
Lawrence Berkeley National Laboratory
LBL Publications

Title
A FAST VORTEX CODE FOR COMPUTING 2-D FLOW IN A BOX

Permalink
https://escholarship.org/uc/item/4xq866hz

Authors
Baden, S.B.
Puckett., E.G.

Publication Date
1988-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xq866hz
https://escholarship.org
http://www.cdlib.org/

.,
{ . ,.
l; -
•

LBL-25374 c-. ~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA R~_:w~~N~EE._

Physics Division JUL2 o 1988

LIBRt.:..RY AND
DOCUMENTS SECTION

Mathematics Department

To be presented at the First National Fluid Dynamics Conference,
Cincinnati, OH, July 24-28, 1988, and to be published
in the Proceedings

A Fast Vortex Code for Computing 2-D Flow in a Box

S.B. Baden and E.G. Puckett

May 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks. 1----......

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER·

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University· of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A FAST VORTEX CODE FOR COMPUTING 2-D FLOW IN A BOX

Scott B. Badent

Lawrence Berkeley Laboratory

Berkeley, California 94720

Elbridge Gerry Puckett*

Lawrence Livennore National Laboratory

Livennore, California 94550

ABSTRACT

We present a fast, accurate hybrid vortex method for computing incompressible, viscous

flow at large Reynolds numbers in a two-dimensional bounded domain. The random vortex

method is used to model the flow away from the boundary and the vortex sheet method is used to

model the flow near the boundary. Our implementation of these methods exploits the localized

nature of interactions among vortex elements in each of the respective regions of the domain. A

local corrections approximation is used to accelerate the velocity computation in the interior. It is

substantially faster than other methods of comparable accuracy and can economically handle tens

of thousands of vortex elements. We evaluate the method on the flow in a box due to a central

stationary vortex. The running time for this problem is roughly linear in the number of vortex

elements and results are in good qualitative agreement with other numerical solutions of the same

problem.

t Work done under the auspices of the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract DE-AC03-76SF00098.

*Work done under the auspices of the U. S. Department of Energy at Lawrence Livermore National Laboratory
under contract number W-7405-ENG-48.

§ 1 INTRODUCTION

The hybrid vortex sheet-random vortex method was introduced by Chorin [9-11] to com­

pute incompressible, viscous flow at large Reynolds numbers. We employ recent innovations to

speed up the computation in two dimensions. Most notable is the method oflocal corrections [1];

it is an approximation that replaces the 0 (N2) calculation customarily used to evaluate vortex

blob velocities by a much faster one. Our code is capable of economically computing with large

numbers of vortex elements, and allows us to perform detailed flow. visualizations in reasonable

amounts of time.

We test our code on the flow in the unit box driven by a single vortex fixed at the origin.

This problem has previously been studied with the aid of another hybrid vortex method by

Sethian [20] who used the 0 (N2) method for computing the vortex velocities. Our results are in

good qualitative agreement with his work. and, for the computations presented here, the cost of

our method appears to be roughly linear in the number of vortices.

Hybrid vortex methods have also been applied to the flow past a circular cylinder [7, 24],

driven cavity flow [8], flow past a backward facing step [14, 21], wind flow over a building [22],

stability of the boundary layer [11], and the Falkner-Skan boundary layer flow [23]. See

Leonard's survey [18] for a review of vortex methods.

§2 THE BASIC NUMERICAL MEmOD

In the hybrid vortex sheet-random vortex method the computational .domain n is divided

into two regions: an interior n/ away from the boundary an and a sheet layer ns adjacent to the

boundary. (We use the term sheet layer to distinguish the computational boundary layer from the

physical boundary layer.) The random vortex method [9] is used to solve the incompressible

Navier-Stokes equations within 0 1, the vortex sheet method [10] is used to solve the Prandtl

-2-

!'

boundary layer equations within ns . Each method is a particle method; the particles carry con­

centrations of vorticity and the velocity field within each of the respective regions is uniquely

detennined by the particle positions and the appropriate boundary conditions. Both methods are

fractional step methods. One of the fractional steps transports the particles in their velocity field,

the other applies a random walk to account for the diffusive effects of viscosity.

In n1 the particles are called vortex blobs and in ns, vortex sheets. The no-flow boundary

condition is satisfied on an by imposing a potential flow on the interior region which cancels the

nonnal component of the velocity due to the blobs. The no-slip boundary condition is satisfied

by creating vortex sheets on an which subsequently participate in the flow. The two solutions

are matched by converting sheets that leave the sheet layer into blobs with the same circulation,

converting blobs that enter the sheet layer into sheets with the same circulation, and letting the

velocity at infinity in the Prandtl equations be the tangential component of the velocity on the

boundary due to the interior flow. The sheet creation process and subsequent movement of the

sheets into the interior of the flow mimics the physical process of creation of vorticity at a boun­

dary and constitutes one of the attractive features of this numerical method.

2.1. The Interior In n1 we solve the 2-D, incompressible Navier-:Stokes equations. In vorticity

fonn these equations are:

co, +(u•V)m=R-1.1m

V·u=O

u = (0,0) on an,

(2.la)

(2.1b)

(2.1c)

where u(x,t) is the velocity, ID=Uy -vx the vorticity, and R the Reynold's. number. The advec­

tion part of (2.la-c) are Euler's equations:

m, + (u • V)m = 0

V·u=O

U•D =0 On an

-3-

(2.2a)

(2.2b)

(2.2c)

d'JI= -{j)

U = ('Vy '- 'l'x) = y>l·'tf,

where n is the outward normal to an and 'V is the stream function.

(2.2d)

(2.2e)

We use the vortex method to solve equations (2.2a-e). Let dt denote the time step. In the

vortex method the vorticity field at time kdt is represented as a sum of discrete patches ofvorti-

city called vortex blobs,

N
rok(x)= "LKa<xf-x)rj· (2.3)

j=l

Here xf is the position of the jth vortex blob at time kdt, rj its strength, Ka the cutoff function,

and cr the cutoff radius. The strength rj is the circulation about the jth vortex. The choice of

cutoff radius and cutoff function is determined by accuracy considerations. See Hald [16] and

Beale and Majda [6J for a discussion of different kinds of cutoffs and their effect on accuracy.

We use the cutoff proposed by Chorin [9]:

{

(2m I xI r 1

Ko(x)=
0

lxl < cr
(2.4)

lxl ~cr.

We compute the velocity field iik induced by the vorticity distribution wk in two steps.

First we find the free-space velocity ii} = Vl'\ji} such that 'ii} satisfies (2.2d), with ro given by

(2.3), and ii} (x) = 0 at X = oo, We then find a potential flow u; = Vl\j/; such that '\ji; =- '\ii} on

an. The sum of the two flows iik =ii} + u; satisfies (2.2b-2.2e) with 'If= 'ii} + w:.
The free-space velocity field ii} is given by

N
u}(x)= L Ua(xf-x)rj,

j=l

"' ~"
(2.5)

where Ua(x) is the velocity induced at x by a vortex blob of unit-strength at the origin. The blob

velocity function Ua is determined by the choice of K a; the Ua corresponding to (2.4) is

-4-

•

{

(-y ,x) I 21t I x I cr
U0 (X) =

(-y .X) I 21t I X 12

lxl < cr

lxl ~cr.

The potential flow u; can be found by solving Laplace's equation .1.\ji; = 0 subject to the

Dirichlet boundary condition iji; = -ijif on ao for iji; and then differentiating per (2.2e). There

are several ways to obtain approximations to u;. We discuss our choice after the description of

the method oflocal corrections in §3.2 below.

Given the velocity field iik = uf + u; we approximate the solution of (2.2a-e) with initial

data rot by transporting the blobs in this velocity field

x~+1'2 - x~ + A• -uk(x~
') - ') L.U jh

where the superscript 'k+l/2' indicates the positions of the blobs after the first fractional step.

One can improve the accuracy of the advection step by employing a second or fourth order time

discretization scheme that does two or more velocity evaluations per time step. We employ a

time step constraint described in §2.3 below to ensure that blobs do not leave n during the advec-

tion step.

The second fractional step is the. solution of the diffusive part of (2.1a) subject to the no-slip

boundary condition:

U•'t=O on an,

(2.6a)

(2.6b)

where 't is a tangent vector to an. The solution of (2.6a) with initial data ro k+l/2 is obtained by

letting all blobs undergo a random walk

x~+l = x~+112+n.
') J 'IJ

where the llj are independent, Gaussian distributed random numbers with mean 0 and variance

2.1.t IR. Any blobs that end up in the sheet layer or in the image of the sheet layer as a result of

the random walk become sheets, and any that end up outside the image of the sheet layer are dis-

carded. The no-slip boundary condition (2.6b) is approximately satisfied by using the vortex sheet

-S-

method to cancel the tangential velocity on an induced by the blobs with positions x/+1
• We

next describe this method.

2.2. The Sheet Layer Let ns consist of those points in n lying within a distance e of an. In

ns we use the vortex sheet method to solve the Prandtl boundary layer equations:

1
~~ +u ~x +v ~Y =R~YY (2.7a)

~= -u, (2.7b)

Uz +vy =0 (2.7c)

(u ,v) = (0,0) at y =0 (2.7d)

lim u (x ,y ,t) = U.,(x ,t). (2.7e)
y~

Here (x ,y) denotes coordinates which are, respectively, parallel and perpendicular to the boun­

dary, (u ,v) denotes the respective velocity components, ~ is the vorticity, and U.. is the velocity

at infinity. We determine U.. by linearly interpolating the tangential velocity induced by the inte-

rior flow at discrete points on an. We assume that the boundary is located at y = 0 and identify

the four walls of the domain n with the periodic interval [0,4]. As a result ofthis identification,

we can map ns onto the rectangle [0,4]x[O,e]. This is a convenient way of dealing with a vortex

sheet that moves into a corner, for it does not involve special treatment of the comers. Other

workers (e.g. [8]) have employed special procedures for sheets that move into a comer.

In the vortex sheet method the vorticity at time t = kAt is approximated by a sum of linear

concentrations of vorticity,

-k k k ~ (X ,y) = 1: ~j b1 (X -Xj) 0 (yj -y)
j

where ~i is the strength of the jth vortex sheet, (x/ ,yf) is its center, o is the Dirac delta function,

and b1 is the smoothing function. We use the 'hat' function originally proposed by Chorin [10],

{

1-lx/ll lxiS/,
b1 (x) = (2.8)

0 otherwise.

The parameter l is often referred to as the sheet length, although for b1 defined by (2.8) the sheets

-6-

are of length 21 .

With the aid of (2.7b) and (2.7e) we can express the tangential velocity u in terms of the

vorticity and so obtain an approximation fi.k from ~k

uk(x,y)=U..(x,k6t)+L~i b1(x -xj')H(yj' -y), (2.9)
j

where H(y) is the Heaviside function. Similarly, we use (2.7c) and (2.7d) to write v as an

integral over ux and approximate Ux with a centered divided difference to obtain

-! 7 ~i [b, (x + ~ -x/) - b1 (x - ~ -.:/)] Min (y ,yf).

In the advection step we evaluate the velocity (fi.k ,iik) at the centers of the sheets and

advance each sheet one time step of length 6t accordingly. If we denote the velocity at the center

of the j th sheet at time k 6t by (u f, vf), then the sheet positions after the advection step are given

by

(2.10)

To satisfy the no-slip boundary condition u = 0 at y = 0 we create sheets on the boundary as

follows. Let ai, i = 1, ... , M denote equally spaced gridpoints at y = 0 with grid spacing l. The

sheets at the positions given by (2.10) generally induce a non-zero tangential velocity on the

boundary, fi. k+112 (x ,0). Let ui = fi. k+ll2 (ai ,0) and let ~max denote a computational parameter called

the maximum sheet strength. Then for each i we create qi = [I ui I /~axl sheets with centers (ai ,0)

and strengths -sign (ui)~max• where [x] denotes the greatest integer less than or equal to x. The

numerical solution of the diffusion equation is found by letting all sheets (new and old) undergo a

random walk in they direction, and reflecting any that go below the boundary. The new sheet

positions at time (k+1)6t are thus given by

(xj'+l,yf+l)=(xj'+112, 1yf+112+1lj I)

where the Tlj are independent Gaussian distributed random numbers with mean 0 and variance

-7-

2At I R . At the end of the diffusion step any sheets which have left the sheet layer become blobs.

In our implementation all sheets have magnitude ~max· We do not create sheets at ai if

I ui I S ~max and hence the no-slip boundary condition is satisfied at ai only up to order ~max·

Other workers (e.g. [7, 8, 10, 11]) create sheets at the ith gridpoint whenever I ui I ~~min for some

~min < ~max such that the sum of the strengths of these sheets exactly cancels ui. However it has

been shown [19] that this greatly increases the number of sheets created without improving the

accuracy of the computation. The sheet creation algorithm presented here significantly reduces

the total number of vortex elements in the computation thereby improving the economy of the

method.

2.3. Choosing the Computational Parameters There are four computational parameters in

this method: the time step At, the sheet length l, the maximum sheet strength ~max• and the cutoff

a. Since the circulation remains constant when a sheet becomes a blob we have I rj I = l ~ax·

Following Chorin [11] and Sethian [20] we set a = 1t /l. The reader should consult

[11, 19, 21, 24] for a more detailed discussion of the relationship between the various parameters.

The only generally agreed upon constraint that the parameters in the vortex sheet method

must satisfy is the so called 'CFI...' condition:

At max U.. s l. (2.11)

The justification usually given for (2.11) is that one wants to ensure that sheets move downstream

at a rate of no more that one grid point per time step. This is an accuracy condition (as opposed to

a stability condition) which ensures that information propagating in the streamwise direction will

influence all features of the flow which are at least 0 (l).

To ensure that vortex blobs do not exit the box during the advection step we enforce a con­

straint similar to (2.11) in the interior, no vortex is allowed to move more than a distance 0.9E

(where E is the sheet layer thickness) in any direction during a single time step. We incorporate

these two constraints into one global constraint on the time step as follows. At each time step we

-8-

/

detennine the maximum velocity component of iik over the centers of all the vortices. We then

adjust llt accordingly before moving the blobs.

§3 OUR IMPLEMENTATION OF A FAST VORTEX METHOD

3.1. The Method of Local Corrections Traditionally, vortex blob methods entail solving an

N -body problem directly, at a cost that is quadratic inN, the number of vortices. This limits the

number of elements that can be handled in a reasonable amount of computer time, perhaps no

more than a few thousand vortices. It turns out that there are faster ways of computing the

mutually-induced velocity field on a collection of vortices. These methods are based on the idea

that interactions involving distant length scales can be effectively lumped or averaged with an

relatively inexpensive computation. Only interactions involving nearby vortices need to be com­

puted directly, and these account for only a small fraction (typically 5%) of theN (N -1) interac­

tions computed by the direct method.

We use a strategy based on the above observation, known as the method oflocal corrections

[1]. It is similar to the particle-particle, particle-mesh algorithm of Hockney et al. [17] and more

accurate than Christiansen's vortex-in-cell [12], since the latter doesn't compute close interac­

tions directly. A novel feature of this method is that it exploits the fact that a vortex blob behaves

like a point source of vorticity outside the cutoff radius a, and hence induces a harmonic velocity

field there. (In this sense it is similar to Rokhlin and Greengard's multipole expansion method

[15] .) This allows one to take advantage of fourth order interpolation fonnulas for harmonic func­

tions. The local corrections algorithm is nearly as accurate and considerably faster than the direct

method. For example, it can perfonn a velocity evaluation on a collection of 12848 vortices, dis­

tributed evenly among two patches of constant vorticity, in under 7 seconds on the Cray X-MP;

the direct method takes 56 seconds. The amount of speed up one obtains with the method of

local corrections depends on the distribution of the vortices in the computational domain and

-9-

hence is problem dependent. See Baden [5] for further discussion on the speed and accuracy of

this method.

The method of local corrections distinguishes between two kinds of vortex interactions: (1)

far-field interactions approximated by solving a discrete Poisson equation; (2) N -body interac-

tions computed exactly for vortices close enough to one another. A finite difference mesh, with

spacing h, is superimposed on the domain; it is used to compute the far-field interactions. A

second mesh of spacing h called the chaining mesh, with boxes whose centers coincide with the

grid points of the first mesh, is also used. The edges of the chaining mesh coincide with an; the

edges of the first mesh extend beyond an by h 12 in each direction. We denote this extended

domain and its boundary by n' and an' respectively.

The computation is organized around the boxes of the chaining mesh. An integer C, called

the correction distance, is chosen to distinguish nearby vortices from distant ones. Vortices

interact directly only if both indices of the boxes containing them differ by no more than C. It

has been observed that, for a given level of accuracy, C is a constant which is independent of N.

The accuracy of the algorithm improves with increasing C , but this increases the cost; C = 2

appears to effect a reasonable tradeoff between speed and accuracy [5]. The method of local

corrections in predicated on the assumption that the vortex blobs behave like point vortices at dis-

tances greater than Ch from their centers. Thus, we must ensure that cr S Ch .

In the following discussion we omit mention of the time step k for notational convenience.

The algorithm first computes an approximation uj to the free-space velocity u1 by solving a

discrete Poisson equation on the first finite difference mesh,

N

N
L1huh(x)= l: gD(x-xi)

j=l

uh(x) = L (-(x -yj) ,y -Xj)/21tl X -Xj 12 X E an'.
j=l

xe n'

Here L1h is the discrete Laplacian, xi is the center of the jth vortex, and

-10-

(3.1a)

(3.1b)

•.

{

llh ((-y,x)/21tlxl 2)

gD(x) =
0

lx I ~Dh and ly I ~Dh

lx I >Dh and ly I >Dh.

The function gD approximates the discrete Laplacian of the velocity field due to a point vortex at

the origin, and is zero outside a square neighborhood of the vortex. The parameter D is an

integer called the spreading distance and must satisfy D ~ C . Thus, like C , D is also indepen-

dent of N, and the cost of computing the right hand side of (3.1a) is proportional toN. To com-

pute the boundary condition (3.1b) we evaluate the velocity induced on ao' by point sources of

vorticity centered at the xj.

Having set up the right hand side and boundary conditions for (3.la,b) we use a fast Poisson

solver to obtain uj. (We used a solver that was accurate to fourth order in the mesh spacing h.)

This velocity field will be interpolated onto the centers of the vortices; but first it must be

corrected to account for the influence of the nearby vortices which do not act like point sources of

vorticity.

The local corrections are done one box at a time. Associated with each box is a surrounding

region of space that is C boxes thick on each side, called the correction neighborhood, and an

interpolation stencil. (We use a 5-point stencil; the interpolation procedure is accurate to fourth

order.) The local corrections are done in two steps. In the first step we compute the point vortex

velocities at each point of the interpolation stencil which are due to the vortices in the correction

neighborhood and subtract these values from uj. We use these corrected values of uj when

interpolating onto the vortices in the box. In the second step we compute the influence of each

vortex in the correction neighborhood on each vortex in the box using the exact blob velocity

function UCJ.

3.2. The Potential Flow In our solution of the potential flow problem we employ a modified

method of images scheme suggested by Anderson [2]. This method is based on the observation

that the potential flow iip is the flow due to an infinite set of images of the vortices in the box [13,

-11-

pg 378]. The positions of these images may be found by periodically extending the box in the

plane and reflecting each vortex about the walls of the boxes. The idea is to include any image

vortices that are within one correction distance of an in the computation of u 1 and hence, in the

computation of u j . These images must be included because their influence on nearby vortices on

the other side of the boundary cannot be accurately represented in a finite difference solution of

uP. This is important because of the sharp gradients in the velocity field near the boundary due to

the images. We eliminate the contributions of these images to uP by explicitly including them in

the computation of uj, where they can be locally corrected.

To accommodate the image vortices in the computation of uj we extend n' by D +C

boxes in all directions. For a vortex in n, which is within C boxes of the wall and away from a

comer, one image is generated by reflecting the vortex in the plane of the wall and taking the

negative of the strength. For a vortex in a comer 3 images are generated; one reflected in the

plane of each of the two adjacent walls and one reflected through the comer. The first two images

have opposite strengths from that of the original vortex, while the third image has the· same

strength as the original.

We compute w;, an approximation to 'ilp on the unextended domain n, as follows. We

first solve the discrete Laplace equation ll11 w; = 0 subject to the Dirichlet boundary condition

w; = -v1 on an, taking care to include the influence of the image vortices when setting up the

boundary conditions. We use divided differences to obtain u; at the grid points and then interpo­

late to obtain approximate values for uP at arbitrary x e n (here we use a four point stencil). All

of the finite difference fonnulas we used are accurate to fourth order. We take a single-sided

divided difference of v; at the boundary to obtain the tangential velocity u; •'t. However, we

compute the nonnal velocity on the boundary u;·n (= -urn) directly, since we know of no

fourth order fonnula for computing the tangential derivative of w; at the boundary. Since the

stream function induced by a vortex and its image(s) algebraically cancel one another on the

-12.

wall(s) closest to them, we do not compute such influences when setting down the boundary con­

ditions for 'fi;. This is done to avoid a possible loss of accuracy due to roundoff errors. We also

employ algebraic cancellation in the direct computation of u; · n.

3.3. Speedup of the Vortex Sheet Method We have employed one relatively simple

modification of the original vortex sheet algorithm which significantly speeds up the computation

of the velocity of a sheet which is due to the other sheets. (This modification was first suggested

by Chorin [10].) From (2.9) it is apparent that the velocity of a given sheet is affected only by

those sheets within a distance 21 of its center. We divide the sheet layer Os into M bins where

M is the number of gridpoints ai on the boundary at which sheets are created. The i th bin

extends over ai -112 Sx < ai -112 and 0 Sy < oo. (Recall that ai -ai-l= 1.) Thus, sheets in the

i th bin are influenced only by other sheets in the i th bin and the two adjoining bins. At the end of

each time step we son the sheets by bin.

§4 COMPUTATIONAL RESULTS

We present results for the 'spindown' problem investigated by Sethian [20]. In this prob­

lem a single vortex is fixed at the center of the box, with sufficient strength to induce a unit velo­

city at the center of each wall. We set the numerical parameters as follows: the Reynolds

R = 1000; the sheet layer thickness e = 0.02; the maximum sheet strength ~max = 6.25x10-3; and

the sheet length 1 = 0.1. The initial time step was &o = 0.05. As described in §2.3 the cutoff

radius was chosen to be cr = 1 /1t. In the interior we use a second-order Runge-Kutta time integra­

tion scheme. This requires two velocity evaluations per time step, a fact which should be kept in

mind when we discuss the computation time below. Due to doubts about the effectiveness of a

higher-order time discretization in the vortex sheet method (see [19-20]) we use only the first

order Euler method (2.10) in the sheet layer.

-13-

We ran the calculation until time t = 5.0 on a Cray X-MP. Figures 1 and 2 show a series of

snapshots taken at various times during the run. The formation of eddies is quite clear, and our

results appear to be in good qualitative agreement with those of Sethian. However, note that we

used roughly five to ten times as many computational elements as in that study, each with one­

eighth the strength.

During the initial time step 3760 vortex sheets were created. During the second time step

109 sheets left the sheet layer and became blobs. The maximum (componentwise) velocity of

these blobs was 0.977, so the time step was reduced to 0.018. The time step llt slowly decreased

throughout the run and attained a minimum value of 0.011. The run took 320 time steps and con­

sumed 4107 seconds (68.4 minutes) of CPU time on a CRA Y X-MP. Of this, only 2.2% of the

time was spent in the sheet calculation. At the end of the run there are 13094 blobs, 7161 images,

and 4034 sheets. At each time step the number of images was roughly half of the number of

blobs.

Figure 3 shows that the total number of vortex blobs and their images steadily increases

with time but that the number of sheets is roughly constant Figure 4 shows that the computa­

tional cost is roughly a linear function of the number of vortex blobs. The times shown in Figure

4 are the total cost per time step. In addition to the vortex blob velocity evaluations, the times

include all sources of overhead such as: the potential flow, the random walks, and the sheet com­

putation. In particular, this includes a third vortex blob velocity evaluation at each of the x j for

the purpose of computing U... (This third velocity evaluation could be eliminated by a redesign

of the algorithm.)

Figure 5 shows the computational cost per time step and compares it with an estimated cost

of using the direct method to compute blob velocities. The estimated speedup (per time step) of

the local corrections algorithm increases with time; by the end of the run it is roughly 10. The

speedup averaged over the entire run is about 8. To estimate the cost of using the direct method

-14.

to do velocity evaluations we timed a simple program that directly computed the free-space velo­

city function (2.5) for various values of N. We found that the cost of computing just one interac­

tion of a velocity evaluation was 0.4 J.15ec on the CRA Y X-MP. Using the statistics obtained

from our trial run we detennined that. if the direct method had been used for the run shown in

Figures 1 and 2, then it would have computed a total of 8.53xl010 interactions, at a cost of

3.4lx104 seconds of CPU time. We estimate that the cost of any additional computation, e.g. the

potential flow, the random walks, and the sheet velocities, would add only an additional5% to the

running time of the computation. Thus, the running time of the vortex blob velocity evaluations

gives a rough estimate of the overall running time of the direct method-based calculation. We

arrive at the estimated speedup of 8.3 by dividing the 4107 CPU seconds for the local

corrections-based code with the estimated time of 3.4lx104 CPU seconds for the direct method­

based code.

§5 CONCLUSIONS

The goal of this paper has been to demonstrate a fast, accurate vortex method for computing

two-dimensional, incompressible, viscous flow at large Reynolds numbers. Our test run modeling

the flow induced by a central stationary vortex in a square box is in good qualitative agreement

with the earlier results of Sethian [20]. A typical run of the type shown here (beginning with no

vortex elements, running for 320 time steps, and ending with 13094 blobs, 7161 images, and

4034 sheets) consumed roughly 68 minutes of CPU time on a CRA Y X-MP. The run would take

at least 8 times longer to complete if vortex blob velocities were evaluated using the direct

method instead of the method of local corrections. Moreover, the speedup improves as the

number of computational elements increases. Finally, we have shown that the cost of our method

is effectively linear in the number of vortices. (The algorithm is presumably 0 (N log N), but

log N is, in practice, bounded by 6.) This represents a substantial improvement in speed over pre-

-15-

vious implementations of the hybrid vortex sheet-random vortex algorithm.

So far our efforts to assess the accuracy of the method of local corrections have shown no

appreciable loss of precision. Future work will include an application of this method to the flow

in a driven cavity. Our code can be readily modified to execute in parallel on a multiprocessor

like the Cray X-MP, as discussed in [3,4].

§6 REFERENCES

1. C. R. Anderson, ''A Method of Local Corrections for Computing the Velocity Field Due to

a Distribution of Vortex Blobs," J. Comput. Phys. 62(1986), pp. 111-123.

2. C. R. Anderson, private communications.

3. S. B. Baden, "Run-Time Partitioning of Scientific Continuum Calculations Running On

Multiprocessors," LBL-23625, Lawrence Berkeley Laboratory, June 1987. (Ph. D.

Dissertation in the Computer Science Division at the U. of Calif., Berkeley,# 87/366)).

4. S. B. Baden, "Programming Abstractions for Run-Time Partitioning of Scientific

Continuum Calculations Running on Multiprocessors," Proc. of the Third SIAM

Conference on Parallel Processing for Scientific Computing, Los Angeles, California,

December 1-4, 1987.

5. S. B. Baden, "Very Large Vortex Calculations in Two Dimensions," in Lecture Notes in

Mathematics, Springer-Verlag, New York, 1988. Proceedings from the UCLA Workshop

on Vortex Methods, Los Angeles, Calif., May 20-22, 1987.

6. J. T. Beale and A. Majda, "The Design and Numerical Analysis of Vortex Methods,"

PAM-48, Center for Pure and Applied Mathematics, University of California, Berkeley,

1981.

-16-

7. A. Y. Cheer, "Unsteady Separated Wake Behind an Impulsively Started Cylinder in

Slightly Viscous Fluid," manuscript, U. C. Davis, 1986.

8. Y. Choi, J. A. C. Humphrey and F. S. Sherman, "Random Vortex Simulation of Transient

Wall-Driven Flow in a Rectangular Enclosure," submitted to J. Comput. Phys., 1986.

9. A. J. Chorin, "Numerical Study of Slightly Viscous Flow," J. Fluid Mech. 57(1973), pp.

785-796.

10. A. J. Chorin, "Vortex Sheet Approximation of Boundary Layers," J. ofComput. Phys 27,3

(June 1978), pp. 428-442.

11. A. J. Chorin, "Vortex Models and Boundary Layer Instability," SIAM J. Sci. Stat. Comput.

1 ,I (March 1980), pp. 1-21.

12. J. P. Christiansen, "Numerical Simulation of Hydrodynamics by the Method of Point

Vortices," J. Comput. Phys.l3(1913), pp. 363-379.

13. R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience, New York,

1962.

14. A. F. Ghoniem, A. J. Chorin and A. K. Oppenheim, ''Numerical Modeling of Turbulent

Flow in a Combustion Tunnel," Philos. Trans. Roy. Soc. London A304(1982), pp. 303-325.

15. L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations,"

YALEU/DCS/RR-459, Yale Univ., Dept. of Computer Science, April1986.

16. 0. Hald, "Convergence of Vortex Methods, II," SIAM J. Numer. Anal16(1919), pp. 726-

755.

17. R. W. Hockney, S. P. Goel and J. W. Eastwood, J. Comput. Phys.14(1914), pp. 148.

18. A. Leonard, "Vortex Methods for Flow Simulation," J. Comput. Phys. 37(1980), pp. 289-

335.

-17-

19. E. G. Puckett, "A Study of the Vortex Sheet Method and Its Rate of Convergence," Siam

J. of Sci. and Stat. Comp., (to appear).

20. I. Sethian, "Turbulent Combustion in Open and Oosed Vessels," J. Comput. Phys. 54,3

(June 1984), pp. 425-456.

21. I. A. Sethian and A. F. Ghoniem, "Validation Study of Vortex Methods," J. Comput.

Phys. 74(1988), pp. 283-317.

22. D. M. Summers, T. Hanson and C. B. Wilson, "A Random Vortex Simulation of Wind­

How Over a Building," Int. J.for Num. Meth. in Fluids 5(1985), pp. 849-871.

23. D. M. Summers, ''A Random Vortex Simulation of Falkner-Skan Boundary Layer Aow,''

submited to J. C. P., 1987.

24. E. C. Tiemroth, The Simulation of the Viscous Flow Around a Cylinder l7y the Random

Vortex Method, Dept of Naval Architecture and Offshore Engineering, U. of Calif.,

Berlc.eley, California, May 1986. Ph. D. Dissertation.

-18-

LAWRENCE BERKELEY LABORATORY

TECHNICAL INFORMATION DEPARTll1ENT
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

'

