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Basel, Switzerland; and dEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, CB10
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Contributed by Detlef Weigel, September 17, 2016 (sent for review November 4, 2015; reviewed by Eyal Fridman and Albrecht E. Melchinger)

The ubiquity of nonparental hybrid phenotypes, such as hybrid
vigor and hybrid inferiority, has interested biologists for over a
century and is of considerable agricultural importance. Although
examples of both phenomena have been subject to intense inves-
tigation, no general model for the molecular basis of nonadditive
genetic variance has emerged, and prediction of hybrid pheno-
types from parental information continues to be a challenge. Here
we explore the genetics of hybrid phenotype in 435 Arabidopsis
thaliana individuals derived from intercrosses of 30 parents in a
half diallel mating scheme. We find that nonadditive genetic ef-
fects are a major component of genetic variation in this population
and that the genetic basis of hybrid phenotype can be mapped
using genome-wide association (GWA) techniques. Significant loci
together can explain as much as 20% of phenotypic variation in
the surveyed population and include examples that have both classical
dominant and overdominant effects. One candidate region inherited
dominantly in the half diallel contains the gene for the MADS-box
transcription factor AGAMOUS-LIKE 50 (AGL50), which we show di-
rectly to alter flowering time in the predicted manner. Our study not
only illustrates the promise of GWA approaches to dissect the genetic
architecture underpinning hybrid performance but also demonstrates
the contribution of classical dominance to genetic variance.

heterosis | half diallel | GWAS | Arabidopsis thaliana

The often observed phenotypic superiority of progeny relative
to their parents, or heterosis, is a universal phenomenon and

of great importance to plant agriculture. The earliest description
of heterosis (also known as hybrid vigor or superiority) dates to
Darwin’s studies of cross-fertilization in plants. He noticed that
intercrossing distantly related individuals gave rise to larger,
more vigorous progeny (1). Four decades later, George Shull
coined the term “heterosis” (2) for this phenomenon, which he
and Edward East had independently described for hybrids of
inbred maize in 1908 (3, 4). Heterosis has long been of interest to
evolutionary biologists as a potential explanation for the ubiquity
of cross-fertilization in plants and animals, but it is also a central
component of agricultural breeding programs. The combination
of hybrid seed technology and inbred line improvement has
driven an unprecedented improvement in maize yield over the
past century (5). Despite the economic importance of heterosis
and its intensive investigation in a wide spectrum of species, pre-
diction of hybrid performance from parental information remains
a major challenge (6).
In the terms of quantitative genetics, hybrid vigor (and its op-

posite, inferiority) describes a deviation of progeny from the
phenotypic mean of the parents. This means that heterosis cannot
be explained by the addition of the effects of contributing alleles
(7). Nonadditive genetic variance can result from a nonlinear
phenotypic effect of alleles at one locus, as in the case of domi-
nant/recessive allele pairs in classical genetics, or from epistatic
interactions between loci (reviewed in ref. 8). Three nonmutually
exclusive types of intralocus interactions are commonly invoked to

explain heterosis. The overdominance hypothesis postulates that a
single mutation in the heterozygous state is causal (3, 4, 9), and it
accounts for at least a few cases of heterosis (10–13) and hybrid
inferiority (14, 15). The dominance hypothesis suggests that ge-
nome-wide complementation of many small-effect, weakly dele-
terious loci drives hybrid superiority (16–18), but the small effect
size of individual loci would make it difficult, if not impossible, to
generate direct support for this hypothesis. Finally, the pseudoo-
verdominance hypothesis also explains heterosis with the com-
plementation of recessive alleles but proposes that when linked in
repulsion, such alleles appear overdominant. Outside of these
classical hypotheses, some cases of hybrid inferiority (19–22) and
hybrid superiority (23–30) have been linked to epistatic interac-
tions between parental alleles.
The availability of completely homozygous natural accessions

has made the model plant Arabidopsis thaliana an excellent
subject for studies of natural variation. Collections of sequenced
accessions enable replicated genome-wide association (GWA)
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mapping studies across varied environmental conditions (31–33).
The drawback of highly inbred lines is that the contribution of
dominance to phenotype cannot be assessed directly. However,
Arabidopsis thaliana outcrossing rates of over 10% have been
reported in the field, suggesting that dominance may contribute
to phenotypic variation in natural populations (34). Here we ex-
plore the magnitude of nonadditive genetic variation in A. thaliana
using a half diallel intercrossing scheme. This approach was cho-
sen because of its power to separate a line’s breeding value
(additive contribution) from its performance in a specific cross
(nonadditive contribution) (35). Whole-genome resequencing in-
formation is available for all 30 parental accessions in our scheme
(36), enabling construction of hybrid genotypes and GWA map-
ping of hybrid phenotypes. We show that nonadditive inheritance
is pervasive in A. thaliana hybrids, that the genetic basis of such
traits can be uncovered using a modified GWA approach, and that
a candidate gene underlying an associated peak is sufficient to
alter a flowering time trait.

Results
Experimental Design and Phenotypic Analyses. A half diallel was
constructed by intercrossing 30 natural accessions of A. thaliana
(SI Appendix, Table S1). These accessions were chosen because
they span much of the genetic diversity in the native range of the
species, and their genomes have been sequenced (SI Appendix,
Fig. S1) (36). To facilitate the large number of intercrosses, male
sterile lines were generated by artificial miRNA knockdown of
the homeotic gene AP3, removing the need for manual emas-
culation (22). Because manual crossing is known to influence
trait values of the progeny even when using genetically identical
parents (37), we manually self-crossed each parental line using
AP3 knockdown females and wild-type males as controls. This
crossing scheme resulted in 435 hybrid genotypes and 2 × 30
parental genotypes (both normally and manually selfed lines).
These were grown in 16 °C long days in a completely randomized
design with five replicates per genotype. Plants were phenotyped
for traits related to flowering time [days to flowering (DTF) and
leaves on the main shoot at flowering (LTF)] and final rosette
size (rosette diameter and rosette dry mass). Additionally, im-
ages were taken of young rosettes (21 and 29 days after sowing),
and several rosette traits were extracted from these images.
We often observed differences between progeny from natural

self-fertilization and progeny from manual fertilization of AP3
knockdown females with pollen from isogenic siblings (SI Ap-
pendix, Figs. S2 and S3). Although such differences between
otherwise genetically identical individuals have been reported
before (37), our much larger dataset demonstrates that the effect
is not directional, with progeny of the manual crosses not always
being larger than their self-fertilized siblings (SI Appendix, Figs.
S2 and S3). The artificial miRNA itself is not the source of these
differences, because the presence of the transgene explains very lit-
tle, if any, of the total phenotypic variance (Materials and Methods).
Instead, discrepancies between these two groups of parental geno-
types likely result from strong maternal effects; for example,
knockdown of AP3 in the female parents greatly diminishes fruit
production, potentially altering resource allocation. Regardless of
the mechanism, the crossing process clearly influenced the pheno-
types of resulting progeny. With this in mind, we only used pheno-
types from manually crossed parents in our analyses below.
To understand the genetic independence of the measured traits,

we estimated their genetic correlation (SI Appendix, Fig. S4).
Several traits (DTF, LTF, and dry mass) were correlated and thus
shared a genetic basis (SI Appendix, Fig. S4). The remaining ro-
sette traits were also correlated but were not, or only very weakly,
correlated to the flowering time traits, suggesting that the genetic
basis of rosette size over time and onset of flowering are largely
independent (SI Appendix, Fig. S4).

We next sought to estimate the relative contributions of ad-
ditive and dominance components to overall phenotypic varia-
tion in our sample. With diallel designs, one can evaluate the
breeding value of each parent, or its general combining ability
(GCA). One can also estimate the specific combining ability
(SCA) (35). The SCA is a measure of deviation from the breeding
values, or the expected performance of a line in a particular hybrid.
Because additive and dominance genetic variance can be derived
from estimates of GCA and SCA, respectively, it is possible to
calculate both narrow- and broad-sense heritability using these de-
signs (Materials and Methods). We estimated GCA, SCA, and her-
itabilities for each trait (Fig. 1A and SI Appendix, Table S2) using a
linear mixed model (LMM) (Materials and Methods). Total genetic
variance (broad-sense heritability) ranged from 24 to 78% of the
total phenotypic variance (Fig. 1A). Rosette traits of younger plants
estimated from images seemed to have much lower broad-sense
heritability than adult traits. Despite the large range of broad-sense
heritability estimates, nonadditive inheritance contributed substan-
tially to the observed hybrid traits. The degree of dominance, cal-
culated as a ratio of nonadditive to additive genetic variation, was
greater than 1 for all traits, and such values can only be explained by
either overdominance or pseudooverdominance (Fig. 1B) (38). The
significant contribution of nonadditivity to overall genetic variation
suggests that our experimental system is ideal for understanding the
factors underlying nonadditive inheritance.

Model Selection, Simulation of Phenotypes, and Power Analyses.Our
next goal was to identify loci that were contributing to dominance
and heterosis using GWA. Typically, GWA studies of continuous
traits search for a linear relationship between genotypic class and a
trait of interest. For binary traits, such as those frequently used in
human disease case-control studies, more complex genetic models,
including dominance and overdominance, can be explicitly tested
(39, 40). Although this is rarely done in the analysis of continuous
traits, a few studies have reported associations of heterotic traits with
heterozygosity (41–45). We selected two linear mixed models to
search for associations between genotype and phenotype using
FaSTLMM software in the easyGWAS framework (46, 47). The first
model used a standard linear additive SNP encoding, where the ho-
mozygous major allele was represented as 0, the heterozygous as 1,
and the homozygous minor allele as 2; we refer to it as the “additive
model.” The secondmodel, referred to as the “overdominant model,”
used a nonstandard SNP encoding, where both homozygous classes
were represented as 0 and the heterozygous genotype as 1. The
genetic similarity between individuals was estimated by computing
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the realized relationship kinship matrix using SNP encodings spe-
cific for each model (48).
In addition to fitting two different models to our data, we chose

to search for association of variants not only with estimated trait
means, but we also estimated the discrepancy of an observed hy-
brid phenotype from its midparent performance [midparent het-
erosis (MPH)] for each hybrid–parent trait combination (7).
Because of the bidirectional discrepancy between self-fertilized
and manually fertilized parental genotypes, phenotypic means
from parental genotypes produced by manual crosses were used to
estimate MPH (SI Appendix, Figs. S2, S3, and S5). By mapping
MPH, we were able to increase the sensitivity to detect non-
additive loci. The three tested model–phenotypic component
combinations are summarized in SI Appendix, Fig. S6.
Because our design was different from those used in previous

A. thaliana GWA studies, which used only homozygous geno-
types, we used simulations to estimate our power to detect loci
with additive or dominance effects. It turned out that the addi-
tive model was extremely underpowered in this dataset regard-
less of the variance explained, which is a proxy for effect size of
individual SNPs, or of allele frequency of the causal SNP (Fig.
2A). This could be the result of the correlation of such sites with
population structure. Alternatively, it may be caused by fewer
available degrees of freedom, due to the limited sample size of
the source population (n = 28). Simulations also showed that in
contrast to the additive model, the overdominant model had
sufficient power to detect associations with SNPs that explained
a range of variances and that had different minor allele fre-
quencies (Fig. 2B), emphasizing the importance of the diallel
design in our study.

GWA Mapping of Additive and Nonadditive Inheritance. In silico F1
genotypes were constructed by combining known parental gen-
otypes (36). Informative sites were required to have complete
information, with a minor allele frequency of at least 10% in the
diallel. Due to the limited genetic diversity in the founding
parents, many positions were in complete linkage disequilibrium
(LD) across chromosomes. These as well as positions in LD with

10 or more other sites were excluded from GWA tests, leaving
204,753 sites segregating in the diallel population (SI Appendix,
Figs. S7 and S8).
We used the three approaches described above to identify

informative SNPs significantly associated with each trait in our
population (SI Appendix, Fig. S6). Regardless of trait, no sig-
nificant SNP was detected using the additive model (Fig. 2C and
SI Appendix, Figs. S9A, S10A, and S11A) after multiple testing
correction (Bonferroni threshold, P < 3 × 10−7), consistent with
the low power observed in our simulations. The overdominant
LMM was fitted to both the trait means and MPH. Significant
SNPs were detected for four traits (Fig. 2 D and E and SI Ap-
pendix, Figs. S9 B and C, S10 B and C, and S11 B and C), with
many more associations for MPH than for the simple trait means
(35 vs. 5 significant sites) (SI Appendix, Table S3). Significant
SNPs collapsed into nine regions; four of these were significant
for multiple traits (SI Appendix, Table S4). To account for
multiple testing across model–phenotypic component combina-
tions, a more stringent Bonferroni correction was applied within
each trait [individual significance thresholds (0.05) divided by
GWA studies per trait (3) and SNPs (204,753)] (SI Appendix,
Tables S3 and S4). Most SNPs were significant even after cor-
rection within trait (SI Appendix, Table S4). Traits with lower
heritability, particularly rosette traits of young plants extracted
from images, showed no association with any position in the
genome. We also did not find any associations with adult rosette
size, despite a broad-sense heritability of 0.62. In conclusion, we
identified a number of genomic positions that are associated with
both the trait means and MPH, suggesting that within-locus in-
teractions, either dominance or overdominance, contribute sig-
nificantly to nonadditive genetic variance.

Significant SNPs Contribute Heavily to Genetic Variance. To assess
the contribution of within-locus interactions to genetic variance,
the variance explained by each significant SNP was quantified
and compared with the variance explained by all tested SNPs.
Variance explained by all tested SNPs was computed using a
LMM that fitted the appropriate kinship matrix to the trait of
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interest using a cross-validation strategy. The model was trained
with a dataset consisting of 90% of hybrids and then used to
predict phenotypes in the test dataset, the remaining 10% hy-
brids, with 1,000 repetitions. The variance explained by all tested
SNPs accounted for 7–56% of the total genetic variance (Fig.
3A) using the additive encoding, whereas it ranged from 18 to
45% (Fig. 3B) using the overdominant encoding. We conclude
that our strategy enabled excellent phenotypic predictions and
subsequent estimation of variance in our diallel, but we note that
variance estimates cannot be necessarily extrapolated to other
genotypes (49).
We further estimated the contribution of the significant loci to

total phenotypic variation. We found that individual significant
SNP generally had a large marginal effect and could explain from
0.02 to 19.6% of the phenotypic variance (Fig. 3C). The con-
tribution of all significant SNPs was calculated using a ridge
regression model, together with the cross-validation strategy
described above, to account for nonindependence, or linkage,
between significant SNPs. Significant SNPs explained up to 20%
of the total genetic variance for some traits (LTF MPH and
rosette dry mass MPH) (Fig. 3D).

Multilocus SNP Associations. In addition to single SNP tests, we
searched for multilocus associations using a network-guided
approach implemented in the GWA method SConES (50). This
approach leverages the protein interaction network of A. thaliana

to search for SNPs that together influence a phenotype; however, it
does not explicitly test for epistasis between pairs of loci (50).
Associated SConES SNPs likely contribute to phenotypic variance
either via the sum of multilocus additive effects or allelic hetero-
geneity at a single locus, where multiple, unlinked SNPs in or near
to a gene have similar phenotypic consequences. For each trait
investigated with SConES, between 0 and 324 SNPs were linked to
the trait of interest (SI Appendix, Tables S5 and S6), explaining up
to 40% of the total genetic variance of MPH when fitting the
overdominant model (SI Appendix, Fig. S12A). Less genetic vari-
ance could be explained when fitting the overdominant model to
the predicted mean phenotype (SI Appendix, Fig. S12B). The ge-
netic variance explained by SConES SNPs is not necessarily in-
dependent from the variance explained by SNPs detected via
traditional GWA mapping, but in this case, only a single SNP was
detected with both methods (SI Appendix, Tables S4 and S6).

Significant SNPs and Established Hypotheses for Heterosis. Estab-
lished hypotheses regarding the genetic basis of heterosis make
specific predictions regarding the allele frequencies of causal
loci. Under the dominance hypothesis, causal loci are expected
to be rare in the population (reviewed in ref. 8). Minor allele
frequencies of all tested SNPs were estimated in the 80 rese-
quenced genomes, from which the 30 diallel parents were drawn
(36), and compared with minor allele frequencies of SNPs with
significant phenotypic associations either based on single sites
(Fig. 3E) or via SConES (SI Appendix, Fig. S12C). Significant
SNPs had much lower minor allele frequencies than background
SNPs (Fig. 3E and SI Appendix, Fig. S12C), even though low-
frequency variants (<10%) had been removed. Additionally,
random sampling of background SNPs demonstrated that their
median allele frequencies were always higher than those of the
significant SNPs (permutation test, P < 0.002 for 1,000 permu-
tations) (Fig. 3E and SI Appendix, Fig. S12C). Because of sta-
tistical limitations in GWA studies, it is important to note that
we were unable to query the effects of truly rare variants.
The significant SNPs were collapsed into nine distinct genomic

regions, which included both overdominant and dominant effects
(SI Appendix, Table S7 and Fig. S13). The most sensitive GWA
studies, where MPH was fitted to an overdominant model, detected
SNPs in most regions (SI Appendix, Tables S3 and S4). Of the nine
regions, four behaved dominantly and three behaved over-
dominantly or pseudooverdominantly with respect to the trait mean
(SI Appendix, Table S7 and Fig. S13). The remaining two regions
tended toward overdominant behavior, but the effect was mild.
If overdominant traits were, in fact, the result of multiple

dominant loci, then the magnitude of MPH should increase upon
inclusion of additional loci. To test this, multilocus genotypes of
dominant regions were correlated with trait means. The pheno-
typic behavior varied by multilocus genotype and for some
combinations did, in fact, exhibit a trend toward overdominance
(SI Appendix, Fig. S14), suggesting that at least a portion of
heterotic phenotypes can be attributed to the combination of
multiple, unlinked dominant loci.
The dominance hypothesis predicts that the degree of heter-

osis in a hybrid will correlate with genetic distance between the
parents (51–53). Pairwise genetic distances were calculated
across the entire genome at a variety of annotated sites (inter-
genic, intron, synonymous sites, nonsynonymous sites, etc.). To
compare the degree of heterosis across hybrids, MPH values
were normalized by the additive component, a, or half the dis-
tance between the two parental trait values of each cross. Re-
gardless of annotation, correlations between genetic distance
and estimates of MPH/a were only occasionally significant (SI
Appendix, Fig. S15), with the direction varying by trait. Flowering
time (DTF and LTF) was significantly positively correlated with
genetic distance for several polymorphism categories (maximum
Spearman rank correlation coefficient <0.16), whereas rosette
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Fig. 3. Variance explained by tested SNPs and the characteristics of asso-
ciated SNPs. (A and B) Variance explained using all tested SNPs was calcu-
lated using a cross-validation approach. Mean variance explained and the
SEM (1,000 training sets) are plotted for the training (90%) and test (10%)
sets. (A) Phenotypic variance of the mean trait value explained by the ad-
ditive model. (B) Phenotypic variance of MPH explained by the over-
dominant model. Models that are evaluated using their own training data
tend to overfit, hence the values that are close to, or equal to, 1. Variance
explained by (C) individual SNPs and (D) all significantly associated SNPs
calculated using a cross-validation approach as described for A and B (Ma-
terials and Methods). (C) Boxplot shows the median (white circle), upper and
lower quartiles (black box), and 1.5× the interquartile range (black lines).
(D) Mean variance explained and the SEM (1,000 training sets) for the
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perimeter and diameter were negatively correlated with genetic
distance (maximum Spearman rank correlation coefficient<j−0.16j).
Contrasting directions of heterosis for different traits have been
observed before (54), and other studies have also failed to detect a
relationship between genetic distance and the magnitude of het-
erosis (37, 55–57).

Candidate Genes Are Associated with Relevant Biological Processes.
To gain insight into the biological relevance of each GWA study,
we asked whether the top 1,000 SNPs associated with each trait
were enriched for specific gene ontology (GO) categories. As
expected, flowering time related traits were associated with long-
day photoperiodism and photomorphogenesis and, in addition,
with GO terms related to posttranscriptional regulation (SI Ap-
pendix, Table S8). Growth-related traits extracted from the images
of young plants were associated with energy production via oxi-
dative phosphorylation in the mitochondria. Although many of
these SNPs were not significant using a Bonferroni significance
cutoff, the enrichments observed in GO analyses suggest that our
study detected additional contributing loci (SI Appendix, Table S8).
We measured LD surrounding high-confidence SNPs to identify

potential candidate genes underlying the observed heterotic ef-
fects. The nine significant regions collapsed into eight linkage
blocks (SI Appendix, Table S7). In some cases, LD decayed quickly
around the significant SNPs, allowing the identification of high-
confidence candidate genes (Fig. 4A and SI Appendix, Fig. S16 and
Table S7). One region in particular, HV1.3, which had a dominant
phenotypic effect on leaf number at flowering, exhibits rapid LD
decay (Fig. 4 A and B). This short haplotype block spans a single
gene, AGAMOUS-LIKE 50 (AGL50), which encodes a MADS-
box transcription factor. Many other members of the MADS-box
family play critical roles in flowering time control (58–60), but the
functions of AGL50 and its closest paralog AGL49, which belong
to a poorly characterized clade of theMADS-box family (61), have
been unknown.

To examine whether AGL50 haplotype diversity is predicted
by the two associated SNPs located in the downstream intergenic
region (Fig. 4B), we sequenced the coding region of AGL50 from
each of the 30 parental accessions (SI Appendix, Fig. S17). The
phylogeny derived from the inferred amino acid sequences
identified two groups distinguished by the diagnostic SNPs (Fig.
4C). Accessions carrying the reference haplotype (blue) flowered
on average with 10 fewer leaves than the nonreference haplotype
(gray) (mean LTF for nonreference = 35.1 and reference = 24.9;
Wilcoxon rank sum test, P = 0.02). To directly demonstrate that
AGL50 haplotypes affect flowering time in our population, we
transformed genomic fragments of four AGL50 alleles into two
genetic backgrounds, TueWa1-2 and TueScha-9, both belonging
to the reference (blue) haplotype. AGL50 from Yeg-1, a repre-
sentative of the reference clade that varies at four noncoding
positions relative to TueWa1-2 and Tuescha-9, did not change
LTF (Fig. 4 D and E), but three nonreference AGL50 alleles,
from ICE92, ICE228, and ICE72, significantly increased LTF
(Fig. 4 D and E). Using heterozygous allelic status in a GWA
study, we thus uncovered a flowering time role for a gene that
had not been linked before to this trait, either by conventional
GWA or by mutant analyses.

Discussion
The Contribution of Dominance to Genetic Variance. There is often a
discrepancy between the heritability of a trait and inheritance in
families on one hand and the genetic variance explained by loci
identified in GWA studies on the other hand. This discrepancy is
often referred to as “missing heritability,” and the potential
causes are a subject of ongoing, intense debate in the field of
quantitative genetics (reviewed in refs. 62–65). Proposed expla-
nations include the lack of power to detect loci of small effect
(reviewed in refs. 62, 66), the importance of rare variants (reviewed
in refs. 62, 64), the contribution of multiple different alleles at the
same locus (allelic heterogeneity) (50, 67–69), the change in allelic
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Fig. 4. Candidate region HV1.3 contains AGL50, which is sufficient to alter LTF. LD is plotted for (A) 400 kb and (B) 20 kb surrounding region HV1.3 (Materials
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effects across environments (65), and the interactions between or
within loci (70).
We have leveraged the power of inbred lines and a carefully

chosen intercrossing scheme to measure the contribution of
nonadditive inheritance to phenotypic variability. The contribu-
tion of allelic interactions to genetic variation is most relevant for
outcrossing species, but we reasoned that using a collection of
replicable, heterozygous lines was a compelling system for ex-
ploring the power of nonadditive GWA models. Although non-
linear models are typically ignored in the analysis of continuous
traits (62), a considerable portion of genetic variance in our
population is attributable to dominance, and the underlying
alleles can be mapped when nonadditivity is explicitly consid-
ered. Although our approach does not quantify the contribu-
tion of nonadditive inheritance to missing heritability in natural
populations of A. thaliana (which are mostly inbred), our results
do argue for the inclusion of nonadditive models in GWA
studies because they reveal loci that would go undetected using
standard approaches.
We cannot exclude a role for epistasis, but we found that a

single heterozygous position can contribute up to 20% of the ge-
netic variance (Fig. 3C) and that the marginal effect of significant
SNPs can result from single-locus dominance. An indirect test for
multilocus effects using the network-guided SConES approach
(50) suggests that allelic heterogeneity or multilocus additive ef-
fects may account for additional phenotypic variation in our
population because SConES mostly found other significant SNPs
than the single-locus scans. Because neither set of SNPs can ex-
plain all of the genetic variance, we hypothesize that both intra-
locus and interlocus interactions contribute to nonadditivity in our
population and that the genetic basis for both contributions is
largely nonoverlapping.

Arabidopsis thaliana in the Context of Traditional Heterosis Hypotheses.
For nearly 100 years, geneticists have sought to develop a unified
model explaining heterosis. Three leading hypotheses of intralocus
interactions have been developed. The dominance hypothesis
suggests that individuals in a population carry a suite of rare,
slightly deleterious mutations that have not yet been purged by
purifying selection (16–18, 71, 72). The ability of selection to
remove weakly deleterious mutations is reduced when effective
population sizes are small, which is typical for selfing species.
Correspondingly, the dominance hypothesis has generally received
the most empirical support from studies of inbreeding depression
(73–76). If heterosis is the reverse of inbreeding depression, then
the degree of heterosis should positively correlate with the genetic
distance between parents, and causal alleles should be rare with
small phenotypic effects (8, 51–53, 73). Several dominantly acting
loci have been shown to contribute to heterosis (29, 77, 78), and
more recently, heterosis-associated loci in maize have been shown
to be enriched for deleterious mutations (43). Although domi-
nance remains the prevailing explanation, some assumptions of
this hypothesis are not consistently supported; the correlation
between the degree of heterosis and the genetic distance between
parents is not always evident (37, 55–57, 79–82), and there are loci
with moderate effect sizes (29, 77, 78).
The overdominance hypothesis suggests that a very small

number of overdominant loci with large effects explains the
majority of heterotic phenotypes (3, 4, 9). This alternative
hypothesis is good news for breeding programs because a
few major-effect loci are much more easily introduced into
different backgrounds than a large number of small-effect
loci. A number of studies have identified overdominant QTL
associated with hybrid vigor (23, 24, 78, 81, 83, 84), but mo-
lecular identification of casual variants is rare. Although
a few cases of truly overdominant loci have been confirmed
(10–13), in some cases, fine mapping of overdominant QTL
has separated a single overdominant locus into multiple,

dominant loci acting in repulsion (85, 86), a situation called
pseudooverdominance, which represents the third common
hypothesis for heterosis.
As discussed above, characteristics of dominant and overdominant

alleles underlying heterosis, including their expected effect size and
allele frequency, have been predicted by assuming that the trait in
question is related to fitness. We have focused on two groups of
traits, flowering time and plant growth/size. We did not directly es-
timate a fitness proxy such as seed set, but we reasoned that traits
shown to have adaptive value in A. thaliana, such as flowering time
(87–89), will be subject to evolutionary forces comparable to those
acting directly on fitness. Although flowering time is locally adaptive
in A. thaliana, the correlation between flowering time and fitness
varies by accession and environment (90–92). Large-effect mutations
in flowering time genes can significantly perturb fitness, but their
effect is not directional and varies by genetic background (90, 93),
providing one possible explanation for variable correlation between
these two traits.
Our data are a poor fit for the dominance hypothesis because

we found overdominant and dominant loci of medium to large
effect. The variants at these loci, although segregating at lower
frequency than background SNPs, do not classify as rare by
population genetic standards. Furthermore, there is only a weak
positive correlation of nonadditivity with genetic distance for
most traits, and the strongest evidence for any relationship is a
negative correlation with rosette diameter (SI Appendix, Fig. S15),
with the caveat that any correlation based on a large number of
small-effect loci may be obscured by the moderate-effect size loci
that we detected in the GWA studies. Several previous studies of
heterosis using controlled crosses in A. thaliana have identified
loci that exhibit all possible modes of gene action, including ad-
ditive, dominant, and epistatic interactions (26–28, 94–96). Lack of
support for the major heterosis hypotheses comes also from
studies in crop species, particularly in maize and rice. Maize is a
classical model for investigating heterosis, and this outcrossing
species is cited frequently as supporting the dominance model of
heterosis (18), but several overdominant QTL have been identi-
fied (29, 30, 81). Rice, in contrast, has been proposed as a system
that supports the overdominance hypothesis, but all three modes
of gene action have been uncovered in this predominantly selfing
species as well (23, 24, 29, 77, 78). The dichotomy between these
two model crop species has been attributed to their alternative
mating strategies; the large-effect loci that we have found in
A. thaliana, a selfing species, support this argument.
That different single-locus allelic interactions can underlie

heterotic phenotypes in multiple species suggests that both
single-gene dominance and overdominance truly occur or that
pseudooverdominance is more prevalent than expected. Addi-
tionally, it is also possible that putatively deleterious, dominant
loci have pleotropic effects. If such loci contribute positively to
a second phenotype, they could be retained during evolution
for longer than expected from their deleterious effects. Re-
gardless of genetic behavior, the existence of large-effect,
Mendelian loci driving heterosis is a considerable boon to plant
breeding programs where they could easily be integrated into
elite material.

Materials and Methods
Generation of Plant Material. A half diallel was constructed by manually
intercrossing 30 inbred strains of A. thaliana (36), facilitated by male sterility
induced by an artificial miRNA targeting the homeotic genes AP3 (22). In
addition to the 435 hybrid combinations generated with this method, 30
manual self-crosses of the parental strains were performed using the same
strategy. This ensured that the maternal environments of the hybrid and
parental genotypes were equivalent. A list of hybrid and parental genotypes
used in this study can be found in SI Appendix, Table S1.

Experimental Design. In total, five replicates of 495 genotypes were surveyed
in this experiment (435 hybrid genotypes, 30 parental genotypes from
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manual crosses, and 30 self-fertilized parental genotypes). Five unsterilized
seeds for each replicate were aliquoted into 1.5-mL tubes with 500 μL of ddH20.
Seeds were stratified in the dark at 4 °C for 10 days. After stratification,
seeds were sown into soil (CL T Topferde; www.einheitserde.de) pots in a
completely randomized design. Flats were covered with humidity domes and
placed into 16 °C growth chambers under long-day conditions (16 hours
light: 8 hours dark) at a relative humidity of 65%. Light bulbs were a
mixture of Sylvania Cool White Deluxe to Warm White Deluxe fluorescent
bulbs (4:2) (www.havells-sylvania.com/en-GB/sylvania). Humidity domes
were removed after 1 week, and pots were manually thinned to one plant
per pot. Plants were subsequently phenotyped for a variety of traits: days
to first open flower (DTF), rosette leaf count at the first open flower (LTF),
rosette diameter, and rosette dry mass. Once the plants had produced
about 10 siliques, they were harvested, and rosette diameters were mea-
sured. The rosettes were placed into paper bags, dried at 80 °C for
24 hours, and weighed. Additionally, images of each tray were taken at days
21 and 29. From these images the following measurements were extracted
using a custom ImageJ (97) macro: area (day 21 and 29), perimeter (day 21
and 29), area growth [(day 29 − day 21)/8 d], and perimeter growth [(day
29 − day 21)/8 d]. In brief, the macro automatically segmented the im-
ages by removing the background and returned rosette area and pe-
rimeter values in pixels for each plant. Because the maternal plants were
hemizygous for the artificial miRNA targeting AP3, progeny derived
from these crosses were segregating for the transgene. Plants with the
transgene were easily identified based on their floral and fruit mor-
phology. To ensure that the transgene did not alter the measured phe-
notypes, we recorded the artificial miRNA status of each plant for use as a
covariate in later analyses. Additionally, the dates that the plants were
harvested for rosette measurements were recorded for use as a potential
covariate.

Handling of Missing Data and Data Normalization. Overall, germination rates
were high in this experiment. Out of 495 surveyed genotypes, only 9
completely failed to germinate (7 hybrids and 2 manually selfed parents),
and these lines were excluded from further analyses (SI Appendix, Table
S1). Of the remaining lines, 98% of plants germinated. Most germination
failures only occurred in a single replicate (SI Appendix, Fig. S18). In these
cases (58 in total), the missing phenotypes were imputed as the mean of the
phenotyped replicates for each genotype. After exclusion of genotypes with
failed germination and imputation of the remaining missing data, each phe-
notype was Box–Cox transformed to improve the normality of the data (SI Ap-
pendix, Fig. S19).

Estimation of GCA, SCA, and Heritability. A traditional ANOVA approach was
not appropriate for our data, because there are some missing data (35).
Instead, variance components were estimated using a linear mixed model
implemented in SAS using a restricted maximum likelihood estimation
method (98). The SAS code is available in SI Appendix, Text S1, and is a
modified version of the code available on Fikret Isik’s webpage (www4.ncsu.
edu/∼fisik/Analysis%20of%20Diallel%20Progeny%20Test%20with%20SAS.
pdf). Only hybrid genotypes were used. The following linear mixed model
was fitted to the transformed data:

Yjkl = μ+Gj +Gk + Sjk + Ejkl .

Here Yjkl is the lth phenotypic observation for the jkth cross, μ is the overall
mean, Gj or Gk is the random GCA of the jth female or the kth male, Sjk is the
random SCA of the jth female and the kth male, and Ejkl is the error term. All
terms were expected to be normally distributed. This model can also be
written in matrix format:

y =Xβ+ Zγ+ e.

Here y is a vector of observations, β is a vector of the fixed effects parameter
(overall mean), γ is the vector of random effects parameters (GCA and SCA),
« is the random error vector, X is the known design matrix for the fixed
effects, and Z is the known design matrix for the random effects. In SAS, the
Z design matrix was constructed by hand using PROC IML to associate each
individual with its respective parents. Next, PROC MIXED was run on the
data using the above model. Variance components and covariances of var-
iance components were extracted from the model and used to calculate
both broad- and narrow-sense heritability (as well as their SEs). Because our
parents were not derived from a randomly mated population, the additive
(σ2A) and dominance (σ2D) genetic variance and the total phenotypic variance
(σ2P) in our data were as follows (35):

σ2A = 2σ2GCA,

σ2D = σ2SCA,

σ2P = 2σ2GCA + σ2SCA + σ2Error.

Both narrow- (h2
n) and broad-sense (H2

b) heritabilities were calculated from
these values (35):

H2
b =

σ2A + σ2D
σ2P

,

h2
n =

σ2A
σ2P

.

Estimation of Mean Genotypic Values. A linear mixed model was fitted to each
Box–Cox transformed phenotype using the package lme4 in the R statistical
framework (99). For each phenotype, the following model was fitted:

Yjkl =Gjk +Ajk + Ejkl ,

where Gjk is the random genotypic effect of the jth female and the kth male,
Ajk is the random effect of the amiR AP3 transgene on the hybrid cross of jth
female and the kth male, and Ejkl is the error term. For each phenotype, the
above model was fitted with and without the transgene variable, and the
significance of this term was tested. In a few cases the transgene term was
not significant and was subsequently removed from the model (DTF, LTF,
and dry mass). In the remaining cases, the transgene explained only 0.02–
2.18% of the total phenotypic variance. After model fitting, the coefficients of
each genotype were extracted from the model and used for all subsequent
analyses. Broad-sense heritability was also calculated from these models:

H2
b =

σ2G
σ2P

.

Here σ2G is the variance due to the genotype term (Gjk), and σ2P is the total
phenotypic variance. The broad-sense heritability estimates were compara-
ble to those derived from SAS (Fig. 1).

Calculation of Midparent Heterosis. The predicted genotypic values of hybrid
and manually selfed parental genotypes were extracted from the linear
model. Using these values, standard quantitative genetic components of
phenotype were calculated (7). MPH was calculated as the distance of the
hybrid phenotype from the midparent value, or mean of the two parental
genotypes. Two of the 30 manually selfed parental genotypes did not ger-
minate, and as a result, MPH could not be calculated for hybrids generated
from these two parents (Bak-2 and ICE61) (SI Appendix, Table S1). For sub-
sequent analyses, only 372 hybrid genotypes were used.

Generation of F1 Genotypes and SNP Filtering. In silico F1 genotypes were
constructed from parental genome sequences (36) that had been filtered to
remove (i) all sites that lacked complete information, (ii) all sites that were
not polymorphic, (iii) all triallelic sites (with respect to the reference), and
(iv) all singletons. After filtering, 723,403 SNPs remained. Because the pa-
rental genotypes are few, there is extensive long-distance LD between sites.
To remove such sites, we first encoded all 723,402 SNPs using the standard
additive 0,1,2 encoding, where 0 is the major, 1 is the heterozygous, and 2 is
the minor allele. After encoding, 75,346 SNPs were only observed once
within this population. We then created categories for how often a specific
SNP pattern across all individuals was observed within our dataset (pattern
occurrence). These categories ranged from 2 to 7,364. For example, a SNP is
located in category 2 if this SNP shares the same pattern with exactly one other
SNP in the genome and in category 1,000 if the SNP in question shares the
same pattern with exactly 999 other SNPs. In SI Appendix, Fig. S7, the cumu-
lative number of SNPs for all categories is plotted. We observe that 32.97% of
all our SNPs fall into the categories 1–10, which includes all distinct SNPs plus
the number of SNPs for each of the categories from 2 to 10. Approximately
38% of all SNPs fall into the categories 100–7,364. Next we evaluated whether
SNPs with shared patterns were located on the same chromosome or distrib-
uted across multiple chromosomes. SI Appendix, Fig. S8, shows the distribution
of SNPs across chromosomes for categories 2–20. For the final SNP set, we
allowed SNPs to share their pattern with up to nine other positions (categories
1–10), but we removed all sites that exhibited complete long-distance LD
across chromosomes. The final dataset consisted of 204,753 SNPs, and these
sites were used for all association mapping studies.
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Genome-Wide Association Mapping (Additive Model). All GWA analyses were
conducted using the easyGWAS framework (46). We used a local copy of
easyGWAS and custom C/C++ and Python implementations of the
FaSTLMM (47) algorithm. For the additive model, the homozygous
major allele is encoded with 0, the heterozygous genotype with 1, and
the homozygous minor allele with 2. The genetic similarity between all
genotypes was estimated by computing the realized relationship kin-
ship matrix (48) on the additively encoded genotype data. This kinship
matrix was used in the FaSTLMM model to account for confounding due
to population stratification and cryptic relatedness. The additive model
was only run on the predicted phenotypic values. Genomic control (GC)
values were computed to assess the degree of inflated test statistics
(100). GC is measuring the deviation of the observed median test sta-
tistics from the expected one. GC values larger than 1 are indicative of
inflated P values, whereas values smaller than 1 are indicative of de-
flated P values. GC values for each GWA can be found in SI Appendix,
Table S9, and QQ plots for traits with significant SNPs can be found in SI
Appendix, Fig. S20.

Genome-Wide Association Mapping (Overdominant Model). We conducted
GWA analyses with an overdominant genotype encoding, where both the
homozygous minor and homozygous major alleles are encoded as 0 and the
heterozygous genotype is encoded as 1. The kinship matrix was computed on
the overdominantly encoded data. Using the overdominant encoding, GWA
mapping was performed on both the predicted phenotypic values of the
hybrids as well as MPH of each strain.

Multiple Hypothesis Testing Correction. To account for multiple hypothesis
testing, we used a conservative 5% Bonferroni threshold of 0.05/[number of
tested SNPs (204,753)] = 2.4 × 10−7. This correction was performed within
each study, and significant results are reported in SI Appendix, Tables S3 and
S4. Additionally, we performed an even more stringent correction by ac-
counting for the number of GWA analyses per trait (3). In this case the
Bonferroni threshold was equal to 2.4 × 10−7/3 = 8.1 × 10−8. The results from
this test correction are reported in SI Appendix, Tables S3 and S4.

Estimation of Variance Explained by All SNPs. We computed how much of the
phenotypic variance could be attributed to the genetic contribution (random
effect) using a cross-validation approach. We generated 1,000 randomly drawn
training sets (containing 90% of all hybrid genotypes) and testing sets
(remaining 10%of genotypes). We then trained the LMMusing only the kinship
matrix (random effect) on the training data and subsequently predicted the
phenotype ŷ of the remaining testing set. Predictions were obtained as follows:

ŷ =Ctest
~β+Ktest

�
Ktrain +~δI

�−1�
ytrain −Ctrain

~β
�
,

where C is a vector of ones (or different covariates if given), K is the kinship
matrix, and ~β and ~δ are the estimated parameters from the training step of
the LMM. We then computed variance explained as follows:

vðytest, ŷÞ= 1−
varðytest − ŷÞ 
varðytestÞ

,

where var() is the variance. Note that this measure might be negative, and in
such cases the phenotypic mean would provide a better fit than the actual
trained model. Results were averaged across all 1,000 training sets.

Estimation of Variance Explained by Individual Significant SNPs. Next, we
estimated the variance explained by each individual SNP. For each significantly
associated SNP we generated 1,000 randomly drawn training sets (containing
90%of all hybrid genotypes) and testing sets (remaining 10%of lines).We then
computed variance explained by a single SNP by fitting a linear regression:

vSNP = 1−
var

�
ytest − ~βX

�
 

varðytestÞ
,

where ~β is the estimated parameter from the linear model and X is the as-
sociated SNP. The parameter ~β is estimated as follows:

~β=
�
XTX

�−1
XTy,

where XT is the transposed matrix X. Results were averaged across all 1,000
training sets. Note that these phenotypic predictions are only relevant to the

current dataset and that the results (i.e., variance explained by each site)
need not generalize to genotypes outside of this dataset.

Estimation of Variance Explained by All Significant SNPs. It is important to note
that one cannot sum up the variance explained by all individual SNPs to obtain
the variance explainedby all significantly associated SNPs, because the positions
are not entirely independent of one another, predominantly due to LD. To
estimate the variance explainedby all significantly associatedSNPs,we trained a
ridge regression on X, where X contains all significantly associated SNPs. Ridge
regression includes a penalty term to regularize the weight of each SNP and
thus implicitly takes the relatedness between individual SNPs into account:

~β=
�
XTX + λI

�−1
XTy,

where λ is the penalty term. λ is optimized by performing an internal line
search for a range of λ values: λ= f1e−3, 1e−2, 1e−1, 1,1e1, 1e2, 1e3g. Again,
1,000 cross-validation sets were run for each model.

Power Analyses. To evaluate the power of the different encoding strategies, we
performed a simulation analysis in which we measured the power of each test
with respect to the variance explained by the causal SNP, the minor allele fre-
quency of the causal SNP, and the SNPencoding. The simulationswereperformed
with both the additive and overdominant SNP encodings. We binned the tested
SNPs (204,753) according to their minor allele frequency {0.10–0.15,...,0.45–0.50}.
As the background covariance matrix (kinship matrix) we used the realized re-
lationship matrix based on all SNPs (204,753), applying the appropriate encoding
(48). For combinations of factors (variance explained, minor allele frequency,
and SNP encoding), we first randomly chose a causal SNP with the selected
minor allele frequency from our genotypic data. We simulate the phenotype as

y =Xβ+ e,

where X is the causal SNP and β is the regression coefficient. We let the proportion
of variance explained by the SNP vary between (0.05,0.10,0.20,0.40,0.60,0.80). The
remaining variance is explained by Gaussian distributed noise:

e∼Nð0,1− vSNPIÞ,

where vSNP is the variance explained by the focal SNP. Each combination of
factors (variance explained, minor allele frequency, and SNP encoding) was
repeated 1,000 times. Results show the power, or 1 minus the probability of not
detecting the causal SNP, averaged over all repetitions, along with the SEs (Fig.
2 A and B). These simulations were performed using a type I error rate of 0.05.

Characterization of Significant Peaks and Identification of Candidate Genes.
For GWA studies, we considered only SNPs with complete genotype in-
formation in our parental panel, but this approach removes some potentially
relevant polymorphism. To characterize the decay of linkage disequilibrium
(LD) around peaks and to develop a candidate gene list, we used a less
stringent cutoff of 70% complete information at all sites and identified
additional candidate SNPs based on linkage to significant sites using the
program PLINK 1.9 (101). SNPs within 200 kb of a significant SNP, in complete
LD (r2 = 1), and with a minor allele frequency greater than 0.1 were col-
lapsed into the eight candidate regions listed in SI Appendix, Table S7. Two
peaks on chromosome 3 were collapsed into a single large region using this
approach because of their physical proximity and extended LD in this region.
The regional information was used to develop candidate lists. Decay of LD
around these peaks was calculated from the reference SNP in each of the
above-described regional LD blocks for up to 200 kb surrounding the focal
SNP (Fig. 4 A and B and SI Appendix, Fig. S16).

Gene Ontology Analysis. For each GWA analysis using the overdominant SNP
encoding, the top 1,000 most associated SNPs were compared against the
complete set of tested SNPs using the SNP2GO library in the R statistical
computing environment (102). Significance was established using a 5% false
discovery rate threshold within each trait.

Transgenic Analysis of AGL50. A 1.8-kb genomic fragment (Chr1:22,007,995-
22,009,824) was PCR amplified using primers TTGGGAAGATCGATTGTCTCTTA
and CTTGCAAGCTCACTGATAGAAAGT from genomic DNA of each parental
accession and Sanger sequenced. The AGL50 fragments from Yeg-1, ICE228,
ICE72, and ICE92 were cloned into the binary vector pMLBart for plant
transformation. T1 transformants were selected on soil treated with 0.1%
glufosinate (Basta) and transferred to individual pots for phenotyping at
2 weeks after sowing. AGL50 sequences from 29 accessions are available at
GenBank under accession nos. KX581758–KX581786.
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