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 ABSTRACT OF THE THESIS

A machine learning approach for detecting homologous recombination deficiency in breast
cancer using transcriptome data

by

Mia Josephine Jeffris

Master of Science in Bioengineering

University of California San Diego, 2024

Professor Ludmil B. Alexandrov, Chair

Breast cancer patients with deficiencies in the homologous recombination (HR) pathway

are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based

chemotherapy. Various methods have been developed to detect HR deficiency, many of which

rely on genomic features indicative of impaired HR machinery. However, genomic-based

xii



approaches cannot distinguish between current and past HR deficiency. In contrast, the

transcriptome can capture the current state of homologous recombination and may be more

effective than genome-based methods in reflecting the dynamic nature of the HR pathway in

cancer. Recently, the clinical utility of transcriptional classifiers has been demonstrated for

identifying HR-deficient (HRD) prostate cancers, but there remains a need for robust and

widely-applicable transcriptome methods for detecting HR deficiency in breast cancer. In this

thesis, I developed a 153-gene transcriptional signature for detecting HR deficiency in breast

cancer patients, allowing identification of individuals whose cancers may be sensitive to PARP

inhibitors. This signature offers an advantage over existing models due to its reduced feature set

and ability to generalize across different subtypes of HRD breast cancer.

xiii



Chapter 1 Background: Breast Cancer and the Homologous Recombination
DNA Repair Pathway

More than 10,000 DNA damage events occur daily in a typical human cell (Lindahl and

Barnes 2000). DNA damage arises from a diverse range of processes and takes on many different

forms in the genome, including abasic sites, mismatches, crosslinks, single strand breaks (SSBs),

and double strand breaks (DSBs) (Carusillo and Mussolino 2020). Abasic sites are characterized

by a missing nucleotide base in an otherwise continuous DNA strand, and can be generated by

reactive oxygen and nitrogen species-induced oxidative damage (Van Houten et al. 2018).

Mismatches occur when nucleotide bases are paired with a wrong base on the opposing DNA

strand instead of adhering to adenosine-thymine or cytosine-guanine pairing. These mismatches

arise as a result of erroneous DNA replication or repair (Ganai and Johansson 2016; Li 2008).

Crosslinks are structural deformations characterized by the fusion of separate DNA strands, and

can arise from endogenous metabolite activity as well as exogenous exposures to chemicals and

radiation (Muniandy et al. 2010). SSBs are breaks that occur in a single DNA strand and can

result from oxidative damage and errors in DNA replication and transcription (Caldecott 2008;

Wang 2002).

DSBs are breaks across both strands of the DNA double helix. They are a particularly

deleterious type of DNA lesion as they can inactivate the genes they occur in, making it so that a

single DSB can trigger cell cycle arrest or cell death if occurring in an essential gene (Huang et

al. 1996; Khanna and Jackson 2001). DSBs can arise endogenously as a result of interruptions in

DNA replication, faulty telomere metabolism, or oxidative and mechanical damage (Khanna and

Jackson 2001). Exogenous causes of DSBs include exposure to ionizing radiation and

chemotherapeutic drugs (Khanna and Jackson 2001). They are formed by either the combined
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effect of two independent SSBs in close proximity or by DNA replication machinery

encountering an interrupting lesion, such as an SSB, on the template strand during replication

(Jackson and Bartek 2009).

Cells have evolved complex DNA repair pathways over time to mitigate and reverse

harmful DNA damage events and promote survival. These pathways are highly specialized for

optimal repair of different types of DNA damage (Jackson and Bartek 2009). In DNA damage,

there is often an intact, undamaged strand which is complementary to the damaged strand. This

undamaged strand can act as a guide to re-synthesize the correct sequence at the complementary

damage site. In a DSB, the breakage of both strands across the double helix means that there is

no guide strand from which to rebuild the break; thus, DSB repair poses the greatest challenge

for the DNA repair machinery (Khanna and Jackson 2001).

Several pathways are involved in DSB repair. One such pathway is homologous

recombination, during which the DNA on either side of the DSB is resected to generate

single-stranded “tails” that invade intact, double-stranded, homologous DNA molecules to serve

as templates for extension by DNA polymerase (Khanna and Jackson 2001). The use of a

homologous DNA double helix allows the original DNA sequence to be conserved following

HR-mediated repair (Ceccaldi et al. 2016). This error-free conservation is unique to the HR

pathway; thus, it is the canonical pathway for DSB repair. If the HR pathway is not functional,

cells must rely on alternative error-prone pathways, such as non-homologous end-joining

(NHEJ), microhomology-mediated end-joining (MMEJ), and single-strand annealing (SSA), to

repair DSBs (Ceccaldi et al. 2016). Importantly, DSB repair pathway choice also depends on the

cell-cycle phase at the time of repair initiation; for instance, NHEJ is dominant in the G0/G1 and

G2 phases while HR is dominant in the mid-S and mid-G2 phases when a homologous chromatid
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is available for use as a template (Ceccaldi et al. 2016). Furthermore, certain post-translational

DNA modifications have also been shown to influence the choice of pathway for DSB repair

(Ceccaldi et al. 2016).

NHEJ, MMEJ, and SSA can all lead to the formation of deleterious mutations around the

DSB repair site (Ceccaldi et al. 2016). The primary mechanism of NHEJ involves ligating both

ends of the DSB together (Khanna and Jackson 2001). However, if degradation has already

occurred at the DSB prior to ligation, NHEJ machinery may join the DSB at microhomology

sequences internal to the broken ends, introducing a small deletion at the repair site (Khanna and

Jackson 2001; Ceccaldi et al. 2016; Pannunzio et al. 2014). This particular mechanism, along

with the resulting microhomology-flanked deletions, has also been attributed to the MMEJ

pathway (Sfeir and Symington 2015); however, under MMEJ, microhomologies are exposed

through intentional end resection (Ceccaldi et al. 2016). Additionally, MMEJ has been observed

to erroneously join DSBs on different chromosomes, leading to the formation of translocations

and rearrangements in the genome (Ceccaldi et al. 2016). SSA induces end joining at longer

homologies, specifically nucleotide repeat sites, which can result in the deletion of repeat copies

as well as the intervening sequences between repeats (Ceccaldi et al. 2016).

Genomic instability is a hallmark of cancer, with defective DNA repair machinery

playing a critical role in the accumulation of DNA damage (Carusillo and Mussolino 2020;

Alhmoud et al. 2020). For instance, impairment of the HR pathway increases the activity of these

error-prone pathways for DSB repair, ultimately resulting in the accumulation of deleterious

mutations in the genome (Scully et al. 2019). Patients with a deficient HR pathway are referred

to as homologous recombination-deficient (HRD), while patients with properly functioning HR

pathways are generally referred to as homologous recombination-proficient (HRP). The HRD
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phenotype has been observed in several cancer types, including breast, ovarian, prostate and

pancreatic cancers (Stewart et al. 2022; Heeke et al. 2018; Marquard et al. 2015). HR deficiency

typically results from the malfunction of genes within the HR pathway and can be detected by

identifying impairments in HR genes, including germline mutations, somatic mutations,

methylation changes and others (Polak et al. 2017; Stewart et al. 2022). BRCA1 and BRCA2 are

key genes of the HR pathway, and their impairment has been consistently linked to HR

deficiency in breast cancer (Stewart et al. 2022; Vollebergh et al. 2014; Heeke et al. 2018;

Nguyen et al. 2020). Impairment of other HR pathway genes ATM, PALB2 and RAD51 has also

been associated with HR deficiency in breast cancer, albeit less consistently than the BRCA1/2

genes (Stewart et al. 2022; Heeke et al. 2018; Nguyen et al. 2020; den Brok et al. 2017).

Importantly, HR deficiency can also be detected by the presence of specific patterns of

genomic changes (Stewart et al. 2022; Marquard et al. 2015). At least seven mutational

signatures have already been associated with HR deficiency: single base substitution signatures

SBS3 and SBS8 (Alexandrov et al. 2013), genome rearrangement signatures RS3 and RS5

(Nik-Zainal et al. 2016), small-scale indel signatures ID6 and ID8 (Alexandrov et al. 2020), and

the CN17 copy number signature (Steele et al. 2022). Furthermore, there are three primary

large-scale mutational events associated with HR deficiency in breast cancer: loss of

heterozygosity (LOH), telomeric allelic imbalances (TAIs), and large-scale state transitions

(LSTs) (Telli et al. 2016; Stewart et al. 2022). LOH is defined as the loss of one copy of a region

of DNA. The LOH metric has been defined as the number of intermediate LOH regions longer

than 15 megabases (Mbs), but shorter than a whole chromosome, in a genome sample (Abkevich

et al. 2012). The TAI metric refers to the number of sub-chromosomal regions in the genome

with allelic imbalance extending to the telomere but not crossing the centromere (Birkbak et al.
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2012). LSTs refer to chromosomal breaks ≥ 10 Mbs between two adjacent regions in the genome,

where a chromosomal break is defined as a translocation, inversion or deletion (Popova et al.

2012; Stewart et al. 2022). A high count of any of these scarring patterns has been associated

with HR deficiency in breast cancer, and is thought to result from error-prone DSB repair in

HRD cells (Abkevich et al. 2012; Birkbak et al. 2012; Popova et al. 2012; Stewart et al. 2022).

Telli et al. have derived an HR deficiency score (HRD score) defined as the unweighted numeric

sum of LOH, TAIs and LSTs to quantify the prevalence of HR deficiency-related genomic

scarring in a sample (Telli et al. 2016). An HRD score ≥ 42 and/or BRCA1/2 impairment were

found to sufficiently detect the HRD phenotype in triple-negative breast cancer (TNBC) (Telli et

al. 2016).

Tumors exhibiting the HRD genotype are vulnerable to poly (ADP-ribose) polymerase

(PARP) inhibitors and platinum therapies (Tutt et al. 2018; Moore et al. 2018). Moreover, HR

deficiency has been shown to confer a better response to these treatments than HR proficiency

(Heeke et al. 2018; Mateo et al. 2015; Telli et al. 2016). Examples of PARP inhibitors used for

breast cancer treatment include olaparib, talazoparib, rucaparib, niraparib and veliparib, and

platinum-based therapies currently in use include cisplatin, carboplatin, and oxaliplatin (Cortesi

et al. 2021; Zhang et al. 2022). The normal function of the PARP enzyme is to bind to DNA at

SSB sites, recruit the XRCC1 DNA repair protein and then dissociate to allow access to other

SSB repair factors (Curtin and Szabo 2020). PARP inhibitors prevent the dissociation of PARP

from DNA, which obstructs repair machinery as well as DNA replication forks at SSB sites.

(Moore et al. 2018; O'Connor 2015). This leads to the accumulation of SSBs and the generation

of DSBs, which arise from the stalling and collapse of replication forks at PARP-obstructed

DNA regions, in the genome (Moore et al. 2018; O'Connor 2015). The therapeutic efficacy of
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PARP inhibitors in HRD tumors is attributed to the concept of synthetic lethality, wherein a

defect in either the PARP or HR machinery can be tolerated by the cell, but the combination of

both leads to the accumulation of deleterious mutations and subsequent cell death (Lord and

Ashworth 2017; Moore et al. 2018). On the other hand, platinum therapies can introduce

interstrand crosslinks to the genome, which the HR pathway also helps to repair (Wang and

Lippard 2005; Deans and West 2011). For HRD tumors, this DNA damage can accumulate and

eventually lead to p53-mediated apoptosis (Wang and Lippard 2005). These vulnerabilities

provide an opportunity to optimize treatment for HRD cancer patients by targeting the

weaknesses of HRD tumors; as such, it is important to have methods for determining the HR

status of a tumor in breast and other cancers.

While BRCA1/2 status and genomic scarring patterns are good identifiers of HR

deficiency, they do not fully describe the complexity of how HR deficiency presents in the cell.

These metrics only provide information about the mutational landscape of HR deficiency, which

is effectively the history of all of the mutations that have ever occurred throughout the lineage of

the cancer cell. This can result in the failure to accurately classify a tumor as HRD or HRP; for

example, mutations which occur in the 53BP1 pathway or which restore BRCA1 expression can

lead to restoration of HR function in BRCA1-deficient cells and subsequent PARP inhibitor

resistance (Jacobson et al. 2023; Dias et al. 2021; Noordermeer et al. 2018). Thus, one needs to

define metrics for HR deficiency classification which relate to the current state of a tumor.

Determining the transcriptional profiles of known HRD and HRP tumors is one possible

solution for this, as they would describe only the most recent gene activity rather than the

accumulation of mutations that have occurred since the formation of the tumor. The clinical

utility of transcriptional signatures for HR deficiency has already been demonstrated through the
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validation of the Tempus HRD-RNA model, which was shown to predict BRCA1/2 status in

prostate cancer within a Clinical Laboratory Improvement Amendments-certified clinical setting

(Leibowitz et al. 2022). However, there remains a need for clinically relevant models for

predicting HR deficiency in breast cancer.

Several other transcriptional signatures for HR deficiency have been developed, albeit not

in a clinical setting. These include include a 70-gene chromosomal instability signature, CIN70,

defined by copy number alterations characteristic of HR deficiency, a 77-gene BRCA1ness

signature defined by expression patterns characteristic of BRCA1-impaired breast cancers, and a

7-gene PARP inhibitor sensitivity signature (PARPi7) defined by molecular features associated

with response to olaparib in breast cancer (Carter et al. 2006; Severson et al. 2017; Daemen et al.

2012). While these signatures have proven adept at predicting HR deficiency and PARP inhibitor

response, they do not individually provide a complete picture of the HRD phenotype (Jacobson

et al. 2023; Severson et al. 2017; Daemen et al. 2012). CIN70 is constructed based solely on

copy number aberration patterns, and therefore is not applicable to the full range of possible HR

deficiency features in transcriptomic datasets (Carter et al. 2006). Severson et al.’s BRCA1ness

signature describes only BRCA1-negative HRD expression, failing to address other types of HR

deficiency which may exhibit intact BRCA1 (Severson et al. 2017). Finally, PARPi7 and the

BRCA1ness signature have been proven to be predictive of response to just one of many possible

PARP inhibitors - PARPi7 of olaparib response and the BRCA1ness signature of veliparib +

carboplatin response (Daemen et al. 2012; Severson et al. 2017).

A 230-gene transcriptional HR deficiency signature was developed by Peng et al. through

microarray differential expression analysis for control and HRD human mammary epithelial cell

lines (Peng et al. 2014). Genes were selected if their expression between the control and HRD
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cells differed by a factor of 2 or more, and the resulting signature is predictive of HR deficiency

and sensitivity to olaparib and rucaparib in breast cancer cells. More recently, a 228-gene

transcriptional signature was developed by Jacobson et al. to characterize the transcriptomic

profiles of HRD and HRP breast cancers (Jacobson et al. 2023). They performed a multinomial

elastic net regression to select genes and then employed a nearest centroid method to develop

unique templates for HR deficiency, HR proficiency, BRCA1ness, BRCA2ness and

BRCA-positive HR deficiency. The final signature successfully classifies HRD and HRP samples

and distinguishes between responders (R) and non-responders (NR) to rucaparib, niraparib,

olaparib, and talazoparib in breast cancer. While these signatures aptly predict HR deficiency and

PARP inhibitor response as well as address the shortcomings of CIN70, PARPi7 and the

BRCA1ness signature, they require excessively large expression profiles for classification.

Moreover, they are not corrected for breast cancer molecular subtypes. The basal-like breast

cancer subtype has been linked to HR deficiency (Sorlie et al. 2003; Anders et al. 2010), and

therefore these models may be predicting a specific molecular subtype rather than the HRD/HRP

phenotypes.

Presented here is a 153-gene transcriptional signature for characterizing HR deficiency in

breast cancer. Genes were selected and weighed through training and validation for a linear

support vector classifier using bulk RNA-sequencing (RNA-Seq) data from The Cancer Genome

Atlas’s breast cancer cohort (TCGA-BRCA). The clinical significance of the resulting

transcriptional signature was tested on independent transcriptomic data with PARP

inhibitor-response annotations from the I-SPY2 clinical trial (Barretina et al. 2012; Pusztai et al.

2021). The signature is able to detect HR deficiency from transcriptomic data as well as identify

breast cancer patients who may be sensitive to PARP inhibitors.
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Chapter 2 Training and Validation of Machine Learning Models to Estimate
Transcriptional Signatures of Homologous Recombination Deficiency in Breast

Cancer

Machine learning (ML) is a useful technique for extracting patterns that are concealed

within complex, high-dimensional datasets, such as gene expression datasets, which can be

exceedingly large and difficult to interpret. Thus, an ML model was defined to extract a

transcriptional signature of HR deficiency and/or PARP-inhibitor response from transcriptomic

data from breast cancer patients.

There are two main categories of machine learning: unsupervised and supervised. In

unsupervised ML, a model separates entries of an unlabeled dataset into clusters. Entries within

the same cluster are predicted to be similar, and entries in adjacent clusters are predicted to be

distinct, or less closely related. Since the data is unlabeled, the meanings of these clusters are not

immediately evident. In supervised ML, a model is trained on a labeled dataset, whereby each

entry already belongs to a known group or label. The model then learns which features in the

dataset are most important for distinguishing between labels, and defines weightings for these

features that optimize this separation. The transcriptional signature is intended to define an HRD

and/or PARP-inhibitor sensitivity gene expression profile for breast cancer patients. Thus, the

labels of interest are already known, and signature inference is a supervised machine learning

problem.

Supervised ML model development is composed of three main steps: training, validation,

and testing. The training process is the “learning” aspect of machine learning - the model

evaluates a labeled “training” dataset to determine a transformation of the data that leads to

optimal separation of distinctly labeled entries (e.g., HRD versus HRP samples). This is also

referred to as model fitting, as dataset features (e.g., genes for transcriptomic data) are weighed
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in proportion to their observed importance in this separation. Thus, features deemed important

for separation are weighed higher, while features deemed less impactful are assigned lower

weights. The set of weighted features that define a trained ML model can be interpreted as a

signature that may be predictive of the training dataset labels. The predictive ability of these

signatures can be investigated and optimized during validation and testing.

The validation step involves allowing the trained model to make predictions as to the

underlying labels of each entry of a separate “validation” dataset - usually a held-out subset from

the same source as the training data. The model’s predictive performance is evaluated and its

parameters are re-adjusted repetitively until satisfactory performance metrics are achieved. The

final step, testing, usually requires a “test” dataset from a source that is independent from the

training and validation data. The model makes predictions on this unseen data, and its

performance is evaluated to determine the ability of the model to generalize beyond the specific

data it has been trained on. This step is intended to simulate the efficacy and relevance of the

model when it comes to making “real-world” predictions.

Following these steps, ML models were developed to estimate candidates for an HR

deficiency transcriptional signature.

Preparation of transcriptomic data for training and validation

Raw and fragments per kilobase of transcript per million mapped reads (FPKM) bulk

RNA-Sequencing expression profiles for 1,231 samples in TCGA-BRCA were obtained from the

Genomics Data Common’s Data Portal for model training and validation. Duplicate, normal

tissue, and male patient samples were removed from the datasets, and only protein-coding genes

were retained. Additionally, mitochondrial, ribosomal, and non-autosomal genes were removed,
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as well as genes expressed in less than 5% of all samples. After filtering, the expression datasets

each contained the same 1,100 samples and 17,979 protein-coding genes.

Samples were given HRD/HRP labels using HRD scores and BRCA1/2 annotations for

TCGA-BRCA obtained from genomics analyses in Steele et al. and Polak et al., respectively

(Steele et al. 2022; Polak et al. 2017). Specifically, samples were labeled HRD if they exhibited

BRCA1/2 loss and/or an HRD score ≥ 50, and HRP if they exhibited no BRCA1/2 loss and an

HRD score ≤ 11. BRCA1/2 loss was defined as either epigenetic silencing or biallelic inactivation

of BRCA1 or BRCA2. While an HRD score cutoff of at least 42 has been found to be predictive

of HR deficiency (Telli et al. 2016), HRD and HRP score cutoffs were instead chosen at the

extreme ends of the TCGA-BRCA HRD score distribution, at 50 and 11 respectively (Fig. 2.1).

This was done to ensure that the models were trained on unambiguous, high-confident HRD and

HRP transcriptomic profiles, therefore encouraging the models to extract the most important

features for HRD/HRP separation and discouraging the misinterpretation of noise or

uninformative features in the data as relevant. Thus, samples with non-extreme HRD scores (i.e.,

greater than 11 and less than 50) could not be labeled HRP, and were labeled HRD only if they

also showed evidence of BRCA1/2 loss. Samples for which HR labels were indeterminable by

these guidelines were excluded from further analyses. Ultimately, a total of 433 samples

remained, with 244 samples labeled as HRP and 189 samples labeled as HRD.
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Figure 2.1: Distribution of HRD scores for samples in the TCGA-BRCA training and validation
datasets.

PAM50 molecular subtype annotations from Berger et al. (Berger et al. 2018) revealed a

significant imbalance in the subtype distributions of HRD and HRP samples in the data, such that

the majority of HRD samples were defined as basal-like and the majority of HRP samples were

defined as luminal A (Fig. 2.2a). This phenomenon has been observed previously, as have

similarities between HR deficiency and the basal-like subtype in breast cancer (Anders et al.

2010; Livasy et al. 2006; Prat et al. 2014; Sorlie et al. 2003; Swain 2008; Jacobson et al. 2023).

This raised the concern that a model trained to predict HR deficiency versus HR proficiency

from this data may actually predict the basal-like versus luminal A subtype instead. To address

this, the data was first randomly split into training and validation subsets, with 80% of samples

(346/433) allocated for training and 20% (87/433) allocated for validation. HRD/HRP subtype

imbalance was similarly observed in both the training and validation subsets (Fig. 2.2b-c).

Samples were removed from the training data until the HRD and HRP subtype distributions were

identical, and the removed samples were added to the validation data (Fig. 2.2d-f).
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Figure 2.2: PAM50 molecular subtype distributions of HRD and HRP samples in: a) the full
dataset, b) the training subset, and c) the validation subset before subtype balancing, and d) the
full dataset, e) the training subset, and f) the validation subset after subtype balancing.
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After filtering, labeling, and balancing the data for molecular subtype, training and

validation of ML models could begin. The final sample sizes of the training and validation

subsets allocated for these purposes were 98 and 335, respectively (Fig. 2.3).

Figure 2.3: HRD/HRP and molecular subtype makeup of training and validation datasets.

Training and validation of linear support vector classifier models

Distinguishing between HRD and HRP gene expression profiles is an example of a

binary classification problem in supervised machine learning, whereby an ML model is trained to

assign new entities to one of two defined categories. Support vector classifiers (SVCs) are a class

of ML models applicable to binary classification problems. For linearly separable data, SVCs

define a hyperplane that optimally separates entities of different classes. For linearly inseparable

data, SVCs define a kernel function to transform the data such that it becomes separable by a

linear hyperplane. Linear SVCs employ linear kernel functions and therefore are optimal for use

on linearly separable data. While neither linear separability, nor linear inseparability, of the
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transcriptomic data was known, linear SVCs were utilized to separate HRD and HRP gene

expression profiles due to their speed and efficacy on high-dimensional datasets with relatively

few samples.

Three distinct linear SVC models arose from different feature selection methods and the

use of either raw or FPKM-normalized TCGA-BRCA RNA-Sequencing data as input. Both

differential expression (DE) analyses and L1 regularization were performed for feature selection

purposes. Differential expression analyses highlight genes which exhibit extreme, significant

differences in their expression by defined experimental groups. On the other hand, L1

regularization is an ML technique that drives the weights of uninformative features in a dataset

to zero, thus defining a reduced set of high-relevance features. This is in contrast to L2

regularization, a related technique which drives the weights of uninformative features close to

zero but does not allow them to reach zero exactly. For this reason, L2 regularization is not

useful for feature selection; however, it is useful for model fitting, as it permits heavier weighting

of informative features and encourages lower weighting of less-informative features. Before

training and validation, all data were subjected to log2 transformation, and each expression value

was centered within the datasets to the 75th quantile of the associated gene. Fixed values of 9.5

were also added to each expression value to avoid negative values in the data.

The first linear SVC model, M1, was trained and validated on FPKM-normalized data. A

preliminary linear SVC was fitted on the FPKM training dataset to select features for M1 using

L1 regularization. Of the 17,979 genes in the dataset, 83 were selected as features, and the

training and validation feature space was reduced accordingly. M1 was fit to, or trained on, the

reduced training dataset using L2 regularization, through which feature weights were defined

(Fig. 2.4).
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Figure 2.4: Summary of M1 feature importance. Features are ranked from most important (top)
to least important (bottom). Negative weights indicate a feature predictive of HR proficiency;
positive weights indicate a feature predictive of HR deficiency.

Functional enrichment analyses were performed on the features using g:Profiler’s g:GOSt

module (Kolberg et al. 2023) (Fig. 2.5). Top results for HRD-predictive features include DNA

demethylation, misfolded protein clearing, mis-splicing, and inhibition of cell proliferation,

metastasis and tumor development; top results for HRP-predictive features include tumor

growth, metastasis suppression, lipid metabolism, metabolism of glycine, serine, and threonine,
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and the methionine salvage pathway. While many of the top results for both HRD- and

HRP-predictive features are relevant in the context of cancer, none were statistically significant

(padj > 0.05). This result undermines the credibility of M1, as the features are expected to be

significantly enriched for functional attributes related to the HRD and/or HRP phenotype.

However, despite insignificant functional enrichment results, M1 demonstrated strong

performance in HRD/HRP prediction on the held-out validation dataset with an area under the

receiver operating characteristic curve (AUC) of 0.96 (Fig 2.6).

Figure 2.5: Top 5 functional enrichment results for a) HRD-predictive features and b)
HRP-predictive features of M1. P-values are measured using a Fisher’s one-tailed test, and
corrected using g:Profiler’s g:SCS method (Kolberg et al. 2023).
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Figure 2.6: Performance metrics for M1 on the FPKM validation dataset. a) Precision-recall
curve. Precision is defined as the ratio of true HRD predictions to total HRD predictions; recall is
defined as the ratio of true HRD predictions to total HRD samples. b) Receiver operating
characteristic (ROC) curve. The true positive rate is the probability that M1 will correctly
classify HRD samples as HRD; the false positive rate is the probability that M1 will falsely
classify HRP samples as HRD. An area under the ROC curve (AUC) value of 1 indicates perfect
classification, while an AUC value of 0.5 indicates the model has no discriminatory power. c)
Confusion matrix displaying the number of correct and incorrect HRD and HRP predictions.

The second model, M2, was trained and validated on the raw dataset. L1 regularization

resulted in the selection of 88 features, with feature weights determined through model training

and L2 regularization (Fig. 2.7).
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Figure 2.7: Summary of M2 feature importance.

M2 derived more significant results from functional enrichment analysis compared to

M1 (Fig. 2.8). Top functional enrichment terms for HRD-predictive features are related to cell

migration and proliferation, misfolded protein clearing and degradation, and immune and

inflammatory response; top terms for HRP-predictive features are related to apoptosis,

metastasis, cell proliferation, and pancreatic and lung cancer - though, notably, not breast cancer.

While several significant results were found for HRP-predictive features, thus marking an
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improvement upon M1, still only one statistically significant result was found for

HRD-predictive features.

Figure 2.8: Top 5 functional enrichment results for a) HRD-predictive features and b)
HRP-predictive features of M2.

M2’s validation performance metrics were very similar to those of M1, with a slightly

reduced AUC of 0.95 (Fig. 2.9).
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Figure 2.9: Performance metrics for M2 on the raw validation dataset. a) Precision-recall curve.
b) ROC curve. c) Confusion matrix.

The third and final model, M3, was trained and validated on the raw dataset, with DE

analysis performed for feature selection using the DESeq2 package (Love et al. 2014). While, for

M1 and M2, log2 transformation and centering occurred before feature selection, for M3 these

transformations occurred after feature selection by DESeq2, citing the need for un-normalized

and un-transformed DESeq2 input (Love et al. 2014).

DESeq2 associates each gene with a log2 fold change value as well as an adjusted

p-value. The log2 fold change values describe the extent to which each gene is differentially

expressed in HRP versus HRD samples in the training dataset. For example, a log2 fold change

value of -1 for a particular gene means that the expression level of that gene in HRP samples is

half the expression level of the gene in HRD samples, as 2-1=0.5. A log2 fold change value of 1,
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on the other hand, indicates that the expression level of the gene in HRP samples is twice the

expression level of the gene in HRD samples, as 21=2. Therefore, negative log2 fold change

values indicate a gene which is predictive of HR deficiency, while positive log2 fold change

values indicate a gene which is predictive of HR proficiency. P-values were calculated by the

Wald test and corrected according to the Benjamini Hochberg method. 153 genes, with

associated padj < 0.01 and |log2 fold change| > 2, were selected as features for M3 (Fig. 2.10).

L2 regularization was employed during fitting, with the resulting feature weights summarized in

Figure 2.11.

Figure 2.10: Adjusted p-value and log2 fold change thresholds applied for feature selection
during DE analysis.
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Figure 2.11: Summary of M3 feature importance.
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Functional enrichment results for M3 were the most significant of all three models (Fig.

2.12). Top functional enrichment terms for HRD-predictive features were related to cell

proliferation, metastasis inhibition, cancer stem cell formation, cancer therapeutic resistance,

inflammation, and DNA damage response regulation; top terms for HRP-predictive features were

related to tumor growth, apoptosis, angiogenesis, metastasis, cell motility, cancer-cell invasion,

cytokinesis, and lactating breast ductal cells. M3 also achieved very similar performance metrics

to M1 and M2 during validation, with an AUC of 0.95 (Fig. 2.13).

Figure 2.12: Top 5 functional enrichment results for a) HRD-predictive features and b)
HRP-predictive features of M3.
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Figure 2.13: Performance metrics for M3 on the raw validation dataset. a) Precision-recall
curve. b) ROC curve. c) Confusion matrix.

Feature overlap was minimal amongst M1, M2, and M3 (Fig. 2.14); nevertheless,

validation performance was comparable across all three models (Table 2.1). Given that, of the

three models, M3 exhibited a superior functional enrichment result, M3 was expected to perform

optimally on the independent test dataset.
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Figure 2.14: Summary of feature overlap. a) Venn diagram quantifying overlap amongst M1,
M2 and M3 features. b) Features common to both M1 and M2. c) Features common to both M1
and M3. d) Features common to both M2 and M3. e) Features common to M1, M2 and M3.

Table 2.1: Summary of model attributes and validation performance metrics.

M1 M2 M3

Input data FPKM RNA-Seq Raw RNA-Seq Raw RNA-Seq

Scaling method log2 + centering to

75th quantile

log2 + centering to

75th quantile

log2 + centering to

75th quantile

Feature selection L1 regularization L1 regularization DE analysis

Number of features 83 88 153

Precision 0.90 0.93 0.90

Recall 0.99 0.96 0.98

AUC 0.96 0.95 0.95
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Alternative strategies and potential pitfalls

There are several opportunities for further exploration and potential improvement in the

training and validation process. Alternative methods for data processing may include transcripts

per million (TPM) and/or trimmed mean of M-values (TMM) normalization, as well as z-score

and MinMax scaling.

Furthermore, while the models are trained to predict HR deficiency from gene expression

data, which describes only the most recent status of the HR pathway, the ground-truth definitions

for HR deficiency and HR proficiency supplied for training are derived from genomic data, and

thus are still historic markers. Ideal ground-truth definitions for training should describe PARP

inhibitor and/or platinum therapy response, as these are the clinical consequences of HR

deficiency; thus, defining ground-truth using clinical datasets would be an optimal approach for

future analyses.

Various SVC kernel functions can also be explored. A linear kernel was chosen due to its

speed on high-dimensional data, and while it demonstrated efficacy in the training and validation

steps, linear separability cannot be assumed of the data. Thus, it is possible that other kernel

functions, such as polynomial, radial basis, or sigmoid functions, may instead be optimal for

distinguishing HRD from HRP transcriptomic profiles. Cross validation could be implemented in

the future to determine the optimal kernel function for HRD/HRP classification.

Alternative ML models can also be considered for HRD/HRP transcriptional signature

estimation. Both random forest and gradient-boosting classifiers define an optimal set of features

and weights for object classification that can be interpreted as a class-predictive signature.

Furthermore, it is possible to implement regression for HRD/HRP differentiation, whereby

samples would be assigned a value indicating their position on a spectrum between HRD and
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HRP rather than just an HRD/HRP label. Regressors that may be applicable for transcriptional

signature inference include lasso, elastic net and support vector regressors.

Lastly, it would be informative to evaluate model performance on samples from different

cancer types that have been linked to HR deficiency, such as ovarian, pancreatic, and prostate

cancers (Stewart et al. 2022).

28

https://paperpile.com/c/GI28qF/kNtg


Chapter 3 Selecting an Optimal Transcriptional Signature for Homologous
Recombination Deficiency in Breast Cancer Through Evaluation of

Independent Testing Performance

All three models displayed robust validation performance metrics (Table 2.1). However,

the training and validation data were both generated as subsets of the same TCGA-BRCA

dataset; thus, evaluation of the models on an independent test dataset was necessary to determine

whether they exhibited robust performance in general HRD/HRP prediction, rather than merely

overfitting the TCGA-BRCA data. Overfitting is a common machine learning issue where

models learn the cohort-specific patterns that are only found in the training dataset along with the

relevant features. An overfitted model often performs extremely well during validation, but fails

to generalize to unseen data during testing. Thus, the three models were tested for their ability to

generalize to previously unseen data, which were generated independently from TCGA-BRCA.

Additionally, data with drug response annotations were selected for independent testing to

evaluate the clinical relevance of the transcriptional signatures generated by the models.

Preparation of independent test dataset

Microarray and clinical data for the I-SPY2 clinical trial (Pusztai et al. 2021) were

obtained from the Gene Expression Omnibus database under the accession number GSE173839.

The I-SPY2 dataset contains log2-normalized microarray signals for 21,508 genes for 105 breast

cancer patients, 34 from the control group and 71 from the experimental treatment group. The

experimental group was treated with the chemotherapy drug taxol, along with durvalumab, a

PD-L1 inhibitor, and the PARP-inhibitor olaparib, while the control group was treated only with

taxol. These treatments were followed by doxorubicin/cyclophosphamide in both groups.
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Pathological complete response (pCR) annotations were used in place of HRD/HRP

labels, where a pathological complete response is defined as the absence of all cancer cells in a

tissue sample following the experimental treatment regimen. As such, a complete response

(pCR=1) corresponds with clinical HR deficiency, while a failed complete response (pCR=0)

corresponds with clinical HR proficiency. In the experimental group, 29 out of 71 patients were

responders (R), or achieved a pathological complete response, while 42 out of 71 patients were

non-responders (NR), or had a failed complete response. Patients in the control group were not

annotated for PARP-inhibitor pCR and were consequently excluded from further analysis.

Additionally, genes with missing expression values were removed from the dataset. The trained

models were applied to the final I-SPY2 dataset consisting of expression profiles for 71 patients

across 21,434 genes.

Independent testing summary for linear SVC models

Only 72 of M1’s 83 features were present in the test dataset for R/NR prediction. In stark

contrast with its validation performance, M1 performed poorly on the test dataset, classifying

every sample as HRP/NR (Fig. 3.1).

Figure 3.1: Performance metrics for M1 on the I-SPY2 test dataset; precision-recall curve is not
shown due to undefined precision for M1. a) ROC curve. b) Confusion matrix.
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M2’s test performance was similarly poor, although all samples were classified as HRD/R

instead (Fig. 3.2). Only 71 of M2’s 88 features were present in the test dataset.

Figure 3.2: Performance metrics for M2 on the I-SPY2 test dataset. a) Precision-recall curve. b)
ROC curve. c) Confusion matrix.

M3 was the only model with better-than-random prediction on the test dataset (Fig. 3.3).

However, its predictive ability was heavily imbalanced between HRD/R and HRP/NR samples,

with a steep false negative rate (13/29=0.45) leading to significant misclassification of HRD/R

samples (Fig. 3.3c). 141 of M3’s 153 features were retained in the test dataset.
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Figure 3.3: Performance metrics for M3 on the I-SPY2 test dataset. a) Precision-recall curve. b)
ROC curve. c) Confusion matrix.

As hypothesized, M3 exhibited the best performance on the test dataset of all three

models (Table 3.1). While its test efficacy is still diminished relative to its validation

performance, it is important to note that the test dataset has been derived from a microarray,

which is an entirely different gene expression quantification technique compared to

RNA-Sequencing. Although M3 does not demonstrate ideal prediction on the test dataset, it does

generalize well for data obtained from a completely different assay to its training dataset.

Therefore, of the transcriptional signatures generated by each model, the signature produced by

M3 is the optimal choice for detecting HR deficiency in the breast cancer transcriptome.
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Table 3.1: Updated model summary to include test performance metrics. M3 outperforms M1
and M2 on the independent test dataset.

M1 M2 M3

Input data FPKM RNA-Seq Raw RNA-Seq Raw RNA-Seq

Scaling method log2 + centering to

75th quantile

log2 + centering to

75th quantile

log2 + centering to

75th quantile

Feature selection L1 regularization L1 regularization DE analysis

Number of features 83 88 153

Number of features

in test dataset
72 71 141

Validation precision 0.90 0.93 0.90

Validation recall 0.99 0.96 0.98

Validation AUC 0.96 0.95 0.95

Test precision 0.00 0.00 0.84

Test recall 0.00 0.00 0.55

Test AUC 0.50 0.50 0.74

Importantly, the HR deficiency signature generated by M3 demonstrates superior

performance compared to Jacobson et al.’s 228-gene signature in distinguishing responders to

durvalumab and olaparib from non-responders in the I-SPY2 trial (Fig. 3.4) (Jacobson et al.

2023).
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Figure 3.4: Comparison of HRD scores calculated by M3 for responders and non-responders to
durvalumab and olaparib in the I-SPY2 trial.

This marks an improvement not only in identifying patients who may respond to PARP

inhibitors but also in reducing the number of features required for prediction.

Alternative strategies and potential pitfalls

While M3 demonstrated generalizability on the test dataset, its performance was not

optimal. This may reflect the difference in ground-truth definitions used for training and testing,

as M3 was trained using genomic HRD/HRP definitions but tested against clinical response to

PARP inhibitors. M3’s test performance may also have been impacted by the differences of

microarray technology for gene expression quantification as compared to RNA-Sequencing. For

example, the reliance of microarray results on probe hybridization limits the detection of RNA

transcript variants and can lead to increased noise due to non-specific binding of probes and

target transcripts (Wang et al. 2009; Okoniewski and Miller 2006). The range of detection of
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microarrays is limited by noise at lower expression levels and, at higher expression levels, the

inability to differentially quantify expression past a maximum detection capacity (Wang et al.

2009).

The I-SPY2 dataset also lacked data for 12 of M3’s 153 features. Several of these features

were identified as highly important for HRD/HRP classification, and their absence may have

contributed to the suboptimal performance of M3 on the test dataset. Additionally, the log2 fold

change cutoffs of 2 and -2 used for feature selection for M3 are stringent, preventing genes with

less than four-fold expression differences between HRD and HRP samples in the training dataset

from being selected as features. Test dataset performance may be further improved by including

more features for prediction through the use of less stringent log2 fold change cutoffs. Future

directions include extending the transcriptional signature to additional HR deficiency-associated

cancers (e.g., ovarian, pancreatic, and prostate cancers) (Stewart et al. 2022) and evaluating its

efficacy in predicting responses to PARP inhibitors beyond olaparib.
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CONCLUSION

In light of a breast cancer diagnosis, it is essential that the prescribed treatment plan

offers the greatest possible improvement of survival. Furthermore, due to the time-sensitive

nature of the disease, an optimal treatment plan must be selected and initiated as soon as

possible. For one, a timely diagnosis of HR deficiency in breast cancer allows for the immediate

initiation of PARP inhibitors and/or platinum-based therapy, significantly improving prognoses.

While several tools have been developed for HR deficiency prediction, the signature presented

here is unique in its applicability and efficacy. It leverages transcriptomic data to identify HR

deficiency based on only the most recent observed phenotype rather than the mutational history

of the cell. The signature is also widely-applicable, focusing on transcriptional patterns common

to all breast cancer subtypes and mechanisms of HR deficiency. Moreover, the signature allows

identification of breast cancer patients who may be sensitive to PARP inhibitors based on

transcriptomic data.
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