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ARTICLE

Raman-guided subcellular pharmaco-metabolomics
for metastatic melanoma cells
Jiajun Du1,6, Yapeng Su 1,2,6, Chenxi Qian 1, Dan Yuan2, Kun Miao 1, Dongkwan Lee1, Alphonsus H. C. Ng2,

Reto S. Wijker 3, Antoni Ribas 4, Raphael D. Levine5, James R. Heath 2✉ & Lu Wei 1✉

Non-invasively probing metabolites within single live cells is highly desired but challenging.

Here we utilize Raman spectro-microscopy for spatial mapping of metabolites within single

cells, with the specific goal of identifying druggable metabolic susceptibilities from a series of

patient-derived melanoma cell lines. Each cell line represents a different characteristic level of

cancer cell de-differentiation. First, with Raman spectroscopy, followed by stimulated Raman

scattering (SRS) microscopy and transcriptomics analysis, we identify the fatty acid synthesis

pathway as a druggable susceptibility for differentiated melanocytic cells. We then utilize

hyperspectral-SRS imaging of intracellular lipid droplets to identify a previously unknown

susceptibility of lipid mono-unsaturation within de-differentiated mesenchymal cells with

innate resistance to BRAF inhibition. Drugging this target leads to cellular apoptosis

accompanied by the formation of phase-separated intracellular membrane domains. The

integration of subcellular Raman spectro-microscopy with lipidomics and transcriptomics

suggests possible lipid regulatory mechanisms underlying this pharmacological treatment.

Our method should provide a general approach in spatially-resolved single cell metabolomics

studies.
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S ingle-cell omics methods have revolutionized biology by
resolving the heterogeneity that underlies population
averages1–5. One envisioned application is that of

pharmaco-omics (e.g., pharmacogenomics), in which the genetic
or functional composition of diseased tissues is harnessed to
guide the deployment of custom therapeutic strategies for indi-
vidual patient6,7. Single-cell metabolomics has lagged behind other
omics methods for the lack of proper toolsets for non-perturbative
and targeted (analyte-specific) detection, but it has the potential
to offer deep insights via shining light on the metabolic repro-
gramming that accompanies many disease states8,9. Mass spec-
trometry metabolomics has recently advanced to the level where
analyte labeling techniques can permit multiplex analysis from
single cells10,11, but it is intrinsically sample-destructive, so pro-
hibits live-cell analysis. The fluorescence-based methods offer
high sensitivity12, but with poor multiplexing, and fluorophore
labels can hinder metabolite processing8.

As a non-invasive optical tool, Raman spectroscopy probes the
vibrational motions of chemical bonds, which allows detection of
endogenous metabolites in a label-free manner. Multiple types of
cellular metabolites have been identified by Raman fingerprinting,
including nucleic acids, amino acids, lipids, glucose, neuro-
transmitters and etc13–15. In addition to spectroscopy, Raman
microscopy further generates subcellular chemical maps by tar-
geting predetermined vibrational peaks. In particular, the recent
emergence of stimulated Raman scattering (SRS) microscopy,
utilizing stimulated emission quantum amplification, provides
imaging quality comparable to fluorescence microscopy with
resolution of ~450 nm and speed up to video-rate in live cells and
tissues16,17. By sweeping the laser across a designated wavelength
range, hyperspectral-SRS (hSRS) rapidly produces Raman spectra
of up to 600 cm−1 at subcellular locations18–21. Going beyond
label-free analysis, Raman spectro-microscopy provides targeted
detection and imaging of specific metabolites by recent strategies
of stable-isotope labeling22,23.

In this work, we explore Raman spectro-microscopy for sub-
cellular pharmaco-metabolomics. We adopt a series of BRAF-
mutant patient-derived melanoma cell lines as a model system.
Metastatic melanoma is the most-deadly form of skin cancers, for
which 66% of them harbor mutations in the BRAF kinase24. We
utilize Raman spectro-microscopy to characterize this series of
related but distinct BRAF-mutant melanoma cancer cell pheno-
types, each corresponding to a different level of cancer cell dif-
ferentiation, from melanocytic (differentiated) to mesenchymal
(de-differentiated)25–27. The associated biology of these and
similar melanoma models has been deeply investigated, which
informs our study here27–31. The sensitivity of these cell lines to
various targeted inhibitors and immunotherapies associates with
de-differentiation status27,28,32. Differentiated phenotypes exhibit
higher sensitivity toward BRAF inhibitors, while the de-
differentiated phenotypes exhibit an innate resistance27,33,34.
We hence mine the resulting spectroscopic information to iden-
tify phenotype specific, druggable metabolic susceptibilities.

We first establish a transcriptional relationship between cel-
lular de-differentiation and metabolic reprogramming. We then
integrate single-cell Raman data with transcriptomics analysis to
establish that Raman-extracted trends in cellular chemical com-
position correlate with corresponding trends in gene expression.
We identify and validate two druggable metabolic susceptibilities.
One is specific to the differentiated melanoma cell lines studied,
and is consistent with trends in gene expression. The second
susceptibility is specific to the de-differentiated cell lines, and is
uniquely extracted from the Raman analysis of subcellular lipid
droplets (LDs). It is not detected through either bulk transcrip-
tional analysis or bulk metabolomics, but can be validated by

lipidomics. Raman analysis of single cells is thus shown as a
potent pharmaco-metabolomics tool.

Results
Metabolic features are shown in transcriptome and Raman
analysis. Tsoi et al. recently published a pharmaco-genomic
analysis of 53 patient-derived BRAF-mutant melanoma cell
lines27. Notably, they demonstrated that the expression profiles of
these cell lines faithfully reflected what was seen in the corre-
sponding patient tumors. Further, they adopted unsupervised
clustering of those profiles and classified the cell lines into four
groups based upon de-differentiation status: melanocytic (differ-
entiated), transitory, neural-crest-like, and mesenchymal (de-
differentiated). We first selected a subset of 30 of these cell lines
for analysis, on the basis that they did not also contain RAS
mutations. Similar to reported27, the whole transcriptomic data of
these 30 cell lines, when visualized within a two-dimensional
space (see “Methods”), yielded a clear separation into four dis-
tinct phenotypes, separated by level of de-differentiation (Fig. 1a,
top panel). The nature of cancer cell de-differentiation means that
energetic requirements, cellular morphology, etc., are all altered,
suggesting that cellular differentiation is also accompanied by
metabolic reprogramming35. We tested this hypothesis by simi-
larly analyzing the same 30 melanoma cell lines, but including in
that analysis only ~1600 genes associated with metabolic pro-
cesses. In fact, this calculation yielded an almost identical clus-
tering (Fig. 1a, bottom panel). Just like the well-reported
phenotypic markers28,36, metabolic genes also showed a clear
phenotype-dependent expression trend, with associated functions
that span different metabolic processes (The representative (top 4
ranked) metabolic genes are shown in the bottom of Fig. 1b, the
complete heatmap and list of the top ranked metabolic genes are
shown in Supplementary Fig. 1 and Supplementary Table 1). This
implies that metabolic susceptibilities that exist within these cell
lines may well vary with cellular de-differentiation, similar to
what is known for inhibitors that target oncogenic signaling37.

We selected five representative patient-derived cell lines based
upon the single criteria that they collectively spanned the range of
de-differentiation status (indicated at the top of Fig. 1b with
information listed in Supplementary Table 2), from M381
(undifferentiated) to M262 (differentiated). We acquired sponta-
neous Raman spectra at the single-cell level from all five cell lines
(Supplementary Fig. 2a) over the molecular fingerprinting spectral
range of 700–3100 cm−1 (Fig. 1c). These spectral shapes are
largely similar across four phenotypes. To extract differences
between these spectra, we first utilized unsupervised surprisal
analysis (SA) for dimension reduction38. SA is similar to principal
component analysis (PCA) in that it is an orthogonal transforma-
tion of the data, with the dominant eigenvectors (also called
constraints) capturing most of the variance observed in the Raman
spectra of different cell lines. While SA has been successfully
applied to analyzing gene expression datasets26,39, an early
application was for the analysis of molecular spectra40. We first
confirmed that the constraints and their respective weights
obtained from SA could recapitulate the fine Raman spectral
features (Fig. 1d and Supplementary Fig. 2b). We then generated a
heatmap of the top 5 constraints, labeled in ascending order as λ0–
λ4, with each cell line represented by ten individual cells (Fig. 1e).
The largest constraint, λ0, captures universally shared spectral
features and is expected to be invariant across cell lines. This
shared spectrum, with peak assignments, is provided in Supple-
mentary Fig. 3. The second largest constraint, λ1 (Fig. 1e) captures
the greatest variance from spectra to spectra and exhibits an
average score that obviously changes with cellular de-
differentiation (Fig. 1f). The remaining λ2–λ4 are lower in
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Fig. 1 Transcriptomics and spontaneous Raman spectra analysis of metastatic melanoma cell lines. a Dimensional reduction of bulk transcriptomics data
of 30 melanoma cell lines yields a clear separation of four different melanoma phenotypes, based on either the expression of all genes (top panel) or ~1600
metabolic genes (bottom panel). b A heatmap of gene expression levels for representative genes involved in defining the cellular and metabolic phenotypes
shown in a. The black-font row labels are well-reported phenotypic marker genes for defining different subtypes. The gray-font row labels are top 4 ranked
metabolic markers within each phenotype representing different processes, as identified by matching the symbol with the key at the bottom of the
heatmap. The color-coded bars at the top of the heat map indicate the different cellular phenotypes for each cell line, while the arrows point to the five
representative cell lines selected for Raman analysis. c Spontaneous Raman spectra of five selected cell lines (averaged over 50 spectra from 10 cells per
cell line examined over three independent experiments). Each spectrum is offset apart in y-axis with no changes of absolute intensities. d A representative
Raman spectrum of M262 cells reconstructed by summing the constraints λ0–λ4 identified using surprisal analysis (SA). The inset plot shows the high
correlation between the reconstructed and the measured spectrum. e Heatmap for scores of the top five constraints (λ0–λ4) calculated by SA of the Raman
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SEM. g The spectrum of λ1, with Raman peak assignments. The most negative feature is from CH3 vibration at 2940 cm−1 arising mainly from proteins
(blue, boxed). The most positive feature is a CH2 vibration at 2845 cm−1 mainly from lipids (red, boxed). Source data are provided as a Source data file.
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amplitude and less revealing in spectral features (Fig. 1e and
Supplementary Fig. 3). The spectral distribution of λ1 exhibits
positive contributions from CH2 vibrational stretches (2845 cm−1,
largely arising from lipids), and negative contributions from CH3

stretches (2940 cm−1, mostly from proteins) (Fig. 1g and
Supplementary Fig. 4). The λ1 score declines from M262 to
M381. This indicates that the lipid/protein (CH2/CH3) ratio
decreases with the progression of de-differentiation in these
melanoma cell lines (Fig. 1g). We note here that the relative high
variance in the λ1 originates from the intracellular heterogeneity
from relatively low sampling in spontaneous Raman acquisition
(Supplementary Fig. 2a). This issue is largely bypassed in SRS
imaging, as shown below, with much higher resolution and
sampling.

Differentiated cells are susceptible to fatty acid synthesis. After
mining the metabolic-associated spectral features from the wide
fingerprint region, we next turned to live, single-cell imaging
investigations to capture intracellular heterogeneity. We utilized
SRS imaging (Supplementary Fig. 5a), with microsecond-level
pixel dwell time, subcellular resolution and linear-concentration
dependence for straightforward metabolic quantifications16,17, to
interrogate how the overall trend shown in Fig. 1f is reflected at
the whole cell level. We targeted the lipid peak at 2845 cm−1

(attributed to CH2 vibrations16,17, Fig. 2a, top) and the protein
peak at 2940 cm−1 (from CH3 vibrations41, Fig. 2a, middle). The
generated CH2/CH3 ratiometric images (Fig. 2a, bottom) indeed
nicely resolved a decreasing trend from melanocytic M262 cells
toward mesenchymal M381 cells, implying that the more differ-
entiated cells are relatively richer in lipids. SRS images on fixed
cells yielded similar conclusions (Supplementary Fig. 5b). After
quantifying the averaged CH2/CH3 intensity ratios (Fig. 2b and
Supplementary Fig. 5c), we then asked whether this trend
extracted from Raman imaging could be correlated to tran-
scriptomics data. Strongly correlating or anti-correlating gene
expression patterns are shown in the heatmap of Fig. 2c. In
particular, several genes associated with lipid processing are
identified with strong positive correlations, including fatty acid
synthase (FASN), 3-hydroxyacyl-CoA dehydrogenase, and Mal-
onyl CoA-acyl carrier protein transacylase, mitochondrial. In fact,
the gene ontology (GO) fatty acid synthetic processes exhibits a
strong linear correlation with the CH2/CH3 Raman ratios
(Fig. 2d, top, r= 0.93, p= 0.02). Also notable are genes (Fig. 2c)
and biological processes that exhibit a negative-correlation with
CH2/CH3, such those associated with the cell migration pathway
(Fig. 2d, bottom, r=−0.91, p= 0.03). The high migratory nature
is a known feature in mesenchymal phenotypes42. Similar rela-
tionships from features strongly related to melanocytic (Supple-
mentary Fig. 6a, top) or mesenchymal cell types (Supplementary
Fig. 6a, bottom) were also resolved. These data demonstrate that
single-cell Raman imaging yields information consistent with
transcriptional profiling.

Elevated FASN expression (Supplementary Fig. 6b) in the
differentiated cell lines implies increased de novo fatty-acid
synthesis. We first sought to further explore this biology through
targeted SRS imaging. Elevated glucose catabolism is a character-
istic of many cancers, and produces an excess of the glycolytic
end-product, pyruvate, some of which can be converted to acetyl-
CoA and then further converted, through an FASN mediated
pathway, to fatty acids43,44 (Fig. 2e). The relative importance of
de novo fatty-acid synthesis in the various cell lines can be
inferred by tracking the conversion of glucose into fatty acids
(Fig. 2e). Thus, we incubated the cells in media by replacing
regular glucose with deuterated glucose (d7-glucose) for 3 days
before SRS imaging (Fig. 2f). The rationale is that an active de

novo fatty-acid synthetic pathway will convert some of this d7-
glucose into deuterated lipids, which exhibit a unique lipid
associated C-D spectral signature around 2150 cm−1, effectively
yielding a live-cell assay of FASN activity45. SRS images of the five
cell lines, collected at 2150 cm−1, are provided in Fig. 2f. The
measured cytoplasmic Raman spectrum (Supplementary Fig. 6c)
matches what is expected from deuterated lipids45. The
subsequent quantification of average C-D signals across multiples
image sets (Fig. 2g) implies that de novo fatty acid synthesis is
most activated in the differentiated cell lines M262, M229, and
M397 and remains relatively low in de-differentiated M409
and M381.

Elevated FASN activities in the more differentiated melanoma
cell lines suggest that the FASN pathway may constitute a
metabolic susceptibility in just those phenotypes. In fact,
interruption of this pathway has been previously studied for
cancer drug development46. We tested this hypothesis by treating
the cells with FASN inhibitors, 10 μM cerulenin46 or 0.2 μM
TVB-316647, for 3 days. As hypothesized, the three most
differentiated phenotypes exhibited the highest sensitivity to
cerulenin and TVB-3166 while the two most undifferentiated cell
lines are barely affected by such drug treatments (Fig. 2h and
Supplementary Fig. 6d). These data demonstrate that single-cell
Raman spectro-microscopy, integrated with transcriptional
profiling, can uncover phenotype-specific druggable susceptibil-
ities in cancer cells.

Mesenchymal M381 accumulates selected lipids in lipid
droplets. The above results indicate that metabolic susceptibilities
within BRAF mutant melanoma cell lines can be strongly
dependent upon de-differentiation phenotype. A second relevant
example is that of mesenchymal-specific GPX4-inhibitor-induced
ferroptosis identified using pharmacogenomics by Tsoi et al.27.
That susceptibility is related to lipid peroxidation. Finding new
druggable targets for the highly-invasive (Supplementary Fig. 7a)
and BRAFi innate-resistant phenotype (Supplementary Table 2)
might facilitate the development of clinically relevant inhibitors.
We thus hypothesized that a deep interrogation of the lipid
biochemistries in these cell lines might reveal additional drug-
gable susceptibilities that distinguish the mesenchymal pheno-
types. To this end, we studied the role of lipid storage in LDs. LDs
are sub-micrometer-size lipid reservoir organelles48,49 that are
comprised of a highly dynamic mixture of neutral lipids (i.e.,
triacylglycerides (TAG) and cholesteryl esters (CE)). They are
increasingly recognized for their central roles in modulating the
transport and oxidation of lipids through interaction with other
organelles49,50.

We used hSRS microscopy to analyze the composition of these
sub-cellular LDs at a spatial resolution of ~450 nm. Such live-cell
compatible and non-perturbative subcellular quantification by
hSRS is beyond what mass spectrometry and fluorescence analysis
could offer. The unique spherical morphologies of LDs are readily
imaged by SRS. Since they are lipid-rich, they exhibit large CH2

Raman scattering signals near 2845 cm−1 (Fig. 3a). We generated
Raman spectra on LDs from each of the 5 cell lines, by acquiring
SRS images across the C-H vibrational region from 2800 to 3050
cm−1 with high spectral resolution of 8 cm−1 (Supplementary
Movie 1 and Fig. 3b). To extract the phenotype-dependent
variations from these spectra, we again employed surprisal
analysis (SA), which resolved a universal constraint λ0, and just
a single additional constant λ1. As before, we confirmed that
summing these two dominant constraints could recapitulate the
measured hSRS spectra of LDs (Supplementary Fig. 7b). We then
generated a heatmap of the weights of λ0 and λ1 for individual
LDs, grouped by their associated cell lines (Fig. 3c). Again, λ0 is
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constant across cell lines (Fig. 3c and Supplementary Fig. 8a) while
λ1 exhibits a uniquely high positive amplitude for the mesench-
ymal M381 cell line (Fig. 3c, d). Based on Raman spectra from
reference pure lipid species (Supplementary Fig. 8b), we annotated
the spectral distribution of λ1. The 3022 cm−1 peak is assigned to
the C–H stretch where the carbon is associated with a C=C

double bond (i.e., =C–H). This spectral feature arises mostly from
unsaturated lipids (UL)51. The broad band from 2957 to 2997 cm−1

largely originates from the C–H vibrations on the sterol rings
of cholesterol ester (CE) (Fig. 3e)52,53. This spectral composition
of λ1 suggests that LDs within M381 cells bear the highest level of
UL and CE among the five cell lines. This is further verified by
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maximum. c Heatmap of genes with strong correlations or anticorrelations to the CH2/CH3 trends shown in b. Representative genes involved in fatty acid
metabolism (orange, positive correlation) and mesenchymal signature (purple, negative correlation) are indicated. d Two representative top biological
functional processes from Gene Set Enrichment Analysis (GSEA) with GSEA scores that exhibit positive (top panel) or negative (bottom panel)
correlations with the phenotype-dependent CH2/CH3 trends across different cell lines. e Illustration of the pathway for deuterium transfer from deuterated
glucose (d7-glucose) to de novo synthesized fatty acids through the major lipid biosynthetic pathways. f SRS imaging at the C-D channel (2150 cm−1) for
newly synthesized fatty acids in all 5 selected cell lines cultured with d7-glucose medium for 3 days. Labeling and imaging scheme shown on top. g Single-
cell quantification of relative C-D signals in d7-glucose labeled cells (n= 15 cells examined over three independent experiments, the C-D signals of
M381 cells are normalized to one). h Relative viability of melanoma cells after treatment of FASN inhibitor cerulenin (10 μM, 3 days, n= 4 independent
experiments). Scale bars, 20 μm. Data shown as mean ± SEM. Source data are provided as a Source data file.
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direct normalization of all hSRS spectra to 2908 cm−1 (Fig. 3f, g),
which is a zero point in λ1 (Fig. 3e).

The observation that the intracellular LDs within the
mesenchymal M381 cell line exhibit a relatively increased level
of unsaturated lipids, relative to the other cell lines (Fig. 3g,
bottom), suggested a novel lipid regulation process within that
cell line. We first examined whether this trend of lipid
unsaturation was reflected in bulk analysis. We performed gas

chromatography-mass spectrometry (GC-MS) based analysis of
fatty acids from cell pellets (Fig. 3h). For presentation, we follow
the common lipid notation of xx:yy, where xx represents the
number of carbon atoms in the lipid chain, and yy refers to the
number of double bonds (Fig. 3h). Although M381 cells show
slightly enhanced level of 18:1 fatty acid (i.e., oleic acid) relative to
the other cell lines, the heterogeneity of overall unsaturation
across the cell lines is minor. Similarly, there is no clear trend for

Constraint 1

2800 2900 3000

–0.4

–0.2

0.0

0.2

0.4

R
el

at
iv

e 
in

te
ns

ity
 (

a.
u.

) 3022 

2908 

2862
CH2

Cholesteryl
Ester (CE)

Unsaturated
Lipid (UL)

2957 - 2997

Wavenumber (cm–1)

2800 2900 3000

Wavenumber (cm–1)

0.0

0.5

1.0

N
or

m
al

iz
ed

 S
R

S
 in

te
ns

ity
 (

a.
u.

)

CE

M262
M229
M397
M409
M381

UL
3022

2957 – 2997

CE

2957 – 299

e

c

f

g

λ1

λ0

M262 M229 M397 M409 M381

M381 2845 cm–1

2800 2900 3000
0

10

20

30

Wavenumber (cm–1)

S
R

S
 in

te
ns

ity
 (

a.
u.

)

M381 LD1 

a b d

h

2908

ji

M381 LD1

CE peak ratio

UL peak ratio

M262

M229

M397

M409

M381

16:0 16:1 18:0 18:1 18:2 20:4
0%

20%

40%

60%

Fatty acid species

P
er

ce
nt

ag
e

Fatty acid analysis

TAG DAG CE FFA PC PE
0%

10%
20%

100%

200%

300%

400%

U
F

A
/S

F
A

 

UFA to SFA ratio in lipids of M381

116.9%
Averaged in
all lipid species

TAG DAG CE FFA PC PE
0%

10%

20%

30%

40%

50%

Li
pi

d 
co

m
po

si
tio

n

Lipid composition of M381

3.66% 2.03%

M
26

2
M

22
9

M
39

7
M

40
9

M
38

1
0.0

0.2

0.4

0.6

0.8

I 2
97

4/
I 2

90
8

I 3
02

2/
I 2

90
8

M
26

2
M

22
9

M
39

7
M

40
9

M
38

1
0.0

0.1

0.2

0.3

P < 0.0001

P < 0.0001
P < 0.0001

P < 0.0001
P < 0.0001

P < 0.0001
P < 0.0001

P < 0.0001

***

***
***

***
***

***
***

***

M
26

2
M

22
9

M
39

7
M

40
9

M
38

1
–20

–10

0

10

20

R
el

at
iv

e 
in

te
ns

ity
 (

a.
u.

)

Average �1 score

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18376-x

6 NATURE COMMUNICATIONS |         (2020) 11:4830 | https://doi.org/10.1038/s41467-020-18376-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the expression levels of key desaturases in M381 compared to
other cell lines (Supplementary Fig. 8c). It is likely that the
compositional variability of neutral lipids (i.e., TAG and CE) in LDs
is averaged out by other more abundant lipid species in the bulk
GC-MS analyses. Therefore, we performed liquid chromatography-
mass spectrometry (LC-MS) based lipidomics profiling with
preserved lipid structures. Indeed, bulk lipidomics data for
M381 cells clearly shows that while droplet-enriched species of
TAG and CE have the highest unsaturated fatty acid (UFA)
composition among major lipid species (Fig. 3i), they only account
for a small portion (in total <6%) of all major lipid species (Fig. 3j).
Thus, M381 has elevated lipid unsaturation levels specifically within
intracellular LDs.

Desaturases are involved lipid-droplet unsaturation of M381.
We next sought to trace the source of the enhanced lipid-droplet
unsaturation in M381 cells. Such an increase may arise from
either cellular uptake or de novo synthesis. Further, the unsatu-
rated lipid signal could originate from either mono-unsaturated
fatty acids (MUFA) or poly-unsaturated (multiple double bonds)
fatty acids (PUFA). First, to assess lipid uptake, we adopted a
labeled SRS imaging approach by incubating M381 cells in
medium containing deuterated MUFA (d33-oleic acid) or satu-
rated fatty acids (SFA) (d31-palmitic acid), the two most widely
used fatty acids for assaying uptake. We found that M381 cells
have the lowest uptake of extracellular fatty acids across all cell
lines (Supplementary Fig. 9), suggesting that de novo synthesized
fatty acids may serve as major sources for M381. We next tested
whether the MUFA or PUFA de novo synthesis pathway (Fig. 4a)
contributes to the elevated lipid-droplet unsaturation. In mam-
malian cells, Δ9 desaturase (Stearoyl-CoA desaturase-1, SCD1) is
the rate-limiting enzyme for MUFA generation, specifically for
producing oleic acids (OA, 18:1) and palmitoleic acids (PO, 16:1)
from stearic (ST, 18:0) and palmitic (PA, 16:0) acids (Fig. 4a). In
addition, Δ6 and Δ5 desaturases contribute to generating func-
tionally important PUFA, such as docosahexaenoic acid (DHA,
22:6) and arachidonic acid (AA, 20:4) by catalyzing the formation
of additional double-bonds from essential fatty acids of linoleic
acid (LA, 18:2) and alpha-linolenic acid (ALA, 18:3) (Fig. 4a). We
adopted pharmacological approaches to probe these pathways.
CAY10566 (CAY) and SC 26196 (SC) are Δ9 (SCD1) and Δ6
desaturase inhibitors, respectively (Fig. 4a)51. Upon treatment
with varying doses of CAY or SC on M381 for 3 days, our hSRS
spectra revealed decreasing levels of unsaturation within LDs
(Fig. 4b, c, 3022 cm−1), demonstrating the involvement of both
MUFA and PUFA in LDs. This spectral response for decreased
unsaturation upon drug treatment was also well-reflected in the
heatmap of constraint scores by SA (Supplementary Fig. 10). In
addition, the involvement of MUFA and PUFA in LDs of M381

was supported by lipidomics of TAG and CE (Supplementary
Fig. 11), the main LD species.

Inhibiting SCD1 but not Δ6 desaturase induces apoptosis in
M381. Although both CAY and SC reduce the lipid-droplet
unsaturation levels, CAY inhibition of SCD1 for MUFA synthesis
leads to a more significant loss of viability for M381 cells relative
to the other four cell lines (Fig. 4d and Supplementary Fig. 12),
while SC treatment to block the Δ6 desaturase for PUFA synthesis
pathway barely affects the viability of M381 (Fig. 4e). It is worth
noting that this specific susceptibility of SCD1 in M381 is not
indicated by bulk gene expression of SCD1 (Supplementary
Fig. 8c) or bulk fatty acid analysis (Fig. 3h). The inhibitory
function of SCD1 is further confirmed by small hairpin RNA
(shRNA) based gene silencing of SCD1 (Fig. 4f). This result
illustrates that SCD1 inhibition could be a susceptibility of
mesenchymal M381 cells and inspired us to develop a deeper
understanding of SCD1 regulation in M381 cells. First, our bulk
GC-MS analysis on major fatty acid species from cell pellets
showed that SCD1 inhibitor mostly blocks the generation of the
monounsaturated OA (18:1) from saturated ST (18:0) (Fig. 4g).
This is consistent with the knowledge that OA (18:1) is the
principle product of SCD154. Second, a time-lapse apoptosis
video assay demonstrated that CAY reduces the viability of M381
by inducing apoptosis (Fig. 4h). Surprisingly, both the time-lapse
apoptosis (Fig. 4h) and the time-dependent viability assays
(Fig. 4i) revealed that the M381 cells do not initiate apoptosis
program until 1–2 days treatment with CAY. A similar lagging
effect is also observed for the decrease in the hSRS spectral sig-
nature for unsaturation within LDs (Fig. 4j, k). Taken together,
the GC-MS and the kinetics data imply that the susceptibility of
CAY may originate from the gradual depletion of OA (18:1) and/
or the corresponding accumulation of ST (18:0).

SCD1 inhibition induces phase-separated membrane structures.
Lipotoxicity from excessive SFA (e.g., PA, 16:0 and ST, 18:0) is a
well-documented effect that impairs cellular functions by inducing
endoplasmic reticulum (ER) stress55–57, unfolded protein response
(URP)55–57 and the formation of ceramides55 and reactive oxygen
species57. Recently, it was found in live HeLa cells that supplying
extra SFA into the culture medium could convert the intracellular
membranes from the regular liquid-disordered phase into an
ordered-solid phase58. This resulted in perturbed membrane
functions and induced cell death. The conversion of a fluidic
normal membrane (NM) into a rigid solid membrane (SM) can be
characterized by detergent wash, in which the NM will be
removed while the SM is not58. Since CAY treatment of M381
mostly reduces intracellular OA (18:1) while increasing ST (18:0)
levels by blocking the ST-to-OA conversion (Fig. 4a, g), we

Fig. 3 Accumulation of unsaturated lipids and cholesteryl esters in lipid droplets (LDs) of de-differentiated M381 cells. a A representative SRS image of
M381 cells imaged in the CH2 (2845 cm−1) channel. LDs are indicated. A zoomed-in image at right highlights a single LD. b The hSRS spectrum of the
zoomed-in LD in a at the C–H stretch region (2800–3050 cm−1). c Heatmap for scores of the top two constraints (λ0–λ1) by surprisal analysis of hSRS
spectra on LDs across five cell lines (n= 30 LDs per cell line examined over three independent experiments). Each column represents an individual LD and
each row represents the constraint scores. d The average score of λ1 across five cell lines (n= 30 LDs). e Raman peak assignments for constraint 1 (λ1). The
pink shadowed range from 2957 to 2997 cm−1 is assigned to cholesteryl esters (CE), and the 3022 cm−1 peak (violet arrow) is assigned to unsaturated
lipids (=C–H, UL). f hSRS spectra (normalized at 2908 cm−1, the zero point revealed in e) of LDs across each cell line (n= 30). g Quantification of relative
CE (2974 cm−1/2908 cm−1, top panel) and UL (3022 cm−1/2908 cm−1, bottom panel) enrichment in LDs across cell lines from f (n= 30). h GC-MS
measurement of fatty acids extracted from bulk melanoma cells. The percentages of 16:0, 16:1, 18:0, 18:1, 18:2, and 20:4 are normalized to all extracted fatty
acids (n= 4 independent experiments for M262, M229, M397; n= 5 independent experiments for M409 and M381). i Average ratio of unsaturated fatty
acids (UFA) to saturated fatty acids (SFA) in each lipid class from lipidomics of M381 cells (n= 3 independent experiments). j Percentage of major lipid
classes from lipidomics of M381 cells (n= 3). ***p < 0.001 from two-tailed unpaired t-tests. Scale bars, 20 μm. Data shown as mean ± SEM. Lipidomics
data are provided as Supplementary Data 1. Source data are provided as a Source data file.
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hypothesized that the resulting lipid imbalance would lead to
phase-separated SM domains.

We used SRS imaging to characterize potential phase changes in
M381 cell membrane after CAY treatment. Indeed, we observed
that the membrane structures were clearly extracted by detergent
wash in both control (CT) cells and cells treated with the Δ6
desaturase inhibitor SC (1 μM and 5 μM for 3 days) (Fig. 5a before

vs after wash), indicating that these cells contain NM. By
comparison, for cells treated with CAY (1 μM and 5 μM for
3 days), the membrane structures were detergent-resistant,
indicating the conversion of NM to SM structures (Fig. 5a, before
vs after wash). We next characterized the composition change of
SM in situ by comparing the hSRS spectra on selected intercellular
regions of detergent-extractable NM, detergent-resistant SM
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domains, and LDs (Fig. 5b, normalized to 2908 cm−1 as previously
indicated). First, comparing the spectra of NM from before and
after wash, the greatly reduced peak at 2845 cm−1 confirmed the
effective extraction of most lipid contents by detergent wash
(Fig. 5b, blue solid line vs blue dashed line). The maintained
intensity at 2940 cm−1 after wash suggests that the NM is also
enriched with proteins. In contrast, both SM and LD exhibit a
largely maintained SRS spectral shape following detergent
treatment (Fig. 5b, red, SM before vs after and green, LD before
vs after). This indicates that both structures are resistant to
detergent wash. Interestingly, the overall Raman spectral shape of
SM is very distinct from that of NM (Fig. 5b, NM before vs SM
before), but is similar to that from the LDs (Fig. 5b, SM before vs
LD before). The similarity indicates that the SM is highly lipid-
rich. The difference between SM and NM suggests that the
formation of phase-separated SM domains causes an exclusion of
membrane-residing proteins, consistent with previous models that
proteins or peptides which are anchored in intracellular
membranes by α-helix clearly prefer the liquid phase and would
be excluded by the solid phase for dimerization56,59. Thus, CAY
inhibition on M381 cells indeed causes the formation of phase-
separated intracellular solid-membrane structures that enrich
lipids, but exclude proteins.

Since CAY inhibition of SCD1 affects the de novo fatty-acid
synthesis pathway (Fig. 4a), the SMs should have a high
accumulation of newly synthesized lipids. Having identified that
de novo lipid synthesis in our melanoma cells traces back to
glucose (Fig. 2e, f), we again supplied M381 cells with d7-glucose,
but this time together with CAY treatment for 3 days. We then
used SRS imaging of C-D vibrations at 2150 cm−1 to visualize
lipids that are synthesized specifically during the treatment
period. As expected, we detected a formation of SM structures
that were retained after detergent wash from C-D SRS images,
which show similar patterns to that in the C-H channel (Fig. 5c,
before vs after wash). This observation confirms that the newly-
synthesized saturated lipids contribute to the formation of SM
upon SCD1 inhibition of CAY.

CAY treatment induces the formation of SM structures by
blocking the cellular conversion of newly synthesized SFA to
UFA. This imbalance of homeostasis between SFA and UFA may
also be caused by supplying cells with extra amount of SFA in the
medium, which could promote the formation of SM structures58.
Indeed, we observed the appearance of solid-membrane patterns
by treating M381 cells with 100 μM deuterated palmitic acid (PA,
16:0) or 50 μM deuterated steric acid (ST, 18:0) (Fig. 5d, before vs
after). Interestingly, the viability assays with PA and ST treatment
(Fig. 5e) exhibited a M-shaped trend across all 5 cell lines. This
trend is similar to that with CAY treatment (Fig. 4d), suggesting a
similar toxicity effect between CAY and SFA. As a control,

incubating cells with extra UFA show negligible toxicity for all
cell lines (Supplementary Fig. 13a, PO, 16:1 and OA, 18:1). In
addition, in similar ways the invasiveness of M381 cells is
impaired with either CAY, PA or ST treatments (Supplementary
Fig. 13b). The loss of invasiveness is likely because the formation
of SM structures leads to a loss of membrane fluidity, which is
required for metastatic cancer cells to invade through the dense
basement membrane60. We again validated the formation of
intracellular solid-membrane structures and their associated
cytotoxicity when cellular pool of SFA exceeds that for the
homeostatic level in M381 cells.

Lipidomics suggest a reservoir role of LDs. To obtain a com-
prehensive picture of how SCD1 inhibition perturbs lipid
homeostasis, we carried out bulk lipidomics analysis of
M381 cells with and without CAY treatment (Fig. 6a). We pre-
sented heatmaps on six major intracellular lipid species of TAG,
diacyglycerol (DAG), CE, free fatty acid (FFA), phosphati-
dylcholine (PC) and phosphatidylethanolamine (PE) in control,
and CAY-treated cells (Fig. 6a). Heterogeneous remodeling for
SFA and UFA is revealed across different lipid species (Fig. 6a,
pink, SFA, saturated fatty acids; green, UFA, unsaturated fatty
acids of different acyl chain length and double-bond number).
For quantification, we first plot the ratios of total SFA to total
UFA in each of six lipid species for control cells (CT, pink) and
CAY-treated (1 μM, 3 days, purple) cells (Fig. 6b, SFA/UFA).
Indeed, SFA/UFA ratios increase, although to a different extent,
across all six lipid species in CAY-treated M381 samples. The
increase is particularly obvious for TAG and CE (Fig. 6b), the
main residents in LDs. This again explains why hSRS spectro-
scopy and imaging on LDs is so revealing. The difference between
CT and CAY-treated cells becomes particularly obvious for the
ST/OA (i.e., 18:0/18:1) ratios in each species (Fig. 6b). This is
consistent with our previous GC-MS results (Fig. 4g) that the
function of SCD1 is more strongly directed toward the generation
of OA (18:1) from ST (18:0) relative to the generation of PO
(16:1) from PA (16:0) (Supplementary Fig. 13c). Further, the total
concentrations of membrane lipids, PC and PE, increase by 40.2%
and 38.6% after CAY treatment (Supplementary Fig. 13d), which
may explain the abnormally high lipid signals observed in SMs
(Fig. 5a). These species-dependent lipidomics heatmaps and ratio
analysis confirm the relative increase of saturation level across all
different lipid species and identify the more dominant changes in
both TAG and CE under CAY treatment, consistent with our SRS
data.

Further quantification of the absolute concentrations of ST
(18:0) and OA (18:1) from lipidomics (Fig. 6c) yields additional
mechanistic insights into cellular behaviors under CAY inhibi-
tion. First, under CAY inhibition that blocks the conversion of ST

Fig. 4 SCD1-dependent viability for the mesenchymal M381 cells. a (Left) De novo synthesis pathway of monounsaturated fatty acids (MUFA) and
(right) polyunsaturated fatty acids (PUFA) in mammalian cells. CAY10566 and SC 26196 are SCD1 (Δ9-desaturase) and Δ6-desaturase inhibitor,
respectively. b Normalized (to 2908 cm−1) hSRS spectra of LDs in M381 cells without (CT) and with treatment of (top) 1, 5 and 10 μM CAY (n= 16, 18, 19,
19 for CT, 1, 5 and 10 μM CAY, respectively), and (bottom) 1 μM and 5 μM SC (n= 16, 19, 19 for CT, 1 μM and 5 μM SC, respectively) for 3 days.
c Quantification of unsaturated lipid (UL) by intensity ratios of 3022 cm−1/2908 cm−1 from b. Relative viability of all five cell lines after treatment of 1 μM
and 10 μM CAY for 3 days (n= 4 independent experiments) (d) or 1 μM and 10 μM SC for 3 days (n= 4 independent experiments) (e). f Relative viability
of M381 cells after shRNA knockdown of SCD1 gene compared to scrambled control (CT) (n= 2 independent experiments). g GC-MS measurements of
fatty acids extracted from bulk M381 cells with (CAY, purple) and without (CT, pink) treatment of 1 μM CAY for 3 days. The percentages of 16:0, 16:1, 18:0,
18:1, 18:2, and 20:4 fatty acids are normalized to total extracted fatty acids (n= 5 independent experiments). h Time-lapse apoptotic cell counts of
M381 cells with (purple, CAY) and without (pink, CT) treatment of 1 μM CAY (n= 3 independent experiments, data shown as mean ± error with 95% CI).
i Time-dependent relative viability of M381 cells after treatment of 1 μM CAY for 0, 1, 2, and 3 days (n= 4 independent experiments). j Normalized (to
2908 cm−1) hSRS spectra of LDs in M381 cells without (CT) and with 1 μM CAY treatment for 12 h, 1 day and 3 days (n= 20, 19, 17, 14 for CT, 12 h, 1 day
and 3 days, respectively). k Quantification of UL from intensity ratios of 3022 cm−1/2908 cm−1 in j. **p < 0.01, ***p < 0.001, ns: not significant (p > 0.05)
from two-tailed unpaired t-tests. Data shown as mean ± SEM. Source data are provided as a Source data file.
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(18:0) to OA (18:1), DAG, CE, FFA, PC, and PE all show
statistically significant increases in the levels of ST (18:0). This is
likely due to the continuous synthesis and accumulation of new
ST. Interestingly, the increase of ST (18:0) in TAG is not
statistically significant. On the other hand, TAG presents a large
drop in OA (18:1) level upon CAY treatment, while the other five
lipid species have an approximately unchanged OA (18:1) level.
This suggests that OA (18:1) in TAG may be hydrolyzed and
released under CAY treatment. Taken with our previous kinetic

SRS data that the unsaturation levels of LDs, which are mainly
comprised of TAG and CE, only decrease after 1-day of CAY
treatment (Fig. 4j, k), we suggest a possible reservoir role of TAG
for UFA in the LDs of M381 cells. After SCD1 inhibition blocks
the conversion of newly synthesized ST (18:0) to OA (18:1), the
cytosolic saturation level increases. When the level of newly
synthesized SFA in the cytosol reaches a threshold (in our case,
after 1-day of CAY treatment), the TAG in the LDs starts to
release UFA (e.g., OA) to restore the balance of cellular lipid
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unsaturation. With the continuous depletion of UFA from TAG
in LDs under prolonged CAY treatment, this storage is eventually
depleted. The imbalance of intracellular SFA/UFA ratios then
leads to the formation of toxic SM structures, as observed in
Fig. 5a.

Supplying UFA rescues SCD1-induced apoptosis in M381. We
reasoned that supplying CAY-treated cells with extra UFA, such
as OA, may rescue the toxicity effect of the drug by restoring the
balance between SFA and UFA. Indeed, both cell viability
(Fig. 6d) and cell invasiveness (Supplementary Fig. 13e) of CAY-
treated M381 cells were restored by adding OA in the medium
together with CAY in a dose-dependent manner. Our time-lapse
apoptotic assay (Fig. 6e) confirmed that high-dose (10 μM) of OA
fully rescues M381 cells from apoptosis under CAY (1 μM)
treatment. Further, with co-treatment of OA and CAY, the phase
separated solid-membrane structures are absent, even at higher
concentration (5 μM) CAY (Fig. 6f, before vs after). It is known
that OA supplementation can reduce lipotoxicity by channeling
extra cytosolic SFA into LDs61. We hence performed a pulse-
chase experiment to explore the possible rescue effect (Supple-
mentary Fig. 13f). We first pulse-treated M381 cells with 5 μM
CAY for 60 h. Verified the formation of solid-membrane

structures in this condition (Supplementary Fig. 13f, lipid, C-H),
we then chased (i.e., rescued) the cells with 20 μM of deuterated
OA (d33-OA) for another 10 h. We observed much less solid-
membrane (Supplementary Fig. 13f, set 1 and 2, C-H) and a
significantly increased number of LDs derived from deuterated
OA (Supplementary Fig. 13f, set 1 and 2, boxed, C-D). We also
queried whether other UFA could have a similar rescue effect. At
a low dose (1 μM), OA is the most effective tested rescue agent
(Supplementary Fig. 13g). This may be due to the preference of
the OA substrate by the key enzymes, Diacylglycerol O-
Acyltransferase 1 and Diacylglycerol O-Acyltransferase 2,
involved in TAG formation62,63. At higher concentration (5 μM),
other UFA (PO, 16:1; LA, 18:2; AA, 20:4) can reach similar rescue
(Supplementary Fig. 13h), showing that the key is to restore the
cellular balance between SFA and UFA.

To understand specific gene regulatory pathways involved in
the saturated-lipid associated M381 susceptibility, we carried out
RNA-seq transcriptomics analysis on CT cells, cells treated with
1 μM CAY (CAY), and cells co-treated of 1 μM CAY and 1 μM
OA (CAY+OA). We ranked the gene sets that either exhibit
increased or decreased expression levels under CAY treatment
relative to CT, and then exhibit restoration under CAY+OA
treatment. Two pathways stand out (Fig. 6g). First, the apoptosis
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pathway (Fig. 6g, left and middle columns) is upregulated with
CAY treatment and recovers with CAY+OA. This observation is
consistent with our functional assays (Figs. 4h, 6e). Second, the
NFκB1-targets pathway exhibits decreased expression with CAY
and recovers with CAY+OA. The high NFκB transcriptional
state in melanoma has been suggested to be BRAFi resistant,
consistent with what is known for M38125,27,64. In addition, the
NFκB pathway has been implicated in maintaining the stemness
feature in ovarian cancer stem cells51, so it might play a similar
role here in maintaining the mesenchymal nature of M381. In
previous reported lipotoxicity studies, perturbation of cellular
lipid composition through the use of either relatively high
concentrations (~0.5 mM) saturated lipid in the culture medium,
or via SCD1 inhibitors, was shown lead to the activation of ER
stress sensors and the UPR55–57. In this study, transcriptional
signatures associated with neither ER nor UPR stresses were
significantly elevated following 1 μM CAY treatment (Supple-
mentary Fig. 13i). One possibility is that suppression of protein
translocation into the SM structures may trigger proapoptotic
signaling.

Discussion
Single-cell metabolomics is challenging because there is neither a
general amplification strategy, such as PCR, nor a general capture
agent approach, such as antibodies, to facilitate the detection of
specific metabolites with required sensitivity. Here, we demon-
strated that Raman spectro-microscopy opens up the ability to
spatially resolve and quantitatively analyze particular classes of
metabolites, as well as specific targeted metabolites, in live and
fixed cells. Raman imaging and spectral analysis essentially serves
as a multiplex functional assay for metabolites that rapidly
respond to environmental stimuli, and so provides a powerful
complement to mass spectrometry and fluorescence detection
methods. We showed the value of metabolic analysis by imaging a
series of patient-derived, BRAF mutant melanoma cell lines,
representing different de-differentiation phenotypes. The sub-
cellular metabolic heterogeneity across these cell lines is effectively
captured by Raman and used to mine for phenotype-dependent,
druggable metabolic susceptibilities. We termed this approach as
subcellular pharmaco-metabolomics.

In many cancers, mesenchymal-like cells exhibit invasive
characteristics, as well as innate drug-resistance to targeted or
even immune-therapies32,65–67. We hypothesized that the main-
tenance of such characteristics required lipid biochemical pro-
cesses that could be mined for druggable susceptibilities. To this
end, we utilized a comparative analysis of Raman spectro-imaging
on intracellular LDs to identify that lipid-unsaturation associated
metabolic activities were uniquely upregulated in the mesenchy-
mal M381 phenotype, as depicted in Fig. 7. This picture is sup-
ported by several findings. First, from SRS imaging of deuterated
fatty acids and glucose, M381 cells exhibited the lowest relative
activities for both lipid uptake (e.g., OA, 18:1) and de novo fatty
acid synthesis. Such low metabolic activity might contribute
toward making M381 cells insensitive to BRAFi68. Second,
incubation with SCD1 inhibitor, CAY, which blocks the conver-
sion of SFA to MUFA, led to an imbalance of intracellular SFA
and UFA. This imbalance drives the release of UFA stored in
M381 LDs to restore the balance. This suggests an intracellular
UFA reservoir function for these droplets. Prolonged SCD1
inhibition eventually depletes these LDs of UFA, leading to an
excess of SFA in M381. This excess, in turn, contributes toward a
type of lipotoxicity through the formation of a phase-separated
SM domain. The accompanying loss of membrane fluidity and
exclusion of membrane-residing proteins are then associated with
an induced apoptosis—a cell fate that can be avoided by

supplying extra MUFA in the culture medium. The susceptibility
of SCD1 is uniquely revealed by subcellular Raman analysis, but is
not reflected in the bulk transcriptomics (Supplementary Fig. 8c)
or bulk metabolomics (Fig. 3h). Both the mechanism and
applicability underlying reported susceptibilities in our work are
distinctly different from previous reports that mainly relied on
bulk analysis69–71. This demonstration thus emphasizes the
unique value of subcellular pharmaco-metabolomics as a revela-
tory tool for uncovering new cell biology.

The work here provides an important proof of concept for the
use of Raman spectro-microscopy in identifying phenotype-
dependent metabolic susceptibilities in cancer cells. It is likely
that we are just beginning to mine for how different metabolites
are processed and utilized within different cellular sub-
compartments. Our current subcellular investigations focus on
the spectral region of 2800–3100 cm−1, but can be readily
extended to additional windows within the fingerprint spectral
region to permit the identification of additional metabolite clas-
ses19–21. Other subcellular structures could be probed similarly to
how the LDs were analyzed here, to resolve a more comprehen-
sive intracellular picture of the organelle network, such as the
membrane-bound organelles of ER and the Golgi apparatus46.
Another aspect that worth exploration is the generality of the cell
line specific results reported here. For example, whether the
susceptibility of SCD1, as revealed in the mesenchymal
M381 cells, applies more generally across mesenchymal BRAF
mutant melanoma tumors, is both intriguing and important,
given the challenges in drugging such tumors. A second challenge
will be to extend these Raman tools, in conjunction with surprisal
analysis, to characterize the metabolic heterogeneity within intact
tissues, and more physiologically relevant environments17. Such
studies will further validate the general applicability of specific
targets identified here and perhaps open up avenues for clinical
translation.

Methods
Cell lines, chemicals, and cell culture. Patient-derived melanoma cell lines used
in this study were generated from patient’s biopsies with informed consent from all
subjects under UCLA IRB approval # 11–003254. Cells were cultured in RPMI
1640 (Gibco, 11875119), supplemented with 10% fetal bovine serum (Omega, FB-
12), and 0.2% MycoZap Plus-CL antibiotics (Lonza, VZA-2011). Cultures were
incubated in a water-saturated incubator at 37 °C with 5% CO2. Cells were
maintained and tested for mycoplasma using kit (Lonza, LT07-118).

Cerulenin (Sigma, C2389-5MG), TVB 3166 (Sigma, SML1694-5MG),
CAY10566 (Cayman, 10012562), SC 26196 (Cayman, 10792) were dissolved in
DMSO (ATCC, 4-X) at designated concentrations before adding to cell culture
media. To conduct cell viability assay, 30k to 50k cells were seeded into six well
dishes (Corning, 3516). After culturing for 2 days, growth medium was replaced
with fresh medium containing drugs with indicated concentration, and the
incubation continues for another 3 days. Cell viability was measured by counting
cell numbers of each well with trypan blue. Cell number in vehicle (with DMSO as
vehicle) well was used as normalization.

Stimulated Raman scattering microscopy. The configuration is shown in Sup-
plementary Fig. 5a. An integrated laser (picoEMERALD, Applied Physics and
Electronics, Inc.) is used as a light source for both pump and stokes beams. It
produces 2 ps pump (tunable from 770 to 990 nm, bandwidth 0.5 nm, spectral
bandwidth ~7 cm−1) and stokes (1031.2 nm, spectral bandwidth 10 cm−1) beams
with 80MHz repetition rate. Stokes beam is modulated at 20MHz by an internal
electro-optic modulator. The spatially and temporally overlapped pump and stokes
beams are introduced into an inverted multiphoton laser scanning microscopy
(FV3000, Olympus), and then focused onto the sample by a 25× water objective
(XLPLN25XWMP, 1.05 N.A., Olympus). Transmitted pump and stokes beams are
collected by a high N.A. condenser lens (oil immersion, 1.4 N.A., Olympus) and
pass through a bandpass filter (893/209 BrightLine, 25mm, AVR Optics) to filter
out stokes beam. A large area (10 × 10mm) Si photodiode (S3590-09, Hamamatsu)
is used to measure the remaining pump beam intensity. 64 V DC voltage is used on
the photodiode to increase saturation threshold and reduce response time. The
output current is terminated by a 50Ω terminator and pre-filtered by an 19.2–23.6-
MHz band-pass filter (BBP-21.4+, Mini-Circuits) to reduce laser and scanning
noise. The signal is then demodulated by a lock-in amplifier (SR844, Stanford
Research Systems) at the modulation frequency. The in-phase X output is fed back
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to the Olympus IO interface box (FV30-ANALOG) of the microscope. Image
acquisition speed is limited by 30 µs time constant set for the lock-in amplifier.
Correspondingly, we use 80 µs pixel dwell time, which gives a speed of 8.5 s frame−1

for a 320-by-320-pixel field of view. For 2150 cm−1 (C-D, d7-glucose), 2109 cm−1

(C-D, d31-palmitic acid, d33-oleic acid, d35-stearic acid), 2845 cm−1 (CH2) and 2940
cm−1 (CH3), the wavelengths of pump laser are 844.1, 847.0, 797.3, and 791.3 nm,
respectively. Laser powers are monitored through image acquisition by an internal
power meter and power fluctuation are controlled within 5% by the laser system.
16-bit gray scale images are acquired by Fluoview software. SRS spectra were
acquired by fixing the stokes beam at 1031.2 nm and scanning the pump beam
through the designated wavelength range point by point. SRS spectra were pro-
cessed and presented by Excel and GraphPad. Lipid-channel (C-H) image was
processed from a linear combination algorithm of 5 · [CH2]−0.4 · [CH3] from the
CH2 and CH3 images58. We recommend that at least three biological replicates with
at least five cells in each replicate are acquired for analysis.

Spontaneous Raman spectroscopy. Fixed cell pellets were washed two times with
pure water, and then resuspended into water to be cell solution to avoid influence
from salt crystals after drying. The cell solution containing 5k cells was added
dropwisely on a glass slide. After air dry, glass slides with cells were then used to
take Raman spectra. Spontaneous Raman spectra were acquired using an upright
confocal Raman spectrometer (Horiba Raman microscope; Xplora plus). A 532 nm
YAG laser is used to illuminate the sample with a power of 12 mW on sample
through a 100×, N.A. 0.9 objective (MPLAN N; Olympus) with 100 µm slit and
500 µm hole. Spectro/Raman shift center was set to be 2000.04 cm−1. With a 1200
grating (750 nm), Raman shift ranges from 690.81 to 3141.49 cm−1 was acquired to
cover whole cellular Raman peaks. Acquisition time for one spectrum was set to be
25 s (5 s times five averaging). The target cell was chosen randomly and spectra of
five points (center, top, bottom, left, right) on individual cell were acquired. The
acquired spectra were processed by the LabSpec 6 software for baseline correction.
Spontaneous Raman spectra were organized and presented by Excel and GraphPad,
respectively. To reduce spectral variance for spontaneous Raman spectra caused by
intracellular heterogeneity, we recommend that at least three biological replicates
with at least ten cells in each replicate are acquired for analysis.

Coating of imaging dish. Imaging dish (MatTEK, P35G-1.5-14-C) was coated
with 2% sterile gelatin solution (Sigma, G1393) for 30 min, then the coating
solution was removed and the dish was left for air dry for another 30 min
before using.

Metabolic deuterium labeling. Deuterated glucose RPMI 1640 medium was made
by supplying d7-glucose (Cambridge Isotope Laboratories, DLM-2062-1) into
glucose deficient RPMI 1640 medium (Gibco, 11879020), then completed with 10%
fetal bovine serum (Omega, FB-12), and 0.2% MycoZap Plus-CL antibiotics
(Lonza, VZA-2011). d31-Palmitic acid (Cambridge Isotope Laboratories, DLM-
215), d35-stearic acid (Cambridge Isotope Laboratories, DLM-379), and d33-oleic
acid (Cambridge Isotope Laboratories, DLM-1891) were coupled to bovine serum
albumin (Sigma, A9418) in 2:1 molar ratio and added to RPMI 1640 complete
medium to designated concentration. The resulting solutions was sterile filtered by
0.22 µm low protein binding filter system. Cultured melanoma cells were seeded
onto an imaging dish to optimal confluency. The cells were then grown in the
corresponding deuterated medium (e.g., 11.1 mM d-glucose used in Fig. 2f, 50 µM
d31-palmitic acid and d35-stearic acid used in Supplementary Fig. 9a, c) for 3 days
before fixation and imaging.

Ratio image processing and data analysis. Images are analyzed and assigned
color by ImageJ. For CH2/CH3 ratio imaging, a threshold (mask) image was first
generated by adjusting threshold using Huang method, then nonzero values were
normalized to one. CH2 images were then divided by the same set of CH3, and the
resulting ratio image multiplied with mask image to create the final CH2/CH3 ratio
image. The display range of CH2/CH3 ratio images is set to be 0 - 0.5.

Fatty acid analysis. Five million cells were harvested, frozen, and lyophilized
overnight. Fatty acid methyl esters (FAMEs) were produced from biomass in a
combined extraction, hydrolysis, and derivatization procedure based on previous
methods72. For each sample, dried biomass was mixed with 2 ml of methylation
mixture (20:1 v/v anhydrous methanol/acetyl chloride) and 1 ml hexane and
reacted in sealed VOA vials at 100 °C for 10 min. After cooling, 2 mL deionized
water was added to the mixture followed by three times extraction with 2 ml
hexane. The hexane solution was then treated with anhydrous Na2SO4 to remove
residual water and concentrated under a steam of N2 to a final volume of 0.5 ml.
FAMEs were identified via gas chromatography/mass spectrometry (GC/MS) on a
Thermo Fisher Scientific ISQ by injecting 1 μl of sample in splitless mode. Chro-
matographic separation was achieved on a ZB-5ms capillary column (30 m by 0.25
mm; film thickness, 0.25 µm). Peaks were identified by comparing the mass spectra
and retention times to the authentic standards and library data. Quantification was
achieved by a flame ionization detector. To avoid complications from sample loss
at sample preparation stage, we used the relative abundance of each species of fatty
acids for data interpretation. Relative abundances were calculated by dividing the
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peak area for each of the six most abundant fatty acids (16:0, 16:1, 18:0, 18:1, 18:2,
and 20:4) to the sum of peak areas of all six species. Data were processed by Excel.
The signals of other species are too low and mostly buried in noise.

Detergent wash. PBS solution containing 0.5% Triton X-100 (Sigma, T8787),
short as PBS-T solution, was used to wash cells in imaging dish58. Gently add 1 ml
PBS-T detergent solution (above) into imaging dish and place the dish in 4 °C for
10 min. Then the PBS-T washing solution was gently removed and the samples
were washed with PBS for two times before imaging.

RNA extraction, library construction, and sequencing. Total RNA was extracted
from frozen cells pellets (~1 million cells) using the RNeasy Micro Kit (Qiagen,
74004) according to the manufacturer’s protocol. Then the RNA sequencing
(RNA‐seq) was performed using BGISEQ‐500 platform at BGI Genomics (Wuhan,
China). The library preparation was followed by BGI’s standard procedure.

RNA-seq data dimension reduction and clustering analysis. Sequencing reads
were mapped and aligned to Human Reference Genome (UCSC hg 19) with
TopHat. Assembled transcripts for each sample were generated from mapped reads
using Cufflinks. All assemblies were combined into a single assembly by Cuff-
compare for differential expression analysis. Expression levels in fragments per
kilobase of exon per million fragments mapped were generated using Cuffdiff as
normalized read counts.

Heatmap and clustering analysis of transcriptomic dataset was performed via
MATLAB. Hierarchical clustering was performed with average linkage and
Euclidean distance metric. Transcriptomic data of 30 BRAF but not NRAS mutated
melanoma patient derived cell lines from the Gene Expression Omnibus database
(GEO)27 were chosen for dimension reduction and clustering analysis. Gene
expression of the whole transcriptome or metabolic subset (with all metabolic
genes defined from reference73) were project onto the top two most dominant
constraints defined from surprisal analysis38. This way, cell lines with similar whole
transcriptomic profiles or metabolic-related gene expression profiles were projected
nearby to each other. Cell lines were color-coded based on their respective
phenotypes. Top 100 cell phenotype-specific metabolic genes for each of the
phenotype are selected based on gene’s contribution score toward each phenotype
as listed in Supplementary Table 1. Contribution score of each gene to each
phenotype are calculated based on gene’s contribution score toward the X-axis (G1)
and Y-axis (G2) in the two-dimensional map (G1 and G2 values from surprisal
analysis). Detailed equations are listed as the following: contribution score of
melanocytic phenotype, Smelanocytic (S1)=−G1 – G2; contribution score of
transitory phenotype, Stransitory (S2)=−G1+G2; contribution score of neural-crest
phenotype, Sneural-crest (S3)=G1+G2; contribution score of undifferentiated
phenotype, Sundifferentiated (S4)=G1−G2. Heatmap of all 400 phenotypic-specific
metabolic genes are plotted in Supplementary Fig. 1 and heatmap for a few
representative phenotype markers and phenotypic-specific metabolic genes are
shown in Fig. 1b.

For CH2/CH3 correlation analysis across five cell lines, spearman correlation
was calculated between each gene and the measured CH2/CH3 ratio across all five
cell lines, where genes that displayed the highest positive or negative correlation
with CH2/CH3 ratio (Spearman > 0.95 or < −0.95) were further mined for their
function through enrichment analysis.

Gene set enrichment analysis (GSEA)74 was performed using GSEA v4.0.1 with
1000 geneset permutations. Normalized enrichment score was assessed across the
curated Molecular Signatures Database (MSigDB) Hallmark, C2 curated gene sets,
C4 computational gene sets and C5 gene ontology gene sets. To identify biological
processes and pathways most correlated with CH2/CH3 ratio, we first ranked the
genes based on the Spearman correlation between their expression and CH2/CH3

ratio across all five melanoma cell lines and then performed the pre-ranked option
of GSEA with 1000 permutations.

Surprisal analysis of Raman spectra. Surprisal analysis was applied as previously
described38. Briefly, the measured Raman peak signal at certain wavenumber i at
cell c, ln Xi(c), is expressed as a sum of a steady state term ln0 Xi (c), and several
constraints (modules) λj(c) ×Gij representing deviations from the steady state.
Each deviation term is a product of a cell-dependent weight (influence score) of the
constraint λj(c), and the cell-independent contribution of the wavenumber peak to
that constraint Gij. Peaks i with high positive or negative Gij values are the ones
that are positively or negatively correlated with constraint (module) j, which can be
used to infer the meaning of each module. To implement surprisal analysis, we first
utilized singular value decomposition, which factors this matrix ln Xi(c) in a way
that determines the initial estimate of the two sets of parameters that are needed in
surprisal analysis: the Lagrange multipliers (λj) for all constraints at a given cell,
and for all cell the Gij (cell-independent) analyte patterns for all analyte i at each
constraint j. Further interaction is implemented when necessary to stabilize the
steady state and refining the constraints.

Incucyte cell apoptosis assay. Cells were seeded and monitored using an Incu-
Cyte® S3 live-cell imaging system (Essen BioScience). Cells were exposed to drug
treatments for up to 72 h in the presence of IncuCyte® Caspase-3/7 Green apoptosis

dye (Essen BioScience, Cat. No. 4440). Images were taken at 20-min intervals from
nine separate regions per well using a 20× objective. Apoptotic cell counts per well
at each time point were quantified using the IncuCyte Basic Analyzer.

Migration and invasion assays. Transwell chambers coated with (Corning,
354480) and without matrigel (Corning, 354578), respectively were utilized to
conduct the invasion and migration assays according to manufacturer’s protocol.
Briefly, cells received indicated treatments three days before the assays. At the
start of the assays, cells were harvested and counted, and 50k ml−1 cells sus-
pension was prepared. 0.5 ml of cell suspension was added to the upper chamber
of the 24-well chambers. The media in lower chamber contains 10% FBS. Cells
were allowed to migrate for 22 h at 37 °C. The transwell membranes were then
fixed and stained with 0.05% crystal violet solution. A cotton swab was used to
remove cells that had not migrated or invaded through the chamber. Then, a
fluorescence microscope was used to image the migrated or invaded cells, and
four fields were independently counted from each migration or invasion
chamber. Two or four biological replicates of experiments were conducted.

Generation of SCD1 stably knockdown cells. M381 cells were transfected with
shRNA lentiviral particles targeting SCD1 (Santa Cruz, sc-36464-V) following
the manufacturer’s protocol. Scrambled shRNA lentiviral particles (Santa Cruz, sc-
108080) were used as a control. Stably transfected cells were selected with 1 μg ml−1

puromycin (Thermo Fisher, A1113803).

Lipidomics profiling. Cells going through indicated treatments were harvested as
frozen pellets. Lipids were extracted using methyl tert-butyl ether (MTBE)/
methanol after the addition of 54 isotope labeled internal standards across 13 lipid
classes. The extracts were concentrated under nitrogen and reconstituted in 10 mM
ammonium acetate in dichloromethan:methanol (50:50). Lipids were analyzed
using the Sciex Lipidyzer platform consisting of a Shimadzu LC and AB Sciex
QTRAP 5500 LC-MS/MS system equipped with SelexION for differential mobility
spectrometry (DMS). Multiple reaction monitoring (MRM) was used to target and
quantify over 1000 lipids in positive and negative ionization modes with and
without DMS. The resulting lipidomics data are provided as Supplementary Data 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data supporting the findings of this study are available within the article and its
Supplementary Information files and from the corresponding author upon reasonable
request. The following databases are used: Human Reference Genome (UCSC hg 19),
Gene Expression Omnibus database (GEO), Molecular Signatures Database (MSigDB).
RNA-seq data have been deposited to array express with accession number of E-MTAB-
8842. Source data are provided with this paper.

Code availability
Custom code for the surprisal analysis of Raman spectra has previously been published
and deposited on GitHub (https://github.com/mesako/Melanoma-Publication) 36. Source
data are provided with this paper.
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