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ABSTRACT 

Heating hot water distribution systems are typically used in commercial buildings to 
condition spaces to provide occupant thermal comfort. However, recent research shows 
significant distribution losses within these systems that drive down the overall hot water plant 
efficiency. This research focuses on detecting passing valves in reheat coils found in variable air 
volume (VAV) terminal units to reduce distribution losses. A passing valve allows hot water 
flow when the actuator on the valve is commanded to be closed. The fluid causes unintentional 
heating or cooling to occur, causing comfort and control issues, and wasting energy. We 
developed the passing valve detection algorithm using a framework based on the Brick schema 
and Mortar platform to ensure that the application is portable and can scale to many buildings. 
We applied the same application to analyze 1,335 VAV reheat terminal units in 20 buildings. 
The diversity found in these large datasets increases confidence that any building with VAV 
reheat terminal units with the required sensors and Brick data model can run our open-source 
algorithm with little or no modification. In aggregate, 5% of VAV units analyzed were 
categorized as having a sensor fault, 14% with potential passing valve fault, and 81% with no 
faults detected. However, there is a significant variation in the proportion of VAV units with a 
passing valve detected (1% to 83%) of each building’s analyzed units. 

Introduction 

Hot water distribution systems with natural gas-fired boilers as the heating energy source 
are widely used in heating, ventilation, and air-conditioning (HVAC) systems for large 
commercial buildings (EIA 2022). The hot water distribution system makes use of valves to 
control the flow of hot water to centralized (e.g. air handling units) and distributed (e.g. variable 
air volume (VAV) terminal units) HVAC equipment. However, recent research has shown that 
hydronic heating systems may have substantial distribution losses and other inefficiencies that 
are not accounted for in current practice (Raftery et al. 2018). Several pathways exist where 
distribution losses can occur but, in this research, we focus on identifying passing valves in VAV 
reheat terminal units using open-source software that can scale to a large number of 
heterogenous buildings with little or no modifications to the developed software.  

A passing valve allows hot water to flow when it is expected to be closed. It occurs when 
the valve seal has failed due to repeated stress forces, or due to an old and brittle seal, or due to 
fouling or a blockage. It can also occur in an automated valve when the valve is stuck due to 
fouling, a failed motor, faulty internal equipment, or loss of communication with the building 



management system. In some cases, a valve may also be manually overridden to a fixed position 
for the purposes of testing or to resolve a temporary comfort issue, which is then forgotten and 
left that way. Passing valve failures can be long-term as in the example of a failed valve seal or 
short-term when valve sticks on occasion or intermittently loses communication with its control 
system. Passing valves in HVAC systems are a common fault that goes unnoticed due to 
feedback masking and compensatory action of other downstream equipment (Salsbury and 
Diamond 2001; Najafi 2010). Identifying passing valves may be labor intensive where facility 
personnel must inspect valves visually or by using specialized tools to perform valve diagnostics 
using acoustical measurements (Kaewwaewnoi, Prateepasen, and Kaewtrakulpong 2010), 
infrared thermography (Balaras and Argiriou 2002; Zhao et al. 2021), or manual review of the 
time-series data that is acquired the existing building automation system sensors. The alternative 
for passing valve detection is to use a data-driven approach. 

The operation of buildings increasingly relies on a network of sensors and Internet-of-
Things (IoT) devices that produce unprecedented amounts of data. However, these data typically 
go unused beyond the operation of the building. Consequently, there are missed opportunities 
from underutilizing this resource such as energy consumption, cost, and control optimizations, 
predictive maintenance, visualization and reporting, and fault detection and diagnostics. These 
missed opportunities may cost a building 5%-40% in energy savings (Ahmed et al. 2010; Lin, 
Kramer, and Granderson 2020). Some of the barriers identified that hinder the widespread use of 
advanced analytics and controls include proprietary equipment and building management 
systems, unique naming convention of building assets and data points, and the inherent 
uniqueness of buildings and their systems (Ahmed et al. 2010; Fierro 2021). All these barriers 
contribute to the lack of interoperability and portability of software tools that enable the use of 
all these advanced features as standard practice. In other words, it is typical that advanced 
analytic implementations for buildings become unique deployments specific to a building. 

Application development 

Background 

We developed our passing valve detection application using a framework based on Brick 
and Mortar to ensure that the application is portable and can be applied to many buildings. The 
prerequisites to run the application are a Brick data model of a portion of a building containing 
VAV reheat terminal units, and data from at least three data streams. The required sensors are an 
upstream and downstream air temperature sensor of the reheat coil. The other data stream is the 
valve position from either a sensor or a command. The upstream temperature sensor here is 
typically the supply air temperature sensor on the air handling unit (AHU). The downstream 
temperature is the leaving air temperature from the VAV unit also known as the VAV supply or 
discharge air temperature. The relationship between which AHU in a building serves which 
VAV box is automatically extracted from the Brick data model of that building. 

A Brick model is a semantic metadata model structured using the Brick ontology which 
provides standardized descriptions of the physical, logical, and virtual assets found in buildings 
and formal definitions to establish relationships between the assets (Balaji et al. 2016). The Brick 
schema organizes classes into a hierarchy with three root classes: Equipment, Point, and 
Location. The definitions of subclasses from these root classes become more specific further 
down the class hierarchy. For example, Equipment has subclasses HVAC, Lighting, Electrical 
while each of these has its own subclasses such as Air Handling Unit and Boiler for HVAC and 



so on. Eventually, we can identify a class in the hierarchy that is specific enough to assign to a 
building’s asset and associate properties to it. Then we can take two classes and associate them 
by assigning a formal Brick relationship between them. Figure 1 shows how we use the 
relationships hasPoint, hasPart, and feeds for a Brick data model of a VAV with reheat terminal 
unit. 

 
Figure 1: Left) schematic of a variable air volume (VAV) with reheat terminal unit and right) a Brick data 
model of the VAV terminal unit. 

New algorithms that improve building performance are constantly being developed but 
are inconsistently evaluated, and it is often the case that an algorithm is tested using only one 
building (Miller, Nagy, and Schlueter 2018; Miller 2019). Thus, there is a lack of understanding 
of an algorithm's generalizability or how it might perform on different buildings. Mortar 
addresses this issue by providing an open testbed and platform for developing and evaluating 
algorithms for the built environment (Fierro et al. 2020). It contains timeseries data and 
corresponding Brick models for over 100 buildings. The large number of buildings not only 
provides variety in the type, location, design, equipment, occupant behavior, and operational 
strategies found in those buildings but also variety in the approach that various Brick modelers 
took to build the buildings’ data model. These variations in the data models allowed us to 
generalize programmatic queries that retrieve the necessary sensor data. Brick allows us to 
retrieve data by its purpose, behavior, and context instead of using the non-standard naming 
conventions assigned by a particular building management system vendor. Creating a 
generalized query can be a challenge but research to automatically generalize them is underway 
(Bennani et al. 2021). Thus, Mortar was a critical component for our application development, 
where we tested the generalizability and impact of our application. 

Procedure to detect passing valves 

The following sections describe the cleaning, preprocessing, and analysis procedures to 
detect passing valves in VAV reheat terminal units using the building management system data. 
The minimum data streams required for this application to run are the supply air temperature 
from both the AHU and the VAV terminal unit and the VAV hot water valve position. If an air 
flow sensor is available for the VAV unit, then the application will use it to increase the 
reliability for filtering data when the unit is in operation. The air flow rate measurements will 
reduce false positives in the application’s detection of passing valves by letting that application 
know that air temperature sensors are measuring moving air and not static air that might be at 
room temperature. 

Data cleaning and preprocessing. The application starts by reading the building’s Brick data 
model and applying the predefined programmatic query to identify the required and optional data 



streams. The data is downloaded from its source if the query can find the required data stream 
classes within the Brick model. We applied the application to the Mortar database and two other 
site datasets. Most of the data streams in the datasets are at 15-minute intervals or less and have 
not undergone a cleaning process. We first ensure that each data stream from a VAV terminal is 
at the same time interval by downsampling each stream to the largest time frequency (rounded to 
the nearest five minutes) found from all streams. Then we perform several checks to confirm that 
all required data streams are available, for each timestamp there is data available from all 
required data streams, and the sequence of timestamps is continuous for proper analysis. We flag 
instances when there are missing timestamps in the data which can affect the data analysis in 
subsequent steps e.g., determination of transient versus steady-state conditions. 

Data analysis. The first analysis we performed on each VAV unit dataset was to separate the 
transient response of the VAV unit from the steady-state response. We located all valve 
switchovers from open to closed and vice versa. For each open to closed switchover, we assumed 
steady-steady conditions after 12 minutes of the valve closing. The time threshold is based on 
Raftery et al. (2018) calculations that showed that, in a typical VAV box application, 
approximately this time frame is sufficient to dissipate the remaining heat in the hot water coil 
after the valve closes.  

Next, we verify that the sensor measurements are not stuck at a constant value, have 
reasonable variance, and not at extreme values. Once sensors pass these checks, we use the air 
flow sensor, if available, to determine when the VAV unit is in operation. Air flow rates can vary 
widely between individual VAV units based on the zone they supply. In addition, non-ideal air 
flow inlet conditions can exist where the air flow rate measurement accuracy is affected (Liu, 
Wen, and Waring 2014). Thus, we cannot use a single air flow rate threshold value. Instead, we 
use kernel density estimation (KDE) to determine the probability density function of air flow 
rates for each VAV terminal unit. This process creates a multimodal distribution as shown in 
Figure 2 where we can infer the no air flow condition (first peak) and typical operation which is 
most likely at the minimum air flow rate condition (second peak). Knowing the location of the 
first peak and the first trough gives us a range to select a reasonable air flow rate to consider the 
unit in operating mode. We arbitrarily selected 40% of the range and added it to the first peak to 
calculate the minimum air flow rate cutoff. Users may adjust this “accuracy parameter” 
percentage depending on their certainty of the air flow measurement. If air flow measurements 
are not available, we use typical building hours (6:00 to 18:00) on weekdays to filter for VAV 
unit operation data. 

Next, we calculated an initial median temperature difference between the upstream and 
downstream temperatures of the VAV reheat coil when the valve is closed. We only used data 
that is in steady-state and above the minimum air flow rate cutoff or within typical building 
hours which we refer to as the operational dataset. We then determined a threshold, defined as 
the minimum of either two times the initial median temperature difference or a predefined value 
of 10 °F, to filter out probable passing valve operation. That is, if the temperature difference for a 
closed valve is above the threshold, then we would consider it probable passing valve operation. 
We used the remaining typical closed valve operation points to update the median temperature 
difference. We then used a four-parameter sigmoid function to model the relation between 
temperature difference and valve operation. We assumed that the updated median temperature 
difference to be the lower plateau and the 95th percentile of the measured temperature differences 
in the VAV unit to be the upper plateau of the sigmoid function. We used non-linear least 



squares as implemented in the SciPy Python package optimization modules to find the slope and 
the center of the sigmoid function (Virtanen et al. 2020). 

 

 
Figure 2: Temperature difference between the upstream and downstream air temperature of VAV reheat coil 
versus its air flow rate when reheat valve is open (green) and closed (purple). The solid blue line is the kernel 
density estimation (KDE) with peaks (red) and troughs (orange) highlighted. The dashed gray line indicates the 
calculated minimum air flow rate to consider the VAV in operating mode. 

The model allows us to refine the temperature difference threshold at which we would 
consider passing valve operation. We define the refined threshold at the point in the model where 
the bottom plateau transitions into the linear portion of the sigmoid function i.e., threshold 
located in the knee of the first bend. Thus, if the temperature difference in the operational dataset 
when the valve is closed exceeds this threshold for four consecutive hours, then we consider it a 
long-term passing valve event. If the threshold is exceeded for one hour, it is a short-term 
passing valve event. There can be multiple fault events in each VAV unit dataset. We would 
need to detect at least two long-term passing valve events to categorize the VAV unit as having a 
passing valve fault or if the total time of fault operation exceeds 5% of the total VAV dataset 
time period. In the case of short-term events, we would categorize it as passing valve fault 
operation if the 5% time exceedance threshold is met. We arbitrarily selected 5% as a reasonable 
starting percentage but more research is needed to evaluate the optimal value on this parameter 
and others used in the application. As building operators typically have limited resources for 
evaluating and addressing faults, the most viable approach would be to rank the faults in terms of 
both probability of a true positive (i.e., a ‘real’ passing valve), the amount of time the fault 
occurs in the dataset, and the magnitude of the fault (a high temperature difference on a larger 
airflow matters more). With this information, the building operators can easily prioritize and 
address the most impactful faults first. For facilities teams with multiple buildings, the fault data 
could also be prioritized based on aggregate faults at the whole building level, which would 
allow them to address the most impactful buildings first, instead of zones, and may be a more 
efficient use of resources.  

Results 

We analyzed three datasets that contain a total of 20 buildings and 1,335 VAV reheat 
terminal units. Most of the data come from buildings in the Mortar database and the total number 
of VAV units only includes units with the minimum amount of data streams for analysis. We 
selected the timeframe for the Mortar database to range from January through June 2018, 
October through November 2021 for the ‘bear’ dataset, and May through November 2021 for the 



‘lion’ dataset. Table 1 contains summary statistics for each building analyzed using the detection 
algorithm described above. In aggregate, the algorithm categorized 5% of VAV units as having a 
sensor fault, 14% with a potential passing valve fault, and 81% with no faults detected. However, 
when looking at individual buildings with 25 VAV units analyzed or more, the variation in 
passing valve faults detected has a large range from 1% to 83% of the total building’s units 
analyzed. Furthermore, the median temperature rise with a closed valve as air is distributed from 
the AHU’s supply air temperature sensor to the VAV sensor is 1.8 °F for datasets with no faults 
detected and 6.1 °F for datasets where passing valve faults were detected. 

 
Table 1: Summary statistic of the analysis of VAV reheat terminal unit data streams. 

Site1 
VAV 
count 

Sensor 
fault 

Valve 
fault 

Temperature rise2 [° F] 
Median (IQR)  

Heat loss due 
to passing 

valve3 

No Fault Valve Fault  
brig 418 - 7% 1.6 (0.9-3.1) 13.6 (7.1-27.8) - 
hutch 134 - 4% 1.7 (1.3-2.4) 4.3 (2.9-8.2) - 
chem 117 2% 6% 2.4 (0.6-3.1) 8.8 (6.3-9.5) - 
lion1 109 - 10% 2.1 (1.4-2.8) 3.0 (2.5-4.1) 4% 
stor 102 - 1% 1.1 (0.7-1.7) 3.2 (3.2-3.2) - 
acad 87 - 15% 2.4 (1.1-6.7) 8.8 (8.2-9.8) 10% 
eps 70 - 9% 3.0 (1.3-3.7) 4.3 (3.6-4.6) 93% 
dh 57 - 42% 1.6 (1.2-2.0) 2.5 (1.9-2.9) 5% 
gha_ics 52 - 83% 4.0 (2.9-5.4) 4.9 (4.4-6.1) 47% 
arc 50 76% 20% 8.8 (8.7-8.8) 8.5 (8.2-8.9) 271% 
vm3a 35 6% 51% 1.7 (1.4-2.5) 8.0 (4.7-17.1) 554% 
bear1 29 - 7% 0.9 (0.2-1.5) 3.4 (3.3-3.4) 2% 
crus 24 - - 2.8 (1.4-3.6) - - 
wsrc 14 64% 36% - 7.4 (7.4-7.4) - 
mann 8 - 63% 3.5 (2.1-4.4) 6.5 (6.3-9.7) - 
artx 8 100% - - - - 
giedt 7 86% 14% - 16.3 (16.3-16.3) - 
bwfp 7 - 14% 1.4 (1.2-1.7) 13.3 (13.3-13.3) - 
junger 5 - - 1.0 (0.3-1.1) - - 
music 2 - 50% 3.0 (3.0-3.0) 9.3 (9.3-9.3) - 
All Datasets 1335 5% 14% 1.8 (1.0-3.0) 6.1 (3.7-9.3) 8% 
1. All sites except bear and lion come from the Mortar dataset. 
2. Median and interquartile range (IQR) of temperature rise between upstream and downstream air temperature 

sensors when the VAV reheat valve is commanded close. 
3. Heat loss is calculated for VAV terminal units where a passing valve was detected and all required data 

streams and air flow rate are available. The heat loss is presented as a fraction of total intentional reheat energy 
used by the VAV during the analysis period. 

The median long-term passing valve fault events detected were 6 and 10 for short-term 
passing valve fault events per VAV units where either event was detected. The median duration 
of these fault events is 355 and 128 minutes for long- and short-term events, respectively. These 



faults resulted in an average heat rate loss of 1,375 Btu/hr with a cumulative 14,400 kBtu of 
energy loss or 8% of the total intentional reheat energy used by all VAV units analyzed for the 
time period. We calculated the heat rate loss according to the modified heat balance equation 
found in Raftery et al. (2018). 

Figure 3 shows operational data examples from VAV units with various faults illustrated. 
It includes passing valve, sensor, and reversed valve faults. The dotted light blue line in Figures 
3 and 4 represents the revised median temperature difference when the valve is closed, dashed 
light red line represents the median temperature difference when passing valve fault operation 
(red dots) is detected with a closed valve, and dashed purple line represents the model developed 
for the specific VAV unit. The fault operation proportion is the proportion of passing valve fault 
time (red dots) to the total time period of the individual VAV unit dataset. A reversed valve fault 
is when the wiring or the control logic is reversed such that the command signal would close the 
valve instead of opening it. A closer inspection of the data with the sensor fault shown in Figure 
3 shows that the supply air sensor of the VAV unit is reporting a constant value of 74 °F. 
 

 
Figure 3: Operational data examples from VAV units with various faults. A), B) Passing valve fault, C) sensor 
fault, and D) reversed valve fault. A high median temperature difference when the valve is closed (red dots) is 
an indication for a potential passing valve. 

Figure 4 shows operational data examples from VAV units where no faults were 
detected. It also illustrates when the air flow rate and typical building hours were used to filter 
for the operation mode of the VAV unit. Using typical building hours to filter for operation mode 
seemed to work well. The typical building hours seem to capture a wide range of heating coil 
responses as the valve command varied. For VAV units with an air flow sensor available, the 
median minimum air flow rate threshold to consider a VAV in operating mode was 72 cubic feet 
per minute. 
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Figure 4: Operational data examples from a VAV unit with no fault detected and A), B) air flow rate used to 
filter operation mode and C), D) typical building hours used to filter operation mode. 

Discussion 

Correctly detecting small leakage rates in valves is typically more difficult than detecting 
medium and large rates (Ngo and Dexter 1999). In addition, the detection accuracy is affected 
when building management sensors have large uncertainty in their measurements, have drifted 
out of calibration, or the data collection system fails intermittently causing gaps in the datasets. 
We observed these issues in data as we performed the analysis. There were gaps in the analyzed 
datasets, we identified sensor faults that reported constant values, and we are unable to determine 
the uncertainty that exists in the measurements. We also do not have ground truth dataset that 
help with the application development. For these reasons, we chose to use conservative 
parameters in the application to reduce the probability of returning false positives. This includes 
the “accuracy parameter” for the air flow sensor measurement to determine when the VAV is in 
operation and assigning the passing valve temperature difference threshold in between the 
transition of the plateau and the linear portion of the sigmoid function model i.e., at the knee of 
the first bend. The temperature difference resulting from detecting a passing valve with our 
application would be the equivalent of opening the valve to a large percentage, around 20% as 
shown in Figure 4. Thus, the focus of using this application with the first iteration of parameters 
is to identify the most problematic VAV reheat terminal units. 

We envision this application to start as a minimum set of required sensors to do a 
minimum set of analysis. In this case, only the supply air temperature sensors from the AHU and 
VAV and the valve position are required so it can be applied to many buildings. However, we 
can easily extend the programmatic queries to include optional sensors and Brick easily enables 
these types of extensions. This is the path we chose for the air flow sensor. We were able to run 
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seven additional buildings and 802 VAV units through the application by not requiring the air 
flow sensor. VAV reheat systems typically have the AHU supply air temperature sensor, reheat 
valve position, and air flow sensors but there can be many reasons for the missing air flow 
sensors. For example, they are not included in the data model or data streams were not collected 
for various reasons. Though relatively rare, it is possible that some older buildings have pressure 
dependent VAV units that do not have an airflow sensor. The likely constraint on the application 
is the VAV supply air temperature sensor. 

We can further reduce the false positives by incorporating more information into the 
analysis. Just like we incorporated the optional air flow sensor, we can extend the application to 
include more optional sensors. For example, we can add data points from the hot water plant 
such as boiler and pump status and hot water supply temperature to improve the usable data for 
our analysis. That is, we can confirm that there is hot water flowing through the pipes by 
knowing if the boiler and pumps are turned on. As with the relationship between AHU and VAV 
units, this relationship (which hot water system serves which VAV units) could be extracted 
automatically from the Brick model of the building. We can also add in water flow rate 
measurements if the sensor is available. This will enable us to get more specific in calculating an 
expected temperature difference as the air passes through the water coil. We can also extend the 
possible faults that the application can detect such as failed closed actuators or blocked/fouled 
coils or valves. Brick enables an automatic selection of the level of analysis as sensors are or 
become available in the building and the completeness of its Brick data model in including the 
additional information. 

The application reports the magnitude in temperature rise for the passing valves and the 
average heat rate loss due to the fault. These metrics can be used to assess potential occupant 
thermal comfort issues, energy costs, and financial costs. Other metrics that faults in general 
need to be evaluated against include safety, environment impact, difficulty and cost of repair, 
and degradation rate (Katipamula and Brambley 2005). These evaluation metrics will help 
decision makers decide on the prioritization to correct the issue. Moreover, assessments need to 
be made on both the current situation of the fault and the potential effects of further degradation 
of the fault. 

Finally, we can use the same code to extend the application to analyze any valve that 
controls the flow of hot or chilled water in coils that transfer heat into an air stream. All that is 
required is to edit the programmatic Brick query to return the required data streams, which will 
need to be modified to identify all water coil valves and their corresponding upstream and 
downstream air temperature sensors. The application evaluated in this paper focused solely on 
VAV reheat terminal units because there were not a significant number of AHUs or other types 
of equipment in the datasets with all the required data streams. Moreover, we do not know how 
complete the Brick models are, and we are not familiar with all the buildings in the datasets. 
Thus, we do not know if something else is between the upstream and downstream air 
temperature sensors that might affect the analysis presented in this research. 

Conclusion and Future Work 

In this research we developed an open-source application to detect passing valves in 
variable air volume (VAV) reheat terminal units. We used a framework based on the Brick 
schema and Mortar platform to ensure that the application is portable and can scale to many 
buildings. In addition, the framework allows this application to be extended to increase the 
performance and functionality of the application. In this first iteration, the application detects 



sensor faults, reversed valve operation, and passing valve faults. We analyzed 1,335 VAV reheat 
terminal units in 20 buildings. The application categorized 5% of VAV units with a sensor fault, 
14% with a passing valve fault, and 81% with no faults. This data-driven approach makes use of 
the underutilized building management already present in many commercial buildings.  

We applied this application to historical data, but future work could focus on the 
applicability and performance of the detection application when implemented in real-time. The 
application can be part of a suite of predictive maintenance or fault detection and diagnostic tools 
to help facility managers keep their building’s performance at a high level. It can also be 
beneficial to apply the application during the commissioning process to quickly assess problems 
with VAV reheat terminal units that include sensor faults, reversed valve operation, and 
communication failures to the valve actuators. This application can easily be ported over and 
scaled to many buildings given that we developed it by taking advantage of the Brick schema 
and testing it using the variety in datasets found inside the Mortar database. 

Acknowledgment 

This work was supported by the US Department of Energy under grant DE-EE0008681, 
the California Energy Commission’s Public Interest Energy Research program (contract number 
PIR-19-013), and the Center for the Built Environment at University of California Berkeley. We 
like to thank Gabe Fierro for resolving issues that enabled us to download data from Mortar 
platform as he is in the process of finding it a new home. Likewise, we like to thank the 
anonymous donors that provided data from their buildings to develop and test our application. 

References 

Ahmed, A., J. Ploennigs, K. Menzel, and B. Cahill. 2010. “Multi-Dimensional Building 
Performance Data Management for Continuous Commissioning.” Advanced Engineering 
Informatics 24 (4): 466–75. Accessed July 27, 2011. 
https://doi.org/10.1016/j.aei.2010.06.007. 

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, et al. 2016. 
“Brick: Towards a Unified Metadata Schema For Buildings.” In Proceedings of the 3rd 
ACM International Conference on Systems for Energy-Efficient Built Environments, 41–
50. Palo Alto CA USA: ACM. Accessed August 18, 2020. 
https://doi.org/10.1145/2993422.2993577. 

Balaras, C. A., and A. A. Argiriou. 2002. “Infrared Thermography for Building Diagnostics.” 
Energy and Buildings, TOBUS - a European method and software for office building 
refurbishment, 34 (2): 171–83. Accessed January 24, 2022. 
https://doi.org/10.1016/S0378-7788(01)00105-0. 

Bennani, I. L., A. K. Prakash, M. Zafiris, L. Paul, C. D. Duarte Roa, P. Raftery, M. Pritoni, and 
G. Fierro. 2021. “Query Relaxation for Portable Brick-Based Applications,” 10. 

EIA. 2022. “Commercial Buildings Energy Consumption Survey (CBECS) Data.” Energy 
Information Administration, U.S. Department of Energy. Accessed January 21, 2022. 
https://www.eia.gov/consumption/commercial/data/2018/index.php?view=characteristics. 

Fierro, G. 2021. “Self-Adapting Software for Cyberphysical Systems.” Doctoral Dissertation, 
Berkeley, CA: University of California, Berkeley. 
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.pdf. 



Fierro, G., M. Pritoni, M. Abdelbaky, D. Lengyel, J. Leyden, A. Prakash, P. Gupta, et al. 2020. 
“Mortar: An Open Testbed for Portable Building Analytics.” ACM Transactions on 
Sensor Networks 16 (1): 1–31. Accessed August 19, 2020. 
https://doi.org/10.1145/3366375. 

Kaewwaewnoi, W., A. Prateepasen, and P. Kaewtrakulpong. 2010. “Investigation of the 
Relationship between Internal Fluid Leakage through a Valve and the Acoustic Emission 
Generated from the Leakage.” Measurement 43 (2): 274–82. Accessed January 24, 2022. 
https://doi.org/10.1016/j.measurement.2009.10.005. 

Katipamula, S., and M. R. Brambley. 2005. “Methods for Fault Detection, Diagnostics, and 
Prognostics for Building Systems-A Review, Part I.” HVAC&R Research 11 (1): 3–25. 
Accessed May 14, 2021. 
https://www.proquest.com/docview/213538381/citation/F735847C9F784CD9PQ/1. 

Lin, G., H. Kramer, and J. Granderson. 2020. “Building Fault Detection and Diagnostics: 
Achieved Savings, and Methods to Evaluate Algorithm Performance.” Building and 
Environment 168 (January): 106505. Accessed January 8, 2021. 
https://doi.org/10.1016/j.buildenv.2019.106505. 

Liu, R., J. Wen, and M. S. Waring. 2014. “Improving Airflow Measurement Accuracy in VAV 
Terminal Units Using Flow Conditioners.” Building and Environment 71 (January): 81–
94. Accessed March 8, 2022. https://doi.org/10.1016/j.buildenv.2013.09.015. 

Miller, C. 2019. “More Buildings Make More Generalizable Models—Benchmarking Prediction 
Methods on Open Electrical Meter Data.” Machine Learning and Knowledge Extraction 
1 (3): 974–93. Accessed October 27, 2021. https://doi.org/10.3390/make1030056. 

Miller, C., Z. Nagy, and A. Schlueter. 2018. “A Review of Unsupervised Statistical Learning and 
Visual Analytics Techniques Applied to Performance Analysis of Non-Residential 
Buildings.” Renewable and Sustainable Energy Reviews 81 (January): 1365–77. 
Accessed March 18, 2021. https://doi.org/10.1016/j.rser.2017.05.124. 

Najafi, M. 2010. “Fault Detection and Diagnosis in Building HVAC Systems.” Doctoral 
Dissertation, Berkeley, CA: University of California, Berkeley. 
https://digitalassets.lib.berkeley.edu/etd/ucb/text/Najafi_berkeley_0028E_10878.pdf. 

Ngo, D., and A. L. Dexter. 1999. “A Robust Model-Based Approach to Diagnosing Faults in 
Air-Handling Units.” ASHRAE Transactions 105: 1078. Accessed May 14, 2021. 
https://www.proquest.com/docview/192523807/citation/ECCE1A6C6DDC47C1PQ/1. 

Raftery, P., A. Geronazzo, H. Cheng, and G. Paliaga. 2018. “Quantifying Energy Losses in Hot 
Water Reheat Systems.” Energy and Buildings 179 (November): 183–99. Accessed 
November 14, 2018. https://doi.org/10.1016/j.enbuild.2018.09.020. 

Salsbury, T. I., and R. C. Diamond. 2001. “Fault Detection in HVAC Systems Using Model-
Based Feedforward Control.” Energy and Buildings, Special Issue: BUILDING 
SIMULATION’99, 33 (4): 403–15. Accessed May 13, 2021. 
https://doi.org/10.1016/S0378-7788(00)00122-5. 

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, 
et al. 2020. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” 
Nature Methods 17 (3): 261–72. Accessed March 8, 2022. 
https://doi.org/10.1038/s41592-019-0686-2. 

Zhao, X., Q. Zhang, X. Xu, Z. Shen, and B. Zhang. 2021. “A Novel Method Using Infrared 
Thermography for Hot Fluid Leakage Detection on Surfaces with Uneven Emissivities.” 



Insight - Non-Destructive Testing and Condition Monitoring 63 (5): 273–79. Accessed 
January 24, 2022. https://doi.org/10.1784/insi.2021.63.5.273. 
 


	Detecting Passing Valves at Scale Across Different Buildings and Systems: A Brick Enabled and Mortar Tested Application
	Carlos Duarte Roa1, Paul Raftery1, Rupam Singla2, Marco Pritoni3, Therese Peffer4
	1Center for the Built Environment, University of California; 2TRC; 3Lawrence Berkeley National Laboratory; 4California Institute for Energy and Environment

	Keywords
	Abstract
	Introduction
	Application development
	Background
	Procedure to detect passing valves
	Data cleaning and preprocessing. The application starts by reading the building’s Brick data model and applying the predefined programmatic query to identify the required and optional data streams. The data is downloaded from its source if the query c...
	Data analysis. The first analysis we performed on each VAV unit dataset was to separate the transient response of the VAV unit from the steady-state response. We located all valve switchovers from open to closed and vice versa. For each open to closed...


	Results
	Discussion
	Conclusion and Future Work
	Acknowledgment
	References



