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BURGESS INEQUALITY IN Fp2

Mei-Chu Chang

Abstract. The purpose of the paper is to present new estimates on incomplete
character sums in finite fields that are of the strength of Burgess’ celebrated theorem
for prime fields. More precisely, an inequality of this type is obtained in Fp2 and
also for binary quadratic forms, improving on the work of Davenport–Lewis and on
several results due to Burgess. The arguments are based on new estimates for the
multiplicative energy of certain sets that allow us to improve the amplification step
in Burgess’ method.

0 Introduction

The paper contributes to two problems on incomplete character sums that go back
to the work of Burgess and Davenport–Lewis in the sixties. Incomplete character
sums are a challenge in analytic number theory. By incomplete, we mean that the
summation is only over an interval I. Typical applications include the problem of
the smallest quadratic non-residue (mod p) and the distribution of primitive ele-
ments in a finite field. Recall that Burgess’ bound [B1] on multiplicative character
sums

∑
x∈I χ(x) in a prime field Fp provides a nontrivial estimate for an interval

I ⊂ [1, p − 1] of size |I| > p1/4+ε, with any given ε > 0. Burgess’ result, which su-
persedes the Polya–Vinogradov inequality, was a major breakthrough and remains
unsurpassed. (It is conjectured that such result should hold as soon as |I| > p ε.)

The aim of this paper is to obtain the full generalization of Burgess’ theorem
in Fp2. Thus

Theorem 5. Given ε > 0, there is δ > 0 such that if ω ∈ Fp2\Fp and I, J are

intervals of size p1/4+ε (p sufficiently large), then∣∣∣ ∑
x∈I
y∈J

χ(x + ωy)
∣∣∣ < p−δ |I| |J | (0.1)

for χ a nontrivial multiplicative character.

The importance of the statement is its uniformity in ω. Both Burgess [B2] and
Karacuba [K] obtained the above statement under the assumption that ω satisfies a
given quadratic equation

ω2 + aω + b = 0 (mod p) (0.2)
with a, b ∈ Q.

Keywords and phrases: Character sums, finite fields, multiplicative energy, Burgess, Davenport–
Lewis
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In the generality of Theorem 5, the best known result in Fp2 was due to Daven-
port and Lewis [DL], under the assumption |I|, |J | > p1/3+ε. More generally, they
consider character sums in Fpn of the form∑

x1∈I1,...,xn∈In

χ(x1ω1 + · · ·+ xnωn) , (0.3)

where I1, . . . , In ⊂ [1, p − 1] are intervals. It is shown in [DL] that∑
x1∈I1,...,xn∈In

χ(x1ω1 + · · ·+ xnωn) < p−δ(ε)|I1| · · · |In| (0.4)

provided for some ε > 0,

|Ii| > pρ+ε with ρ = ρn =
n

2(n + 1)
. (0.5)

In [C2], newly developed sum-product techniques in finite fields were used to
establish (0.4) under the hypothesis

|Ii| > p
2
5+ε for some ε > 0 . (0.6)

Hence [C2] improves upon (0.5) provided n ≥ 5 and Theorem 5 in this paper
provides the optimal result for n = 2.

We will briefly recall Burgess’ method in the next section. It involves several
steps. As in [C2], the novelty in our strategy pertains primarily to new bounds on
multiplicative energy in finite fields (see section 1 for definition). The other aspects of
Burgess technique remain unchanged. We also did not try to optimize the inequality
qualitatively, as our concern here was only to obtain a nontrivial estimate under the
weakest assumption possible. The new estimates on multiplicative energy are given
in Lemma 2 and Lemma 3 in section 1. Contrary to the arguments in [C2] that
depend on abstract sum-product theory in finite fields, the input in this paper is
more classical. Lemma 2 is based on uniform estimates for the divisor function of
an extension of Q of bounded degree. In Lemma 3, we use multiplicative characters
to bound the energy

E(A, I) =
{
(x1, x2, t1, t2) ∈ A2 × I2 : x1t1 ≡ x2t2 mod p

}
, (0.7)

where A ⊂ Fpn is an arbitrary set and I ⊂ [1, p − 1] an interval. The underlying
principle is actually related to Plunnecke–Ruzsa sum-set theory [TV] (here in its
multiplicative version), but in this particular case may be captured in a more classical
way.

Closely related to Theorem 5 is the problem of estimating character sums of
binary quadratic forms over Fp,∑

x∈I,y∈J

χ(x2 + axy + by2) , (0.8)

where x2+axy+by2 ∈ Fp[x, y] is not a perfect square and χ a nontrivial multiplicative
character of Fp.

Theorem 11. Given ε > 0, there is δ > 0 such that if x2 +axy+by2 is not a perfect
square (mod p), and if I, J ⊂ [1, p − 1] are intervals of size

|I|, |J | > p
1
4+ε, (0.9)
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then for p sufficiently large, we have∣∣∣ ∑
x∈I, y∈J

χ(x2 + axy + by2)
∣∣∣ < p−δ|I| |J | , (0.10)

where δ = δ(ε) > 0 does not depend on the binary form.

This is an improvement upon Burgess’ result [B3], requiring the assumption
|I|, |J | > p1/3+ε.

We will not discuss in this paper the various classical application of Theorem 1 (to
primitive roots, quadratic residues, etc) as the arguments involved are not different
from the ones in the literature.

1 Preliminaries and Notation

In what follows we will consider multiplications in R = Fpd and R = Fp×Fp. Denote
by R∗ the group of invertible elements of R. Let A,B be subsets of R. Denote

(1) AB := {ab : a ∈ A and b ∈ B}.
(2) aB := {a}B.
Intervals are intervals of integers.

(3) [a, b] := {n ∈ Z : a ≤ n ≤ b}.
(4) The multiplicative energy of A1, . . . , An ⊂ R is defined as

E(A1, . . . , An) :=
∣∣{(a1, . . . , an, a′1, . . . , a

′
n) : a1 · · · an = a′1 · · · a′n}

∣∣
with the understanding that all factors ai, a

′
i are in Ai ∩R∗.

Using multiplicative characters χ of R , one has

(5) E(A1, . . . , An) = 1
|R∗|

∑
χ

∏n
i=1

∣∣∑
ξi∈Ai

χ(ξi)
∣∣2.

Energy is always multiplicative energy in this paper.

(6) Burgess’ method. In this paper we will apply Burgess’ method several
times. We outline the recipe here, considering intervals in Fp2. For details, see
section 2 of [C2].

Suppose we want to bound ∣∣∣ ∑
x∈I,y∈J

χ(x + ωy)
∣∣∣, (1.1)

where I, J are intervals. We translate (x, y) by (tu, tv) ∈ TM , where M = I ′× J ′ is
a box in Fp2, and T = [1, T ] such that T |I ′| < p−ε|I| and T |J ′| < p−ε|J | for some
small ε > 0. Therefore, it suffices to estimate the following sum

1
T |M |

∣∣∣ ∑
t∈T

(u,v)∈M

∑
x∈I
y∈J

χ(x + tu + (y + tv)ω)
∣∣∣. (1.2)

Let w(µ) =
∣∣{(x, y, u, v) ∈ I × J ×M : µ = x+ωy

u+ωv

}∣∣.
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Then the double sum in (1.2) is bounded by∑
µ∈Fp2

w(µ)
∣∣∣ ∑

t∈T
χ(t + µ)

∣∣∣ ≤ ( ∑
µ∈Fp2.

w(µ)
2k

2k−1

)1− 1
2k

︸ ︷︷ ︸
α

( ∑
µ∈Fp2.

∣∣∣∑
t∈T

χ(µ + t)
∣∣2k

) 1
2k

︸ ︷︷ ︸
β

,

(1.3)
where k is a large integer to be chosen. By Hölder’s inequality and the definition
of w(µ),

α ≤
[∑

w(µ)
]1− 1

k
[∑

w(µ)2
] 1

2k =
(
|I| |J | |I ′| |J ′|

)1− 1
k E

(
I + ωJ, I ′ + ωJ ′

) 1
2k .

A key idea in Burgess’ approach is then to estimate (1.3) using Weil’s theorem for
multiplicative characters in Fpn (here n = 2), leading to the bound,

β ≤ k T 1/2pn/2k + 2Tpn/4k.

So the remaining problem to bound the character sum (1.1) is reduced to the
bounding of multiplicative energy E(I + ωJ, I ′ + ωJ ′). We will describe a new
strategy.

2 Multiplicative Energy of Two Intervals in Fp2

The first step in estimating the multiplicative energy is the following:

Lemma 1. Let ω ∈ Fp2\Fp and

Q =
{

x + ωy : x, y ∈
[
1, 1

10p1/4
]}

.

Then

max
ξ∈Fp2

∣∣{(z1, z2) ∈ Q×Q : ξ = z1.z2}
∣∣ < exp

(
c

log p

log log p

)
.

An essential point here is that the bound is uniform in ω. Also, the specific size
of Q is important. Note that for our purpose, any estimate of the type po(1) would
do as well.
Proof. For given ξ ∈ Fp2, assume that ξ can be factored as products of two elements
in Q in at least two ways. We consider the set S of polynomials in Z[X]

(y1y2 − y′1y
′
2)X

2 + (x1y2 + x2y1 − x′1y
′
2 − x′2y

′
1)X + (x1x2 − x′1x

′
2) , (2.1)

where xi + ωyi, x
′
i + ωy′i ∈ Q for i = 1, 2, and

(x1 + ωy1)(x2 + ωy2) = ξ = (x′1 + ωy′1)(x
′
2 + ωy′2) (2.2)

in Fp2.
Let g(X) = X2 + aX + b ∈ Fp[X] be the minimal polynomial of ω. Then it is

clear that every f(X) in S, when considered as a polynomial in Fp[X], is a scalar
multiple of g(X).

Next, observe that, by definition of Q, the coefficients of (2.1) are integers
bounded by 1

25p1/2. Therefore, since the coefficients of two non-zero polynomials
(2.1) are proportional in Fp, they are also proportional in Q. Thus the polynomials
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(2.1) are multiples of each other in Q[X] and therefore have a common root ω̃ ∈ C.
Since

(x1 + ω̃y1)(x2 + ω̃y2) = (x′1 + ω̃y′1)(x
′
2 + ω̃y′2) (2.3)

in Q(ω̃) whenever (2.2) holds, it suffices to show that if we fix some ξ̃ ∈ Q(ω̃), then∣∣{(z1, z2) ∈ Q̃× Q̃ : ξ̃ = z1z2}
∣∣ < exp

(
c

log p

log log p

)
, (2.4)

where
Q̃ =

{
x + ω̃y : x, y ∈

[
1, 1

10p1/4
]}

.

This is easily derived from a divisor estimate. Let uX2 + vX + w be a nonzero
polynomial in S, then

u(ω̃)2 + vω̃ + w = 0 .

Note that η = uω̃ is an algebraic integer, since it satisfies
η2 + vη + uw = 0 .

Thus
u2ξ̃ = (ux1 + ηy1)(ux2 + ηy2)

is a factorization of u2ξ̃ in the integers of Q(η). Since the height of these integers is
obviously bounded by p, (2.4) is implied by the usual divisor bound in a (quadratic)
number field (which is uniform for extensions of given degree).

This proves Lemma 1. �
As an immediate consequence of Lemma 1, we have the following:

Lemma 2. Let Q be as in Lemma 1. Then the multiplicative energy E(Q,Q) satisfies

E(Q,Q) < exp
(

c
log p

log log p

)
· |Q|2. (2.5)

and

Lemma 2′. Let Q be as in Lemma 1 and z1, z2 ∈ Fp2. Then

E(z1 + Q, z2 + Q) < exp
(

c
log p

log log p

)
· |Q|2. (2.6)

Proof of Lemma 2′. We have
E(z1 + Q, z2 + Q) ≤ |Q|2 + E(Q + Q, z2 + Q)

and by Cauchy–Schwarz (see [TV, Cor. 2.10])
E(Q + Q, z + Q) ≤ E(Q + Q,Q + Q)1/2E(z + Q, z + Q)1/2.

Hence (2.6) follows from (2.5). �

3 Further Amplification

The second ingredient is provided by

Lemma 3. Let Q be as in Lemma 1, and let I = [1, p1/k], where k ∈ Z+. Let
z1, z2 ∈ Fp2. Then

E(I, z1 + Q, z2 + Q) < exp
(

c
log p

log log p

)
· p1+ 3

2k . (3.1)
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Proof. Denote χ the multiplicative characters of Fp2. Thus

E(I, z1 + Q, z2 + Q)

= 1
p2

∑
χ

∣∣∣∑
t∈I

χ(t)
∣∣∣2

︸ ︷︷ ︸
A2

∣∣∣ ∑
ξ∈Q

χ(ξ + z1)
∣∣∣2

︸ ︷︷ ︸
B2

∣∣∣ ∑
ξ∈Q

χ(ξ + z2)
∣∣∣2

︸ ︷︷ ︸
C2

. (3.2)

Here the sum over ξ ∈ Q is such that ξ + zi �= 0, for i = 1, 2.
Hence by Hölder’s inequality,

E(I, z1 + Q, z2 + Q)

≤
{

1
p2

∑
χ

[
A2(BC)

2
k
]k

} 1
k
{

1
p2

∑
χ

[
(BC)2−

2
k
] k

k−1

}1− 1
k

=
{

1
p2

∑
χ

A2kB2C2
} 1

k

︸ ︷︷ ︸
(3.3)

{ 1
p2

∑
χ

B2C2
}1− 1

k
.

Since the second factor is equal to E(z1 + Q, z2 + Q)1−
1
k , (2.6) applies and we

obtain the bound
(3.3) · exp

(
c

log p

log log p

)
· |Q|2(1− 1

k
). (3.4)

Estimate (3.3) as

(3.3) ≤ |Q|2/k
{

1
p2

∑
χ

∣∣∣ ∑
t∈I

χ(t)
∣∣∣2k∣∣∣ ∑

ξ∈Q

χ(ξ + z1)
∣∣∣2}1/k

< exp
(

c
log p

log log p

)
.|Q| 2k

{
1
p2

∑
χ

∣∣∣ ∑
t∈Fp

χ(t)
∣∣∣2∣∣∣ ∑

ξ∈Q

χ(ξ + z1)
∣∣∣2}1/k

= exp
(

c
log p

log log p

)
· |Q| 2k E(Fp, Q + z1)

1
k . (3.5)

The second inequality is by definition of I and the divisor bound. Next, let z = a+ωb,
with a, b ∈ Fp and let Q = J + ωJ , with J = [1, p1/4]. Then

E(Fp, Q + z)

=
∣∣{(t1, t2, ξ1, ξ2) ∈ F

2
p ×Q2 : t1(ξ1 + z) = t2(ξ2 + z) �= 0}

∣∣
=

∣∣{(t1, t2, x1, x2, y1, y2) ∈ F
2
p × J4 :

t1((x1 + a) + ω(y1 + b)) = t2((x2 + a) + ω(y2 + b)) �= 0}
∣∣ . (3.6)

Equating coefficients in (3.6), we have{
t1(x1 + a) = t2(x2 + a) ,
t1(y1 + b) = t2(y2 + b) ,

Therefore,
x1 + a

y1 + b
=

x2 + a

y2 + b
.
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and the number of (x1, x2, y1, y2) satisfying (3.6) is bounded by E(a + J, b + J),
which is bounded by p1/2 log p, by [FI]. Hence,

E(Fp, Q + z) � p3/2 log p .

By (3.5) and (3.4),

(3.3) ≤ exp
(

c
log p

log log p

)
· |Q|2/kp3/2k,

and
E(I, z1 + Q, z2 + Q) ≤ exp

(
c

log p

log log p

)
· |Q|2p3/2k.

This proves Lemma 3. �

Lemma 4. Let Ij = [aj , bj], where bj − aj ≥ p1/4 for j = 1, . . . , 4. Denote

R = I1 + ωI2 and S = I3 + ωI4 .

Let I = [1, p1/k] with k ∈ Z+.
Then

E(I,R, S) < exp
(

c
log p

log log p

)
· p 3

2k
−1 |R|2 |S|2. (3.7)

Proof. Subdivide R and S in translates of Q and apply Lemma 3. Thus the left side
of (3.1) needs to be multiplied with (|R|/|Q|)2(|S|/|Q|)2 which gives (3.7). �

4 Proof of Theorem 5

We now establish the analogue of Burgess for progressions in Fp2.

Theorem 5. Given ρ > 1/4, there is δ > 0 such that if ω ∈ Fp2\Fp and I, J are
intervals of size pρ, then ∣∣∣ ∑

x∈I
y∈J

χ(x + ωy)
∣∣∣ < p−δ |I| |J | (4.1)

for χ a nontrivial multiplicative character. This estimate is uniform in ω.

Proof. Denote I0 = [1, p1/4] and K = [1, p κ], where κ is the reciprocal of a positive
integer and

ρ > 1
4 + 2κ . (4.2)

We translate I + ωJ by KK(I0 + ωI0) and estimate (following the procedure
sketched in section 1)

1
|K|2|I0|2

∑
x1,y1∈I0

s∈K
x∈I, y∈J

∣∣∣ ∑
t∈K

χ
(
x + ωy + st(x1 + ωy1)

)∣∣∣

=
1

|K|2|I0|2
∑

x∈I, y∈J
x1,y1∈I0

s∈K

∣∣∣∣ ∑
t∈K

χ

(
t +

x + ωy

s(x1 + ωy1)

) ∣∣∣∣. (4.3)
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With the notation from section 1, we have

α ≤
(
|I0|2 |K| |I| |J |

)1− 1
k E(K, I0 + ωI0, I + ωJ)

1
2k

≤ exp
(

c
log p

log log p

)
·
(
|I0|2 |K| |I| |J |

)1− 1
k

(
|K|3/2|I0|4|I|2|J |2

p

)1/2k

= exp
(

c
log p

log log p

)
· |I0|2 |I| |J | |K|1−

1
4k p−

1
2k ,

by Lemma 4, and
β � |K|1/2p1/k + |K|p1/2k.

Hence, taking κ = 1/k, (4.3) is bounded by |I| |J | p−1/4k2
and the theorem is

proved with any δ < 1/4k2 (taking p large enough). �

Remark 5.1. In [DL], the result (4.1) was obtained under the assumption that
ρ > 1/3. In general, it was shown in [DL] that if ω1, . . . , ωd is a basis in Fpd then∣∣∣ ∑

xi∈Ii

χ(x1ω1 + · · ·+ xdωd)
∣∣∣ < p−δ|I1| · · · |Id| , (4.6)

provided I1, . . . , Id are intervals in Fp of size at least pρ with

ρ >
d

2(d + 1)
. (4.7)

For d ≥ 5, there is a better (uniform) result in [C2], namely

ρ > 2
5 + ε . (4.8)

As a consequence of Theorem 5, we have

Corollary 6. Assume −k ∈ Fp is not a quadratic residue. Then∣∣∣ ∑
x∈I
y∈J

χ(x2 + ky2)
∣∣∣ < p−δ|I| |J | (4.9)

for χ nontrivial and I, J intervals of size at least p
1
4+ε. Here δ = δ(ε) > 0 is uniform

in k.

Proof. Let ω =
√
−k. Since x2 + ky2 is irreducible modulo p, χ(x2 + ky2) is a

character (mod p) of x + ωy in the quadratic extension Q(ω). �

5 Extension to Fpd

There is the following generalization of Lemma 1.

Lemma 7. Let ω ∈ Fpd be a generator over Fp. Given 0 < σ < 1/2 and let

Q =
{
x0 + x1ω + · · ·+ xd−1ω

d−1 : xi ∈ [1, pσ ]
}

Q1 =
{
y0 + y1ω : yi ∈

[
1, p

1
2−σ

]}
.

Then

max
ξ∈F

pd

∣∣{(z, z1) ∈ Q×Q1 : ξ = zz1}
∣∣ < exp

(
cd

log p

log log p

)
. (5.1)
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Proof. The proof is similar to that of Lemma 1. It uses the fact that if

(x0 + x1ω + · · ·+ xd−1ω
d−1)(y0 + y1ω) = ξ = (x′0 + · · · + x′d−1ω

d−1)(y′0 + y′1ω)

then the polynomial

(x0 + x1X + · · ·+ xd−1X
d−1)(y0 + y1X)− (x′0 + x′1X + · · ·+ x′d−1X

d−1)(y′0 + y′1X)

is irreducible in Fp[X], or vanishes. �

Hence the analogues of Lemmas 2, 2′ hold. Thus

Lemma 8. Let Q,Q1 be as in Lemma 7 and let z ∈ Fpd. Then

E(z + Q,Q1) < exp
(

cd
log p

log log p

)
· |Q| |Q1|+ |Q1|2. (5.2)

We need the analogue of Lemma 3, but in a slightly more general setting.

Lemma 9. Let Q,Q1 be as in Lemma 7 with |Q1| ≤ |Q| and let Is = [1, p1/ks ] for
s = 1, . . . , r, with ks ∈ Z+ and 1

k1
+ · · · + 1

kr
< 1. Then

E(I1, . . . , Ir, z + Q,Q1) < exp
(

cd
log p

log log p

)
p1+(d−2)σ+2(1−σ)

∑r
s=1 1/ks

= exp
(

cd
log p

log log p

)
· |Q| |Q1|

∏
s

|Is|2(1−σ). (5.3)

Proof. The left of (5.3) equals

1
pd

∑
χ

r∏
s=1

∣∣∣ ∑
t∈Is

χ(t)
∣∣∣2∣∣∣ ∑

ξ∈Q

χ(z + ξ)
∣∣∣2∣∣∣ ∑

ξ∈Q1

χ(ξ)
∣∣∣2

which we estimate by Hölder’s inequality as
r∏

s=1

{ 1
pd

∑
χ

∣∣∣ ∑
t∈Is

χ
∣∣∣2ks

∣∣∣ ∑
ξ∈Q

χ
∣∣∣2 ∣∣∣ ∑

ξ∈Q1

χ
∣∣∣2} 1

ks

︸ ︷︷ ︸
A

1/ks
s

{ 1
pd

∑
χ

∣∣∣ ∑
ξ∈Q

χ
∣∣∣2 ∣∣∣ ∑

ξ∈Q1

χ
∣∣∣2}1−

∑ 1
ks

︸ ︷︷ ︸
B1−∑

1/ks

.

(5.4)
Here we denote

∑
t∈Is

χ =
∑

t∈Is
χ(t),

∑
ξ∈Q χ =

∑
ξ∈Q χ(z + ξ), etc.

By Lemma 8

B = E(z + Q,Q1) < exp
(

c
log p

log log p

)
|Q| |Q1| . (5.5)

It is clear from the definition of multiplicative energy that

As ≤ |Q1|2E(Is, . . . , Is︸ ︷︷ ︸
ks

, z + Q)

≤ |Q1|2 exp
(

cks

log p

log log p

)
· E(Fp, z + Q) .

To bound E(Fp, z + Q), we write z = a0 + a1ω + · · ·+ ad−1ω
d−1. Hence

E(Fp, z + Q) =
d−1∑
i=0

Θi , (5.6)
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where

Θ0 =
∣∣∣∣
{

(t, t′, x0, . . . , xd−1, x
′
0, . . . , x

′
d−1) ∈ F

2
p × [1, pσ ]2(d−1) :(

1 +
x1 + a1

x0 + a0
ω + · · · + xd−1 + ad−1

x0 + a0
ωd−1

)
(5.7)

= t′
(

1 +
x′1 + a1

x′0 + a0
ω + · · ·+

x′d−1 + ad−1

x′0 + a0
ωd−1

)}∣∣∣∣ (5.8)

and the other Θi’s are denoted similarly.
Equating the coefficients of (5.7) and (5.8), we have

t = t′,

xi + ai

x0 + a0
=

x′i + ai

x′0 + a0
, for i = 1, . . . , d . (5.9)

For i = 1, the number of solutions (x0, x
′
0, x1, x

′
1) in (5.9) is bounded by

E([1, pσ ] + a0, [1, pσ ] + a1), which is bounded by p2σ log p. The choices of t and
x2, . . . , xd−1 is bounded by p pσ(d−2). Therefore,

E(Fp, z + Q) ≤ dp1+σd log p ,

and
As ≤ |Q1|2 exp

(
cks

log p

log log p

)
· p1+σd. (5.10)

Note that |Q| = pdσ and |Q1| = p1−2σ. Putting (5.4), (5.5) and (5.10) together,
we have

E(I1, . . . , Ir, z + Q,Q1)

≤ exp
(

cd
log p

log log p

)
· |Q1|2

∑
1/ksp(1+σd)

∑
1/ks

(
|Q| |Q1|

)1−
∑

1/ks

= exp
(

cd
log p

log log p

)
· |Q1|1+

∑
1/ks |Q|1−

∑
1/ks p(1+σd)

∑
1/ks

= exp
(

cd
log p

log log p

)
· p(1+

∑
1/ks)(1−2σ)+(1−

∑
1/ks)dσ+(1+σd)

∑
1/ks ,

which is (5.3). �
We now estimate a character sum over Fpd.

Theorem 10. Let ω ∈ Fpd be a generator over Fp, and let J0, . . . , Jd−1 be intervals
of size at least pρd+ε, where

ρd =

√
d2 + 2d− 7 + 3− d

8
. (5.11)

Denote

Q = {x0 + x1ω + · · ·+ xd−1ω
d−1 : xi ∈ Ji , for i = 0, . . . , d− 1} .

Then ∑
q∈Q

χ(q) < p−δ|J0| · · · |Jd−1| , (5.12)

where δ = δ(ε) > 0 is independent of ω.
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Proof. First we denote ρd by ρ. Note that, by (5.11)
1
4 ≤ ρ ≤ 1

2 . (5.13)
Let

Q0 =
{
y0 + y1ω : yi ∈

[
1, cd p

1
2−ρ

]}
.

Let further k1, . . . , kr ∈ Z+ satisfy
2ρ− 1

2 − 2ε < 1
k1

+ · · ·+ 1
kr

< 2ρ− 1
2 − ε , (5.14)

where ε > 0 will be taken sufficiently small and r < r(ε).
Let

I =
[
1, pε/2] and Is =

[
1, p1/ks

]
for s = 1, . . . , r. We then translate Q by

I ·
r∏

s=1

Is ·Q0

and carry out Burgess’ argument as outlined in section 1.
The estimate of the left-hand side of (5.12) is∑

q∈Q

χ(q) ≤ p−( ε
2+

∑ 1
ks

+1−2ρ)αβ , (5.15)

where
α ≤

(
|Q| |Q0| p

∑
1/ks

)1− 1
k E(Q,Q0, I1, . . . , Ir)1/2k

≤
(
|Q| |Q0| p

∑
1/ks

)1− 1
k · exp

(
cd

log p

log log p

)
·
(
|Q| |Q0| p2(1−ρ)

∑
1/ks

)1/2k
, (5.16)

β ≤ k |I| 12 p
d
2k + 2|I| p d

4k < p
ε
4+ d

2k + p
ε
2+ d

4k , (5.17)
and k ∈ Z+ to be chosen.

Claim.

|Q| |Q0| p2(1−ρ)
∑ 1

ks < |Q|2|Q0|2p2
∑ 1

ks
− d

2−τ , for some τ > 0 . (5.18)
Proof of Claim. We will show

dρ + (1− 2ρ) + 2(1− ρ)
∑

1
ks

< 2dρ + 2(1 − 2ρ) + 2
∑

1
ks
− d

2 . (5.19)

This is equivalent to

dρ + (1− 2ρ) + 2ρ
∑

1
ks
− d

2 > 0 .

From (5.14), the choice of k1, . . . , kr, and taking ε small enough, it suffices to show
that

dρ + (1− 2ρ) + 2ρ
(
2ρ− 1

2

)
− d

2 > 0 ,

namely,
4ρ2 + (d− 3)ρ− d− 2

2
> 0 ,

which is our assumption (5.11). �
Putting (5.15)–(5.18) together, we have∑

q∈Q

χ(q) ≤ p−( ε
2+

∑ 1
ks

+1−2ρ)(|Q| |Q0| p
∑ 1

ks

)1− 1
k

·
(
|Q|2 |Q0|2 p2

∑ 1
ks
− d

2−τ) 1
2k

(
p

ε
4+ d

2k + p
ε
2+ d

4k

)
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= |Q|
(
p−

ε
4+ 1

2k
(d
2−τ) + p−

τ
2k

)
.

Theorem 10 is proved, if we chose k > d/ε. �

Remark 10.1. Returning to Remark 1.1, (see (4.7)), we note that

ρd <
d

2(d + 1)

with ρ2 = 1
4 , ρ3 = 1√

8
, ρ4 =

√
17−1
8 , and ρ5 =

√
7−1
4 .

6 Character Sums of Binary Quadratic Forms

Following a similar approach, we show the following:

Theorem 11. Given ε > 0, there is δ > 0 such that the following holds. Let p be a
large prime and f(x, y) = x2 + axy + by2 which is not a perfect square (mod p). Let
I, J ⊂ [1, p − 1] be intervals of size

|I|, |J | > p
1
4+ε. (6.1)

Then ∣∣∣ ∑
x∈I,y∈J

χ
(
f(x, y)

)∣∣∣ < p−δ|I| |J | (6.2)

for χ a nontrivial multiplicative character (mod p). This estimate is uniform in f .

Result was shown by Burgess assuming |I|, |J | > p
1
3+ε instead of (6.1).

Proof. There are two cases.
Case 1. f is irreducible (mod p). Then χ(f(x, y)) is a character (mod p) of

x + ωy, with ω = 1
2a + 1

2

√
a2 − 4b, in the quadratic extension Q(ω) and the result

then follows from Corollary 6 above.
Case 2. f(x, y) is reducible in Fp[x, y].

f(x, y) = (x− λ1y)(x− λ2y) λ1 �= λ2 (mod p) .

We will estimate ∑
x∈I,y∈J

χ
(
(x− λ1y)(x− λ2y)

)
.

The basis strategy is as in the Fp2-case (cf. Theorem 5), but replacing Fp2 by Fp×Fp

(with coordinate-wise multiplication).
Let I0 =

[
1, 1

10p1/4
]

and K = [1, pκ], where κ = ε
4 .

We translate (x, y) by (stx1, sty1) with x1, y1 ∈ I0 and s, t ∈ K and estimate
1

|K|2|I0|2
∑

x∈I, y∈J
x1,y1∈I0

s∈K

∣∣∣∣ ∑
t∈K

χ

((
t +

x− λ1y

s(x1 − λ1y1)

)(
t +

x− λ2y

s(x1 − λ2y1)

)) ∣∣∣∣. (6.3)

For (z1, z2) ∈ Fp × Fp, denote

ω(z1, z2) =
∣∣∣∣
{

(x, y, x1, y1, s) ∈ I × J × I0 × I0 ×K :

z1 =
x− λ1y

s(x1 − λ1y)
, z2 =

x− λ2y1

s(x1 − λ2y1)

}∣∣∣∣.
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Hence
(6.3) =

1
|K|2|I0|2

∑
z1∈Fp

z2∈Fp

ω(z1, z2)
∣∣∣ ∑

t∈K

χ
(
(t + z1)(t + z2)

)∣∣∣ , (6.4)

which we estimate the usual way using Holder’s inequality and Weil’s theorem. The
required property is a bound∑

z1,z2

ω(z1, z2)2 < |I|2|J |2|K|2p−τ (6.5)

for some τ > 0 (cf. (4.4)).
We may assume |I|, |J | < p. Let

R =
{
(x− λ1y, x− λ2y) : x ∈ I , y ∈ J

}
T =

{
(x1 − λ1y1, x1 − λ2y1) : x1, y1 ∈ I0

}
S =

{
(s, s) : s ∈ K

}
, (6.6)

considered as subsets of F
∗
p × F

∗
p.

Hence (6.5) is equivalent to

E(R,T, S) < p−τ |I|2|J |2|K|2. (6.7)

To establish (6.7), we prove the analogues of Lemmas 1–4.
We first estimate E(R,T ).

Lemma 12. Let R and T be defined as in (6.6). Then

E(R,T ) < exp
(

c
log p

log log p

)
· |R|2. (6.8)

Writing R as a union of translates of T

R =
⋃

α�|R|/|T |
(T + ξα)

we have
E(R,T ) ≤ |R|2

|T |2 max
ξ∈Fp×Fp

E(T + ξ, T ) .

Thus it will suffice to show that

max
ζ,ξ∈Fp×Fp

E(T + ζ, T + ξ) < exp
(

c
log p

log log p

)
|T |2. (6.9)

Using the same argument as in the proof of Lemma 2′, it suffices to prove (6.9) for
ζ = ξ = 0.

Lemma 13. Let T be defined as in (6.6). Then

E(T, T ) < exp
(

c
log p

log log p

)
|T |2. (6.10)

There is a stronger statement which is the analogue of Lemma 1.

Lemma 14. Let T be defined as in (6.6). Then

max
ρ∈F∗

p×F∗
p

∣∣{(z1, z2) ∈ T × T : ρ = z1z2}
∣∣ < exp

(
c

log p

log log p

)
. (6.11)
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Proof. Writing z1 = (x1 − λ1y1, x1 − λ2y1), z2 = (x2 − λ1y2, x2 − λ2y2) with
x1, x2, y1, y2 ∈ I0, we want to estimate the number of solutions in x1, x2, y1, y2 ∈ I0
of {

(x1 − λ1y1)(x2 − λ1y2) = ρ1 (mod p)
(x1 − λ2y1)(x2 − λ2y2) = ρ2 (mod p)

(6.12)

Let F be the set of quadruples (x1, x2, y1, y2) ∈ I4
0 such that (6.12) holds. If

(x1, x2, y1, y2), (x′1, x
′
2, y

′
1, y

′
2) ∈ F , then λ1, λ2 are the (distinct) roots (mod p) of the

polynomial

(y1y1 − y′1y
′
2)X

2 + (x′1y
′
2 + y′1x

′
2 − x1y2 − y1x2)X + (x1x2 − x′1x

′
2) = 0 . (6.13)

By the definition of I0, the coefficients in (6.13) are integers bounded by 1
25p1/2.

Since all non-vanishing polynomials (6.13) are proportional in Fp[X], they are also
proportional in Z[X]. Hence they have common roots λ̃1, λ̃2 and there are conjugate
ρ̃1, ρ̃2 ∈ Q(λ̃1) such that {

(x1 − λ̃1y1)(x2 − λ̃1y2) = ρ̃1

(x1 − λ̃2y1)(x2 − λ̃2y2) = ρ̃2
(6.14)

for all (x1, x2, y1, y2) ∈ F .
As in Lemma 1, we use a divisor estimate in the integers of Q(λ̃1) to show

that there are at most exp
(
c log p

log log p

)
solutions of (6.14) in x1 − λ̃1y1, x2 − λ̃1y2,

x1 − λ̃2y1, x2 − λ̃2y2. Since λ̃1 �= λ̃2, these four elements of Q(λ̃1) determine
x1, y1, x2, y2. Therefore, |F| < exp

(
c log p

log log p

)
. This proves Lemma 14. �

Returning to (6.7), we proceed as in Lemma 3. Let κ = 1/k in the definition
of K. Thus

E(R,T, S)

= 1
p2

∑
χ=χ1χ2

∣∣∣ ∑
z∈S

χ(z)
∣∣∣2 ∣∣∣ ∑

z1∈R

χ(z1)
∣∣∣2 ∣∣∣ ∑

z2∈T

χ(z2)
∣∣∣2

≤
[

1
p2

∑
χ

∣∣∣∑
z∈S

χ(z)
∣∣∣2k ∣∣∣∑

R

· · ·
∣∣∣2 ∣∣∣ ∑

T

· · ·
∣∣∣2] 1

k

︸ ︷︷ ︸
(6.15)

1
k

[
1
p2

∑
χ

∣∣∣ ∑
R

· · ·
∣∣∣2 ∣∣∣ ∑

T

· · ·
∣∣∣2]1− 1

k

︸ ︷︷ ︸
E(R,T )1−

1
k

< (6.15)
1
k · exp

(
c

log p

log log p

)
· |R|2(1− 1

k
) (6.16)

(the last inequality is by Lemma 12), where

(6.15) = 1
p2

∑
χ

∣∣∣ ∑
z∈S

χ(z)
∣∣∣2k ∣∣∣ ∑

z1∈R

χ(z1)
∣∣∣2 ∣∣∣ ∑

z2∈T

χ(z2)
∣∣∣2

≤ |T |2
p2

∑
χ

∣∣∣∑
z∈S

χ(z)
∣∣∣2k ∣∣∣ ∑

z1∈R

χ(z1)
∣∣∣2

< exp
(

ck
log p

log log p

)
· |T |

2

p2

∑
χ1χ2

∣∣∣ ∑
t∈Fp

χ1(t)χ2(t)
∣∣∣2∣∣∣ ∑

x∈I
y∈J

χ1(x−λ1y)χ2(x−λ2y)
∣∣∣2
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= exp
(

c
log p

log log p

)
· |T |2E(R,∆) , (6.17)

where ∆ = {(t, t) : t ∈ Fp}. The multiplicative energy E(R,∆) in (6.17) equals the
number of solutions in (x, x′, y, y′, t, t′) ∈ I2 × J2 × (F∗p)2 of{

t(x− λ1y) ≡ t′(x′ − λ1y
′) (mod p)

t(x− λ2y) ≡ t′(x′ − λ2y
′) (mod p)

(6.18)

(with the restriction that all factors are nonvanishing).
Rewriting (6.18) as

tx− t′x′ ≡ λ1(ty − t′y′) ≡ λ2(ty − t′y′) (mod p)

and since λ1 �= λ2 (mod p)

tx ≡ t′x′ (mod p)
ty = t′y′ (mod p) .

Hence
xy′ ≡ x′y (mod p) (6.19)

and the number of solutions of (6.19) is bounded by

E(I, J) � (log p) · |I| |J | (6.20)

(since |I|, |J | < p).
Once x, x′, y, y′ is specified, the number of solutions of (6.18) in (t, t′) is at most

p− 1.
Hence (6.18) has at most

p(log p) · |I| |J |
solutions and substitution in (6.17) gives the estimate

(6.15) < exp
(

c
log p

log log p

)
· p |R| |T |2. (6.21)

Substituting of (6.21) in (6.16) gives

E(R,TS) < exp
(

c
log p

log log p

)
· p 1

k |R|2− 1
k |S| 2k . (6.22)

Recalling the definition of S, we have |S| = |I0|2 = p1/2.
Also κ = 1/k, and |K| = p1/k. Hence

(6.22) = exp
(

c
log p

log log p

)
· p 2

k

(
|I| |J |

)2− 1
k

= exp
(

c
log p

log log p

)
· |K|2

(
|I| |J |

)2−κ (6.23)

and (6.7) certainly holds.
This proves Theorem 11. �
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