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Abstract

Light‐use efficiency (LUE), which quantifies the plants' efficiency in utilizing 
solar radiation for photosynthetic carbon fixation, is an important factor for 
gross primary production estimation. Here we use satellite‐based solar‐
induced chlorophyll fluorescence as a proxy for photosynthetically active 
radiation absorbed by chlorophyll (APARchl) and derive an estimation of the 
fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. 
By comparing maximum LUE estimated at different scales from 127 eddy 
flux sites, we found that the maximum daily LUE based on PAR absorption by
canopy chlorophyll ( ), unlike other expressions of LUE, tends to converge 
across biome types. The photosynthetic seasonality in tropical forests can 
also be tracked by the change of fPARchl, suggesting the corresponding  to
have less seasonal variation. This spatio‐temporal convergence of LUE 
derived from fPARchl can be used to build simple but robust gross primary 
production models and to better constrain process‐based models.

Plain Language Summary

Plants absorb light to fix carbon dioxide; the efficiency of this process is 
termed as light‐use efficiency and can be calculated based on different light 
absorption definitions. Among the light being absorbed by plants, only a 
fraction is captured by chlorophyll and can be further used for 



photosynthesis. In this study, we used satellite data and derived an 
estimation of the fraction of light that is absorbed by chlorophyll. We found 
that different plants have a similar efficiency using chlorophyll‐absorbed light
to fix carbon dioxide; this efficiency is also found to be stable throughout the 
season in tropical forest. The results of this study can be used to improve 
models' capability to estimate the total carbon fixed by plants at global 
scale.

1 Introduction

Plants fix carbon through photosynthesis, sequestering carbon dioxide from 
the atmosphere and substantially mitigating the negative impact of 
anthropogenic CO2 emissions on climate. Carbon cycle studies often quantify
photosynthesis at local, regional, and global scales as gross primary 
productivity (GPP), the quantity of carbon fixed prior to losses from 
respiration. Many approaches are available to estimate GPP at different 
temporal and spatial scales, including in situ observations from leaf‐level 
chamber measurements of gas exchange and ecosystem‐level eddy 
covariance (EC) technique (Baldocchi et al., 2001), and model estimation 
using indirect remote sensing observations or ecological models at regional 
and global scales (Alemohammad et al., 2017; Anav et al., 2015; Running et 
al., 2004).

The production efficiency model (PEM) or light‐use efficiency (LUE) model 
offers a very simple and broadly applied conceptual framework to estimate 
GPP at different spatial scales (Monteith, 1972). This class of models 
calculates GPP using the product of the photosynthetically active radiation 
(PAR), the fraction of absorbed PAR (fPAR), and a LUE factor, which converts 
energy absorbed into the amount of carbon fixed:

 (1)

LUE is often calculated as a function of the maximum daily LUE (εmax) 
regulated by environmental controls (temperature, soil water, vapor pressure
deficit, etc.). The variation of LUE can be large, while εmax is often regarded 
as a constant parameter for each biome type in most LUE models. The 
product of the first two terms on the right‐hand side in equation 1 is 
absorbed PAR (APAR = PAR × fPAR), which can be expressed variously as 
incident PAR (fPAR = 1), PAR absorbed by the entire (nonphotosynthetic and 
photosynthetic) canopy (fPARcanopy) or by chlorophyll in all leaves of the 
canopy (fPARchl, photosynthetic‐only; Figure S1). Because of the different 
definitions of APAR, the LUE factor in equation 1, which corresponds to 
different εmax values, can differ substantially. In most studies, εmax is an 
empirical parameter estimated from equation 1 that varies greatly because 
of the different LUE definitions (Song et al., 2013). Therefore, εmax values 
cannot be used/compared when they are derived from different fPAR bases.

Most PEMs employ the PAR absorbed by vegetation canopy (APARcanopy) to 
estimate GPP (GPP = LUEcanopy × APARcanopy), for example, the Carnegie‐Ames‐



Stanford Approach model (Potter et al., 1993) and the Moderate Resolution 
Imaging Spectroradiometer (MODIS) GPP algorithm (Running et al., 2004), 
where the fPAR is typically calculated as a function of satellite‐derived 
normalized difference vegetation indices (NDVIs) or leaf area index (LAI). 
However, not all light absorbed by the canopy is used in the photosynthetic 
process (Figure S1). A substantial fraction of PAR will be absorbed by the 
nonphotosynthetic vegetation (NPV, e.g., branch, stem, dry leaf, 
nonphotosynthetic pigments, and materials; Xiao et al., 2004). Importantly, 
the fraction of NPV is different across different biomes (Li & Guo, 2016). As a 
result, in those PEM models, εmax may be biome‐specific as APARcanopy is not 
corrected for the fraction of PAR absorbed by NPV (McCallum et al., 2009; 
Potter et al., 1993). However, the variation of NPV ratio within biomes is not 
considered in these models. In addition, the NPV composition also varies with
vegetation phenology and growth over seasons and years (Guerschman et 
al., 2009). Thus, there is a need to account for the temporal variability of 
biotic factors such as changes in the fraction of chlorophyll/NPV with 
phenological cycles.

One fundamental theoretical assumption is that with more precise 
representation of fPAR absorbed by chlorophyll, estimates of ecosystem GPP 
are significantly improved by reducing bias and variability associated with 
unaccounted differences among biomes or across time in the ratio of 
chlorophyll to NPV. If GPP is more tightly coupled with chlorophyll‐absorbed 
PAR as hypothesized, the range of εmax variations across space and time will 
be smaller when estimated from the absorbed energy by chlorophyll, which 
is used to drive photosynthesis. Previous studies have shown that the LUE is 
more stable across the seasonal cycle in a cropland when using radiation 
absorption by chlorophyll than by leaf or canopy (Gitelson & Gamon, 2015; 
Peng et al., 2011). However, these studies focused on a single vegetation 
type and used data at a single site. Whether this phenomenon can be 
extrapolated to other biome types at seasonal scale or across different 
biome types remains unclear.

Successful retrievals of solar‐induced chlorophyll fluorescence (SIF) from 
satellites (Frankenberg et al., 2011; Joiner et al., 2013) provide a new probe 
of vegetation photosynthesis at regional to global scales (Porcar‐Castell et 
al., 2014). SIF is a very small fraction (~1–2%) of energy reemitted during 
the light reactions of photosynthesis. Photons absorbed by excited 
chlorophyll have three pathways: photochemical quenching (used for 
photosynthesis), nonphotochemical quenching (heat dissipation), and 
fluorescence (Genty et al., 1989; Figure S1). Because SIF is only emitted 
from photosystems and can be interpreted as the photosynthetic electron 
transport rate under unstressed condition (Zhang et al., 2014), it can be a 
good proxy of PAR absorbed by the chlorophyll (APARchl) that is more 
precisely focused on photosynthetic pigments than traditional measures of 
ecosystem or canopy APAR (Zhang, Xiao, Jin, et al., 2016). However, current 
long‐term SIF observations have relatively high uncertainties and low spatial 



resolution (Joiner et al., 2014), which complicates direct comparisons with EC
flux tower observations of LUE and GPP. Most PEMs still use satellite‐based 
optical vegetation activity indicators (OVAIs; Table S1; Elsobky, 2015; Yan et 
al., 2016) to estimate as fPARcanopy or fPARchl, which allow GPP simulation at 
spatial resolutions comparable to the footprint of EC flux tower sites.

In this study, we try to test our hypothesis that the maximum daily LUE 
based on radiation absorbed by chlorophyll ( , corresponding to LUEchl and 
APARchl) is more stable than other εmax definitions in space and time. This 
hypothesis, if verified, would help us to build new PEM without biome‐specific
parameterizations of εmax. To test this hypothesis, we followed these three 
steps:

1. We first derive proxies of fPARchl and fPARcanopy from OVAIs so that they 
can be directly compared with GPP and PAR from flux towers. To do 
this, we explore the relationship between SIF and OVAIs upscaled to 
SIF spatial resolution and estimate fPARchl from OVAIs (Figure S2). The 
OVAIs used in this study are satellite‐retrieved vegetation indicators 
such as NDVI, enhanced vegetation index (EVI; Huete et al., 2002), and
an fPAR product (fPARmod15; Myneni et al., 2002) from the MODIS as well
as the Medium Resolution Imaging Spectrometer terrestrial chlorophyll 
index (MTCI) from the Medium Resolution Imaging Spectrometer (Dash 
& Curran, 2004). Through this comparison, we would like to (a) identify
which OVAI can serve as better proxies of fPARchl and (b) build linear 
relationships between OVAIs and fPARchl.

2. After we obtain the proxies of fPARchl, fPARcanopy, and GPP estimated 
from the FLUXNET data set (Baldocchi et al., 2001), we then 
calculate εmax for different biomes using different APAR definitions. A 
spatial convergence of  would be represented as a more stable 
relationship between GPP/PAR (LUEeco) and linear proxies of 
fPARchl across different biomes over space.

3. To test the temporal convergence, we obtained the reference LUE 
(LUEref) from two tropical rainforest sites where LUE under a fixed 
environment condition can be derived for each month to represent the 
seasonal variation of εmax. In this way, we can compare the ecosystem 
LUE without considering the environmental limitations (Figure S2). A 
temporal convergence of  would be represented as fPARchl fully 
tracking the monthly variations in LUEref.

2 Materials and Methods

2.1 Solar‐Induced Chlorophyll Fluorescence as a Proxy of APARchl

The SIF product for the period from 2007 to 2015 was retrieved from the 
Global Ozone Monitoring Experiment 2 (GOME‐2) instrument onboard the 
MetOp‐A satellite (Joiner et al., 2013). The GOME‐2 V27 SIF product used in 
this study has a spatial resolution of 0.5° × 0.5° and monthly temporal 



resolution. SIF can be expressed using a similar form to the LUE models 
(Guanter et al., 2014; Joiner et al., 2014):

 (2)

where FE is the fluorescence efficiency observed at top of canopy. Because 
SIF retrieved from GOME‐2 is a snapshot of vegetation activity in space and 
time, we use the cosine of the Sun zenith angle (SZA) to approximate the 
instantaneous PAR when the satellite observation is made:

 (3)

where β is the solar constant, representing sea‐surface clear‐sky solar 
radiation when the Sun is at the zenith, that is, cos(SZA) = 1. Thus, 
equation 2 can be written in a different form:

 (4)

Previous studies also showed that SIF is mostly driven by the amount of 
radiation absorbed by chlorophyll under unstressed conditions (Liu et 
al., 2017; Yang et al., 2015). Simulations using the Soil Canopy Observation 
of Photochemistry and Energy fluxes (SCOPE) model suggest that FE is 
relatively stable using various parameter combinations. A detailed 
description of this analysis can be found in the supporting 
information Text S1 and Figures S3 and S4 (van der Tol, Verhoef, & 
Rosema, 2009; van der Tol, Verhoef, Timmermans, et al., 2009; 
Verhoef, 1984, 2011; Verrelst et al., 2015; Zhang et al., 2014). Although 
drought and other environmental stresses also affect FE, this effect is limited
because of the averaging of the SIF signal in the spatial and temporal 
domain. In addition, the energy partitioning through heat dissipation for 
light‐adapted conditions (ϕN) is limited and has less effect on FE at 9:30 a.m. 
(GOME‐2 overpass time) than midday (Amoros‐Lopez et al., 2008). Only 
prolonged and severe drought that directly affect the heat dissipation for 
dark‐adapted conditions (ϕD) will decrease FE (Adams & Demmig‐
Adams, 2004; Baker, 2008). Therefore, we regard FE as a constant in this 
study and the uncertainties are considered in the error propagation analysis 
(Text S3). With this approximation, we define fPARSIF as SIF/cos(SZA); 
considering a constant β and FE in equation 4, fPARSIF is proportionate to 
fPARchl:

 (5)

where fPARSIF does not follow the conventional range of 0 to 1, but that of an 
empirical parameter that can be calculated from SIF data. We use this 
relationship to evaluate proxies for fPARchl using OVAIs both temporally for 
each pixel and spatially for each month.

Because of the linear form of PEMs (equation 1), we use a linear 
transformation of OVAIs to approximate fPARchl as follows:



 (6)

The slope (a) can be regarded as a part of LUE and ideally, should be a fixed 
number for all biome types. The intercept (c) can be estimated from the 
intercept of the regression. A relatively stable regression slope and intercept 
between OVAIs and fPARSIF both spatially and temporally indicates that the 
approximation in equation 6 is plausible. The values (OVAIs−c) are 
considered as a proxy of (or proportional to) fPARchl and are denoted with a 
subscripts m (e.g., EVIm = EVI − c). Prior to these regression analysis, OVAIs 
were subject to a quality check and only good observations were used 
(supporting information, Text S2; Myneni et al., 2015; Vermote, 2015; Viovy 
et al., 1992).

2.2 FLUXNET Data Processing and Light‐Use Efficiency Calculation

The GPP estimation used in this study is derived from EC data available from 
the FLUXNET2015 Tier 2 data set 
(http://fluxnet.fluxdata.org/data/fluxnet2015‐dataset/; 2015 December 
Release; Table S2) processed according to standardized protocols (Pastorello
et al., 2017). Out of the 136 available sites we chose 127 sites (or specific 
site‐years for rotated cropland) where C3 species are dominant. These flux 
sites cover a variety of ecosystem types, and there are altogether 626 site‐
years (Table S2 and Figure S5). The daily FLUXNET2015 data sets were 
aggregated into 8‐day intervals (and 10‐day intervals for 2008–2012 to 
compare with MTCI; see section 2.3) after a rigorous data quality check 
(Text S2).

Limitations of water, temperature, and other climate factors will down‐
regulate the LUE from its maximum value (εmax). These limitations are 
complex and vary across ecosystems so that we cannot directly 
estimate εmax based on GPP and APAR measurements (Zhang, Xiao, Zhou, et 
al., 2016). In this study, we simplify this issue by assuming (1) that plants in 
all ecosystems reach their maximum LUE during the peak growing season 
because of their long‐term acclimation of the photosynthetic apparatus given
that no severe disturbances occur. This allows us to calculate the maximum 
ecosystem LUE ( , corresponds to LUEeco and fPAR = 1) for each site; (2) 
for tropical rainforest ecosystems, where photosynthesis is active all year 
round, we followed previous studies (Wu et al., 2016) and used the reference
LUE (LUEref) as the seasonal variation of . LUEref is calculated as ecosystem
LUE (LUEeco = GPP/PAR) under a small range of climate conditions (e.g., 
cloudiness, PAR, air temperature, and vapor pressure deficit) within each 
month throughout the year, so that the effect of environmental limitations on
photosynthesis is constant and can be eliminated.

For each site‐year, we identified the five 8‐day (four 10‐day) period with the 
highest GPP values as the peak growing season. For each 8‐day (10‐day) 
period during the peak growing season,  was then calculated as the 
average of daily GPP from EC measurements (GPPEC) divided by the average 
of daily PAR. However, as disturbances may occur in some years and climate 



may limit LUE during the peak growing season, we only retained the upper 
50th percentile of  from all available years for each site for further 
analysis.

As several studies have shown that εmax varies between clear and cloudy 
days (Mercado et al., 2009), we separate the sunny and cloudy period for 
each 8‐day (10‐day) period during the peak growing season using a 
clearness index (actual shortwave radiation/top of atmosphere shortwave 
radiation) of 0.55 (which is ~80% of its maximum actual value because of 
atmospheric scattering). Corresponding to the different definitions of fPAR 
(Figure S1), εmax can also be calculated at different levels, using incoming 
PAR (  = GPPEC/PAR), canopy‐absorbed PAR (  = GPPEC/APARcanopy), and
chlorophyll‐absorbed PAR (  = GPPEC/APARchl) during the peak growing 
season when there is no environmental limitation (Gitelson & Gamon, 2015; 
Zhang et al., 2009). For  and , they can also be calculated 
from  and , respectively. Therefore, a convergence 
of εmax from canopy to chlorophyll level across biome types will be 
represented as a convergence of regression slopes in the linear regression 
(with 0 intercept) between LUEeco and fPARchl compared 
to LUEeco and fPARcanopy.

2.3 Remote Sensing Observations at Flux Tower Sites

We used two vegetation indices (NDVI and EVI), one fPAR product (fPARmod15) 
from MODIS and one chlorophyll index (MTCI) to represent the fPARcanopy and 
their transformations (OVAIs−c) as proxies of fPARchl (Table S3). Due to the 
sensitivity of remote sensing retrievals to atmospheric contaminations, when
comparing the remotely sensed OVAIs with eddy flux measurements, we 
used a similar procedure reported in Zhang, Xiao, Zhou, et al. (2016) to 
screen and gap‐fill the remotely sensed OVAI observations of poor quality 
(see details in supporting information, Text S2). Considering the multiple 
approximations in the previous steps and the uncertainty in each data set, 
an error propagation analysis, described in supporting 
information Text S3 (Deming, 1943), was performed.

To reduce artifacts caused by Sun‐sensor geometry or bi‐directional 
reflectance distribution function (BRDF), we used the Multi‐Angle 
Implementation of Atmospheric Correction (MAIAC) algorithm reflectance 
data set (Lyapustin et al., 2012) to calculate NDVI and EVI for the Amazon 
K67 (2.85°S, 54.97°W) and K34 (2.61°S, 60.21°W) sites. The MAIAC 
algorithm implements rigorous BRDF and atmospheric corrections and is 
therefore more robust than EVI calculated from MOD09A1 C6 when detecting
changes in tropical forests (Hilker et al., 2014). We retrieved the reflectance 
for the nine surrounding pixels (3 km by 3 km) for sites K67 and K34 from 
2000 to 2012 and then calculated the NDVI and EVI using the BRDF 
corrected reflectance.

3 Results



3.1 Relationship Between fPARSIF and OVAIs

We calculated the averages of OVAIs for all pixels within each vegetation 
type for each month and compared them with fPARSIF for the period 2007 to 
2015 (2007 to 2012 for MTCI). For fPARmod15 and NDVI, their relationships with
fPARSIF for different biome types were scattered, and the R2 of the regression 
within each biome type was relatively lower compared to those for EVI and 
MTCI (Figure 1). EVI and MTCI also showed a stronger linear correlation with 
fPARSIF when all the biome types were combined together. The relationship 
between fPARSIF and MTCI was also consistent across biomes.

The intercepts of these linear regressions (c in equation 6) are important to 
establish and assess variations in the relationship between OVAIs and fPARchl.
We compared the intercept estimates from both the spatially averaged 
regressions (Figure 1) and the regressions of individual gridcells (Figure S6). 
MTCI and EVI showed less variable intercepts than fPARmod15 and NDVI across 
four biome types. The fPARmod15 and NDVI exhibited a larger variation of 
intercepts than that of EVI and MTCI when different biome types were 
considered.

We also used simple linear regression to determine the relationship between 
monthly fPARSIF and OVAIs for individual gridcell. Figure 2 shows the spatial 
pattern and the frequency statistics of the regression slopes between 



fPARSIF and the four OVAIs with fixed intercepts from the previous steps. The 
spatial variations of the regression slopes using fPARmod15 and NDVI were 
relatively larger than those using EVI and MTCI, as represented by larger 
coefficients of variation. The frequency statistics of these regression slopes 
showed biome‐specific characteristics for fPARmod15, NDVI, and EVI, where the
lowest values were found for forests, followed by shrublands, grasslands, and
croplands. The MTCI, on the other hand, showed a relatively stable slope 
across the different biome types. In addition, EVI also showed slightly higher 
coefficients of determination (R2) for the regression models (Figure S7). 
Based on these analyses, EVI and MTCI were considered stronger proxies of 
fPARchl than either fPARmod15 or NDVI. The average intercepts on the x axis 
were ~0.1 for EVI and ~1.0 for MTCI. We used these intercepts to build the 
relationship between OVAIs and the fPARchl.



3.2 Different LUE Estimation Across Biomes Based on Flux Tower GPP

To compare with GPP estimated from flux towers (GPPEC), we used 
the EVIm (EVIm = EVI − 0.1), MTCIm (MTCIm = MTCI − 1), as approximations of 
fPARchl, and the original fPARmod15 and NDVI with different intercept values as 
fPARcanopy (Figure S1). For clear days, the regressions between  and EVIm or
MTCIm, which are considered better fPARchl approximations, showed a smaller
variation of regression slopes within each biome types than those using the 
other two canopy indicators (fPARmod15 and NDVI; Figures 3a–3d). EVIm and 
MTCIm were also characterized by a smaller root‐mean‐square errors and 
higher coefficients of determination (R2) than fPAR and NDVI when all biome 
types were combined together (Tables S4 and S5). Similar results were also 
found for cloudy days (Figures 3e–3h) and when using NDVI with different 
intercepts as fPARcanopy proxies (Figure S8). From the ecosystem (top of 
canopy) PAR absorption to canopy or chlorophyll PAR absorption, the 
corresponding maximum daily LUE converges as shown by smaller 
coefficients of variation across biomes using fPAR = 1, fPARcanopy, and 
fPARchl approximations (Figures 3i and 3j).

3.3 Using fPARchl Approximations to Track Seasonal Dynamic of Reference 
LUE

We also tested whether this convergence can be found across time, that is, 
whether the seasonal changes of LUEref can be explained by the change of 
the canopy chlorophyll. We chose two tropical rainforest sites in the Amazon 
forest where multiyear eddy flux observations were available (Wu et 
al., 2016). For both sites, MTCIm showed a similar seasonal pattern of LUEref, 
while NDVI was not sensitive to seasonal changes (Figure 4). This represents 
that the seasonal variation of  can be better explained by fPARchl than 



fPARcanopy (NDVI); therefore, the  ( /fPARchl) has a smaller variation at 
seasonal scale compared to .

4 Discussion

4.1 Advantages and Biophysical Interpretation of fPARchl

In this study, we show that EVI and MTCI are robust proxies of fPARchl with 
the possible uncertainties being taken into consideration; the maximum daily
LUE for PAR absorption by chlorophyll ( ) exhibited less variation in space 
and time than  and  One implication is that a fixed  can be usable 
for GPP estimation for C3 plant‐dominated ecosystems across space and 
time. Although NDVI and fPAR were also considered to capture the greenness
of the canopy when first employed in PEMs, they did not perform as well as 
other chlorophyll‐related indices in estimating canopy photosynthesis 
(Rossini et al., 2012; Xiao et al., 2004). Using the SIF retrieval from satellite 
and flux sites across the globe, our study further demonstrated the 
advantage of these approaches as a more directed proxy of fPARchl. Our 
study also supports the long‐proposed convergence of LUE theory based on 
the optimization of resource allocation (Field, 1991; Goetz & Prince, 1999). 
However, the possible explanation for better proxies of fPARchl using EVI and 
MTCI may be different. EVI is known to be less prone to saturation under high
biomass or LAI conditions (Huete et al., 2002). When leaf quantity keeps 
increasing under moderate to high LAI, the APARchl also increases because of 
the increases in total chlorophyll content in the canopy. EVI, compared to 
NDVI or fPARmod15, suffers less from saturation and thus shows a higher 
correlation with fPARchl. MTCI, on the other hand, is a good indicator for 
canopy chlorophyll content (Dash & Curran, 2004). Therefore, it can be 



directly linked to fPARchl although a saturation effect may exist as well when 
total chlorophyll content is high (Peng et al., 2011).

Chlorophyll content has been successfully retrieved at canopy scale as the 
interaction between these pigments and light affects the canopy reflectance 
spectrum (Asner & Martin, 2008; Curran, 1989). Compared with PEMs which 
only focus on the LAI or fPARcanopy, the use of fPARchl can better estimate both 
leaf quantity (LAI) and leaf physiological quality (chlorophyll concentration 
and nitrogen content), the latter is often regarded as the secondary factor 
responsible for LUEcanopy (Wu et al., 2016). The possible explanation for this 
spatio‐temporal convergence may be that all the C3 plants share the same 
electron transport mechanism and chemical reactions to fix carbon. And all 
plants under different environmental conditions tend to maximize their 
photosynthetical capacity during the peak growing season to increase their 
competitiveness. The variation of fPARchl in both space and time may also be 
related to the variation of maximum carboxylation rate (Vcmax), quantum 
efficiency (αq), and LAI (Croft et al., 2016), but still need additional studies.

4.2 Potential of Using SIF and fPARchl for GPP Estimation and Data 
Assimilation

As SIF is closely related to the APARchl, both theoretically from model 
simulations and experimentally using in situ observations (Frankenberg et 
al., 2011; van der Tol et al., 2014), this relationship, conserved across 
biomes, can be used to build simple models to directly estimate GPP from SIF
and to improve PEMs (Sun et al., 2017). Guanter et al. (2014) explored the 
feasibility of estimating GPP using SIF for croplands. Many studies suggest 
that SIF contains not only the information of light absorption but also the LUE
information (Yang et al., 2015). However, these studies all used 
SIFyield (SIFyield = SIF/APARcanopy) defined at the canopy scale. At present, we 
still do not know whether the good relationship between SIFyield and 
LUEcanopy is caused by the variation of canopy chlorophyll content, which is 
embedded in both SIFyield and LUEcanopy (Figure S1), or to what extent satellite‐
derived SIFyield actually captures environmental stress on plant physiology. 
Current GOME‐2 data set may not be suitable for the detection of this quick 
response because of its early morning overpass time and the spatial and 
temporal aggregation required to reduce SIF data uncertainty. However, 
understanding this underlying mechanism will pave the way to better 
estimate GPP from SIF.

The estimates of fPARchl using vegetation indices also provide an alternative 
opportunity to benchmark state‐of‐the‐art land surface models. Currently, 
many dynamic global vegetation models use data assimilation techniques, 
which employ remote sensing‐retrieved LAI or fPAR products to improve 
performance (Demarty et al., 2007). Other studies try to use SIF or MTCI to 
constrain model output or inversely estimate some key parameters of the 
photosynthesis processes (Alton, 2017; Zhang et al., 2014). As we have 
shown that EVI and MTCI can be used as a proxy of fPARchl and that  



appears to converge across different biome types, fPARchl estimated from EVI
and MTCI is more directly related to GPP and can be used for data 
assimilation to improve model performance.

4.3 Implications for PEMs

Due to their simple form, PEMs play an important role in estimating GPP at 
regional to global scales. However, the parameterization is a critical issue, 
especially for εmax, which determines the efficiency of plants converting the 
daily solar energy to biochemical energy, thus directly affecting the 
magnitude of the GPP estimation. Previous studies have made efforts to 
correctly estimate the biome‐based εmax (Zhao et al., 2005). Some studies 
even suggest site‐level εmax is necessary to improve model accuracy (Kross et
al., 2016). However, it is unlikely that outside of flux tower's footprint, we 
can obtain spatially continuous in situ GPP measurement to estimate εmax. 
The spatial convergence of  across biomes justifies that a 
constant εmax can be applied for simple but robust parameterization of PEMs. 
This approach could simplify the model parameterizations by avoiding the 
need of vegetation maps (e.g., forest, shrub, and grass) and vegetation‐
specific parameters, ultimately reducing the uncertainty and improving the 
robustness of the GPP estimates. A new global GPP product from the 
Vegetation Photosynthesis Model has been developed based on this theory 
and showed good performance (Zhang et al., 2017). The seasonal dynamics 
of fPARchl are closely related to that of LUEref; however, these biotic changes 
(LAI and chlorophyll content) are not well represented in fPARcanopy‐based 
PEMs. Using fPARchl could improve the prediction of biotic regulation of GPP at
seasonal scale.

Although the cross‐biome variation in  diminishes when using EVIm and 
MTCIm as an approximation of fPARchl, we show that the within‐biome  
variation does not decrease much compared to the fPARcanopy‐based 
indicators. This may be caused by several reasons: (1)  is still constrained 
by environmental conditions and may change from one year to the other 
year for a given site, even during the peak growing season; (2) site‐specific 
characteristics (soil type, fertilization, etc.) still affect the  to some extent;
(3) the direct and diffuse radiation composition and canopy structure, for 
example, clumping index, affect ; (4) flux and satellite measurement 
uncertainties still exist; and (5) the inconsistency of flux tower footprint and 
OVAI pixels may introduce noise in the relationship.

5 Conclusions

In this study, we find that based on light absorption by chlorophyll of the 
canopy, which directly reflects light harvesting of the photosynthesis 
process,  tends to converge across space and time, which can greatly 
simplify the structure and parameterization of PEMs. However, to improve 
model accuracy, more studies are needed to investigate the environmental 
limitations on εmax and photosynthesis. Different forms of temperature and 



water limitations have been widely used, but recent studies also suggest the 
need to employ mixed forms of the limitations for forests and nonforested 
sites, especially during drought periods. With more data accumulated from 
global flux networks and Earth observation data from different satellites, 
PEMs will provide more accurate estimates of GPP to support a better 
understanding of the global carbon cycle.
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