

Unexpectedly, the results show that addition of 5% DMSO to mobile phases used for 

peptide separation with online ESI resulted in charge state coalescence of peptide 

signal towards a single charge state, therefore improving signal to noise.   

In Chapter III the novel application of two proteases, WaLP and MaLP, for 

proteome digestion are explored.  The results show that the combination of data from 

separate proteome digestion with trypsin, LysC, WaLP, and MaLP double the 

observed proteome sequence coverage.  The increased coverage was most beneficial 

for coverage for protein sequences containing too many or too few tryptic cleavage 

sites.  The increased coverage was also beneficial for coverage of proteins with many 

transmembrane helices.   

 Chapter IV presents a computational study that attempts to optimize proteome 

digestion using various real and theoretical cleavage agents.  Individual digestions and 

iterative digestion strategies were simulated.  One conclusion of this work is that the 
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greatest proteome coverage can be obtained using iterative digestion with cleavage 

starting at the rarest residues first.   

 Chapter V demonstrates a novel method for untargeted, site-level identification 

of endogenous SUMO attachment sites in the human proteome.  When proteins 

modified by SUMO are digested with WaLP, a SUMO-remnant diglycyl-lysine 

modification is left at the site of SUMOylation, which is then detected by tandem mass 

spectrometry.  The results demonstrate identification of 707 unique SUMO 

modification sites in 443 proteins, of which 414 are previously unknown 

SUMOylation sites.   



1 

 

 

 

Chapter I 

 

 

Introduction 
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A.  Bottom-up proteomics 

 After the human genome was sequenced, we learned that the DNA variation 

among individuals is small (Conrad et al. 2011), and therefore our DNA alone cannot 

explain the phenotypic differences we observe in our population.  Since then, 

biologists have sought system-wide measurement of all RNAs, proteins, and 

metabolites.  So-called “omics” technologies, once matured, promise the ability to 

accurately model and predict biology, which has far-reaching implications.  

Microarray technology/nucleic acid sequencing and mass spectrometry-based 

proteomics have enabled extensive characterization of RNAs (transcriptome) and 

proteins (proteome), respectively.  Interestingly, protein levels do not entirely correlate 

with RNA levels (Ghaemmaghami et al. 2003).  The complement of proteins in a 

biological system is more descriptive of the biological state than the complement of 

mRNA or DNA.  Thus, the field of proteomics has developed rapidly over the last 

decade. 

Currently the best way to measure a large number of proteins from a biological 

system is with shotgun, or bottom-up, proteomics (Walther and Mann 2010), which is 

a multi-step workflow (Figure 1.1).  First, proteins are isolated from cells or tissue 

using denaturants, such as SDS.  Then proteins are digested into peptides with a 

protease, usually trypsin, which cleaves after positively charged residues arginine and 

lysine.  Those peptides are then subject to one or more dimensions of separation with 

liquid chromatography, the last of which is coupled to ESI for introduction of the  
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Figure 1.1. The bottom-up proteomics workflow is a multi-step process. 
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peptides into a MS.  The MS then continuously surveys the population of peptide 

masses that enter the instrument and choses the most abundant signals for 

fragmentation.  The resulting MS/MS spectra reveal specific fragments of the parent 

peptide that can be matched to peptide sequences. The protein origin is inferred if the 

spectrum uniquely matches a protein sequence predicted from the genome. 

Proteome measurement is a more complex analytical challenge than nucleic 

acid sequencing for several reasons (Reinders et al. 2004; Zhang et al. 2013).  

Chemical diversity of proteins, large dynamic range of protein concentrations, and 

lack of signal amplification all hinder our ability to accurately characterize the entire 

proteome.  Additionally, due to mRNA splice variants and post-translational 

modifications (PTMs), the number of unique protein sequences that humans express 

may reach the order of one million.   

Every step of the shotgun proteomics workflow has been extensively 

researched, and great progress has been made.  A breakthrough method was 

introduced in 2001, multidimensional protein identification technology (MudPIT), 

which enabled identification of over 1,000 proteins from a single sample injection 

(Washburn et al. 2001).  In 2008, Matthias Mann’s group was able to identify and 

quantify all proteins predicted to be expressed by yeast (de Godoy et al. 2008).  These 

researchers used a large amount of input protein, extensive pre-fractionation, and 

roughly 40 days of mass spectrometry data acquisition to achieve this.  Then in 2010, 

Joshua Coon’s group explored the use of several proteases for proteome digestion, and 

found that the combination of data from five separate proteome digestions resulted in 

over 25% proteome sequence coverage (Swaney et al. 2010).  Only two years later, in 
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2012, Matthais Mann’s group was able to identify nearly the entire yeast proteome in a 

single 4 hour run (Nagaraj et al. 2012).  More recently, in 2014, the Coon group was 

able to further improve their workflow to allow identification of nearly all proteins in 

yeast in only 70 minutes (Hebert et al. 2014).   

Despite the great progress towards complete proteomics, the observed protein 

sequence coverage is often very low; many proteins are identified by a single peptide 

sequence.  High protein sequence coverage is needed for comprehensive mapping of 

post-translational modifications (PTMs), and observation of all mRNA splice variants.  

Therefore, additional research is needed to achieve the lofty goal of complete 

proteome sequence coverage.  Towards the goal of complete proteome sequence 

coverage, I have developed novel methods focused on novel digestion strategies that 

increase observed amino acid coverage and reveal previously recondite PTMs (Meyer 

and Komives 2012; Meyer 2014; Meyer et al. 2014). 

B.  Peptide Electrospray and Fragmentation 

 In order to detect a peptide by MS, it must become ionized in the gas phase.  

This is commonly achieved using ESI.  Electrospray of peptides is a complex process 

where several variables compete to produce a population of charged peptides 

(Ogorzalek Loo et al. 2014).  The charge states of peptides produced during ESI effect 

the ability to fragment and identify them.   Peptides from trypsin digestion are almost 

exclusively ionized as +2 charge state ions upon ESI, but non-tryptic peptides are 

likely to have more diverse charge states.  Data dependent mass spectrometry methods 

almost always exclude singly charged peptides from selection for tandem mass 
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spectrometry.  Charge states over +5 are also often excluded.  Therefore, non-tryptic 

peptides that lack a basic residue and ionize as +1 ions, or peptides that contain many 

basic residues and become highly charged upon ESI will not be identified with 

traditional mass spectrometry methods.  

The choice of fragmentation method used should be paired with the expected 

charge state of peptides.  Three ion activation methods are commonly used for peptide 

fragmentation, CID, ETD, and HCD (Figure 1.2).  Each fragmentation method has 

different effectiveness with different charge densities.  CID is more efficient for 

identification of low charge density precursor ions, but ETD is more efficient for 

identification of high charge density precursor ions, regardless of the peptide sequence 

character (see Figure 3.4).  

Because non-tryptic are likely to have less defined charge than tryptic 

peptides upon ESI, any experiment that aims to use non-tryptic peptides should take 

charge states into consideration.  Within the last 15 years, several researchers have 

found that they can manipulate the charge state of analytes by adding certain 

chemicals to electrosprayed solutions, e.g. glycerol or DMSO (Iavarone and Williams 

2002; Iavarone and Williams 2003).  In 2007, one group reported that supercharging 

from m-NBA combined with ETD resulted in better ETD spectra and improved 

identifications (Kjeldsen et al. 2007).  Based on their findings, and the fact that non-

trytic peptides may have low charge states, we postulated that the combination of 

peptide supercharging and ETD would be beneficial for identification of non-tryptic 

peptides (Meyer and Komives 2012).  In Chapter II, I present an assessment of 

benefits resulting from supercharging reagents for peptide electrospray.  We find that 
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Figure 1.2. A table describing the ion activation methods CID, HCD, and ETD.  The 

column “+” gives some benefits of each method, and the column “-“ gives some 

drawbacks of each method.   
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the presence of DMSO during peptide electrospray increases the sensitivity of peptide 

identification, and we explore several possible reasons for this observation. 

C.  Proteome digestion 

 Observable proteome coverage is ultimately limited by the digestion method 

used to generate peptides.  Peptides that are too long cannot be identified for several 

analytical reasons, and peptides that are too short to uniquely match a protein 

sequence are also lost.  Using in silico digestion, we can examine the theoretical 

length distribution that would be produced from any protease with strict specificity 

(see Figure 3.1).  Most peptides produced from any protease fall below the generally 

useful lower length limit of 7 amino acids.  Using these theoretical length 

distributions, we can compute theoretical maximum proteome coverage for each digest 

(Figure 1.3).  Even though the combination of 5 proteases is predicted to produce 

nearly 95% proteome coverage, the observed proteome coverage in a recent study that 

combined data from proteome digestion with these 5 proteases was only 25% (Swaney 

et al. 2010).  However, the use of separate digestions increases analysis time.  

Therefore, new proteome digestion strategies are needed that can allow further 

increases in proteome coverage in less analysis time.  Most proteases currently used 

for proteome digestion cleave after similar charged residues.  For this reason, we 

sought to apply new proteases with substrate specificity that drastically differs from 

currently employed proteases.  We reasoned that cleavage of very different residues 

could improve proteome coverage more efficiently than the use of several proteases 

with similar specificity (Meyer et al. 2014).  In Chapter III, we demonstrate the novel  
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Figure 1.3. A plot comparing the theoretical upper limits of proteome coverage with 

observed coverage.  Observed coverage values were taken from the 2010 paper by 

Swaney, et al.  
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application of two proteases to proteome digestion.  We explore the benefits of 

increased proteome coverage resulting from digestion with these new proteases, and 

we also explore challenges that must be addressed to effectively identify non-tryptic 

peptides.  In Chapter IV, I present an exploration of various digestion agents and the 

resulting sequence coverage at the whole proteome level and at the residue level.  I 

identify a iterative digestion strategy that theoretically allows very high proteome 

coverage as compared with any single digestion alone.  Finally, in Chapter V, we 

demonstrate a novel digestion strategy that enables site-level identification of 

endogenous SUMO modification sites in the human proteome, which has not 

previously been possible in high throughput.  
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A.  Introduction 

Tandem mass spectrometry (MS/MS) is a robust, fast and sensitive analytical 

method that has transformed the field of proteomics (Sleno and Volmer 2004; Ong and 

Mann 2005).  “Shotgun” or “bottom-up” proteomics involves isolation of the entire 

protein complement of a biological system followed by digestion into smaller 

fragments with a protease.  Peptides are then subject to several dimensions of 

separation by liquid chromatography (LC) (Motoyama and III 2008), the last of which 

is coupled directly to electrospray-ionization (ESI) MS/MS (Fenn et al. 1989). 

Shotgun proteomics has been used to quantify the entire complement of proteins 

expressed by yeast (de Godoy et al. 2008).   

 Peptides for proteomic analysis are often generated exclusively by trypsin, 

because it produces high peptide yield and has high specificity for the positively 

charged amino acid residues arginine and lysine (Burkhart et al. 2011).  Tryptic 

peptides have desirable length and charge characteristics for identification by collision 

induced dissociation (CID), which produces b- and y- ion series (Tabb et al. 2003). 

Digestion with trypsin alone, however, only covers 11.9% of the non-redundant amino 

acid sequences (NRAAS) (Swaney et al. 2010). By using a combination of five 

commercially available proteases, coverage of NRAAS increased to 25.5% (Swaney et 

al. 2010), which highlights the value of using alternative proteases even though they 

produce suboptimal peptides for traditional MS/MS identification. 

 Electron-transfer dissociation (ETD) is a complementary fragmentation 

method that forms c- and z- ion fragments in a manner that is less dependent on the 



15 

 

peptide sequence (Syka et al. 2004).  However, ETD is inefficient with low intensity 

and/or low charge state precursors. Although the ETD efficiency improves when 

combined with a resonance excitation after the ion-ion reaction (supplemental 

activation) (Swaney et al. 2006), the ability to supercharge precursors is expected to 

dramatically improve ETD efficiencies.   

 The charge state and intensity of peptide ions is determined at the point of ESI 

by the competition of several variables including: instrument settings (Loo et al. 

1988), chemical properties of the analyte and mobile phase (e.g. peptide pI, mobile 

phase pH) (Kamel et al. 1999), ion suppression of co-eluting analytes (Mallet et al. 

2004), and mobile phase flow rate (Ficarro et al. 2009).  Long before ESI was applied 

to macromolecules, Lord Raleigh predicted that the maximum extent of charging, z
R
, 

possible for a spherical droplet of radius, R, correlates to the surface tension, γ, of the 

liquid according to the relationship (Rayleigh 1882):   

Total charge  = Z
R
e =  8π(ε0γR3)1/2

 

 Where e and ε0 are constants pertaining to the elementary charge and the 

permittivity of free space, respectively.  Several groups have identified molecules that 

result in “supercharging” of polymers and intact proteins.  Iavarone et al. first 

demonstrated the charge enhancement of meta-nitrobenzyl alcohol (m-NBA) for intact 

proteins (Iavarone and Williams 2002; Iavarone and Williams 2003).  The charge 

enhancement of m-NBA and other supercharging reagents during ESI is especially 

complementary to ETD fragmentation. Addition of 0.1% m-NBA was shown to 

enhance charging and therefore ETD fragmentation of peptides derived from BSA and 

-casein (Kjeldsen et al. 2007). Addition of m-NBA improved top down H/D 
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exchange with ETD of protein structure yielding 1.3 amino acid resolution in real time 

(Sterling et al. 2010) and top-down ESI with electron-capture dissociation (ECD) was 

also improved (Yin and Loo 2011). Additional supercharging reagents have been 

identified. In 2002, Iavarone et al. reported the use of several small molecules, 

including dimethylsulfoxide (DMSO) and even glycerol (Iavarone and Williams 2002; 

Iavarone and Williams 2003).  Recently, Valeja et al. reported several small molecule 

organic reagents that effect ESI charge state of intact protein and chromatographic 

retention during LC/MS (Valeja et al. 2010).  Lomeli et al. also report the extent of 

charge enhancement resulting from a screen of several aromatic compounds and 

sulfolane (Lomeli et al. 2010).  These researchers reported that sulfolane forms 

adducts in the supercharging process, and sulfolane adducts were recently investigated 

in more detail (Douglass and Venter 2012). Despite extensive application of 

supercharging reagents for ESI of intact proteins, so far only Kjeldsen et al. applied  

m-NBA to enhance the charge state of peptides for ETD fragmentation and 

identification (Kjeldsen et al. 2007).  

 Although the charge enhancing phenomena of these reagents correlates well 

with the Raleigh equation in many measurements, the complex chemical environment 

at the end of the droplet lifetime produces deviations from theory (Hogan and Biswas 

2008; Wilm 2011).  Factors affecting the observed analyte charging largely result from 

the high boiling supercharging reagent that becomes enriched in the late stage of the 

droplet resulting in: non-spherical droplets (Ahadi and Konermann 2011), protein 

chemical and/or thermal denaturation (Sterling et al. 2010), and gas-phase proton 

affinity (Loo and Smith 1995).   
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 Here we present an exploration of charge-enhancing reagents, DMSO and m-

NBA, for improved peptide identification by LC-MS/MS. DMSO was selected 

because Valeja et al. recently observed, in addition to supercharging, improved 

chromatography of intact protein during reversed-phase with a C5 stationary phase 

(Valeja et al. 2010).  m-NBA was selected because Kjeldsen et al. previously reported 

increased ETD quality with this co-solvent (Kjeldsen et al. 2007).  Sulfolane was not 

used since we already had a representative sulfoxide compound (Douglass and Venter 

2012). We were particularly interested in the effect of charge enhancement for 

peptides generated from alternative proteases that do not have an amino acid with a 

basic side chain at the C-terminus.  We hypothesized that high charge states produced 

from ESI with DMSO and m-NBA may improve the sensitivity of non-tryptic peptide 

identification when used in combination with ETD.  To assess the practical application 

of these reagents for LC-MS/MS, the mobile phases used for reversed-phase nano 

liquid chromatography were modified with supercharging reagents DMSO and m-

NBA in a manner similar to Kjeldsen et al (Kjeldsen et al. 2007).  Mobile phase 

properties are known to effect chromatographic resolution and retention (Gustavsson 

et al. 2001; Coulier et al. 2006), and indeed some differences were observed in the 

chromatography. Peptides produced by various protease digestions (i.e. trypsin, 

elastase or pepsin) of a five protein mixture were used to assess effects of the modified 

mobile-phases on chromatographic separation, precursor ion effects, and ultimately, 

the number of peptide identifications. The samples were analyzed with a combination 

of CID and ETD (Swaney et al. 2008; Kim et al. 2011) and the data were searched 

with MS-GFDB which allows searching of CID/ETD pairs (Kim et al. 2010). The co-
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solvent, DMSO, markedly improved the number of peptide identifications compared 

to formic acid alone for all three proteases. 

B.  Materials and Methods 

1.  Samples and Solutions   

Acetonitrile (ACN) and formic acid (FA) Optima grade were purchased from 

Thermo Fisher Scientific (Waltham, MA).  TCEP (BondBreaker) was from Pierce 

(Rockford, IL). Trizma, Iodoacetamide (IAA), sodium deoxycholate (SDC) 

dimethylsulfoxide (DMSO), and meta-nitrobenzyl alcohol (m-NBA), and angiotensin 

I were purchased from Sigma Aldrich (Saint Louis, MO).  All chemicals were of the 

highest purity possible and were used without further purification.  Peptides from a 

standard mixture of five proteins (Bovine serum albumin (BSA), α-casein (S1 and S2), 

β-casein, lysozyme C, and hemoglobin (alpha and beta)) were digested separately by 

pepsin, elastase or trypsin as described previously (Lin et al. 2008), with the exception 

that pepsin digestion was performed in 0.1% FA without sodium deoxycholate. The 

digests were stored lyophilized at -80° C. For MS/MS experiments, the amount 

injected was 16 nanograms. Full scan MS experiments were performed with three 

quantities of analyte spanning an order of magnitude, 16, 80, and 160 nanograms. 

2.  Liquid Chromatography 

 Control mobile phase A consisted of 0.2% FA with 5% ACN in water, and 

control mobile phase B consisted of 0.2% FA with 95% ACN in water. In addition to 

the controls, both mobile phases, A and B, were also modified with either 5% DMSO 
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or 0.1% m-NBA.  The presence of 5% ACN in mobile phase A assisted with m-NBA 

dissolution.   

3.  nLC-MS/MS 

Lyophilized peptides were resuspended in 0.2 % FA in water, and were 

separated over a 75 µm ID X 12 cm capillary column packed in-house with 5 µm 

Phenomenex Luna C18 particles.  An Agilent 1200 series pump was used to generate a 

flow of 0.11 mL/min, which was split 1:500 to ~250 nL/min.  Separation was achieved 

with a gradient from 100% to 70% A over 60 minutes.  Mobile phase B was then 

increased to 95% over 10 min, and the column was flushed for 10 minutes, followed 

by re-equilibration with 100% A at 400 nL/min for 10 minutes.  MS data were 

collected during the flush and re-equilibration to ensure consistent column 

regeneration, resulting in a total of 90 minutes of data collection for each run.  The 

eluent was directly electrosprayed at 2.1 kV into an LTQ XL with ETD (Thermo 

Scientific, Waltham, MA).  To ensure effective desolvation of high-boiling 

supercharging reagents, the ion transfer tube temperature was set to 275 °C.  Full-

scan-only experiments were collected from m/z 350-2000 using the enhanced scan 

rate, which produces resolution sufficient to resolve the isotope distribution of a +3 

charge state ion.  For data-dependent peptide identification experiments, the top five 

most abundant  precursor ions determined by a precursor ion scan from m/z 300-2000 

were selected for “zoom” scans (+/- 5 daltons) at a resolution sufficient to determine 

precursor charge state.  Charge states not equal to 1 with intensity over 1000 counts 

were fragmented consecutively by both CID and ETD.  After collection of two 

fragment ion spectra, precursor m/z values were excluded for 15 seconds.  The 
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exclusion list size was set to 500.  Activation settings were optimized by directly 

infusing angiotensin I at 1 picomole/microliter.  Infusion in each of the three different 

solvent systems did not show any significant differences in the optimal activation 

settings. ETD activation was performed using fluoranthene to generate anions for an 

ion/ion reaction time of 120 ms followed by supplemental activation to break up non-

covalent gas phase interactions (Swaney et al. 2006).  CID activation was performed 

for 30 ms using “35% normalized collision energy”.  The automatic gain control 

settings were AGC Reagent=3e5, AGC Full MS=3e4, AGC MSN=1e3, AGC 

zoom=3e3. The instrument was operated using the Xcalibur version 2.0.7 software 

(ThermoFisher Scientific). 

4. Data Analysis 

The resulting data was analyzed by MS-GFDB (Kim et al. 2010).  Files were 

converted to mzXML using Trans-Proteomic Pipeline (Keller et al. 2005).  The 

resulting .mzXML files were searched against the Uniprot database of all bovine 

proteins plus common contaminants and lysozyme C from chicken, as well as the 

three proteases, porcine trypsin, elastase and pepsin.  The false discovery rate (FDR) 

was estimated using the target-decoy approach by including shuffled sequences in the 

search database.  Database searches were performed with and without the option to 

merge CID and ETD fragment ion spectra from the same precursor ion (Kim et al. 

2010).  In addition to the default fixed carbamidomethylation of cysteine, searches 

allowed variable deamidation of Q or N, and phosphorylation of S or T.  Up to two 

variable modifications were allowed.  Data from elastase and pepsin experiments were 

searched using “no enzyme” specificity. Precursor charge states from two to five were 
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considered for spectra with undetermined charge. The precursor mass tolerance was 

set to 2.5 daltons.  Default parameters used were: instrument= low-resolution 

LCQ/LTQ; one allowed non-enzymatic terminus, and possible peptide lengths from 

six to forty amino acids were considered.   Only peptide spectrum matches to the 

standard proteins or the protease with FDR < 0.01 were used for further analysis.  

Chromatographic retention and resolution were assessed using XCMS (Smith et al. 

2006) and in-house scripts written in R (Team 2011).  Annotated MS/MS spectra were 

visualized using Proteowizard (Kessner et al. 2008). Spectral counts, referring to the 

number of times a peptide sequence was matched to an MS/MS spectrum, were used 

to provide an estimate of MS/MS efficiency. 

 

C.  RESULTS 

1.  Co-solvent effects on the number of high quality peptide 

identifications 

To explore the improvements in peptide identifications from the use of mobile-

phase additives (i.e. 5% DMSO, 0.1% m-NBA), we analyzed digests of a 5 protein 

mixture containing BSA, hemoglobin, α-casein, β-casein, and lysozyme C. The 

mixture was digested with trypsin, elastase, or pepsin, and analyzed in triplicate by 

nLC-MS/MS on an LTQ mass spectrometer using consecutive activation of selected 

precursors by both CID and ETD fragmentation. The resulting spectra were searched 

as pairs.  At a peptide-level false discovery rate of <0.01, the numbers of unique 

peptides identified under each solvent condition are given in Table 2.1.  For each of 
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the three different proteolytic digests, inclusion of DMSO increased the numbers of 

peptides identified, and for two of the three protease digestions, the results were highly 

significant (p-value > 0.05).  The observed improvement could arise from a number of 

variables, such as ESI charge enhancement resulting in more efficient ETD 

fragmentation, or effects on chromatographic retention and resolution.  The 

contribution of each variable was assessed separately. 

2. Effects of co-solvents on chromatography 

Most of the data acquisition time during the peptide identification experiments 

is spent determining charge state and collecting fragment ion spectra (> 5 s between 

precursor scans).  To better assess the contribution of chromatographic quality on the 

relative MS/MS efficiencies observed, we collected full-scan-only MS spectra.  

Normalized total ion chromatograms (TICs) are shown in Figure 2.1.  Separations 

containing m-NBA resulted in more noise, as evidenced by the elevated baseline, as 

well as an apparent increase in peak height and width. Peak heights also apparently 

increased when the mobile phase contained 5% DMSO. Quantitative assessment of 

peptide-level chromatographic resolution was achieved by generating extracted-ion 

chromatograms (EICs), an example of which is shown in Figure 2.2. The full width at 

half maximum (FWHM) from analyses carried out in FA only and FA plus DMSO 

runs were not significantly different. However, separations carried out in the presence  

of m-NBA resulted in wider peaks (Table 2.2).  Figure 2.2 also shows how the 

retention time decreases due to the co-solvents.  This observation prompted us to carry 

out a non-linear retention time alignment as a comprehensive measure of 

chromatographic retention (Figure 2.3).  Separations in the presence of DMSO and m-
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Table 2.1.  Effect of mobile phase additive on the numbers of unique peptides 

identified from digests of the 5-protein mixture.   

 

1
Unique peptide counts are the average of three technical replicates.  Error values 

given are one standard deviation.  * P-value from a student’s t-test comparing FA 

alone to FA + DMSO.  ** P-value from a student’s t-test comparing FA alone to FA + 

m-NBA.  The DMSO modified phase identifies significantly more peptides at p-value 

<0.05 and <0.01 for peptic and tryptic digests, respectively. 

 FA + DMSO + m-NBA p-value1* p-value2** 

Trypsin 183 ± 9
1
 231 ± 4 166 ± 6 0.0020 0.0345 

Elastase 204 ± 29 242 ± 21 189 ± 43 0.0706 0.3195 

Pepsin 372 ± 13 409 ± 7 267 ± 24 0.0108 0.0029 
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Figure 2.1. Comparison of TICs observed for each mobile phase condition.  Traces 

are from full-scan-only experiments of the 5 protein mixture digested with pepsin (16 

ng total protein injected). The chromatograms were normalized so that for each of 

them, 100% on the y axis equals 10
7
 total ions. 
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Figure 2.2. Extracted ion chromatograms (EICs) for the +1, +2, and +3 charge states 

of the elastic peptide TEDELQDKIHPF, illustrating the relative charge distributions 

produced during ESI for three mobile phases: 0.2% FA only (top, black), 0.2% FA + 

5.0% DMSO (middle, red), or with 0.2% FA + 0.1% m-NBA (bottom, blue). 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2.  Comparison of chromatographic FWHM for peptides produced by each 

protease analyzed in the three different solvent systems. 

 TEDELQDKIHPF TYFPHFDSHGSAQVK SDIPNPIGSENS 

0.2% FA only 14.1 s 17.6 s 19.4 s 

+ 5.0% DMSO 13.6 s 21.5 s 19.8 s 

+ 0.1% m-NBA 15.6 s 22.7 s 25.6 s 
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Figure 2.3. Global effects of supercharging reagents DMSO and m-NBA on 

chromatographic peptide retention during reversed-phase nano LC-ESI-MS/MS.  

Peaks identified in all samples were aligned and the median observed retention was 

chosen as the zero point.  Both DMSO and m-NBA modified mobile phases generally 

result in reduced retention times as compared to the control, 0.2% FA alone (black).  

At high concentrations of ACN, the DMSO caused increased retention (red), whereas 

the m-NBA continued to reduce retention times (blue). The solid grey line gives the 

gradient profile, and the dashed lines represent the moving average of retention time 

deviation for each condition. 
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 NBA generally decreased retention times compared to the FA only control.  m-NBA 

introduces different functional groups to the reversed-phase separation system that 

allow hydrogen bonding, aromatic pi-stacking/pi-cation interactions, and ionic 

interactions with the nitro group.  Together these properties appear to decrease the 

quality of chromatography in the presence of m-NBA. 

3. Tandem mass spectrum quality 

The quality of MS/MS spectra was assessed for both CID and ETD 

fragmentation of the doubly charged precursor ion and the triply charged precursor ion 

for the elastic peptide, TEDELQDKIHPF (Figure 2.4).  As expected, a significant  

improvement in the ETD fragment ion series resulting from the triply charged 

precursor ion as compared to the doubly charged precursor ion was observed (Syka et 

al. 2004).  The use of supplemental activation resulted in significant populations of b- 

and y-ions in the ETD fragment ion spectra (Swaney et al. 2006).    

Interestingly, the triply charged precursor ion was poorly fragmented by CID, 

and the spectrum did not match the sequence below 1% FDR.  Thus, for this example, 

the peptide identification was of high quality for the doubly charged precursor ion by 

CID and for the triply charged precursor ion by ETD, which highlights the 

complementary nature of the two approaches. To examine whether in each co-solvent  

more identifications were made by ETD or CID, we searched CID and ETD spectra 

separately (Table 2.3, Figure 2.5). MS-GFDB can either score CID and ETD spectra 

separately, or merge the CID and ETD spectra from the same precursor into a 

summed, scored spectrum (Kim et al. 2010).  When the spectra were searched 

separately, DMSO afforded increased numbers of peptides identified in both CID and
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Figure 2.4.  MS/MS spectra produced from the fragmentation of the doubly and triply 

charged precursor for the elastic peptide TEDELQDKIHPF. CID of the doubly 

charged precursor produced a rich fragment ion spectra, but CID of the triply charged 

precursor resulted in few fragment ions.  In contrast, ETD of the doubly charged 

precursor produced a weak ladder of fragment ions, but ETD of the triply charged 

precursor produced a nearly complete sequence ladder of c- and z*- ion pairs.  

Supplemental activation used with ETD also resulted in b-, y- ions that aided in 

sequence determination. 



30 

 

 

 

 

Table 2.3. Unique peptide counts for each mobile phase divided by activation. 

 

 

 

 

 

 

 

 

 

 

Protease activation 0.2% FA  FA + DMSO FA + mNBA  

Trypsin CID 164 ± 8 201 ± 7 142 ± 8 

 ETD 165 ± 3 190 ± 2 153 ± 10 

 Total unique 178 ± 5 219 ± 2 165 ± 8 

Elastase CID 90 ± 5 103 ± 7 62 ± 13 

 ETD 111 ± 6 121 ± 10 90 ± 16  

 Total unique 121 ± 7 136 ± 9 100 ± 21 

Pepsin CID 120 ± 20 132 ± 10 88 ± 15 

 ETD 177 ± 25 190 ± 22 163 ± 28 

 Total unique 200 ± 30 221 ± 24 178 ± 34 
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Figure 2.5. Comparison of unique peptide counts for each protease and each mobile 

phase condition.  The number of unique peptides identified by CID (blue) is compared 

to the number of unique peptides identified by ETD (red). The sum of unique peptides 

identified from both CID and ETD spectra combined after the database search 

(yellow) is also compared to the number of unique peptides identified using the option 

to merge spectra from the same precursor before computing the score histogram 

(green).  For non-tryptic peptides, the merged scoring produced dramatic increases in 

the number of unique peptides that are identified.  The error bars are +/- one standard 

deviation of the average of three independent experiments.  
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ETD whereas fewer peptides were identified from the m-NBA co-solvent as compared 

to FA alone. Similar results were obtained from the searches in which the CID and 

ETD spectra were merged. In addition, dramatic gains in identifications were achieved 

using the merged search for non-tryptic peptides.   

4. Effects on peptide charge state 

The effects of DMSO and m-NBA on peptide precursor charge state 

distributions were assessed with data from full-scan-only experiments. Extracted ion 

chromatograms (EICs) for all possible charge states of peptides identified from 

MS/MS experiments were analyzed. Representative EICs for the singly, doubly, and 

triply charged precursor ions of an elastic peptide (TEDELQDKIHPF) are shown in 

Figure 2.2.  Peaks from EICs were integrated and areas for each charge state were 

used to calculate the charge distribution for four peptides containing zero, one, two, or 

three basic side-chains (Table 2.4).  For 0.2% FA alone, the average charge state was 

centered near the number of basic functional groups present within the peptide, but a 

significant portion of the peptide also was found with one more charge.  When m-

NBA was added, most of the peptide carried the additional charge. With DMSO as the 

co-solvent, the charge state distribution coalesced to the charge state corresponding to 

the number of basic residues. Results from experiments on intact proteins also showed 

decreases in charge state relative to control at low concentrations of DMSO (Sterling 

et al. 2011). 

 To globally assess the effects of the charge state distributions produced using 

each mobile phase condition on overall quality of data produced, we assessed the  
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Table 2.4.  Peptide charge state distributions for peptides with various positive side 

chain counts. 

 

*n.d. = not detected.   Normalized ratio of integrated peak area from the EIC of each 

charge state of each peptide, numbered in order of potential positive charge sites.  

Each value is the average of two replicate injections.  Peptide 0: Peptic peptide 

containing no positive charge-bearing side-chains, SDIPNPIGSENS. Peptide 1: 

Tryptic peptide containing only one positive residue, YNGVFQECCQAEDK.  Peptide 

2: Elastase generated peptide containing two positive residues, TEDELQDKIHPF.  

Peptide 3: Tryptic peptide containing one lysine and two histidines positive side-

chains, TYFPHFDSHGSAQVK.   

  Peptide
 
0 Peptide 1 Peptide 2 Peptide 3 

0.2% FA only +1 68 08 07 01 

 +2 32 92 51 21 

 +3 n.d.* 00 42 39 

 +4 n.d.* n.d.* n.d.* 39 

summed intensity  1.0e6 8.4e6 5.6e6 2.0e7 

+ 5.0% DMSO +1 97 02 00 00 

 +2 03 98 90 14 

 +3 n.d.* 00 10 70 

 +4 n.d.* n.d.* n.d.* 16 

Summed intensity  1.6e6 1.7e7 1.5e7 4.2e7 

+ 0.1% m-NBA +1 04 00 00 00 

 +2 96 60 21 00 

 +3 n.d.* 40 78 25 

 +4 n.d.* n.d.* n.d.* 75 

Summed intensity  2.0e6 1.7e7 1.4e7 4.4e7 
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number of unique peptides identified and total spectral counts for each peptide at each 

charge state from each mobile phase condition (Table 2.5). Both DMSO and m-NBA 

co-solvents resulted in nearly double the total ion signal (as calculated from EICs 

generated for all charge states summed).  However, addition of DMSO resulted in a 

significant increase in the number of peptides identified. This increase appeared to be 

due to a significant signal enhancement for the most probable charge state.  Thus, 

DMSO causes charge state coalescence into a single charge state, which translates into 

simpler precursor spectra resulting in improved MS/MS data.   

For all peptides, the m-NBA modified mobile phase resulted in the highest 

precursor charge states.  m-NBA was able to supercharge peptides to charge states 

greater than the number of basic functional groups present (i.e. R, K, H, and the n-

terminal).  For example, ESI of Glu-fib, EGVNDNEEGFFSAR, resulted in almost 

exclusively a doubly charged precursor ion for 5.0% DMSO and the FA only control, 

but with 0.1% m-NBA, the precursor ion was mostly triply charged.  This peptide has 

only one basic residue and four acidic residues. The basic residue and the N-terminus 

are expected to carry positive charges; however, the third site of charging in the m-

NBA co-solvent is not obvious.  The utility of m-NBA supercharging is further 

demonstrated by the identification of a peptic peptide that did not contain any positive 

side chains (peptide 0 in Table 2), which was only sequenced in the analysis carried  

out with m-NBA added (Figure 2.6).  In fact, 17 peptic peptides that did not contain R, 

K, or H residues were identified using m-NBA as the co-solvent.  Therefore, 

supercharging, at least with peptide analytes, can cause peptide precursor ions to have  

a number of charges greater than the number of basic functional groups present.  This 
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Table 2.5.  Unique peptides identified and spectral counts according to charge state 

for each protease 

Trypsin only FA  FA + DMSO  FA + m-NBA  

Z unique pep. Sp. cts. unique pep. Sp.cts. unique pep. Sp. cts. 

2 121 ± 8 347 ± 24 162 ± 10 492 ± 

24 

67 ± 4 167 ± 2 

3 57 ± 3 194 ± 8 61 ± 7 161 ± 

16 

86 ± 6 211 ± 

13 

4 4 ± 1 36 ± 3 8 ± 2 31 ± 2 11 ± 3 53 ± 2 

5 0 ± 1 8 ± 2 0 ± 0 4 ± 3 2 ± 0 6 ± 1 

Elastase only FA  FA + DMSO  FA + m-NBA  

Z unique pep. Sp. cts. unique pep. Sp. cts. unique pep. Sp. cts. 

2 106 ± 21 289 ± 59 135 ± 11 320 ± 

34 

85 ± 28 201 ± 

71 

3 89 ± 7 273 ± 12 102 ± 10 321 ± 

47 

78 ± 12 216 ± 

46 

4 9 ± 2 32 ± 4 5 ± 2 28 ± 8 25 ± 4 62 ± 13 

5 0 ± 1 0 ± 1 1 ± 1 1 ± 1 0 ± 1 0 ± 1 

Pepsin only FA  FA + DMSO  FA + m-NBA  

Z unique pep. Sp. cts. unique pep. Sp. cts. unique pep. Sp. cts. 

2 158 ± 12 319 ± 15 175 ± 8 413 ± 

20 

88 ± 5 205 ± 

17 

3 130 ± 5 280 ± 5 136 ± 54 319 ± 

15 

106 ± 13 256 ± 

24 

4 80 ± 5 200 ± 8 87 ± 1 182 ± 7 45 ± 5 120 ± 

24 

5 4 ± 1 16 ± 2 9 ± 2 17 ± 1 26 ± 5 65 ± 12 
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Figure 2.6.  MS/MS spectra produced from the fragmentation of the doubly charged 

precursor of the peptic peptide: SDIPNPIGSENS, which bears no positive charged 

side chains. (A) CID fragmentation results in a spectra dominated by the y9 ion, which 

corresponds to fragmentation at proline. (B) ETD with supplemental activation results 

in fragments that complement the CID spectra in the high mass region. 
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observation is in contrast to speculation by Douglass and Venter that the number of 

basic residues may limit the extent of supercharging (Douglass and Venter 2012).   

 To assess the potential benefit from m-NBA-mediated charge enhancement, a 

theoretical digest was carried out for each of the proteases on the five protein mixture 

using MS-digest in Protein Prospector (www.prospector.ucsf.edu).  Peptides produced 

from trypsin digestion can only lack a positive side chain if they arise from the protein 

C-terminus.  In fact, only 1% of theoretical tryptic peptides from the five protein 

mixture lack any basic amino acid side chains.  Elastase and pepsin, however, are 

predicted to result in more peptides lacking possible positive charges, 14% and 12%, 

respectively.  

4.  Conclusions 

Here we present an analysis of factors relevant to the application of 

supercharging reagents DMSO and m-NBA for peptide identification by nano-ESI-

LC-MS/MS.  Consistent with previous reports, the m-NBA modified mobile phase 

produced extensive supercharging of peptides.  However, the extent of charge 

enhancement did not correlate with the number of peptide identifications even with 

sequential fragmentation with both CID and ETD.  The addition of m-NBA was very 

important for obtaining better ETD spectra from peptides that did not have many side 

chains that could carry a positive charge, and therefore, may find use in targeted 

experiments.  For data-dependent, untargeted experiments however, the lower 

chromatographic quality and the broad distribution of highly charged precursors 

achieved with the m-NBA co-solvent obviated any improvements in total numbers of 

high quality peptide identifications. Kjeldsen et al also observed chromatographic 
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broadening but did not observe a decrease in the number of identifications from a 

digest of BSA (Kjeldsen et al. 2007). Chromatographic broadening is expected to 

adversely affect analyses of more complex mixtures but may not affect the analysis of 

simple ones. In addition, the broad precursor charge state distribution results in several 

precursor ions for each peptide in the complex mixture, resulting in a lower signal to 

noise ratio.  Further, highly charged precursors result in multiply charged fragment 

ions that are difficult to resolve on low resolution ion-trap instruments.  

Using a combination of ion mobility and circular dichroism, Sterling et al. 

showed recently that supercharging reagents act as chemical denaturants for intact 

proteins, and that the higher charge species are more unfolded (Sterling et al. 2010). In 

the case of peptides, it is likely that they are completely unfolded and that the charge 

state will depend on the number of basic residues as well as the length of the peptide. 

Therefore, we postulate that the number of peptide microstates allowed in the 

electrosprayed droplet containing DMSO is limited to only the most favorable extent 

of charging allowed by each individual peptide sequence and length. Thus, although 

supercharging was observed with the m-NBA, it was not observed with DMSO.  

It is interesting to speculate on the reasons for the marked charge coalescence 

with DMSO.  Visual comparison of the electrospray under each tested mobile phase 

condition showed that the most stable spray was achieved across all parts of the 

gradient with DMSO-modified mobile phases.  According to the Raleigh equation, 

spray stability could also contribute to more uniform droplet sizes which might 

translate directly into more uniform charge states.  Finally, it is possible that DMSO 
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acts to promote desolvation efficiency and increase the total signal at a favorable 

charge state.  

For both tryptic and non-tryptic peptides, DMSO increases total MS/MS 

productivity apparently due to charge state coalescence, which results in more peptide 

precursor signal at a predominant charge state.  DMSO is expected to be particularly 

useful when complex peptide mixtures are analyzed using data-dependent acquisition 

approaches. Therefore, we expect this simple mobile phase addition to be widely 

adopted in bottom-up peptide identification experiments, regardless of protease and 

fragmentation.  Further gains are expected when this strategy is combined with high 

resolution mass spectrometry.   

 Chapter II, in full, is a reprint that the dissertation author was the 

principal researcher and author of.  The material appears in Journal of the American 

Society for Mass Spectrometry.  (Meyer, J.G. and Komives, E. A.  (2012).  Charge 

State Coalescence During Electrospray Ionization Improves Peptide Identification by 

Tandem Mass Spectrometry.  Journal of the American Society for Mass Spectrometry, 

23, 1390-1399.) 
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A.  Introduction 

The most powerful technique for system-scale protein measurement, or 

proteomics, is mass-spectrometry based proteomics (Walther and Mann 2010).  

Although great progress has enabled quantification of nearly all proteins expressed in 

yeast (de Godoy et al. 2008; Nagaraj et al. 2012), sequence coverage is often dismal 

with some proteins being identified by a single peptide sequence.  Complete amino 

acid coverage is valuable for comprehensive profiling of post-translational 

modifications (e.g. phosphorylation) and for quantification of splice variants.  Low 

observed proteome coverage is due to several factors including the wide dynamic 

range of protein concentrations in biological samples, splice variants, and 

unanticipated or unconsidered post translations modifications (PTMs).  Improvements 

to every step of the bottom-up proteomics workflow continue to increase the 

observable proteome. 

Due to length constraints that limit observable peptides, proteome coverage is 

ultimately limited by the proteome digestion.  Typically, identifiable peptides are 

between 7 and 35 amino acids with the lower limit being determined by sequence 

uniqueness, and the upper limit being determined by instrument resolving power 

(Swaney et al. 2010).  In silico proteome digestions predict that nearly one quarter of 

peptides generated from tryptic digestion of the S. cerevisiae proteome will be only a 

single amino acid long. Sequences lost due to length overall result in a theoretical 

upper proteome coverage limit of 68.8% according to in silico predictions (Figure3.1).   
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Figure 3.l. Predicted length distributions of peptides generated by in silico digestion 

of the S. cerevisiae proteome with trypsin, Glu-C, Asp-N, Arg-C, and Lys-C.  
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Recently, several groups have demonstrated that combining data from separate 

protease digestions improves proteome coverage (MacCoss et al. 2002; Wang et al. 

2008; Rietschel et al. 2009; Swaney et al. 2010). Improved peptide yield was also 

shown allowing proteome analysis of small-quantity samples from laser-capture 

microdissection (Wiśniewski et al. 2012; Wiśniewski and Mann 2012).  Swaney, 

Wenger and Coon used trypsin, Lys-C, Arg-C, Glu-C, and Asp-N to double the 

observed S. cerevisiae non-redundant amino acid coverage from 11.9% to 25.5% 

(Swaney et al. 2010).     

Other proteases that are used in proteomics to complement trypsin mainly 

cleave at ionic amino acid side chains and it would be useful to have proteases with 

additional, complementary specificities. Here we demonstrate the application of wild-

type alpha-lytic protease (WaLP) (Silen et al. 1989), and an active site mutant of 

WaLP, M190A alpha-lytic protease (MaLP) (Bone et al. 1989), to proteome digestion 

for shotgun proteomics.  Both were reported to have specificity for cleaving after 

aliphatic side chains, which are more common amino acids. WaLP is a serine protease 

secreted from the soil bacteria Lysobacter enzymogenesis (Silen et al. 1989; Graham 

et al. 1993) and has been studied extensively by mutagenesis and biophysical methods 

(Bone et al. 1989).  WaLP was found to exhibit remarkable stability (Sohl et al. 1998; 

Jaswal et al. 2002). 

Non-tryptic peptides are more difficult to identify than tryptic peptides, 

especially when lacking defined termini (i.e. from semi-specific protease digestion or 

endogenous peptides) due to increased database search space and less predictable 

ionization and fragmentation.   Lack of defined termini drastically increases database 



 48 

search space because more possible peptides fall within the precursor tolerance and 

drive up false positive rates (Gupta et al. 2011).  The majority of tryptic peptides have 

one positive charge localized at each termini upon +2 precursor charge state upon 

electrospray ionization (ESI), which results in well characterized fragmentation by 

collision induced dissociation (CID) (Wysocki et al. 2000; Tabb et al. 2003).  Non-

tryptic peptides, in contrast, may lack positively charged side chains (i.e. Arg, Lys, 

His) altogether, thereby making it unlikely to obtain multiple charges upon ESI.  

Those that do contain positive charges away from the C-terminus produce less 

predictable fragmentation upon CID.  Recently, additional peptide fragmentation 

methods have become accessible, such as electron-transfer dissociation (ETD) (Syka 

et al. 2004), which produces fragment ion series that are less dependent on peptide 

sequence, and higher-energy collisional dissociation (HCD) (Michalski et al. 2012).  

An in-depth comparison of activation methods for non-tryptic peptide identification 

has been published recently by Smith’s lab, where the authors evaluated FT-CID, and 

FT- ETD, and FT-HCD for sequencing peptides isolated from blood plasma (Shen et 

al. 2011).   

To enable application of the alpha-lytic proteases which have specificity for 

aliphatic amino acid side chains to shotgun proteomics, we address the above issues 

by comparing multiple fragmentation modes in combination with the peptide 

identification algorithm, MS-GFDB, which easily learns scoring parameters from an 

initial set of annotated peptide-spectra matches (PSMs) for arbitrary fragmentation 

methods and proteases (Kim et al. 2010).  We analyzed standard protein mixtures and 

complex S. pombe proteomes digested with trypsin, LysC, WaLP, and MaLP.  
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Specifically, we assessed ion activation methods, observed peptide character, and 

biological gains additional due to additional digestions.  The results present the pros 

and cons of using orthogonal proteases in proteomics.   

 

B. Materials and Methods 

1.  Samples and Chemicals 

 Acetonitrile (ACN) optima, tri-carboxyethyl phosphine (TCEP, Bond-

breaker), and HPLC-grade ethyl-acetate were purchased from Thermo-Fisher 

Scientific (Waltham, MA).  N-ethyl maleimide (NEM), formic acid (FA), sodium 

deoxycholate (SDC), sodium dodecyl sulfate (SDS), and Trizma-brand tris buffer 

were from Sigma-Adrich (St. Louis, MO).  All chemicals were the highest grade 

available and were used without further purification.  Sequencing-grade modified 

trypsin was purchased from Promega (Madison, WI).  A mixture of standard proteins 

was prepared containing bovine aprotinin (6.5 kDa, P00974), murine leptin (16 kDa, 

P41160), horseradish peroxidase (39 kDa, P00433), E. coli GroEL (57 kDa, P0A6F5), 

bovine serum albumin (69 kDa, P02769), cytochrome c (12.4 kDa, P00004), and 

hemoglobin α 15.3 kD, P69905) and β chains (16 kDa, P68871). This mixture was 

prepared as described and compared with recently published results (Guthals et al. 

2013). 

2. Protease expression and purification 

WaLP was expressed from Lysobacter enzymogenesis type 495 using 

Bachovichin’s media supplemented with MEM vitamins and 60g/L sucrose.  L. 
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enz.was grown at 30 °C with shaking at 100 rpm for 3 days.  MaLP was expressed as 

described previously (Mace et al. 1995) in D1210 E. coli using the pALP12-ΔM190A 

plasmid, which was the generous gift of Dr. Dave Agard.  Both proteases were 

purified from the culture supernatant as described previously (Mace and Agard 1995).  

Briefly, the protease is captured from the supernatant by batch binding on SP-

sepharose, which is washed extensively and then eluted with high pH glycine buffer. 

After buffer-exchange to pH 7.2, the enzyme was loaded by superloop onto the FPLC 

monoS column using a gradient of 10 mM NaHPO4, pH 7.2 to the same buffer 

containing 250 mM sodium acetate over 1 hr.   

3. Protease activity assays  

Enzyme activity was assessed with a chromogenic assay using N-succinyl-Ala-

Ala-Ala-p-nitroanalide (Sigma-Adrich, St. Louis, MO)) for WaLP or N-Succinyl-Ala-

Ala-Pro-Leu-p-nitroanilide (Bachem Americas, Torrance, CA) for MaLP or N-

Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Sigma-Adrich, St. Louis, MO) for 

chymotrypsin or N-p-tosyl-Gly-Pro-Lys-p-nitroanilide (Sigma-Adrich, St. Louis, MO) 

for trypsin and LysC. The specific activity of WaLP was 5x10
-4

 mmols N-succinyl-

Ala-Ala-Ala-p-nitroanalide  hydrolyzed per min per mg WaLP, and the specific 

activity of MaLP was 3x10
-2

 mmols N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide 

hydrolyzed per min per mg MaLP. The WaLP and MaLP proteases are both being 

made available from Sigma Aldrich. All protease assays were carried out under 

identical buffer conditions, except that SDC assays were done in HEPES because tris-

buffered SDC without dissolved protein is very viscous.   

4. In gel digestion 
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To test the suitability of WaLP and MaLP for in-gel digests, we obtained a 

sample of glucose transporter-5 (Uniprot Acc# P22732) that was expressed in Pichia 

pastoris and then deglycosylated with PNGase F. After SDS PAGE, the band was 

excised and subjected to in-gel digestion separately with either trypsin, WaLP, or 

MaLP according to standard protocol (available at 

massspec.ucsd.edu/bioms/training/protocols.php).  Resulting peptides were analyzed 

with the 5600 TripleTof (ABSCIEX) interfaced with a Waters NanoAcquity UPLC.  

Peptides were separated with a 1 hour, linear gradient from 5 to 80% mobile phase B 

at a flow rate of 250 μl/min using a charged-surface hybrid C18 column (75 micron ID 

X 20 cm length, 2.5-µm particles, Waters). Mobile phase A was 98% water, 2% ACN, 

0.1% formic acid, and 0.005% TFA and mobile phase B was100% ACN, 0.1% formic 

acid, and 0.005% TFA. Precursor spectra (400-1250 m/z) were collected for 0.25 s 

followed by MS/MS (50-2,000 m/z) of up to 50 of the most intense charge +2, +3, and 

+4 precursors for 2.4 s. The minimum intensity for MS/MS selection was 150 counts.  

Precursors were dynamically excluded for 4 seconds. The data were analyzed with 

Protein Prospector as described below. 

5. Proteome preparation and digestion 

S. pombe cell lysates were a generous gift from Dr. Paul Russell.  S. pombe 

cells were lysed using a bead mill in 50mM Tris-HCl pH: 8.0; 150mM NaCl; 5mM 

EDTA; 10% Glycerol; 50mM NaF; 0.1mM Na3VO4; 0.2% NP40.  Lysates were 

clarified at 15,700 x g for 10 min and the supernatant was removed.  Insoluble 

material from the lysate was re-extracted according to a non-SDS compatible protocol, 

combined with the soluble material, and precipitated by chloroform/methanol 
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extraction as described previously (von der Haar 2007).  Protein precipitates were 

resuspended in 100mM Tris, pH 7.2 containing 1.0% sodium deoxycholate (SDC), 

reduced with 5 mM TCEP at 60 
o
C for 30 min, and alkylated with 10 mM N-

ethylmaleimide (NEM) at room temperature for 1 hr.  TCEP and NEM were then 

removed by ultrafiltration with a 10 kDa-cutoff amicon-4 (Millipore) with three 10-

fold buffer exchanges into 100mM Tris, pH 7.2 containing 0.1% SDC. The alkylated 

S. pombe proteome concentration was determined using the BCA assay (Pierce 

Chemicals, from Thermo Scientific).  Samples (150 µg) of S. pombe proteome were 

separately digested with either trypsin, LysC, WaLP, or MaLP at a ratio of 1:100 for 

24 hrs at a total protein concentration of 0.5 mg/mL and SDC was removed by 

acidification with 5% formic acid (FA), extracted with ethylacetate, and purified by 

SepPak C18 (Waters, Inc) purification as described previously (Masuda et al. 2008; 

Masuda et al. 2009).   

6. MS activation comparisons 

A series of analyses of mixtures of known proteins and of unseparated 

proteome digests were performed in order to determine the best activation parameters 

for the MSMS runs.  For these experiments, samples, 0.65 µg, of S. pombe proteome 

digest were resuspended in 5 µl 0.1% FA and injected onto a trap column (Waters’ 

Symmetry 180  µm I.D. x 20 mm length, 5 µm C18 particles) equilibrated in 0.2% 

TFA, using a Waters NanoAcquity autosampler and binary solvent manager. A 100 

µm I.D. X 15 cm column (packed in-house) containing 3 µm Magic C18 AQ particles 

was used for peptide separation using a 2.5 hour gradient of 2% to 30% B (0.2 % TFA 

in 90% ACN)  at a flow rate of 0.6 µl/min.  Total run time was 1.5 hour for the 
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standard protein mix and 3 hour for the S. pombe digests including column flush and 

re-equilibration. Eluting peptides were electrosprayed at 2.7 kV using the Nanospray 

Flex Ion Source (Proxeon) into an LTQ-Orbitrap Velos hybrid mass spectrometer 

(ThermoFisher, Waltham, MA) using a precursor scan from 350-1400 m/z and a target 

resolution of 30,000 in profile mode.  Unassigned and +1 precursor charge states were 

excluded, and dynamic exclusion was enabled for 45 sec allowing 1 repeat and  using 

sequential activation of the top five precursors using CID, then ETD, then HCD with 

the FT mass analyzer. The scan rate for this experiment was 1.2 spectra/sec. 

Additional experiments were performed in which the top 10 precursors were 

sequentially targeted with CID then ETD using the ion trap as the mass analyzer as 

well as experiments in which the top 10 precursors were targeted using a data 

dependent decision tree (ddDT) approach (Swaney et al. 2008) to activate all +2 

precursor charge states with CID and all +3 or greater precursor charge states with 

ETD.  As expected, the faster scan rate of the ion trap yielded more peptide IDs 

compared to data from the higher resolution FT mass analyzer. The results from these 

experiments demonstrated the utility of the ddDT approach, which was then used to 

analyze the fully separated S. pombe proteome digests.  

7.  High-pH fractionation of proteome samples 

Peptide fractionation by high-pH reverse-phase (HPRP) was performed as 

described previously (Wang et al. 2011).  Briefly, lyophilized peptides were 

resuspended in 1.15mL of 20 mM NH4HCO2, pH 10 (HPRP mobile phase A).  HPRP 

buffer B was 80% ACN with 20% 20 mM NH4HCO2, pH 10.  Peptides were separated 

over a 100 X 2.1 mm Waters’ C18 BEH column (5 µm particles) maintained at 40 
o
C.  
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Samples (1.05 ml) were loaded at a flow rate of  0.5 ml/min over 7 min in 98% A, and 

peptides were eluted with a gradient from 2% to 100% B over 27 min.  Fifty-four 0.5 

mL fractions were collected into 100 µl of 10% FA, and fractions were pooled 

according to the method of Smith’s lab to yield 18 final pooled fractions that were 

lyophilized and stored at -80 ° C until nanoLC-MS/MS analysis (Wang et al. 2011).    

8. NanoLC-ESI-MS/MS of HPRP-fractionated digests 

Each pooled HPRP fraction was resuspended in 75 µl of 0.1% FA. Five µl 

(~0.5 µg/fraction) was injected into the LTQ-Orbitrap Velos hybrid mass spectrometer  

as described above except that a 60 min gradient from 2 to 30 percent B followed by 

column re-equilibration, for a total of 90 min per run.  For these experiments, a ddDT 

(Swaney et al. 2008) was used to activate all +2 precursor charge states with CID and 

all +3 or greater precursor charge states with ETD. Total nLC-MS/MS acquisition 

time was 27 hours/protease, or 4.5 days total. Appendix table 3.1 contains a list of all 

of the experiments. 

9. Database searches 

Files (.RAW) were converted to .mzXML files using the default parameters 

msconvert.exe except for the option to centroid all spectra (version 3.0.4323, February 

5th, 2013) within Trans-Proteomic Pipeline (TPP) (version 4.6.2) (Keller et al. 2005; 

Kessner et al. 2008).  The standard protein mix data (CID/HCD/ETD triples, high 

resolution) was searched with Protein Prospector (prospector.ucsf.edu) against the E. 

coli subset of SwissProt (March 21st, 2012 version) with the sequences for each 

standard mix protein and protease added because the number of spectra was 
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insufficient to properly train MS-GFDB.  The database contained a total of 22,934 real 

and 22,934 randomized sequences comprising all E. coli strain sequences (45,868 total 

protein sequences) to allow estimation of the false discovery rate (FDR).  Data from 

the unseparated S. pombe digests (CID/HCD/ETD triples, high resolution) was 

searched with Protein Prospector against the S. pombe subset of SwissProt (March 

21st, 2012 version) with accessions for each protease added (4,990 real, 4,990 

randomized, 10,980 total).  An initial search was carried out with 10 ppm precursor 

tolerance and 15 ppm fragment-ion tolerance to calibrate the precursor masses, 

followed by another search with 5 ppm precursor tolerance and 15 ppm fragment-ion 

tolerance.  Searches with trypsin and Lys-C data allowed up to 3 missed cleavages and 

one non-enzymatic termini.  Searches of WaLP and MaLP data used “no enzyme” 

specificity.  Default variable modifications were used.  Searches required the fixed 

modification of cysteine with NEM. The data on unseparated S. pombe proteome 

collected as CID/HCD/ETD triples was also searched with MS-GFDB version 7780 

(Kim et al. 2010) against common contaminants and the S. pombe complete proteome 

containing a total of 5099 real and 5099 reversed sequences (downloaded from 

UniProt on June 20th, 2012) using the merge search for comparison of the amount of 

internal ions. The comparison between Protein Prospector and MS-GFDB searches 

revealed that for WaLP and MaLP, Protein Prospector gave similar numbers of unique 

peptides (Appendix Table 3.2). 

Data from the fully separated proteome analyses were converted to .mzXML 

and merged using mzXMLmerge 

(http://proteotools.pharmacy.arizona.edu/proteotools/index.jsp) to make database 
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searching and downstream analysis more manageable.  The merged .mzXML files 

were searched with MSGFplus.jar version 9352 (released on Feb, 4th 2013) (Kim et 

al., unpublished).  MS-GFDB is a database search engine that reports rigorous p-

values (spectral probabilities) for spectral interpretations based on all possible peptide 

match scores (Kim et al. 2010). The key advantages of the MS-GF algorithm are that it 

is highly effective in utilizing spectral evidence, the spectral interpretations are 

rigorously scored, and the scoring algorithm can be re-trained using large data sets of 

annotated spectra (Kim et al. 2008). MS-GFDB extends MS-GF to automatically 

derive scoring parameters from a set of annotated MS/MS spectra of any type (e.g. 

CID, ETD, etc.). This aspect was particularly important for efficient spectral 

interpretation of data from non-tryptic digests. MSGF+ is a successor of MS-GFDB 

that additionally allows input of mzml data and produces mzIdentML output files 

(Kim et al., unpublished). Database searches used default parameters except the 

number of tolerable enzymatic termini was set to 1 and searches of MaLP and WaLP 

used “no enzyme” specificity.  Searches required fixed modification of cysteine by 

NEM and variable modification at peptide N-terminal Q to pyro-glutamate, protein N-

terminal methionine loss plus acetylation, and methionine oxidation. Precursor masses 

containing between 0 and 2 
13

C were considered.  For all MS-GFDB searches and all 

MS-GF+ searches, precursor mass tolerance was set to 5 ppm. After initial searches of 

each activation method alone, the scoring parameters were trained and the data were 

re-searched with the new scoring model.  Only the MS-GFDB search engine was used 

for the large data sets because it was faster than Protein Prospector. 
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In order to quantitatively compare internal ions produced from peptide 

activation by HCD, we first used sequences identified by merged searches with MS-

GFDB of S. pombe CID/ETD/HCD triples. The merged searches afforded HCD 

spectra that were insufficient in themselves for peptide identification. To identify 

internal ions in the HCD spectra, all possible internal ions from the identified peptide 

sequence were predicted using an in house program created in [R]. The raw HCD 

spectrum corresponding to the matched peptide was then searched for the presence of 

each internal ion. A similar analysis was done on the ddDT spectra to determine the 

presence of internal ion peaks in the CID spectra from this larger data set. All peptide-

spectra matches from ddDT spectra were analyzed for the intensity and presence of b-, 

y-, c-, z-, and internal ions.  The b- ion count included b-H2O and b-NH3 if the peptide 

sequence contained serine/threonine, or asparagine/glutamine, and similarly losses 

were included in the y-ion and internal ion counts. Intact precursor ions and neutral 

losses from the precursors were removed from ETD spectra using the msconvert.exe 

ETD filter before computing c- and z- ions and c-1 and z+1 ions were included in the 

c- and z- ion values. The ions were quantified both as %TIC and as % of all MSMS 

peaks in the spectrum. The fraction of peptide backbone breaks, defined by the 

presence of a b- or y-fragment ion corresponding to a break in the peptide backbone, 

were calculated according to Guthals et al (Guthals and Bandeira 2012).  

10. Data analysis 

MS-GFDB search output from the activation comparison experiments was 

filtered to <1% peptide-level FDR.  Proteome coverage calculations used only data 

with <1% peptide-level FDR calculated by PeptideProphet (Keller et al. 2002). Protein 
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identifications were by ProteinProphet with the default parameters (Nesvizhskii et al. 

2003).  Euler diagrams were generated using eulerAPI 

(http://www.eulerdiagrams.org/eulerAPE/).  Additional analyses were carried out 

using in-house scripts written in [R] (Team 2011), which have been made available 

online at github.com/jgmeyerucsd/PepsuM/.  Protease specificity heatmaps were 

generated using only unique peptide sequences from PeptideProphet output.  Trans-

membrane proteins were predicted from all identified proteins using TMHMM (Krogh 

et al. 2001).  The peptide sequences were analyzed using iceLogos (Colaert et al. 

2009). 

 

C.  RESULTS 

1.  Protease activity in SDC, SDS, and GdnCl 

Previous studies on WaLP indicated that it possessed remarkable stability 

(Baker et al. 1992). As this property may provide advantages for digestion of 

proteome samples under various solution conditions, we performed protease activity 

assays in various proteomic digestion conditions to assess the versatility of WaLP and 

MaLP compared to trypsin, LysC and chymotrypsin. In every condition, the activity of 

WaLP and MaLP  was similar or greater compared to trypsin, however chymotrypsin 

showed higher activity than WaLP in urea and guanidine (Table 3.1A). Strikingly, 

however, chymotrypsin activity decreased markedly over time under typical proteomic 

digestion conditions, whereas the activity of WaLP and MaLP remained high (Table  

  



 59 

Table 3.1. A.Relative activity in various conditions compared to no denaturant 

control. B. Relative activity of various proteases (as percent compared to time 0) after 

incubation for 20 hrs. 

 

A.   

Condition Trypsin Lys C Chymotrypsin  WaLP MaLP 

No 

detergent 

100 100 100 100 100 

0.1% SDC 59 48   89 186 132 

1.0% SDC 55 62 130 78 62 

0.1% SDS 10 96 19 54 39 

1.0% SDS 0 71 0 42 31 

1M GdnCl 16 113 83 22 19 

4M GdnCl 2 14 16 1 1 

1M urea 87 116 82 26 58 

4M urea 57 149 57 12 30 

 

 

B. 

Condition Trypsin Lys C Chymotrypsin  WaLP MaLP 

No 

detergent 

64 103 1 28 11 

0.1% SDC 87 60 6 96 96 

1.0% SDC 85 92 22 99 109 
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3.1B). These results suggest that for digestion of complex proteomes requiring several 

hours of digestion, WaLP and MaLP may be superior to chymotrpysin, and may 

provide a reason for our inability to find reports of complex proteome digestions 

utilizing chymotrypsin. 

2. Coverage of standard protein mixture 

A standard protein mixture digested by various proteases was analyzed by FT-

CID/ETD/HCD to determine proteome coverage for comparisons to recently 

published results (Guthals et al. 2013).  Digestion of these simple standard protein 

mixtures gave relatively high protein sequence coverage regardless of the protease 

(trypsin, LysC, chymotrypsin, elastase, WaLP, or MaLP) (Table 3.2). Compared to all 

others, chymotrypsin yielded slightly longer peptides on average, whereas elastase 

yielded slightly shorter peptides. The average length of peptides generated by WaLP 

and MaLP were similar to trypsin. Similarly high protein sequence coverage was 

obtained when WaLP and MaLP digest data were combined with trypsin, Lys-C as 

compared with a recent report using combined data from trypsin, Lys-C, Glu-C, Asp-

N, Chymotrypsin, and Arg-C digests of a similar mixture (Table 3.3).  

3. Comparison of tryptic and non-tryptic peptide identification using 

CID, ETD, and HCD 

Peptide fragment ion series depend on the peptide amino acid sequence and the 

activation method used to induce fragmentation (Sleno and Volmer 2004).  Tryptic 

peptides, which bear at least one positive charge at each terminus, produce strong b-  

 

 



 61 

Table 3.2. Percent protein coverage and average peptide lengths obtained from 

digestion of a standard protein mixture with various proteases. 

 

protein Trypsin LysC Elastase Chymotrypsin WaLP MaLP 

GroEL 87.8 92.6 73.7 97.6 80.5 81.0 

Leptin 96.5 78.1 52.7 92.5 95.2 80.2 

Aprotinin 70.7 91.4 65.5 94.8 96.6 79.3 

Peroxidase 58.1 38.6 47.7 64.6 58.5 57.2 

BSA 81.8 92.3 79.4 95.7 89.2 83.5 

Cyt. C 66.3 67.3 82.7 78.9 82.7 69.3 

Hb alpha 81.6 55.3 47.5 66.0 68.8 51.0 

Hb beta 86.3 82.9 35.6 91.1 56.2 44.5 

Average  

peptide 

length 

12.5  ± 

5.1 

15.0 ± 

8.1 

10.7 ± 

3.1 

14.8 ± 6.4 11.7 ± 

4.8 

12.0 ± 

4.5 
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and y-ion series upon activation with CID or HCD.  Since peptides from WaLP and 

MaLP digestion lack such defined charge character, we used the versatile 

fragmentation ability of the LTQ-Orbitrap Velos (Olsen et al. 2009) equipped with 

ETD to assess identification efficiency of non-tryptic peptides by CID, ETD, and 

HCD.  First, we analyzed data from total S. pombe digests in which peptides identified 

in MS1 were sequentially activated by CID, ETD, and HCD to compare the results for 

aLP digests to trypsin digests. This analysis revealed some challenges related to the 

fact that WaLP and MaLP generate non-tryptic peptides and cleave after several 

different amino acid residues. Out of the three FT-measured MS/MS activations, FT-

HCD was most efficient for identification of tryptic peptides, and the overlap between 

peptides identified by all three activation methods was high (73%) (Figure3.2).  FT-

CID and FT-HCD performed similarly for identification of non-tryptic peptides from 

WaLP digestion and overlap was considerably lower (65%). The greatest overlap of 

unique identifications was for peptides from Lys-C, with 85% of unique sequences 

identified by all three activations. Figure 3.3 shows CID, ETD, and HCD spectra for 

the same peptide from the WaLP digestion. The CID spectrum contains a significant 

number of peaks due to losses of water and ammonia, and the HCD spectrum contains 

internal fragment ions, both of which are known to increase spectral complexity (Elias 

et al. 2004; Huang et al. 2005) resulting in lower PSM scores for peptides that do not 

have well-defined terminal residues.  ETD resulted in abundant charge-reduced 

precursors along with a low intensity series of c- and z- sequence ions (Fig. 3.2C). 

ETD contributed a greater percentage of non-overlapping peptide IDs for WaLP and 

MaLP than for trypsin or LysC, consistent with  
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Figure 3.2. Euler diagrams showing the contribution of CID, ETD, and HCD to all 

unique peptides identified from sequential activation analyses of unfractionated S. 

pombe proteome analyzed over a three hour reverse phase separation (resulting in a 

total of 1836 peptides identified from the trypsin digest, 1307 from the LysC digest, 

1744 from the WaLP digest and 1327 from the MaLP digest). The greatest overlap in 

identifications was observed for peptides from LysC digestion, and the least overlap 

was observed for peptides from WaLP digestion.  ETD contributes a greater 

percentage of unique sequences for peptides from WaLP and MaLP digestion relative 

to peptides from trypsin or LysC digestion.
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Figure 3.3. CID, HCD, and ETD spectra of a peptide from WaLP digestion: 

VVTPWLDGKHVV CID and HCD (M+2H=675.3824), ETD (M+3H=450.5907). 
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our previous study comparing CID and ETD for non-tryptic peptides from elastase and 

pepsin (Meyer and Komives 2012). 

We re-searched these spectra using a merged search protocol in MS-GFDB. 

This approach resulted in more peptide identifications within 1% FDR. Merged 

searching resulted in only marginal improvements in the number of identifications of 

peptides from the trypsin and LysC digests (5% increases) but larger improvements 

(Table 3.4) were obtained for the samples from MaLP and WaLP digests. This is not 

surprising since these searches were run without enzyme specificity and thus have 

most to gain when capitalizing on the CID/ETD/HCD complementarity when 

searching a larger search space. The merged search data also allowed us to analyze the 

HCD spectra that were not sufficient for peptide identification in the absence of 

additional information from ETD and/or CID (56% of the triples). We first analyzed 

all of the HCD spectra for identified peptides to determine the percentage of the total 

ion current (%TIC) contributed by internal ions (7.2 % for trypsin, 7.4% for LysC vs. 

9.2% for WaLP and 9.1% for MaLP). A statistically significant greater percent of the 

TIC was contributed by internal ions from WaLP and MaLP digests as compared to 

trypsin digestion (student’s t-test, p-values <10
-10

).  We next analyzed the fraction of 

MSMS peaks attributable to internal ions. In this analysis, only peptides from the 

WaLP digest yielded a statistically significant increase in the fraction of MSMS peaks 

attributable to internal ions (10.3%), whereas the relative number of internal ion peaks 

from the MaLP digestion (8.4%) was similar to that of trypsin (8.7%), and peptides 

from LysC produced slightly fewer internal ion peaks (7.9%).  Using all peptides 

identified from the four separate digestions, we examined the cross-correlation of  
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Table 3.4. Comparison of the number of unique peptide sequences identified from 

CID/HCD/ETD data from 3 hr nLC MS analyses of S. pombe proteome digests. 

 MSGFDB 

separate 

MSGFDB 

merged 

Protein 

Prospector 

gain from 

merged search 

Trypsin 1771 1839 1836 1.04 

LysC 1012 1064 1307 1.05 

WaLP 1169 1520 1744 1.30 

MaLP 737 971 1327 1.32 



 68 

internal ion abundance with the presence of each of the 20 amino acids.  The 

abundance and presence of internal ions was positively correlated with the presence of 

residues: A, D, G, I, L, P, and V. Interestingly, only arginine was found to negatively 

correlate to internal ions.   

We next used data from the CID/ETD activation comparison to determine 

branch points for a data-dependent decision tree (ddDT), which targets precursors for 

CID or ETD based on precursor charge state and m/z (figure 3.4).   A ddDT targeting 

+2 charge-state precursors with CID, and ≥+3 charge-state precursors with ETD was 

implemented similarly to previous reports (Swaney et al. 2008).  The total run time of 

the ddDT method was only 1.5 hours, half that of the other activation comparison 

runs.  Use of this ddDT afforded more unique peptide identifications from WaLP 

digestion than even the best 3 hour activation experiment (i.e. 2544 from 1.5 hr. ddDT 

versus 2358 from merged search of IT-CID/ETD).  Use of the ddDT for tryptic 

peptides resulted in nearly as many peptides as IT-CID in half the acquisition time (i.e. 

4195 from 1.5 hr. IT-ddDT, 4576 from 3hr. IT-CID). 

4. Characterization of the MSMS data from WaLP and MaLP digests 

 S. pombe proteome samples digested separately by trypsin, LysC, WaLP or 

MaLP were separated off-line using HPRP (Wang et al. 2011), and each fraction was 

analyzed using a 90 minute nLC run with the ddDT method. Over 200,000 MSMS 

spectra were collected for each sample and searched with MSGF+ followed by 

training and re-searching; at less than 1% peptide-level FDR, similar numbers of 

peptides were identified from the trypsin, LysC, WaLP and MaLP digests; 17,810 and 

26,747 peptides were identified from the WaLP and MaLP digests, respectively (Table  
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Figure 3.4. Plots of identification efficiency as a function of precursor mass/charge 

separated by precursor charge state.  Identification efficiency of peptides from WaLP 

digestion are plotted on the top, and identification efficiency of peptides from trypsin 

digestion are plotted on the bottom. 
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Table 3.5.Results for proteome coverage based on unique peptides for each individual 

digest and combined data from different digests. 

Data set Spectra Peptides Protein groups Proteome Coverage 

Trypsin (T) 246,996 20,480 2,837 9.2% 

LysC (L) 226,403 21,565 2,781 8.4% 

WaLP (W) 267,608 17,810 1,955 5.8% 

MaLP (M) 251,103 26,747 2,330 7.6% 

T1+T2*  23,069 2,947(+6%) 10.2% (+10%) 

T+L  37,808 3,293(+16%) 13.6% (+48%) 

T+W  38,282 3,007 (+6%) 12.5% (+36%) 

T+M  47,111 3,207 (+13%) 13.9% (+51%) 

T+L+W+M  79,508 3,555 (+24%) 18.5% (+101%) 
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3.5). Even though a very similar number of spectra were collected for each digest, the 

number of peptides identified from the WaLP digest was somewhat lower. Several 

factors might have contributed to this, one being the non-tryptic C-termini generated 

by this enzyme.  

To better understand the consequences of non-tryptic C-termini on peptide 

identification, we analyzed the number of various fragment ions observed in the 

MSMS spectra from trypsin, LysC, WaLP or MaLP digests (Table 3.6). The 

percentage of the TIC attributable to y-ions is higher for trypsin and LysC than for 

WaLP and MaLP and conversely the percentage of the TIC attributable to b-ions is 

higher for WaLP and MaLP (Figure3.5). The y-ion directing capabilities of C-terminal 

positive charges has been discussed previously (Tabb et al. 2004), but the impact on 

large proteome analyses can be appreciated from the results presented here. Indeed, 

many search engines give higher scores for y ions than for other ions, which may be 

part of the reason more peptides were identified from the tryptic digestion than from 

the WaLP digestion. Another possible reason for lower numbers of peptide IDs from 

the WaLP digest could be production of internal ions upon MS/MS. Training the 

MSGF+ scoring function for peptides from WaLP/MaLP allowed reasonable 

identification of non-tryptic peptides despite the lower percentage of the TIC 

attributable to y-ions. In fact, the MaLP digested sample resulted in the greatest 

number of unique peptides identified (Table 3.5). 

5. Substrate specificity of WaLP and MaLP 

Previous studies of WaLP specificity were based on chromogenic activity 

assays revealed high activity towards P1 residues: A, V, and M  
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Table 3.6. Analysis of ion types observed from peptides resulting from digestion with 

various proteases. 

Protease subset % TIC % MS/MS peaks Notes 

Trypsin CID, b 14.8 ± 8.6% 8.30 ± 3.4% CID PSMs = 

65,891 

 CID, y 20.9 ± 10.7% 9.0 ± 5.7%  

 CID breaks 81.8 ± 15.3%   

 ETD, c 21.1 ± 8.4% 12.8 ± 4.6% ETD PSMs = 

13,222 

 ETD, z 23.0 ± 8.6% 14.1 ± 5.6%  

 ETD breaks 47.5 ± 26.0%   

LysC CID, b 17.2 ± 10.3 % 7.0 ± 3.0% CID PSMs = 

48,742 

 CID, y 18.2 ± 10.7% 6.9 ± 2.8 %  

 CID breaks 83.7 ± 12.7%   

 ETD, c 20.2 ± 8.4% 8.1 ± 3.9% ETD PSMs = 

19,738 

 ETD, z 22.1 ± 8.5% 9.0 ± 4.2%  

 ETD breaks 64.75 ± 

25.0% 

  

WaLP CID, b 22.4 ± 11.1 % 7.5 ± 3.1 % CID PSMs = 

33,475 

 CID, y 14.5 ± 9.0% 6.7 ± 2.6%  

 CID breaks 80.4 ± 12.1%   

 ETD, c 23.3 ± 8.8 % 10.3 ± 4.6 % ETD PSMs = 

11,117 

 ETD, z 19.1 ± 7.8 % 9.5 ± 4.0%  

 ETD breaks 53.5 ± 23.6%   

MaLP CID, b 20.1 ± 10.5% 6.08 ± 2.44% CID PSMs = 

45,138 

 CID, y 14.4 ± 9.29% 5.82 ± 2.13%  

 CID breaks 84.3 ± 11.9%   

 ETD, c 22.2 ± 8.61% 7.05 ± 3.68% ETD PSMs = 

13,509 

 ETD, z 18.5 ± 7.59% 6.55 ± 3.09%  

 ETD breaks 69.9 ± 20.6%   
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Figure 3.5. The fraction of observed ion types in the MSMS spectra from which 

peptides could be identified from the datasets detailed in Table 3.4 (A, trypsin; B, 

LysC; C, WaLP; D, MaLP; over 17,000 peptides from the WaLP digest and over 

26,000 peptides from the MaLP digest). The black bars represent the inner quartile 

ranges and show that for WaLP and MaLP digests, a significantly smaller proportion 

of the TIC was accounted for by C-terminal ions (y-ions and z-ions) as compared to 

trypsin and LysC digests. 
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(Bone et al. 1989).  MaLP, which has an active site Met replaced by Ala, was reported 

to have broadened activity for M, L, and F, but similar activity still against A and V 

(Bone et al. 1989). To more fully characterize the substrate specificity, all unique 

peptide sequences from PeptideProphet were combined to determine the specificity of 

WaLP and MaLP.  The observed specificity of WaLP and MaLP were visualized by 

plotting heat maps of cleavage position and observed amino acid frequency 

(Figure3.6). For comparison, the same figure is given for peptides from trypsin and 

LysC (Figure 3.7). WaLP cleaves most frequently after T (36%), but also with 

significant frequency after V (30%), A (27%), S (26%), and M (16%).  As reported 

previously, MaLP has specificity for slightly larger aliphatic amino acids, cleaving 

most frequently after M (32%), L (26%), F (26%), Y (14%), T (13%) and V (13%).  

These results show that WaLP and MaLP are somewhat more specific than elastase, 

which cleaved after A (43.5%), V (36.5%), I (34.7%), T (30.3%), S (21.4%), L 

(19.5%), and M (15.7%) (Wang et al. 2008). Interestingly, MaLP appears to be able to 

differentiate between L and I (26% of leucines were found at the P1 position versus 

only 8% of isoleucines), which cannot be resolved by mass alone. To follow up this 

potentially very interesting finding, we measured the ability of MaLP to cleave 

succinyl-A-A-P-L-pNa vs. succinyl-A-A-P-I-pNa. Whereas activity towards the 

succinyl-A-A-P-L-pNa was high (specific activity of 3.4x10-3 U/mg compared to 

2.8x10-2 U/mg for the substrate of choice, succinyl-A-A-P-F-pNa), the activity of 

MaLP towards succinyl-A-A-P-I-pNa was not observable under identical assay 

conditions. 

6. Length of peptides from WaLP and MaLP digestions 
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Figure 3.6. Heat maps (with white representing the highest and red 

representing the lowest) summarizing the statistical analysis of the occurrence 

of each amino acid at each position in the identified peptides detailed in Table 

3.5 (over 17,000 peptides from the WaLP digest and over 26,000 peptides 

from the MaLP digest). (A) WaLP peptides, raw counts of frequency of each 

amino acid at each position (B) WaLP peptides, counts normalized for the 

occurrence of each amino acid at each position (C) IceLogo depicting the 

enrichment and depletion of specific amino acids (relative to the whole 

proteome) at each position in the WaLP peptides with residues colored 

according to property: acidic-red, basic-blue, hydrophobic-black and 

small/neutral-green. WaLP yields peptides with the following P1 (C-terminal) 

residues A(20%), V (20%), S(16%), T(16%), G(8%), L(6%). (D) MaLP 

peptides, raw counts of frequency of each amino acid at each position (E) 

MaLP peptides, counts normalized for the occurrence of each amino acid at 

each position. (F) IceLogo depicting the enrichment and depletion of specific 

amino acids (relative to the whole proteome) at each position in the MaLP 

peptides. MaLP yields peptides with the following P1 (C-terminal) residues 

L(24%), F(13%), V(11%), A(7%), T(7%), I(6%). The cleavage site is marked 

by the vertical line in each plot. 
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Figure 3.7.  Heat maps from trypsin (A-C) and Lys C (D-F) data collected at the same 

time as those shown in Figure 3.5 for MaLP and WaLP digests. Figures A and D show 

the raw counts of frequency of each amino acid at each position, Figures B and E show 

the counts normalized for the occurrence of each amino acid at each position, Figures 

C And F show the IceLogos depicting the enrichment and depletion of specific amino 

acids (relative to the whole proteome). 
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Because of their apparently promiscuous activity, complete WaLP or MaLP 

digestion could result in many single amino acids and short peptides.  

Remarkably,WaLP digestion produces peptides with nearly the same average length as 

trypsin, 11.8 ± 3.1 amino acids versus 12.2 ± 4.3 from WaLP and trypsin, respectively 

(Figure3.8).  MaLP digestion produced slightly longer peptides (12.6 ± 3.7 amino 

acids). In addition, if non-specific digestion was resulting in more single amino acids 

produced, one would expect that the yield of amino acids still in peptides that adhered 

to C18 during solid phase extraction would be less, but this was not the case. Amino 

acid analysis of peptides from each digest revealed similar total peptide yield from 

digestion by trypsin, WaLP, and MaLP (Figure 3.9).  Interestingly, these results 

suggest that amino acids corresponding to the P1 specificity are depleted. So, for 

example, the peptides isolated from trypsin digests contain less R and K than the whole 

proteome and the peptides isolated from WaLP digests contain less A, S, T and V than 

the whole proteome. This makes sense if pairs of these residues were cleaved into 

individual amino acids and not retained as peptides in the experiment. Indeed, in silico 

trypsin cleavage yields digestion products of which nearly one quarter would be only a 

single amino acid (presumably K or R).  

7. Quantitation of peptide overlap 

Another possible limitation due to proteome digestion by semi-specific 

proteases is production of largely redundant sequences with different terminal 

truncations (“shredding”).  We quantified the redundancy in amino acid coverage 

according to the following relationship: 




unique

observed

total
AA

AA
redundancy

..#

..#
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Figure 3.8.Analysis of the lengths of all the unique peptides observed in each of the 

protease digests from the data in Table 3.5. Trypsin digestion generated a broader 

distribution with a higher frequency of shorter peptides. The size distributions of the 

peptides from the WaLP and MaLP digests were narrower than those for either trypsin 

or LysC. Colored vertical lines mark the average observed peptide length. WaLP 

digestion produced the shortest mean peptide length of 11.8 ± 3.1 amino acids. Trypsin 

digestion produced peptides with an average length of 12.2 ± 4.2 amino acids. MaLP 

and LysC produced slightly longer average peptides with length 12.6 ± 3.7 and 13.5 ± 

4.7 amino acids, respectively. The average lengths of the observed peptides were all 

remarkably similar.   
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Figure 3.9. Quantitative amino acid analysis of undigested (black), trypsin digested 

(blue), WaLP digested (orange) and MaLP digested (purple) of S. pombe proteome 

after purification on C18 to remove single amino acids and undigested proteins. The 

results show that each protease yields similar total amounts of peptides with similar 

amino acid compositions, however some interesting differences in amino acid content 

were also discovered (discussed further in the text).  
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The numerator includes redundancy from chemical modification (e.g. oxidized 

methionine), overlapping peptides, and identification of multiple charge states.  This 

relationship can be applied to any proteomics experiment to assess the efficiency of 

converting peptide identifications to covering proteome sequences.  Peptides from 

trypsin digestion were the least redundant, and peptides from MaLP digestion were the 

most redundant.  Redundancy values for trypsin, LysC, WaLP and MaLP were 1.3, 

1.6, 1.7, and 2.0, respectively. The redundancy for combined data was 2.7.  Such high 

redundancy is expected to be useful for high ion coverage that would facilitate site 

localization of PTMs (Chalkley and Clauser 2012). 

8. Biological gains from WaLP and MaLP digestions 

The central aim of this study was to improve proteome coverage.  Compared to 

data from only trypsin, the combined proteases increased protein identifications by 

24%, and proteome coverage by 101% (Table 3.5).   Such gains were significantly 

greater than those afforded from re-injection of tryptic peptides, which only increased 

proteome coverage by 10%.   

One possible gain from the increased proteome coverage would be in PTM 

identification. Although the samples were not enriched for phosphorylation we re-

searched the fully separated S. pombe proteome data allowing for variable 

phosphorylation of S and T to look for these PTMs.  Indeed, the complementary amino 

acids covered from WaLP digestion allowed observance of 95 serine and threonine 

phosphorylations, 63 of which had not been previously reported in Uniprot. Similarly, 

77 S/T phosphorylations were identified from the MaLP digest, 57 of which had not 

been previously reported (the assignments were made at the peptide level, not the site 
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level). A particularly illustrative example of the improved coverage of phosphorylation 

sites was observed for the protein MPD2. The WaLP digest contained three 

phosphorylated peptides from MPD2, one corresponding to the previously reported 

phosphorylation of S175, and two novel sites at S223 and S750 (Figure 3.10).  It is 

clear from the sequence of the protein that S175 is located between two basic residues 

and would result in a 17 amino acid long tryptic peptide. The tryptic peptide covering 

S223 would be 75 amino acids in length, and the tryptic peptide covering S750 would 

be only five amino acids in length.  

 We also wondered whether proteases that cleave aliphatic residues might 

increase the coverage of membrane protein sequences. Out of all 3,555 protein groups 

identified, 244 (6.9%) were predicted to have 3 or more transmembrane helices.  

Sequences from these proteins were preferentially enriched in the gained coverage with 

increases up to 350% for very hydrophobic sequences (Figure3.11).  Peptides from 

MaLP digestion were the greatest individual contributor to these gains as can be seen 

by the observation that the percent proteome coverage does not decrease with 

transmembrane helix content nearly as dramatically as for the other proteases (Fig. 

3.10A). Since in-gel digestion is sometimes used to digest membrane proteins, we 

tested the suitability of WaLP and MaLP for in-gel digestion on glucose transporter 

5(UniProt Acc# P22732).  Trypsin digestion yielded 36% coverage, WaLP yielded 

84% coverage, and MaLP yielded 50% coverage. The combination of data covered 

88% of the target protein sequence. A plot of sequence coverage versus hydrophobicity 

shows that peptides from  WaLP and MaLP digests are almost solely responsible for 

coverage of the transmembrane segments (Figure 3.10C). 
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Figure 3.10. (A) Sequence of MPD2 showing S175 (yellow), a previously reported 

phosphorylation site, S223 and S750 (red), which are phosphorylation sites that 

haven’t been reported before. (B) Annotated spectrum from the +3 charge state 

precursor of the peptide TGTApSPKLGSPFNHINRPV fragmented by ETD. (C) 

Annotated spectrum from the +2 charge state precursor of the peptide 

TLQQPQRAGpSDTFPDLNTS fragmented by CID. (D) Annotated spectrum from the 

+3 charge state precursor of the peptide ALKpSPLIKKNIQQA fragmented by ETD. 

The peptide mass information is given in Appendix Table 3.2. 
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Figure 3.11. MaLP and WaLP improve protein sequence coverage of transmembrane 

helices. (A) Each protease digest dataset; trypsin (black), LysC (grey), WaLP (red), 

and MaLP (blue), was evaluated for the amount of protein sequence that was covered 

in relation to how many transmembrane helices were predicted to be in each protein. 

The data show that MaLP covers a higher amount of sequence that is predicted to be 

from proteins containing transmembrane helices. (B) The fold gain of proteome 

coverage was evaluated for the trypsin dataset combined with Lys C (grey), WaLP 

(red), MaLP (blue) and all four (green).  For the four datasets combined, proteome 

coverage for proteins with at least four predicted transmembrane helices is increased 

over three-fold. (C) Plot of the hydrophobicity vs. coverage of the glucose transporter-

5 sequence when various combinations of proteases are used for the digestion. WaLP 

and MaLP cover the more hydrophobic regions whereas trypsin does not.   
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9.  Discussion 

The use of alternative proteases has the potential to expand proteome coverage, 

affording gains in PTM coverage as well as identification of splice variants. In this 

work, we explore the utility of two proteases that have not been used for proteomics 

before; WaLP and MaLP. These proteases retain activity in harsh denaturing 

conditions. They improve coverage of an in-gel digested protein. Combining data from 

WaLP, MaLP, trypsin and LysC results in nearly 100% coverage of protein sequences 

in standard mixtures. Thus, WaLP and MaLP digestion will likely prove to be useful 

for increasing coverage of protein sequences in proteomics, particularly when 

increased coverage is required for a targeted experiment or when appropriate tryptic 

cleavage sites are not present. 

One possible advantage of WaLP and MaLP are that they cleave at aliphatic 

residues (A, V, T, S for WaLP; L, F, V for MaLP). Chymotrypsin, which cleaves after 

aromatic residues (F, Y, W), has also been used to expand protein sequence coverage, 

but we could not find examples of where chymotrypsin was used in studies of complex 

proteomes.  WaLP and MaLP retain activity throughout long digestion times whereas 

chymotrypsin does not, potentially making WaLP and MaLP better for improving 

coverage of proteins in complex proteome mixtures. 

The fact that WaLP and MaLP cleave at non-polar residues, however, presented 

some challenges when using them in global proteomics experiments. The first 

challenge was their semi-specific substrate specificity. WaLP and MaLP were shown 

to cleave after several common non-polar residues. Compared with termini from 

elastase-digestion reported previously, (V [36.5%], I [34.7%], T [30.3%], S [21.4%], L 
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[19.5%], M [15.7%], and even H [9.1%]) (Wang et al. 2008), WaLP and MaLP (see 

Results) are more specific.  This semi-specificity would be expected to generate many 

single amino acids and short peptides, which would not be useful in unique sequence 

determination for proteomics. Surprisingly, the average length of the peptides 

identified from digests with WaLP were the same as those from trypsin, and peptides 

from digestion by MaLP were slightly longer than that obtained with trypsin. Figure 

3.5 suggests that the substrate recognition preference of WaLP and MaLP extend 

beyond the P1 position, both before and after the position of cleavage, which is 

consistent with previous work showing WaLP recognizes at least four amino acids past 

the position of cleavage (Schellenberger et al. 1994). Thus, WaLP and MaLP target 

more residues for cleavage, but apparently recognize a longer sequence motif. 

Another challenge of the non-polar substrate specificity of WaLP and MaLP is 

the yield of peptide fragment ions that are useful for sequence determination. WaLP 

and MaLP peptides yield a significantly lower abundance of y-ions (often scored the 

highest by database search algorithms). Whereas some 20,000 more MSMS spectra 

were obtained from the WaLP digest in our ddDT experiment as compared to trypsin, 

some 2600 fewer peptides were matched to those spectra. This may partly be due to the 

need to search databases with “no enzyme” specificity. Indeed, searching tryptic 

digests w/no enzyme for specificity results in 18,520 unique peptide IDs as compared 

to 21,035. The use of the merged spectra search capability in the MS-GFDB search 

engine did improve the number of identifications. However, it remains a puzzle as to 

why the number of peptides identified from the WaLP digest was lower. It is very 

encouraging that the number of peptides identified from the MaLP digest was 
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significantly higher despite the lower percentage of y-ions. Because WaLP and MaLP 

don’t cleave at K and R, the resultant peptides contain a higher percentage of these 

positively charged residues. While this doesn’t seem to have helped the identification 

of WaLP peptides, the combination of the higher content of charged residues with the 

longer average length of the MaLP peptides may have improved the MS2 spectra 

enough to aid subsequent unambiguous peptide identification. 

 One striking feature of MaLP specificity is its ability to differentiate I and L, 

preferring to cleave after L.  This observation increases the utility of MaLP digestion, 

because differences between I/L cannot be resolved by mass alone.  Another 

interesting result was that WaLP and MaLP digests avoid the residue-specific depletion 

of R and K from trypsin digestion (Fig. 3.8). Thus, WaLP and MaLP are likely to be 

extremely useful for proteomics analyses of K and/or R- rich sequences.  

 Sequences identified from WaLP and MaLP digestion are highly 

complementary to sequences identified from trypsin and LysC digestions.  In 

comparison with Swaney, DL, et al, who doubled proteome coverage relative to trypsin 

using five separate digestions (Swaney et al. 2010), we achieve double the sequence 

coverage from only four digestions.  The additional coverage is, as expected, beneficial 

for more comprehensive PTM mapping studies. We show one such example where two 

new serine phosphorylation sites were identified in MPD2, neither of which is on a 

peptide that would have been identified from trypsin digestion. Finally, the non-polar 

substrate specificity of WaLP, but particularly MaLP resulted in a dramatic increase 

(up to 350%) in proteome coverage of proteins with transmembrane regions. The 

increase in proteome coverage from all four proteases relative to only trypsin was 
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found to positively correlate with the minimum number of predicted transmembrane 

helices. Thus, we expect digestion with WaLP and MaLP will find use for 

comprehensive PTM-mapping studies and especially for a deeper proteomic analysis 

of membrane proteins.   

 Chapter III, in full, is a reprint that the dissertation author was the principal 

researcher and author of.  The material appears in Molecular and Cellular Proteomics.  

(Meyer, J.G., Kim, S., Maltby, D., Ghassemian, M., Bandeira, N., Komives E.A. 

(2014). Expanding proteome coverage with orthogonal-specificity alpha-lytic 

proteases. Molecular & Cellular Proteomics, 13, 823-835.)



 89 

D.  References 

Baker, D., J. L. Sohl and D. A. Agard (1992). "A protein-folding reaction under kinetic 

control." Nature356: 263-265. 

 

Bone, R., J. L. Silen and D. A. Agard (1989). "Structural plasticity broadens the 

specificity of an engineered protease." Nature339(6221): 191-195. 

 

Chalkley, R. J. and K. R. Clauser (2012). "Modification site localization scoring: 

strategies and performance." Mol Cell Proteomics11(5): 3-14. 

 

Colaert, N., K. Helsens, L. Martens, J. Vandekerckhove and K. Gevaert (2009). 

"Improved visualization of protein consensus sequences by iceLogo." Nature 

Methods6(11): 786-787. 

 

de Godoy, L. M. F., J. V. Olsen, J. Cox, M. L. Nielsen, N. C. Hubner, F. Frohlich, T. 

C. Walther and M. Mann (2008). "Comprehensive mass-spectrometry-based 

proteome quantification of haploid versus diploid yeast." Nature455(7217): 

1251-1254. 

 

Elias, J. E., F. D. Gibbons, O. D. King, F. P. Roth and S. P. Gygi (2004). "Intensity-

based protein identification by machine learning from a library of tandem mass 

spectra." Nature Biotech22(2): 214-219. 

 

Graham, L. D., K. D. Haggett, P. A. Jennings, D. S. Le Brocque, R. G. Whittaker and 

P. A. Schober (1993). "Random mutagenesis of the substrate-binding site of a 

serine protease can generate enzymes with increased activities and altered 

primary specificities." Biochemistry32(24): 6250–6258. 

 

Gupta, N., N. Bandeira, U. Keich and P. A. Pevzner (2011). "Target-decoy approach 

and false discover rate: When things may go wrong." J Am Soc Mass 

Spectrom22(7): 1111-1120. 

 

Guthals, A. and N. Bandeira (2012). "Peptide identification by tandem mass 

spectrometry with alternate fragmentation modes." Mol Cell Proteomics11(9): 

550-557. 

 

Guthals, A., K. Klauser, A. M. Frank and N. Bandeira (2013). "Sequencing-grade de 

novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides." 

J Proteom Res12: 2846−2857. 

 

 

 



 90 

Huang, Y., J. M. Triscari, G. C. Tseng, L. Pasa-Tolic, M. S. Lipton, R. D. Smith and 

V. H. Wysocki (2005). "Statistical Characterization of the Charge State and 

Residue Dependence of Low-Energy CID Peptide Dissociation Patterns." Anal 

Chem77(18): 5800-5813. 

 

Jaswal, S. S., J. L. Sohl, J. H. Davis and D. A. Agard (2002). "Energetic landscape of 

[alpha]-lytic protease optimizes longevity through kinetic stability." 

Nature415(6869): 343–346. 

 

Keller, A., J. Eng, N. Zhang, X. Li and R. Aebersold (2005). "A uniform proteomics 

MS/MS analysis platform utilizing open XML file formats." Mol Syst Biol: 

1:2005.0017. 

 

Keller, A., A. I. Nesvizhskii, E. Kolker and R. Aebersold (2002). "Empirical statistical 

model to estimate the accuracy of peptide identifications made by MS/MS and 

database search." Anal Chem74(20): 5383–5392. 

 

Kessner, D., M. Chambers, R. Burke, D. Agus and P. Mallick (2008). "ProteoWizard: 

open source software for rapid proteomics tools development." 

Bioinformatics24(21): 2534-2536. 

 

Kim, S., N. Gupta and P. P.A. (2008). "Spectral probabilities and generating functions 

of tandem mass spectra: a strike against decoy databases." J Proteome Res.7(8): 

3354-3363. 

 

Kim, S., N. Mischerikow, N. Bandeira, J. D. Navarro, L. Wich, S. Mohammed, A. J. R. 

Heck and P. A. Pevzner (2010). "The generating function of CID, ETD and 

CID/ETD pairs of tandem mass spectra: Applications to database search." Mol 

Cell Proteom9(12): 2840-2852. 

 

Krogh, A., B. Larsson, G. von Heijne and E. L. L. Sonnhammer (2001). "Predicting 

transmembrane protein topology with a Hidden Markov Model: Application to 

complete genomes." J Mol Biol305(3): 567–580. 

 

MacCoss, M. J., W. H. McDonald, A. Saraf, R. Sadygov, J. M. Clark, J. J. Tasto, K. L. 

Gould, D. Wolters, M. Washburn, A. Weiss, J. I. Clark and J. R. Yates (2002). 

"Shotgun identification of protein modifications from protein complexes and 

lens tissue." Proc Nat Acad Sci USA99(12): 7900-7905. 

 

Mace, J. E. and D. A. Agard (1995). "Kinetic and structural characterization of 

mutations of glycine 216 in alpha-lytic protease: a new target for engineering 

substrate specificity." J Mol Biol254: 720-736. 

 

 



 91 

Mace, J. E., B. J. Wilk and D. A. Agard (1995). "Functional linkage between the active 

site of α-lytic protease and distant regions of structure: Scanning alanine 

mutagenesis of a durface loop sffects sctivity and dubstrate dpecificity." J Mol 

Biol251(1): 116-134. 

 

Masuda, T., N. Saito, M. Tomita and Y. Ishihama (2009). "Unbiased quantitation of 

Escherichia coli membrane proteome using phase transfer surfactants." Mol 

Cell Proteomics8(12): 2770-2777. 

 

Masuda, T., M. Tomita and Y. Ishihama (2008). "Phase transfer surfactant-aided 

trypsin digestion for membrane proteome analysis." J Proteom Res7(2): 731-

740. 

 

Meyer, J. G. and E. A. Komives (2012). "Charge state coalescence during electrospray 

ionization improves peptide identification by tandem mass spectrometry." J Am 

Soc Mass Spectrom23(8): 1390-1399. 

 

Michalski, A., N. Neuhauser, J. Cox and M. Mann (2012). "A systematic investigation 

into the nature of tryptic HCD spectra." J Proteome Res11(11): 5479-5491. 

 

Nagaraj, N., N. A. Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm and 

M. Mann (2012). "System-wide perturbation analysis with nearly complete 

coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top 

orbitrap." Mol Cell Proteomics11(3): M111.013722. 

 

Nesvizhskii, A. I., A. Keller, E. Kolker and R. Aebersold (2003). "A statistical model 

for identifying proteins by tandem mass spectrometry." Anal Chem75(17): 

4646-4658. 

 

Olsen, J. V., J. C. Schwartz, J. Griep-Raming, M. L. Nielsen, E. Damoc, E. Denisov 

and O. Lange (2009). "A Dual pressure linear ion trap Orbitrap instrument with 

very high sequencing speed." Mol Cell Proteomics8(12): 2759 –2769. 

 

Rietschel, B., T. N. Arrey, B. Meyer, S. Bornemann, M. Schuerken, M. Karas and A. 

Poetsch (2009). "Elastase digests: new ammunition for shotgun membrane 

proteomics." Mol Cell Proteomics8(5): 1029-1043. 

 

Schellenberger, V., C. W. Turck and W. J. Rutter (1994). "Role of the S’ subsites in 

serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, 

alpha-lytic protease, and cercarial protease from Schistosoma mansoni." 

Biochemistry33(14): 4251-4257. 

 

 

 



 92 

Shen, Y., N. Tolić, F. Xie, R. Zhao, S. O. Purvine, A. A. Schepmoes, R. J. Moore, G. 

A. Anderson and R. D. Smith (2011). "Effectiveness of CID, HCD, and ETD 

with FT MS/MS for degradomic-peptidomic analysis: Comparison of peptide 

identification methods." J Proteom Res10(9): 3929-3943. 

 

Silen, J. L., D. Frank, A. Fujishige, R. Bone and D. A. Agard (1989). "Analysis of 

prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro 

region is required for activity." J Bacteriol171(3): 1320 -1325. 

 

Sleno, L. and D. A. Volmer (2004). "Ion activation methods for tandem mass 

spectrometry." J Mass Spectrom39(10): 1091-1112. 

 

Sohl, J. L., S. S. Jaswal and D. A. Agard (1998). "Unfolded conformations of [alpha]-

lytic protease are more stable than its native state." Nature395(6704): 817-819. 

 

Swaney, D. L., G. C. McAlister and J. J. Coon (2008). "Decision tree-driven tandem 

mass spectrometry for shotgun proteomics." Nat Meth5(11): 959-964. 

 

Swaney, D. L., C. D. Wenger and J. J. Coon (2010). "Value of using multiple proteases 

for large-scale mass spectrometry-based proteomics." J Proteom Res9(3): 1323-

1329. 

 

Syka, J. E. P., J. J. Coon, M. J. Schroeder, J. Shabanowitz and D. F. Hunt (2004). 

"Peptide and protein sequence analysis by electron transfer dissociation mass 

spectrometry." Proc Nat Acad Sci USA101(26): 9528 -9533. 

 

Tabb, D. L., Y. Huang, V. H. Wysocki and J. R. Yates (2004). "Influence of basic 

residue content on fragment ion peak intensities in low-energy collision-

induced dissociation spectra of peptides." Anal Chem76(5): 1243-1248. 

 

Tabb, D. L., L. L. Smith, L. A. Breci, V. H. Wysocki, D. Lin and J. R. Yates (2003). 

"Statistical characterization of ion trap tandem mass spectra from doubly 

charged tryptic peptides." Anal Chem75(5): 1155-1163. 

 

Team, R. D. C. (2011). "R: A Language and Environment for Statistical Computing." 

 

von der Haar, T. (2007). "Optimized protein extraction for quantitative proteomics of 

yeasts." PLoS ONE2(10): e1078. 

 

Walther, T. C. and M. Mann (2010). "Mass spectrometry-based proteomics in cell 

biology." J Cell Biol190(4): 491-500. 

 

 

Wang, B., R. Malik, E. A. Nigg, R. Körner and E. o. t. L.-S. P. E. f. L.-S. P. A. A. C. 

Dec;80(24):9526–9533. (2008). "Evaluation of the low-specificity protease 



 93 

elastase for large-scale phosphoproteome analysis." Anal Chem80(24): 9526-

9533. 

 

Wang, Y., Y. Feng, M. A. Gritsenko, Y. Wang, T. Clauss, T. Liu, Y. Shen, M. E. 

Monroe, D. Lopez-Ferrer, T. Reno, R. J. Moore, R. L. Klemke, D. G. Camp II 

and R. D. Smith (2011). "Reversed-phase chromatography with multiple 

fraction concatenation strategy for proteome profiling of human MCF10A 

vells." Proteomics11(10): 2019-2026. 

 

Wiśniewski, J. R., K. Duś and M. Mann (2012). "Proteomic workflow for analysis of 

archival formalin fixed and paraffin embedded clinical samples to a depth of 

10,000 proteins." PROTEOMICS – Clinical Applications7(3-4): 225-233. 

 

Wiśniewski, J. R. and M. Mann (2012). "Consecutive proteolytic digestion in an 

enzyme reactor increases depth of proteomic and phosphoproteomic analysis." 

Anal Chem84(6): 2631–2637. 

 

Wysocki, V. H., G. Tsaprailis, L. L. Smith and L. A. Breci (2000). "Mobile and 

localized protons: a framework for understanding peptide dissociation." J Mass 

Spectrom35: 1399-1406. 

 

 



94 

 

 

 

Chapter IV 

 

 

In silico Proteome Cleavage Reveals 

Iterative Digestion Strategy for High 

Sequence Coverage 



 95 

A.  Introduction 

In the post genome era, biologists have sought system-wide measurements of 

RNA, proteins, and metabolites, termed transcriptomics, proteomics, and 

metabolomics, respectively.  Shotgun, or bottom-up, proteomics has become the most 

comprehensive method for proteome identification and quantification (Zhang et al. 

2013).  However, observed protein sequence coverage is often low.  The ability to 

cover 100% of protein sequences in a biological system was likened to surrealism in a 

recent review by Karas et al (B. Meyer, et al. 2010). Multiple steps in the traditional 

shotgun proteomics workflow contribute to the deficit in observed sequence coverage, 

including: proteome isolation, proteome digestion, peptide separation, peptide 

MS/MS, and identification by peptide-spectrum matching.  Proteome isolation has 

been extensively evaluated (Gilmore and Washburn 2010; Rey et al. 2010). Several 

types of peptide separation have been have been explored (Motoyama and Yates 2008; 

Wang et al. 2011,Betancourt et al. 2013).  Mass spectrometers are becoming more 

sensitive and versatile (Michalski et al. 2011; Olsen et al. 2009; Frese et al. 2011).  

Peptide-spectrum matching algorithms are adapting to new data types (Chalkley et al. 

2008) and becoming more sensitive (Shen et al. 2011; Kim et al. 2010).  Proteome 

fragmentation into sequence-able peptides is one step with significant room for 

improvement.  DNA sequencing relies on sequence fragmentation into readable pieces 

by mechanical force (Linnarsson 2010), which produces a nearly uniform distribution 

of fragment lengths.  In comparison, proteome fragmentation is generally 

accomplished by targeting one or more amino acid residues for cleavage, and 
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therefore, the protein cleavage can be likened to a Poisson process that produces an 

exponential distribution of peptide lengths.   

Numerous papers have described the application of new digestion strategies for 

proteome analysis (Rietschel et al. 2009; Choudhary et al. 2002; Moura et al. 2013; 

Tran et al. 2010), however, no single strategy has emerged as optimal.  The greatest 

observed proteome coverage has plateaued around 25%. 24.6% of the human 

proteome was recently observed (Neuhauser et al. 2013), but this was obtained from 

over 1,000 MS/MS data files that allowed identification of over 260,000 peptide 

sequences using a new high performance data analysis package. Similarly, multiple 

protease digests of yeast resulted in 25.2% coverage (Swaney, Wenger, and Coon 

2010). Therefore, improved strategies for proteome digestion are needed to allow 

observation of a complete proteome.   

An innovative example demonstrating the application of multiple enzyme 

digestion (MED) was recently published by Wiśniewski and Mann  (Wiśniewski and 

Mann 2012), which demonstrated the utility of multi-enzyme digestion coupled to 

filter-aided sample preparation (Wisniewski et al. 2009) (MED-FASP, Figure 4.1).  

This work extends a previous work that described size exclusion to isolate long tryptic 

peptides for additional digestion (Tran et al. 2010).  Wiśniewski and Mann compared 

gains afforded by iterative digestion using various proteases (i.e. GluC, ArgC, LysC, 

or AspN) followed by trypsin.  Their work concluded that iterative digestion with 

LysC followed by Trypsin allowed 31% more protein identifications and a 2-fold gain 

in observed phosphopeptides for a particular protein.  Their work led me to optimize  
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Figure 4.1. A cartoon descriping the MED-FASP digestion strategy.  Proteins retained 

on an ultrafilter are digested and then peptides are spun through the size-based filter.  

Large, undigested protein sequences retained above the ultrafilter are then digested 

again.  This sequence of digestion and elution can be repeated with an arbitrary 

number of digestions. 
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iterative digestion in silico with the hope of identifying a testable digestion strategy 

that can theoretically achieve complete proteome coverage.   

B.  Materials and Methods 

1.  In silico proteome digestion 

The S. cerevisiae proteome file in FASTA format was downloaded from 

uniprot on June 20th, 2012.  Proteome digestion simulations were accomplished using 

scripts written in [R] (R Development Core Team 2008).  Considered protease 

specificities include c-terminal of: R/K (trypsin), L (LeuC theoretical cleavage agent), 

E (GluC), and K (LysC).  Additionally, simulations utilized chemical digestion agents 

(Crimmins, et al. 2001), including cyanogen bromide (CNBr) (Kaiser and Metzka 

1999; Andreev et al. 2010) for cleavage C-terminal of M,  3-Bromo-3-methyl-2-(2-

nitrophenylthio)-3H-indole (BNPS-skatole) for cleavage C-terminal of W (Vestling et 

al. 1994), and 2-nitro-5-thiocyanobenzoic acid (NTCB) for cleavage N-terminal of C 

(Jacobson et al. 1973; Iwasaki et al. 2009). Peptide populations were filtered using 

both length and molecular weight constraints.  Since the filtration thresholds affect the 

proteome coverage prediction, multiple cutoff values are compared.  The [R] code is 

available at: https://github.com/jgmeyerucsd/ProteomeDigestSim. 

C.  RESULTS 

1.  Minimum unique peptide length  

The probability of a sequence being unique can be calculated assuming a 

random distribution of sequences in the library.  The number of sequences of length n 

can be described by: 20
n
.  Therefore, any given sequence of length five is likely to 

https://github.com/jgmeyerucsd/ProteomeDigestSim
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occur once in a library of 3,200,000 random amino acid sequences (roughly the 

number of amino acids in the S. cerevisiae proteome).  As the number of amino acids 

in the database grows, a peptide sequence must be longer to expect uniqueness.  The 

human proteome contains 11,323,900 amino acids (not including isoforms, 

downloaded from uniprot on October 22nd, 2013), and therefore, for a sequence to be 

unique, it must be at least of length six.  Of course, due to common sequence motifs 

there are less unique peptide sequences in a proteome than would be found in a 

random library.   

2. Peptide length distributions from various cleavages 

Initial in silico digestions using single cleavage agents were used to compare 

the resulting peptide lengths (Figure 4.2).  Many peptide sequences are too short to 

uniquely match a protein.  For all digestion agents, the most frequent peptide length 

produced is one.  Generation of a single amino acid would arise when the target 

residue is next to itself in the protein.  Notably, over 25% of theoretical peptides from 

trypsin digestion, which cleaves after 11.7% of all residues, are of length one.  Not 

surprisingly, the observable proportion of the residue targeted for cleavage correlates 

with the resulting average peptide length (Figure 4.3); more common cleavage targets 

produce shorter average peptide lengths.  Additionally, the residue-level coverage was 

found to depend on digestion.  Proteome cleavage after more common residues results 

in depletion of the target residues (Figure 4.4), which is expected to result from 

production of peptides that are too short to uniquely match a protein sequence.  

However, cleavage after rare residues results in enriched coverage of the target  
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Figure 5.2. Theoretical peptide length distributions produced from various cleavage 

agents.  (A) Size frequency distributions (density) of peptides from proteome digestion 

by five real (i.e. trypsin, LysC, GluC, CNBr, NTCB) and one theoretical cleavage 

agent (LeuC).  The vertical black lines at 7 and 35 indicate general peptide 

identification size limits.(B) The same distribution focused on the region from 1-10 

amino acids.   (C) The view focused on the region between 30-40 amino acids. 
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Figure 4.3. Correlation between abundance of the residue targeted for cleavage and 

the resulting average peptide length.  Proteome cleavage targeting abundant residues 

result in lower average peptide lengths; proteome cleavage targeting rare residues 

results in higher average peptide length.  The line shows the data fit to an exponential 

equation.
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Figure 4.4. Residue-level coverage observed for various cleavage agents.  Proteome 

cleavage of more common amino acids, such as with (A) trypsin or the theoretical 

cleavage after (B) Leucine, result in residue-specific depletion of the target residues.  

However, cleavage of rare amino acids, such as (C) Methionine or (D) Cysteine, 

results in residue-specific enrichment of the target residues.   
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residue.  This result was also observed by amino acid analysis of proteome digestions 

in recent work (J. G. Meyer et al. 2014). 

3. Comparison of peptide filtration parameters  

The theoretical distribution of peptides passing through a MWCO ultrafilter 

certainly does not match the actual distribution.  Denatured peptides and proteins are 

effectively larger than folded proteins, and in fact, it was found that even 30kDa or 

50kDa cut-off ultrafilters perform better for peptide yield than 10 kDa cut-off 

ultrafilters (Wisniewski, et al. 2011), despite the inability to identify such large peptide 

sequences by bottom-up proteomics.  Therefore, multiple length constraints were 

compared for their influence on the predicted proteome coverage.  Figure 4.5 shows 

how various minimum peptide length values affect residue-level depletion and 

theoretical proteome coverage.  As the minimum length increases, total coverage 

decreases and depletion of R/K increases.  Figure 4.6 shows how different upper 

length thresholds change theoretical coverage.  Intuitively, raising the upper length 

limit of identifiable peptides increases total predicted proteome coverage.  

Interestingly, although total predicted coverage increases, the coverage of R/K stays 

around 60%.  Since peptide MW also determines identifiable peptides, and peptides 

above 5kDa are unlikely to be identified with current MSMS technology, an upper 

limit of 5 kDa was used for subsequent digest simulations. A lower length limit of 7 

amino acids was used because this length is more likely to be relevant to actual 

proteomics experiments. 

4. Comparison of digestion iterations 
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Figure 4.5. Effect of minimum peptide length on proteome coverage and residue-level 

depletion.  Residue-level coverage predicted after trypsin digestion keeping all 

peptides with lengths between: (A) 1-35, (B) 5-35, (C) 7-35, and (D) 10-35.   
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Figure 4.6. Effect of upper length limit on predicted proteome coverage.  Theoretical 

coverage keeping peptides with length (A) 5-20, (B) 5-30, (C) 5-40, and (D) 5-100 

residues.  As the upper length limit increases, the theoretical coverage maximum 

increases.   
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Digest simulations for various digestion iterations were performed to compute 

theoretical proteome coverage for various iterative digestions.  Simulations confirm  

that iterative digestion offers theoretically greater coverage of the proteome when the 

sequence of digestions starts with the protease targeting the rarest residue first (Table 

4.1).  As expected, reversal of the optimal digestion sequence results in a negligible 

improvement to proteome coverage as compared to the limit from using trypsin 

digestion alone.   

5. Proposed iterative digestion strategy 

An ideal iterative cleavage strategy must limit sample processing steps, and 

must take place under conditions that are compatible with the ultrafiltration device.  

Further, because tryptophan fluorescence can be used to quantify peptide yield from 

each digestion, chemical cleavage after tryptophan should initially be omitted since it 

destroys the fluorophore.  Therefore, an ultrafilter-compatible strategy, with a balance 

between sample processing and predicted gains in coverage, is the sequence: NTCB, 

CNBr, LysC, and Trypsin.  Implementation of this method will likely require 

optimization at various steps.   

6. Conclusions  

This work provides a publically accessible computational framework for 

simulation of iterative proteome digestion that can be used with any input protein 

sequence database to optimize proteome coverage.  Further, this works demonstrates 

how the choice of proteome digestion agent affects the predicted proteome coverage 

due to the distribution of peptide lengths that are produced.  This work also shows  
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Table 4.1. Theoretical upper limits of coverage upon digestion with various cleavage 

agents using the MED-FASP strategy.  Iterative cleavage of the proteome starting with 

the rarest amino acids first results in the greatest theoretical proteome coverage of 

91.1%.  The last row gives the theoretical limit from digestion in the reversed 

sequence of cleavage, which provides minimal improvement to theoretical proteome 

coverage.  Peptides were filtered after each digest keeping those with MW >5 kDa for 

additional digestion.  

 

Digestion strategy Theoretical coverage limit (%) 

Trypsin 69.5 

LysC 67.1 

GluC 62.7 

AspN 63.1 

ArgC 52.4 

CNBr 22.4 

NTCB 13.6 

TrpC 10.9 

LysC, Trypsin 81.2 

GluC, Trypsin 81.1 

CNBr, LysC, Trypsin 84.4 

NTCB, CNBr, LysC, Trypsin 86.3 

TrpC, NTCB, CNBr, ArgC, GluC, 

Trypsin 

87.9 

TrpC, NTCB, CNBr, ArgC, AspN, GluC, 

Trypsin 

91.1 

Trypsin, GluC, AspN, ArgC, CNBr, 

NTCB, TrpC 

74.2 
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how various digestion agents affect proteome coverage at the residue level.  Proteome 

cleavage targeting common residues results in depletion of the cleaved residue, but 

proteome cleavage after rare residues results in enrichment of the target residue.  

Finally, this paper finds that the best theoretical proteome coverage is achieved by an 

iterative digestion strategy that limits production of short peptides by cleaving the 

rarest residues first.   

 Chapter IV, in full, is a reprint that the dissertation author was the principal 

researcher and author of.  The material appears in ISRN Computational Biology.  

(Meyer, J.G. (2014). In Silico Proteome Cleavage Reveals Iterative Digestion Strategy 

for High Sequence Coverage. ISRN Computational Biology, 2014, 1-7.)
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A.  Introduction 

The family of Small Ubiquitin-like Modifier (SUMO) proteins in humans 

includes four distinct genes with three types of members: SUMO1, SUMO2/3 (which 

differ by only three residues) and SUMO4. SUMO proteins regulate the function of 

various proteins by reversible, covalent, isopeptide-bond attachment between the C-

terminus of SUMO and a free ε-amine group of the target protein’s lysine 

(Makhnevych et al. 2009), similar to Ubiquitin (Ub). Ub conjugation mainly targets 

proteins for degradation by the proteasome, but has also been implicated in DNA 

repair, receptor signaling and cell communication (Heideker and Wertz 2015). The 

function of SUMO conjugation is less well-understood, but SUMOylated proteins are 

involved in gene expression, DNA repair, nuclear import, heat shock, cell motility, 

and lipid metabolism (Makhnevych et al. 2009; Flotho and Melchior 2013). SUMO 

targets are generally low-abundance proteins, and the amount of the modification at 

steady-state is also low (Becker et al. 2013). In recent years several groups have 

developed methods for analysis of SUMOylated proteins. However, many of these 

involve overexpression of mutant SUMO sequences. Therefore, methods that allow 

proteome-level identification of endogenous SUMOylation sites are needed. 

Recently, a proteomic method has been developed to measure thousands of 

endogenous ubiquitination sites. The method takes advantage of the C-terminal 

sequence of Ub (RGG) (Figure 5.1). When cleaved with trypsin, peptides containing a 

Ub-remnant diglycyl-lysine are generated that can be enriched using specific  
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Figure 5.1. A strategy for mapping endogenous SUMO1/2/3 attachment sites. (a) C-

terminal sequence alignment of mature human SUMO1-4 and Ubiquitin. (b) Cartoon 

showing ubiquitin-remnant mapping strategy.  Proteins modified by ubiquitin are 

digested with trypsin leaving a diglycine attached to the epsilon-amine of the lysine 

where Ubiquitin was attached. An antibody specific for diglycine-modified lysine is 

used to enrich ubiquitin-remnant containing peptides that are then identified by 

nanoLC-MS/MS. (c) The same as (b) but using digestion with WaLP to generate the 

same diglycyl-lysine from SUMO attachment sites. (d) Heat map of the normalized 

percentage of each amino acid found at each position in peptides generated from a 

WaLP digest (Meyer et al. 2014). 
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antibodies and identified by tandem mass spectrometry (Figure 5.1b) (Xu et al. 2010; 

Kim et al. 2011; Wagner et al. 2011).  Instead of RGG at the C-terminal, mature 

human SUMO isoforms have the sequence TGG and no tryptic cleavage site near the 

C-terminus (Figure 5.1a). Using various schemes introducing mutant SUMOs with 

tryptic cleavable sequences, several groups have developed methods for global 

profiling of SUMO attachment sites (Knuesel et al. 2005; Blomster et al. 2010). Last 

year, three groups reported global profiling approaches in which mutant SUMOs with 

various affinity tags and protease recognition sites were introduced into cells. 

Hendriks et al introduced a lysine deficient SUMO-2 with a C-terminal trypsin 

cleavage site, His10–SUMO-2 K0 Q87R, which is rendered resistant to Lys-C 

digestion. The SUMOylated proteins are enriched by immobilized-metal affinity 

chromatography (IMAC) and digested with Lys-C. Peptides modified with SUMO 

were then purified again with IMAC and finally digested with trypsin to generate a 5 

amino acid C-terminal SUMO-remnant modification.  This group used proteasome 

inhibition and heat shock to accumulate SUMOylated proteins, and were able to 

identify the sites of over 4,300 SUMO-acceptor lysines in over 1,600 proteins 

(Hendriks et al. 2014). Lamoliatte et al also introduced a mutant SUMO with C-

terminal RN/EQTGG sequences and raised specific antibodies to each remnant.  These 

researchers identified 954 sites on 538 proteins and were able to distinguish SUMO 

isoforms (Lamoliatte et al. 2014).  Tammsalu et al introduced a His6-SUMO2 T90K 

and were able to identify 1002 unique SUMOylated sites in 539 proteins after heat 

shock  (Tammsalu et al. 2014). Currently, no method exists for identifying 
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endogenous SUMO sites on a global proteome scale without introduction of mutant 

SUMO.   

We recently described the novel application of wild-type α-lytic protease 

(WaLP) to proteome digestion for shotgun proteomics.  Although relatively relaxed 

specificity was observed, WaLP prefers to cleave after threonine residues and never 

cleaves after arginine (Meyer et al. 2014) (Figure 5.1d). We show here that WaLP 

cleaves at the C-terminal TGG sequence (in SUMO 2/3 and 4) leaving a SUMO-

remnant diglycyl-lysine at the position of SUMO attachment. The resulting diglycyl-

lysine-containing peptides can then be identified using methods already developed for 

Ub-profiling as described above (Fig 5.1c). The method allows identification of 

SUMO attachment sites under completely native conditions using the Ub-profiling 

workflow by simply substituting WaLP for trypsin. The same sample can be subjected 

to analysis of both Ub-attachment and SUMO-attachment simply by digesting the 

sample with either trypsin or WaLP respectively. 

B.  Materials and Methods 

1.  Cell culture and treatment 

 Human colorectal carcinoma HCT116 cells were grown in 245 mm X 245 mm 

plates using DMEM media supplemented with 10% FBS, penicillin, streptomycin and 

either 13C615N2 lysine (Cambridge Isotope Labs) or unlabeled lysine at 50 mg/L. 

Cells were treated with 10 µM MG132 (Sigma) dissolved in DMSO for 4 hours or 

DMSO-only negative control.  Cells were then washed with PBS, lifted by scraping in 

ice-cold PBS, and counted with a TC20 cell counter (Biorad).  Equal quantities of 
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unlabeled and labeled cells from each condition were combined yielding 5 x 10
7
 cells 

from each condition, which were washed with PBS on ice and then stored at -80 until 

lysis.   

2. Cell lysis and digestion 

Frozen cell pellets were thawed in 6 mls of lysis buffer containing 100 mM 

HEPES pH 7.2, 75 mM NaCl, 1% SDC, 1% SL, 1 mM Na3VO4, 1 mM β-

glycerophosphate, 1 mM NaF, 2 mM NEM, 1 mM PMSF and Roche complete mini 

protease inhibitor.  Cells were then sonicated on ice using 15w power output for 3 

cycles of 30 seconds with 30 second rests in between. Insoluble material was 

precipitated by centrifugation at 20,000 x g for 15 minutes at room temperature and 

protein in the supernatant was quantified using the BCA assay. Each protein sample 

was then reduced with 4.5 mM DTT for 30 minutes at 55 
o
C.  The reduction was 

quenched by addition of NEM to 10 mM for 30 minutes at room temp. A portion of 

each sample (20 mg of protein) was digested separately by addition of protease at 

1:200, protease:proteome (either LysC + trypsin for ubiquitin profiling or WaLP for 

SUMO profiling).  After digestion for 24 hours at 37 
o
C, the reaction was stopped by 

acidification with TFA to 1% and precipitated detergents were removed according to 

the method described previously (Lin et al. 2013).  Peptide solutions were then filtered 

with 0.22 µm SFCA syringe filters and desalted using tC18 sepPak (500 mg, 6cc vac, 

Waters) eluted with 5 mls of 50% ACN in 0.5% acetic acid.  A small aliquot from the 

SepPak elution (20 µg) was analyzed to ensure efficient digestion before IP.  The 

eluted samples were frozen in liquid nitrogen and lyophilized.   

3. Western blotting 



  119 

Excess cells from the SILAC growths were lysed as described above for 

western blotting.  Samples were boiled for 10 min after addition of 5X reducing SDS-

PAGE buffer, separated on a 12% TGX gel (Biorad), and then transferred to PVDF 

using a Trans-blot semi-dry transfer apparatus (Biorad).  Membranes were blocked for 

1 hour at room temperature with 4% powdered milk in TBST, then incubated with 

primary antibodies overnight at 4 
o
C.  HRP-conjugated secondary antibodies were 

incubated for 1 hr at room temp and detected using chemiluminescence (ECL, 

Amersham). 

4. Off-line separation of peptides prior to IP 

Samples were separated by basic-pH reversed phase (bRP) was performed 

using a 19mm ID X 25 cm long bridged-ethylene hybrid (BEH) C18 column with 5 

µm particles (Waters).  Mobile phases were 10mM ammonium formate pH 10, in 

water (phase A) or 10 mM ammonium formate in 90% ACN (phase B).  Thirty-two 

fractions were collected and every fourth fraction was pooled into a final total of 4 

fractions from each digest.  Fractions were lyophilized to dryness, resuspended in 

0.5% TFA, and desalted again with SepPak Vac tC18 cartridges (200 mg size).  

Desalted peptides were then lyophilized to dryness and stored at -80 until IP. 

diGlycyl-lysine Immunoprecipitation – Pre-coupled antibody resin (Ubi-scan from 

Cell Signaling Technologies) was cross linked using the Pierce crosslink IP kit 

according the manufacturer’s protocol.  For each biological condition, one tube of 

antibody-conjugated beads was split equally four aliquots (20 µl of beads per HPRP 

fraction), and was used per sample to immunoprecipitate the diGlycyl-lysine-

containing peptides according to the CST protocol.  Eluted peptides were desalted 
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using RP30 desalting tips (Thermo-Fisher) and then analyzed by nLC-MS/MS on an 

orbitrap Fusion mass spectrometer at Harvard Medical School. 

5. nLC-MS/MS 

Mass spectrometry data were collected on an Orbitrap Fusion mass 

spectrometer (Thermo Fisher Scientific) equipped with a Proxeon Easy nLC 1000 for 

online sample handling and peptide separations. Samples were resuspended in 8 µL of 

5% formic acid + 5% acetonitrile and were loaded onto a 100 µm inner diameter 

fused-silica micro capillary with a needle tip pulled to an internal diameter less than 5 

µm. The column was packed in-house to a length of 35 cm with a C18 reverse phase 

resin (GP118 resin 1.8 μm, 120 Å, Sepax Technologies). The peptides were separated 

using a 120 min linear gradient from 3% to 25% buffer B (100% ACN + 0.125% 

formic acid) equilibrated with buffer A (3% ACN + 0.125% formic acid) at a flow rate 

of 600 nL/min across the column.  Precursor spectra were collected with a target 

resolution of 120,000 in the Orbitrap using a scan range of 300-2,000 m/z.   The top 

10 precursors with intensity greater than 5,000 were fragmented sequentially with 

either CID or ETD in the ion trap with the rapid scan rate, resulting in two separate 

spectra for each selected precursor ion.   

6. Data Analysis 

Peptides were first identified by database search with MS-GF+ trained for 

peptides from WaLP digestion.  Two searches for each file were performed, one 

specifying fixed light lysine and one specifying fixed heavy lysine.  All searches 

allowed variable oxidation of methionine, variable protein n-terminal methionine loss 
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and acetylation at alanine or serine, variable peptide N-terminal pyro-glutamate from 

Q, variable diglycyl-lysine, and fixed modification of cysteine by N-ethyl maleimide.  

The .mzid output from fixed heavy lysine database searches were processed using R 

scripts (Team 2011) to combine the mass of heavy lysine and diglycine into one 

modification.  All .mzid files were then converted to pepXML for compatibility with 

TPP (Keller et al. 2005) using idconvert.exe (Proteowizard, (Kessner et al. 2008)). 

PeptideProphet was used to refine heavy and light identifications separately (Keller et 

al. 2002).  iProphet was used to combine files corresponding to HPRP fractions from a 

single condition, and to combine the results from separate heavy and light database 

searches (Shteynberg et al. 2011).  PTMprophet was used to generate localization 

scores for diglycyl-lysine (Shteynberg et al. 2012; Shteynberg et al. 2013).  Xpress 

was used to compute SILAC quantification (Han et al. 2001).  The quantified 

Identifications were then filtered to <1% FDR, and the IDs were exported as an excel 

spreadsheet.  Further processing was done with R.  All identifications from the 

untreated/untreated distribution were used to calculate the standard deviation of the 

log Xpress ratio.  The median of the log ratios was subtracted from each value to 

normalize the distribution.  Peptides containing multiple SUMO-remnant 

modifications were excluded from quantitation.  SUMO-remnant containing peptides 

were then filtered keeping only sites with localization scores >0.75.  For protein 

modification sites identified by multiple peptides, the weighted-average of the Xpress 

ratio was computed using the total heavy and light area as weights.  All unique SUMO 

modification sites were plotted and sites with log ratios outside 1 or 2 standard 

deviations were flagged as “changing”. The filtered peptide lists were output to excel.  
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All sites with log ratios over 1 standard deviation above the median were considered 

up-regulated, and all sites with log ratios more than 1 standard deviation below the 

median were considered down-regulated.  Accessions were analyzed for GO-term 

enrichment and protein domain enrichment with DAVID 

(http://david.abcc.ncifcrf.gov/summary.jsp) using all human proteins as background.   

 

C.  RESULTS 

1. Wild-type alpha-lytic protease (WaLP) digestion allows 

endogenous SUMO profiling 

We reasoned that digestion of SUMOylated proteins with WaLP, which should 

cleave after the threonine in the SUMO C-terminal sequence, TGG, would generate a 

SUMO-remnant diglycyl-lysine at sites of SUMO attachment. Then the same 

workflow used for ubiquitin-remnant profiling could be used to globally profile 

SUMO attachment sites (Figure 5.1c).  Although the WaLP can simply be substituted 

for trypsin during sample preparation, identification of non-tryptic peptides produced 

from WaLP digestion is challenging because search engines score on the basis of b 

and y ion series that are expected from tryptic peptides with a C-terminal positive 

charge. We showed that identification of  peptides from WaLP digestion benefits from 

electron transfer dissociation (ETD) (Syka et al. 2004) , especially with precursor 

charge states > +2 (Meyer et al. 2014).  Not only are the C-terminal residues generated 

from WaLP digestion not positively charged, WaLP cleaves after at least four different 

amino acids requiring the use of “no enzyme” specificity in database searches. We 
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found that MS-GF+ (Kim and Pevzner 2014) outperforms many other search engines 

(Meyer et al. 2014). For the SILAC data presented here, MaxQuant (Cox et al. 2011) 

resulted in very few peptide identifications as compared to MS-GF+.  MS-GF+ is also 

very fast and the scoring function can be trained using identifications from an initial 

search (Kim and Pevzner 2014).  

2. Global SUMO profile results 

Carr’s group optimized the protocol for purifying and immunoprecipitating 

(IP) diglycyl-lysine-containing peptides and reported that pre-IP fractionation of 

peptides from tryptic digests with basic pH reversed phase (bRP) chromatography 

improved identification of ubiquitin-remnant peptides (Udeshi et al. 2013). We 

followed the protocol from the Carr group exactly, and also found that pre-IP bRP 

fractionation of peptides from WaLP digestion more than doubled the number of 

identified SUMOylation sites as compared with the standard IP protocol.  We refer to 

these samples as the bRP-IP sample and the IP sample respectively. The samples were 

analyzed on a Thermo Fusion mass spectrometer. The top 10 precursors with intensity 

greater than 5,000 were fragmented sequentially with either CID or ETD in the ion 

trap with the rapid scan rate, resulting in two separate spectra for each selected 

precursor ion. We identified 707 unique SUMO attachment sites in 443 proteins 

(Table 5.1) from a SILAC experiment (Ong et al. 2002) comparing a MG132-treated 

and untreated cells. The entire sample set resulted in 22,933 unique peptides 

identified, of which 2, 412 were unique diglycyl-lysine-containing peptides. Of these  
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Table 5.1. Summary of identified and quantified peptides from both the bRP-IP 

experiment and from the standard IP experiment.  

  Unique 

peptides 
Digly PSMs 

Digly unique 

peptides 

unique digly 

sites localized 

bRP identified 22,933 2,412 1,840 707 

bRP quantified 14,356 1,849 1,407 589 

standard IP 

identified 
5,997 1,055 897 318 

Standard IP 

quantified 
3,763 787 670 247 
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2,412 SUMO-remnant peptide spectrum matches, 741 resulted from CID, and 1,671 

(69%) resulted from ETD consistent with our previous findings on the effectiveness of 

ETD for sequencing the non-tryptic peptides resulting from WaLP digestion (Meyer et 

al. 2014). Of the 2,412 peptide-spectrum matches, 1,840 corresponded to unique 

diglycyl-lysine-containing peptides which were confidently localized (PTMprophet 

score >0.75) to 707 unique sites.   

Since WaLP cleaves at different residues than trypsin, we examined the 

overlap of our site identifications with those recently reported by Hendricks’ et al. 

(Hendriks et al. 2014).  Only 39% of our 707 identified SUMOylation sites overlap 

with the 4,910 sites amalgamated by Hendricks et al. (Hendriks et al. 2014). The sites 

were also compared to SUMO sites reported in Phosphosite Plus (Figure 5.2a) 

(Hornbeck et al. 2012).  When compared to all previously reported SUMOylation sites 

including those in Phosphosite Plus, we found 293 of the 707 sites we found were 

previously reported, and 414 have not been previously reported. Peptides containing 

SUMO-remnants from WaLP digestion may correspond to sequences that cannot be 

covered by tryptic digestion due to the abundance or lack of nearby tryptic cleavage 

sites (Meyer et al. 2014).  We found at least two examples of such cases (Figure 5.2b, 

5.2c).  One corresponded to a SUMOylation site would reside on a tryptic peptide of 

length 30 (Figure 5.2b), which is unlikely to be identified with traditional bottom-up 

proteomic methods.  Another (Figure 5.2c) is in an arginine-rich region of SNUT2 that 

would be cleaved into a peptide of length 2. Multiple SUMOylation sites were found 

in 60% of the proteins identified, with 17% having two, 7% having 3, and 4.6% 

having five or more. 
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Figure 5.2. Summary of identifications from this study and comparison with previous 

studies. (a) Venn diagrams showing overlap between all SUMO sites identified in this 

study and all known lysine modifications from either Hendricks et al(Hendriks et al. 

2014) or Phosphosite Plus (Hornbeck et al. 2012). (b) Example spectrum of a novel 

site identified from MGAP that is unlikely to be found after digestion with LysC or 

trypsin.  The sequence above the spectrum shows the tryptic cleavage sites in red, the 

modification site in green, and the identified sequence underlined. (c) Identified ETD 

spectrum of a SUMO-remnant peptide corresponding to position 29 of SNUT2.  The 

sequence above the spectrum shows this position is surrounded by tryptic cleavage 

sites. 
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To look for sites involved in PTM crosstalk, we compared the sites we 

identified with lysine methylation, acetylation, and ubiquitylation sites reported in 

Phosphosite Plus (Hornbeck et al. 2012). No overlap was found between our identified 

sites and methylation sites. Of our identified SUMOylation sites, 7% matched known 

acetylation sites, and 29% of our identified sites overlap with previously reported 

ubiquitination sites. These results are very similar to those previously reported by 

Hendricks et al., who found 8% of their SUMOylation site IDs overlap with 

acetylation sites and 22% of their identified SUMO sites overlap with known 

ubiquitination sites (Hendriks et al. 2014).  

3. SILAC quantitation of SUMO site changes in MG132 treated cells 

From the bRP-IP sample, 589 sites out of the 707 unique sites identified could 

be quantified, and from the IP sample, 247 sites out of 318 sites could be quantified 

(of which 191 overlapped with the 589 from the bRP-IP sample). The results were 

normally distributed, and 37% of the quantification values fell outside at least 1 

standard deviation of the median (Figure 5.3a).  Nearly equal numbers of sites were 

significantly upregulated (109) as were down-regulated (111) by MG132 treatment 

similar to previous reports (Hendriks et al. 2014). The large numbers of sites that 

changed in abundance is not likely due to changes in protein levels as protein levels 

were not found to change significantly during a 4 hr MG132 treatment (Kim et al. 

2011). Pearson correlation analysis of the abundance of peptides corresponding to the 

191 sites quantified in biological replicates enriched with either the standard IP or pre-

IP fractionated gave a slope of 0.93 +/- 0.05, and an R of 0.81, also similar to what 

was reported previously (Hendriks et al. 2014) (Figure 5.3b).   
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Figure 5.3. Results for all unique SUMO sites quantified by SILAC in this study.  (a) 

Plot of normalized log2 ratios (heavy/light) for all unique sites quantified from the 

bRP prefractionated sample plotted against their arbitrary index number (b) 

Correlation of measured abundance (log2 ratios (heavy/light) integrated peak areas) of 

diglycyl-lysine containing peptides quantified in both the pre-IP bRP fractionated 

sample and compared to the standard IP sample. The slope of 0.93 +/- 0.05 and the R 

value of 0.81 indicate the reproducibility of the results. (c) Change in abundance of the 

12 SUMOylation sites detected in remodeling and spacing factor (uniprot Q96T23).  

(d) Only one of the nine SUMOylation sites detected in  topoisomerase 2A (uniprot 

P11388) was significantly changed upon MG132 treatment. (e) Of the nine 

SUMOylation sites detected in PML (uniprot P29590), six were unchanged, one was 

significantly increased and two were significantly decreased upon MG132 treatment. 
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Interestingly, for those proteins containing multiple sites, all sites were not regulated 

similarly upon proteasome inhibition. None of the 12 sites in remodeling and spacing 

factor (uniprot Q96T23) were significantly changed. Topoisomerase 2-alpha contained 

the greatest number of quantified SUMOylation sites, 11/12 of which decreased in 

SUMOylation levels upon treatment with MG132 (Figure 5.3c).  In contrast, 9 sites 

quantified on remodeling and splicing factor 1 nearly all increased upon MG132 

treatment (Figure 5.3d). Of the nine SUMOylation sites detected in PML (uniprot 

P29590), six were unchanged, one was significantly increased and two were 

significantly decreased upon MG132 treatment (Figure 5.3e). An interesting example 

was the thyroid hormone receptor (uniprot Q9Y2W1) in which four SUMOylation 

sites were identified. The SUMOylation at position 592 significantly increased 

whereas SUMOylation at position 603 significantly decreased. Similarly the 

SUMOylation at position 697 significantly increased whereas SUMOylation at 

position 705 significantly degreased. These results suggest that, similar to 

ubiquitylation events (Kim et al. 2011), not all SUMOylation events on target proteins 

are regulated identically.  

We next extracted sequence windows surrounding the site of sumo 

modification to examine trends in SUMO attachment motifs (Fig. 5.4).  As reported 

consistently, we found that 43 % of the SUMO attachments occurred at the sequence 

motif (ΨKXE/D), 15% corresponded to the inverted consensus (E/DXK), and 42% did 

not correspond to either consensus (Figure 5.4a-b). We further examined the subsets 

of sites that were quantitatively up or down for trends in attachment upon proteasome  
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Figure 5.4. Motif analysis of all unique SUMO sites identified in this study. (a)  

SubLogos  and heatmaps of sites  separated by the forward motif (KXD/E), (b) or the 

inverted motif, or neither forward/inverted.  (c) Motif analysis of only sites found to 

increase upon MG132 treatment.  (d) Motif analysis of only sites found to decrease 

upon MG132 treatment.   
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inhibition by MG132 (Figure 5.4c, d).  Such trends may be indicative of E3 activity 

upon proteasome inhibition.  Out of the 109 motifs that had increased SUMOylation 

upon MG132 treatment, 37% corresponded to the forward motif, 19% to the reverse 

motif, and 44% to neither motif.  Thus, the up-regulated motifs reflected the total 

distribution. The motif analysis of the 111 SUMO attachment sites that were down-

regulated by MG132 treatment showed 42% correspond to the forward motif, 30% to 

the reverse motif, and 28% to neither motif.  Thus, those sites that were significantly 

down regulated were enriched in the reverse motif. In addition, the sequence 

surrounding the down-regulated motifs appears to be enriched in acidic residues 

(Figure 5.4d).  

Gene ontology term enrichment was performed to understand biological 

significance of the proteins that increase or decrease after proteasome inhibition 

(Figure 5.5).  We found four known SUMO E3 ligases, PIAS1, PIAS3, RBP2, and 

TOPRS, which all contained SUMOylation sites that increased in occupancy upon 

treatment with MG132. 

4. Validation of biological results  

We validated four of the novel proteins found to be SUMOylated by western 

blot, SPT3, SFPQ, Syne-1, and WSTF (Figure 5.6).   SUMO1/2/3 was IPed and the 

novel target proteins were detected by western blot. 

5.  Discussion 

We developed a method for global profiling of SUMOylation events that 

would allow detection of native SUMO taking advantage of the specificity of WaLP  
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Figure 5.5. GO term enrichment analysis. Analysis of all the proteins in which SUMO 

sites were quantified revealed some GO categories segregated according to whether 

the SUMOylation site was up- or down-regulated. That is, all of the SUMOylation 

sites in proteins that fall into these categories are regulated in the same way. Although 

many GO categories did not segregate, those that did segregate are plotted. The up-

regulated categories includeBlue bars correspond to GO biological processes, red bars 

correspond to molecular functions and green bars correspond to cellular 

compartments. 
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Figure 5.6. Validation of novel SUMOylated proteins by western blot. SUMO1/2/3 

was immunoprecipitated and the resulting proteins were western blotted for the 

SUMOylated target protein alongside the whole cell lysate and a negative control IP 

with an irrelevant antibody.   
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for cleavage after threonine. By simply substituting WaLP for trypsin it was possible 

to immunopurify and identify a large number of diglycyl-lysine containing peptides 

corresponding to SUMO remnants. Surprisingly, a large number of the identified sites 

corresponded to novel SUMOylation sites. Several reasons could explain the large 

number of new sites identified.  First, as we reported previously, the orthogonal 

specificity of WaLP allows cleavage of proteins at sites that may not be accessible to 

trypsin (Meyer et al. 2014). Second, although previous studies attempted to achieve 

minimal expression of their mutant SUMO construct, it is possible that slight 

overexpression of SUMO or the presence of mutant sequences could cause unnatural 

SUMO attachment. Third, our method does not differentiate between SUMO isoforms 

1-4, whereas Hendricks et al. examined only SUMO-2 attachment (Hendriks et al. 

2014).   

Confidence regarding the new site identifications was garnered from IceLOGO 

motif calculations which gave identical distributions of forward and reverse sequence 

motifs as have been reported previously (Hendriks et al. 2014). In addition, the 

proteins to which we found SUMOs attached corresponded to the expected GO terms 

such as transcription regulation and RNA processing (Lamoliatte et al. 2014).  

To understand whether SUMOylation of certain sites changed upon MG132 

treatment, we calculated the IceLOGO motifs for only the sites that were significantly 

increased or decreased upon MG132 treatment. The sites that significantly increased 

showed no differences in the distribution of forward, reverse and other motifs. 

Interestingly, the sites that were significantly decreased were more strongly 

represented by the reverse motif increasing from 19% to 30% of the motifs. We also 
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analyzed the GO terms associated with only those proteins in which sites increased or 

decreased significantly. Although a number of GO terms were represented by sites that 

increased, decreased or stayed the same, some GO terms segregated completely. That 

is, all of the sites in proteins associated with that GO term appeared to be regulated 

similarly. Proteins functioning in transcriptional regulation, DNA synthesis, DNA 

binding and macromolecular biosynthesis segregated with increased SUMOylation 

upon MG132 treatment. GO terms associated with decreased SUMOylation were 

related to RNA splicing and acetyltransferase activity.   

Another powerful aspect of the method is that it allows simultaneous 

determination of ubiquitylation and SUMOylation in the same sample.  The same 

population of cells or tissue can be subjected to analysis of both Ub-attachment and 

SUMO-attachment simply by splitting the sample in two and digesting half with 

trypsin and the other half with WaLP. The samples can then be processed in parallel to 

purify the peptides by bRP chromatography, di-gly IP, and mass spectrometric 

analysis. For the mass spectrometry, it is best to use optimized ionization approaches 

and data analysis tailored to the non-tryptic WaLP peptides. Finally, since the 

commercial antibody used in this study has been previously used for enrichment of 

Ubiquitin-remnant peptides, there may be value in developing additional antibodies 

against diglycine-remnants on known SUMOylation motifs.  
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A.  Database searches 

 Instrument .RAW files are first converted to .mzXML using Trans-proteomic 

Pipline (TPP, downloaded from 

http://sourceforge.net/projects/sashimi/files/latest/download?source=files).  MS-GF+ 

is then used for database searching (downloadable 

from:http://proteomics.ucsd.edu/software-tools/ms-gf/). All files mentioned without 

explicit locations can be obtained from: https://github.com/jgmeyerucsd/SUMO-

remnant.   

1.  Convert .RAW files to mzXML files using TPP.  

 First, you need to move your data files to: 

c:/Inetpub/wwwroot/ISB/data/(subdirectories are ok in here).  Access TPP from the 

shortcut, login as guest/guest 

From the HOME tab, click on “Analysis Pipeline,”and choose “Thermo RAW.” 

Click on “ADD FILES”and then navigate using the buttons on the right to your data, 

click the boxes corresponding to your data files, and choose select at the bottom.  

Under section 3 (conversion options), choose “convert to mzXML,” and then click on 

the button that says convert to mzML. The program will write the converted files into 

the same folder as your RAW files. 

2. Database searching data from WaLP digestion using MSGF+ 

 MSGF+ is run in batch mode once the program is installed on your 

computer. There is a directory on the desktop of .bat files (and these are also available 

on the github). You will need to edit the appropriate .bat file for your database 
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search.An example batch file has been made available for database searching Orbitrap 

Fusion data collected on peptides generated from WaLP digestion.  This file is titled, 

“MSGFplus_example_WaLP_search.bat,” and this file will perform database searches 

on the four files from the bRP-IP experiment of MG132-treated HCT116 cells.   

Open the .bat file in notepad, and edit the file names and locations. Start the database 

search by saving the batch file and double clicking on it. 

 All database search parameters are contained in the .bat file, so it is 

worthwhile looking through it and understanding what each command does. Run 

MSGFplus.jar without commands to print descriptions of each command.  Note that 

the correct training data is called by the –e command which specifies the enzyme 

(trypsin or WaLP and there are several different options for training data sets for 

WaLP) as is listed in the enzymes.txt file in the params folder (located in the 

F:/msgfplus.20140716/).  When –e is specified as 10, this will call the newer training 

data for the Fusion analysis of WaLP peptides.  

3. Database Searching Tryptic Data 

 An example windows batch file for MS-GF+ database searching of data from 

trypsin digestion is titled “exampleMSGFplus_search.bat” that contains the following 

text: 

:: change directory 

F: 

cd \msgfplus.20140716\ 

:: the line below just gives the options, press any key to start the search 

java -Xmx12000M -d64 -jar MSGFplus.jar 
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pause 

:: each option in the lines below must be set according to the options printed from the 

above command depending on the specific type of data 

java -Xmx12000M -d64 -jar MSGFplus.jar -thread 8 -s 

C:\Inetpub\wwwroot\ISB\data\exactive\2015\mg132\sbl_009779.mzXML -o 

output\exactive\2015\Mg132\mg132pl_4_light1.mzid -e 1 -ti 0,2 -tda 1 -inst 1 -ntt 0 -

m 0 -t 10ppm -d database\110712_human.cc.fasta -mod digly.txt 

java -Xmx12000M -d64 -jar MSGFplus.jar -thread 8 -s 

C:\Inetpub\wwwroot\ISB\data\exactive\2015\mg132\sbl_009779.mzXML -o 

output\exactive\2015\Mg132\mg132pl_4_heavy1.mzid -e 1 -ti 0,2 -tda 1 -inst 1 -ntt 0 -

m 0 -t 10ppm -d database\110712_human.cc.fasta -mod diglyh.txt 

pause 

The above batch file will run two database searches of one file from the tryptic data 

and output the .mzid file at the location specified after the tag “-o”.   

4. Fix the formatting in your output files from the heavy database 

search  

 Database search output files from the heavy database search in the format of 

.mzID must next have their modification format updated.  First you need to open the 

mzIDfix.R file in the R editor and change the file name and locationin the setwd line.  

You find this file by double clicking on the folder icon, then nagivate to 

Documents/GitHub/SUMO_remnant and then double click on the mzIDfix.R file. 

Then you have to set the file number to the number that the file is in the list, so if you 
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have three files, enter the name of the first one and the number 1, for the second file, 

you should enter the name of the second file and the number 2, etc. Also change the 

output name at the bottom of the script. You should make sure only .mzid files are in 

the directory. To run the script, highlight all of it and right click and hit run script. You 

need to run this script for each file individually, each one takes about 20 minutes to 

run, so be patient.   

Here  is the code for the mzIDfix.R:  

### the below line should be the directory where your mzid file is 

setwd("C:/Users/JgMeyer/Documents/R/pepsum/pepsum") 

### make an R object containing file names that have mzid suffix 

files<-list.files(pattern="mzid") 

#### print the files in the above objectfiles 

### determine which file number from those printed is the file you want to fix 

### load required external libraries 

library(mzID) 

library(XML) 

### parse and find peptide elements 

### set the number in brackets to the correct file number in the "files" object 

doc <- xmlParse(files[3]) 

r = xmlRoot(doc) #gives content of root 

### get the peptide tags and store in tags object 

tags <- xmlElementsByTagName(r[[3]], "Peptide") 

#### function to fix all tags, run all lines in order 
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manipulate <- function(tag) { 

    ## get 'Modification' node set 

    dMod <- tag["Modification"] 

    ## get 'location' numbers 

    loc <- sapply(dMod, xmlGetAttr, "location") 

    ## get the sum of 'monoisotopicMassDelta'  

    lapply(unique(loc), function(i) { 

        if(length(d <- dMod[loc == i]) > 1) { 

            nm <- "monoisotopicMassDelta" 

            s <- sapply(d, xmlGetAttr, nm) 

            xmlAttrs(d[[1]])[nm] <- sum(as.numeric(s)) 

        } 

    }) 

    ## remove duplicated location nodes 

    removeNodes(dMod[duplicated(loc)]) 

    ## return the adjusted tag 

    tag 

} 

#### this command takes about 20 minutes, R appears to freeze but it does not 

###actually, just let it work until you can interact with the GUI again 

lapply(tags, manipulate)   ### applies manipulate to the XML structure to fix tags 

#### saves new XML file, change the text equal to file to change the file output name 

saveXML(r, file="dh_fix.mzid", indent=TRUE) 
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5. Convert each mzID file into pep.xml 

 Each mzID file can then be converted to pep.xml using idconvert.exe 

(version is 3.0.4388, newer versions have issues).This program is located in 

C:\idconvert\. Before running the idconvert.exe file on one of the fixed files, you need 

to paste the xml header into the first line. There is a word document called 

XMLHeader.txt in the SUMOanalysis folder on the desktop. For ALL the WaLP data 

files, you also need to replace the enzyme info with trypsin since WaLP is not 

recognized by the idconvert as an enzyme. There is text in the SUMOanalysis folder 

file titled idconvert_enzymetext.txt that shows you what the offending text is to search 

for and what to replace it with. 

Find 

<Enzymes> 

<Enzyme missedCleavages="1000" semiSpecific="true" id="WaLP"> 

<EnzymeName> 

<userParam name="wt-aLP"/> 

Replace with 

<Enzyme missedCleavages="1000" semiSpecific="true" id="Tryp"> 

<EnzymeName> 

<cvParam accession="MS:1001251" cvRef="PSI-MS" name="Trypsin"/> 

NOW you can run idconvert successfully. For example, in the cmd window, type  

cd C:\idconvert 

idconvert.exe F:\MSGFPlus.20140716\output\test\wh_fix.mzid –v –e .pep.xml –o 

F:\\MSGFPlus.20140716\output\test\ 
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 This command will convert the wh_fix.mzid file into a wh_fix.pep.xml file 

and place it in the F:\\MSGFPlus.20140716\output\test\  directory.You will find this 

text also in the SUMOanalysis folder so you can edit it for your file name. It’s called 

idconvert_cmdlines.txt. Once you’ve edited it, copy, right click and paste into the cmd 

window. 

 

B. TPP refinement of identifications 

1. Run Peptide Prophet 

 The .pep.xml files are then refined for each database search output file 

individually with PeptideProphet within the TPP graphical user interface (TPP-GUI, 

open the program from the start menu, see also the extensive TPP documentation and 

walkthrough here: http://www.proteomecenter.org/software.php).  Move your files 

(the .pep.xml and the .mzXML files)to any folder within the directory 

C:\Inetpub\wwwroot\ISB\data\, or create your own subfolder.  Login as guest, mouse-

over “analysis pipeline,” and click on “analyze peptides.”  Choose your .pep.xml files 

using the button that says “add files.”You will want to have all the files that you 

eventually plan to combine in the same folder, and analyze them at the same time. 

Check the boxes to the right in the “Select Files to Analyze” window. Be sure to check 

the box that says, “process each file individually.” Leave “write output to file”as the 

default (interact.pep.xml), and it will name your output files as their original name 

plus interact.  The parameters used for PeptideProphet are shown in Figure 6.1.   
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Figure 6.1. Screenshot showing the settings used for PeptideProphet refinement of the 

SUMO-remnant identifications. 
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At the bottom under “Run Analysis,” click “Run XInteract!.”  You will get one 

interact-filename.pep.xml file for each input file.  

2. Run PTM Prophet 

 If you had four fractions that were all corresponding to the same sample, you 

will want to combine them at this step. Otherwise, just run PTM Prophet on the 

individual files. To combine the four fraction files, use iProphet (in TPP). Mouseover 

analysis Pipeline(Comet) chose Combine analyses. Upload your four files both 

.pep.xml and click do NOT use number of sibling searches (NSS) model and click 

Run Protein Prophet on these results. This will output one file that is the combined 

data, the file extension will be .ipro.pep.xml. 

 Prepare your peptide prophet output files to be run in PTM Prophet by 

editing the annotation for pyroglutamate. Open each one in notepad++, and replace the 

lines of text corresponding to peptide n-terminal pyroglutamate, <modification_info 

mod_nterm_mass="-16.0187240729" modified_peptide="Q with: <modification_info 

modified_peptide="Q[111] using the find and replace feature. 

 Now you can do the PTM Prophet analysis. Keep working in the same folder 

where all the files from the previous step are located.  In TPP, click on “analyze 

PTMs” under “analysis pipeline” and analyze each file separately. Run PTMprophet to 

generate site-localization scores for SUMO-remnant modifications.  For PTMprophet, 

the settings are pictured in Figure 6.2.   
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Figure 6.2. Screenshot showing the parameters used for PTMprophet. 

The output file will be in the same folder, named filename.ptm.pep. xml or 

.ptm.ipro.pep.xml (if you combined fractions beforehand). 
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3. Combine the heavy and light database search output 

 Theheavy and light lysine files are then combined using iProphet. Mouse-

over analysis Pipeline(Comet) chose Combine analyses. The files have to be combined 

with the light first and then the heavy, so rename your heavy files with an x in front of 

them so that alphabetically the light will be read first. Also upload them light first and 

then heavy. Upload your two files both .ptm.pep.xml and select do NOT use number 

of sibling searches (NSS) model and click Run Protein Prophet on these results.  

Thiswill output one file that is the combined data for the heavy and light. The file 

extension is .ipro.pep.xml or .ipro.pep.ipro.xml (if you combined fractions 

beforehand). Check to be sure that the light file was read first by opening the resulting 

output file and search for “search_summary”. In the light file you’ll see only one entry 

for a modified K, in the heavy file you’ll see 2 entries for modified K one of which has 

massdiff=8.  

4. Fix your PTM Prophet files for SILAC quantification 

 Currently TPP can’t run Xpress on our files, so we have to 

sendthe.ipro.pep.xml file to Jimmy Eng at TPP, so he can run a hacked version of 

Xpress.  Upload your pep.xml AND corresponding mzXML files to google drive and 

email him the public link the files.  Jimmy’s email is jke000@gmail.com, and you 

should mention you need the same quantification (quantification of the diGly lysines 

with heavy and light label).  Open the resulting .ptm.interact.ipro.pep.xml file in TPP 

and click on “View?” PepXML to make sure that you can see the site localizations on 

the identified peptides.  
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5. Filer by minimum iProphet score to apply 1% FDR 

 Now the identifications can be filtered by minimum iProphet score. Upload 

the file (Files/browse files) in TPP then click on the View? PepXML link next to the 

file to see the data. Click on the iProb score of any peptide (Figure 6.3) (because the 

score table is the same for the entire file). Use the score table to determine what 

minimum iProb score corresponds to an error of 0.01 or less (Figure 6.4).  Filter the 

file by going back to the viewer and click Filtering Options at the top. In the min 

iProphet probability, enter the score that corresponded to 0.01 (it will be something 

like 0.65 or 0.75 usually). Click also the exclude +1 charges (Figure 6.5).  At the 

bottom, click Update Page. Once the page has updated, click on the Pick Columns tab 

at the top, click the “All” to add all the columns to the right. Click Update Page again. 

Click Other Actions choose Export Spreadsheet. The spreadsheet will be deposited in 

the same folder where you had the input file. Open it in excel, click Yes to accept the 

extension. Delete the columns that do not contain relevant information, including: 

retention time, compensation voltage, precursor intensity, collision energy, nss, 

nss_adj_prob, nrs, nrs_adj_prov, nse, nse_adj_prob, nsi, nsi_adj_prob, nsm, 

nsm_adj_prob. Keep the ions2 column even though it looks useless.  

6. Filter the excel file to include only dglycyl-lysine peptides.  

 The excel file is then filtered to remove those peptides that are missing a 

quantification and also to make one table with only the diglycyl-lysine identifications  

and another with all the identifications (typically 10% of the peptides that are isolated 
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Figure 6.3. Click on any of the iProb scores to open the sensitivity/error plot. 

 

  



 153 

 
Figure 6.4. Determine the appropriate value of iProbability to set for error < 0.01.   
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Figure 6.5. Screenshot of the TPP window in which to set the minimum iProphet 

probability you determined from the statistics table. 
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from the IP will have GG-Ks).   To remove the missing quantifications, filter the 

xpress column to remove the peptides with -1 and “Unavailable”. Save the resulting 

sheet as All. Then paste the following equation into the ions2 box (row 2) excel: 

“=OR(ISNUMBER(FIND(242, G2)),ISNUMBER(FIND(250,G2)))”.  Copy that cell, 

select the whole row, and paste special formula to get the equation to run for all rows. 

This puts a FALSE if the GG-K is not verified and a TRUE if it is verified. The subset 

of verified diglycyl peptides can be selected out by sort data filter and deselect all the 

FALSE ones to get just the true ones. Save BOTH of the files both as an excel 

workbook and as a tab-delimited text file (which is used by R in the next steps). 

 

C. Post-identification processing 

1. Normalize distribution of quantification values, compute weighted 

average quantification values, and filter by localization score 

 Further filtering and processing of the search results is done with scripts 

written in R.  Open Examples.R which sets the directory, reads the files, defines the 

class pepsum, etc and gives the order for running the functions. Open the 

all_functions.R and run all the lines in the all_functions.R. This defines all the 

functions you will need later. In the Examples.R, edit the working directory and run 

the line to see which files it thinks are the ones you want to analyze (all and digly) and 

put the file numbers into the brackets in the examples.R file. The R script has the 

option to output a tsv file, but right now that is set to FALSE because we won’t need 

it. Run the Examples.R script line by line. First, modification sites are filtered based 
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on their site-localization score.  Next, all unique protein sites are determined, and only 

those with quantification values are kept (in this case I used 0.75).  A weighted 

average of quantification values is computed for protein sites identified by multiple 

peptides, with weights based on the integrated area.  This information is output to a tsv 

file if the writetsv is set to T and not F. It is also saved as an object in R called 

mgpl.s.sig. This object is then used in further steps to correlate the sites between two 

different replicates, plot their quant values, and determine a linear fit. The weighted 

ratio is light/heavy (xpress score gives the raw ratio and “weighted”corresponds to the 

weighted average if the mod was in more than one peptide). The log ratio is 

light/heavy base 2. To get the heavy/light multiply the log.ratios by -1. Search the 

examples.R script for writetsv and name your file before running this line of code. At 

the end of the Examples.R script you can export a histogram of the weighted average 

ratios plotted against frequency. First, run all the function you need for the analysis to 

define them.  The functions are in the file all_functions.R, which contains the 

following text: 

 

#### this file contains all needed functions to go through SILAC quantification 

analysis 

#### select all and run all within R 

### create class for peptide identification data 

setClass("pepsum",representation(summary="matrix",scans="ANY",specdir="charact

er", 

 specfiles="list",data="ANY", totalheat="matrix",residues="character", 
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 sequence="ANY",score="character",filetype="character",scanvec="ANY", 

 modposition.protein="ANY", 

chargevec="ANY",proteinmodlist="ANY",index="ANY",  

 fraction="character",pepvec="ANY",provec="ANY",filenames="ANY",p1.i

ndex="ANY", 

 modposition.peptide="ANY",countlist="list",pepraw="ANY",ionCoverage=

"list", 

 ionCovSum="list",modindex="list",modsummary="list")) 

### function to read peptide prophet results in tab-delim format 

read.PepProph=function(input=files[2],type="PeptideProphet"){ 

 object<-new("pepsum") 

 object@filetype="PeptideProphet" 

 object@data<-read.delim(input,header=T) 

 ### make scan and charge vectors 

 scanlist<-strsplit(as.character(object@data$spectrum),split=".",fixed=T) 

 scanlen<-length(scanlist) 

 scanvec<-as.numeric(unlist(scanlist)[seq(2,length(scanlist)*4,by=4)]) 

 chargevec<-as.numeric(unlist(scanlist)[seq(4,length(scanlist)*4,by=4)]) 

 ### make peptide vector  

 rawpepvec<-as.character(object@data$peptide) 

 ### clean sequences into format for matchions 

 #rawpepvec<-substr(rawpepvec,start=3, stop=nchar(rawpepvec)-2) 

 peptempvec<-substr(rawpepvec,start=3, stop=nchar(rawpepvec)-2) 
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 peptempvec.l<-length(rawpepvec) 

 peps<-rep(0,times=peptempvec.l) 

 if(type=="PeptideProphet"){ 

  for(i in 1:peptempvec.l){ 

   ###match the string starting with [/[- followed by n integers and 

"]" 

   ### and replace with nothing 

   peps[i]<-gsub("(\\[|\\[-)([0-9]+)(.)([0-9]+)(]+)", replacement="", 

peptempvec[i])  

   } 

  for(i in 1:peptempvec.l){ 

   ###remove "n" from peptides with n-term acetyl 

   if(unlist(strsplit(peps[i],split=""))[1]=="n"){ 

    peps[i]<-substr(peps[i],start=2,stop=nchar(peps[i])) 

    } 

   } 

  } 

 #### if format is inspect-style 

 if(type=="inspect"){ 

  ### start by replacing those with nterminal pyroglu 

  rawpepvec<-gsub(rawpepvec,pattern="(n)(\\[)(-

16.02)(\\])(Q)",replacement="Q[-17.027]") 

  #### pyro glu done, move to the next mod 
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  rawpepvec<-

gsub(rawpepvec,pattern="(n)(\\[)(43.02)(\\])",replacement="[42.011]") 

  ##### metox next 

  rawpepvec<-

gsub(rawpepvec,pattern="(\\[)(147.04)(\\])",replacement="[15.995]") 

  #### finally replace NEM-modified Cysteine 

  rawpepvec<-

gsub(rawpepvec,pattern="(\\[)(228.06)(\\])",replacement="[125.048]") 

  } 

 if(type=="specnets"){ 

  ### start by replacing those with nterminal pyroglu 

  rawpepvec<-gsub(rawpepvec,pattern="(n)(\\[)(-

16.02)(\\])(Q)",replacement="(Q,-17.027)") 

  #### pyro glu done, move to the next mod 

  nacetylindex<-grep(rawpepvec,pattern="(n)(\\[)(43.02)(\\])") 

  nacetylstartres<-substr(rawpepvec[nacetylindex],start=9, stop=9) 

  nacetyl_len<-length(rawpepvec[nacetylindex]) 

  for(i in 1:nacetyl_len){ 

   rawpepvec[nacetylindex][i]<-

paste("(",nacetylstartres[i],",+42.011)",rawpepvec[nacetylindex][i],sep="",collapse=""

) 

   } 
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  rawpepvec<-gsub(rawpepvec,pattern="(n)(\\[)(43.02)(\\])([A-

Z]){1}",replacement="") 

  ##### metox next 

  rawpepvec<-

gsub(rawpepvec,pattern="(M)(\\[)(147.04)(\\])",replacement="(M,+15.995)") 

  #### finally replace NEM-modified Cysteine 

  rawpepvec<-

gsub(rawpepvec,pattern="(C)(\\[)(228.06)(\\])",replacement="(C,+125.048)") 

  } 

 if(type=="R"){ 

  ### start by replacing those with nterminal pyroglu 

  rawpepvec<-gsub(rawpepvec,pattern="(n)(\\[)(-

16.02)(\\])(Q)",replacement="-17.027Q") 

  #### pyro glu done, move to the next mod 

  rawpepvec<-

gsub(rawpepvec,pattern="(n)(\\[)(43.02)(\\])",replacement="+42.011") 

  ##### metox next 

  rawpepvec<-

gsub(rawpepvec,pattern="(\\[)(147.04)(\\])",replacement="+15.995") 

  #### finally replace NEM-modified Cysteine 

  rawpepvec<-

gsub(rawpepvec,pattern="(\\[)(228.06)(\\])",replacement="+125.05") 

  }  
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 object@pepvec<-peps 

 object@scanvec<-scanvec 

 object@chargevec<-chargevec 

 return(object) 

 } 

#### function to filter identifications based on a minimum score 

#### usage: 

#### newobject<-removeLowLocalizations(object=[your pepsum object], minscore = 

[your choice of localization cutoff score]) 

removeLowLocalization=function(object=mgpl.all,minscore=0.75){ 

 PTMscorelines<-as.character(object@data[,"ptm_peptide"]) 

 scores<-list() 

 keepthese<-c() 

 modposition<-list() 

 line<-1 

 for(i in 1:length(PTMscorelines)){ 

  tempscore<-

as.numeric(unlist(regmatches(PTMscorelines[i],gregexpr("[[:digit:]]+\\.*[[:digit:]]*",P

TMscorelines[i])))) 

  if(length(which(tempscore>=minscore)>0)>0){ 

   #print("isnumeric") 

   keepthese<-c(keepthese,i) 

   n=which(tempscore>=minscore) 
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   modposition[[line]]<-

unlist(gregexpr("[[:digit:]]+\\.*[[:digit:]]*",PTMscorelines[i]))[which(tempscore>=mi

nscore)]-((n-1)*7+2) 

   line=line+1 

   } 

  } 

 ### now have index of rows to keep 

 ### and positions as a list of positions 

 ### convert the list of peptide positions where length>1 into csv 

 ### this works but the double mods are form of c(2,3) 

 #test<-cbind(as.character(modposition),object@data[keepthese,]) 

 object@modposition.peptide<-modposition 

 object@data<-object@data[keepthese,] 

 object@pepvec<-object@pepvec[keepthese] 

 return(object) 

 } 

 

#### function to determine the mod postion within a protein using the fasta DB 

####  usage: 

###  #### determine to position of each site ID in their protein 

### mgpl.s.pos<-proteinPositions(object=mgpl.s, 

###  fasta="C:/MSGFplus/database/110712_human.cc.fasta", 

###  writetsv=FALSE, 
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###  name="mgplus.localized.tsv") 

proteinPositions=function(fasta="C:/Users/JgMeyer/Documents/R/pepsum/pepsum/11

0712_human.cc.fasta", 

 object=mgpl.single.pos, 

 writetsv=FALSE, 

 name="MG132.all.filtered.tsv"){ 

 ### read in fasta file 

 require(seqinr) 

 require(Biostrings) 

 fastaobj<-read.fasta(fasta,seqtype="AA",as.string=TRUE) 

 fastaacc<-substr(names(fastaobj),start=4,stop=9) 

 datamat<-object@data 

 #proteins<-levels(datamat[,"protein"]) 

 proteins<-as.character(unique(datamat[,"protein"])) 

 uniqproteins<-substr(start=4,stop=9,proteins) 

 allprotacc<-substr(as.character(datamat[,"protein"]),start=4,stop=9) 

 ### replace object@pepvec with cleaned peptides 

 peptempvec<-as.character(object@pepvec) 

 peptempvec.l<-length(peptempvec) 

 ### make empty vector for protein positions 

 proteinposition<-rep(0,times=peptempvec.l) 

 ####  loop through each line in the datamat 

 proteinposition<-list() 
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 #### fix to correctly assign n-terminal position 

 for(i in 1:peptempvec.l){ 

  print(i) 

  #print(peptempvec[i]) 

  #print(datamat[i,"protein"])   

  #currentpro<-substr(start=4,stop=9,datamat[i,"protein"]) 

  currentprot<-

fastaobj[[which(fastaacc==substr(start=4,stop=9,datamat[i,"protein"]))]][1] 

  currentpep<-peptempvec[i] 

  #print(currentpro) 

  #print(currentpep) 

  matched<-matchPattern(currentpep,currentprot) 

  proteinposition[[i]]<-

matched@ranges[[1]][1]+(unlist(object@modposition.peptide[i])-1) 

  } 

 object@data<-

cbind(protein.position=as.character(proteinposition),object@data) 

 #object@data[1,] 

 object@modposition.protein<-proteinposition 

 #name="testMGneg.tsv" 

 if(writetsv==TRUE){ 

 write.table(object@data,file=name,quote=FALSE,sep="\t",row.names=F) 

  } 
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 return(object) 

 } 

####  function to summarize and combine the unique protein site IDs 

##   usage:   

###  mgpl.s.ave<-summarizeProtPositions(object=mgpl.s.pos) 

#mgpl.ave<-summarizeProtPositions() 

#mgpl.ave@data[1,] 

#mgpl.ave@modindex 

### works with peptides containing multiple sites, sets their weighted ratio =0 

summarizeProtPositions=function(object=mgpl.pos){ 

 proteinIDs<-unique(as.character(object@data[,"protein"])) 

 prot.pos.list<-list() 

 ###  gives a list of proteins with their corresponding unique locations 

 for(i in 1:length(proteinIDs)){ 

  #print(i) 

  prot.pos.list[[proteinIDs[i]]]<-

unique(unlist(object@modposition.protein[which(object@data$protein==proteinIDs[i

])])) 

  #print(proteinIDs[i]) 

  #print(prot.pos.list[[proteinIDs[i]]]) 

  } 

 prot.lines.list<-list() 

 #### gives the lines in object@data that correspond to each protein 
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 for(i in 1:length(proteinIDs)){ 

  #print(i) 

  prot.lines.list[[proteinIDs[i]]]<-

which(object@data$protein==proteinIDs[i]) 

  } 

 #range(unlist(prot.lines.list)) 

 position.index.list<-list() 

 #### assign each unique position an index  

 ### loop through the proteins 

 index=1 

 for(i in 1:length(proteinIDs)){ 

  #print(i) 

  temp.positions<-

prot.pos.list[[which(names(prot.pos.list)==proteinIDs[i])]] 

   

  temp.prot.lines<-which(object@data$protein==proteinIDs[i])  ### 

gives row numbers of of mods in object@data 

   

  protein.position.list<-object@modposition.protein[temp.prot.lines]  ### 

gives the values of mod positions as vector  

  ### set lines that have multiple mods to 0 

  for(j in 1:length(protein.position.list)){ 

   #print(length(protein.position.list[[j]])) 
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   if(length(protein.position.list[[j]])>1){ 

    protein.position.list[[j]]<-0 

    } 

   } 

  unique.positions<-unique(unlist(protein.position.list)) 

  unique.positions.l<-length(unique.positions) 

  ### loop through the positions and assign those each an index number 

  for(x in unique.positions){ 

   #print(x) 

   ### if x!=0, do give an index 

   if(x!=0){ 

    temprowlen<-

length(temp.prot.lines[which(protein.position.list==x)]) 

    for(j in 1:temprowlen){ 

     #print(j) 

    

 position.index.list[[temp.prot.lines[which(protein.position.list==x)][j]]]<-

index 

     } 

    index=index+1 

    } 

   ###  if x==0 (peptide with two mods), assign index=0 

   if(x==0){ 
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    temprowlen<-

length(temp.prot.lines[which(protein.position.list==x)]) 

    for(j in 1:temprowlen){ 

     #print(j) 

    

 position.index.list[[temp.prot.lines[which(protein.position.list==x)][j]]]<-0 

     } 

    } 

   } 

  } 

  ### which(position.index.list==111) 

  #### now loop through those values and take weighted averages of the 

ones with more than 1 line 

  unique.indexes.len<-length(unique(unlist(position.index.list))) 

  unique.indexes<-unique(unlist(position.index.list)) 

  #unique.indexes 

  weighted.ratios<-list() 

  linesum=0 

  for(j in 1:unique.indexes.len){ 

   #print(j) 

   templines<-which(position.index.list==unique.indexes[[j]]) 

   #print(templines) 

   object@data[templines,] 
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   if(unique.indexes[[j]]>=1){ 

    ### divide by temparea 

   

 temparea=sum(object@data[templines,"light_area"])+sum(object@data[tem

plines,"heavy_area"]) 

    templines.l<-length(templines) 

    tempsum<-0 

    linesum=linesum+templines.l 

    weights<-rep(0,times=templines.l) 

    for(i in 1:templines.l){ 

     weights[i]<-

(object@data[templines[i],"light_area"]+object@data[templines[i],"heavy_area"])/tem

parea 

     } 

    for(i in 1:templines.l){ 

    

 tempsum=tempsum+object@data[templines[i],"xpress"]*weights[i] 

    

 #print(object@data[templines[i],"light_area"]+object@data[templines[i],"he

avy_area"]) 

     #print(tempsum) 

     } 

    for(i in 1:templines.l){ 
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     weighted.ratios[[templines[i]]]<-tempsum 

     } 

    }  

   if(unique.indexes[[j]]==0){ 

    templines.l<-length(templines) 

    for(i in 1:templines.l){ 

     weighted.ratios[[templines[i]]]<-0 

     } 

    } 

   } 

 object@modsummary<-prot.pos.list 

 object@modindex<-position.index.list 

 object@data<-cbind(object@data,weighted.ratios=unlist(weighted.ratios)) 

 print("unique SUMO modified protein IDs") 

 print(length(proteinIDs)) 

 print("unique SUMO modification sites from single-site peptides") 

 print(length(index)) 

 length(prot.pos.list) 

 ### write something to make these text and put them in one column 

 #paste(unlist(prot.pos.list[1])) 

 return(object)  

 } 

#### compute the weighted average of sites identified by with multiple sequences, 
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#### then determine which sites are outside at least one standard deviation 

#### will produce a plot of quantification values as given in figure 3a 

###  usage: 

###  mgpl.s.sig<-getSignificant(allIDs=mgpl.s.all,targetIDs=mgpl.s.ave) 

getSignificant=function(allIDs=mgpl.all,targetIDs=mgpl.ave, 

  name="filename.filtered", 

  writetsv=T, 

  stdev=0.9404181){ 

 logRatiosAll<-log(allIDs@data$xpress,base=2) 

 allIDs@data<-cbind(allIDs@data,logRatiosAll) 

 meanAll<-mean(logRatiosAll) 

 medianAll<-median(logRatiosAll) 

 logRatiosAllnorm<-logRatiosAll-medianAll 

 norm.median.all<-median(logRatiosAllnorm) 

 ### get distribution of weighted averages for unique sites 

 #targetIDs@modindex 

 numuniq<-length(unique(unlist(targetIDs@modindex)))-1 

 unique.position.singleline<-rep(0,times=numuniq) 

 unique.position.singleweight<-rep(0,times=numuniq) 

 #targetIDs@data$weighted.ratios 

 for(i in 1:numuniq){ 

  unique.position.singleline[i]<-which(targetIDs@modindex==i)[1] 
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  unique.position.singleweight[i]<-

log(targetIDs@data[which(targetIDs@modindex==i)[1],"weighted.ratios"],base=2) 

  } 

 median(unique.position.singleweight) 

 range(unique.position.singleweight) 

 norm.uniq.pos.singleweight<-unique.position.singleweight-medianAll 

 #2*sd(norm.uniq.pos.singleweight) 

 if(length(stdev)==1){ 

  upperlim<-norm.median.all+2*stdev 

  lowerlim<-norm.median.all-2*stdev 

  onesdup<-norm.median.all+1*stdev 

  onesddown<-norm.median.all-1*stdev 

  } 

 if(length(stdev)==0){ 

  upperlim<-norm.median.all+2*sd(logRatiosAllnorm) 

  lowerlim<-norm.median.all-2*sd(logRatiosAllnorm) 

  onesdup<-norm.median.all+1*sd(logRatiosAllnorm) 

  onesddown<-norm.median.all-1*sd(logRatiosAllnorm) 

  } 

 #?pairlist 

 #log(10) 

 #unique.position.singleline[1] 

 #norm.uniq.pos.singleweight[1] 
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 names(norm.uniq.pos.singleweight)<-unique.position.singleline 

 sort.norm.uniq.pos.singleweight<-sort(norm.uniq.pos.singleweight*-1) 

 #median(sort.norm.uniq.pos.singleweight) 

 plot(x=1:numuniq,y=sort.norm.uniq.pos.singleweight) 

 abline(h=upperlim,col="red") 

 abline(h=lowerlim,col="red") 

 ### 

 print("one standard deviation is") 

 print(onesdup) 

 abline(h=onesdup,col="red") 

 abline(h=onesddown,col="red") 

 #### now flag those IDs that are outside 2 std. dev. 

 idlen<-length(targetIDs@data$xpress) 

 oversigma<-rep(0,times=idlen) 

 count=0 

 #### loop through and test which are outside 2 std. dev 

 for(i in 1:numuniq){ 

  if(norm.uniq.pos.singleweight[i]>=onesdup | 

norm.uniq.pos.singleweight[i]<=onesddown){ 

   #print(norm.uniq.pos.singleweight[i]) 

   count=count+1 

   #print(count) 

   oversigma[unique.position.singleline[i]]<-1 
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   } 

  } 

 over2sigma<-rep(0,times=idlen) 

 count=0 

 #### loop through and test which are outside 2 std. dev 

 for(i in 1:numuniq){ 

  if(norm.uniq.pos.singleweight[i]>=upperlim | 

norm.uniq.pos.singleweight[i]<=lowerlim){ 

   #print(norm.uniq.pos.singleweight[i]) 

   count=count+1 

   #print(count) 

   oversigma[unique.position.singleline[i]]<-2 

   } 

  } 

 # for those missing their weighted average value, put in xpress value 

 for(i in 1:length(targetIDs@data[,"weighted.ratios"])){ 

  if(targetIDs@data[i,"weighted.ratios"]==0){ 

   targetIDs@data[i,"weighted.ratios"]<-

targetIDs@data[i,"xpress"] 

   } 

  } 
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 targetIDs@data<-

cbind(targetIDs@data,log.ratios=log(targetIDs@data[,"weighted.ratios"],base=2)-

medianAll) 

 targetIDs@data<-cbind(targetIDs@data,oversigma) 

 #targetIDs@data<-cbind(targetIDs@data,over1sigma) 

 ### part to output only unique significant changers 

 #unique.position.singleline 

 #targetIDs@data[,"log.ratios"] 

 uniquelines<-targetIDs@data[unique.position.singleline,] 

 changelines<-uniquelines[uniquelines[,"oversigma"]>=1,] 

 nochangelines<-uniquelines[uniquelines[,"oversigma"]==0,] 

 ### part to output only unique non changers 

 ### now have new object with binary whether outside 2*sigma 

 print(i) 

 #### maybe write new table? 

 print("unique sites") 

 print(numuniq) 

 print("over 2 stdev") 

 print(length(oversigma[oversigma==2])) 

 print("over 1 stdev") 

 print(length(oversigma[oversigma==1])) 
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 if(writetsv){ 

 write.table(file=paste(name,".all.tsv",sep=""),targetIDs@data,quote=F,sep="\

t",col.names=T,row.names=F) 

 write.table(file=paste(name,".changing.tsv",sep=""),changelines,quote=F,sep

="\t",col.names=T,row.names=F) 

 write.table(file=paste(name,".nochange.tsv",sep=""),nochangelines,quote=F,

sep="\t",col.names=T,row.names=F) 

  } 

 return(list(allIDs,targetIDs,nochangelines,changelines)) 

 } 

correlate.positions() 

correlate.positions=function(object1=uv0.sig,object2=uv2.sig,name1="uv2hr",name2=

"uv8hr") 

 { 

 modsum1<-object1[[2]]@modsummary 

 modsum2<-object2[[2]]@modsummary 

 names(modsum1)<-substr(names(modsum1),start=4,stop=9) 

 names(modsum2)<-substr(names(modsum2),start=4,stop=9) 

 i=1 

 matchvec<-c() 

 for(x in names(modsum1)){  

  print(which(names(modsum2)==x)) 

  if(length(which(names(modsum2)==x))>0){ 
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   matchvec[i]<-x 

   i=i+1 

   } 

  } 

 #### loop through the match names and check their positions 

 #### in the larger matrix 

 #### take value of quant for each site put into a list of pairs 

 quantpairs<-list() 

 length(unlist(modsum1[matchvec])) 

 modsum1.sub<-modsum1[matchvec]  

 modsum2.sub<-modsum2[matchvec] 

 uniprot<-substr(object2[[2]]@data[,"protein"],start=4,stop=9) 

 object2[[2]]@data<-cbind(object2[[2]]@data,uniprot=uniprot) 

 uniprot<-substr(object1[[2]]@data[,"protein"],start=4,stop=9) 

 object1[[2]]@data<-cbind(object1[[2]]@data,uniprot=uniprot) 

 hprp.values<-c() 

 single.values<-c() 

 for(x in names(modsum1.sub)){ 

  matched.positions<-

modsum2.sub[[x]][na.omit(match(modsum1.sub[[x]],modsum2.sub[[x]]))] 

  for(y in matched.positions){ 

   obj2.protlines<-

object2[[2]]@data[which(as.character(object2[[2]]@data[,"uniprot"])==x),] 
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   hprp.value<-

obj2.protlines[,"weighted.ratios"][obj2.protlines[,1]==y][1] 

   obj1.protlines<-

object1[[2]]@data[which(as.character(object1[[2]]@data[,"uniprot"])==x),] 

   single.value<-

obj1.protlines[,"weighted.ratios"][obj1.protlines[,1]==y][1] 

   if(is.na(single.value)==is.na(hprp.value)){ 

    quantpairs[[paste(x,"_",y,sep="")]]<-

c(single.value,hprp.value) 

    hprp.values<-c(hprp.values,hprp.value) 

    single.values<-c(single.values,single.value) 

    } 

   }     

  } 

 par(cex.axis=1.5,cex=1.25) 

 plot(log(hprp.values,base=2),log(single.values,base=2),ylim=c(),ylab=name1

,xlab=name2,main="correlation of SILAC quant values",pch=20) 

 y=log(hprp.values,base=2) 

 x=log(single.values,base=2) 

 lm(x ~ y +0 ) ### not sure if +0 works 

 abline(lm(x~y+0),col="red",lwd=2) 

 abline(h=0) 

 abline(v=0) 
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 print(summary(lm(x~y+0))) 

 } 

 

Here is the examples.R script: 

#### before running any functions, they must be defined in your R workspace by 

running them 

###  open all_functions.R, select all, and run within R 

#### change working directory to locations of tab-delim output from TPP 

setwd("C:/Inetpub/wwwroot/ISB/data/test/UVdata1") 

#setwd("C:/Users/JGmeyer/my documents/R/silacquant") 

### make object with list of files and then print them 

files<-list.files() 

files 

### create class for peptide identification data 

### 

setClass("pepsum",representation(summary="matrix",scans="ANY",specdir="charact

er", 

 specfiles="list",data="ANY", totalheat="matrix",residues="character", 

 sequence="ANY",score="character",filetype="character",scanvec="ANY", 

 modposition.protein="ANY", 

chargevec="ANY",proteinmodlist="ANY",index="ANY",  

 fraction="character",pepvec="ANY",provec="ANY",filenames="ANY",p1.i

ndex="ANY", 
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 modposition.peptide="ANY",countlist="list",pepraw="ANY",ionCoverage=

"list", 

 ionCovSum="list",modindex="list",modsummary="list")) 

#### first read the peptide prophet results for SUMO-remnant-only IDs into pepsum 

object 

mgpl.s<-read.PepProph(input=files[2]) 

#### read all the IDs into pepsum object - used to get whole distribution for 

normalization 

mgpl.s.all<-read.PepProph(input=files[1]) 

#### remove those IDs with localization scores below an arbitrary value 

mgpl.s<-removeLowLocalization(object=mgpl.s,minscore=0.75) 

#### determine to position of each site ID in their protein 

mgpl.s.pos<-proteinPositions(object=mgpl.s, 

  fasta="F:/MSGFplus/database/110712_human.cc.fasta", 

  writetsv=FALSE, 

  name="mgplus.localized.tsv") 

#### summarize and combine the unique protein site IDs 

mgpl.s.ave<-summarizeProtPositions(object=mgpl.s.pos) 

#### compute the weighted average of sites identified by with multiple sequences, 

#### then determine which sites are outside at least one standard deviation 

#### will produce a plot of quantification values as given in figure 3a 

mgpl.s.sig<-getSignificant(allIDs=mgpl.s.all,targetIDs=mgpl.s.ave, 

name="uv0.filtered", 
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  writetsv=T) 

#### correlate the sites between two different replicates, plot their quant values, and 

determine a linear fit 

#### This is after running the previous code more than once to obtain several data 

.sigs  

newobject<-correlate.positions(object1=mgpl.s.sig,  

 object2=uv8.sig, 

 name1="anyname1", 

 name2="anyname2") 

##### additional examples below for UV data quant, normalizationm weighted 

average 

uv0<-read.PepProph(input=files[2]) 

uv0.all<-read.PepProph(input=files[1]) 

uv0<-removeLowLocalization(object=uv0,minscore=0.75) 

uv0<-proteinPositions(object=uv0, 

  fasta="F:/MSGFplus/database/110712_human.cc.fasta", 

  writetsv=FALSE, 

  name="mgplus.localized.tsv") 

uv0<-summarizeProtPositions(object=uv0) 

uv0.sig<-getSignificant(allIDs=uv0.all, 

 targetIDs=uv0, 

 writetsv=F, 

 name="uv0.norm.sig.tsv") 
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uv2<-read.PepProph(input=files[9]) 

uv2.all<-read.PepProph(input=files[8]) 

uv2<-removeLowLocalization(object=uv2,minscore=0.75) 

uv2<-proteinPositions(object=uv2, 

  fasta="F:/MSGFplus/database/110712_human.cc.fasta", 

  writetsv=F, 

  name="UV2.localized.tsv") 

uv2<-summarizeProtPositions(object=uv2) 

uv2.sig<-

getSignificant(allIDs=uv2.all,targetIDs=uv2,writetsv=T,name="uv2.norm.sig.tsv") 

#### correlate the sites between two different replicates, plot their quant values, and 

determine a linear fit  

newobject1<-correlate.positions(object1=uv0.sig, object2=uv2.sig) 

uv8<-read.PepProph(input=files[13]) 

uv8.all<-read.PepProph(input=files[12]) 

uv8<-removeLowLocalization(object=uv8,minscore=0.75) 

uv8<-proteinPositions(object=uv8, 

  fasta="F:/MSGFplus/database/110712_human.cc.fasta", 

  writetsv=F, 

  name="UV8.localized.tsv") 

uv8<-summarizeProtPositions(object=uv8) 

uv8.sig<-

getSignificant(allIDs=uv8.all,targetIDs=uv8,writetsv=T,name="uv8.norm.sig.tsv") 
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#### show the correlation between UV2hr and UV8hr 

newobject2<-correlate.positions(object1=uv2.sig, 

object2=uv8.sig,name1="UV2hr",name2="UV8hr") 

length(object@data[1,]) 

mgpl[[2]]@data[1,] 

#### part to generate histograms as shown in figure 3a 

### set output object from getSignificant to: yourobject[[2]]->object 

### 2 is always the number in the [[]] here, to get the Target IDs from the list of data  

object<-uv0.sig[[2]] 

?hist 

#par(mfcol=c(2,1)) 

histtest<-hist(log(object@data[,"weighted.ratios"],2),breaks=200,main="weighted 

average") 

histtest 

data.frame(histtest$breaks,histtest$counts) 

write(histtest$counts,file="teest2.txt") 

write(histtest$breakss,file="breaks2.txt") 

### for sideways histogram either rotate the image from above or run barplot 

barplot(horiz=T,histtest$counts) 

###################################################### 

#########   lines below not run 

barplot(horiz=T,histtest$counts ,ylim=range) 

?hist 
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?barplot 

upperlim2sd<-mean(log(object@data[,26],2))+2*sd(log(object@data[,26],2)) 

lowerlim2sd<-mean(log(object@data[,26],2))-2*sd(log(object@data[,26],2)) 

upperlim1sd<-mean(log(object@data[,26],2))+1*sd(log(object@data[,26],2)) 

lowerlim1sd<-mean(log(object@data[,26],2))-1*sd(log(object@data[,26],2)) 

 abline(v=mean(log(object@data[,26],2)),col="blue")  

 abline(v=upperlim2sd,col="red") 

 abline(v=lowerlim2sd,col="red") 

 abline(v=upperlim1sd,col="red") 

 abline(v=lowerlim1sd,col="red") 

hist(log(object@data$xpress,2),breaks=200,main="raw xpress scores") 

upperlim2sd<-mean(log(object@data$xpress,2))+2*sd(log(object@data$xpress,2)) 

lowerlim2sd<-mean(log(object@data$xpress,2))-2*sd(log(object@data$xpress,2)) 

upperlim1sd<-mean(log(object@data$xpress,2))+1*sd(log(object@data$xpress,2)) 

lowerlim1sd<-mean(log(object@data$xpress,2))-1*sd(log(object@data$xpress,2)) 

 abline(v=mean(log(object@data$xpress,2)),col="blue")  

 abline(v=upperlim2sd,col="red") 

 abline(v=lowerlim2sd,col="red") 

 abline(v=upperlim1sd,col="red") 

 

2.Compare SUMO-site identifications with previously reported 

modifications 
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 The overlap in identifications can be determined by comparing with other 

datasets that are available for lysine modifications. The first step of this process is to 

generate an object that R can use to compare to the datasets. This is done using the 

“filterfromall_short.R” script. For this script, you need the “All” tab-delimited file that 

you first generated in the the previous step (after you removed the empty columns but 

not any of the other data). Here is the text in the filterfromall.R script: 

 

getwd() 

setwd("C:/Inetpub/wwwroot/ISB/data/test/u_uh2") 

files<-list.files() 

files 

uuh<-read.PepProph(input=files[10]) 

filterAll=function(object=mgpl.single.all, 

 minscore=0.75, 

 fasta="F:/MSGFplus/database/110712_human.cc.fasta", 

 name="filename.tsv",writetsv=TRUE) 

 { 

 PTMscorelines<-as.character(object@data[,"ptm_peptide"]) 

 object1<-object 

 #### object 1 only those with localization scores 

 #which(PTMscorelines!="unavailable") 

 object1@data<-object@data[PTMscorelines!="[unavailable]",] 

 #nrow(object@data[PTMscorelines!="[unavailable]",]) 
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 object1@pepvec<-object@pepvec[PTMscorelines!="[unavailable]"] 

 #object1@pepvec[1] 

 #object1@data[1,] 

 ### also filter based on 242\250 in peptide 

 peptides<-as.character(object1@data$peptide) 

 diglylines<-c(grep("242",peptides),grep("250",peptides)) 

 object1@data<-object1@data[diglylines,] 

 #nrow(object1@data) 

 object1@pepvec<-object1@pepvec[diglylines]  

 object1@data$peptide 

 object1@pepvec 

 scorelines<-as.character(object1@data[,"ptm_peptide"]) 

 scores<-list() 

 keepthese<-c() 

 modposition<-list() 

 line<-1 

 for(i in 1:length(scorelines)){ 

  tempscore<-

as.numeric(unlist(regmatches(scorelines[i],gregexpr("[[:digit:]]+\\.*[[:digit:]]*",scoreli

nes[i])))) 

  if(length(which(tempscore>=minscore)>0)>0){ 

   #print("isnumeric") 

   keepthese<-c(keepthese,i) 
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   n=which(tempscore>=minscore) 

   modposition[[line]]<-

unlist(gregexpr("[[:digit:]]+\\.*[[:digit:]]*",scorelines[i]))[which(tempscore>=minscor

e)]-((n-1)*7+2) 

   line=line+1 

   } 

  } 

 ### now have index of rows to keep 

 ### and positions as a list of positions 

 ### convert the list of peptide positions where length>1 into csv 

 object1@data<-object1@data[keepthese,] 

 object1@data[,2] 

 object1@modposition.peptide<-modposition 

 object1@pepvec<-object1@pepvec[keepthese] 

 #### now get protein positions and summarize 

 ### read in fasta file 

 require(seqinr) 

 require(Biostrings) 

 fastaobj<-read.fasta(fasta,seqtype="AA",as.string=TRUE) 

 fastaacc<-substr(names(fastaobj),start=4,stop=9) 

 datamat<-object1@data 

 #proteins<-levels(datamat[,"protein"]) 

 proteins<-as.character(unique(datamat[,"protein"])) 
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 uniqproteins<-substr(start=4,stop=9,proteins) 

 allprotacc<-substr(as.character(datamat[,"protein"]),start=4,stop=9) 

 ### replace object@pepvec with cleaned peptides 

 peptempvec<-as.character(object1@pepvec) 

 peptempvec.l<-length(peptempvec) 

 ### make empty vector for protein positions 

 proteinposition<-rep(0,times=peptempvec.l) 

 ####  loop through each line in the datamat 

 proteinposition<-list() 

 #### fix to correctly assign n-terminal position 

 for(i in 1:peptempvec.l){ 

  print(i) 

  currentprot<-

fastaobj[[which(fastaacc==substr(start=4,stop=9,datamat[i,"protein"]))]][1] 

  currentpep<-peptempvec[i] 

  #print(currentpro) 

  #print(currentpep) 

  matched<-matchPattern(currentpep,currentprot) 

  proteinposition[[i]]<-

matched@ranges[[1]][1]+(unlist(object1@modposition.peptide[i])-1) 

  } 

 object1@data<-

cbind(protein.position=as.character(proteinposition),object1@data) 
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 #object@data[1,] 

 object1@modposition.protein<-proteinposition 

 #name="testMGneg.tsv" 

 ############################ 

 #### part to summarize and output unique positions 

 proteinIDs<-unique(as.character(object1@data[,"protein"])) 

 proteinIDs<-substr(proteinIDs,start=4,stop=9) 

 prot.pos.list<-list() 

 ###  gives a list of proteins with their corresponding unique locations 

 for(i in 1:length(proteinIDs)){ 

  #print(i) 

  prot.pos.list[[proteinIDs[i]]]<-

unique(unlist(object1@modposition.protein[which(substr(start=4,stop=9,object1@dat

a$protein)==proteinIDs[i])])) 

 

 #unique(unlist(object1@modposition.protein[which(substr(start=4,stop=9,ob

ject1@data$protein)=="Q96T23")])) 

   

  #prot.pos.list[["Q96T23"]] 

  #print(proteinIDs[i]) 

  #print(prot.pos.list[[proteinIDs[i]]]) 

  } 

 length(unlist(prot.pos.list)) 
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 prot.lines.list<-list() 

 #### gives the lines in object@data that correspond to each protein 

 for(i in 1:length(proteinIDs)){ 

  #print(i) 

  prot.lines.list[[proteinIDs[i]]]<-

which(substr(start=4,stop=9,as.character(object1@data$protein))==proteinIDs[i]) 

  } 

 #range(unlist(prot.lines.list)) 

 position.index.list<-list() 

 #### assign each unique position an index  

 ### loop through the proteins 

 index=1 

 index2=-1 

 for(i in 1:length(proteinIDs)){ 

  print(i) 

  temp.positions<-

prot.pos.list[[which(names(prot.pos.list)==proteinIDs[i])]] 

  temp.prot.lines<-

which(substr(object1@data$protein,start=4,stop=9)==proteinIDs[i])  ### gives row 

numbers of of mods in object@data 

  protein.position.list<-object1@modposition.protein[temp.prot.lines]  

### gives the values of mod positions as vector 

  ### set lines that have multiple mods to 0 
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  for(j in 1:length(protein.position.list)){ 

   #print(length(protein.position.list[[j]])) 

   if(length(protein.position.list[[j]])>1){ 

    protein.position.list[[j]]<-0 

    } 

   } 

  unique.positions<-unique(unlist(protein.position.list)) 

  unique.positions.l<-length(unique.positions) 

  ### loop through the positions and assign those each an index number 

  for(x in unique.positions){ 

   #print(x) 

   ### if x!=0, do give an index 

   if(x!=0){ 

    temprowlen<-

length(temp.prot.lines[which(protein.position.list==x)]) 

    for(j in 1:temprowlen){ 

     #print(j) 

    

 position.index.list[[temp.prot.lines[which(protein.position.list==x)][j]]]<-

index 

     } 

    index=index+1 

    } 
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   ###  if x==0 (peptide with two mods), assign negative index 

   if(x==0){ 

    temprowlen<-

length(temp.prot.lines[which(protein.position.list==x)]) 

    for(j in 1:temprowlen){ 

     #print(j) 

    

 position.index.list[[temp.prot.lines[which(protein.position.list==x)][j]]]<-

index2 

     } 

    index2=index2-1 

    } 

   } 

  } 

 object1@modsummary<-prot.pos.list 

 object1@modindex<-position.index.list 

 numuniq<-length(unique(unlist(object1@modindex))) 

 uniq.indexes<-unique(unlist(object1@modindex)) 

 unique.position.singleline<-rep(0,times=numuniq) 

 unique.position.singleweight<-rep(0,times=numuniq) 

 #targetIDs@data$weighted.ratios 

 i=1 

 for(x in uniq.indexes){ 
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  print(x) 

  unique.position.singleline[i]<-which(object1@modindex==x)[1] 

  i=i+1 

  #unique.position.singleweight[i]<-

log(targetIDs@data[which(object1@modindex==i)[1],"weighted.ratios"],base=2) 

  } 

 uniquelines<-object1@data[unique.position.singleline,] 

 object1@data<-uniquelines 

 if(writetsv==TRUE){ 

 

 write.table(uniquelines,file=name,quote=FALSE,sep="\t",row.names=F) 

  } 

 return(object1) 

 } 

filterAll(object=uuh,name="uuh2.tsv")->uuh.filt 

 

 The filterfromR_short.R script generates an object and if you have set the 

writetsv to T it will also write a tsv output file. This object is then compared with data 

you have obtained from published source (which you also have to read into R objects). 

To make these comparisons, you first need to create objects in R from the published 

data. There are several small scripts to do this, they are called “readNature.R”, 

readPSP.R. Be sure to specify the directory where the data sets are found when you 

run these scripts. Then the sites are compared using the script 
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“comparetables.R”.Scroll down to the bottom of comparetables.R to enter the name of 

object 1 and table (which needs to be in the format @data), which were output from 

filterfromall.R. Also name your output .tsv file.The output from this script is the full 

data table with extra columns to the right that have a + if the site was found in any of 

the compared datasets.  Read the file nature.txt into an object in R using the function 

“readNature.R,” which contains the following text: 

 

read.nature=function(input=files[1],type="nature",any=F,studies=T){ 

 object<-new("pepsum") 

 object@filetype=type 

 object@data<-read.delim(input,header=T) 

 if(any){ 

  protacc<-levels(object@data[,1]) 

  for(x in protacc){ 

   object@modsummary[[x]]<-

object@data[which(object@data[,1]==x),2] 

   } 

  } 

 if(studies){ 

  protacc<-levels(object@data[,1]) 

  study.lines<-

object@data[object@data[,"Count....Studies.SUMO.2.Modified."]>=1,] 

  study.lines.l<-length(study.lines[,1]) 
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  protacc<-levels(as.factor(as.character(study.lines[,1]))) 

  for(x in protacc){ 

   object@modsummary[[x]]<-

object@data[which(object@data[,1]==x),2] 

   } 

  } 

 return(object) 

 } 

#object<-nature 

read.nature(input=files[6])->nature 

#nature@data[1,]  

 

 Then use the above function to actually read the nature tab-delimited text file 

with the following command: 

read.nature(input=files[CHANGE THIS NUMBER TO THE NATURE.TXT FILE 

NUMBER])->nature 

This creates an object called nature that then you can use the comparetables script to 

compare to. Before you do this, you also want to create the PSP object so you can run 

all the comparisons at once. Use the readPSP.R and the four psp files (sumo, methyl, 

acetyl, Ub) to input all the data before running the comparetables.R.  The 

“comparetables.R” script will generate a .tsv table that has extra columns for each of 

the dataset (SUMO, methyl, acetyl, Ub) and will enter a + whenever the site has been 

identified in any of these other data sets.Here is the comparetables.R script: 
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compare.tables=function(object1, 

 table, 

 natureobject=nature, 

 ub=ub.psp, 

 sumo=sumo.psp, 

 methyl=methyl.psp, 

 acetyl=acetyl.psp, 

 write.table=T, 

 write.extra.tables=F, 

 name="test.tsv") 

 { 

 modsummary1<-object1@modsummary 

 modsummary2<-natureobject@modsummary 

 sumomods<-sumo.psp@modsummary 

 ubmods<-ub.psp@modsummary 

 methylmods<-methyl.psp@modsummary 

 acetylmods<-acetyl.psp@modsummary 

 #names(proteins1)<-proteins1 

 proteins1<-names(modsummary1) 

 proteins2<-names(modsummary2) 

 proteins3<-substr(start=4,stop=9,table[,"protein"]) 

 sumo.proteins<-names(sumomods) 
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 ub.proteins<-names(ubmods) 

 acetyl.proteins<-names(acetylmods) 

 methyl.proteins<-names(methylmods) 

 #proteins1<-substr(start=4,stop=9,proteins1) 

 #proteins2<-substr(start=4,stop=9,proteins2) 

 #names(modsummary1)<-proteins1 

 #names(modsummary2)<-proteins2 

 overlap.list<-list() 

 nooverlap.list<-list() 

 sumo.overlap<-list() 

 ub.overlap<-list() 

 count=0 

 for(x in proteins1){ 

  print(x) 

  temppos<-which(x==proteins2) 

  print(temppos) 

  if(length(temppos)>0){ 

   #modsummary1[[x]] 

   #length(modsummary1[[x]]) 

   #length(modsummary2[[x]]) 

  

 if(length(na.omit(modsummary2[[x]][match(modsummary1[[x]],modsumma

ry2[[x]])]))>0){ 
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    overlap.list[[x]]<-

na.omit(modsummary2[[x]][match(modsummary1[[x]],modsummary2[[x]])]) 

    } 

   #tempmatch<-match(modsummary1[[x]],modsummary2[[x]]) 

   #x<-"Q13547" 

  

 if(length(na.omit(modsummary2[[x]][match(modsummary1[[x]],modsumma

ry2[[x]])]))==0){ 

    nooverlap.list[[x]]<-modsummary1[[x]] 

    #names(x) 

    } 

   #print(tempmatch) 

   count=count+1 

   } 

  } 

 newcol<-rep("",times=length(object1@data[,1])) 

 #### part to add a column with our study and insert pluses 

 overlap.l<-length(overlap.list) 

 for(j in 1:length(overlap.list)){ 

  tempprotname<-names(overlap.list[j]) 

  #unlist(x) 

  print(j) 

  templines<-which(natureobject@data[,"Protein"]==tempprotname) 
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  tempsites<-unlist(overlap.list[j]) 

  for(i in 1:length(tempsites)){ 

  

 newcol[templines[which(natureobject@data[templines,2]==tempsites[i])]]<-

"+" 

  

 print(newcol[templines[which(natureobject@data[templines,2]==tempsites[i

])]]) 

   } 

  } 

  

 #### part to add a column into our data table for presence in Nature 

 tableproteins<-substr(start=4,stop=9,table[,"protein"]) 

 naturecol<-rep("",times=length(table[,1])) 

 overlap.l<-length(overlap.list) 

 table[1,] 

 for(j in 1:length(overlap.list)){ 

  tempprotname<-names(overlap.list[j]) 

  #unlist(x) 

  print(j) 

  templines<-which(tableproteins==tempprotname) 

  tempsites<-unlist(overlap.list[j]) 

  for(i in 1:length(tempsites)){ 
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 naturecol[templines[which(table[templines,1]==tempsites[i])]]<-"+" 

  

 print(naturecol[templines[which(natureobject@data[templines,2]==tempsites

[i])]]) 

   } 

  } 

 ### find what positions from the table overlap with the sumo psp sites and 

return list 

 count=0 

 sumocol<-rep("",times=length(table[,1])) 

 for(x in tableproteins){ 

  print(x) 

  pos.in.sumo.modsummary<-which(x==sumo.proteins) 

  pos.in.tableproteins<-which(x==tableproteins) 

  print(temppos) 

  tableproteins.sites<-table[pos.in.tableproteins,1] 

  ### if the protein accession appears in the SUMO proteins 

  ### check if the table 

  if(length(pos.in.sumo.modsummary)>0){ 

   #modsummary1[[x]] 

   #length(modsummary1[[x]]) 

   #length(modsummary2[[x]]) 
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 if(length(na.omit(pos.in.tableproteins[match(tableproteins.sites,sumomods[[x

]])]))>0){ 

    ### this give the positions that should be + in the  

   

 sumocol[na.omit(pos.in.tableproteins[match(tableproteins.sites,sumomods[[x

]])])]<-"+" 

    } 

   #tempmatch<-match(modsummary1[[x]],modsummary2[[x]]) 

   #x<-"Q13547" 

   #print(tempmatch) 

   count=count+1 

   } 

  } 

 count=0 

 ubcol<-rep("",times=length(table[,1])) 

 for(x in tableproteins){ 

  print(x) 

  pos.in.ub.modsummary<-which(x==ub.proteins) 

  pos.in.tableproteins<-which(x==tableproteins) 

  print(temppos) 

  tableproteins.sites<-table[pos.in.tableproteins,1] 

  ### if the protein accession appears in the SUMO proteins 
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  ### check if the table 

  if(length(pos.in.ub.modsummary)>0){ 

   #modsummary1[[x]] 

   #length(modsummary1[[x]]) 

   #length(modsummary2[[x]]) 

  

 if(length(na.omit(pos.in.tableproteins[match(tableproteins.sites,ubmods[[x]])

]))>0){ 

    ### this give the positions that should be + in the  

   

 ubcol[na.omit(pos.in.tableproteins[match(tableproteins.sites,ubmods[[x]])])]

<-"+" 

    } 

   #tempmatch<-match(modsummary1[[x]],modsummary2[[x]]) 

   #x<-"Q13547" 

   #print(tempmatch) 

   count=count+1 

   } 

  } 

 

 count=0 

 methyl.col<-rep("",times=length(table[,1])) 

 for(x in tableproteins){ 



 203 

  print(x) 

  pos.in.methyl.modsummary<-which(x==methyl.proteins) 

  pos.in.tableproteins<-which(x==tableproteins) 

  print(temppos) 

  tableproteins.sites<-table[pos.in.tableproteins,1] 

  ### if the protein accession appears in the SUMO proteins 

  ### check if the table 

  if(length(pos.in.methyl.modsummary)>0){ 

   #modsummary1[[x]] 

   #length(modsummary1[[x]]) 

   #length(modsummary2[[x]]) 

  

 if(length(na.omit(pos.in.tableproteins[match(tableproteins.sites,methylmods[

[x]])]))>0){ 

    ### this give the positions that should be + in the  

   

 methyl.col[na.omit(pos.in.tableproteins[match(tableproteins.sites,methylmod

s[[x]])])]<-"+" 

    } 

   #tempmatch<-match(modsummary1[[x]],modsummary2[[x]]) 

   #x<-"Q13547" 

   #print(tempmatch) 

   count=count+1 
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   } 

  } 

 count=0 

 acetyl.col<-rep("",times=length(table[,1])) 

 for(x in tableproteins){ 

  print(x) 

  pos.in.acetyl.modsummary<-which(x==acetyl.proteins) 

  pos.in.tableproteins<-which(x==tableproteins) 

  print(temppos) 

  tableproteins.sites<-table[pos.in.tableproteins,1] 

  ### if the protein accession appears in the SUMO proteins 

  ### check if the table 

  if(length(pos.in.acetyl.modsummary)>0){ 

  

 if(length(na.omit(pos.in.tableproteins[match(tableproteins.sites,acetylmods[[

x]])]))>0){ 

    ### this give the positions that should be + in the  

   

 acetyl.col[na.omit(pos.in.tableproteins[match(tableproteins.sites,acetylmods[

[x]])])]<-"+" 

    } 

   count=count+1 

   } 
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  } 

 output.table<-

cbind(table,in.nature=naturecol,in.PSP.sumo=sumocol,in.PSP.ub=ubcol,in.PSP.acetyl

=acetyl.col) 

 alllist<-paste(substr(table[,"protein"],start=4,stop=9),table[,1],sep="_") 

 naturelist<-

paste(substr(table[naturecol=="+","protein"],start=4,stop=9),table[naturecol=="+",1],s

ep="_") 

 sumolist<-

paste(substr(table[sumocol=="+","protein"],start=4,stop=9),table[sumocol=="+",1],se

p="_") 

 ublist<-

paste(substr(table[ubcol=="+","protein"],start=4,stop=9),table[ubcol=="+",1],sep="_"

) 

 acetyllist<-

paste(substr(table[acetyl.col=="+","protein"],start=4,stop=9),table[acetyl.col=="+",1],

sep="_") 

 if(write.extra.tables==T){  

 

 write.table(naturelist,file="natlist.tsv",quote=F,sep="\t",col.names=T,row.na

mes=F) 
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 write.table(sumolist,file="sumo.tsv",quote=F,sep="\t",col.names=T,row.nam

es=F) 

 

 write.table(ublist,file="ub.tsv",quote=F,sep="\t",col.names=T,row.names=F) 

 

 write.table(acetyllist,file="acetyl.tsv",quote=F,sep="\t",col.names=T,row.na

mes=F) 

 

 write.table(alllist,file="alllist.tsv",quote=F,sep="\t",col.names=T,row.names

=F) 

  } 

 if(write.table==T){ 

 

 write.table(output.table,file=name,quote=F,sep="\t",col.names=T,row.names

=F) 

  } 

 return(output.table) 

 } 

test<-compare.tables(object1=uuh.filt, 

 table=uuh.filt@data, 

 natureobject=nature, 

 ub=ub.psp, 
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 sumo=sumo.psp, 

 methyl=methyl.psp, 

 acetyl=acetyl.psp, 

 write.table=T, 

 write.extra.tables=F, 

 name="uuh_comparetables.tsv") 

 

3. Extract sequence windows for motif analysis 

 Motifs can next be extracted using the commands in the file “getmotif.R”, 

which uses the object you created from the filteredfromall as well. Scroll down to the 

bottom to specify which object (filename.filt) generated from the filtered from all 

script you want to run the Motif analysis on. Also specify the location of the fasta 

file.Here is the getMotif.R script: 

 

#fasta="C:/MSGFplus/database/110712_human.cc.fasta" 

#object<-mgpl.ave 

getMotif=function(object, 

 fasta="C:/MSGFplus/database/110712_human.cc.fasta", 

 size=10) 

 { 

 datamat<-object@data 

 require(seqinr)  

 require(Biostrings) 
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 fastaobj<-read.fasta(fasta,seqtype="AA",as.string=TRUE) 

 fastaacc<-substr(names(fastaobj),start=4,stop=9) 

 #proteins<-substr(as.character(datamat[,"protein"]),start=4,stop=9) 

 proteins<-as.character(datamat[,"protein"]) 

 uniqproteins<-substr(start=4,stop=9,proteins) 

 allprotacc<-substr(as.character(datamat[,"protein"]),start=4,stop=9) 

 prot.l<-length(proteins) 

 hydrophobic<-c("F", "M", "P", "C", "L", "I", "W", "A", "V", "Q", "Y") 

 #### 

 ### retrieve the previous 15 residues and post 15 residues 

 ### fix to add blanks for missing n-term or c-term values 

 sites.l<-length(unlist(object@modsummary)) 

 window.vec<-rep(0,times=sites.l) 

 window.list<-list() 

 significant.vec<-rep(0,times=sites.l) 

 dbprotnames<-names(fastaobj) 

 targetprot.names<-names(object@modsummary) 

 #targetprot.names<-substr(start=4,stop=9,targetprot.names) 

 targetprot.l<-length(targetprot.names) 

  

 j=1 

 for(i in 1:targetprot.l){ 

  print(j) 
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  positions<-object@modsummary[[i]]+size 

  tempprotname<-targetprot.names[i] 

  seq<-fastaobj[[which(tempprotname==fastaacc)]][1] 

  #### add "-" to each end of the sequence based on the max motif size 

  seq<-paste(paste(rep("-",times=size),collapse=""),seq,paste(rep("-

",times=size),collapse=""),sep="") 

  seq.l<-nchar(seq) 

  for(x in positions){ 

   window.vec[j]<-substr(seq,start=x-size,stop=x+size) 

   if(nchar(window.vec[j])!=((size*2)+1)){print(i)} 

   j=j+1 

   #print(x) 

   } 

  } 

 filtered<-unique(window.vec) 

 filtered.l<-length(window.vec) 

 de<-c("D","E") 

 motifvec<-rep(0,times=filtered.l) 

 change.vec<-rep(0,times=filtered.l) 

 for(i in 1:filtered.l){ 

 ### assign 1 for known normal , 2 for inverted, 0 for other 

  nextAA<-substr(filtered[i],start=size+2,stop=size+2) 

  prevAA<-substr(filtered[i],start=size,stop=size) 
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  next.test<-which(hydrophobic==nextAA) 

  prev.test<-which(hydrophobic==prevAA) 

  filter 

  if(length(next.test)>0){ 

  ### check number 4 for D/E 

   if(length(which(substr(filtered[i],start=size-1,stop=size-

1)==de)>=1)>0){ 

    print("inverted") 

    motifvec[i]<-2 

    } 

   } 

  if(length(prev.test)>0){ 

   ### check number 8 for D/E 

  

 if(length(which(substr(filtered[i],start=size+3,stop=size+3)==de)>=1)>0){ 

    print("normal") 

    motifvec[i]<-1 

    } 

   } 

  } 

   

 print("number of normal") 

 print(length(which(motifvec==1))) 
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 print("number of inverted") 

 print(length(which(motifvec==2))) 

 print("number of new") 

 print(length(which(motifvec==0))) 

 na.omit(unique(window.vec[which(motifvec==1)])) 

 na.omit(unique(window.vec[which(motifvec==2)])) 

 na.omit(unique(window.vec[which(motifvec==0)])) 

 newmotif<-na.omit(unique(filtered[which(motifvec==0)])) 

 write(newmotif,file="newmotiflines.tsv")  

 generalmotif<-na.omit(unique(filtered[which(motifvec==1)])) 

 write(generalmotif,file="generalmotiflines.tsv")  

 invertedmotif<-na.omit(unique(filtered[which(motifvec==2)])) 

 write(invertedmotif,file="invertedmotiflines.tsv")  

 allmotif<-na.omit(unique(filtered)) 

 write(allmotif,file="allmotiflines.tsv")  

  

 } 

getMotif(object=uuh.filt,fasta="F:/MSGFplus/database/110712_human.cc.fasta") 

 

“Getmotif.R” will output four.tsv files with arbitrary-size sequence windows 

surrounding the modification site.  These are the allmotif lines, the general motif lines, 

the inverted motif lines and the new motif lines. These sequence windows are used as 

input for IceLogo analysis.Open the ice logo program from the Downloads folder. 
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Open one of teh output.tsv files and click on the snowflake in the ice logo program 

and paste the text into the positive set window. In the right negative set window, 

choose human data and then click “make logo”. Click the tool icon at the bottom to 

make the start at -10 and you can also get the heat map. 

 Several edited versions of each script are included in the github repositories 

that have slight variations in functionality.  Each file has a header describing the 

variations in their functionality.   




