UC San Diego UC San Diego Previously Published Works

Title

Crystal structure of poly[[[µ4-5-(9H-carbazol-9-yl)isophthalato][µ3-5-(9H-carbazol-9-yl)isophthalato]bis(dimethylformamide)(methanol)dizinc] dimethylformamide monosolvate]

Permalink https://escholarship.org/uc/item/4xt510m5

Journal Acta Crystallographica Section E: Crystallographic Communications, 71(8)

ISSN 2056-9890

Authors

Lifshits, Liubov M Campana, Charles Klosterman, Jeremy K

Publication Date

2015-08-01

DOI

10.1107/s2056989015013961

Peer reviewed

data reports

OPEN access

Crystal structure of poly[[[μ_4 -5-(9*H*carbazol-9-yl)isophthalato][μ_3 -5-(9Hcarbazol-9-yl)isophthalato]bis(dimethylformamide)(methanol)dizinc1 dimethylformamide monosolvate1

Liubov M. Lifshits,^a Charles Campana^b and Jeremy K. Klosterman^a*

^aDepartment of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA, and ^bBruker AXS Inc., Madison, Wisconsin, USA. *Correspondence e-mail: jkloster@bgsu.edu

Received 26 June 2015; accepted 22 July 2015

Edited by M. Weil, Vienna University of Technology, Austria

The structure of the polymeric title compound, {[Zn₂- $(C_{20}H_{11}NO_4)_2(C_3H_7NO)_2(CH_3OH)] \cdot C_3H_7NO_{n}$ comprises carbazolylisophthalate moieties connecting dimetallic tetracarboxylate zinc secondary building units (SBUs) parallel to [100] and [010], leading to a layer-like arrangement parallel to (001). Each SBU consists of two Zn atoms in slightly distorted tetrahedral and octahedral coordination environments $[Zn \cdot \cdot \cdot Zn = 3.5953 (6) Å]$. Three carboxylate groups bridge the two Zn atoms in a μ_2 -O:O' mode, whereas the fourth coordinates through a single carboxylate O atom (μ_1 -O). The O atoms of two dimethylformamide (DMF) and one methanol molecule complete the Zn coordination spheres. The methanol ligand interacts with the noncoordinating DMF molecule via an O-H···O hydrogen bond of medium strength. Carbazoles between the layers interdigitate through weak $C-H\cdots\pi$ interactions to form a laminar solid stacked along [010]. Two kinds of $C-H \cdots \pi$ interactions are present, both with a distance of 2.64 Å, between the H atoms and the centroids, and a third $C-H \cdots \pi$ interaction, where the aromatic H atom is located above the carbazole N-atom lone pair ($H \cdot \cdot \cdot N = 2.89$ Å). Several C $-H \cdot \cdot \cdot O$ interactions occur between the coordinating DMF molecule, the DMF solvent molecule, and ligating carboxylate O atoms.

Keywords: crystal structure; zinc; metal-organic framework; laminar solids.

CCDC reference: 1408495

1. Related literature

For solid-state emission behavior and intermolecular packing interactions for a closely related compound where methanol is replaced by ethanol, see: Lifshits et al. (2015). This compound and the title compound are solvatomorphs with identical space groups and comparable lattice parameters. Except for the identity of the coordinating solvent, viz. MeOH versus EtOH, the other structural components are the same.

2. Experimental

2.1. Crystal data

[Zn ₂ (C ₂₀ H ₁₁ NO ₄) ₂ (C ₃ H ₇ NO) ₂ -	V = 4709.8 (3) Å ³
(CH ₃ OH)]·C ₃ H ₇ NO	Z = 4
$M_r = 1040.66$	Cu $K\alpha$ radiation
Orthorhombic, $P2_12_12_1$	$\mu = 1.84 \text{ mm}^{-1}$
a = 10.2867 (4) Å	T = 100 K
b = 17.0328 (7) Å	$0.40 \times 0.22 \times 0.22$ mm
c = 26.8808 (11) Å	

2.2. Data collection

Bruker D8 Venture CMOS	419
diffractometer	86
Absorption correction: multi-scan	850
(SADABS; Bruker, 2015)	$R_{\rm ir}$
$T_{\rm min} = 0.53, \ T_{\rm max} = 0.68$	

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.045$ S = 1.088611 reflections 629 parameters 546 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$

928 measured reflections 11 independent reflections 61 reflections with $I > 2\sigma(I)$ $t_{t} = 0.019$

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack x determined using 3716 quotients $[(I^{+}) - (I^{-})]/[(I^{+}) + (I^{-})]$ (Parsons et al, 2013) Absolute structure parameter: 0.005(3)

Table 1Hydrogen-bond geometry (Å, °).

Cg1, Cg3, Cg4 and Cg6 are the centroids of the N1/C1/C6/C7/C12,	С1–С6,	C7–
C12 and C21-C26 rings, respectively.		

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O12−H12 <i>O</i> ···O11	0.76	1.93	2.696 (2)	174
$C42 - H42B \cdot \cdot \cdot O11^{i}$	0.98	2.52	3.327 (3)	139
C43-H43···O10	0.95	2.44	3.028 (3)	120
C46-H46···O5	0.95	2.39	2.995 (2)	121
$C47 - H47B \cdots O3^{ii}$	0.98	2.61	3.417 (3)	140
$C47 - H47C \cdot \cdot \cdot O9^{iii}$	0.98	2.65	3.608 (3)	165
$C2-H2\cdots Cg6^{iv}$	0.95	2.64	3.517 (2)	153
$C10-H10\cdots Cg3^{v}$	0.95	2.64	3.418 (2)	139
C44 $-$ H44 B ···Cg4 ^{vi}	0.98	2.91	3.596 (2)	128
$C45-H45B\cdots Cg1^{vi}$	0.98	2.85	3.411 (2)	117

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{3}{2}, -y + 2, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (vi) $-x + \frac{3}{2}, -y + 2, z + \frac{1}{2}$.

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics:

ShelXle (Hübschle *et al.*, 2011); software used to prepare material for publication: *APEX3*.

Acknowledgements

This work was supported by Bowling Green State University and the BGSU Building Strength program.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5180).

References

- Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281– 1284.
- Lifshits, L. M., Noll, B. C. & Klosterman, J. K. (2015). Chem. Commun. 51, 11603–11606.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Acta Cryst. (2015). E71, m152-m153 [doi:10.1107/S2056989015013961]

Crystal structure of poly[[[μ_4 -5-(9*H*-carbazol-9-yl)isophthalato][μ_3 -5-(9*H*-carbazol-9-yl)isophthalato]bis(dimethylformamide)(methanol)dizinc] dimethyl-formamide monosolvate]

Liubov M. Lifshits, Charles Campana and Jeremy K. Klosterman

S1. Synthesis and crystallization

The title compound was prepared in an analogous manner to Zn Cbz - EtOH (Lifshits *et al.*, 2015). Single crystals were obtained by the solvothermal reaction of 5-(9*H*-carbazol-9-yl)-isophthalic acid and zinc nitrate in DMF/MeOH at room temperature overnight.

S2. Refinement

All H-atom positions were located from difference maps, then refined with isotropic temperature factors. Subsequently, positional restraints were added for all hydrogen atoms and U_{iso} values for hydrogen atoms were restrained to $1.2U_{eq}$ of the attached atom.

Part of the title structure showing the dimetallic Zn secondary building unit with displacement ellipsoids drawn at the 50% probability level.

Crystal structure of the title complex in a projection down [001]. Colour code: light green: C, dark blue: N, red: O, white: H, yellow spheres: Zn.

Figure 3

Crystal structure of the title complex in a projection down [100] showing the layer-like arrangement of the Zn secondary building units and the carbazole moieties parallel to (001), and the interdigitation of carbazoles to form stacked layers along [010]. Colour code as in Fig. 2.

C—H··· π interactions between carbazole moieties in the title structure.

C—H…O interactions between the coordinating DMF molecule, the DMF solvate molecule, and ligating carboxylate oxygen atoms.

Poly[[$[\mu_4$ -5-(9*H*-carbazol-9-yl)isophthalato][μ_3 -5-(9*H*-carbazol-9-yl)isophthalato]bis(dimethylformamide) (methanol)dizinc] dimethylformamide monosolvate]

Crystal data
$[Zn_2(C_{20}H_{11}NO_4)_2(C_3H_7NO)_2(CH_3OH)]$ ·C ₃ H ₇ NO
$M_r = 1040.66$
Orthorhombic, $P2_12_12_1$
a = 10.2867 (4) Å
b = 17.0328 (7) Å
c = 26.8808 (11) Å
V = 4709.8 (3) Å ³
Z=4
F(000) = 2152

 $D_x = 1.468 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9734 reflections $\theta = 5.4-68.3^{\circ}$ $\mu = 1.84 \text{ mm}^{-1}$ T = 100 KPrism, clear colourless $0.40 \times 0.22 \times 0.22 \text{ mm}$ Data collection

Bruker D8 Venture CMOS diffractometer	41928 measured reflections 8611 independent reflections
Radiation source: ImuS micro-focus source with QUAZAR optics	8561 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$
Mirrors monochromator	$\theta_{\rm max} = 68.2^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
ω - and φ -scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan	$k = -20 \rightarrow 20$
(SADABS; Bruker, 2015)	$l = -31 \rightarrow 32$
$T_{\min} = 0.53, \ T_{\max} = 0.68$	
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0221P)^2 + 1.2023P]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.045$	$(\Delta/\sigma)_{\rm max} = 0.004$
<i>S</i> = 1.08	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
8611 reflections	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$
629 parameters	Absolute structure: Flack x determined using
546 restraints	3716 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i>
0 constraints	<i>al</i> , 2013)
Hydrogen site location: mixed	Absolute structure parameter: 0.005 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and is	sotropie	c or e	quivalent	isotrop	oic dis	placement	parameters	$(Å^2$?)
				· · · · · · · · · · · ·		1	p			p	1 2	/

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.52406 (2)	0.98187 (2)	0.67608 (2)	0.00831 (6)	
Zn2	0.30186 (2)	1.08249 (2)	0.75728 (2)	0.01117 (6)	
N1	1.01341 (16)	0.86300 (9)	0.51641 (6)	0.0129 (3)	
C1	0.95145 (19)	0.89610 (12)	0.47539 (7)	0.0146 (4)	
C2	0.9057 (2)	0.97254 (13)	0.46907 (8)	0.0180 (4)	
H2	0.9108	1.0102	0.4951	0.022*	
C3	0.8523 (2)	0.99110 (14)	0.42298 (8)	0.0248 (5)	
H3	0.8192	1.0425	0.4176	0.03*	
C4	0.8461 (2)	0.93588 (15)	0.38421 (8)	0.0277 (5)	
H4	0.8103	0.9506	0.353	0.033*	
C5	0.8915 (2)	0.86053 (15)	0.39113 (8)	0.0247 (5)	
H5	0.8872	0.8233	0.3648	0.03*	
C6	0.9441 (2)	0.83924 (13)	0.43731 (8)	0.0177 (4)	
C7	0.99990 (19)	0.76781 (12)	0.45673 (8)	0.0171 (4)	
C8	1.0156 (2)	0.69190 (13)	0.43782 (8)	0.0221 (4)	
H8	0.9852	0.679	0.4055	0.027*	
C9	1.0761 (2)	0.63599 (13)	0.46707 (9)	0.0238 (5)	
H9	1.0863	0.5841	0.4547	0.029*	
C10	1.1228 (2)	0.65440 (13)	0.51475 (9)	0.0223 (5)	

H10	1.1652	0.6151	0.5339	0.027*
C11	1.1076 (2)	0.72951 (13)	0.53442 (8)	0.0178 (4)
H11	1.1396	0.7423	0.5666	0.021*
C12	1.04404 (19)	0.78507 (12)	0.50537 (7)	0.0150 (4)
C13	1.0189 (2)	0.89772 (10)	0.56479 (7)	0.0119 (4)
C14	1.13827 (19)	0.91247 (11)	0.58751 (7)	0.0119 (4)
H14	1.2173	0.8991	0.5713	0.014*
C15	1.13966 (19)	0.94734 (11)	0.63455 (7)	0.0115 (4)
C16	1.0238 (2)	0.96674 (10)	0.65848 (7)	0.0113 (3)
H16	1.0258	0.9911	0.6903	0.014*
C17	0.90537 (19)	0.95048 (11)	0.63589(7)	0.0107 (4)
C18	0.90292 (19)	0.91604 (11)	0.58874 (7)	0.0117 (4)
H18	0.8222	0.9052	0.573	0.014*
C19	1.26733 (18)	0.96743 (10)	0.65857 (7)	0.0112 (4)
01	1.36949 (13)	0.93922 (8)	0.63956 (5)	0.0135 (3)
02	1.26507 (14)	1.01114 (9)	0.69596 (5)	0.0166 (3)
C20	0.77903 (18)	0.97111 (11)	0.66134 (7)	0.0118 (4)
03	0.77960 (14)	1.01396 (9)	0.69850 (5)	0.0174 (3)
O4	0.67727 (13)	0.94091 (8)	0.64176 (5)	0.0145 (3)
N2	0.39399 (18)	0.83315 (10)	0.95005 (6)	0.0147 (3)
C21	0.4863 (2)	0.83442 (11)	0.98791 (7)	0.0155 (4)
C22	0.6179 (2)	0.81631 (12)	0.98552 (8)	0.0188 (4)
H22	0.6558	0.7959	0.956	0.023*
C23	0.6920 (3)	0.82912 (12)	1.02792 (8)	0.0245 (5)
H23	0.7825	0.8181	1.0272	0.029*
C24	0.6360 (3)	0.85803 (13)	1.07181 (8)	0.0270 (5)
H24	0.689	0.8669	1.1002	0.032*
C25	0.5048 (3)	0.87372 (12)	1.07420 (8)	0.0264 (5)
H25	0.4673	0.8919	1.1044	0.032*
C26	0.4265 (2)	0.86281 (12)	1.03187 (8)	0.0190 (4)
C27	0.2928 (2)	0.87905 (11)	1.01955 (8)	0.0197 (4)
C28	0.1854 (3)	0.90598 (12)	1.04676 (8)	0.0265 (5)
H28	0.1933	0.917	1.0813	0.032*
C29	0.0688 (3)	0.91627 (14)	1.02287 (10)	0.0302 (5)
H29	-0.0041	0.9346	1.0411	0.036*
C30	0.0554 (2)	0.90011 (13)	0.97173 (10)	0.0281 (5)
H30	-0.0264	0.9081	0.9561	0.034*
C31	0.1596 (2)	0.87272 (12)	0.94368 (8)	0.0212 (4)
H31	0.1509	0.8617	0.9092	0.025*
C32	0.2771 (2)	0.86227 (11)	0.96842 (8)	0.0167 (4)
C33	0.4234 (2)	0.81833 (11)	0.89901 (7)	0.0124 (4)
C34	0.42478 (19)	0.88080 (11)	0.86558 (7)	0.0121 (4)
H34	0.4032	0.9322	0.8765	0.015*
C35	0.45792 (18)	0.86756 (11)	0.81612 (7)	0.0109 (4)
C36	0.48732 (19)	0.79181 (11)	0.79992 (7)	0.0106 (4)
H36	0.5115	0.7829	0.7663	0.013*
C37	0.48112 (19)	0.72937 (10)	0.83313 (7)	0.0107 (3)
C38	0.45010 (18)	0.74252 (11)	0.88311 (7)	0.0118 (4)

1120	0 4474	0.7	0.0050	0.01.4*
H38	0.44/4	0.7	0.9059	0.014^{*}
05	0.45579(18)	0.93481 (11)	0.77969(7)	0.0106 (4)
05	0.39906 (14)	0.99586 (8)	0.79345 (5)	0.0146 (3)
06	0.51058 (13)	0.92271(7)	0.73846 (5)	0.0134 (3)
C40	0.50276 (18)	0.64683 (11)	0.81456 (7)	0.0107 (4)
07	0.53555 (15)	0.63806 (8)	0.77011 (5)	0.0153 (3)
08	0.48208 (14)	0.59232 (7)	0.84533 (5)	0.0131 (3)
N3	0.18493 (18)	1.29637 (10)	0.69906 (7)	0.0203 (4)
C41	0.1585 (3)	1.28253 (18)	0.64698 (9)	0.0359 (6)
H41A	0.1585	1.2259	0.6405	0.043*
H41B	0.2258	1.3078	0.6267	0.043*
H41C	0.0733	1.3045	0.6384	0.043*
C42	0.1993 (3)	1.37942 (14)	0.71429 (12)	0.0368 (6)
H42A	0.2282	1.3818	0.749	0.044*
H42B	0.1156	1.4063	0.711	0.044*
H42C	0.2638	1.4051	0.693	0.044*
C43	0.2047 (2)	1.23963 (13)	0.73133 (9)	0.0231 (4)
H43	0.2304	1.2537	0.7641	0.028*
09	0.19190 (17)	1.16868 (9)	0.72161 (6)	0.0249 (3)
N4	0.23401 (18)	1.14908 (10)	0.90142 (6)	0.0165 (4)
C44	0.1897 (2)	1.23038 (12)	0.90000 (8)	0.0212 (4)
H44A	0.2421	1.2599	0.876	0.025*
H44B	0.1991	1.2539	0.9331	0.025*
H44C	0.0982	1.2319	0.89	0.025*
C45	0.2081 (2)	1.10314 (13)	0.94622 (7)	0.0206 (4)
H45A	0.1143	1.0943	0.9494	0.025*
H45B	0.2396	1.1318	0.9754	0.025*
H45C	0.2529	1.0525	0.9439	0.025*
C46	0.2883(2)	1 11725 (12)	0.86199 (7)	0.0170(4)
H46	0.317	1.0644	0.8644	0.02*
010	0.30448(16)	1 15212 (8)	0.82162 (5)	0.0193(3)
N5	0.18348(18)	0.76557(10)	0.02102(3) 0.75996(7)	0.0198(3)
C47	0.1482(2)	0.70971 (13)	0.79858 (9)	0.0190(1)
Ц47 4	0.1402(2) 0.1474	0.7363	0.8309	0.0228 (3)
H47B	0.2117	0.6668	0.7992	0.027
H47C	0.0616	0.6884	0.7992	0.027
C48	0.0010 0.2438 (3)	0.0004 0.73480 (16)	0.7910	0.027°
	0.2458 (5)	0.73480 (10)	0.71438 (9)	0.0299(3)
П40А Ц40Д	0.2034	0.7784	0.0923	0.030*
П40D	0.103	0.0992	0.0978	0.030*
H48C	0.3232	0.7062	0.7232	0.036*
C49	0.16/9 (2)	0.84238 (13)	0.76636 (8)	0.0218 (4)
H49	0.1952	0.8/6	0.7402	0.026*
011	0.12041 (16)	0.8/346 (9)	0.80389 (6)	0.0238 (3)
C50	0.0105 (2)	1.06679 (13)	0.80194 (9)	0.0265 (5)
H50A	0.0221	1.1239	0.8027	0.032*
H50B	-0.0201	1.0487	0.8345	0.032*
H50C	-0.0536	1.053	0.7764	0.032*
O12	0.13112 (15)	1.03020 (9)	0.79064 (6)	0.0238 (3)

H12O	0.1229	0.9862		0.7954	0.029*	
Atomic d	displacement para	meters $(Å^2)$				
	<i>U</i> ¹¹	U ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Zn1	0.00790 (11)	0.00827 (11)	0.00877 (11)	0.00017 (9)	0.00090 (9)	0.00012 (9)
Zn2	0.01339 (12)	0.00866 (11)	0.01146 (12)	0.00126 (9)	0.00188 (9)	-0.00029 (9)
N1	0.0120 (8)	0.0150 (7)	0.0118 (7)	0.0003 (6)	0.0004 (6)	-0.0050 (6)
C1	0.0096 (9)	0.0205 (10)	0.0136 (9)	-0.0038 (7)	0.0005 (7)	-0.0014 (7)
C2	0.0167 (10)	0.0191 (10)	0.0184 (10)	-0.0045 (8)	-0.0014 (8)	-0.0004 (8)
C3	0.0262 (12)	0.0244 (11)	0.0238 (11)	-0.0048 (9)	-0.0047 (9)	0.0069 (9)
C4	0.0296 (13)	0.0364 (13)	0.0172 (11)	-0.0084 (10)	-0.0071 (9)	0.0048 (9)
C5	0.0254 (12)	0.0343 (12)	0.0143 (10)	-0.0077 (10)	-0.0024 (9)	-0.0064 (9)
C6	0.0140 (10)	0.0240 (10)	0.0149 (9)	-0.0051 (8)	0.0017 (7)	-0.0052 (8)
C7	0.0112 (10)	0.0222 (10)	0.0178 (9)	-0.0035 (8)	0.0034 (7)	-0.0074 (8)
C8	0.0193 (11)	0.0234 (10)	0.0236 (10)	-0.0057 (9)	0.0057 (9)	-0.0122 (8)
C9	0.0197 (11)	0.0186 (10)	0.0331 (12)	-0.0035 (9)	0.0119 (9)	-0.0110 (9)
C10	0.0139 (10)	0.0188 (10)	0.0342 (12)	0.0015 (8)	0.0079 (9)	-0.0025 (9)
C11	0.0120 (9)	0.0200 (10)	0.0214 (10)	0.0001 (8)	0.0025 (8)	-0.0047 (8)
C12	0.0103 (9)	0.0174 (9)	0.0174 (9)	-0.0020(7)	0.0042 (7)	-0.0055 (7)
C13	0.0128 (9)	0.0111 (8)	0.0119 (8)	-0.0007 (7)	-0.0006 (7)	-0.0014 (7)
C14	0.0100 (9)	0.0117 (9)	0.0140 (9)	0.0002 (7)	0.0009 (7)	-0.0005 (7)
C15	0.0113 (9)	0.0091 (8)	0.0141 (9)	-0.0005 (7)	0.0000 (7)	0.0017 (7)
C16	0.0138 (9)	0.0095 (8)	0.0106 (8)	-0.0002(7)	0.0010 (7)	0.0008 (6)
C17	0.0112 (9)	0.0090 (8)	0.0118 (9)	-0.0002(7)	0.0016 (7)	0.0017 (7)
C18	0.0092 (9)	0.0107 (8)	0.0152 (9)	-0.0007 (7)	-0.0014 (7)	0.0009 (7)
C19	0.0106 (9)	0.0104 (9)	0.0127 (9)	-0.0005 (7)	0.0001 (7)	0.0032 (7)
01	0.0084 (7)	0.0156 (7)	0.0166 (7)	0.0000 (5)	-0.0013 (5)	-0.0023 (5)
O2	0.0141 (7)	0.0206 (7)	0.0151 (7)	-0.0022(6)	-0.0027(5)	-0.0063 (6)
C20	0.0109 (9)	0.0104 (8)	0.0140 (9)	0.0015 (7)	0.0021 (7)	0.0032 (7)
O3	0.0146 (7)	0.0222 (7)	0.0155 (7)	0.0014 (6)	0.0021 (5)	-0.0068 (6)
04	0.0099 (7)	0.0173 (7)	0.0163 (7)	0.0003 (5)	0.0016 (5)	-0.0037(5)
N2	0.0219 (9)	0.0129 (8)	0.0092 (8)	0.0017 (7)	0.0028 (7)	-0.0004 (6)
C21	0.0284 (11)	0.0080 (8)	0.0100 (8)	-0.0010(8)	-0.0010(8)	0.0009 (7)
C22	0.0277 (12)	0.0129 (9)	0.0157 (10)	0.0024 (8)	-0.0009(8)	0.0016 (8)
C23	0.0364 (13)	0.0148 (9)	0.0221 (11)	0.0026 (10)	-0.0090 (10)	0.0031 (8)
C24	0.0468 (15)	0.0184 (10)	0.0159 (10)	-0.0035(10)	-0.0105(10)	0.0022 (8)
C25	0.0545 (17)	0.0136 (9)	0.0110 (9)	-0.0080(10)	0.0022 (10)	-0.0012(7)
C26	0.0357 (12)	0.0091 (9)	0.0122 (9)	-0.0044(8)	0.0049 (8)	0.0001 (7)
C27	0.0348 (12)	0.0099 (9)	0.0145 (9)	-0.0059(9)	0.0092 (9)	-0.0029(7)
C28	0.0403 (14)	0.0167 (10)	0.0226 (11)	-0.0058(10)	0.0180 (10)	-0.0065(8)
C29	0.0340 (13)	0.0191 (10)	0.0376 (13)	-0.0027(10)	0.0224 (11)	-0.0056(10)
C30	0.0239(12)	0.0215 (11)	0.0388 (13)	0.0007 (9)	0.0104(10)	-0.0011(10)
C31	0.0243 (11)	0.0159 (10)	0.0233 (11)	-0.0007(8)	0.0063 (9)	-0.0007(8)
C32	0.0251(11)	0.0085 (8)	0.0165(10)	-0.0006(8)	0.0090 (8)	-0.0009(7)
C33	0.0147 (9)	0.0145 (9)	0.0079 (8)	0 0004 (8)	0.0004(7)	-0.0019(7)
C34	0.0130(9)	0.0140(9)	0.0131 (9)	0 0005 (7)	0.000 + (7)	-0.0013(7)
C35	0 0099 (9)	0.0112 (8)	0 0117 (9)	0.0000(7)	-0.0007(7)	0 0009 (7)
000		0.0112 (0)	0.011/(2)	0.0000 (7)	0.0011 (7)	0.0000 (7)

C36	0.0095 (9)	0.0133 (8)	0.0091 (8)	0.0007 (7)	-0.0007 (7)	-0.0009 (7)
C37	0.0088 (8)	0.0113 (8)	0.0119 (8)	0.0009 (7)	-0.0009 (7)	-0.0007 (7)
C38	0.0117 (9)	0.0117 (9)	0.0119 (9)	-0.0007 (7)	0.0007 (7)	0.0022 (7)
C39	0.0098 (9)	0.0110 (9)	0.0110 (8)	-0.0005 (7)	-0.0022 (7)	0.0007 (7)
05	0.0215 (7)	0.0096 (6)	0.0127 (6)	0.0037 (5)	0.0014 (5)	0.0006 (5)
06	0.0155 (7)	0.0140 (6)	0.0106 (6)	0.0024 (5)	0.0033 (5)	0.0030 (5)
C40	0.0085 (9)	0.0117 (8)	0.0120 (9)	0.0009 (7)	-0.0018 (7)	-0.0006 (7)
O7	0.0211 (7)	0.0141 (6)	0.0107 (6)	0.0067 (6)	0.0010 (6)	-0.0020 (5)
08	0.0160 (7)	0.0097 (6)	0.0136 (6)	0.0005 (5)	0.0011 (5)	-0.0010 (5)
N3	0.0154 (9)	0.0186 (8)	0.0270 (9)	0.0020 (7)	-0.0017 (7)	0.0010 (7)
C41	0.0376 (15)	0.0446 (15)	0.0256 (12)	0.0053 (12)	-0.0028 (10)	0.0056 (11)
C42	0.0266 (13)	0.0203 (11)	0.0634 (18)	0.0022 (10)	-0.0086 (13)	-0.0019 (11)
C43	0.0193 (10)	0.0224 (10)	0.0276 (11)	0.0038 (9)	-0.0044 (9)	-0.0020 (9)
09	0.0241 (8)	0.0159 (7)	0.0349 (8)	0.0039 (6)	-0.0082 (7)	0.0007 (6)
N4	0.0170 (9)	0.0172 (8)	0.0152 (8)	-0.0004 (7)	0.0013 (7)	-0.0041 (7)
C44	0.0235 (11)	0.0173 (10)	0.0229 (10)	0.0020 (9)	0.0041 (9)	-0.0065 (8)
C45	0.0227 (11)	0.0245 (10)	0.0146 (10)	-0.0006 (9)	0.0028 (8)	-0.0007 (8)
C46	0.0201 (10)	0.0151 (9)	0.0156 (10)	0.0021 (8)	0.0006 (8)	-0.0024 (7)
O10	0.0295 (8)	0.0143 (6)	0.0142 (6)	0.0018 (6)	0.0048 (7)	-0.0035 (5)
N5	0.0182 (9)	0.0209 (8)	0.0202 (8)	-0.0020(7)	-0.0010 (7)	0.0009 (7)
C47	0.0216 (11)	0.0207 (10)	0.0260 (11)	-0.0009 (9)	-0.0006 (9)	0.0025 (9)
C48	0.0301 (13)	0.0351 (13)	0.0247 (12)	-0.0039 (11)	0.0027 (10)	-0.0041 (10)
C49	0.0163 (10)	0.0234 (10)	0.0257 (11)	-0.0037 (8)	-0.0019 (8)	0.0057 (9)
011	0.0189 (8)	0.0186 (7)	0.0339 (9)	-0.0006 (6)	0.0013 (7)	0.0009 (6)
C50	0.0168 (11)	0.0255 (11)	0.0374 (12)	0.0029 (9)	0.0072 (9)	-0.0048 (9)
012	0.0192 (8)	0.0142 (7)	0.0381 (9)	0.0015 (6)	0.0150 (7)	0.0019 (6)

Geometric parameters (Å, °)

Zn1—O4	1.9548 (14)	C27—C28	1.402 (3)
Zn1—06	1.9614 (13)	C27—C32	1.413 (3)
Zn1—O8 ⁱ	1.9683 (13)	C28—C29	1.372 (4)
Zn1—O1 ⁱⁱ	2.0047 (14)	C28—H28	0.95
Zn2—O5	2.0303 (14)	C29—C30	1.409 (4)
Zn2—O7 ⁱ	2.0580 (14)	С29—Н29	0.95
Zn2—O2 ⁱⁱ	2.0826 (14)	C30—C31	1.391 (3)
Zn2—O9	2.0867 (15)	С30—Н30	0.95
Zn2—O10	2.0974 (14)	C31—C32	1.391 (3)
Zn2—O12	2.1638 (15)	C31—H31	0.95
N1-C1	1.393 (3)	C33—C38	1.388 (3)
N1-C12	1.396 (3)	C33—C34	1.393 (3)
N1-C13	1.430 (2)	C34—C35	1.391 (3)
C1—C2	1.395 (3)	С34—Н34	0.95
C1—C6	1.411 (3)	C35—C36	1.395 (3)
С2—С3	1.392 (3)	C35—C39	1.507 (3)
С2—Н2	0.95	C36—C37	1.390 (3)
С3—С4	1.405 (3)	С36—Н36	0.95
С3—Н3	0.95	C37—C38	1.399 (3)

C4—C5	1.378 (4)	C37—C40	1.508 (2)
C4—H4	0.95	С38—Н38	0.95
C5—C6	1.402 (3)	C39—O5	1.248 (2)
С5—Н5	0.95	C39—O6	1.260 (2)
C6—C7	1 443 (3)	C40—O7	1250(2)
C7-C8	1 300 (3)	C40-08	1.260(2) 1.262(2)
C7 - C12	1.575(3)	$O7 7n^{2iv}$	1.202(2)
C^{2}	1.413(3)	O_{1} Z_{1} Z_{2}	2.0380(14)
	1.383 (4)	08—2111"	1.9683 (13)
C8—H8	0.95	N3-C43	1.315 (3)
C9—C10	1.404 (3)	N3—C41	1.445 (3)
С9—Н9	0.95	N3—C42	1.480 (3)
C10-C11	1.393 (3)	C41—H41A	0.98
C10—H10	0.95	C41—H41B	0.98
C11—C12	1.390 (3)	C41—H41C	0.98
C11—H11	0.95	C42—H42A	0.98
C13—C18	1.391 (3)	C42—H42B	0.98
C13—C14	1.395 (3)	C42—H42C	0.98
C14—C15	1.397 (3)	C43—O9	1.243 (3)
C14—H14	0.95	C43—H43	0.95
C15-C16	1 395 (3)	N4_C46	1.315(3)
$C_{15} = C_{10}$	1.575(3)	N4 C44	1.515(3)
C16 C17	1.303(3)	N4 C45	1.450(5)
	1.389 (3)	N4-C43	1.401 (5)
	0.95		0.98
C17—C18	1.397 (3)	C44—H44B	0.98
C17—C20	1.510 (3)	C44—H44C	0.98
C18—H18	0.95	C45—H45A	0.98
C19—O2	1.251 (2)	C45—H45B	0.98
C19—O1	1.263 (2)	C45—H45C	0.98
O1—Zn1 ⁱⁱⁱ	2.0047 (14)	C46—O10	1.248 (3)
O2—Zn2 ⁱⁱⁱ	2.0825 (14)	C46—H46	0.95
С20—О3	1.237 (2)	N5—C49	1.329 (3)
С20—О4	1.279 (2)	N5—C47	1.454 (3)
N2—C32	1.391 (3)	N5-C48	1.465 (3)
N2-C21	1 392 (3)	C47—H47A	0.98
N2-C33	1.392(3) 1 427(2)	C47—H47B	0.98
C_{21} C_{22}	1.127(2) 1.300(3)	C_{47} H47C	0.98
$C_{21} = C_{22}$	1.390(3) 1.417(3)	C_{4} H_{4} R_{4}	0.98
$C_{21} = C_{20}$	1.417(3)	C_{40} H_{40}	0.98
C22—C23	1.300 (3)		0.98
C22—H22	0.95	C48—H48C	0.98
C23—C24	1.402 (4)	C49—011	1.240 (3)
C23—H23	0.95	C49—H49	0.95
C24—C25	1.377 (4)	C50—O12	1.421 (3)
C24—H24	0.95	С50—Н50А	0.98
C25—C26	1.406 (3)	C50—H50B	0.98
C25—H25	0.95	С50—Н50С	0.98
C26—C27	1.442 (4)	O12—H12O	0.7642
O4—Zn1—O6	106.09 (6)	C32—C27—C26	107.09 (19)
	5 C		· /

$O4$ — $Zn1$ — $O8^{i}$	103.24 (6)	C29—C28—C27	119.1 (2)
$O6$ — $Zn1$ — $O8^i$	137.62 (5)	C29—C28—H28	120.4
O4—Zn1—O1 ⁱⁱ	106.21 (5)	C27—C28—H28	120.4
O6—Zn1—O1 ⁱⁱ	100.16 (6)	C28—C29—C30	121.2 (2)
$O8^{i}$ —Zn1—O1 ⁱⁱ	100.24 (6)	C28—C29—H29	119.4
$O5$ —Zn2— $O7^i$	96.05 (6)	С30—С29—Н29	119.4
$O5$ —Zn2— $O2^{ii}$	92.55 (6)	C31—C30—C29	121.3 (2)
$O7^{i}$ —Zn2— $O2^{ii}$	97.64 (5)	C31—C30—H30	119.4
O5—Zn2—O9	176.68 (7)	С29—С30—Н30	119.4
07^{i} —Zn2—09	87.28 (6)	C30—C31—C32	116.9 (2)
Ω^{2ii} Zn2 Ω^{9}	87.04 (6)	C30—C31—H31	121.5
$05-7n^2-010$	90 56 (6)	C32—C31—H31	121.5
0.7^{i} $7n^{2}$ 0.10^{i}	91 40 (6)	$C_{31} - C_{32} - N_{2}$	128.81 (18)
$O^{2i} - Zn^2 - O^{10}$	170.07 (6)	$C_{31} = C_{32} = C_{27}$	120.01(10) 122.6(2)
$09-7n^2-010$	89 32 (6)	$N_{2} = C_{32} = C_{27}$	108.6(2)
$05 - 7n^2 - 012$	84 38 (6)	C_{38} C_{33} C_{34}	120.68(17)
$0.5^{i} = 2n^{2} = 0.12^{i}$	175 73 (6)	C_{38} C_{33} N_{2}	120.06(17) 120.16(17)
O^{2ii}_{n} Z_{n2} O^{12}_{n}	86 58 (6)	$C_{34} C_{33} N_2$	120.10(17) 110.16(17)
02 - 2112 - 012	00.38(0)	$C_{34} = C_{33} = N_2$	119.10(17) 110.60(17)
0_{2} -21_{2} -01_{2} 0_{10} 7_{2} 0_{12}	92.30 (7)	$C_{33} = C_{34} = C_{33}$	119.09 (17)
C1 = 012	04.34(0) 108.65(16)	$C_{33} = C_{34} = H_{34}$	120.2
C1 = N1 = C12	106.03(10) 124.80(16)	$C_{24} = C_{25} = C_{26}$	120.2
C12 N1 $C12$	124.60(10) 125.20(16)	$C_{24} = C_{25} = C_{20}$	120.11(17)
C12-N1-C13	123.29(10) 128.05(18)	$C_{34} = C_{35} = C_{39}$	119.02(17)
NI - CI - C2	128.95 (18)	$C_{30} = C_{30} = C_{39}$	120.21 (16)
NI - CI - C6	108.73 (18)	$C_{37} - C_{36} - C_{35}$	119.81 (16)
C2-C1-C6	122.29 (19)	C37—C36—H36	120.1
$C_3 - C_2 - C_1$	117.0 (2)	C35—C36—H36	120.1
C3—C2—H2	121.5	C36—C37—C38	120.32 (16)
C1—C2—H2	121.5	C36—C37—C40	119.59 (16)
C2—C3—C4	121.7 (2)	C38—C37—C40	120.05 (16)
С2—С3—Н3	119.1	C33—C38—C37	119.33 (17)
С4—С3—Н3	119.1	С33—С38—Н38	120.3
C5—C4—C3	120.5 (2)	С37—С38—Н38	120.3
C5—C4—H4	119.7	O5—C39—O6	127.29 (17)
C3—C4—H4	119.7	O5—C39—C35	116.57 (16)
C4—C5—C6	119.4 (2)	O6—C39—C35	116.14 (16)
C4—C5—H5	120.3	C39—O5—Zn2	133.92 (12)
С6—С5—Н5	120.3	C39—O6—Zn1	134.38 (12)
C5—C6—C1	119.1 (2)	O7—C40—O8	125.74 (17)
C5—C6—C7	133.8 (2)	O7—C40—C37	117.86 (16)
C1—C6—C7	107.15 (18)	O8—C40—C37	116.36 (15)
C8—C7—C12	119.4 (2)	C40—O7—Zn2 ^{iv}	128.02 (12)
C8—C7—C6	133.9 (2)	C40—O8—Zn1 ^{iv}	121.14 (12)
С12—С7—С6	106.67 (17)	C43—N3—C41	123.3 (2)
C9—C8—C7	118.8 (2)	C43—N3—C42	120.3 (2)
С9—С8—Н8	120.6	C41—N3—C42	116.3 (2)
С7—С8—Н8	120.6	N3—C41—H41A	109.5
C8—C9—C10	121.3 (2)	N3—C41—H41B	109.5

С8—С9—Н9	119.4	H41A—C41—H41B	109.5
С10—С9—Н9	119.4	N3—C41—H41C	109.5
C11—C10—C9	120.9 (2)	H41A—C41—H41C	109.5
C11—C10—H10	119.6	H41B—C41—H41C	109.5
С9—С10—Н10	119.6	N3—C42—H42A	109.5
C12—C11—C10	117.7 (2)	N3—C42—H42B	109.5
C12—C11—H11	121.2	H42A—C42—H42B	109.5
C10-C11-H11	121.2	N3—C42—H42C	109.5
C11—C12—N1	129.34 (18)	H42A—C42—H42C	109.5
C11—C12—C7	121.91 (19)	H42B—C42—H42C	109.5
N1—C12—C7	108.75 (18)	O9—C43—N3	124.0 (2)
C18—C13—C14	120.81 (16)	O9—C43—H43	118.0
C18—C13—N1	118.69 (17)	N3—C43—H43	118.0
C14—C13—N1	120.50 (18)	C43—O9—Zn2	121.99 (15)
C13—C14—C15	118.82 (18)	C46—N4—C44	120.20 (18)
C13—C14—H14	120.6	C46—N4—C45	121.41 (17)
C15—C14—H14	120.6	C44—N4—C45	118.25 (17)
C16—C15—C14	120.63 (18)	N4—C44—H44A	109.5
C16—C15—C19	119.67 (17)	N4—C44—H44B	109.5
C14—C15—C19	119.64 (17)	H44A—C44—H44B	109.5
C17—C16—C15	120.06 (17)	N4—C44—H44C	109.5
C17—C16—H16	120.0	H44A—C44—H44C	109.5
C15—C16—H16	120.0	H44B—C44—H44C	109.5
C16—C17—C18	119.76 (18)	N4—C45—H45A	109.5
C16—C17—C20	120.68 (16)	N4—C45—H45B	109.5
C18—C17—C20	119.55 (17)	H45A—C45—H45B	109.5
C13—C18—C17	119.91 (17)	N4—C45—H45C	109.5
C13—C18—H18	120.0	H45A—C45—H45C	109.5
С17—С18—Н18	120.0	H45B—C45—H45C	109.5
02-C19-O1	124.52 (17)	010—C46—N4	124.13 (19)
02-C19-C15	117.67 (17)	O10—C46—H46	117.9
01-C19-C15	117.81 (16)	N4—C46—H46	117.9
$C19 - O1 - Zn1^{iii}$	108.90 (12)	C46—O10—Zn2	116.49 (12)
$C19 - O2 - Zn2^{iii}$	168.46 (13)	C49 - N5 - C47	121.42 (19)
03-C20-04	124.97 (17)	C49 - N5 - C48	120.73 (19)
03-C20-C17	119.93 (17)	C47—N5—C48	117.77 (18)
04-C20-C17	115.10 (16)	N5-C47-H47A	109.5
$C_{20} - O_{4} - Z_{n1}$	108.79 (12)	N5-C47-H47B	109.5
$C_{32} = N_2 = C_{21}$	108.95 (16)	H47A—C47—H47B	109.5
$C_{32} = N_{2} = C_{33}$	125 96 (17)	N5-C47-H47C	109.5
$C_{21} = N_{2} = C_{33}$	124 11 (18)	H47A - C47 - H47C	109.5
C_{22} C_{21} N_{2}	128.86 (18)	H47B-C47-H47C	109.5
$C_{22} = C_{21} = C_{26}$	122.47 (19)	N5-C48-H48A	109.5
N_{2} C_{21} C_{20}	108 58 (19)	N5-C48-H48B	109.5
C^{23} C^{22} C^{21}	117 5 (2)	H48A - C48 - H48B	109.5
C23—C22—H22	121.2	N5-C48-H48C	109.5
$C_{21} = C_{22} = H_{22}$	121.2	H48A - C48 - H48C	109.5
C^{22} C^{23} C^{24}	121.2	H48B - C48 - H48C	109.5
$\bigcirc 22$ $\bigcirc 23$ $\bigcirc 243$	141.2 (4)		107.5

С22—С23—Н23	119.3	O11—C49—N5	125.0 (2)
C24—C23—H23	119.3	O11—C49—H49	117.5
C25—C24—C23	120.7 (2)	N5—C49—H49	117.5
C25—C24—H24	119.7	O12—C50—H50A	109.5
C23—C24—H24	119.7	O12—C50—H50B	109.5
C24—C25—C26	119.8 (2)	H50A—C50—H50B	109.5
C24—C25—H25	120.1	O12—C50—H50C	109.5
$C_{26} = C_{25} = H_{25}$	120.1	H50A-C50-H50C	109.5
$C_{25} = C_{26} = C_{21}$	118 1 (2)	H50B-C50-H50C	109.5
C_{25} C_{26} C_{27}	135.0(2)	$C_{50} = 0.12 = 7n^2$	128.06 (13)
$C_{23} = C_{20} = C_{27}$	106.75(18)	$C_{50} = 012 = H_{12}$	107.3
C_{28} C_{27} C_{32}	1189(2)	$7n^2 - 012 - H120$	124.2
$C_{28} = C_{27} = C_{32}$	110.9(2) 134.0(2)		127.2
228-027-020	154.0 (2)		
C12—N1—C1—C2	-178.7(2)	C26—C21—C22—C23	-1.8(3)
C13—N1—C1—C2	13.6 (3)	C21—C22—C23—C24	1.0 (3)
C12—N1—C1—C6	-1.0(2)	C22—C23—C24—C25	0.8 (3)
C13—N1—C1—C6	-168.66(18)	C_{23} C_{24} C_{25} C_{26}	-1.8(3)
N1-C1-C2-C3	177.2 (2)	C_{24} C_{25} C_{26} C_{21}	1.0 (3)
C6-C1-C2-C3	-0.4(3)	C_{24} C_{25} C_{26} C_{27}	-1736(2)
C1 - C2 - C3 - C4	-0.8(3)	$C^{2} = C^{2} = C^{2} = C^{2} = C^{2}$	0.8(3)
$C_2 - C_3 - C_4 - C_5$	10(4)	$N_2 - C_2 $	-175.98(17)
C_{3} C_{4} C_{5} C_{6}	0.0(4)	$C_{22} = C_{21} = C_{26} = C_{27}$	176 83 (18)
$C_{4} - C_{5} - C_{6} - C_{1}$	-12(3)	$N_2 = C_2 $	0.0(2)
$C_4 C_5 C_6 C_7$	-170 A (2)	C_{25} C_{26} C_{27} C_{28}	-67(4)
$C_{4} = C_{5} = C_{6} = C_{7}$	1/9.4(2) -176 50 (10)	$C_{23} = C_{20} = C_{27} = C_{28}$	1782(2)
N1 = C1 = C0 = C5	1/0.39(19)	$C_{21} = C_{20} = C_{27} = C_{28}$	170.2(2)
$C_2 = C_1 = C_0 = C_3$	1.4(3)	$C_{23} = C_{20} = C_{27} = C_{32}$	(1/5.5)(2)
NI = CI = CO = C7	2.1(2)	$C_{21} = C_{20} = C_{27} = C_{32}$	-1.7(2)
$C_2 = C_1 = C_0 = C_7$	-1/9.99(18)	$C_{32} = C_{27} = C_{28} = C_{29}$	-0.9(3)
$C_{3} - C_{6} - C_{7} - C_{8}$	-4.4(4)	$C_{20} = C_{27} = C_{28} = C_{29}$	1/9.2 (2)
	1//.2 (2)	$C_2/-C_28-C_29-C_{30}$	0.1 (3)
C_{5} — C_{6} — C_{7} — C_{12}	1/6.0 (2)	$C_{28} = C_{29} = C_{30} = C_{31}$	0.4 (4)
C1—C6—C7—C12	-2.4 (2)	C29—C30—C31—C32	-0.1(3)
C12—C7—C8—C9	-1.1 (3)	C30—C31—C32—N2	177.3 (2)
C6—C7—C8—C9	179.4 (2)	C30—C31—C32—C27	-0.7 (3)
C7—C8—C9—C10	-0.7 (3)	C21—N2—C32—C31	179.0 (2)
C8—C9—C10—C11	1.0 (3)	C33—N2—C32—C31	10.0 (3)
C9—C10—C11—C12	0.5 (3)	C21—N2—C32—C27	-2.8 (2)
C10-C11-C12-N1	178.3 (2)	C33—N2—C32—C27	-171.78 (18)
C10—C11—C12—C7	-2.3 (3)	C28—C27—C32—C31	1.2 (3)
C1—N1—C12—C11	178.9 (2)	C26—C27—C32—C31	-178.88 (19)
C13—N1—C12—C11	-13.4 (3)	C28—C27—C32—N2	-177.18 (18)
C1—N1—C12—C7	-0.6 (2)	C26—C27—C32—N2	2.8 (2)
C13—N1—C12—C7	167.07 (18)	C32—N2—C33—C38	-117.0 (2)
C8—C7—C12—C11	2.6 (3)	C21—N2—C33—C38	75.7 (3)
C6—C7—C12—C11	-177.73 (19)	C32—N2—C33—C34	63.0 (3)
C8—C7—C12—N1	-177.81 (18)	C21—N2—C33—C34	-104.4 (2)
C6-C7-C12-N1	1.8 (2)	C38—C33—C34—C35	-2.4 (3)

C1—N1—C13—C18	57.1 (3)	N2-C33-C34-C35	177.66 (18)
C12—N1—C13—C18	-108.6 (2)	C33—C34—C35—C36	1.1 (3)
C1—N1—C13—C14	-123.2 (2)	C33—C34—C35—C39	178.31 (17)
C12—N1—C13—C14	71.1 (3)	C34—C35—C36—C37	1.2 (3)
C18—C13—C14—C15	-1.1 (3)	C39—C35—C36—C37	-175.98 (17)
N1—C13—C14—C15	179.23 (17)	C35—C36—C37—C38	-2.3 (3)
C13—C14—C15—C16	0.3 (3)	C35—C36—C37—C40	175.25 (17)
C13—C14—C15—C19	-176.94 (17)	C34—C33—C38—C37	1.2 (3)
C14—C15—C16—C17	0.9 (3)	N2-C33-C38-C37	-178.79 (18)
C19—C15—C16—C17	178.11 (17)	C36—C37—C38—C33	1.1 (3)
C15—C16—C17—C18	-1.2 (3)	C40—C37—C38—C33	-176.43 (17)
C15—C16—C17—C20	179.98 (17)	C34—C35—C39—O5	-14.1 (3)
C14—C13—C18—C17	0.7 (3)	C36—C35—C39—O5	163.01 (18)
N1—C13—C18—C17	-179.58 (17)	C34—C35—C39—O6	166.52 (18)
C16—C17—C18—C13	0.4 (3)	C36—C35—C39—O6	-16.3 (3)
C20-C17-C18-C13	179.24 (17)	O6—C39—O5—Zn2	28.8 (3)
C16—C15—C19—O2	-10.1 (3)	C35—C39—O5—Zn2	-150.43 (14)
C14—C15—C19—O2	167.10 (17)	O5—C39—O6—Zn1	-6.2 (3)
C16—C15—C19—O1	170.02 (17)	C35—C39—O6—Zn1	173.02 (12)
C14—C15—C19—O1	-12.7 (3)	C36—C37—C40—O7	5.3 (3)
O2—C19—O1—Zn1 ⁱⁱⁱ	-3.8 (2)	C38—C37—C40—O7	-177.10 (17)
C15—C19—O1—Zn1 ⁱⁱⁱ	175.98 (13)	C36—C37—C40—O8	-172.62 (17)
O1—C19—O2—Zn2 ⁱⁱⁱ	3.9 (8)	C38—C37—C40—O8	4.9 (3)
C15—C19—O2—Zn2 ⁱⁱⁱ	-175.9 (6)	O8—C40—O7—Zn2 ^{iv}	-59.3 (3)
C16—C17—C20—O3	11.8 (3)	C37—C40—O7—Zn2 ^{iv}	122.99 (16)
C18—C17—C20—O3	-166.93 (17)	O7—C40—O8—Zn1 ^{iv}	-8.6 (3)
C16—C17—C20—O4	-167.72 (17)	C37—C40—O8—Zn1 ^{iv}	169.16 (12)
C18—C17—C20—O4	13.5 (2)	C41—N3—C43—O9	-6.4 (4)
O3—C20—O4—Zn1	5.5 (2)	C42—N3—C43—O9	178.5 (2)
C17—C20—O4—Zn1	-174.97 (12)	N3—C43—O9—Zn2	149.88 (19)
C32—N2—C21—C22	-174.83 (19)	C44—N4—C46—O10	-0.8 (3)
C33—N2—C21—C22	-5.6 (3)	C45—N4—C46—O10	174.8 (2)
C32—N2—C21—C26	1.7 (2)	N4—C46—O10—Zn2	-150.09 (18)
C33—N2—C21—C26	170.93 (17)	C47—N5—C49—O11	-1.9 (3)
N2—C21—C22—C23	174.29 (19)	C48—N5—C49—O11	-178.5 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, *y*-1/2, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg4 and Cg6 are the centroids of the N1/C1/C6/C7/C12, C1-C6, C7-C12 and C21-C26 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
012—H12 <i>O</i> …O11	0.76	1.93	2.696 (2)	174
C42—H42 <i>B</i> ···O11 ^v	0.98	2.52	3.327 (3)	139
C43—H43…O10	0.95	2.44	3.028 (3)	120
C46—H46…O5	0.95	2.39	2.995 (2)	121
C47—H47 <i>B</i> ···O3 ^{iv}	0.98	2.61	3.417 (3)	140
C47—H47 <i>C</i> ···O9 ^{vi}	0.98	2.65	3.608 (3)	165

C2—H2···Cg6 ^{vii}	0.95	2.64	3.517 (2)	153
C10—H10… <i>Cg</i> 3 ^{viii}	0.95	2.64	3.418 (2)	139
C44—H44 B ···· $Cg4^{ix}$	0.98	2.91	3.596 (2)	128
C45—H45 B ···Cg1 ^{ix}	0.98	2.85	3.411 (2)	117

Symmetry codes: (iv) -x+1, y-1/2, -z+3/2; (v) -x, y+1/2, -z+3/2; (vi) -x, y-1/2, -z+3/2; (vii) -x+3/2, -y+2, z-1/2; (viii) x+1/2, -y+3/2, -z+1; (ix) -x+3/2, -y+2, z+1/2.