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ABSTRACT OF THE DISSERTATION

Spatiotemporal Dynamics of the Cystic Fibrosis Airway Microbiome

By

Peter Muarice Uhl

Doctor of Philosophy in Computational Science

University of California, Irvine, 2023

Professor Naveen K. Vaidya, Chair

Increased understanding of the ecology of the cystic fibrosis (CF) lung microbiome has im-

proved treatment options for CF lung infections by allowing clinicians to target microbes

known to be associated with acute disease. The microbial community responsible for CF

lung infections is a complex collection of bacteria, viruses, and fungi with varying nutri-

tional sources and metabolisms. Oxygen is a key resources in this environment, however

it has different effects on the various microbial species with some species requiring it for

respiration and others inhibited by it. Episodes of acute disease known as cystic fibrosis

pulmonary exacerbations (CFPEs) are now known to be associated with higher abundances

of fermentative anaerobes which can propagate in low oxygen conditions. The goal of this

dissertation is to characterize the CF lung microbiome quantitatively, specifically the inter-

action between anaerobic and aerobic microbes, the role of oxygen, and the potential for

oxygen-based therapies and optimized antibiotic usage. We begin by developing a model for

the in vitro growth of CF pathogens and estimating basic growth parameters for individual

pathogens. We use these parameterizations to model the competition between aerobic and

anaerobic communities inside of a CF airway and to predict antibiotic treatments and oxy-

gen conditions that maintain a low anaerobic population. Next, we extend our modeling of

aerobic-anaerobic competition to include spatial effects and stochasticity to investigate how

oxygen gradients affect community dynamics within aggregated mucus. We use our spatial

xiv



models to predict physical properties such as the minimum mucus plug diameter necessary to

support anaerobic growth and show that an antibiotic with a high permeability into mucus

is the most effective for controlling the anaerobic community. The results from this disserta-

tion will aid the clinical treatment of CF lung infections by predicting antibiotic treatments

and oxygen therapies which can be tested in laboratory conditions and eventually be applied

clinically.

xv



Chapter 1

Introduction

Cystic fibrosis (CF) is an inherited genetic disorder caused by mutations in the gene respon-

sible for regulating the cystic fibrosis transmembrane conductance regulator (CFTR) protein

[22, 29]. The CFTR regulates anion transport across epithelial cell boundaries and muta-

tions to the CFTR gene can cause dehydration of mucins which interferes with a number of

physiological functions [11]. CF can be diagnosed at birth, with most cases identified by age

ten and diseases of the pancreas, liver, and lungs can be present from a young age [11, 77].

Chronic lung infections leading to bronchiectasis and eventual pulmonary failure are the

leading cause of death in people with CF. Improved therapies and, more recently, CFTR

modulators have greatly improved the prognosis for treating CF, however, lung infections

remain a serious concern for managing CF [11, 51, 81, 107].

Improper transport of chloride ions and water across cell membranes causes a build-up

of thick, sticky mucus in the lung and respiratory system in CF patients [57, 71]. The

accumulated mucus in the airways is vulnerable to colonization by opportunistic pathogens,

and long-term infections are established in the airways early in life [22]. The presence of

bacteria and other microbes elicits a strong immune response, including increased mucus

1



production, leading to epithelial scarring and remodeling of the airway [26, 57]. Over a

patient’s lifetime, scarring, inflammation, and chronic infections cause a gradual decrease in

pulmonary function and dramatically shortens the life expectancy of people with CF [51].

Treatment of CF lung infections has historically been done via airway-clearing techniques and

broad-spectrum antibiotics, however, antibiotic resistance is common in many CF pathogens

and limits the effectiveness of such therapies [26, 64].

While it was once thought that CF lung infections were a result of colonization dominated

by single pathogens, such as P. aeruginosa, S. aureus, and A. xylosoxidans, studies of the CF

microbial community have determined that it is chemically complex, structured, and diverse

ecological system [20, 26, 87]. P. aeruginosa is considered the classic CF pathogen and

antibiotic therapies have been devised specifically to treat it, however, due to high genetic

variability and a propensity to form biofilms, it is naturally resistant to many antibiotics

and difficult to treat [23, 115]. These resistance characteristics are shared by many gram-

negative bacteria common in CF, therefore, the focus of treatment is shifting from targeting

individual pathogens to considering how community dynamics are functionally responsible

for illness [14, 26].

Cystic fibrosis pulmonary exacerbations (CFPEs) are periods of acute disease associated with

rapid decline in pulmonary function and are the leading cause of death in CF patients [33, 38].

CFPEs are commonly treated with broad-spectrum antibiotics, percussive therapies, and

anti-inflammatory agents, however, practices are emerging that aim to quickly sample and

obtain multi-omic data from patients undergoing an exacerbation and identify pathogens to

target on an individualized basis [25, 97]. The goal of this strategy is to identify and develop

treatments for the pathogens responsible for causing CFPEs, rather than treating with broad-

spectrum antibiotics for which some microbes have developed resistance. Although much

remains unknown about their exact causes, CFPEs have been associated with increased

abundances of fermentative anaerobes, which are consistently found in CF sputum samples

2



despite the oxygen-rich conditions of the airway and lungs [19, 59, 84, 87]. Accumulated

mucus and aerobic respiration create a steep oxygen gradient which creates hypoxic regions

in which anaerobes can propagate [23, 28].

Mathematical modeling has been used to study disease dynamics and there is a growing

body of literature on modeling bacterial growth [3, 49, 101]; previously, mathematical models

related to CF have been used to study mucus distribution, airflow, and community dynamics

driven by chemical gradients [28, 41, 84, 120, 121]. In this work, we develop a collection of

mathematical models to investigate the role oxygen plays in the interaction between aerobic

and anaerobic microbial species in CF airways. While our focus is on infections caused by

CF, the ecological aspects are also applicable to polymicrobial infections at large.

The remainder of this dissertation is organized as follows: in Chapter 2 we introduce the

requisite mathematical and statistical techniques used for modeling microbial dynamics in

CF airways. In Chapter 3, we develop and validate a model for oxygen- and nutrient-

dependent microbial growth and use it to quantify basic growth characteristics of several

CF pathogens. In Chapter 4, we extend this model to include populations of anaerobic and

aerobic communities growing in a CF airway. We validate this model against a clinical data

set and use it to hypothesize novel antibiotic and oxygen based therapies for CFPEs. The

model discussed in Chapter 5 further extends this framework to include spatially dependent

dynamics which we use to study the effects of oxygen gradients in accumulated mucus and

desirable pharmacodynamic properties for antibiotics. Chapter 6 continues the discussion

of spatial dynamics and introduces random effects with a stochastic agent-based model. In

Chapter 7, we conclude our work and discuss possible directions for future research.
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Chapter 2

Preliminaries

This chapter contains the mathematical and computational techniques we use for modeling

the cystic fibrosis lung microbiome, as well as procedures for data fitting and evaluating

model performance. Throughout this chapter, bold faced variables represent vector quanti-

ties.

2.1 Nutrient dependent growth

Throughout the dissertation, we use E-max functions to model nutrient-dependent growth

rates. The E-max model is based on pharmacological properties and is commonly used to

measure dose-response rates of drugs. Microbial communities rely on nutrients from their

surroundings to grow and we expect microbes to grow more quickly when nutrients are more

abundant. However, we also expect the growth rate to saturate if nutrient is excessively

abundant, i.e., providing infinite nutrient should not result in infinitely fast growth. The
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E-max model describes this mathematically with the response function

f(x) =
rxn

Kn
s + xn

, (2.1)

where x is the density of the nutrient, r is the saturation level, Ks is the concentration of nu-

trient that gives exactly half the saturation level, and n is the slope factor (also called a Hill

coefficient) which determines how sensitive the response is to changes in nutrient concentra-

tion. A larger value of n results in a steeper curve, Figure 2.1 depicts the nutrient-dependent

growth rate function with several values of n. Similar functions are used throughout bio-

chemistry (Michaelis-Menten kinetics), pharmacology, and ecology [3, 27, 60, 65].

Figure 2.1: E-max functions for several different Hill coefficients.

2.2 Ordinary differential equations

Systems of ordinary differential equations (ODEs) are the primary tools we use to model

microbial growth and ODEs have previously been used to investigate diseases such as HIV,
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influenza, and dengue [74, 95, 110, 112, 111]. An ODE is an equation of the form

dy

dt
= f(t,y) (2.2)

where y = (y1, y2, ..., yn) is an unknown state variable that we are interested in tracking

over time t, the derivative d
dt

is the rate of change with respect to time, and the function f

describes how y changes over time. This work is concerned with modeling the dynamics of

several populations and the nutrients they need for growth, so the state variable y represents

a vector with components corresponding to population densities and nutrient concentrations.

Solutions of Equation 2.2 are functions y(t) which describe the amounts of the components of

y over time. Systems of ODEs typically cannot be solved analytically so numerical methods

must be used. Consequently, there is a vast body of literature concerning numerical solutions

to ODEs, see e.g., [15, 44, 45] and many software packages which utilize such methods, e.g.,

[67, 89].

2.3 Local stability analysis

Although we generally cannot obtain closed-form solutions to systems of ODEs, there are

other analytical techniques available for investigating properties of solutions. Linear stability

analysis is one such technique that, for our purposes of modeling microbial populations,

involves determining the final state that a model will evolve to over a long period of time. In

this dissertation, we consider autonomous equations, i.e., equations for which the function

f on the right-hand side of Equation 2.2 does not depend explicitly on the time variable t

[48, 80]. A steady-state solution (also called an equilibrium, or critical point) to a system

of ODEs is attained when the system is no longer changing with respect to time, i.e., when

dy/dt = 0. Therefore we can find the steady-states of Equation 2.2 by solving the algebraic
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system

f(y) = 0. (2.3)

Denote solutions to Equation 2.3 by y∗. We say that y∗ is locally asymptotically stable if the

eigenvalues of the Jacobian matrix

J =


∂f1
∂y1

· · · ∂f1
∂yn

...
. . .

...

∂fn
∂y1

· · · ∂fn
∂yn

 (2.4)

each has real part less than zero when J is evaluated at y∗ and unstable otherwise [48, 80,

117]. Intuitively, if y∗ is stable then the system will evolve toward it over a long enough

length of time, whereas if y∗ is unstable then the system will move away from it. The

function f typically also depends on parameters, i.e., f = f(y,p), giving

dy

dt
= f(y,p) (2.5)

and the stability of the equilibria of Equation 2.5 can change depending on the values of p.

Changes in the stability of the equilibria of Equation 2.5 can occur depending on the value

of p and are called bifurcations [48, 80, 117]. These bifurcations are of interest because they

represent ecological shifts in the steady state of the microbial community [26].

2.4 Parameter estimation

The models we develop in this dissertation are meant to be representative of biological

processes. Therefore, we would like for our models to be able to capture and be validated

against real data sets. As discussed in the previous section, the output of a model often
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depends on the value of certain parameters p, so we desire values of p which minimize the

difference between an observed data set ŷ and a model output y(t,p). Such a p is called the

best-fitting parameter set and is found by minimizing the sum of square residuals [10] given

by

SSR(p) =
M∑
i=1

(y(ti,p)− ŷi)
2 , (2.6)

where M is the number of data points available, and y(ti,p) and ŷi are the model prediction

and observed data at the ith time point, respectively. Packages are available in, e.g., MAT-

LAB and Julia to solve this optimization problem for the best-fitting values of p [12, 67].

2.5 Model selection

In Chapter 3 we compare a collection of nested models, aiming to improve a model’s

goodness-of-fit at the expense of adding additional parameters. We measure the perfor-

mance of the models with the Akaike Information Criterion and by performing an F-test for

nested models.

2.5.1 Akaike Information Criterion

The Akaike Information Criterion (AIC) is a quantitative measure to compare the perfor-

mance of different models based on the SSE, number of available data points, and number

of fitted parameters [2, 74]. To determine the best choice of model, we compute the AIC as

AIC = M ln

(
J

M

)
+

2M (N + 1)

M −N − 2
, (2.7)
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where J is the SSE of the best fitting parameter set, M , is the number of available data

points, and N is the number of estimated parameters. We take the model with the lowest

AIC to be the best choice.

2.5.2 F-test for nested models

When comparing models, we can conduct an F-test to determine if the performance of one

model is a statistically significant improvement over another. To compare two nested models,

we compute the F-ratio as s2e/s
2
f , where se is the difference between the residual mean square

(RSS) of the models being compared divided by the difference in the number of parameters

and sf is the RSS of the best-fit model divided by the number of data points minus the

number of free parameters of that model. We then determine the statistical improvement

by comparing this ratio with an F distribution with the corresponding number of degrees of

freedom [10].

2.6 Sensitivity analysis

In addition to having a model which is able to capture observed data, we are also interested in

identifying individual parameters which have large effects on model output relative to other

parameters. Two techniques we employ to determine the model sensitivity to parameters

are calculating Sobol indices from repeated samples of parameter values and differential

sensitivity analysis.
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2.6.1 Local sensitivity analysis

One method to measure the sensitivity of a model to a change in a parameter is to simple

differentiate the model output with respect to the parameter. Because we do not typically

have closed-forms of our model outputs we require numerical methods to compute these

derivatives and we describe a method to do so using a complex-step perturbation [6, 69, 90].

Let ytk(p) = y(tk,p) be the model output at time tk, k = (1, 2, ...,m) dependent on a

parameter vector p = (p1, p2, ..., pn). For a small, complex valued step-size ih where i =
√
−1

is the imaginary unit, the Taylor expansion of ytk(p) is

ytk(p+ ihej) = ytk(p) + ihy′tk(p)−
h2

2
y′′tk(p) + · · · (2.8)

where ej is the unit vector with a 1 in the jth position and 0’s elsewhere. Taking the

imaginary part of Equation 2.8 and dividing by h, we obtain

y′tk(p) =
Im (ytk(p+ ihej))

h
+O(h2), (2.9)

where O(h2) represents terms of order 2 and higher. Thus, we can compute the partial

derivatives with the approximation

∂ytk
∂pj

= y′tk(p) ≈
Im (ytk(p+ ihej))

h
, (2.10)

for a small value of h.

If we have estimated our parameters by fitting the model to a data set, then we can use

these sensitivities to compute the standard errors of our estimated values [6]. To do so, we
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construct the sensitivity matrix Ψ̂ given by

Ψ̂ =


∂yt1
∂p1

· · · ∂yt1
∂pn

. . .
. . . . . .

∂ytm
∂p1

· · · ∂ytm
∂pn

 , (2.11)

and can compute the standard error or parameter j using

√(
σ2
(
Ψ̂T Ψ̂

)−1
)

jj

, (2.12)

where

σ2 ≈ σ̂2 =
SSR(p)

n−m
. (2.13)

We also desire for our estimated parameter values to be uniquely identifiable, which will be

the case provided the matrix Ψ̂T Ψ̂ possesses full rank [24].

2.6.2 Global sensitivity analysis

The complex-step perturbation method is an example of a technique for performing local

sensitivity analysis, in the sense that it determines the effect of varying each individual

parameter in turn while holding all others fixed. We are also interested in global sensitivity,

i.e., the effect of individual parameters when all other parameters are simultaneously varied.

In Chapter 4, we investigate the global sensitivity of a model by calculating the Sobol indices

of several parameters from repeated samples of parameter values [42, 94, 99, 123].

Let y = f(p) be the output of a model based on a set of input parameters p, and let Y be

a collection of such outputs formed from repeatedly sampling the input vector p from an

appropriate probability distribution. Sobol’s method is a way of decomposing the variance
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of Y as a sum of the variances caused by changes in the components pi of p. Changes in

model outputs are often caused as a result of interactions between various inputs, and an

advantage of Sobol indices is that they are able to quantify these interactive effects [94, 99].

A typical procedure when analyzing a model with Sobol’s method is to compute the first-

order index and total-effect index for each parameter [42]. The first-order index for parameter

pi of the model is given by

Si =
V ar(E(Y|pi)

V ar(Y)
, (2.14)

where the numerator represents the variance of the model caused by varying pi alone, and

E(·) and V ar(·) are the expected value and variance operators, respectively. The total-effect

index represents the variance of the model caused by pi as well as the interaction between

pi with the set of remaining parameters, denoted by p∼i, and is given by

STi
= 1− V ar(E(Y|p∼i)

V ar(Y)
. (2.15)

Therefore, the values of the first-order and total-effect indices represent the percent of the

output variance induced by changes in a parameter, including changes caused by the param-

eters interaction with all other parameters. Some characteristics of Sobol indices are that∑
Si ≤ 1 and

∑
STi

> 1 in general, and
∑

Si =
∑

STi
= 1 in the event that there are no

interactions between parameters [42].

2.7 Reaction diffusion equations

In Chapter 5 we discuss a spatially dependent partial differential equation (PDE) model.

PDEs are often used to model phenomena in which location plays a role in the dynamics,

and the particular type of PDE we use is a reaction-diffusion system. Reaction-diffusion
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systems were developed to model chemical reactions in a specified spatial domain and have

also been used to model ecological systems of organisms interacting in an environment [17].

A typical reaction-diffusion model is a system of PDEs of the form

∂u

∂t
= D∆u+ f(u), (2.16)

where u is the vector of state variables of interest, ∂/∂t is the partial derivative with respect

to time, ∆ is the Laplace operator which models diffusion throughout the domain, D is a

vector of coefficients which determines the rate of diffusion, and the function f determines

local dynamics.

The solutions of Equation 2.16 are functions u(t,x) which specify concentrations or densities

at time t and location x. We also must specify the spatial domain that a PDE is solved

on, including the number of spatial dimensions. In this work, we consider one- and two-

dimensional domains. In one dimension, the Laplace operator is ∆ = ∂2/∂x2 and in two

dimensions ∆ = ∂2/∂x2 + ∂2/∂y2. The short-hands ∂u/∂t = ut = u′ and ∂u/∂x = ux are

often used.

PDEs typically require that the values of u or its derivatives be specified at the boundaries

of the domain via boundary conditions (BCs). The two types of boundary conditions we con-

sider are Dirichlet boundary conditions and (homogeneous) Neumann boundary conditions.

Dirichlet BCs are of the form

u(x) = g(x), (2.17)

where g(x) is a pre-specified position function, and homogeneous Neumann of the form

∂u

∂n
= 0, (2.18)
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where n is a unit normal vector to the boundary. Homogeneous Neumann BCs are also

refereed to as no-flux or no-flow BCs. For modeling populations, no-flow BCs can intuitively

be thought of as saying that all of the organisms stay inside the environment and are not

able to cross the boundary and exit it. Dirichlet BCs simply specify a fixed value at the

boundary, and in this work we exclusively use constant functions for the right-hand side of

Equation 2.17.

As with ODEs, analytical solutions seldom exist for reaction-diffusion systems but there

are many software packages available for obtaining numerical solutions. We use the pdepe

MATLAB function for solving one-dimensional systems and the FEniCS Python package for

two dimensions [5, 67]

2.8 Agent-based modeling

Agent-based modeling is a computational framework for considering a multitude of individu-

als interacting within an environment [1, 109, 118]. An agent-based model (ABM) considers

a domain in which a collection of individual ”agents” act according to a set of pre-determined

rules and are allowed to interact with each other over time. This type of modeling is often

used to model systems with spatial heterogeneity because the computational domain nec-

essarily involves some type of spatial structure. In Chapter 6, we consider a population of

individual anaerobic and aerobic microbes acting as agents interacting in the presence of a

diffusible oxygen concentration. The birth and death processes of individual microbes are

also inherently random, and agent-based modeling is a natural way to introduce stochasticity

into the system. Some drawbacks to ABMs are that they are simulation-based, tend to be

computationally expensive, and lack the analytical tractability of deterministic ODE and

PDE models.
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Chapter 3

Modeling Growth Dynamics of Cystic

Fibrosis Pathogens in Aerobic and

Anaerobic Conditions

This chapter aims to quantify and characterize basic growth properties of several CF pathogens.

Because growth can occur by different mechanisms, we describe microbial growth dynamics

using systems of ODEs with several choices of nutrient-dependent growth functions. We

then fit our models to in vitro growth curves of four CF pathogens and select the model with

the most likely mechanism. The available growth curve data is reported in optical density

measurements, so our modeling includes terms to account for dead cells and nutrient recy-

cling in the closed system of the optical density capsule. The results in this chapter provide

quantification of basic microbial growth dynamics and also increase the utility of optical

density measurements by estimating the density of living microbes over longer periods of

time than are currently possible.
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3.1 Introduction

The cystic fibrosis airway microbiome is a complex ecosystem [26, 87]. It was previously

thought that the CF lung was dominated by single pathogens, most commonly Pseudomonas

aeruginosa [100, 13], however, it is now understood that the CF lung is inhabited by a diverse

community of bacteria, viruses, and fungi [26, 87]. Consequently, treatment of CF lung

infections has shifted to a multi-omics approach in which specific pathogens are identified

and targeted for treatment [25, 97]. Therefore, more detailed characterizations of individual

pathogens that inhabit the CF airway are critical for designing better treatment strategies

for CF lung infections.

While P. aeruginosa is one of the most common pathogens, the CF airway also contains

bacteria and fungi that are normally found in healthy human microbiomes and which can

cause infections [13, 30, 104]. Pathogens can exhibit a wide variety in their metabolisms,

nutritional sources, and responses to treatment [23, 39] but there is not a widespread method

of quantifying their growth characteristics. Anaerobic bacteria are routinely found in spu-

tum samples of CF patients, and many classic CF pathogens, including P. aeruginosa, are

facultatively anaerobic and can survive with or without oxygen [36, 79, 83]. Quantifying

the growth behavior of individual pathogens under different conditions is therefore useful

clinically for the treatment of CF lung infections and for the broader study of microbial

ecology. Recent strategies for treating acute CF infections rely on quickly sequencing and

identifying potential targets for treatments, and having basic understanding of the growth

mechanisms of individual pathogens is beneficial for such treatments [25].

Optical density (OD) measurements are used frequently by microbiologists to measure mi-

crobial growth. These measurements are useful, e.g., for observing relative growth rates

between different strains of bacteria, or the growth of a single bacteria under different nutri-

tional conditions. OD machines do not directly count growing microbes, rather, population
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density is measured indirectly by passing light through a capsule containing microbes in

a nutrient media, and the machine measures the diffraction due to microbial density. A

drawback to this technique is that OD machines cannot distinguish between living and dead

cells, so OD measurements are only reliable during the exponential phase of microbial growth

when little cell death occurs [52, 78, 102]. A further complication is that as microbes die,

autolysis can occur and a portion of the nutrients contained by dead cells can be recovered

by the remaining live microbes [61, 91].

While individual microbes can function as their own separate organisms, bacteria and other

single-cell entities greatly benefit from forming biofilms, colonies, and other organized struc-

tures [4, 116]. By organizing into a single, larger entity, microbes are more protected from

external stress, can promote genetic diversity, and clear damaged or defective cells [61].

Programmed death has been observed in some bacteria in response to starvation, in which

some cells die altruistically and undergo lysis, which releases the nutrients within their cell

walls into the intra-cellular matrix where it can be utilized by the remaining community

[4, 116]. These mechanisms can be observed in in vitro experiments, but it remains difficult

to quantify the dynamics inside of microbial communities because cell counts cannot be di-

rectly measured. In this chapter, we quantify the behavior of four facultatively anaerobic

CF pathogens by estimating several growth-related parameters from in vitro measurements.

The pathogens, three bacteria and one fungus, were cultured from sputum samples taken

from a patient at the University of California, San Diego Cystic Fibrosis Clinic and their

growth measured via optical density [102].

The goal of this chapter is to quantify the growth mechanisms and parameters of the several

CF pathogens under anaerobic and aerobic conditions using mathematical modeling. The

models we develop in this chapter are systems of ODEs with several choices of resource-

dependent growth rates. By fitting our models to experimental growth data, we are able

to estimate parameters that characterize the growth of the pathogens and identify the most
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likely mechanisms of action using the Akaike Information Criterion and perform statistical

and sensitivity analysis on the estimated parameter values we obtain [2, 6]. Our results may

be useful in understanding the basic ecology of the CF lung microbiome, identifying possible

treatment strategies for CF lung infections, and microbial ecology in general. This work may

also increase the utility of OD measurements by allowing microbiologists to estimate the

amount of living cells present over long periods of growth rather than during the exponential

phase alone.

3.2 Experimental data

3.2.1 Aerobic growth curves

All strains were grown using brain and heart infusion (BHI) media in a clear polystyrene

float bottom 96 well plate. Strains were grown overnight while shaking at 37 degrees Celsius,

then diluted 1:200 before loading into the 96 well plate for the growth curve in a 96 well plate

OD reader. OD readings were taken every 20 minutes at 600 nm wavelength light. The OD

reader maintained 37 degrees Celsius and medium-intensity orbital shaking throughout the

experiment.

3.2.2 Anaerobic growth curves

Anaerobic growth curves were conducted using BHI supplemented with 0.1% KNO3. Strains

were grown overnight in anaerobic conditions and diluted 1:200 under anaerobic conditions

before loading into a 96-well plate and sealed using an airtight plastic film. Once sealed, the

plate was removed from the anaerobic chamber and loaded into the 96-well plate OD reader

with the same settings as for the aerobic growth curves.
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3.2.3 Microbial growth profiles

The three bacteria E. faecalis, P. aeruginosa, and S. odorifera and the pathogenic yeast C.

albicans were grown in aerobic and anaerobic conditions over 48 hours, producing eight total

growth curves. The bar graphs in Figure 3.1 show the observed mean optical density for the

four microbes. In anaerobic conditions (blue bars in Figure 3.1), each microbe reached peak

density between 0.4 and 0.5 OD. P. aeruginosa and C. albicans saw slight increases in OD at

approximately 1.2 days. E. faecalis and S. odorifera enter the death phase by the end of the

data collection, while the curves for P. aeruginosa and C. albicans are still in the stationary

phase after two days.

Each of the four microbes in the experiment are facultative anaerobes and can grow with

or without oxygen. However, many facultative anaerobes survive anaerobic conditions by

drastically slowing their metabolisms and growing faster when oxygen is available. The

red bars in Figure 3.1 demonstrate each of the four species’ faster metabolism in aerobic

conditions. E. faecalis and P. aeruginosa have similar profiles during the exponential growth

phase in both oxygen scenarios but reach higher peak concentrations when grown aerobically.

P. aeruginosa and S. odorifera both grow beyond ODs of 1 where the measurements become

unreliable; however P. aeruginosa is still growing at 2 days while S. odorifera is in the

stationary phase. E. faecalis and C. albicans, on the other hand, are clearly in the death phase

after 2 days and their populations are in decline. This is likely because these populations

have depleted their supply of nutrient to the point that they are not reproducing enough

to replace the dead cells. Other than S. odorifera, each microbe showed a longer lag phase

in the aerobic case than in the anaerobic case. This may be due to differences in initial

densities when the aerobic experiment began, resulting in a longer time before exponential

growth begins.
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Figure 3.1: Observed optical densities of E. faecalis (a), P. aeruginosa (b), S. odorifera (c),
and C. albicans (d) grown anaerobically (blue bars) and aerobically (red bars) over 48 hours.

20



3.3 Model development

We develop a mathematical model for microbial growth inside an optical density capsule with

a limited amount of nutrient, and for either aerobic or anaerobic oxygen concentrations. Our

model describes microbial growth in a nutritional media inside capsules which are periodically

agitated to ensure homogenization, and there is no nutrient entering the capsule during the

experiment. Microbial growth follows a four-phase progression: lag, exponential, stationary,

and death. During the lag phase, the microbes become metabolically active and adapt to

the environment before growing rapidly in the exponential phase. In the stationary phase,

the microbes have consumed much of the available nutrient and begin to die off with new

cells replacing the dead ones. When there is too little nutrient to sustain the community any

longer, the microbes enter the death phase and gradually die off. As microbes die during

the stationary and death phases, they may undergo autolysis. When this occurs, the dead

microbe’s cell wall breaks up, releasing unmetabolized nutrient back into the media where

it can be utilized by the remaining population [4, 91, 102].

Our model consists of a three-component system of ODEs. The three components correspond

to living microbes, denoted by x, dead microbes, denoted by y, and nutrient concentration,

denoted by z. We assume microbes grow in a density-dependent manner, which we model

with a logistic proliferation term where the growth rate is a function of both the nutrient

concentration and amount of available oxygen, denoted by w.

Since both living and dead microbes occupy space inside the capsule, we assume both con-

tribute to the competition term of the logistic growth function. Cells die at per capita rate d,

which can occur due to starvation, programmed death, or genetic factors [4, 61, 116]. When

microbes die, they transition to the dead cell compartment y at rate d and lyse at rate γ.

Nutrient z is consumed by living microbes at rate δ and recovered from dead cells at rate µ.

To be consistent with the experimental data, we assume that oxygen concentrations in the
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capsules are constant with w = 0 for the anaerobic data and w = w0 for the aerobic data,

where the value of w0 corresponds to the atmospheric oxygen concentration.

The microbial growth rate is nutrient-dependent [3] and nutrient can be recovered from dead

cells after lysis occurs [4, 61], but the OD capsule is a closed system and no new nutrient

can enter from the outside. We assume that no dead cells are initially present, denote the

nutrient- and oxygen-dependent growth function by f(w, z), and write the full model as

dx

dt
= f(w, z)x

(
1− x+ y

K

)
− dx, x(0) = x0 (3.1)

dy

dt
= dx− γy, y(0) = 0 (3.2)

dz

dt
= −δxz + µy, z(0) = z0 (3.3)

where K represents the carrying capacity inside the capsule. We use E-max functions to

model the nutrient- and oxygen-dependent growth rate f(w, z). Because growth in our model

is a function of two distinct resources, we take f(w, z) as the product of two component

functions corresponding to nutrient and oxygen. The oxygen-dependent growth rate for

aerobic or facultative microbes is given by

g(w) = β0 +
βwn′

bn′ + wn′ , (3.4)

where β corresponds to the maximum achievable growth rate under high-oxygen conditions, b

and n′ are the half-saturation constant and slope factor for the E-max function, respectively,

and β0 is the growth rate that occurs in low-oxygen conditions and accounts for facultative

anaerobic growth [3, 60, 65].

The function g(w) is the component of f(w, z) which accounts for increased growth in highly

oxygenated conditions. To incorporate nutrient dependence into f(w, z), we introduce an

additional E-max function and consider three cases for the slope-factor n corresponding to
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different nutrient-dependent mechanisms: n = 0 (constant growth with respect to nutrient),

n = 1, and n ̸= 0, 1. The total growth functions for the three potential mechanisms can be

written

(1) f(w, z) = g(w) (3.5)

(2) f(w, z) = g(w)
z

Ks + z
(3.6)

(3) f(w, z) = g(w)
zn

Kn
s + zn

, (3.7)

where Ks is the half-saturation concentration of nutrient and the Hill-coefficient n deter-

mine how sensitive the growth rate curve is to changes in nutrient concentration. The

hill-coefficient is also a measure of cooperativity between microbes and nutrient and is a

function of the amount of particles of nutrient needed for a microbe to accumulate enough

mass to undergo binary fission and produce offspring [3]. Our experimental data contains

two scenarios for oxygen availability, with w = 0 for the anaerobic data and w = w0 > 0

for the aerobic data, in both cases the growth function f(w, z) is constant with respect to

oxygen. Then without loss of generality, we can denote g(w) = r and write the nutrient-only

dependent growth functions as

(1) f(z) = r (3.8)

(2) f(z) =
rz

Ks + z
(3.9)

(3) f(z) =
rzn

Kn
s + zn

. (3.10)

Throughout this chapter, we will refer to the three models with the above growth functions

as Model 1, Model 2, and Model 3, respectively.
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3.4 Parameter estimation

Our experimental data is reported in optical density, a ratio of the proportion of light that

passes through a transparent material [122], and both living and dead cells contribute to the

OD measurement [4, 116]. We assume that optical density is proportional to cell density,

i.e., that OD = α(x+y), where α is a linear scaling factor relating cell count to OD [75]. For

data fitting purposes and to reduce the total number of parameters, we nondimensionalize

the model by introducing the scaled variables x̄ = x/K, ȳ = y/K, z̄ = z/z0 and rewrite the

scaled model as

dx̄

dt
= f(z̄)x̄ (1− x̄− ȳ)− dx̄, x̄(0) = x̄0 (3.11)

dȳ

dt
= dx̄− γȳ, ȳ(0) = 0 (3.12)

dz̄

dt
= −δ̄x̄z̄ + µ̄ȳ, z̄(0) = z0 (3.13)

where δ̄ = δK, µ̄ = µK/z0, and x̄0 = x0/K. Note that scaling by z0 allows us to set the

initial nutrient concentration to 1. E-max functions are often scaled by the half-saturation

concentration; however, we expect this value to be different for each microbe so scaling by

the initial concentration allows us to eliminate a parameter while comparing the different

half-saturation values between species. The growth rate functions therefore scale to

(1) f(z̄) = r (3.14)

(2) f(z̄) =
rz̄

K̄s + z̄
(3.15)

(3) f(z̄) =
rz̄n

K̄s
n
+ z̄n

, (3.16)

where K̄s = Ks/z0. The relation between the non-dimensionalized microbial density and

OD is then given by OD = ᾱ(x̄ + ȳ), where ᾱ = αK. For Model 1, we estimate the five

parameters r, d, γ, ᾱ, and x̄0, for Model 2 the eight parameters r, K̄s, d, γ, δ̄, µ̄, ᾱ, and
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x̄0, and for Model 3 the nine parameters r, K̄s, n, d, γ, δ̄, µ̄, ᾱ, and x̄0. We performed

computations in MATLAB using the ode15s, fminsearch, and fmincon functions [67]. For

each model, we obtained parameter estimates by solving the system of ODEs and selecting

values that minimize the sum of square errors (SSE) given by

J(p) =
M∑
i=1

(
OD(ti)− ÔD(ti, p)

)2
, (3.17)

where OD(ti) is the observed optical density at time point i, ÔD(ti, p) = ᾱ (x̄(ti, p) + ȳ(ti, p))

is the model predicted optical density, p = (r, d, γ, ᾱ, x̄0) for Model 1, p = (r, K̄s, d, γ, δ̄, µ̄, ᾱ, x̄0)

for Model 2, and p = (r, K̄s, n, d, γ, δ̄, µ̄, ᾱ, x̄0) for Model 3, and M is the number of avail-

able data points. For each estimated parameter value, we also computed standard errors

using a complex-step derivative approximation [7, 8, 9, 69, 90]. These best-fitting values and

standard errors are shown in Tables 3.2 and 3.3. Figures 3.2 and 3.3 show simulations with

best-fit parameters for each microbe and each of the three models. These figures are plotted

with their observed standard deviations of each measurement.

Maximal aerobic growth rates r were larger than the anaerobic values for each species, which

is expected given the larger densities observed in the aerobic measurements. Similarly, the

estimated nutrient consumption rates δ̄ also tended to be larger in the aerobic case indicating

higher metabolic activity than we see in anaerobic conditions. On the other hand, the lysis

rate γ was higher in the anaerobic data sets. This may be a survival mechanism in which

microbes are recycling nutrients more rapidly due to the less favorable anaerobic conditions.

3.5 Model selection

For each growth curve, we used the AIC to select the best-fit model in both anaerobic

and aerobic conditions. In Tables 3.2 and 3.3 we list the SSE and AIC for each microbe
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Figure 3.2: Anaerobic growth curves and solutions with best fitting parameters for E. faecalis
(top row), P. aeruginosa (second row), S. odorifera (third row), and C. albicans (bottom
row). The left column shows simulations for Model 1, the middle column for Model 2, and
the left column for Model 3.
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Figure 3.3: Aerobic growth curves and solutions with best fitting parameters for E. faecalis
(top row), P. aeruginosa (second row), S. odorifera (third row), and C. albicans (bottom
row). The left column shows simulations for Model 1, the middle column for Model 2, and
the left column for Model 3.
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Table 3.1: Model 3 best-fit parameters

E. faecalis P. aeruginosa S. odorifera C. albicans
An. Aer. An. Aer. An. Aer. An. Aer.

r (day−1) 48.65 53.96 45.56 48.39 25.92 57.55 39.24 42.68
(st. err.) (0.22) (4.92) (4.21) (14.49) (4.01) (3.21) (0.66) (660.96)

K̄s 0.25 0.85 0.96 1.05 0.18 0.93 0.87 1.49
(st. err.) (0.022) (0.053) (0.013) (0.034) (0.66) (0.014) (0.040) (91.77)

n 12.84 4.89 9.32 11.87 5.11 17.19 14.51 3.35
(st. err.) (1.07) (2.77) (6.12) (6.81) (12.98) (3.22) (4.86) (493.83)

d (day−1) 3.57 2.63 0.72 4.21 4.06 9.91 1.19 1.14
(st. err.) (0.30) (0.65) (0.056) (0.48) (4.18) (1.02) (0.057) (28.72)

γ (day−1) 14.02 7.46 5.10 4.43 27.39 18.49 3.00 1.51
(st. err.) (1.14) (2.62) (0.69) (0.34) (12.75) (1.07) (0.20) (32.79)

δ̄ (day−1) 6.54 15.05 3.04 3.23 2.33 8.88 2.30 1.87
(st. err.) (0.12) (7.45) (1.84) (2.26) (2.57) (1.60) (0.80) (276.17)

µ̄ (day−1) 5.60 34.82 20.07 4.16 2.01 18.31 5.76 0.01
(st. err.) (0.57) (8.16) (5.65) (2.67) (6.40) (4.07) (1.34) (46.34)

ᾱ 0.35 0.75 0.45 1.53 0.55 1.64 0.37 1.23
(st. err.) (0.0023) (0.028) (0.0096) (0.091) (0.090) (0.024) (0.0018) (2.77)

x̄0 0.010 5.0 × 10−4 6.2 × 10−4 1.9 × 10−4 0.0098 0.020 1.1 × 10−4 9.2 × 10−5

(st. err.) (1.2 × 10−4) (4.3 × 10−5) (2.9 × 10−5) (1.3 × 10−5) (0.0020) (9.3 × 10−5) (3.8 × 10−6) (3.8 × 10−4)

and choice of model for the anaerobic and aerobic data, respectively. For each of the four

microbes, Model 3 provides the lowest AIC for both oxygen conditions suggesting a higher

degree of cooperativity between individual microbes and nutrient than is present in Monod

equation-type dynamics [3]. The estimated value for n for each microbe (Table 3.1) for each

microbe is then a result of different mechanisms being utilized for nutrient consumption for

each species.

In every case, Model 1 performed poorly compared to Models 2 and 3. This is to be expected

because of Model 1’s constant growth term, which does not account for diminishing nutri-

ent availability affecting the proliferation rate. Since Model 1 does not track the nutrient

concentration, it also does not consider nutrient recycling which further limits the dynamics

it can describe. For several of the data sets, Model 2 had similar performance to Model

3, however, Model 3 was better able to capture some of the transient behavior for some

microbes, e.g., the anaerobic C. albicans curve. This indicates that the higher-order reaction

kinetics possible in Model 3 are best suited for modeling microbial dynamics.

We performed F-tests to determine if the additional parameters significantly improved the

performance of Model 3 over Models 1 and 2. The calculated p-values are shown in Tables 3.4

and 3.5 for the aerobic and anaerobic data, respectively. For each of the eight data sets,

the calculated p-value was less than 0.001, indicating that Model 3 is significantly better at
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capturing the growth curve data. The OD measurements provide a relatively large number

of data points which offsets the penalty of adding a small number of additional parameters,

four and one for Models 1 and 2, respectively.

Table 3.2: Anaerobic growth SSE and AIC

Model 1 Model 2 Model 3
SSE AIC SSE AIC SSE AIC

E. faecalis 0.0274 -1221.1 0.0057 -1440.1 0.0047 -1465.6
P. aeruginosa 0.0506 -1132.7 0.0254 -1225.3 0.0060 -1431.3
S. odorifera 0.1061 -1026.1 0.0777 -1064.3 0.0540 -1114.3
C. albicans 0.0315 -1200.8 0.0309 -1197.0 0.0030 -1529.7

Table 3.3: Aerobic growth SSE and AIC

Model 1 Model 2 Model 3
SSE AIC SSE AIC SSE AIC

E. faecalis 0.3696 -846.37 0.2016 -926.91 0.0321 -1189.3
P. aeruginosa 1.4111 -653.45 0.8617 -717.47 0.1131 -1007.9
S. odorifera 0.7335 -747.66 0.3797 -835.75 0.2913 -871.59
C. albicans 0.0907 -1048.6 0.0728 -1073.5 0.0631 -1092.0

Table 3.4: Anaerobic p-values

p-value
Model 1 vs Model 3 Model 2 vs Model 3

E. faecalis 6.9× 10−55 3.5× 10−7

P. aeruginosa 2.2× 10−61 3.9× 10−44

S. odorifera 5.2× 10−30 2.6× 10−12

C. albicans 3.2× 10−3 7.0× 10−14
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Table 3.5: Aerobic p-values

p-value
Model 1 vs Model 3 Model 2 vs Model 3

E. faecalis 1.4× 10−70 1.2× 10−50

P. aeruginosa 6.0× 10−73 2.3× 10−61

S. odorifera 1.7× 10−46 5.2× 10−19

C. albicans 9.3× 10−5 9.3× 10−12

3.6 Sensitivity analysis

To determine the sensitivities of the model output to changes in parameter values and com-

pute confidence intervals, we construct the sensitivity matrix Ψ given by

Ψ =


∂ÔDt1

∂p1
· · · ∂ÔDt1

∂pNp

...
. . .

...

∂ÔDtM

∂p1
· · · ∂ÔDtM

∂pNp

 , (3.18)

where ÔD is the model predicted optical density, and
∂ÔDti

∂pj
= ∂ÔD(ti,p)

∂pj
is the partial deriva-

tive of the predicted optical density at the ith time point with respect to the best-fit jth

parameter value, i = 1, 2, ...,M , j = 1, 2, ..., Np, and Np = 5, 8 and 9 for Models 1, 2, and 3,

respectively. Because we do not have closed-form expressions for the OD curves, we use a

complex-step approximation as described in [7, 8, 9, 69, 90] to approximate each derivative.

The complex-step procedure begins by taking the Taylor series expansion of ÔDti with com-

plex step ih, where i is the imaginary unit and h is a small positive constant. The Taylor

expansion is given by

ÔD(ti, p+ ihej) = ÔD(ti, p) + ih
∂ÔD(ti, p)

∂pj
− h2

2

∂2ÔD(ti, p)

∂p2j
+ · · · , (3.19)
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where ej is the unit vector with 1 in the jth position and 0’s elsewhere. After taking the

imaginary part of both sides and dividing by h, we can rearrange to obtain

∂ÔD(ti, p)

∂pj
≈

Im
(
ÔD(ti, p+ ihej)

)
h

, (3.20)

where we discard terms of order 2 and higher on the right-hand side. We do not have an

analytical expression for Ψ, so we construct an approximation Ψ̂ to computing the M ×Np

partial derivatives using Equation 3.20 for each time point and estimated parameter. We

then compute the standard deviation of parameter i using

√(
σ2
(
Ψ̂T Ψ̂

)−1
)

ii

, (3.21)

where

σ2 ≈ σ̂2 =
J(p)

Np −M
. (3.22)

We are estimating a relatively large number of parameters, so we are concerned whether

each estimated value is uniquely identifiable. Using results from Banks et al, our estimated

parameter values are identifiable if the matrix Ψ̂T Ψ̂ above possesses full rank [24].

The model sensitivities are shown as the curves in Figure 3.4 for the anaerobic data and

Figure 3.5 for the aerobic. In all cases, the initial density of live microbes x̄0 was the

most sensitive parameter by 1-2 orders of magnitude, followed by the OD scaling factor ᾱ.

These parameters are a by-product of the OD measurement itself and not directly related

to mechanisms of growth, so the other parameters are of more interest.

Notwithstanding ᾱ and x̄0, the half-saturation constant K̄s was the most sensitive parameter

related to growth dynamic mechanisms, being roughly an order of magnitude larger than

the other parameters. Additionally, the maximal growth rate r tended to be less sensitive
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as the microbes are not necessarily likely to be near the maximum rate most of the time,

but the value K̄s does determine the nutrient concentration where growth rates change most

rapidly. The Hill coefficients and nutrient depletion rate were also relatively sensitive to

various degrees, which speaks to the differing characteristics of the four species.

We would like to know if the estimated parameter values are identifiable, which we determine

based on the rank of the matrix Ψ̂T Ψ̂. We found Ψ̂T Ψ̂ to be full rank for seven of the eight

data sets, indicating identifiable parameters in those seven cases. For the aerobic C. albicans

data set, Ψ̂T Ψ̂ was nearly singular and consequently had very large standard errors. This is

likely a result of the long lag phase in that data set where little death occurs and the full

model dynamics do not take place until a long time into the experiment, so the estimated

parameters may not be identifiable for this single growth curve [24].

3.7 Cell death

Optical density measurements cannot distinguish between living and dead cells, so measure-

ments taken via OD are only reliable in terms of live cell counts during the lag and exponential

phases when it is reasonably certain that very little cell death occurs. Because we fit the

sum of living and dead cells when fitting to OD data, we can use our model to predict the

percent of cells still alive as a function of time. Figure 3.6 shows plots of the percent of living

cells predicted by the best-fitting parameter values, i.e., the percent x(t)/(x(t)+y(t)), where

x(t) and y(t) are the densities of living and dead microbes predicted by the model over time.

Curves for anaerobic growth are plotted in Figure 3.6a, and aerobic growth in Figure 3.6b.

The model predicted that living cells were above 70% of the OD measurement of anaerobic

conditions, this could be a result of slower metabolic activity and higher rates of autolysis

expected under these conditions. The percent living curves have each leveled off by the end

of the data collection period. E. faecalis had a similar profile in aerobic conditions, while S.
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Figure 3.4: Anaerobic sensitivity curves. Rows represent (from top to bottom) E. faecalis,

P. aeruginosa, S. odorifera, and C. albicans. Each curve is the partial derivative ∂ÔD(ti,p)
∂pj

for the various parameters with more sensitive parameters having larger magnitudes. For
visualization purposes, lower magnitude sensitivity are in the left column and larger ones in
the right.
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Figure 3.5: Aerobic sensitivity curves. Rows represent (from top to bottom) E. faecalis,

P. aeruginosa, S. odorifera, and C. albicans. Each curve is the partial derivative ∂ÔD(ti,p)
∂pj

for the various parameters with more sensitive parameters having larger magnitudes. For
visualization purposes, lower magnitude sensitivity are in the left column and larger ones in
the right.
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odorifera was stable after two days but had a lower percent living cells. P. aeruginosa also

had a lower percent living in aerobic conditions which may or may not be decreasing at the

end of the data set, however, P. aeruginosa was not at steady-state, so a longer observation

period is needed to be certain of its dynamics. Living C. albicans is clearly declining after

two days.
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Figure 3.6: Model predicted percent of living cells over time for anaerobic conditions (a) and
aerobic conditions (b).

3.8 Long-term growth dynamics

We can predict long-term outcomes of microbial dynamics by examining the steady-state

solutions of our model [48, 80]. The steady-states of the model are found by solving the

non-linear system

0 =
rzn

Kn
s + zn

x(1− x− y)− dx (3.23)

0 = dx− γy (3.24)

0 = −δxz + µy. (3.25)
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Note that we have dropped the bars over the scaled quantities. This system has two categories

of solutions. First, there is a positive steady-state given by

x∗ =
γ
(
(r − d)− d

(
Ksδγ
dµ

)n)
r(d+ γ)

(3.26)

y∗ =
d
(
(r − d)− d

(
Ksδγ
dµ

)n)
r(d+ γ)

(3.27)

z∗ =
dµ

δγ
. (3.28)

Extinction in the model corresponds to solutions with x = y = 0, however, the model does

not permit a unique value of z in this case so there are an infinite number of steady-states

depending on the initial nutrient concentration z0. This is not entirely unexpected, because

if the population is prone to extinction then microbes will consume food until the population

reaches zero and any remaining nutrient will remain in the capsule indefinitely. The model

then exhibits a form of bi-stability in which the population will crash if there is not enough

nutrient initially but otherwise will evolve to the positive steady-state.

The Jacobian of the model when x = y = 0 is of the form

J =


rzn

Kn
s +zn

− d 0 0

d −γ 0

−δz µ 0

 , (3.29)

which has a zero eigenvalue and corresponding eigenvector (0, 0, 1)T , indicating the model has

a one-dimensional center manifold along the z-axis [117]. The phase portraits in Figure 3.7

show trajectories of the system for various initial nutrient concentrations for both sets of

P. aeruginosa parameters. In these phase portraits, blue dots represent initial conditions

and red terminal positions. For sufficiently high nutrient, the model moves to the positive

steady-state in which the microbial population persists in the long term. Figure 3.7b is a
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zoomed-in view of the low z0 curves showing the range where the change in dynamics occurs.

These curves show that with low z0, the amount of living cells decreases monotonically while

the dead cell density initially increases before diminishing as the cells lyse. The curves end

along the z-axis with a z value representing however much nutrient is leftover after all the

cells have died.

The two categories of steady-state represent extinction and long-term persistence. The long-

term persistence solution is of interest because it represents scenarios in which the microbial

community utilizes programmed cell death and autolysis, or slower metabolic activity in

response to limited resources for group survival. The nutrient depletion rate δ and re-

absorption rate µ are key parameters in determining the long-term outcome, so we performed

parameter sweeps of them along with the initial condition z0. Figure 3.7 shows stability

diagrams for the range of δ (c, g) and µ (d, h), yellow regions represent the positive steady-

state, and blue represents extinction. We see that consuming nutrient too quickly or recycling

it too slowly causes the population to crash. Both sets of figures have straight-line segments

separating the two regions, these represent bifurcation values where the stability of the

steady-state changes.

3.9 Dynamic oxygen and nutrient concentrations

The model we have developed in this chapter considers a growing microbial population whose

growth rate depends on the availability of oxygen and nutrient. So far, we have considered the

case where nutrient is a limited resource and oxygen is constant but either at concentration

zero or essentially infinite. A more realistic scenario is one in which oxygen and nutrient are

both depletable and dynamic, rather than fixed. To consider this, we can extend the current

model to include terms for in-flow and metabolization of nutrient and oxygen. This model
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Figure 3.7: Phase portraits and stability diagrams for anaerobic (a-d) and aerobic (e-h) P.
aeruginosa simulations. The phase portraits show trajectories of the model for a range of
initial nutrient concentrations, blue dots are initial conditions, and red dots are steady-state
solutions. The phase portraits in (b) and (f) are zoomed in to show where trajectories move
from the z-axis to the positive steady state. Blue regions in the stability diagrams represent
parameter values that cause extinction, yellow regions correspond to the positive steady-sate.
These diagrams represent stability in the z0 − δ and z0 − µ space.
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can be written

dx

dt
= f(w, z)x(1− x− y)− dx (3.30)

dy

dt
= dx− γy (3.31)

dw

dt
= λw − gww − ηxw (3.32)

dz

dt
= λz − gzz − δxz + µy (3.33)

where λw, λz, gw, gz are the recruitment and per capita decay rates for oxygen and nutrient,

respectively, and η is the microbial consumption rate of oxygen. Figure 3.8 shows a com-

parison between simulations with constant and dynamic oxygen concentrations, using the

best-fitting P. aeruginosa parameter values. The depletable oxygen resulted in less overall

growth, as lower oxygen caused a decrease in the oxygen-dependent function f(w, z).
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Figure 3.8: Simulation of P. aeruginosa with constant (a) and depletable (b) oxygen con-
centrations. Having a depletable oxygen concentration resulted in less growth overall.
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3.10 Conclusion

In summary, the goal of this chapter was to develop a mathematical model capable of quan-

tifying growth characteristics of several pathogenic microbes found in cystic fibrosis airways.

We modeled microbial growth as a function of available nutrient, considered three different

nutrient-dependent growth functions to identify the most likely mechanisms of action of the

microbial dynamics, and used the Akaike Information Criterion to select the best fitting

growth function. While Michaelis-Menten mechanics have previously been used to model

nutrient-dependent growth, our results here show that the use of Hill coefficients can bet-

ter describe microbial growth dynamics [3, 101]. By fitting our model to in vitro data, we

were able to estimate growth parameters for several CF pathogens in aerobic and anaerobic

conditions. These data were collected via optical density measurements and because OD

measurements only estimate total cell density, we included compartments corresponding to

living and dead cells. By also including terms accounting for autolysis and nutrient recy-

cling, our model may increase the utility of OD measurements by providing a more complete

picture of the dynamics taking place.

One drawback of this study is the assumption that OD is directly proportional to cell density.

There are scenarios where this assumptions holds, but in general this relationship is only

linear in certain conditions and varies between species. Calibration curves that relate OD to

cell density can be constructed on a case-by-case basis, but this is a laborious process itself

and these curves are only useful for the species they were constructed for [102]. Some related

issues are the OD measurements are less reliable above OD = 1, which occurred for two out of

our eight data sets, and that the sizes of individual cells can change based on environmental

factors. While the measurements are less reliable, very high OD values indicate high cell

densities which were captured by our modeling. The large number of parameters we fit is

another possible limitation. While our estimates were identifiable in most cases (seven out

of eight), experimental estimates for parameters such as the per capita death rate, lysis rate,
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or rate of nutrient consumption would decrease uncertainty in the remaining parameters.

To conclude, the mathematical model presented in this chapter allowed us to quantify and

parameterize basic growth characteristics of four CF pathogens. The parameters estimated

from experimental growth curves can now be incorporated into more complicated models

of the CF lung ecosystem, as well as to catalog basic characteristics of the microbes we

investigated in a quantitative manner. Since much of the treatment for CF lung infections

involves the use of antibiotics, these results could also potentially be used to investigate

treatment options to be used clinically.
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Chapter 4

Modeling Aerobic and Anaerobic

Communities in Cystic Fibrosis

Airways

In this chapter, we extend the ideas of nutrient and oxygen-dependent growth from Chapter

3 to include aerobic and anaerobic communities inside of a CF airway. We validate this model

against a longitudinal data set of microbial abundances collected from a patient undergoing

a CF pulmonary exacerbation and treatment with antibiotics. There is evidence that CFPEs

are associated with high abundances of fermentative anaerobes, so we explore oxygen effects

and targeted antibiotics with the aim to prevent the anaerobes from becoming the majority

community.

42



4.1 Introduction

Cystic fibrosis results from mutations in the CF transmembrane conductance regulator gene

that regulates anion transport and, thus, mucus hydration and function associated with

epithelia. Mucus accumulation in the airways interferes with gas exchange and respiratory

function [25, 57]. Viscous mucus results in poor mucociliary clearance and eventual long-

term polymicrobial biofilm airway infection. Over time, host inflammatory responses to these

infections cause airway remodeling, progressive bronchiectasis, and eventually respiratory

failure [26, 51, 54].

Numerous microbes colonize CF airways, and a greater diversity of microbes has been as-

sociated with better health in people with CF [19]. Ecological theory has been used to

categorize the various bacteria, viruses, and fungi that cause illness in CF [26, 87]. Some

microbes adapt to the airway environment and consume resources, such as oxygen, creating

favorable conditions for other microbes to reproduce [84]. Such resource-altered conditions

may create a complex community dynamic wherein some species disproportionately affect the

environment, creating opportunities for other pathogens to thrive [86]. In this regard, oxy-

gen, in particular, serves as a vital resource altering the environment through its inhibitory

effects on some species while being favorable for others [28].

Current ecological models and evidence support the existence of two functional classes of

microbes colonizing the CF airway: aerobic and anaerobic communities. The aerobic com-

munity comprises facultative and obligate aerobic bacteria and is relatively slow-growing.

In contrast, the anaerobic community comprises primarily facultatively anaerobic, faster-

growing, and pathogenic bacteria [26]. The anaerobic community is only transiently abun-

dant but produces waste products associated with acute episodes of severe illness, known as

cystic fibrosis pulmonary exacerbations (CFPEs) [87, 88]. CFPEs are marked by significant

declines in pulmonary function and increased respiratory symptoms, and require intravenous
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antibiotics and frequent hospitalization to reduce microbial density and improve overall con-

dition [33, 38]. In some cases, microbes may activate the immune system to destroy lung

tissue, creating a larger spatial niche for the anaerobic community. In addition, anaerobes

produce fermentation products that support the growth of an anaerobic biofilm [39].

Here, we use mathematical modeling to track the ecological dynamics of the aerobic and

anaerobic communities and determine how oxygen availability and antibiotic use affect each

community’s abundance. While there has been some modeling work related to CF airways

[41, 70, 84, 86, 120, 121], these models have not considered polymicrobial communities, func-

tional classes such as aerobic or anaerobic, nor how microbes in CF airways are influenced

by oxygen availability. We develop an ODE model of the two communities and a depletable

oxygen concentration to gain basic insight into the ecological dynamics and validate it with

data from a patient undergoing treatment for a CFPE. We then perform analysis and numer-

ical simulations to determine optimal strategies for treating the anaerobic community with

targeted antibiotics. The data fitting we employ offers essential tools for designing treatment

protocols according to patient-specific parameters.

4.2 Patient data

The data used in this chapter were obtained via sputum samples from a patient at the

University of California, San Diego Adult Cystic Fibrosis Clinic over thirty-nine days [97].

this timeframe was divided into three periods: Period A - the first 25 days during which the

patient was treated with broad-spectrum antibiotics, Period B - the next 8 days when the

patient was off antibiotics, and Period C - the remaining 4 days in which the patient was

treated with the antibiotic clindamycin targeting the anaerobic community [98]. The patient

experienced a rapid decline in lung function at day 0 when the cystic fibrosis rapid response

(CFRR) was initiated [97], and lung function improved during the period of hospitalization in
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Period A. Six days after discharge (Period B), the individual’s lung function again declined,

leading to the clindamycin treatment in Period C. Sputum samples were collected on days

0, 14, 19, 26, 28, 31, 33, 35, and 38. At each time point, relative abundances of eight genera

from two communities were available based on previous ecological classifications [26]: the

climax community (Rothia, Pseudomonas, Haemophilus, Neisseria, and Prevotella) and the

attack community (Veillonella, Staphylococcus, and Streptococcus), which we use as proxies

for the aerobic and anaerobic communities.

4.3 Ordinary differential equation model

Wemodel two microbial communities, one aerobic and one anaerobic using generalized Lotka-

Volterra equations. The aerobic community is denoted by C and the anaerobic community

by F , with respective growth rates rc and rf and common carrying capacity K. The two

communities’ growth rates depend on the amount of available oxygen, so their growth rates

are functions of oxygen and are denoted by rc(W ) and rf (W ), where W is the concentration

of oxygen. To model the aerobic and anaerobic nature of the two communities, we assume

that rc(W ) and rf (W ) are increasing and decreasing functions of W , respectively. The

aerobic and anaerobic communities are cleared at per capita rates dc and df , respectively,

resulting from mucociliary clearance, intrinsic death, immune responses, and treatment with

antibiotics [16, 43, 66, 72, 93]. Since oxygen is toxic to anaerobic, F can also be killed at

rate q due to oxygen toxicity [47]. Oxygen dynamics are governed by flow-in at rate λ,

metabolization by the lung at per capita rate µ, and consumption by aerobic microbes at

rate η.

The aerobic community grows slowly in low oxygen conditions and more quickly as the oxygen

concentration increases. However, the aerobic growth rate does not increase indefinitely, even

with a very high oxygen concentration. We describe this phenomenon using an E-max model,
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which increases as oxygen increases up to a saturating level [49, 60, 65]. The E-max model

is parameterized by a maximum possible growth rate, β, the concentration of oxygen which

corresponds to half of the maximum rate, b, and a Hill’s coefficient, n, which determines

the sensitivity of the growth rate to changes in oxygen. The two communities also contain

facultatively anaerobic microbes which can grow with or without oxygen. We account for the

presence of facultative anaerobes by including an oxygen-independent term, βmin, in both

growth functions. The aerobic and anaerobic growth rate functions are can be written as

rc(W ) = β
W n

bn +W n
+ βmin (4.1)

and

rf (W ) = β

(
1− W n

bn +W n

)
+ βmin, (4.2)

respectively. The patient data set we use to validate the model consists of three time periods,

denoted A, B, and C. No antibiotics were used in Period B. In Period A, the patient was

given broad-spectrum antibiotics (colistin, vancomycin, piperacillin, and ceftazidime) which

killed both types of microbes but moreso the aerobic community [55, 68]. During Period C,

clindamycin was used to kill the anaerobic community only [98]. To capture the treatment

protocol implemented for this patient, we consider both broad-spectrum and anaerobic-

specific antibiotics. Death due to broad-spectrum antibiotics is denoted by dBS, death due

to clindamycin by dclin, and natural death by dN . Then the total death rates of each

community under antibiotic treatment become

dc = dn + dBS (4.3)

df = dn + γdBS + dclin (4.4)

where γ ∈ [0, 1] measures the extent to which the broad-spectrum antibiotics are less effective
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in killing anaerobic microbes. According to the patient’s treatment schedule, dBS > 0 in

Period A and dBS = 0 in Periods B and C. Likewise, dclin = 0 in Periods A and B and

dclin > 0 in Period C. The full model can be written as

dC

dt
= rc(W )C

(
1− C + F

K

)
− dcC (4.5)

dF

dt
= rf (W )C

(
1− C + F

K

)
− dfF − qFW (4.6)

dW

dt
= λ− µW − ηCW. (4.7)

A schematic diagram of the model is shown in Figure 4.1.

Aerobes  -  C
    - Pseudomonas
    - Obligate aerobes

Anaerobes  -  F
    - Streptococcus
    - Staphylococus 
    - Obligate anaerobes

Oxygen - XAvailable 
space - K

dc

df

rc(X)

q

C uses 
oxygen 
for growth Oxygen is 

consumed
by C, η

Oxygen
inhibits F

rf(X)

Figure 4.1: Schematic diagram of the oxygen-based community dynamics model. Aerobes
and anaerobes compete for a common carrying capacity, K. Aerobes grow faster in high
oxygen concentrations and anaerobes in lower oxygen concentrations. Oxygen is depleted
by aerobes and is toxic to anaerobes.
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Figure 4.2: Patient data and fit of models to patient data. Sampling time is shown on the
x-axis and the relative abundances of aerobic (blue) and anaerobic (red) communities are
plotted on the y-axis. Mean, 2.5th and 97.5th percentiles of 500 agent-based simulations
are shown for comparison to best-fitting ODE solution and patient data. In Period A, the
patient was receiving broad-spectrum antibiotics. In Period B, the patient was released
from the hospital and off antibiotics. In Period C, the patient was receiving the antibiotic
clindamycin. Lung function declined around day 30 [97], indicating onset of exacerbation.

4.4 Parameter estimation

Cowley et al. used oxygen microsensors to obtain oxygen profiles in CF sputum samples and

found nearly all samples to be anoxic with steep oxygen oxygen gradients at the air-mucus

interface [28]. They showed areas free of mucus to have concentrations of 200-300 µM O2

and the mucus interior to have concentrations of 1 - 3 µM O2 with a steep gradient between

the two regions. Cystic fibrosis is known to increase patients’ respiratory rates, i.e., the

number of breaths taken per minute. Perpati et al. observed a mean resting respiratory rate

of 23 breaths per minute in a cohort of 18 adults with CF. Therefore, we take the per capita
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decay rate of oxygen as µ = 23 × 60 × 24 = 3.3 × 104 day−1 [81]. We estimated the initial

concentration, W0, from the available data and take the oxygen inflow rate as λ = µW0.

In vitro microbial densities of 108 CFU ml−1 have been observed in aerobic conditions;

however, densities as high as 1012 CFU ml−1 have been observed in CF sputum samples

so we chose K = 109 as the carrying capacity [92, 103]. The patient data had a microbial

density of 6.7× 108 CFU ml−1 which we take as the initial population density, denoted by

N0, and use this value to estimate the initial relative abundances, C0 and F0 by fitting the

model to the data. We obtain values for C0 and F0 by taking C0 = αN0 and F0 = (1−α)N0

and estimating the fraction α ∈ [0, 1] from the data.

Note that the clinical data were reported in relative abundances of the microbial communi-

ties. From the model, the corresponding relative abundances can be computed using C(t)
C(t)+F (t)

and F (t)
C(t)+F (t)

for the aerobic and anaerobic communities, respectively. Broad-spectrum an-

tibiotics were in use and killed cells from both communities during the 25 days of Period A.

Thus, for Period A, dc = dN + dBS and df = dN + γdBS with dBS > 0 and 0 < γ < 1. For

Period B, the patient was off antibiotics, and thus dc = df = dN . In Period C, clindamycin

was killing the anaerobic community, so df = dN + dclin [97].

We performed computations in MATLAB [67] - we obtained numerical solutions for the

system of ODEs and used the solutions to obtain parameter values which minimized the

sum of squared residuals given by

J(p) =
m∑
i=1

((
C(ti)

C(ti) + F (ti)
− Ci

)2

+

(
F (ti)

C(ti) + F (ti)
− Fi

)2
)
, (4.8)

where p = (W0, α, β, βmin, η, dN , dBS, γ, dclin, q, b, n) and m is the number of data points

collected over the 38 days of observation. Ci and Fi are the i
th data points for the aerobic and

anaerobic communities, respectively, and C(ti), F (ti) are the corresponding values predicted

by the model. Best-fitting parameter estimations are shown in Table 4.1. For each estimate,
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we obtained 95% confidence intervals by bootstrapping the residuals 500 times [10, 34].

Figure 4.2 shows a simulation of the model with the best-fitting parameter values. The

bands surrounding the ODE solution curves represent the 2.5th and 97.5th percentiles of an

ensemble of 500 runs of an analogous agent-based model, discussed in Chapter 6.

The estimated oxygen consumption rate η (1.8×10−7 day−1) is similar to what has been pre-

viously observed [92]. Staphylococcus, Streptococcus, and Pseudomonas have doubling times

between 20 minutes and 1.5 hours in laboratory conditions [32, 58, 40]. These doubling times

correspond to exponential growth rates of 10 - 50 day−1, which is consistent with our esti-

mated maximal growth rate β = 26.12 day−1. The estimated half-saturation value of oxygen,

b, was 12.13 µM , higher than what had previously been measured for P. aeruginosa alone

[49]. The estimated value represents an average of the two microbial communities, however,

so a higher value is expected in the model. Similarly, the estimated slope-factor n was 1.72.

The death rate due to broad-spectrum antibiotics, dBS, for the aerobic community was an

order of magnitude larger than the natural death rate dN . Broad-spectrum antibiotics were

18% less effective against the anaerobic community (γ = 0.82) than the aerobic community.

In Period A, antibiotics were suppressing both communities, but more so the aerobes, which

allowed the anaerobic community to reach approximately 75% abundance. Period B saw a

slight downward trend in the anaerobic community, but it remained significantly more abun-

dant than the aerobic community. During Period C, we estimated the clindamycin efficacy

to be dclin = 0.76, which rapidly suppressed the anaerobic community.
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Table 4.1: Parameter descriptions and best-fitting values for the oxygen-based microbial
dynamics model

Parameter Value (95% confidence interval) Description Source

β 26.21 day−1 (25.95 - 27.94) Maximal microbial growth
rate

Estimated

b 12.13 µM (12.11 - 12.18) Oxygen-half saturation con-
stant

Estimated

n 1.72 (1.64 - 1.76) Growth rate slope factor Estimated

βmin 3.22 × 10−5 day−1 (3.16 × 10−5 -
3.36× 10−5)

Minimum microbial growth
rate

Estimated

dn 0.52 day−1 (0.51 - 0.53) Natural microbial death rate Estimated

dBS 4.94 day−1 (4.68 - 5.01) Broad-spectrum antibiotic
death rate

Estimated

γ 8.20× 10−1 (8.16 - 8.26× 10−5) Anaerobic antibiotic resis-
tance coefficient

Estimated

q 1.12×10−7 µM day−1 (1.10 - 1.14×
10−7)

Oxygen toxicity rate Estimated

K 109 Carrying capacity [92, 103]

dclin 7.64 × 10−1 day−1 (7.61 × 10−1 -
7.77× 10−1)

Clindamycin efficacy Estimated

µ 3.3× 104 µM day−1 Oxygen decay rate [28, 81]

λ 4.4× 105 µM day−1 Oxygen in-flow rate [28, 81]

η 1.8×10−7 day−1 (1.64×10−7 - 1.83×
10−7)

Oxygen consumption rate Estimated

α 0.97 (0.94 - 0.98) Fraction of initial population
in aerobic community

Estimated

N0 6.7 ×108 Initial population size [97]

C0 6.5 ×108 Initial aerobic population Estimated

F0 2.0 ×107 Initial anaerobic population Estimated

W0 13.18 µM (13.14 - 13.24) Initial oxygen concentration Estimated
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4.5 Long-term dynamics: Aerobic and anaerobic com-

munities under constant oxygen

To analyze out model, we first consider the case when the oxygen concentration is constant,

say W = W0, then the oxygen dependent growth rates rc and rf become fixed depending on

the value of W0. The larger of the two growth rates is determined by the value of W0 relative

to the half-saturation value b, i.e., rc > rf when W0 > b and rf > rc when W0 < b. When

considering each community’s death rate separately as dc and df , where each can contain

separate terms accounting for intrinsic death, antibiotics, and oxygen toxicity, the model

becomes

dC

dt
= rcC

(
1− C + F

K

)
− (dN + dBS)C (4.9)

dF

dt
= rfF

(
1− C + F

K

)
− (dN + γdBS + dclin + qW0)F. (4.10)

This model admits three steady-state solutions: the extinction steady-state given by (0, 0),

the aerobic-only steady-state given by,
(

K(rc−(dN+dBS))
rc

, 0
)
, and the anaerobic-only steady-

state given by,
(
0,

K(rf−(dN+γdBS+dclin+qW0))

rf

)
. We determined which of the three steady-

states the model evolves toward via linear stability analysis [48, 80]. Conditions for both

communities to go extinct can be written in terms of the inequalities rc
dN+dBS

< 1 and

rf
dN+γdBS+dclin+qW0

< 1, i.e., when each community’s death rate is larger than its growth rate.

This shows that both communities can be driven to extinction by increasing the death rates

via sufficiently strong broad-spectrum antibiotics. The aerobic-only steady-state is achieved

if both rc
dN+dBS

> 1 and rc
dN+dBS

>
rf

dN+γdBS+dclin+qW0
. These conditions indicate that only

the aerobic community survives if the growth-death ratio of the aerobic community is larger

than unity and larger than that of the anaerobic community. Similarly, the anaerobic-only

steady-state is achieved if
rf

dN+γdBS+dclin+qW0
> 1 and

rf
dN+γdBS+dclin+qW0

> rc
dN+dBS

.
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This steady-state analysis shows that if a broad-spectrum antibiotic is not strong enough to

cause death rates larger than growth rates, the only microbial community that will survive

depends on the oxygen concentration and anaerobic-specific antibiotics. Obtaining rc > rf

for a higher oxygen level (large W0) causes the anaerobic community to go extinct, and vice-

versa for small W0. For an intermediate oxygen level, the surviving community is determined

by the value of the anaerobic-specific antibiotic with the aerobic-only steady-state achieved

for a sufficiently strong anaerobic-specific antibiotic strength. Notably, assuming a constant

oxygen concentration does not allow for the co-existence of the two communities.

4.6 Long-term dynamics: Aerobic and anaerobic com-

munities under quasi-steady-state oxygen

Oxygen concentrations may not be constant in CF airways [28], thus, we now adjust the

model to analyze the long-term dynamics of the two communities when oxygen is at a quasi-

steady-state. Introducing the scaled variables c = C/K and f = F/K and taking βmin = 0,

the population equations become

dc

dt
=

(
βW n

bn +W n

)
c(1− c− f)− dcc (4.11)

df

dt
= β

(
1− W n

bn +W n

)
f(1− c− f)− dff − qfW. (4.12)

Because oxygen has a much faster turnover than the two microbial communities we take it

to be at a quasi-steady-state, i.e., dW
dt

= 0, which gives the oxygen concentration as

W =
λ

µ+ ηKc
. (4.13)
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After some algebraic manipulation, the equations for c and f become

dc

dt
=

(
βλn

λn + bn(µ+ ηKc)n

)
c(1− c− f)− dcc (4.14)

df

dt
= β

(
1− λn

λn + bn(µ+ ηKc)n

)
f(1− c− f)− qλ

µ+ ηKc
f − dff. (4.15)

In this case, in addition to extinction, aerobic only, and anaerobic-only steady-states, the

model also admits a coexistence steady-state in which both communities persist. This indi-

cates that oxygen dynamics play a critical role in the coexistence of the two communities.

As in the constant oxygen case, we can derive analytical conditions for the extinction steady-

state via linear stability analysis [48, 80]. This analysis shows that the model will evolve to

the extinction steady-state if the following three conditions are satisfied:

µ > 0 (4.16)

dc >
β

1 +
(
µb
λ

)n (4.17)

df >
β

1 +
(

λ
µb

)n − q
λ

µ
. (4.18)

The terms on the right of the second and third inequalities are the minimal death rates

needed to drive the aerobic and anaerobic communities to extinction and can be increased

via antibiotics.

Due to the highly nonlinear form of the growth rate functions, we did not derive analytical

conditions for the three remaining steady-states, and instead examined them using phase

plane analysis. The coexistence steady-state exists in the cf−plane where the curves given

by dc
dt

= 0 and df
dt

= 0 intersect in the first quadrant (Figure 4.3a). The location of the

intersection point changes depending on parameter values, and local bifurcations occur where

the intersection point crosses either the c− or f−axes. This represents a change in the long-

term behavior of the system as it shifts from a coexistence equilibrium to the extinction of
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one (or both) communities.

Since the anaerobic community may be associated with acute illness, parameter values for

which the anaerobes are in the minority are desirable clinically [87]. Thus, we are interested

in parameter values that cause the anaerobic community to be less than 50% abundant

at equilibrium. The steady-state values for c and/or f are shown in Figure 4.3. These

simulations where performed with an intrinsic death rate dN = 0.52 while varying a broad-

spectrum antibiotic response dBS, giving dc = df = dN + dBS. Figure 4.3b shows the

scaled populations at steady-state as dBS is varied. For dBS < 10 day−1, the anaerobes

were the majority community. Only for dBS > 10 day−1 did the aerobic community become

more abundant, and as dBS continued to increases both communities became extinct at

equilibrium. Similarly, the heatmaps in Figure 4.3c and Figure 4.3d show the value of

f at steady-state for ranges of q (oxygen toxicity) and η (oxygen consumption) and Hill

function parameters b and n. Lighter regions correspond to parameter values with higher

densities of f at equilibrium and, therefore, a more severe disease state. Exacerbated and

non-exacerbated states are separated by the curves given by f
c+f

= 0.5. These simulations

show that exacerbations occur when oxygen consumption is high and toxicity is low, which

depends on the makeup of the microbial community, as well as for smaller values of b and n.

4.7 Transient dynamics: Time to exacerbation

We can use our ODE model to observe short-term dynamics of the aerobic and anaerobic

communities. In the available single patient data set, the anaerobic community went from

12% to 70% relative abundance in ∼ 26 days under broad-spectrum antibiotics. We used

the best fitting parameters as a baseline to examine the amount of time necessary for the

anaerobes to grow to become the dominant community, i.e., 50% relative abundance [85, 87],

which we refer to as the ”switch time”. This length of time can be interpreted as the time
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Figure 4.3: Coexistence steady-state densities fo aerobic and anaerobic communities. (a) The
nullclines dc

dt
= 0 and df

dt
= 0 in the first quadrant with best fitting parameters, η = 1.8×10−4

and q = 0.3. (b) Equilibrium population densities for dBS ∈ [0, 15]. (c) Coexistence level of f
for a range of q and η values, the region above and to the left of the black line is exacerbated
at equilibrium. (d) Coexistence levels of f for a range of n and b values, the region in the
top right is exacerbated at equilibrium.
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it takes a CF patient to transition from a stable state to a CFPE and we can use it to

investigate how increased oxygen and antibiotics can delay or prevent CFPEs. This switch

time may be useful in designing suitable protocols for antibiotic administration based on

patient-specific parameters.

We simulated the model from the initial base conditions and obtained switch times for varying

oxygen flow rates λ and antibiotic strengths dBS and dclin, shown in Figure 4.4. In general,

increasing λ gave an advantage to the aerobic community and increased the population switch

time. Increasing λ sufficiently can prevent the anaerobic community from ever reaching 50%

relative abundance, and therefore, prevent a CFPE (represented by the white regions in

Figures 4.4a and 4.4b). Figure 4.4b shows the switch time whilst varying λ and the anaerobic-

targeting treatment dclin and demonstrates that a targeted drug can prevent exacerbation

with a much smaller dose than compared to a broad-spectrum antibiotic.
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Figure 4.4: Time to population switch for a range of oxygen flow rates and antibiotic re-
sponses. (a) Population switch time as a function of dBS and λ. (b) Population switch time
as a function of dclin and λ. Color indicates the time necessary for the anaerobic community
to reach majority. White regions are parameter values in which the anaerobic community
never reaches majority and exacerbation does not take place.
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4.8 Sensitivity analysis

We determined the sensitivity of the ODE model to changes in parameters values by comput-

ing the Sobol indices for nine parameters [42, 94, 99, 123]. For each of the nine parameters,

we calculated the first-order and total-effect indices for the population switch time and anaer-

obic equilibrium level. We performed the computation using the GlobalSensitivity.jl Julia

package with n = 1024 Sobol samples [31], these indices are shown in Figure 4.5. In the pa-

rameter space we search, the slope-factor n, oxygen in-flow rate λ, and oxygen consumption

rate η had the largest effect on population switch time variance, while the maximal growth

rate β, oxygen toxicity rate q, n, λ, and µ all had similar total effects on the anaerobic

equilibrium level.
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Figure 4.5: First-order and total-effect Sobol indices for population switch time (a) and
anaerobic population at equilibrium (b).

58



4.9 Strategies for controlling the anaerobic community

with antibiotics

Pulmonary exacerbations may be associated with higher abundances or metabolic activity

of anaerobic microbes [87]. We used our model to investigate ways to keep the anaerobic

population low via antibiotics, starting in a parameter regime in which a population switch

occurs in eleven days with no treatment. To determine antibiotic strategies to keep the

anaerobes in the minority, we solved the model with an anaerobe-targeted antibiotic for a

number of days, followed by a number of days with no treatment. The top row of Figure 4.6

shows two simulations with different treatment timings, anaerobe-targeting antibiotics begin

at the solid vertical lines and end at the dashed lines. In the simulation on the left, antibiotics

are in use for three days, followed by fourteen days with no treatment; this schedule allows

the anaerobic community to reach majority. The simulation on the right has the time on

treatment increased from three to seven days and is able to prevent a population switch.

The second row of Figure 4.6 shows simulations performed for a range of treatment and off-

treatment times for antibiotic strength df = 0.4 (left) and df = 0.8 (right); yellow regions

indicate that the anaerobic community never reaches 50% relative abundance for that timing,

and blue regions indicate that a population switch occurs.

We also tested alternative strategies for treating the anaerobic community by exploring the

model in different parameter spaces. The third row of Figure 4.6 shows a potential option

to reduce the anaerobic community by using aerobe-targeted antibiotics. In Figure 4.6e,

the aerobic community is killed with antibiotics beginning after five days and the resulting

increase in oxygen concentration causes the anaerobic community to crash. Figure 4.6f

shows the three possible outcomes of treating the aerobic community based on the antibiotic

strength dc. Low values of dc still allow the anaerobic community to persist and achieve a

majority. And intermediate dc allows aerobes to persist and anaerobes to go extinct due
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to increased oxygen, and a large dc causes the aerobes to also go extinct. These three

scenarios are separated by critical values of dc, which we can determine via linear stability

analysis [48, 80]. We numerically found the minimum antibiotic efficacy required to eliminate

the anaerobic community to be dc = 4.61 day−1, the minimum strength to eliminate both

communities we found analytically as

dc =
βλ− dnλ− bdnµ

λ+ bµ
. (4.19)

These two critical values are shown as vertical lines in Figure 4.6f.

4.10 Conclusion

Loss of pulmonary function is the predominant health concern associated with cystic fibrosis.

Acute pulmonary exacerbations cause irreversible damage to the airways, and represent

a leading cause of shortened lifespan for people with CF. In this chapter, we develop a

quantitative framework for studying the interactions of the two major functional groups in

the cystic fibrosis airway ecosystem. We developed an ODE model of the two communities

in the presence of a depletable oxygen concentration and validated it against a clinical data

set of microbial abundances.

We analyzed our model to obtain analytical results that show that a dynamic oxygen con-

centration is necessary for the coexistence of the two communities. Sensitivity analysis of the

model parameters determined quantitative conditions showing that pulmonary exacerbations

occur when oxygen inflow and toxicity are low, or oxygen consumption by aerobic bacteria

is high. Stability analysis of the ODE model informed possible strategies for treating CF

lung infections. These results quantify the advantage the aerobic bacteria have when oxygen

flow is increased in the system and shed light on how increasing oxygen can prevent exac-
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Figure 4.6: Antibiotic strategies for treating the anaerobic community. (a) and (b) Sim-
ulations with antibiotics targeting the anaerobic community. (c) and (d) Show treatment
timings that allow for control of the anaerobic community with targeted antibiotics with
efficacies of 0.4 day−1 (c) and 0.8 day−1 (d). (e) shows a simulation in which the anaerobic
community is driven extinct by treating the aerobic community. The possible scenarios for
treating the aerobic community and corresponding critical values are shown in (f).
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erbations. We also studied the effects of various antibiotic treatments intended to keep the

anaerobic population level low, these results demonstrate that anaerobes may be controlled

using targeted antibiotics or by leveraging oxygen-related effects such as consumption and

toxicity.

Most of the parameter values used in the model were estimated from data; however, the

data set was from a single patient and is thus limited, and the estimated values may not

be identifiable. Despite this, most of the estimated values were consistent with values from

literature sources and the model was able to capture the multiple features embedded in

the data set. The parameter estimates would need to be verified with a larger data set

to give more confidence in the estimated values. Future work should also include more

microbial species to provide detail into the intra-community dynamics, to investigate, e.g.,

competition between different aerobic and/or anaerobic microbial species, and to reduce

uncertainty in the fitted parameter values. The time to exacerbation metric was based on

previous network analysis associating fermentative anaerobes with pulmonary exacerbations

[87]. The modeling in this chapter focused on oxygen dynamics and antibiotics; however,

other chemical and environmental factors may affect the CF microbiome [41, 86]. The simple

nature of the model discussed here clearly demonstrates the effects of oxygen dynamics in

the interaction between aerobic and anaerobic microbes and our results can be implemented

in future investigations of the CF airway microbiome. Similarly, the models discussed can be

used in conjunction with multi-omics to determine optimized antibiotic treatments [18, 25].

In summary, this study developed a mathematical model the the CF airway microbiome and

identified several potential strategies for preventing and treating pulmonary exacerbations.

Conditions that best prevent the expansion of anaerobic activity were identified which may

be beneficial for designing ideal treatment protocols for CF patients.
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Chapter 5

Spatiotemporal Modeling of the

Cystic Fibrosis Airway Microbiome

Building on the previous chapter, here we extend the oxygen-based community dynamics

model to include spatial effects. By adding terms to account for spatial diffusion, we now

describe aerobic-anaerobic dynamics with a reaction-diffusion partial differential equation

system. We use this model to simulate microbial dynamics in three different scenarios of

mucus aggregation in airways and perform analytical techniques to determine the minimum

size for a mucus plug to support anaerobic growth. We also discuss a traveling wave solution

to the model and examine the effect of pharmacodynamic properties of an anaerobe-targeting

antibiotic.

5.1 Introduction

The ODE models discussed so far have all been spatially homogeneous, i.e., the model

does not impose any kind of spatial structure and assumes that all of the dynamics take
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place in a well-mixed environment. This is appropriate for some situations, e.g. bacteria

growing in a test tube that is periodically being shaken, but this is not the case for modeling

microbial community dynamics in a human airway. In fact, the CF airway is a geometrically

complex structure and this spatial heterogeneity likely plays a significant role in the microbial

community dynamics. While the spatially homogeneous model in Chapter 4 allowed us

to gain basic insights into CF airway dynamics, that model cannot investigate spatially-

dependent phenomena such as accumulation or spread.

In this chapter, we develop a spatiotemporal model to investigate the role of spatial dynam-

ics in CF-lung infections and how oxygen effects determine how populations of pathogenic

anaerobes accumulate over time. We use this model to determine the amount of hypoxic

space needed for anaerobes to survive in aggregated mucus and the speed at which anaerobes

can propagate through a mucus-clogged airway, and also show how effectively the anaerobic

community is able to spread throughout an airway in various parameter spaces. Finally, we

introduce a spatially-dependent anaerobe-targeting antibiotic and show that a drug with a

high permeability in mucus may be effective in controlling anaerobic microbes in CF-lung

infections.

5.2 Model development

Our model consists of three coupled partial differential equations with state variables corre-

sponding to the aerobic community C, anaerobic community F , and oxygen concentration

W , where each variable is a function of time t and location x = (x, y). Growth of the micro-

bial communities is governed by logistic functions with oxygen-dependent growth rates and

carrying capacity K. Microbial death occurs at per capita rates dc and df , and death due to

oxygen toxicity at rate q for the anaerobic community [3, 47, 49, 61]. The microbes spread

spatially via diffusion with diffusion coefficients Di, i = c, f, w.
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We use Michaelis-Menten-like kinetics to model the oxygen-dependent growth rates of the two

communities, wherein each community’s growth is determined by a maximum growth rate

β, half-saturation concentration b, and slope factor n [60, 65]. Since the aerobic community

grows faster as the oxygen concentration increases, we take βWn

bn+Wn as the aerobic growth

function. The anaerobic community should grow slower as oxygen increases, hence we take

the anaerobic growth function as β
(
1− Wn

bn+Wn

)
.

Local oxygen dynamics are governed by an in-flow rate λ representing oxygen coming into the

airway via respiration, per capita decay rate µ, and consumption by the aerobic community

at rate η. The full model can be written as

dC

dt
=

βW n

(bn +W n)
C

(
1− C + F

K

)
− dcC +Dc∆C (5.1)

dF

dt
= β

(
1− W n

bn +W n

)
F

(
1− C + F

K

)
− dfF − qFW +Df∆F (5.2)

dW

dt
= λ− µW − ηCW +Dw∆W. (5.3)

5.3 Computational domain and boundary conditions

Cowley et al. investigated three scenarios in which mucus can accumulate inside CF airways

and the oxygen gradient within aggregated mucus [28]. The three scenarios they discuss

are A) a clogged alveolar sac, B) a mucus-lined airway, and C) a dislodged mucus plug; we

represent these three scenarios as computational domains on which to solve our PDE. In

each case, the microbial dynamics take place on a fixed, two-dimensional cross-section of the

aggregated mucus. To model oxygen dynamics, we assume that oxygen is neither flowing

into nor being metabolized within aggregated mucus and take λ = µ = 0. Instead, we allow

oxygen to flow into the domain by using Dirichlet boundary conditions at the appropriate

boundaries, i.e., w(xboundary, t) = wB, where xboundary is the air-mucus interface and wB
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is the value of oxygen at the boundary. Inside the domain, oxygen is depleted solely via

consumption by the aerobic community, i.e., η > 0.

We first consider the clogged alveolar sac in Scenario A. Alveolar sacs are small (200-500 um

diameter) cavities where oxygen is transferred from the lung into the bloodstream, in CF

these sacs can become completely congested with mucus and become non-functioning. In

this case, we consider a rectangular cross-section in which the top of the rectangle represents

the air-mucus interface, and inside the rectangle is the aggregated mucus. Mathematically

we model this as a rectangular domain with a Dirichlet BC for oxygen along the top of the

rectangle and no-flux BCs elsewhere. For the mucus-lined airway in scenario B, we consider

the airway as a cylindrical column with a layer of mucus spreading inward from the radius

of the column toward the center. Taking a cross-section of the column, we can formulate

the domain for Scenario B as a donut-shaped region with oxygen penetrating from the inner

radius of the donut. In this case, the oxygen Dirichlet BC is along the inner radius and no-

flux BCs along the outer radius. In Scenario C, we assume a spherical mucus plug exposed

to oxygen from all sides logged in an airway. The cross-section in this case will be a circle

with Dirichlet oxygen BCs at the radius. For each case, we assume that microbes can only

grow within the mucus matrix and cannot pass the boundary, which we implement with

no-flux BCs for both communities. The schematics in Figure 5.1 depict the type of mucus

aggregation, corresponding PDE domains, and oxygen conditions for the three scenarios.
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5.4 Parameter estimation and nondimensionalization

In Chapter 4, we used a spatially homogeneous model to obtain estimates for the parameters

governing local dynamics, i.e., the parameters other than the diffusion coefficients. We

estimated those values by fitting a model to a longitudinal data set of microbial abundances

obtained from a patient undergoing treatment for CF-lung infection [97]. Those values, and

estimates for the diffusion coefficients are listed in Table 5.1.

Table 5.1: PDE parameter descriptions

Parameter Value Description Source

β 26.21 day−1 Maximal microbial growth rate -

b 12.13 µM Oxygen-half saturation constant -

n 1.72 Growth rate slope factor -

K 109 Carrying capacity -

dc 0.52 day−1 Aerobic death rate -

df 0.52 day−1 Anaerobic death rate -

q 1.12 µM day−1 Oxygen toxicity rate -

λ 4.4× 105 µM day−1 Oxygen in-flow rate -

µ 3.3× 104 day−1 Oxygen decay rate -

η 1.8× 10−7 day−1 Oxygen consumption rate -

Dc 200 - 1900 µm2s−1 Aerobic diffusion rate [62]

Df 200 - 1900 µm2s−1 Anaerobic diffusion rate [62]

Dw 2.4 - 26.8 ×10−6 cm2s−1 Oxygen diffusion rate [28]

Several of the parameters have very large values, therefore we nondimensionalize the model to

make it more tractable computationally as well as to reduce the overall number of parameters

[105, 106]. Introducing the scaled quantities c = C/K, f = F/K, and w = W/b, the
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Figure 5.1: Schematic diagram of the three types of mucus accumulation and their corre-
sponding computational domains. Scenario A is a clogged alveolar sac and is represented
as a rectangle with oxygen entering from the top side. Scenario B is a mucus-lined airway
and is represented as a donut with oxygen entering from the inner radius. Scenario C is a
spherical mucus plug lodged in an airway and is represented as a circle with oxygen entering
from the radius. Lengths in the left column are taken from [28].
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nondimensionalized equations are

dc

dt
=

β∗w

(1 + w)
c (1− c− f)− d∗cc+D∗

c∆c (5.4)

df

dt
= β∗

(
1− w

1 + w

)
f (1− c− f)− d∗ff − q∗fw +D∗

f∆f (5.5)

dw

dt
= −η∗cw +∆w, (5.6)

where we have scaled the time and space by factors tfac = β and xfac =
√

βb/Dw, and taken

n = 1 to improve numerical performance. Expressions for the scaled parameters are listed

in Table 5.2. For the remainder of the chapter, we will drop the ∗′s and discuss parameters

in terms of the scaled values. We solve the model numerically using the pdepe function in

MATLAB, which is based on the method of lines, and the FEniCS finite element package

for Python [5, 63, 67].

Table 5.2: Scaled PDE parameter expressions

Parameter Expression Description

tfac β Temporal scaling factor

xfac

√
β/Dw Spatial scaling factor

β∗ β/tfac Scaled maximum growth rate

d∗c dc/tfac Scaled aerobic death rate

d∗f df/tfac Scaled anaerobic death rate

q∗ qb/tfac Scaled oxygen toxicity rate

η∗ ηK/tfacb Scaled oxygen consumption rate

D∗
c Dc/Dw Aerobe diffusion rate

D∗
f Df/Dw Anaerobe diffusion rate
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5.5 Basic dynamics of the aerobic and anaerobic com-

munities

Figure 5.2 shows snapshots of the three mucus scenarios after the model has been simulated to

an approximate steady-state. We started the two microbial communities with uniform initial

distributions and in each of the three cases, the aerobic community became concentrated

near the oxygenated boundary while the anaerobic community was more abundant in low-

oxygen regions. Because there is little data available on the spatial distribution of oxygen

and microbial species within CF-airways, we performed these simulations with a scaled set

of parameters (see Table 5.2) to make the model more tractable numerically and focus on

showing qualitative phenomena rather than identifying realistic parameter values, which are

likely to vary between individuals.

These simulations show that our model can exhibit the basic dynamics we expect in mucus-

clogged CF airways. Scenario A represents an alveolar sac completely clogged with mucus

and exposed to oxygen at one end, represented by the top side of the rectangle in Figure

5.2A. Aerobes reach a higher population density at and near this boundary, farther away

from top-boundary diffusion and consumption lower the oxygen concentration and allow the

anaerobic community to be more abundant. The simulations for Scenarios B and C are

similar. In Scenario B oxygen enters the domain from the inner radius of the donut and in

Scenario C from the outer radius of the circle. In both cases, aerobes are more prevalent at

the oxygenated boundary, and anaerobes more prevalent far away from it. In each scenario,

aerobes reached population densities of approximately 1 and 0.3 in high- and low-oxygen

regions, respectively, where anaerobes had densities of roughly 0.7 and 0.
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A)

B)

C)

Aerobes Anaerobes

Figure 5.2: Snapshots of the model at approximate steady-state for the three mucus sce-
narios. Steady-state distributions are shown for the aerobic community in the left column
and the anaerobic community in the right column. In each case, the aerobic community is
concentrated near the source of oxygen, and the anaerobic community is concentrated in the
hypoxic regions.
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5.6 Critical domain size

5.6.1 Constant oxygen

We can use our model to predict the minimum size of a mucus plug required for anaerobic

microbes to survive [46, 53, 73, 82]. Specifically, we identify how large a mucus plug must be

to support a hypoxic region where anaerobic bacteria can survive. We first consider our model

with a constant oxygen concentration. Such an estimation can be used, e.g., to determine

the minimum mucus plug size on an individualized basis, or the size depending on how deep

in an airway the plug is. We can obtain an analytical expression for the critical domain size

by making some simplifying assumptions of our model. First, we assume a one-dimensional

domain, which we can take as a 1D cross-section of the mucus plug in Scenario C. This

domain can be taken as the interval [0, L], and we impose death of the anaerobic community

at the boundary with homogeneous Dirichlet BCs at x = 0 and x = L. Next, because

the interior of a mucus plug is a low-oxygen environment and therefore very favorable to the

anaerobic community, we assume that anaerobic death is negligible in the interior of the plug

and take q = df = 0. Finally, because we desire an expression for the anaerobic community

and to simplify the analysis, we briefly disregard the aerobic community, assuming that the

total density of the two communities remains constant. With these assumptions, we can

consider the single, one-dimensional PDE

df

dt
= β

(
1− w0

1 + w0

)
f(1− f) +Df

d2f

dx2
f (5.7)

for the anaerobic community, where w0 is the constant oxygen concentration. This is an

extension of the Fisher-KPP equation which has a well-known expression for the critical

domain size [53, 73]. We desire a non-trivial steady-state solution to this PDE which satisfies

the Dirichlet BCs f(0, t) = f(L, t) = 0. Steady-state solutions are given by the second-order
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ODE

d2f

dx2
= − β

Df

(
1− w0

1 + w0

)
f(1− f). (5.8)

Through the change of variables u = f , du
dx

= v we can derive an expression for the minimum

mucus plug size via phase plane analysis [35, 53, 119]. The change in variables gives the

system

du

dx
= v (5.9)

dv

dx
= − β

Df

(
1− w0

1 + w0

)
u(1− u), (5.10)

with u(0) = u(L) = 0. This system has steady-state solutions at P1 : (u, v) = (0, 0) and

P2 : (u, v) = (1, 0), and its Jacobian is given by

J =

 0 1

β
Df

(
1− w0

1+w0

)
(2u− 1) 0

 . (5.11)

The eigenvalues for P1 are ξ1,2 = ±i

√
β
Df

(
1− w0

1+w0

)
and for P2 are ξ1,2 = ±

√
β
Df

(
1− w0

1+w0

)
,

hence, we see that P1 is a center and P2 is a saddle [48, 80]. Note that because P1 is a center,

solutions near the origin are given by the family of circles

(u(x), v(x)) =

(
c1 cos

(√
β

Df

(
1− w0

1 + w0

)
x+ ϕ

)
, c1 sin

(√
β

Df

(
1− w0

1 + w0

)
x+ ϕ

))
,

(5.12)

for constant c1’s and where ϕ is a phase-shift to be determined. Solutions satisfying our

boundary conditions are represented by half-circles starting from (0, c1) and terminating at
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(0,−c1). Using the boundary at x = 0, we find that

0 = c1 cos

(√
β

Df

(
1− w0

1 + w0

)
· 0 + ϕ

)
(5.13)

0 = cos (ϕ) (5.14)

ϕ =
π

2
. (5.15)

From the boundary at x = L, we have

−c1 = c1 sin

(√
β

Df

(
1− w0

1 + w0

)
· L+

π

2

)
(5.16)

−1 = cos

(√
β

Df

(
1− w0

1 + w0

)
· L

)
(5.17)

π =

√
β

Df

(
1− w0

1 + w0

)
· L (5.18)

π =

√√√√β
(
1− w0

1+w0

)
Df

· L (5.19)

L∗ = π

√√√√ Df

β
(
1− w0

1+w0

) , (5.20)

where L∗ represents the minimum mucus plug size necessary for anaerobic growth - mucus

plugs smaller than this will have oxygen concentrations high enough to prevent anaerobic

growth. Heatmaps with parameter ranges for β, Dw, and w0 (in dimensionless units) are

shown in Figure 5.3. Clinically, a larger critical domain size is favorable, i.e., smaller mucus

plugs may not be able to support an anaerobic population, and Figure 5.3 shows that L∗ is

an increasing function of β and a decreasing function of Dw. In these parameter spaces, the

critical domain size ranges from approximately L = 2 to L = 15.
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Figure 5.3: Critical domain size for the anaerobic community under constant oxygen. Plots
show the minimum size of a mucus plug that can support anaerobic growth as a function of
w0 and β (a) and w0 and Dw (b).

5.6.2 Time-dependent oxygen

In the previous section, we neglected the dynamics of the aerobic community and oxygen

concentration in order to derive an analytical expression for the minimum mucus plug size

L∗. Here, we determine L∗ numerically using the full, three-component model. We do this

by simulating the model on a large number of domain sizes and parameter values. The

computational procedure is as follows: first, we fix a set of parameters for which we want

to compute L∗. Next, we fix a (small) domain size and simulate the model until it reaches

steady-state and observe the steady-state distribution of the anaerobic community. If the

anaerobic community has gone extinct, then we incrementally increase the domain size and

repeat; if any anaerobes persist, then we take that domain size as the critical value L∗.

We repeated this procedure for a range of parameters and Figure 5.4 shows the critical do-

main size L∗ as a function of aerobic oxygen consumption, aerobic and oxygen diffusion rates,

and anaerobic oxygen toxicity. In each of the plots of Figure 5.4, the blue line represents the

minimum mucus plug size for the corresponding parameter value. Domains sizes larger than

the values given by the blue lines are large enough to support anaerobic growth while those
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Figure 5.4: Critical domain sizes for various parameter ranges, clockwise from the top-left,
oxygen consumption η, oxygen diffusion Dw, aerobic community diffusion Dc, and oxygen
toxicity q. In each plot, the region above the blue line represents parameter values that cause
the anaerobic community to go extinct but survive for values below the line.

less than the blue lines are small enough to prevent it. Of the parameters we investigated, we

observed the consumption rate η and oxygen diffusion rate Dw to have larger effects than the

aerobic diffusion rate Dc and oxygen toxicity rate q. We found that L∗ is inversely related to

η, and ranged between L∗ ≈ 19 for small η’s approached L∗ ≈ 4 for larger η’s. The largest

parameter effect was from Dw, where L∗ was ∼35 for large values. For Dc and q, L∗ was in

a much smaller range, between ∼2.5 and 6.5 for the values we simulated.

We were also able to observe the minimum mucus plug size phenomena in a two-dimensional
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circular domain of radius L. Figure 5.5 shows the anaerobic components of two simulations,

the left column with L = 2 and the right with L = 6. Due to computational costs, we did

not determine the critical value L∗ for the two-dimensional case, but we can infer that the

simulation with radius L = 2 is below a threshold domain size and causes the anaerobes to

go extinct. Conversely, L = 6 is a large enough domain for anaerobes to survive long-term.

Figure 5.5: Two-dimensional simulation showing the effect of domain size on dynamics. In
the left column, the domain is radius 2, and in the right radius 6 (note the different scales
on the x- and y-axes between the two columns). The domain size on the left is below the
critical value, so the anaerobes go extinct. On the right, the domain is large enough for the
anaerobes to survive.
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5.7 Maximum anaerobic spread

We are interested in determining how far the anaerobic community can spread throughout

the lung and determining parameter spaces that result in low abundances of anaerobes. To

observe this we simulated the model until it reached steady-state and recorded the length

of the domain which was occupied by anaerobes. To measure this distance, we solved the

model on a one-dimensional domain [−L/2, L/2] with oxygen entering from the boundaries

at x = −L/2 and x = L/2 and the anaerobes concentrated at the origin initially. After

reaching steady-state, we take the distance from the origin to where there is no longer any

anaerobic density (within a tolerance) as the maximum anaerobic spread. The heatmaps in

Figure 5.6 show parameter sweeps for the maximum anaerobic spread as a function of β, df ,

Df , Dw, η, and q, the color represents the distance that the anaerobic community reaches

from the origin over a long time.

As seen in the previous section, the size of the domain plays a significant role in the dynamics

of the two microbial communities, with a larger domain benefiting the anaerobic community

by providing more hypoxic space to propagate. Therefore, we also varied the domain size

in addition to the six parameters when plotting the anaerobic radius. Blue regions in each

sub-figure of Figure 5.6 represent parameter values for which the anaerobes do not survive

and which may be clinically favorable [87]. In the parameter spaces we searched, the largest

anaerobic radius was about 8. The parameters Df , β, and q showed a smaller overall effect

on the spread, and for those heatmaps, the maximum spread varies mostly as a function of

the domain size L. In contrast, η, Dw, and df had larger non-linear effects on the anaerobic

spread, with the model predicting that anaerobes can be eliminated (i.e., have a radius of

0) with sufficiently low oxygen consumption, say η ≈ 0.05 or high anaerobic death, say

df ≈ 0.65. The death rate df is particularly of note, as we can consider it as a control, e.g.,

with an antibiotic targeting the anaerobic community.
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Figure 5.6: Heatmaps depicting the long-term anaerobic density in various parameter spaces.
In each plot, the domain size L is on the x-axis, and another parameter on the y-axis. Darker
regions represent lower anaerobic density at steady-state, lighter regions represent higher
values.
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5.8 Traveling wave solution

A traveling wave solution is a solution to a diffusion equation that maintains its shape and

speed as it moves throughout the spatial domain [37, 50, 56, 76, 108]. We can use a traveling

wave solution of our model to investigate the amount of time anaerobes need to propagate

through a mucus-clogged region of an airway [28, 41]. For the simplest case, we consider

only the anaerobic equation of the model with oxygen fixed in space, say w(x) = w0e
−ax.

As a domain, we consider a mucus-filled airway exposed to oxygen at one end, e.g., a one-

dimensional cross-section of the clogged alveolar sac in Scenario A where x = 0 corresponds

to the air-mucus interface. The parameter a can be used to give a range of oxygen profiles

corresponding to different microbial densities with steeper oxygen gradients corresponding

to higher microbial densities [28]. A traveling wave solution to the PDE

df

dt
= β

(
1− w(x)

1 + w(x)

)
f(1− f)− dff − qfw(x) +Df∆f (5.21)

is a function of the form f = ϕ(x − kt), where k represents the wave speed, i.e., the speed

at which anaerobes propagate through the airway. With this solution we have f ′ = df/dt =

−kϕ′ and ∆f = ϕ′′ so the anaerobic PDE becomes the second-order ODE

−kϕ = β

(
1− w(x)

1 + w(x)

)
ϕ (1− ϕ)− dfϕ− qϕw(x) +Dfϕ

′′. (5.22)

Note that because of the w(x) terms this ODE is non-autonomous, so we cannot use phase-

plane analysis to examine this system in the most general case [48, 80]. However, far away

from the mucus-air interface, i.e., when x ≫ 0, we have
(
1− w(x)

1+w(x)

)
≈ 1. Additionally,

qϕw(x) ≈ 0 for large x, and if we disregard the term −dfϕ then we can use phase-plane anal-

ysis to find the minimum traveling wave speed kmin = 2
√
Dfβ. The anaerobic community

will move in a traveling wave at this speed provided it has some non-zero initial distribution

[35].
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As for the critical domain size, we can analyze the anaerobic equation in the case of constant

oxygen. Constant oxygen corresponds to no consumption of oxygen by microbes, i.e., a = 0

so that w(x) = w0. The general reaction-diffusion equation with a traveling wave solution

can be written

u′ = ∆u+ F (u), (5.23)

for the unknown function u(x, t), and the minimum wave speed is computed as kmin =

2
√
F ′(0) [108]. For the anaerobic PDE with constant oxygen (and neglecting death terms),

we have

f ′ = β

(
1− w0

1 + w0

)
f(1− f) +Df∆f, (5.24)

hence we can find the minimum speed of anaerobic propagation as

kmin = 2

√
β

(
1− w0

1 + w0

)
.

A high oxygen concentration may cause a non-biologically relevant complex value in this

expression, which is expected given that the anaerobic community should not be able to

move into a highly oxygenated region. A low oxygen concentration gives kmin ≈ 2
√
β as the

speed at which anaerobes can spread through a clogged airway.

We again use the full model to simulate more realistic dynamics of a traveling wave through a

CF airway, demonstrated in Figure 5.7. This simulation takes place on the one-dimensional

domain [0, L] with oxygen initially distributed as w(x) = w0e
−ax, Dirichlet BC w(0) = w0

representing the air-mucus interface on the left boundary, and a no-flux condition on the

right boundary. Aerobes are initially distributed uniformly with 0.4 density, and anaerobes

are concentrated at the right, hypoxic boundary, both with no-flux conditions on both ends

of the domain. The heat map on the left of Figure 5.7 shows the time series of the anaerobic
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community. Initially concentrated on the far right, the anaerobes move in a wave formation

at a constant speed until reaching the left, oxygenated part of the domain when the wavefront

stops. The right plot of Figure 5.7 shows several snapshots of the anaerobes taken at equal

time intervals showing the wavefront moving at a constant speed.
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Figure 5.7: A one-dimensional simulation showing the anaerobic community moving in a
traveling wave. The heat map on the left shows the anaerobic wavefront moving through
the hypoxic part of the domain until stopping at the oxygenated left boundary. The plot on
the right shows several snapshots of this solution as well as the relatively stationary aerobic
community and oxygen profiles.

5.9 Targeted antibiotic course

High abundances of anaerobic microbes have been associated with periods of acute disease

known as pulmonary exacerbations [87], so using the model to predict a course of antibiotic

treatments that minimize the anaerobic population would be clinically beneficial. We can

simulate the effectiveness of an antibiotic targeting the anaerobic community by incorporat-

ing an anaerobe-targeting antibiotic into our model:

db

dt
= −αb+Db∆b, (5.25)
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where b(t) is the concentration of the antibiotic at time t, α is its per capita decay rate,

and Db is its diffusion rate [101]. Introducing another parameter δ for the antibiotic-induced

anaerobic death rate, the model becomes

dc

dt
=

βw

(1 + w)
c (1− c− f)− dcC +Dc∆c (5.26)

df

dt
= β

(
1− w

1 + w

)
f (1− c− f)− dff − qfw − δbf +Df∆f (5.27)

dw

dt
= −ηcw +∆w, (5.28)

db

dt
= −αb+Db∆b. (5.29)

Similar to how we handle oxygen, we assume that the antibiotic has to move into the domain

via diffusion rather than being generated within the mucus matrix. This can be modeled with

Dirichlet BCs where we can consider the value at the boundary as the dose of the antibiotic

and investigate how large of a dose is necessary to reduce the anaerobic population. These

boundary conditions can be written b(−L/2, t) = b(L/2, t) = bB for the one-dimensional

domain [−L/2, L/2] where bB is the dose. The antibiotic parameters are listed in Table 5.3.

Table 5.3: Antibiotic Parameters

Parameter Base value Description

α 1 Antibiotic clearance rate

Db 1 Antibiotic diffusion rate

δ 10 Antibiotic efficacy

bB 1 Dose size

The parameters in Table 5.3 correspond to pharmacological properties of the antibiotic,

and we can determine what properties produce desirable effects in terms of treating the

anaerobic community. To simulate an antibiotic treatment we first solved the four-equation

model without antibiotics (which we can do simply by taking bB = 0) until the system is
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approximately at steady-state. Then we increase the does bB to our base value to simulate

the course of treatment. Figure 5.8 shows several snapshots of a treatment course with our

base parameter values.

Our base case simulation shows the anaerobic community surviving, so we performed param-

eter sweeps of the four antibiotic parameters to determine what properties are most effective

in eliminating anaerobes. In Figure 5.9, we plot the maximum anaerobic density for ranges

of each parameter. Interestingly, the antibiotic-induced death rate δ required a much higher

value (an order of magnitude higher) than the other parameters to eliminate the anaerobes.

Anaerobes were eliminated more easily with a low clearance or high diffusion rate of the an-

tibiotic, with anaerobes eliminated with α < 0.5 or Db > 2.2. Practically, a drug with a high

permeability into mucus may be the most desirable for controlling pathogenic anaerobes, as

large doses and exposures can lead to complications in treatment.

5.10 Conclusion

In this chapter, we developed a spatially-dependent model the CF airway microbiome in

which dynamics are driven by a diffusible oxygen concentration. Our model consists of a

coupled system of reaction-diffusion partial differential equations with state variables corre-

sponding to the oxygen concentration, an aerobic community, and an anaerobic community.

The setting of our model is in clogged or partially clogged airways; microbes proliferate in

mucus-lined epithelial cells and a steep oxygen gradient exists between the air-mucus inter-

face and the deeper mucus. To model this, we considered one- and two-dimensional domains

representing the mucus-biofilm matrix with boundaries representing the air-mucus interface

through which oxygen diffuses in.

The three kinds of mucus blockages we considered are a mucus lined airway, a spherical
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Figure 5.8: Snapshots of the baseline antibiotic treatment. Images were taken at t =
0, 3.6, 7.2, 9.6, 12, and 14.4. The anaerobic community persists with this antibiotic treat-
ment.
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Figure 5.9: Parameter sweeps of the four antibiotic-related parameters. The blue line in-
dicates the maximum density the anaerobic community persists after a course of antibiotic
treatment.

plug logged in an airway, and a completely clogged alveolar sac [28]. Using our model, we

were able to predict the minimum-size mucus plug necessary for anaerobic survival, and

the speed that the anaerobic community can propagate through the clogged airway. In the

case of a constant oxygen concentration, which could be found between various individual

patients or at varying depths of a single patient’s lung, we derived analytical expressions

for these quantities in terms of the model parameters. With dynamic oxygen, we were able

to perform a large number of simulations and observe the minimal mucus plug size and

propagation speed for a wide range of parameter values. We also incorporated an anaerobe-

targeted antibiotic component into the model, which, like oxygen, diffuses into the domain
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from the boundary. We found that an antibiotic with high diffusivity and slow decay was

more effective in lowering the anaerobic population than increasing the dose of a less effective

drug.

There are many mathematical models of bacterial growth available in the literature, both

spatially homogeneous and dependent [3, 49, 76, 101]. The choice of a spatially dependent

PDE model is appropriate in our case due to the physical properties of the mucus-biofilm

as well as the inherent spatial complexity of the lung. Anaerobic microbes can only repro-

duce in low-oxygen environments which strongly depend on gradients created by aerobic

respiration and mucus penetration, phenomena which are difficult to capture in a spatially

homogeneous model. Moreover, biofilm formation by pathogens such as P. aeruginosa con-

tributes to antibiotic resistance by physically preventing the drug from coming in contact

with pathogen cells [96]. Using a spatially structured model, we showed that a drug with a

higher permeability into mucus could potentially treat anaerobic infections.

We made several simplifying assumptions in this chapter. Our focus with this model was to

observe the effects of dynamic oxygen, but the CF microbiome depends on many nutrients

that we did not discuss, particularly the role of pH and sulfides [28, 41, 85, 86]. CF pathogens

also exhibit a wide range of metabolic properties, of particular importance are facultative

anaerobes which can grow with or without oxygen. P. aeruginosa is one such facultative

anaerobe and exhibits markedly different metabolic behavior depending on the availability

of oxygen [79]. We also remark that there is much uncertainty in the causes of CFPEs

and that while facultative anaerobes are associated with exacerbations, anaerobic targeting

antibiotics have not thus far been shown to be effective in treating them [18]. In our modeling

we assumed a mass-action death term due to antibiotics, which would correspond to a

bactericidal drug. However, many anaerobe-targeting drugs are bacteriostatic and work by

slowing the bacteria’s growth rate.

In conclusion, we developed a mathematical model of interacting aerobic and anaerobic
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microbes in the CF airway with dynamics driven by diffusible oxygen. Our goal with this

model was to determine oxygen-related conditions for anaerobic growth. Via analytical

techniques and simulation, we determined conditions for the survival and propagation of the

anaerobic community. We also incorporated an anaerobe-targeting antibiotic and found that

highly diffusable, slower-decaying drugs can more easily reach hypoxic regions and treat the

anaerobic community.
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Chapter 6

A Stochastic Agent-based Model of

Cystic Fibrosis Microbial Dynamics

We develop an agent-based modeling framework for CF microbial community dynamics.

First, we discuss a spatially homogeneous model which behaves as a stochastic analog of

the ODE model developed in Chapter 4 and validate it against the patient data set. We

then introduce spatially heterogeneity by requiring individual microbes to place offspring

in nearby locations and introducing locally oxygen depletion. We compare the population

switch time between the spatially homogeneous and spatially dependent ABMs and discuss

an ecological niche-building phenomena that the spatially dependent model can exhibit.

6.1 Introduction

So far, each of the models we have discussed has been deterministic, meaning that they

contain no random effects and will always produce the same output for a given input. By

contrast, biological processes are inherently noisy and contain random effects. Here, we de-
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velop a stochastic agent-based model (ABM) and use it to investigate the role of stochasticity

in the CF community dynamics. Agent-based models often include spatial dynamics, which

are of interest because ecological interactions between communities are complex and likely

affected by the availability of oxygen and other biochemical resources within the spatial

heterogeneity of the CF airway environment.

6.2 Model development

We develop an agent-based model to study the impact of spatial heterogeneity and stochas-

ticity on the composition of bacterial communities in CF patients [109, 118]. In our agent-

based framework, each individual microbe is an agent located in a spatial domain and a

predetermined set of probabilistic rules govern the population dynamics. We consider a two-

dimensional n×n grid as a domain. Each space in the grid can be occupied by an aerobe, c,

and anaerobe, f , or be empty. Let N be the number of agents present in the grid at a given

time. Each time step, the grid is randomly sampled until N agents have been selected. If an

empty space in the grid is selected, a new space is sampled. When a space with a microbe

is selected, the selected microbe can divide with a probability ri or die with a probability

di, where ri + di < 1 and i = c, f . Like in the models of Chapters 4 and 5, the community

growth probabilities are functions of oxygen rc(W ) and rf (W ).

We first developed a spatially homogeneous ABM which is a stochastic analog of the oxygen-

based ODE model. In this case, a new space for a dividing microbe is randomly selected

from the entire grid. If the newly selected space is empty, then the offspring cell is placed

there; otherwise, the division event is aborted. For this spatially homogeneous ABM, we

assume that the grid contains a global amount of oxygen which is governed by the ODE

dW

dt
= λ− µW − ηCW, (6.1)
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where C is the total amount of aerobic microbes present in the grid.

We introduced spatial dependence to our agent-based framework by restricting microbes

to placing offspring cells nearby rather than selecting a location from the entire grid. In

this case, when a bacteria is selected for reproduction the offspring is placed in one of

the eight neighboring spaces of the parent, selected randomly. In addition, oxygen is only

consumed by locally present aerobes as opposed to being consumed globally as in the spatially

homogeneous model. The oxygen dynamics in position (i, j) of the grid are now governed

by

dWi,j

dt
= λ− µWi,j − ηWi,jCyn − gmWi,j + gWtot, (6.2)

where Cyn = 1 if a space contains an aerobic microbe and 0 otherwise. The parameter g is

the migration rate of oxygen between neighboring spaces, m is the total number of neighbor

spaces (for most spaces m = 8, m = 5 for boundary spaces, and m = 3 in the corners),

and Wtot is the total amount of oxygen contained in the neighbor cells. These agent-based

models were implemented in the Julia Programming Language [12, 89], and Figure 6.1 shows

a flow-chart of the microbial selection procedure.

6.3 Model validation

We validated the spatially homogeneous ABM against the ODE model discussed in Chapter

4 and available patient data. The mean, 2.5th, and 97.5th percentiles of a 500-run ensemble

are plotted in Figure 4.2 along with the patient data and best-fitting ODE simulation, and

these simulations show that the spatially homogeneous model agrees very well with the ODE

model. Additionally, Figure 6.2 shows spatial snapshots of a typical run of the spatially

homogeneous ABM. The nine images of Figure 6.2 were taken at the time points for which
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Figure 6.1: Flow-chart showing the procedure for microbial birth and death in the agent-
based models.

data were available, i.e., t = 0, 14, 19, 26, 28, 31, 33, 35, and 38.

6.4 Role of spatial heterogeneity on aerobic-anaerobic

bacterial dynamics

Microenvironments within CF airways are likely not homogeneous, and in fact, there are

often steep gradients of nutrients and microbial densities [28]. Thus, we used our agent-based

models to investigate the role spatial heterogeneity plays in the interaction of the aerobic

and anaerobic communities. For local oxygen dynamics, we take g = 0 to exclude oxygen

diffusion between neighboring spaces and emphasize local effects. Since g = 0 corresponds

to the absence of oxygen diffusion, the oxygen ODE reduces to

dW

dt
= λ− µW − ηCynW, (6.3)
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Broad-spectrum antibiotics t = 0 Broad-spectrum antibiotics t = 14

Broad-spectrum antibiotics t = 19 No treatment t = 26

No treatment t = 28 No treatment t = 31

No treatment t = 33 Antibiotics targeting anaerobes t = 35

Antibiotics targeting anaerobes t = 38

Figure 6.2: Snapshots of the spatially homogeneous agent-based model taken at the nine
time points at which data were collected. In each image, black spaces are empty, blue spaces
represent aerobes, and red spaces anaerobes. These images are a typical run of the model
with the best-fitting ODE parameters and antibiotic treatment schedule.
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so that the n×n ODE system is decoupled. Figure 6.3 shows a comparison of the population

switch times between the spatially homogeneous and heterogeneous simulations. The top

row of Figure 6.3 shows time series representations of typical runs of both models, as well as

when the population switch occurs, the second and third rows show spatial snapshots pre-

and post-population switch for the two models. The bottom row plots the switch time when

varying the oxygen recruitment λ and broad-spectrum antibiotic efficacy dBS.

Generally, including spatial heterogeneity increases the timeframe of the dynamics and time

for a population switch to occur. To observe this, we ran simulations for 0 ≤ dBS ≤ 10

(Figure 6.3g) and 1.5 × 105 ≤ λ ≤ 3.6 × 105 (Figure 6.3h). For both models, switch times

decreased in proportion to dBS and increased in proportion to λ. Small values of dBS (dBS = 0

being the base case) resulted in switch times of approximately 18 days for the homogeneous

model and 80 days for the spatially dependent model. When varying λ switch times range

from nearly 0 to approximately 18 and 70 days for the homogeneous and spatially dependent

model, respectively.

6.5 Niche building

Our spatially dependent ABM is able to capture the niche-building phenomena seen in

CF lung disease, in which certain microbial species take advantage of chemical gradients

in an environment to occupy an ecological niche [84]. Our model is able to capture this

dynamic, as the anaerobic community relies on the aerobic community to draw down oxygen

concentrations via consumption, thereby creating a local environment favorable for anaerobic

growth.

We explored a parameter space of the model in which aerobes persist in a stable equilibrium

well under the carrying capacity of the system and anaerobes capitalize on low-oxygen regions
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Figure 6.3: Comparison of spatially homogeneous and spatially dependent agent-based sim-
ulations. The top row shows time series of typical simulations of the spatially dependent
(a) and homogeneous (b) models and population switch times. (c) and (d) show spatial
snapshots for pre- and post-population switch for the homogeneous model, (e) and (f) show
the same for the spatially dependent model. In (c-f), blue spaces represent aerobes and red
anaerobes. (g) and (h) are parameter sweeps for dBS and λ on the population switch time.
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near groups of aerobes. Starting from randomized initial distributions, small groups of

aerobes become distributed roughly uniformly throughout the grid. Anaerobes quickly begin

to form clusters near the aerobes and can proliferate relatively quickly in the low-oxygen

conditions. As the anaerobes reproduce, they start to reach higher oxygen regions and are

killed so that high concentrations of anaerobes are always near groups of aerobes.

From time to time, a large group of anaerobes will suppress its supporting aerobe group

via competitive exclusion and cause them to go extinct locally. When this happens, the

resulting increase in oxygen concentration quickly eliminates the anaerobes as well and the

region becomes uninhabited. This phenomena creates a global boom-bust cycle in which

the anaerobic community sporadically bloom around groups of aerobes before suppressing

the aerobes and crashing, seen in the time series plots of Figure 6.4. Figure 6.5 shows this

dynamic in several snap shots taken at an arbitrary time during a simulation. From these

simulations, this appears to be a form of stable coexistence of the two communities as the

boom-bust cycle of the anaerobic community can continue potentially indefinitely and the

aerobes are clearly in a steady-state regardless of the behavior of the anaerobes.

6.6 Conclusion

Airways are geometrically complex, so we developed a spatially heterogeneous agent-based

model of the microbial community dynamics in CF airways. We first developed a spatially

homogeneous version of our ABM and validated it against the ODE model and patient data

discussed in Chapter 4, then incorporated spatial dynamics by restricting microbes to repro-

ducing only in nearby spaces. For comparison purposes, we considered the case where no

oxygen movement took place between neighboring spaces and observed that this restriction

increased the time to exacerbation compared to the spatially homogeneous model. Future

studies should focus on the effects of oxygen diffusion throughout the spatial domain, as
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Figure 6.4: Time series plot of the spatially heterogeneous ABM with oxygen diffusion,
the top figure shows community populations and the bottom oxygen concentrations with
2.5th and 97.5th percentiles. The top figure depicts the boom-bust cycle of the anaerobic
community compared to the relatively stable aerobic population.

well as how local reproduction affects microbial growth rates. The results in this chapter

indicated that the inclusion of spatial dependence increased the time scale for most as-

pects of the modeling. Further study into the dynamics of the two communities and their

interactions with oxygen will improve a basic understanding of CF airway ecology. Such in-

sights may inform clinical practices by identifying strategies to minimize the growth of more

pathogenic bacteria, such as how oxygen dynamics can inhibit anaerobic bacteria, possibly

with hyperbaric oxygen treatment.
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concentrations, and black low.
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Chapter 7

Conclusions and Future Work

In this dissertation, we discussed a series of mathematical and computational models to

investigate the role of oxygen in cystic fibrosis lung microbial dynamics. We first developed

a model capable of quantifying the growth characteristics and estimating parameters of CF

pathogens grown in vitro in various oxygen- and nutrient-dependent conditions. By fitting

this model to experimental data, we identified a functional form of the most likely growth

mechanism for nutrient-dependent growth. We then used this growth function to develop a

model of competing aerobic and anaerobic microbial communities growing inside an airway

of a person with CF. We validated this model against a clinical data set to determine baseline

parameter values and performed numerical simulations to predict novel antibiotic therapies

for CF pulmonary exacerbations and other basic insights of CF microbial dynamics. Next, we

extended this model to include spatial effects via diffusion and investigated the role of oxygen

gradients in accumulated mucus. Simulating our reaction-diffusion model allowed us to

predict desirable pharmacodynamic properties for antibiotics in treating CF lung infections,

as well as the minimum mucus plug size needed to support anaerobic growth. Finally, we

presented a stochastic agent-based model to incorporate random effects to our modeling of

CF microbial dynamics.
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There are several potential directions for future work. A key assumption of the present

work is the presence of only two microbial communities and one nutrient. While our goal

here was to investigate the role of oxygen, the CF microbiome is a much more diverse

and chemically complex than we considered and future modeling should consider including,

e.g., facultative anaerobes or additional species and the addition of pH and/or sulfide-based

dynamics. Similarly, there is room for additional analysis and discovery in the agent-based

model and the effects of stochasticity in CF microbial dynamics. We also made several

simplifying assumptions in our use of antibiotics and future modeling may benefit from the

inclusion of more detailed pharmacokinetic and pharmacodynamic mechanisms. The data

we had access to, while rich in some features, was limited in terms of quantity and some

features such as spatial information. Access to additional data, specifically longitudinal data

sets, would greatly increase the utility and potential for discovery of our modeling.

The long-term goal of this work is to develop improved treatments for CF lung infections, and

we have presented several hypotheses that can be tested in laboratory settings. Questions

that may be tested include: can anaerobic growth be minimized by increasing oxygen flow,

such as in a hyperbaric chamber or by lowering the abundance of aerobes? What role does

nutrient recycling play in biofilm formation and its relation to pulmonary function? Can

model predictions of antibiotic timing and pharmacodynamics, minimum mucus plug size,

and anaerobic spread be verified with in vitro assays? While there has been limited investi-

gation into targeting anaerobic microbes for treatment, the case study in Chapter 4 provides

evidence that this strategy warrants further study. Including more detailed pharmacokinetic

and pharmacodynamic detail in future modeling may be beneficial in determining more ef-

fective clinical options, such as by using models to explore various methods of antibiotic

administration.

The topic of this dissertation was cystic fibrosis associated lung infections, but the ecological

principals are applicable to other polymicrobial infections and may be useful in combating
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antibiotic resistance at large. Antibiotic resistance is a global health crisis requiring new ap-

proaches to treating bacterial infections and therapies that leverage ecological factors such

as we have discussed here are a promising area to investigate [113, 114]. Phage therapy is

another possible strategy and has seen some success in treating CF lung infections [21]. The

modeling in this dissertation can be extended in a straightforward way to include bacterio-

phage to predict new potential therapies, target species for treatment, or phage strains that

would be difficult to discover in a laboratory setting alone.

In summary, we discussed several models of microbial dynamics of cystic fibrosis lung infec-

tions. Each of these models are able to capture realistic features of CF lung infections and

predict potential new therapies, while being simple enough to remain analytically tractable

and computationally inexpensive. There are several logical steps forward for this work, in-

cluding further modeling to further explore the effects of antibiotic, oxygen, or additional

chemo-attractants, additional interactions between microbial species, and the development

of in vitro experiments to test the hypotheses generated using such models.
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