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ABSTRACT: Feedstock variability that originates from biomass
production and field conditions propagates through the value chain,
posing a significant challenge to the emerging biorefinery industry.
Variability in feedstock properties impacts feeding, handling,
equipment operations, and conversion performance. Feedstock
quality attributes, and their variations, are often overlooked in
assessing feedstock value and utilization for conversion to fuels,
chemicals, and products. This study developed and employed a multiscale analytical characterization approach coupled with data
analytic methods to better understand the sources and distribution of feedstock quality variability through evaluation of 24 corn
stover bales collected in 4 counties of Iowa. In total, 216 core samples were generated by sampling nine positions on each bale using
a reliable bale coring process. The samples were characterized for a broad suite of physicochemical properties ranging across field
and bale, macro, micro, and molecular scales. Results demonstrated that feedstock quality attributes can vary at all spatial scales and
that multiple sources of variability must be considered in order to establish and manage biomass quality for conversion processes.

KEYWORDS: Biomass variability, Multiscale characterization, Corn stover, k-means clustering, Inorganic speciation, Material attributes,
Emergent properties

■ INTRODUCTION

Lignocellulosic biomass holds significant promise as a viable
source of sustainable and renewable transportation fuels,
biochemicals, and bioproducts for domestic energy security
and growth of the U.S. bioeconomy. The U.S. Department of
Energy’s (DOE) 2016 Billion Ton Report projected the
potential for more than one billion tons of biomass in the
form of agricultural and forestry, waste, energy crops, and algal
materials capable of displacing approximately 30% of domestic
petroleum consumption without adverse environmental effects
or negative impacts to production of food and agricultural
products.1 However, feedstocks are currently assigned a
monetary value based on factors that neglect variations in
quality and the resulting effects on bioprocessing. For instance,
variations in ash, moisture, particle size, and dimension increase
energy consumption,2 generate a significant fraction of fines, and
reduce throughput,3 which can lead to the technoeconomic
failure of a biorefinery.4 Therefore, it is crucial to develop an
understanding of the multidimensional challenge caused by the
myriad of inter-related and complex physicochemical attributes
whose relative importance will vary with different biorefinery
conversion technologies.

The realization of an industry with lignocellulosic material-
based fuels, chemicals, and products hinges on an economical
supply of quality biomass.5 Initial research and development
have focused primarily on the utilization of agriculturally derived
feedstocks in high-biomass yielding regions, without careful
consideration of their relatively low energy densities or variable
composition and quality.6 These agricultural biomass resources
have inherent variability7 that extends beyond plant species to
include differences in anatomical fractions and tissue types of the
same plant materials.8−10 Prior research has demonstrated key
sources of variability that stem from environmental and
production factors, which affect biomass properties and, in
turn, feedstock performance in downstream processes. Prelimi-
nary assessments of the compositional variability of corn stover
identified a broad range of variability in structural carbohydrates,
lignin, and ash for 112 maize hybrids from 52 locations in 10
states.11 The harvest year was identified as the most significant
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factor in the compositional variation of corn stover, followed by
location and variety,12 while the harvest method has been
implicated in soil accumulation that contributes to variable ash
content.13 Extreme weather events, like drought, contribute to
reductions in biomass productivity,14,15 which are further
compounded by compositional variations16,17 and changes to
cell wall ultrastucture.18 Extractable sugars accumulated in
response to osmotic pressures experienced during drought are
prone to degradation during chemical pretreatment19 to the
detriment of fermentation and product yields. Conditions
during storage impart distinct changes over time, where high
moisture coupled with oxygen exposure lead to biological
degradation that results in loss of valuable carbohydrates,20

leaving biomass depleted in fermentable components.21 It is this
complex interplay of many factors that creates significant
challenges for downstream processes, which often require
physically and chemically consistent feedstocks.6,22−25

Biomass variability has proven a formidable challenge to
downstream processing in the emerging biorefining industry,
impeding feeding operations and reducing conversion yields and
selectivity.26 The U.S. DOE’s Bioenergy Technologies Office
(BETO) assembled a team to identify the key challenges faced
by the industry. These challenges centered around feedstock
variability, feeding and handling of solid materials, process scale-
up, and valorization of waste and coproduct streams.4 Integrated
biorefinery (IBR) development has suffered from failing to
account for the structural and chemical complexity of
lignocellulosic biomass, citing feedstock variability as a major
operational challenge. The variations of carbohydrates and
lignin cell wall compositions, extractives, moisture, ash, and soil
contaminants have been noted as critical factors that impact
biomass quality, process uptime, and throughput. Ultimately,
characterization of the variability of available biomass feedstocks
and finding methods to mitigate this variability will be required
for integrated feedstock supply, preprocessing, and conversion
pathways and profitable biorefineries.4

Given the complexity of the biomass supply chain, beginning
with harvest and collection from the field, the aim of this study

was to identify and understand multiple facets of biomass
variability in a single species, Zea mays, through examination of
the multiple scales at which heterogeneity exists. This case study
documents a realistic range of variability of corn stover derived
from 4 counties in Iowa consistent with a surrogate biorefinery
supply shed in a high-yield region of the U.S. Corn Belt. Further,
in addition to the characterization of feedstock attributes known
or suspected to impact processing, this study employed
unsupervised machine learning algorithms to extract previously
overlooked features that identify and analyze regional variability
of corn stover.

■ MATERIALS AND METHODS
Corn Stover Bale Collection and Sample Preparation. Corn

stover bales (n = 24) were obtained from four fields each in a different
central Iowa county: Hamilton (4 bales), Hardin (6 bales), Story (6
bales), and Poweshiek (8 bales). Corn stover was baled between
October 12 and 27, 2017 using an AGCO 2270XD large square baler,
with the exception of Poweshiek county, where a Heston 2270XD
square baler was used. Preliminary screening was performed by taking
three cores per bale to select the 24 bales used in this case study; the
impacts of the screening are considered in the data analysis and
discussion. Selected bales were more thoroughly sampled with nine
cores per bale, as adapted from prior studies27,28 and illustrated in
Figure 1. Core samples (n = 216 cores) were dried at 40 °C and milled
with a 2 mm screen in a Thomas Model 4 Wiley Mill (Thomas
Scientific, Swedesboro, NJ) for analysis of a suite of properties including
moisture, total ash, inorganic species, structural carbohydrate, lignin.
Subsequently, bales were processed through a Vermeer BG480 bale
processer with a 75 mm screen then a Bliss Hammermill with a 25 mm
screen at the Biomass Feedstock National User Facility (BFNUF)
located at Idaho National Laboratory. Select samples were collected
after the second mill, then milled to pass a 2 mm screen, and evaluated
for surface topology, surface energy, and crystallinity.

Moisture and Inorganic Species Analysis. Moisture was
measured gravimetrically in two steps; the first drying step was done
at 40 °C for 72 h prior to milling; then, moisture and ash were measured
using a LECO Thermogravimetric Analyzer 701 (St. Joseph, MI)
according to ASTMD3174−04. Elemental ash analysis was determined
using ASTM D6349 after milling using a Retsch ZM200 (Haan,
Germany) equipped with a 0.2-screen.

Figure 1. Illustration of bale core sample locations. Bales were cored on the bottom rather than the top if they could be identified as a bottom bale from
a stack of bales to better identify wet zones and soil accumulation. Average bale dimensions were as follows: length = 247 cm; width = 124 cm; height =
90 cm; mass = 543 kg; and density = 199 kg/m3.
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Fourier Transform Near-Infrared (FT-NIR)-Predicted Compo-
sitional Analysis. Samples were dried at room temperature in a
desiccator for at least 72 h. Duplicate preparations of each sample were
scanned at the National Renewable Energy Laboratory as described
previously,29 using a Thermo Antaris II FT-NIR with autosampler
attachment and Omnic software (Thermo Scientific, Waltham, MA,
USA). Spectra were collected over a range of 4000−10000 cm−1. For
each sample, 128 scans were averaged resulting in a single spectrum.
Duplicate samples were analyzed, and the spectra were averaged prior
to prediction.
Image Analysis in Visible, Red-Green-Blue (RGB) Color

Space. A detailed description of the RGB image analysis can be
found in the Supporting Information (SI). Images were collected from
exterior cores on selected bales that appeared clean, or with evidence of
biological degradation or soil accumulation. These images were
subjected to colorimetric (RGB) analysis in ImageJ (https://imagej.
nih.gov/ij/), and data were compared to NIRS predicted chemical
composition from adjacent cores. Multiple linear regression and
multinominal logistic modeling approaches were performed in JMP to
assess the ability of the average red, green, and blue signature to predict
the categorical quality assignments as well as the chemical composition
and inorganic speciation for the stover samples.
X-rayDiffraction.XRD experiments were performed at U.S. DOE’s

Advanced Light Source synchrotron facility on beamline 12.2.2. located
at Lawrence Berkeley National Laboratory (LBNL). Biomass samples
were milled and loaded into capillary tubes from MiTeGen
Crystallography. The tubes were then attached to goniometer bases
that allowed for samples to be rotated along their x-axis. X-rays were
emitted at a wavelength of 0.8265 Å, with a polarization factor of 0.99.
Scans were conducted between 0° and 28.5° with a step size of 0.00738
2θ. Distance from sample to detector was calibrated against cerium
dioxide, following the standard procedure developed at ALS beamline
12.2.2.30 A Mar-3450 detector was utilized to measure the intensity of
emitted photons and their corresponding angle (2θ). Background
subtraction was performed using Dioptas online XRD powder
diffraction software.31 In order to compare data gathered from this
experiment with diffractograms from the literature, the 2θ from our
experiment was adjusted to match the 2θ values that would have been
produced using 1.541 Å X-rays. This adjustment was performed with a
few simple manipulations of Bragg’s Law.32 Samples were tested in
duplicate.
Stereo Microscopy.Milled corn stover samples were imaged using

a Nikon SMZ1500 stereomicroscope and captured using a Nikon DS-
Fi1 CCD camera that was operated with a Nikon Digital Sight system
(Nikon Instruments, Melville, NY, U.S.A.) under bright field lighting.
Particle size andmorphology was calculated using theOtsu Thresholding
and Analyze Particles plugins in FIJI (ImageJ).
Scanning ElectronMicroscopy.Milled, corn stover samples were

mounted onto aluminum stubs with carbon tape and sputter-coated
with 6 nm iridium using a Cressington Sputter Coater 208 HR
(Cressington Scientific Instruments, Ltd., Watford, UK). SEM
micrographs were acquired with a FEI Quanta 400 FEG instrument
(FEI, Hillsboro, OR, U.S.A.) operating at 15 kV using a gaseous solid-

state detector (GAD) collecting secondary electrons. Surface roughness
was calculated using the SurfCharJ plugin in FIJI (ImageJ).

Surface Energy. Surface energy was performed as described
previously.33,34 Surface energy measurements were estimated with a
surface energy analyzer (SEA) from Surface Measurement Systems
(SMS), equipped with a flame ionization detector (FID). Approx-
imately 1 g of corn stover was packed into silanized glass columns (4
mm ID, 6 mmOD x 300mm); packing densities measured∼0.3 g/cm3.
To ensure material packing within the column, ends were plugged with
silanized glass wool provided by SMS. Dispersive surface energy and
specific surface energy estimations were performed using HPLC grade
n-alkanes (C7−C10), trichloromethane (monopolar Lewis acid), and
ethyl acetate (monopolar Lewis base) from Sigma-Aldrich. Measure-
ments were performed isothermally (30 °C) and at infinite dilution (a
coverage of 0.005 n/nm or 0.5% monolayer coverage) with helium as
the carrier gas (10 cm3/min). The Dorris-Gray method was used to
calculate the dispersive surface energy values, while the acid−base (or
specific) surface energy values were calculated using the polarization
method on the vanOss-Chaudhury-Good (vOCG) scale. Elution of the
probes provided symmetrical peaks and were evaluated using the peak
max function.

k-Means Clustering. k-means clustering was performed using the
Scikit-learn machine learning library in Python. The k-means clustering
algorithm was run ten times with different centroid seeds, and the final
number of clusters used for further analysis was chosen as the number of
clusters at which the within-cluster sum-of-squared errors measured
between each data point in the cluster and the cluster centroid
approached its minimum value. This approach to choosing the optimal
number of clusters was used to minimize within-cluster sum-of-squared
errors while not overfitting the number of clusters. Each clustering was
run for a maximum of 300 iterations. Data was plotted using the
Matplotlib library in Python.

■ RESULTS AND DISCUSSION

Multiscale Characterization Approach. The complexity
of lignocellulosic biomass originating from supply chain poses
significant challenges to handling, preprocessing, and con-
version operations. The range, magnitude, and distribution of
material and quality attributes in corn stover and related impacts
to integrated preprocessing and conversion are not well
understood. A multiscale approach was developed and
employed in this study to understand how variability of corn
stover attributes originates across fields within a supply shed and
how macro-scale behavior in feeding, preprocessing, and
conversion is predicated upon variations in attributes at the
molecular and microscale (compositional, structural, and
physicochemical attributes; Figure 2). Fundamental knowledge
is critical to derisking the biorefining industry and overcoming
challenges related to feedstock variability from the field through
final products. The sources and range of variability are highest at

Figure 2. Feedstock variability demonstrated across various scales in this case study, from region (four counties in Iowa: Hamilton, Hardin, Poweshiek,
and Story), bale, plant fractions, tissue and cell types, to surface and cell wall. The map provides locations and sources of commercial bales of corn
stover for exploring regional variation across four Iowa counties used in this case study. Physicochemical and structural variability exist at multiple
scales, and each scale offers unique insights to understanding the sources of variability and material attributes that impact the biomass value chain.
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the regional or resource-level and propagate with modification
across the value chain.
Regional/County-Level Variability: k-means Cluster-

ing. Understanding feedstock variability at a broad scale
requires accounting for regional-scale heterogeneity.35 Histor-
ically, most studies of biomass quality have relied uponmeasures
that only account for bulk chemical composition, quantifying
structural carbohydrates, lignin, extractives, and total ash
content.11,12,29,36−38 In the present study, k-means clustering
was employed for retrospective examination of a multivariate
data set, including organic and inorganic features (n = 16), using
cores (n = 216) obtained from stover bales representing four
distinct counties in Iowa.
The 24 bales used for this study underwent preliminary

screening on the basis of total moisture and ash content for
empirical studies intended as pilot-scale assessments of corn
stover variability on an integrated preprocessing and bio-
chemical conversion pathway.3 k-means clustering was initially
performed using only two featurestotal ash and moisture
contentto assess any influence that bale preselectionmay have
contributed to the regional-scale analysis of feedstock variability.
With two features and clusters set at k = 2 or 3, all data are
intermingled (see Figure S1 in Supporting Information (SI)),
suggesting that ash and moisture alone do not differentiate
among bales in this study.
k-means clustering was performed using the following

features: glucan (%), xylan (%), lignin (%), extractives (%),
ash (%, 575 °C) were predicted using near IR spectroscopy and
Al2O3 (% w/w), CaO (% w/w), Fe2O3 (% w/w), K2O (% w/w),
MgO (%w/w),MnO (%w/w), Na2O (%w/w), P2O5 (%w/w),
SiO2 (% w/w), TiO2 (% w/w), and SO3 (% w/w) that were
measured according to ASTMD6349 method. County of origin
was not included as a feature in k-means clustering. To
determine the optimal number of clusters, k-means clustering
was first run over a range of values for the number of clusters (k =
1 to 11 clusters) and the in-cluster sum of squares was calculated
for each value of k. In-cluster sum of squares was plotted as a
function of the number of clusters, and the optimal number of

clusters was chosen as 3, which corresponded to the inflection
point on the curve. The results are shown in Figure 3a, with data
partitioned into three well-defined clusters. To further
investigate the origin of the differences among the 3 clusters,
the number of times each county was included in each of the
clusters was counted. These data show that, based on the
selected features, Hamilton and Hardin counties (Figure 3b,c)
are very similar, while Poweshiek and Story (Figure 3d,e)
predominantly cluster together.
Results of k-means clustering of 16 combined organic and

inorganic features revealed a connection back to county of
origin. k-means clustering performed with three clusters (Figure
3a) indicates that Hamilton and Hardin, which are neighboring
counties, cluster togetherwithmost features falling to cluster 1
and a few in clusters 0 and 2 (Figure 3b,c)while Story and
Poweshiek counties (Figure 3d,e), located to the south, also
cluster together with most features in cluster 2 and a few others
falling to 0 and 1. All counties have commonality across features
with some samples in each cluster. Features of inorganic
speciation, glucan, xylan, extractives, lignin, and total ash content
when clustered together, with no prior knowledge of county,
reflect differences in geospatial locationgrowth conditions,
soil type and chemistryand harvest operations. Ash content in
switchgrass has been shown to be significantly affected by
location37 and landscape position;38 for example, high ash
content biomass derived from low elevation fields or floodplains
may require additional preprocessing to prevent slagging in
thermochemical conversion.39 Previous studies have demon-
strated the effects of harvest timing40,41 and harvest equipment
and method13,42 on quality variations that impact sugar
utilization during fermentation and the quality of convertible
biomass for biochemical conversion pathways. The results
indicate substantial variability exists regionally, even among
counties within close proximity that are representative of a
realistic, biorefinery supply shed. These findings suggest that the
typical bulk measures of moisture and ash are not sufficient for
understanding the complexity of feedstock variability and
potential downstream impacts but important differences are

Figure 3. Clustering results using bale core data. Bale core data were clustered on glucan (%), xylan (%), lignin (%), extractives (%), ash (%, 575 °C)
that were measured using near IR spectroscopy and Al2O3 (% w/w), CaO (% w/w), Fe2O3 (% w/w), K2O (% w/w), MgO (% w/w), MnO (% w/w),
Na2O (% w/w), P2O5 (% w/w), SiO2 (% w/w), TiO2 (% w/w), SO3 (% w/w) using k-means clustering. Left panel: Results of k-means clustering of
these features into three clusters (a), indicating there are three distinct clusters with several samples overlapping data points among the clusters. For
visualization purposes, clusters are displayed on a two-dimensional scatter plot of the first two principal components and color coded by cluster
number. Right panel: Bar plots showing the number of times each county corresponds to each of the three clusters calculated using k-means clustering,
indicating Hamilton (b) and Hardin (c) counties predominately fall into cluster 1 and Poweshiek (d) and Story (e) predominantly fall into cluster 2.
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manifested in the detailed measures of inorganic and organic
components of biomass.
Ash and Inorganic Speciation. Currently, inorganics are

treated on a bulk ash content basis with limited tracking or
understanding of the impacts of individual inorganic species to
preprocessing and conversion. However, k-means clustering
results presented here suggest that total ash content was a
limited descriptive feature for differentiating among bales at a
regional scale. Probability distribution functions for total ash
(%), combined % SiO2 and % Al2O3, often derived from soil, %
alkali, and %alkaline inorganic species are presented in Figure 4.
Significant variability is noted in total ash content in bales
measured across all four counties in this study with total
inorganics ranging from about 5% to 25%; however, the
distributions of total ash, particularly those for Story, Hardin and
Poweshiek are not distinguishable, which further explains why
total ash is not an adequate feature for uniquely differentiating
(i.e., clustering) corn stover. In contrast, the distributions of
inorganics are more distinct among the counties (Figure S2).
Bales fromHardin andHamilton counties were enriched in SiO2
and Al2O3 on a total ash basis, suggesting increased soil
accumulation,43 relative to bales from Story and Poweshiek
counties. In contrast, Story and Poweshiek counties had higher
concentrations of alkaline earth metals (Ca and Mg) on a total
ash basis, as compared to Hardin and Hamilton counties. Story,
Hardin, and Poweshiek counties had more variable and higher
alkali content than bales from Hamilton County. Inorganic

species variations can be attributed to factors, like growth
conditions and harvest method, although differences reported
here cannot be determined from these data. Findings suggest
regional differences in inorganic speciation are an important
consideration for determining biorefinery process configura-
tions and potential locations.
Knowledge of inorganic speciation and content is central to

addressing challenges around biorefinery disruptions caused by
wear and deleterious impacts to thermochemical and bio-
chemical conversion pathways. Inorganics in corn stover have
been implicated in equipment damage during bioprocessing by
IBRs,4 contributing to wear through abrasive and erosion
mechanisms.44,45 A recent study reported an increase in the
work of cohesion for corn stover particles corresponding with an
increase in ash content,34 highlighting the role of inorganic
content and speciation in bulk solids handling challenges that
relate to poor flow properties and agglomeration.46 Alkali
metals, like potassium,47 negatively affect catalytic fast
pyrolysis.48 Water-soluble components of biomass ash, such as
K, Na, Cl, and S, have been implicated in critical challenges in
thermochemical conversion of solid biofuels that include
fouling, slagging, corrosion, particulate emissions, and environ-
mental contamination.46 In biochemical pathways, inorganic
species have been shown to contribute to mechanical wear
during pretreatment3,39 and reduce the efficacy of dilute acid
pretreatment and xylose yields due to soil buffering capacity of
the corn stover.49 These results suggest that regional variations

Figure 4. Probability distribution functions of inorganics measured in cores and dominant inorganic species variabilities on total ash basis in the corn
stover bales collected from four counties in Iowa: (a) total ash content, (b) sum of SiO2 and Al2O3, (c) alkali (K2O, Na2O), (d) alkaline earth metals
(CaO, MgO).
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in corn stover can be revealed and potentially managed through
an understanding of inorganic speciation rather than bulk
compositional measures.
Spectroscopic methods, after calibration against standardized

analytical techniques, have proven to be excellent methods for
rapid sample analysis. We investigated X-ray diffraction as an
approach to generate information on inorganic speciation along
with biomass crystallinity. Figure 5 represents spectra from the
various samples. All biomass types exhibited similar crystallinity
indices, ranging between 44.0 and 52.66% with a standard
deviation of 0.0220. Cellulose crystalline peaks were identified
based on previous work on cellulose containing materials.50

However, the spectra also provided peaks indicative of minerals.
Mineral peaks were identified for SiO2,

51 K2O,
52 and CaO.53

Variation of inorganic content and speciation will guide the
development of integrated, analytical characterization ap-

proaches capable of discriminating between physiological and
extrinsic inorganics derived from soil accumulation.

Bale-Scale Variability by County. In biorefinery oper-
ations, whole bales are received, stored as needed, decon-
structed, and further milled to the desired particle size for use in
conversion. A bale sampling scheme was adapted from prior
studies27,28 and used to assess composition and quality
variations among bales. Variables corresponding to sampling
method (core depth, location, distance from face or top) were
evaluated for cores (n = 216, with n = 9 cores/bale) from bales (n
= 24) corresponding to each county presented in this study.
Probability density functions and distributions for each of the
coring variables that were measured in this study (core depth
and three core locations) are consistent for core samples from
bales across all counties (SI, Figures S3−S4), indicating that the
coring methodology employed here was not a source of

Figure 5. XRD spectra for biomass samples obtained from Story, Iowa indicated that crystallinity was similar. However, peaks indicating minerals
present in the ash content of biomass can help elucidate the impact of inorganic species variabililty on feedstock quality.

Figure 6.Distributions for (a) extractives and (b) combined glucan and xylan six bales fromHardin County. Composition for Hardin county bales was
predicted with the following core samples: bales 1 and 5− n = 4 cores; bale 2− n = 7 cores; bales 3, 4, and 6− n = 9 cores. Boxplots for (c) extractives
and (d) combined glucan and xylan for six bales from Story County. Nine cores were sampled from each bale.
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variability and did not influence or bias results. These findings
provide support for a robust coring method that could readily be
adopted by biomass producers or plant operators for quality and
process control in a biorefinery setting. In total, 216 core
samples were generated by using a reliable bale coring
methodology.
Bale-Scale Compositional Analysis. The coring method-

ology described above was used to obtain a set of n = 216 cores
(n = 9 cores/bale) to examine within-bale variability. Corn
stover bales derived from Hardin and Story counties were
selected as the focus for assessment of bale-scale compositional
variability, given the notable differences in inorganic speciation
revealed upon the regional or county-level clustering results.
Overall, the mean and range of structural carbohydrate contents
for combined glucan and xylan were similar for both Hardin
(57.7%; 50.4−62.6%; n = 42) and Story (mean 57.8%; min. 47.1
to max. 62.8%; n = 54) at the county-level; lignin was similar for
both counties, measuring 17.7% (14.3−20.8%; n = 43) and
18.0% (16.1−19.9%; n = 54), respectively (SI, Figure S5).
Further examination of within-bale measures revealed material
color changes and substantial variation in structural carbohy-
drates and extractives content for both counties and, in
particular, Hardin County (Figure 6). Biological degradation
was observed during the sampling and processing of bales
derived from Hardin county; profiles of material browning
consistent with biological degradation were evident on the bale
exterior and cores obtained from Hardin bales 1, 2, and 5.
Biological degradation occurs in response tomoisture variations,
aerobic and anaerobic microenvironments throughout the bale,
and the associated microbial community21 and represents an
important source of within-bale heterogeneity. Evidence of
biological degradation across bale sections has been linked to
process upsets and reductions in throughput during bale
deconstruction and milling operations.3 Further, it was not
possible to obtain FT-NIR composition predictions of all core
samples obtained from Hardin bales; in bales 1 and 5, only 4 of
the 9 cores were within the calibration model for prediction of
composition, while in bale 2, 7 of the 9 cores were within the
calibration (Figure 6a,b). These findings corroborate other
reports of degradation of structural components like hemi-
cellulose to soluble forms of C5 sugars.21 Additionally, these
results illustrate the need for robust predictive models that
account for the range of variability, including moisture history
and biological degradation, in realistic corn stover feedstocks.
Bale-Scale Variability Analyzed by RGB Images. Image

analysis was employed as a macro-scale approach to evaluate
quality of corn stover in visible, red-green-blue (RGB) space.
Cores (12.7 cm) obtained from bales in this study were classified
as either demonstrating evidence of biological degradation or
soil accumulation (or combinations thereof), or as clean upon
observation. Analysis of the red channel from these images
revealed that significant variations were correlated with SiO2 and
glucan contents. Findings suggest that the red channel can yield
information related to surface content of accumulated soil,
primarily SiO2, and glucan content, which changes with degree
of biological degradation. Figure 7 shows sample images of
material from the respective quality descriptor categories, in
addition to a result of the linear regression of the measured
average red signal and the predicted signal from SiO2 and glucan.
The legend indicates cores that were identified into the
respective quality categories through the observational study;
the apparent separation or clustering of the material quality
along the intensity of the red signal was notable. Samples

categorized as clean clustered in a higher range of intensities
(110−125) in the red channel and the biologically degraded
samples clustered in lower intensities (70−90), while soil
accumulated samples clustered intermediate to both.
The multinomial regression for classification of the material

quality resulted in an overall accuracy of 76.2%. A differentiation
among samples with evidence of biological degradation and
those with combined degradation and soil accumulation yielded
the largest discrepancies. Refinement of such predictive models
will require a mechanistic understanding of the biological
degradative processes20 and thermo-chemical oxidative reac-
tions that alter biomass quality attributes during storage54 in
order to deconvolute confounding signals from degradation and
soil accumulation of inorganic species. Although this approach
requires further development (thus model parameters are not
detailed here), these qualitative results show promise for the
development of rapid screening tools that could be deployed in
the field or in-line for rapid assessments of quality and is the
topic of future work.
To further examine particle-scale differences both among

samples from different collection sites and among the bales from
individual sample sites, we examined milled samples by
stereomicroscopy and performed particle size distribution and
morphology analysis (Figure 8). Variability across the samples
collected from different counties was readily visible and directly
measurable from the corn stover particles following 2-stages of
milling and size reduction during preprocessing. Particles
analyzed from the bales collected from Hardin county were
more varied in color, size, and shape. The Story county samples
weremore uniform in color, particle size, andmorphology across
the 6 bale samples analyzed. Differences in color and particle size
may be the result of variations in inorganic content and
biological degradation caused by agronomic and storage
practices, which warrants future investigations. These variations
may also reflect different plant fractions and tissue types.

Figure 7. Image analysis of corn stover cores in red-green-blue (RGB)
space enables rapid quality assessment. All samples (black circles and
colored diamonds) were used in regression analysis for explaining the
signal of the red channel measured from RGB image analysis using SiO2
and glucan contents. Core samples that were identified and categorized
as clean (blue diamond), noted for presence of soil accumulation
(yellow diamond), or suggestive of biological degradation (green
diamond) upon visual inspection demonstrate clustering of material
quality related to red signal intensity.
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Microscale Variability and Emergent Attributes. To
better understand the range of variability in corn stover that
exists at the microscale, we examinedmilled biomass particles by
SEM. The micrographs in Figure 9 display a range of
morphologies and surface features that are found among
particles originating from different anatomical fractions or tissue
types of the maize plant. This analysis demonstrates that even
within a single section of a single bale from a single location
examined in this study, additional variability exists. A range in
surface roughness from Rq = 16 to 42 was measured from these
representative images. During biomass conversion, a high
surface roughness represents an increase in accessible surface
area for catalysts and enzymes. For biomass conveyance,
however, high surface roughness may increase interparticle
friction that leads to bridging and restricts flow. Future studies
will determine how this variability in surface roughness directly
impacts particle flowability and conveyance.
Specific surface energy is the result of interactions between

molecules with a polar nature and hydrogen bonding. Although,
dispersive energy plays a role, the specific surface interactions are
often the major contributor to adhesive and cohesive properties
of a material. Specific surface energy was estimated using the
Dong polarization method on the vOCG scale and revealed

differences for Hardin and Story counties (64.1 mJ/m2 ± 4.1
and 60.7 mJ/m2 ± 2.4, respectively; p = 0.002); results and
distributions are given in Figure 10a. Variations in specific
surface energy were attributed to differences in inorganics
content as a function of soil accumulation,34 differences in
surface chemistry as a result of biological degradation,20 or in
combination. Measured hydrophilicity was similar for both
Hardin and Story counties (0.61 ± 0.01 and 0.60 ± 0.01,
respectively), while nonparametric testing revealed a modest
increase in surface area for Hardin County (1.0 ± 0.2 versus 0.8
± 0.1 m2/g; Rank Sum Test p < 0.001). Bales obtained from
Hardin county showed evidence of biological degradation,
which may account for the slight increase in surface area
measured here and corresponding to variations in particle size
noted above (Figure 8). Integrated analyses of particle
morphology, surface energy, and surface mapping will enable a
multimode approach to examine cellular and molecular-level
properties and to elucidate impacts on handling, deconstruction,
and conversion operations. The fundamental physical, chemical,
and structural properties described herein represent emergent
properties or features of biomass that require excessive energy
inputs for size reduction in preprocessing, feeding and handling,
and conversion to target products, giving rise to new

Figure 8. Stereoscope micrographs (a−f, m−r) and particle morphology (g−l, s−x) of milled, sieved corn stover particles sampled across multiple
bales and bale sections. The samples collected inHardin county displayed a greater distribution of variability in color, particle diameter, and aspect ratio
both among and within the different bales than the samples collected from Story county.
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determinants of recalcitrance.55 These emergent properties arise
from underlying physical, chemical, and structural attributes but
exist and interact at a spatial scale that, we anticipate, has
substantial impact on the behavior of biomass in upstream
biorefinery operations that have struggled with the challenge of
accommodating biomass variability.

■ CONCLUSIONS

This study utilized multiscale characterization combined with
data analytic approaches to extract features that explain
variability of corn stover across four, Iowa counties representing
a realistic supply shed in the U.S. Corn Belt. Clustering analyses
indicated that moisture and ash on a bulk compositional basis
did not differentiate bales of corn stover from the fields
examined here. However, k-means clustering performed with a
combination of 16 organic and inorganic features revealed a

connection back to county. Further analyses suggested that the
partitioning of corn stover was driven by significant variations in
inorganic speciation among the counties examined here.
Though the root cause of such variations cannot be determined
from these data, differences in growing conditions, production
(e.g., tillage and nutrient inputs), and harvesting methods likely
play a role. These data suggest that county-level differences, even
within a supply shed in a high-yielding region, are an important
consideration, not only for siting future biorefinery locations but
also for determining optimal process configurations and
operational parameters for managing variations in biomass
quality. Further, this study illustrates how within-bale and
within-plant variability confound the understanding of quality in
the context of biorefining operations. Biological degradation and
soil accumulation contribute to compositional and structural
variations within a bale that have been implicated in process

Figure 9. SEM micrographs with surface roughness inset revealing microscale heterogeneity among corn stover fractions: (a) stalk, (b) pith, (c) leaf,
(d) husk, (e) vessel, (f) cob. SEM micrographs of surfaces from different milled corn stover particles from a single section of a single bale harvested
from Story County, Iowa. The particles originating from different tissues of maize plant display different morphologies and variable surface roughness.
Surface roughness was calculated from the images and displayed as topology profiles (insets) and Rq values.
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upsets with reductions in throughput and conversion yield.
These findings highlight the need for a fundamental under-
standing of biomass properties and sources that contribute to
realistic variations in their distributions, including growth,
production, and preprocessing factors as well as anatomical
fractions and tissue types.
Here, we explored fundamental, physicochemical, and

structural attributes that exist at multiple scales and represent
emergent properties of biomass. The measurement of variations
in the structure and composition of biomass at multiple scales is
essential for translating attributes at the micro and molecular
scales to behavior and recalcitrance in bioprocessing. A
fundamental exploration of these features is foundational to
engineer systems capable of managing variability for reliable
biorefinery operations and to enable quality-based valuation
required for the mobilization of domestic, diverse biomass
resources and growth of the bioeconomy. Future work aims to
develop a biomass-agnostic and integrated characterization
approach to elucidate how feature variations relate to down-
stream processes, offering a predictive capability rooted in
fundamental understanding of multiscale material attributes.
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