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Modeling the Opponent Facilitates Adversarial Problem Solving

Bruce D. Burns (burns@rz.uni-potsdam.de)
Regina Vollmeyer (vollmeye@rz.uni-potsdam.de)
Institut fur Psychologie, Universitdt Potsdam
14415 Potsdam, Germany

Abstract

Competition can be seen as Adversarial Problem Solving
(APS), thus ideas from problem solving research can be
applied to it. We tested if better modeling of the opponent led
to better performance in APS using a zero-sum game played
by pairs, but with no obvious skill component. We replicated
earlier results that showed that third-order modeling (i.e.,
what | think my opponent thinks of me: RIMA), but not
second-order model (i.c., what I think about my opponent:
R2MA) correlated with performance. We also manipulated
who was played (same person as in an earlier game, or a
predetermined sequence) and who players were told their
opponent was (same or different). Players performed better
when they could apply the appropriate model (i.e., what they
were told matched the opponent). Therefore, we showed that
more accurate modeling of an opponent can lead to better
APS. However, the critical aspect of modeling may be third-
order modeling accuracy. We also found support for a game
theory analysis of the task.

Competition as Adversarial Problem Solving

In May 1940, a British trawler was on its way to a
rendezvous with a German boat in the English Channel.
Aboard the trawler were two double agents (German agents
who were actually British agents) code named "Snow" and
"Biscuit". Snow was about to introduce Biscuit as his
subagent to be taken to Germany for training, but in the
murky world of double-agents, British intelligence thought it
unwise for either to know that the other was working for the
British. However, both guessed this fact. Biscuit then
formed the opinion from Snow's behavior and conversation
that he was a genuine German agent who would turn Biscuit
in as soon as they met the boat. Meanwhile Snow decided
that Biscuit was a genuine German agent who would betray
him. So Snow did everything possible to convince Biscuit
that he, too, was a genuine German agent, which confirmed
Biscuit's fears. Eventually, to avert apparent disaster, Biscuit
locked Snow in his cabin and returned the boat to England.
By trying to do what appeared to be the right thing each had
contributed to the ultimate failure of the mission (related by
Watzlawick, Weakland, & Fisch, 1974, pp. xi-xii).

Problem solving research has rarely considered the type of
problem that Snow and Biscuit were trying to solve, one in
which another person constituted the problem task. Studying
static problems simplifies research, however, many tasks
which fit the definition of problem solving (ie., trying to
reach a goal) are not static. Unless the definition of problem
solving is to be restricted, any general theory of problem
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solving must incorporate such tasks.

Situated cognition research has emphasized the need to
take into account other cognitive agents in the environment
(e.g., see Greeno, Moore, & Smith, 1993). However, such
research has not considered competition between those
agents. Competition between two people may provide a
useful situation for the study of interactive tasks, because the
goals of the adversaries are relatively clear. Yet in
competitive tasks, a critical element is that people react, and
react to reaction, just like Snow and Biscuit did.

Competition has been studied within social psychology,
but often only in contrast to cooperation (see Axelrod,
1980). Competition has also been studied in economics and
game theory (see Rapoport, 1960). Yet much of this
research has been normative, and has focused either on
explaining or describing aggregate outcomes of competition,
or reactions to it. Little of this research has shed light on the
cognitive processes people use when trying to successfully
compete. However, in labeling competition Adversarial
Problem Solving (APS), it has been suggested that
competition can be seen as problem solving (see Gilhooly,
1988; Holding, 1989; Thagard, 1992), and thus may make
similar cognitive demands.

Thagard (1992) proposed a set of cognitive processes that
could be involved in successful APS. In particular, Thagard
argued that across many domains of APS, it is the ability to
model the opponent, and further to model how the opponent
models you, that is critical for success. The mental model
that is formed can then be used to anticipate and counter the
opponent's actions. Such models are a result of interpersonal
perception, a topic with a long history (see Kenny, 1994).
However, Thagard’s proposal concerns accuracy in
interpersonal perception, a topic that has received less
attention, partly for methodological reasons (see Kenny,
1994, ch. 7). More precisely though, the implication of
Thagard’s proposal is that accurate modeling is not the
critical determinant of success in any one competitive event;
instead, the critical factor is having a more accurate model
than your opponent has of you.

A form of modeling was studied by Ruscher and Fiske
(1990), who showed that individuals in competition focus
more than non-competitors on trying to individuate their
opponents, particularly on task-relevant attributes (although
competing groups may tend to stereotype opponents, sce
Brewer, 1979). However, they did not examine whether
trying to individuate the opponent improved performance. In
this paper, we attempted to empirically test the proposal that
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when a player can apply a better model of the opponent,
then they will have more APS success (i.e., reach the goal of
the competition) than the opponent.

A Methodology for Studying APS

While it seems to make sense that modeling an opponent
should play a role in success during APS, there is little
empirical support for this intuition. One difficulty with
examining APS is that it often involves tasks that are very
complex. For example, Holding (1989) pointed out that
taking into account an opponent in a task could increase the
search space of problem states enormously. Therefore, we
needed a simple, manipulatible, competitive task in order to
test hypotheses about APS. The prisoner’s dilemma game
would not be appropriate because it involves pressure
towards both cooperation and competition. Thus the goals
that the players choose can change, making it hard to assess
if they have reached them. Therefore, we used a purely
adversarial game: a repeated, zero-sum, two-player game in
which players simultaneously select the number ONE, TWO,
or THREE. A Chooser and an Avoider player made their
selections in secret, then each player was told what the
opponent selected. If the two players' selections coincided,
then Chooser won the amount of points that corresponds to
the number they both selected and Avoider lost the same
amount of points. If the players' numbers do not match then,
Avoider wins a point and Chooser loses a point. Thus,
Chooser could win up to three points, but Avoider could
only ever win one point. To offset this, Avoider was
expected to win more individual trials of the game. Table 1
presents the pay-off matrix for this game.

Table 1: Pay-off matrix for the game. Outcome for Chooser
is the first number in the pair while the second number is the
outcome for Avoider.

Avoider's selection
ONE TWO THREE
Chooser's | ONE +1 /-1 -1/+1 -1/+1
selection TWO -1/+1 +2/-2 -1/+1
THREE -1/+1 -1/+1 +3/-3
Assessing Modeling

To assess the participants' models of each other, we
reasoned that if players can accurately model their opponent,
then they should be able to accurately assess characteristics
of their opponent. Therefore, we had participants use seven-
point scales to respond to a set of word pairs that indicated
their general assessment of their opponent, such as negative
- positive.

However, there may be different aspects of these models,
in particular, there may be an important distinction between
your model of what you think your opponent is like, and
what you think is your opponent’s model of you, Hymans
(1989) suggested that the latter may be critical for using
deception. We will refer to these two aspects as second-
order and third-order models, following Dennet’s (1978,
pp. 274-275) proposal of second- and third-order intentions.
Therefore, players rated the set of word pairs for three
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targets: themselves (the self scale, representing a first-order
model), their opponent (the opponent scale, representing a
second-order model), and how they thought their opponent
would rate them (the opponent-self scale, representing a
third-order model).

It was not clear a priori which personal characteristics
should be critical for successful APS. However, our
proposal was that the critical aspect of modeling for
successful APS was how accurate you are in what you
thought about your opponent, rather than your actual
assessment of the opponent. Thus we used the responses
from all six scales - the three scales from each player - to
derive the accuracy of a player’s second- and third-order
models of the opponent. To assess a player’s second-order
accuracy for modeling an opponent we compared the
player's rating of the opponent (the opponent scale) with the
opponent's rating of him or herself (the self scale), by
summing the absolute differences between the ratings of the
same item on these two scales. Third-order modeling
accuracy for the player was derived by summing the
absolute differences between items on the player’s rating of
‘how you think the opponent would rate you' (i.e., the
opponent-self scale) and items on the opponent’s actual
rating of the player (i.e., the opponent’s opponent scale),

If APS merely requires you to be better than your
opponent, then it implies that absolute modeling accuracy is
less important than relative modeling accuracy. Therefore,
the unit of analysis in these experiments should be the pair
of players, rather than individual players. So we used two
measures of relative modeling accuracy calculated for each
pair of players: the relative second-order modeling accuracy
(to be referred to as R2ZMA), which was Avoider’s second-
order modeling accuracy subtracted from Chooser’s second-
order modeling accuracy; and, the relative third-order
modeling accuracy (to be referred to as R3IMA), which was
the Avoider’s third-order modeling accuracy subtracted
from the Chooser’s third-order modeling accuracy.

A Game Theory Analysis

Games like this can be analyzed using game theory (see
Rapoport, 1960). Game theory is essentially descriptive as it
seeks to analyze a state of affairs that exists, or to predict a
future equilibrium state. It does not address what processes
bring about this state of affairs, thus, game theory can only
predict the equilibrium point the players should tend
towards. However, it provided a useful tool for analyzing
what should happen in our game. The critical concept was
that of a mixed strategy. A mixed strategy assumes that on
each trial an alternative is chosen stochastically and
independent of the previous choices. Von Neumann (1928)
showed that for any finite, constant sum, two-person game,
there exists a mixed-strategy equilibrium that specifies the
probability distribution with which each possible choice
should be randomly made. The mixed-strategy equilibrium
is defined as the optimal probability distribution for both
players, such that if both players use the specified
distribution for random choices, then neither player can gain
by deviating from the distribution. This probability
distribution depends on the pay-off matrix of the game. For
our game, the distribution was selecting ONE with



probability .46 (more precisely, 6 out of every 13 trials),
choosing TWO with probability .31 (4/13), and THREE with
probability .23 (3/13). With this distribution, Avoider would
be expected to win at least +.077 (1/13) points per trial, if
Avoider imitates a stochastic process. In this game, the
mixed-strategy equilibrium for Chooser is the same set of
probabilities as those for Avoider, even though Chooser has
an expected outcome of -.077 points per trial.

A Test of this Methodology

Studies by Burns (1993) and Burns and Vollmeyer (in press)
applied this methodology to APS. As predicted by game
theory, the Avoider players had a clear advantage in these
studies. Further, the mean proportions with which Avoider
selected ONE, TWO, and THREE were close to the mixed-
strategy equilibrium. However, the Chooser players’
proportions were almost equal for each selection, although
the mixed-strategy equilibrium predicted the same
proportions as for Avoiders.

Relative modeling accuracies were calculated as outlined
above. There was no evidence that RZMA correlated with
performance in the game as measured by the cumulative
score after the final trial of the game (in Burns, 1993: r[48]
= .02, p = .88; Burns and Vollmeyer, in press: r[48] = -.19,
p = .18). However, success and R3MA correlated, (in
Bums: r[48] = .29, p = .50; Bumns and Vollmeyer: -{48] =
37, p = .006). Thus, it appeared that modeling was
associated with success, but perhaps only the third-order
component was critical. For no single item were raw
responses associated with success, nor was relative accuracy
on any item particularly associated with performance,
instead, only the overall accuracy was predictive.

An Experiment: Manipulating Modeling

While Burns (1993) and Burns and Vollmeyer (in press)
supported the claim that modeling the opponent was
important for success, these were purely correlational
studies. To more firmly establish a causal link from
modeling to performance, we directly manipulated the
usefulness of players’ models. This allowed us to generate
and test a specific prediction: If modeling the opponent is
useful in APS, then when people can use their models more
effectively they should do better than when they cannot.

To test this hypothesis, we had participants play the game
twice. In Game 1, pairs of participants played 25 trials of the
game against each other. In Game 2, they played 30 trials
(starting from a score of zero again) but we manipulated
who participants played (the played-opponent), and who
they were told that they were playing (the told-opponent).
The played-opponent was either same (i.e., each other
again), or different (i.e., both played against a predetermined
sequence of numbers). However, the two members of the
pair were in opposite told-opponent conditions: One player
was told that the opponent was the same as in Game 1, and
the other player was told that the opponent was different.
Therefore, one of the players should have had a modeling
advantage over the other. As illustrated in Table 2, one
player could apply the appropriate model, while the other
could not.

Table 2: Illustration of the design of the experiment. Factors
of who both players' opponent was, and who Avoider player
was told they were playing (Chooser player was told the
opposite), were crossed so that Avoider had the opportunity
to apply an appropriate or an inappropriate model (Chooser
had the opposite opportunity).

Avoider told same Avoider told
opponent different opponent

Played same apply appropriate | apply

opponent model inappropriate
model

Played different |apply apply appropriate

opponent inappropriate model

(a sequence) model
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If modeling the opponent is a determinant of success, then
the player who could apply the appropriate model should do
better than his or her opponent who had inaccurate
information, independent of who they actually played and
what they were told. Therefore, the told-opponent condition
should interact with the played-opponent condition, and the
performance by Avoider players in the appropriate model
cells of Table 2 should be higher than those in the
inappropriate model cells.

Method

Participants. One hundred and ninety-two participants from
the University of California, Los Angeles introductory
psychology subject pool took part for partial course credit.

Procedure. Participants went to separate rooms on their
arrival, in order to eliminate all possibility of
communication between players (the game was played via
computer), then they were given the instructions for how to
play the game. These included the pay-off matrix shown in
Table 1, although shown in a way that fit with a participant’s
assigned role (either Chooser or Avoider, randomly
assigned). In Game 1, they played against each other for 25
trials. On each trial, the two players had as much time as
they liked to decide between selecting ONE, TWO, or THREE.
So that they always had access to their own and their
opponent’s history of selections, they kept a record of all
selections on a scoring sheet. Once Game | was completed,
they were given the self, opponent, and opponent-self scales
to complete. Each scale consisted of the same ten items, and
each item consisted of a pair of words which anchored the
ends of a seven-point interval. These ten word pairs were:
risk-taking - risk-avoiding, humorous - serious; negative
positive; hard - soft; rational - intuitive; foolish - wise;
weak - strong; pessimistic - optimistic;, severe - lenient,
cruel - kind.

For Game 2, they were told that they had either the same
or a different opponent, and had their scores reset to zero.
They played the predetermined opponent (same opponent as
in Game 1, or different) for 30 trials. The different opponent
was a predetermined sequence so that the effects of different



distributions could be tested (not reported here). Abric and
Kahan (1972) found that playing a sequence did not affect
players' strategies in a prisoner’s dilemma game, if they
thought they were playing a person. Our participants were
given no indication that they might not play a person.

After finishing Game 2, participants completed the self,
opponent, and opponent-self scales again.

Results

Performance. For the 96 pairs, the first game was won by
Avoider 61 times, and the mean score for Game 1 (scorel)
was 1.35 (SD = 8.11) in favor of Avoider. To test if the
Game 2 manipulation affected players’ performance, we
calculated their relative score for Game 2: scorel from
Game | was subtracted from the difference between a pair’s
absolute scores for Game 2. Such a relative score for Game
2 controlled for individual differences which may have been
reflected by Game 1 performance.

Table 3: Mean relative scores for Game 2 (SD in
parentheses) in favor of Avoider for each told-opponent
(same vs. different) and played-opponent (same person vs.
sequence) conditions. For each cell of the table » = 24.

Avoider told Avoider told
same opponent different opponent
Played 3.25(10.13) -2.75 (11.93)
same person
Played 1.67 (8.69) 5.13 (9.80)
sequence

The mean relative scores for each group are presented in
Table 3. A 2x2 ANOVA on relative scores found no main
effects of played-opponent, F(1, 92) =2.23, p = .13, or told-
opponent, F(1, 92) = .37, but as predicted there was a
significant interaction between these two factors, F(1, 92) =
5.16, p = .025. Comparing appropriate verse inappropriate
model conditions, the former had a mean relative score of
4.19 (SD = 9.90) while the latter had a mean relative score
of -0.54 (SD = 10.56). As predicted, when the appropriate
model could be applied, performance was better, #(94) =
2.26, p = .026.

Modeling Accuracy. We calculated R2ZMA and R3MA
measures as outlined above. In detail, the following
calculation was made for a player’s absolute second-order
modeling accuracy: For each item on a player’s opponent
scale, the absolute difference between its rating and the
same item’s rating on the opponent’s self scale was
calculated, then the differences for the ten items were
summed. Therefore, a low sum indicated accurate modeling.
In order to calculate R2ZMA, the absolute second-order
accuracy for the Avoider player was subtracted from the
absolute accuracy for the Chooser player. Thus, a positive
R2MA indicated that Avoider was a more accurate second-
order modeler, the higher the better. The R3MA measure
was calculated in the same way, except that the absolute
differences were calculated between items on a player’s
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opponent-self scale and the opponent’s opponent scale. Like
R2MA and R3MA, all of our dependent measures were
difference scores derived from the Avoiders’ and Choosers’
individual measures. As a convention, better performance on
our measures was always stated in terms of the Avoider
being better, so positive scores indicated better performance
by the Avoider, and negative scores indicated better
performance by the Chooser. Such consistency meant that
we always predicted positive correlations.

In this experiment, RZMA and R3MA measures were
calculated at two points: after Game | and after Game 2. As
the modeling accuracy of players who played against a
predetermined sequence would not be expected to correlate
with performance, we only examined Game 2 correlations
for pairs who played each other in Game 2. There were only
46 such pairs because the rating data was incomplete for two
pairs.

Again, the R2ZMA measures were not associated with
performance (scorel with RZMA after 20 trials: » = .059, p
= .70; relative score with RZMA after Game 2, r = -.10, p =
.50). However, RIMA after Game 2 was correlated with
relative score, r = .35, p = .018. Further analysis showed
again that relative modeling accuracy measure derived for
individual word pairs from the scales did not correlate with
performance. The correlation between scorel and R3MA for
Game 1 was not significant, » = .19, p = .22. Perhaps it
takes time to learn enough about the opponent.

To test whether R3MA was affected by our
manipulations, we calculated mean R3MA from after the
manipulated Game 2. As we expected, when pairs played
against each other in Game 2, R3IMA was higher when
Avoider was told that the opponent was the same, M = 3.04
(SD = 5.84, n = 24), than when told that the opponent was
different, M = -1.09 (SD = 8.56, n = 22), although this
difference was not quite significant, #(44) = 1.93, p = .060
(however, this test had low power). This trend was not
inconsistent with modeling differences being responsible for
the better performance of players who were given a situation
in which the appropriate model could be applied, and it
provided some evidence for the validity of the R3MA
measure. However, if R3MA measures were some type of
artifact, then they should have been affected even when the
opponent was not a person. But when pairs played the
sequence, there was no difference between mean R3MA for
when Avoider was told that they had the same opponent, M
= 1.13 (SD = 7.00, n = 24), and for when they were told that
the opponent was different, M = 1.71 (SD = 6.13, n = 24),
#(46) = 31, p = .76. Similarly, the correlation between
R3MA and relative score for players who competed against
the sequence was also not significant, (48) = .12, p = 43.
This adds some plausibility to our interpretation of R3IMA
as measuring relative modeling accuracy.

Quality of Distributions of Selections. The mean
proportions of trials on which Avoider players gave each
selection in Game | were again close to the game theory
equilibrium. Avoider chose ONE, TWO, and THREE with mean
proportions, .42 (SD = .12), .29 (SD = .19), .29 (SD = .11),
respectively. However, as before, Chooser made these three
selections with proportions, .32 (SD = .13), .35 (SD = .10),



.33 (SD = .13). In Game 2, when players competed against a
sequence, the nature of the sequence affected their
distributions (the sequence type results are not important for
the issues addressed by this paper, so they are not reported
here). However, players who continued to compete against
each other had proportions like those in Game |: for
Avoider, 43 (SD = .13), .29 (SD = .07), .28 (SD = .11); for
Chooser, .32 (SD = .11), .35 (SD = .10), .33 (SD = .12).

Analyzing the distribution of selections allowed us to ask
whether the told-opponent manipulation could have affected
performance via changes to players’ distributions. To test
this, we calculated relative distribution extremity (RDEx)
measures for Game 1 and Game 2. To calculate this, we first
summed how much a player’s proportion for selection of
ONE was above .33, and proportions for TWO and THREE
were below .33, thus it was a measure of the quality of a
player’s distribution. RDEx was the Chooser’s sum minus
that for Avoider. We analyzed RDEx for players that
competed against each other in Game 2 with a 2x2x2
ANOVA on RDEx with factors for game (1 or 2), role
(Avoider or Chooser) and told-opponent (told same or
different opponent). We found a large effect of role, F(1,
46) = 34.14, p < .001, but no effect of game, F(1, 46) =
1.90, p .18, or told-opponent, F(1, 46) = .16. No
interactions were significant (all Fs < 1.0). Therefore,
distributions did not change between games, and RDEx was
not affected by who players were told was the opponent.

Could quality of distributions be a third factor that
explains the correlation between R3MA and performance?
To test this, we did a regression analysis of RDEx and
R3MA measures on relative score. We found a significant
multiple R = .49, F(2, 43) = 6.79, p = .003. For RDEx, B =
.35 was significant, 1(44) = 2.61, p = .013, and so was the
(.32) for R3MA, #(44) = 2.39, p = .021. Therefore, RDEx
and R3MA both contributed to performance, but separately.
Burns and Vollmeyer (in press) also found this.

Discussion

As anecdotal evidence suggests, it appeared that accurately
modeling the opponent was associated with success in APS.
This was shown in two ways: 1), the relative accuracy of
third-order modeling was associated with success, which
replicated previous studies; 2), when we manipulated the
situation to provide the opportunity to use the appropriate
model, players performed better and had greater modeling
accuracy, as predicted.

Is Modeling Causal for Success? How strongly can we
argue that relative third-order modeling accuracy is causally
related to success? We never directly manipulated third-
order modeling, which weakens any claim of causality.
However, taken together, the results provided good evidence
that better modeling led to better performance, because they
argue against many otherwise plausible alternative
explanations for the relationship between performance and
modeling. First, we were able to affect performance and
modeling exactly as predicted by manipulating the situation
so that modeling could be more or less effectively applied.
There would be no reason to expect an advantage of being
able to apply the appropriate model in Game 2 of the
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experiment, if something was not learnt in Game | that was
specific to the opponent. Further, we found that when they
could apply the appropriate model, players tended to be
more accurate at modeling their opponent, as would be
expected if our manipulations had their effect via modeling.
Second, if our results were the product of some artifact of
how winners and losers responded, then our experimental
manipulations should have affected modeling just as they
affected performance, even when the players competed
against a fictitious opponent. However, when they played
against a predetermined sequence there was no impact of
whether they were told that they had the same or a different
opponent, and performance did not correlate with R3MA.

We did find that using a better distribution of selections
(as measured by RDEx) was also associated with better
performance. So it was critical to show that our measure of
relative modeling accuracy was not just a substitute for
RDEx. Regression analysis showed that the influence of
RDEx on performance was separate from that of R3MA.
Further, there was no evidence that distribution quality was
affected by the manipulations in the experiment, despite
these manipulations affecting performance. Therefore,
modeling appeared to be the only mechanism through which
our manipulations could influence performance.

We have still not completely eliminated the possibility
that some unmeasured factor could actually be responsible
for the performance-modeling relationship, for example,
intelligence or motivation could be proposed as candidates.
Epstein and Harackiewicz (1992) did find complex effects
of achievement motivation in competition, although they
found no effects of their manipulations of motivation on
performance. Yet although quality of distribution would
appear to be the likely mechanism via which meotivation or
intelligence could affect performance, distribution quality
was not influenced by the manipulations in our experiment.
This finding, together with the finding that modeling
accuracy and quality of distribution accounted for separate
variance in performance, makes it hard to explain the
performance-modeling relationship as due to a third factor
that correlates with both relative modeling accuracy and
performance. The barrier for any speculated third factor is to
propose a mechanism through which it could affect
performance other than modeling or quality of distribution.

Further Issues. We have not attempted to determine the
size of the contribution of modeling accuracy to success in
APS. To do so would require developing the best possible
measure of modeling. However, our aim was to determine
the existence of a model effect rather than its size. The
importance of modeling may depend on the particular game
and its demands, and on how evenly matched the
competitors are on other factors. In our game, we tried to
match players as evenly as possible by removing all specific
skill components from the game, but still found that quality
of distribution was a component of success. Yet our game
also provided very little information on which to base a
model of the opponent. In normal competitive situations,
more information is available, and thus the opportunity for
those who can exploit it should be greater. Therefore, it is
possible we have underestimated the amount of variance in



performance accounted for by modeling accuracy.

Although we found that third-order modeling but not
second-order modeling accuracy was important, we should
be cautious about interpreting this null result as showing that
second-order modeling is unimportant. In particular, the
R2MA measure relies on accurate self-ratings, but there are
debates over the accuracy of self-ratings.

Our findings also raise an intriguing question that we
cannot answer at this time: is APS a general skill? Some
people may be better competitors because they find
competition motivating, but perhaps modeling is a general
skill that underlies better competition, independent of task
specific factors. Even if higher motivation were responsible
for better modeling, then it is still unclear exactly how it
would lead to better models. Of course, it could be just that
sometimes people happen to hit on the right model in a
particular game and then use it to win (unless they do not
know that they can use it, as in the inappropriate model
conditions), and conversely, they sometimes hit on the
wrong model and use it to lose. Thus, having the right model
may be responsible for success, but it may not be a general
ability. However, it is possible that some people are better at
modeling, giving them an advantage in general.

How could modeling accuracy facilitate performance?
Perhaps it helps select between safe and risky choices, or it
allows players to use deception, or it might help them decide
when to deviate from the equilibrium strategy suggested by
game theory. This is an issue for further study.

If modeling is a skill, then it might support Hymans'
(1989) suggestion that deception might be an evolved skill.
Deception is a quintessential human skill, as is implied by its
role in the Turing Test for artificial intelligence.

In many ways our results were consistent with the game
theory analysis. Avoiders won by about the amount
predicted by the mixed-strategy equilibrium, and were close
to the frequency distribution of selections predicted by this
equilibrium. However, the Chooser players did not match
this distribution, and Avoiders did not appear to exploit this.
Perhaps Chooser’s distribution arose because even if the
mixed-strategy equilibrium was the best for the Chooser, it
was still a losing strategy. As well as game theory being
useful for analyzing the game, the results in turn provided
some support for the psychological validity of the game
theoretic concepts used.

Conclusions

Given that anecdotal evidence supports the claim that
modeling is important in APS, in one sense, our results were
not surprising, although the finding that third-order
modeling was particularly important goes beyond the
anecdotes. However, we have demonstrated a methodology
capable of empirically demonstrating this intuition and
suitable for beginning to study this phenomenon. Research
on competition has often focused on factors that bring about
competition rather than cooperation, and how competition is
conducted. Rarely have the factors behind successful APS
been examined, even though competition is a pervasive
aspect of life. Our results suggested that modeling is an
important component of successful APS just as interpersonal
perception has been seen as an important component of
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other social situations. Good modeling can even be a way of
avoiding competition, as it would have been for Snow and
Biscuit. This work presents an opportunity and a challenge
to problem solving research and theory: to address
interactive tasks.
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