
UC Irvine
ICS Technical Reports

Title
Parallelizing non-vectorizable loops for MIMD machines

Permalink
https://escholarship.org/uc/item/4xw088kv

Authors
Kim, Ki-chang
Nicolau, Alexandru

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xw088kv
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Parallelizing :-.Ion-Vectorizable Loops for :VIL\ID machine~

Ki-chang ~Kim=-and Alexandru ~icolau

Department of Information and Computer Science

l:niversity of California, Irvine

Irvine, CA. 92717

Technical Report #90-01

January 1990

z
017

C.3
!JD , Y0-0/

I, i J' 1 1• , · · · 1 rt 1 . ! I , •I I

. I

I I . '
f • j - ; i I

Parallelizing Non-Vectorizable Loops for ivII~ID machines

Ki-chang Kim and Alexandru Nicolau

Department of Information and Computer Science

University of California, Irvine

Irvine, CA. 92717

Abstract

Parallelizing a loop for MIMD machines can be described as a process of partitioning it

into a number of relatively independent subloops. Previous approaches to partitioning non­

vectorizable loops were mainly based on iteration pipelining which partitioned a loop based

on iteration number and exploited parallelism by overlapping the execution of iterations .

However, the amount of parallelism exploited this way is limited because the parallelism inside

iterations has been ignored. In this paper, we present a new loop partitioning technique which

can exploit both forms of parallelism - inside and across iterations. While inspired by the

VLIW approach, our method is designed for more general, asynchronous, MIMD machines.

In particular, our schedule takes the cost of communication into account, and attempts to

balance it with respect to parallelism. We show our method is correct, efficient, and produces

better schedules than previous iteration level approaches.

'

1 Introduction

To utilize the power of multiple processors in asynchronous MIMD machines, we need to

decompose a task into parallel subtasks. Parallelization of a task could be done by the human

programmer, or by a parallelizing compiler. Our interest is in the latter. The major concern of

this paper is loop parallelization - partitioning a loop into a number of relatively independent

subtasks. Loop partitioning is different from graph partitioning, in that the former deals with

a potentially infinite graph due to the number of iterations which in general is not known at

compile time. Since we assume non-vectorizable loops (implying the presence of loop-carried

dependences), the problem is how to partition, efficiently, a graph which contains a number

of arb~trarily long paths that are entangled together.

A dominant technique for loop parallelization (for non-vectorizable loops) is iteration

pipelining, e.g., Dopipe [Padua79] or DOACROSS [Cytron86]. It partitions a loop based on

indices; the destination processor of any operation is determined solely by its iteration num­

ber. A typical way of partitioning is interleaving: the indices are partitioned into p groups,

where the ith partition contains those iterations whose indices satisfy (x mod p) = i, where

x is the iteration number. The subloops formed in this way are distributed to processors

and executed concurrently. Of course, since dependences may exist between iterations, all

such potential dependences need to be identified at compile time, and skewing between the

parallel iterations needs to be introduced. This skewing can be obtained on asynchronous

multiprocessors by inserting synchronization code at appropriate points. This synchroniza­

tion will have some cost, and for the iteration pipelining technique to work well this cost

should be relatively small. Such synchronization can be effectively achieved in a variety of

machines, hence the popularity of this technique. However, it does not, in itself, attempt

to optimize execution by taking into account communication cost. Furthermore, since the

unit of scheduling is an iteration, all parallelism that might have existed inside iterations is

ignored, and only the parallelism across iterations is being exploited.

Another technique for dealing with non-vectorizable loops is Perfect Pipelining [AiNi88a]

[AiNi88b]. This technique was targeted for statically scheduled, synchronous architectures

(e.g. VLIW's)[FiDo84], and, thus, its purpose is to find as many parallel operations as pos­

sible, regardless of iteration boundaries, to fill the long instruction word. When we assume

zero communication/synchronization delay, the loop parallelization problems in MIMD's and

VLIW's, become similar. Given enough processors for MIMD machines, and sufficient func­

tional units in VLIW machines, the optimal schedule based on (compile time) data depen­

dences for both architectures can be obtained by scheduling each operation at the earliest

1

time it can be executed .

Since the number of iterations in the loop is, in general, not known at compile time,

scheduling every operation at the earliest time it can be executed se€ms impossible. However

[AiNi88a] has found that when every operation is scheduled as early as possible , the resulting

schedule shows a repeating pattern. 1 An example of a pattern is found in Figure 3(b). It is

obtained by sorting the graph in Figure 3(a) topologically subject to data dependences , which

corresponds to scheduling the operations in the figure as early as possible. We underlined

a set of repeating operations (with a finite difference in index value, 1 in this case), which

we call a pattern. The importance of this pattern is that we can reproduce the optimal

schedule of the loop merely by repeating its pattern. Perfect Pipelining is based on this

concept of pattern. It identifies the pattern and replaces the loop body with it, yielding

an optimal schedule (given compile time data dependences) for a multiprocessor with zero

communication time and enough processors.

In this paper we extend the concept of pattern to the case of non-zero communication

time. We prove that a pattern emerges in the resulting schedule even when each operation in

the loop is assigned to the first available processor, that is, the first processor that can execute

the operation at the earliest time, considering the cost of communication. This assignment

destroys the ideal pattern of Perfect Pipelining due to the introduction of communication

delays but we show that the resulting schedule produces a new pattern of its own. Thus our

scheduling algorithm trades off parallelism and inter-processor communication in an effort to

optimize overall performance on MIMD machines with non-zero communication time.

To conform with the inability of general purpose MIMD machines to execute multi-way

jumps of the kind supported by VLIW's, we will assume the input loop is either without

conditional statements or is if-converted (A1Ke83]. This will also make comparison with

conventional iteration based methods for MIMD machines meaningful, as this technique does

not deal with in-loop conditional jumps.

The rest of the paper is organized as follows: Section 2 explains the scheduling technique

we have developed and proves its correctness; Section 3 gives several examples to highlight

various points in the scheduling process; Section 4 reports the results of experimentations

we have performed to test the performance and robustness of our algorithm; and Section 5

summarizes our conclusions.
1 More a.ccurately each operation shows a repeating pattern (i.e., repeats with a fixed frequency) . The

details of how an overall pattern can be detected and the proof of its existence are in [Ai~i88a].

2

j

'f ... '
' •

Figure 1: A classification example.

2 Scheduling in the presence of communication constraints.

2.1 Modeling the structure of a loop

Before we present our algorithm, we need to introduce our model of a. loop. This model is

useful in simplifying the following discussion.

We assume two things: the da.ta. dependence gra.ph of the loop is a. connected one, and all

dependence distances a.re one or zero.l If the gra.ph is not connected, we ca.n simply sepa.ra.te

the graph into several connected ones a.nd a.pply our scheduling algorithm to ea.ch of them

independently. Also if the dependence distances a.re greater tha.n one, we can reduce them

down to one or zero by unwinding the loop properly, as explained in [MuSi87].

A loop is viewed as a. five-tuple, < V, E, Flow-in, Cyclic, Flow-out >. Vis a. set of

nodes, where a node represents a. unit of computation - it could be a. single operation or a.

whole procedure.3 Eis a. set of tw~tuples, < Vt, vl >, where each tw~tuple represents a. data.

dependence link from node Vt to node vl. Together, V a.nd E define the data. dependence

graph for this loop. Flow-in, Cyclic, a.nd Flow-out are disjoint subsets of V satisfying the

following conditions: a. node is in Flow-in if it has no predecessors or all of its predecessors

are in Flow-in; a. node is in Flow-out if it is not in Flow-in, a.nd ha.s no successors or all of

its successors a.re in Flow-out; a. node is in Cyclic if it is neither in Flow-in nor in Flow-out.•

lThe precise definition• of dat& dependence graph and dependence diatance used here conform to the

standard ones u described in (Padua79].
3 Gra.nularity ~hould be ch011en depending on machines, to make the execution time of a node within the

sa.me order of magnitude aa communication COit.
4So, to identify these subset•, the Flo111·in subset should be identified fi.nt, then Flo111-out sublet, a.nd then

3

In Figure 1, for example, nodes (A.B,C,D,F) a.re in Flow-in, nodes (G,H,J) a.re in Flow-out,

a.nd nodes (E,I,K ,L) a.re in Cyclic.

The reason for this classification is based on the observation tha.t the Cyclic nodes, nodes

belonging to the Cyclic subset, are the ones which really determine the execution time of the

given loop (assuming enough resources are provided). Flow-in a.nd Flow-out nodes ha.ve little

impact on the total execution time . The scheduling of Flow-in nodes is limited only by the

la.test time they ca.n be scheduled, a.nd the scheduling of Flow-out nodes is limited only by

the earliest time they can be scheduled. Note that if there a.re no Cyclic nodes, the loop is a

DOALL loop .

Below we present tJ'o lemmas related to the Cyclic subset which will be used later in

Section 2.3.

Lemma 1. There is a.t least one strongly connected subgra.ph5 in a. Cyclic subset. (Examples

of strongly connected subgraphs are (E,I) and (L) in Figure 1.)

Proof: If there is no strongly connected subgraph, there is no cycle in the Cyclic

subset. This means all nodes in the Cyclic subset are Flow-in nodes by definition,

because starting from the roots of the graph we can classify all nodes as Flow-in nodes.

This is a contradiction since a. Cyclic subset can not contain Flow-in nodes; therefore,

a Cyclic subset contains at least one strongly connected component.

Lemma 2. For a loop which consists of a. single Cyclic subset, unwinding it m times, there

exists a path of length a.t least m - 1.

Proof: Since there is at least one strongly connected subgraph in the original graph

by Lemma 1, unwinding it m times, we should ha.ve a. pa.th of length a.t least m - 1.

The algorithm classification, in Figure 2 is used to identify each subset. Its time com­

plexity is O(m), where mis the number of dependence links in the input data dependence

graph, because each edge (i.e., dependence link) in the input graph can not be visited more

than once. In terms of N, the number of nodes, it is O(N2) in the worst case.

2.2 Algorithm

The basic strategy of our algorithm is to extract the Cyclic nodes from the loop, which form

the central part of the schedule, and schedule them utilizing the concept of pattern, and then

Cyclic subset. Also, since we don't deal with conditional jumps inside the loop in &ny special way, we ignore

them in the scheduling process, &nd thus a data dependence graph alone is enough to represent the loop

unambiguously.
5 A strongly connected graph is one in which every node c&n be. reached from every other node.

4

Algorithm. classification

Input.

Output.

Method.

Data Dependence Graph of a loop

Flow-in, Cyclic, Flow-out subsets of the loop

0. Flow-in = Cyclic = Flow-out ={}

1. buffer1 = {nodes which have no predecessors}.

2. If buffer1 is empty, go to 5.

Else add the nodes in buffer 1 to Flow-in.

3. buffer 2 = {}.
For each node x in buffer1

for each successor of x

if all predecessors of x are in Flow-in

include it in buffer 2.

4. buffer 1 = buffer 2. go to 2.

5. buffer 1 = {nodes which are not in Flow-in and have no successors}.

6. If buffer 1 is empty, go to 9.

else add the nodes in buffer 1 to Flow-out.

7. buffer 2 • {}

For each node x in buff er1

for each predecessor of x

if all successors of x are in Flow-out

include it in buffer 2.

8. buffer 1 • buffer 2. go to 6.

9. Cyclic = {nodes which are not in Flow-in nor in Flow-out}.

Figure 2

5

include the schedule of non-Cyclic nodes. For now , suppose we have a loop which contains

only Cyclic nodes (see Figure 3(a.)).

The natural schedule that DOACROSS will produce for this loop is in the left two columns

of Figure 3(c) . However we can produce a better schedule as shown in the right two columns

of the same figure . 6 There we a.re exploiting parallelism inside as well as across iterations,

while in DOACROSS only the latter form of parallelism is exploited. The issue is can we

exploit both forms of parallelism in the presence of a large or unknown loop bound, while

factoring in communication cost?

As pointed out in the introduction section, our approach is based on a generalization of

the concept of pattern first developed in [A.iNi88a]. Our algorithm utilizes the concept of

pattern in two ways . It first obtains the idealized pattern of Perfect Pipelining which does

not take into account communication delays. Then, it schedules the nodes in the pattern

one by one7 to the processor which can execute it at the earliest time, when taking into

account not only operational latencies, but also communication cost.8 By doing this , we are

distorting (skewing) the idealized pattern to accommodate communication cost. Since the

skewing we introduce is based on consistent (fixed) communication cost estimates , we expect

that another pattern will emerge from the resulting schedule.

In the right two columns of Figure 3(c), we show one example of such a pattern emerging

(enclosed with a box in the figure). In Section 2.3 we prove the existence of such patterns in

general .

The algorithm for scheduling the Cyclic subset is in Figure 4. Its time complexity is

0(M * P * N 2 + M 3 * N 3
), where M is the expected number of unrollings to find a pattern, N

is the number of operations in the loop body, and P is the number of processors . We have a

total of M * N nodes to schedule. Most of the computing time is consumed in step 2. Its first

sub-step is processor selection, the second pattern detection, and the third executable nodes

collection. For each node, v, finding the destination processor takes 0(.V * P), because in the

worst case we have to compute P ! (v,pj)'s, one for ea.ch processor, and computing a T(v,pj)

5 In Figure J(e the subecripta show the iteration numbers. That is, Ao implies an instance of A from

iteration 0. In thi1 example the execution time of each node and the cost of communication are both a.ssumed

to be one cycle.
7Since the (idealized) pattern shows only a partial ordering of nodes due to topological sorting, we need

to enforce a fixed order for each set of par&llel nodes in it to euure the emergence of a new pattern. Any

ordering (e.g., lexicographical ordering) is acceptable aa long aa it is consistent.
8 In actual implementation, &I C&D be seen later in algorithm C11clic-1ched, these two steps, finding an

idealized pattern and scheduling it, are not separated. In algorithm C11clic-1ched, the data dependence graph

of the loop is topologically traversed while at the same time each node visited is being scheduled.

6

\

~
I

:t
• •
' ' •
' ·, " I

' ' ' ' '•,

C0A0DgB9FoE0GoC1A1D1B1F1E1G1C2A2D2B2F2E2G1 ...

cb>

Figure 3: A scheduling example.

1

step
0
1
2
3
4
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23

PEO PEl PEO PEl
Ao Co --;:fg

Bo Do Bo
Co Fa Ci
Do Go Eo
Eo Di A1
Fo Fi Bi
Go Ai G--1 EJ..

8i C1 A2
Ci I D2 B1
Di F1 C3
Ei G1 E1
Fi DJ AJ

A2 Gi FJ 83
81 G3 £3
C1
D1
E2
F1
G1 AJ

83
C3
D3
£3
F3
G3

<C>

Algorithm. Cyclic-sched.

Input. Data dependency graph of the Cyclic subset.

Output.

Method.

A schedule for the Cyclic subset.

1. Initialize the task queue with all the nodes which do not

have predecessors.

2. For each node, v, in the task queue

/• Note that the task queue can never become empty since we

are scheduling a Cyclic subset with unbounded unwinding.

So, this loop exits only upon finding a pattern •/

schedule it to Pi, processor i, such that T(v,Pi) is the first

minimum in the list (T(v,P1), . .. , T(v,Pp)), where pis the

total number of processors, and T(v,Pj) is the cycle in

the resulting schedule that v would be scheduled if it is

assigned to Pj.

Check if a pattern has emerged.

If pattern found, exit.

I• A pattern can be detected by checking if there is a

configuration repeating. The meaning of this configuration

and the proof that it correctly signals the emergence of a

pattern will be given in Section 2.3. •/

For each successor w of v,

decrease the number of predecessors by one.

if number of predecessors for w • 0

endfor

endfor

add w to the task queue

Figure 4

8

I-

Algorithm. Flow-in-sched.

Input.

Output.

Method.

Flov-in subset.

A schedule for Flow-in subset.

1. Prepare p • Ceiling(L/H) free processors,

where

L is the size of the Flow-in subset, and H is the height

of the pattern obtained from algorithm Cyclic-sched. Call

them 0th, 1st, ... ,(p-1)th processor, each.

2. For each iteration, i,

assign the Flow-in subset of iteration i to (i mod p)th processor.

endfor.

Figure 5

takes O(N) since we need to look at all the predecessors of node v, the number of which is

bounded by N. Collecting executable nodes into the task queue also takes 0(N) since in the

worst case, again, the node can have N successors. Therefore, the time complexity of the

first and third sub-step is O(M • P • N 2)). However, in real loops, most nodes have only

small numbers of successors/predecessors, which allows us to reduce the time complexity for

these two sub-steps to O(M • P • N) in realistic situation.

For ea.ch node scheduled, we check whether a. pattern has been formed (the second sub­

step). The number of nodes to inspect is O(x2), where xis the number of already scheduled

nodes at the time of inspection. Since x could range from 0 to M • N, the time complexity

for pattern detection is O(M3 • N 3). However, again, this is a. worst case scenario. M is

typically very small, less than 10 in all the examples we ran (see Section 3 and 4). Also, there

is no need to check the pattern from the beginning of the scheduling process. By detecting

the pattern after the schedule is stabilized, we can reduce the time complexity for pattern

detection considerably. In fact, for all the examples in Section 3 a.nd 4, the behaviour of the

algorithm for pattern detection approached to O(N).

The scheduling algorithm for Flow-in subset is in Figure 5, and, the final scheduling

algorithm is in Figure 6, where algorithm Flow-out-sched is virtually the same a.s Flow-in­

sched.

9

Algorithm.

Input

Output

Method.

Data Dependence Graph ot a loop.

A schedule tor it .

1. Identity Flow-in, Cyclic, and Flow-out subsets (using algorithm

classification).

2. Schedule the Cyclic subset (using Cyclic-sched).

3. Schedule the Flow-in subset (using Flov-in-sched).

4 . Schedule the Flow-out subset (using Flov-out-sched).

Figure 6

2.3 Proofs

Algorithm Cyclic-sched can terminate successfully only if a pattern is detected in the result­

ing schedule. We now prove the existence of that pattern. We assume that the number of

processors, p, is sufficient to accommodate the resulting schedule, and the largest commu­

nication cost is k-each communication edge can have a different cost, but k is the upper

bound of this cost.9• Note that since we a.re proving the correct termination of algorithm

Cyclic-sched, we only need to look at the Cyclic nodes of a loop.

The proof can be visualized by imagining an infinite schedule resulting from full unwinding

and a window drawn on it, with width p and height k + 1. We will refer to the portion of

the schedule surrounded by it as a configuration. We slide the window down the schedule

and watch the configuration in it changing. U we find a configuration that has been observed

before, we stop the sliding, locate the position of the previous twin configuration, draw

another window on it, and restart the sliding but this time with two windows at the same

speed. U we see the two windows show the same sequence of configurations as they slide

down, we know we have found a pattern. So, the proof consists of two things: first, we

prove that there exist two distinct configurations which a.re identical, and then that once two

configurations are identical, the following two configuration sequences after them should be

9This second a.ssumption is only used in the proceu of scheduling. It does not in &ny wa.y a.ft'ect the

correctness of the execution of the resulting schedule. In fa.ct, a.s we will see in Section 3, the a.ctua.l execution

time c&n vary quite dr&ma.tica.lly from tha.t auumed in the scheduling proceu.

10

__ .1 ___ __ ___ - ---~-- --- --- - - -·- - --·- - -- - -- -

the same.

Definition 1. A shifted form of a set of nodes, (no,n1, ... ,nk), by dis the same set with

the indices shifted by d, (nd, nl+d, . . . , nk+d).

Definition 2. Two configurations a.re identical if the set of nodes for one is a -shifted form

of the other, and the schedules for them a.re exactly the same.

Lemma 3. Any two nodes, v and w , if they a.re in the same configuration, should be within

a. finite number of iterations from ea.ch other. That is, if v is from iteration i, and w

from iteration j, then Ii - jl is finite.

Proof: Suppose d = Ii - jl is arbitrarily large. We assume i is smaller than or equal

to j, without loss of generality. From Lemma 2, we know there is a path of length at

least d from iteration i to iteration j. Let the start node of this path be V, and the end

node of it W. Also let the cycle of V in the resulting schedule be tv, and that of W

be tw. Since d is arbitrarily large, the number of cycles between V and W, tw - tv,

in the resulting schedule should be arbitrarily large, too. This means the number of

cycles between v and w in the resulting schedule is also arbitrarily large because they

are from the same iteration as V and W respectively, a.nd thus should be scheduled

within a finite number of cycles from V and W each. 10 This is a contradiction because

since v and w are in the same configuration, the number of cycles between them in the

schedule can not be greater than k.

Lemma 4. The number of non-identical configurations in the schedule is finite.

Proof: Again imagine a window sliding down the schedule. We will prove that the num­

ber of non-identical configurations that this window ca.n show is finite. From Lemma

3, we know the number of consecutive iterations that a.ny configuration can contain

is bounded by some number, say M. Suppose at some point our window selects its

nodes from iterations (it+d, ... , iM+d), where dis an offset. We observe that the set of

configurations that this window ca.n possibly show from iterations (il+d, ... , iM+d) is

exactly the same as that it would from iterations (ii. ... , iM), because every configura­

tion from the former iterations has a.n identical matching configuration from the latter

with a shifting distance d (see Definition 1 and 2). By generalizing, this means the

10 Any two nodes° with the longest path between them having a length of I, should be scheduled within (k+ 1)/

cycles from each other, uauming a sufficient number of processors. Obviously, the longest paths between v

and V and between w and W both have finite lengths since we uaume the original data dependence graph is

a connected one.

11

--- --- . · - - - -- - - -- - ·· - - ~ l -

kinds of configurations that this window can show is limited by the kinds that itera­

tions (i 1 , ••• , iM) can supply. Since the number of nodes in this i tera.tion range is finite,

and the size of the configuration window is finite too, so is the number of configurations

that this window can show; therefore, the total number of non-identical configurations

in the schedule is finite.

Lemma 5. There exist two identical configurations separate in location rn the resulting

schedule.

Proof: Imagine a. configuration window is sliding down this schedule. As the window

slides down, the contents in it will change, but from Lemma 4 the number of possi­

ble configurations that it can show is finite; therefore, eventually it will repeat some

configuration which has appeared before.

Lemma 6. If two configurations a.re identical, the two respective following configurations

a.re identical, too.

Proof: Let the two configurations be C and D, and the schedule lines11 right after

each be Li and /2 (see Figure 9(c) for a.n example) . First we observe that any node in

/ 1 should have at least one of its direct predecessors in configuration C (the same thing

can be said for the nodes in /2 with respect to configuration D) . Otherwise its direct

predecessors are all located before configuration C, and, therefore, it should have been

scheduled within configuration C or before it. 12 This, in turn, means that the nodes

that can come in /1 and /2 are a.mong the direct successors of the nodes in configuration

C and D respectively. Let the set of direct successors of the nodes in configuration C

be Sc, and that of the nodes in configuration D be SD . Since C and D a.re identical,

Sc and SD also should be identical. This means that the algorithm, right after the

completion of configuration C, will look at the sa.me sequence of nodes to schedule as

it will after it has comJ>leted configuration D, as far as the schedule of line /1 and /2 is

concerned. Then since the schedule in line /1 and /2 is completely determined by the

configuration C a.nd D respectively, the schedules of the two lines should be the same.

Since the schedules of /1 and /2 are identical, by moving the two surrounding win­

dows for configuration C and D one cycle down, we can see two identical succeeding

11 A schedule line is the schedule of &11 procesaors at some fixed cycle.
1 ~ A node can always be executed within le+ 1 cycles after its la.st direct predecessor is executed because we

assume a sufficient number of processors. Note that le is the largest pouible communication time. Since the

height of a configuration is le+ 1, a node &11 of wha.e predecessors have been executed before the configuration

should be executable at leut at the bottom (schedule line) of the configuration.

12

!
I
I.

configurations.

Lemma 7. If two configurations a.re identical, the sequences of configurations following them

are sa.me.

Proof: Let the two configurations be Co and Do and the following sequences C; and

D; (i >= 1). The proof is by induction . If C;_ 1 and D; - 1 are identical, we ca.n sa.y C;

and D; are identical from Lemma 6. Since Co and Do are identical, through induction ,

we know C; a.nd D; a.re identical for all i.

Theorem 1. Cyclic-sched produces a. schedule which shows a pattern .

Proof: From Lemma. 5, a. configuration eventually repeats itself. Once it is repeated,

it keeps a.ppea.ring regularly by Lemma 7; so, we ha.ve a repeating pattern between the

first a.nd (not including) second configura.tion. 13

3 Examples

The first example (see Figure 7(a)-(e) and Figure 8(a) a.nd 8(b)) shows the nontriviality of

loop partitioning. The code is given in Figure 7(a), a.nd its da.ta. dependence gra.ph is in

Figure 7(b). We note there is only one kind of node, Cyclic. The latency vector lv shows

the estimated execution time of the nodes. Figure 7(c) shows the topological sorting of the

nodes. By scheduling ea.ch node from this list one by one, with the communication time

(k = 2, in this example) ta.ken into consideration, we get Figure 7(d). Here, we ca.n see tha.t

ea.ch processor is repeating some pattern of its own; a.nd in effect, ea.ch iteration is completed

every three cycles. Finally in Figure 7(e), we show the transformed loop where the original

loop is partitioned into two subloops. DOACROSS will produce the schedule in Figure 8(a.);

it is the same a.s the schedule of a sequential execution (by collapsing the columns in the figure

into PEO column a.nd removing all empty cycles) because no pipelining is possible due to the

(E,A) dependence link. Even with a.n optimal reordering, as in Figure 8(b) which is obtained

by a.n exhaustive search 1", DOACROSS would still yield no performance improvement, in

this case, since no parallelism is achievable a.t the iteration level when synchronization cost is

taken into account. The percentage parallelism obtained for this example, which we define as

in [Cytron84] to be Sp = (s - p/ s) • 100, where s and p a.re sequential a.nd parallel execution

time respectively, is 40 by our algorithm, while that by DOACROSS is 0.

13 Note the difference between a configuration and a pattern. In Figure 9(c), for example, window C shows

a configuration, while the pattern is enclosed by a box with height 6 below it.

"In general, optimal reordering of nodes is NP-hard (Cytron86)[MuSi87].

13

Fat I = 1 TO Pf
A: A(IJ = A(I-1] • ![t-1]
B: B(IJ = A[IJ
C: C(IJ = B[IJ
D: D[IJ = D(!-1] • C[I - 1]
I!: I! (I] = D[I]
ENDF<:a

(o.>

;i)
,,y

(~ . c
' : f'
\. D ,_.:

•••

A1D1B1E1C1D1A1E1B1C1A3D3B3E3C3D1A1E1B1C1AsDsBs .. .

(c)

PAIU!!CIM (M IS ASStJm> TO Bl Nf EV!N NU>eEll .)

P!O : >.(1) a A(O] • ! [OJ
(~!ND A(l] TO P'!l)
B (l] a A(l]
C(l] a B(l]
(R!C!IV! oc11 nac P!l)
0[2] • 0[1] • C[l]
(S!im O(~] TO P'!l)

Iv w (1 . 1 . 1. 1 . 1) tor - A. l.C .D. I ll\ - ._ ardw . ! (2] • 0(2]
rca u • 3 TO M-1 '4't 2

(l!C!MI A(Il·l] ru:M P!l)
A(Il] • A(Il·l] • !(Il-1]
(S!J() A(Ill TO P!l)

(b>

step PEO
0 At
1 B1
2 C1
3 D1
4 E1
5
6 A3
7 B3
8 C3
9 D,.
10 E1
11
12 As
13 Bs
14
15

(d>

PEl
D1
E1

A1
B1
c,
D3
£3

A,.
B1
C1
Ds
Es

B (Ill • A(l]
C(Il • ll(Il]
(l! Ml O(Il] nae P!l)
O(Il•ll • O(Il] • C(Il]
CSl!I> D(Il•li TO P!l)
l!(Il•l] • 0(1•1]

l!lU<a

Pll: 0(1] • 0(0] • C[O]
(Siii> D[ll TO PIO)
I! (1] • 0(]
(UCIIVI A(l] nae PIO)

A(2] • A(l] • ! [1]
(Siii) A(2l TO PIO)

~~~) : ~(2) 
rdi 12 • 3 TO M·l '4't 2 

(l!C2M D(I2·1] nae P!O) 
O(I2] • D(I2·1] • C(I2·1] 
(S!J() D (I2l TO P!O) 

m~~0ldl1 nae PIO) 
A(I2•11 • A(I2] • !(I2] 
(Siii> (I2•1] 1'0 P!O) 
B(I2•1] • A(t2•1] 
C(I2•1) • 8(I2•1) 

!Hmm 
PAl!ND 

< e > 

Figure 7: A non-trivial scheduling example. 

14 

--- - --- - -- . -- - - - - ·· · ·· - - - ·· - - -



step PEO PEl PEJ i PE4 step PEO PEl PEJ PE4 
0 A1 0 A1 r 

l 81 j l 81 
· 2 C1 ' 

. 2 D1 
3 D1 1 J E1 
4 E1 I 4 C1 
.5 .5 

6 A2 6 A2 
1 82 1 82 
8 C1 8 D2 
9 D1 9 E2 
10 ' E2 10 C1 
11 11 
12 A3 12 A3 

13 83 13 83 
14 C3 14 03 
l.5 D, 15 £3 

16 £3 16 C3 

17 17 

18 18 

19 19 

( 0.) ( b) 

Figure 8: Schedules by DOACROSS for Figure 7(b). Compare it with Figure 7(d). 

The second example is from [Cytron86] (see Figure 9(a)-(c) and Figure 10). As in the first 

example, we show the code, data dependence graph, and the schedule. However, in step 1 

of our algorithm, the Flow-in buffer will conta.in nodes {6,7,8,9,10,11,12,13,14,15,16). There 

a.re no Flow-out nodes. The rest of the nodes are all Cyclic, a..s determined by algorithm 

classification. Note that the latency of the operations is not unique. Using algorithm Cyclic­

sched, we can generate Figure 9{c).15 We can s.ee processor 0 is repeating node 3 and 5, while 

processor 1 is repeating node 0,1,2, a.nd 4. Aga.in we assume the communication time is k = 2 

arbi tra.rily. Figure 10 shows the final transformed loop after the Flow-in nodes a.re distributed 

into three processors, and synchronization code inserted. In algorithm Flow-in-sched, for this 

case, L, the size of the Flow-in subset is 11, and H, the height of the pattern from algorithm 

Cyclic-sched is 6. Therefore, p, the number of needed free processors, is 3. In the result, we 

have partitioned the original loop into five subloops. The Flow-in nodes a.re distributed to 

three processors so a.a not to delay the execution time of the Cyclic subset. For this case, 

the percentage p&rallelism obtained by our algorithm is 72.7%, and that by DOACROSS is 

31.8%. 

We give two more examples, one from the 18'11 Livermore Loop (Figure ll{a.)-(d)), the 

other from a. fifth order elliptic filter [PaKn89] (Figure 12(a) and Figure 12(b)). Figure ll(a.) 

is the original da.ta. dependence graph for the first example. We extracted Cyclic nodes from 

15 In Figure 9(c), each node ia repreeented by two things: its n&me and its iteration number. For example, 

(3,11) means the instance of node 3 from iteration 11. 

15 



( 0.) 

...... 
H: ~ 

( c) 

6 

l2 ,.. 
• 
~ l6 

\ . 
\ ' 
\' . 

' ', ... 
' • • 

Iv• (1 . 1 . 1, 1.l. 1. 1. 1.l . l . l.l . l . l.l.l . l) 111 ca....- ot ca. 1-U. 

( b> 

Figure 9: An example from [Cytron86]. 

16 



PAUJ!CIN (N IS ~ ro • A ltllnPU cw 3) 
P!O . r~ 10 • I ro N 

P!l · 

(UC! M "3 (I il nlClll P!l I 
M(IOJ • "3(10 • A7(10·1) 
(SZllD M(IOJ P!l) 
A7(10J • M(IOJ 

!!UtS 

"3(1) • "5(0] 
(sil() .U(l] ro PIO) 
~(l] • Aa(OJ 
"5(1]. ~(1] 
F~ 11 • l TO I 

.U(II) • AS(Il·ll 
(st!Cl .U (II J ro PIO) 
(UCllVI M(l1·1) f'JDI Pit //CJ A17(Il·l) ,_ Pll . l . c». 4. 
Aa(Il·l) • M(Il·l] • >.5(11·1) • A17(1l·l] 
~(11) • Aa(l1·1) 

~II)• ~(II] 

(UCllV! M(lf] nlClll PIO NllJ A17(11·1) l"ltOI PU . l, <». 4) 
Aa(ll] • M(ll] • AS(ll] • "17(11·1) 

P!l: r~ ll • 1 TO N·l tr( l 
Al(ll] • 9(U] 
A9(llJ • Al(ll) 
A11(1Jj • ..u 1ul 
All(ll • A9(U 
All(IJ • All(! J 
(S!IC> All cul ro PUJ 
Al4(UJ • Al [U) 
(UCllVI All(fl·l) ,_ n4J 
A6(llJ • A1(Ul • All(U·l) 
A.1..5(UI • A14( l) 
cS!IC> A.ls cul TO Pill 
A16(Ul• A1 cul 
AJ.7(U • A14(U 
(SlllD 7(U) TO Pill 
(llCllVI A15(U·l) FD PH) 
A10(U) • At(U) • AU(U·l) 

!IClrta 

P!l : res u • l TO •·1 ft l 
Al (Ill • l(lll 
A9(1l • Al(!)) 
All (Ill .... , (l)l 
Al.J(ll • At(U 
A13(13J • All(t I 
(S!llD All (ll] TO PH) 
A14(1l] • All(ll) 
(UCIIVI All[tl·l] ,_ Pll) 
A6(lll • Al(tll • All(U·l) 
WCI)! • A14( lJ 
(S!li> W(ll) TO Pl41 
A16!lll • A14(Ul 
A17 ll • A14(U 

DCZPT A17(1)) 

(SlllD A.17 (I l] ro P!l) 
(Ual'1i A.1..5(1l·1) l"ltOI P!l) 
A.10 (ll] • A9(llJ • Al5(1l · L) 

DU~ 

Pl4 : res 14 • 3 ro " rt l 
A.1(141 • 9(14] 

~.Pt1 1 ·."'im11 AU 14 • A9(14 
All 14 • AJ.J(14l 
(SlllD All (14] ro PU) 
A14(14] • AJ.l(14J 
(UOM All!f4· 1l l"ltOI P!l) 
A6(14) • Al (f4l • AJ.l(l4· LJ 
WC141 • AJ.4( 4J 
cslliD A.15(14] ro P!lJ 

Alau14L· AJ.411•1 AJ.7 14 • AJ.4 14 cmm 7(141 ro Pill 
(llC2M A.1..5(14· 1] l"ltOI P!l) 
AJ.0(14] • At(14] • A.1..5(14·1) 

aaat 

Figure 10: The parallelized loop for Figure 9(a). 

17 



it res11lting in Figure ll(b), and re-labeled the nodes as shown in Figure ll(c). The schedule 

is shown in Figure ll(d) with the pattern enclosed with a box. Figure 12(a) is the data 

dependence graph for the second example, and Figure 12(b) is its schedule for the Cyclic 

nodes . In both cases, most of the nodes are in Cyclic; for the first example, only 8 nodes, 

(1 ,2,3,6,9,10,ll.14) in Figure ll(a), are non-Cyclic nodes (they are Flow-in nodes), while in 

the second, only node 34 is a. non-Cyclic node (a. Flow-out node). In such cases, scheduling 

non-Cyclic nodes separately may ca.use low processor utilization. One way of avoiding this 

waste is to schedule these non-Cyclic nodes into one of the relatively idle processors, processor 

O in the first example and processor 1 in the second one. For both cases, inclusion of non­

Cyclic nodes can be achieved with only small amount of delay. The strategy is simple; after 

the schedule of Cyclic nodes is completed , if there is a relatively idle processor with idle time 

slots wide enough to accommodate the non-Cyclic nodes with little or no additional delay, 

combine the non-Cyclic nodes into the idle processor. This heuristic can be easily combined 

with our algorithm. 

In both cases, the loops are partitioned into two relatively independent subloops (see 

Figure 11( d) and Figure 12(b )), and these partitionings a.re producing higher percentage 

parallelism than those of DOACROSS . The percentage parallelism achieved by our algorithm 

for each example are 49.4 and 30.9, while those by DOACROSS a.re 12.6 and 0. Again, we 

assumed k = 2, where k is the communication cost. 

4 Experimentation 

The above examples show superior results for our algorithm. However, we have assumed 

that the communication cost is fixed, which means there is no unpredictable fluctuation 

in communication time. Also, the dependence pattern in the examples may have favored 

our algorithm. To test the performance of our algorithm and its robustness under unstable 

communication tra.ffic and complex dependence graphs thoroughly, we have generated 25 

random loops and tested our algorithm under various tra.ffic conditions. 

The way we generated a random loop is as follows. First, we fixed the number of nodes in 

the loop as 40, and the number of loop carried dependences ( lcd's) and simple dependences 

( sd 's) at 20 each. The execution time of each node is randomly chosen from 1 to 3 cycles 

using a random number generator. Then, a.gain using the random number generator, we 

generated actual dependence links, 20 for lcd's and another 20 for sd's. After this was done, 

we extracted only Cyclic nodes from the graph. The effect is that we have generated a random 

loop, which contains only Cyclic nodes whose latencies vary from 1 to 3 cycles, with less than 

18 



. 
' 
• . . 
' \ 
' . 
' 

(Cl.) 

•• • 1Ut:U:U:U:U:tU:U:U:~ 
1a1a. ..... , .. ~. 

(C> 

( b> 

(~.I 

I~ : ! 
>t. I 

(>l . I 
(U. I 

~: I 1:: I 
>I . I • · I) 
Ill. I•· I) 
1'. I t . II 
1'. I t . I) 
l. l • . )! 
l . l lt . l 

u . ) u.) I. I! U. I 
u. J 11. ll 

~: ~ g: n 
U . >)! t . II 

~: :1 :: :1 .. '! lt. 11 t . J lt. l 
It . I lt. I 
JI . J J. ) 
It . I I. I 

•. I 
.. . . . . S. I 

t . I 
1, I 

·· ·· · · U . I 
U . II U. II 

ti: ll tl: ll 
::: ll t:: :1 12. I! u. '! U . I U , I 
17 . I 1.1, II 
l7: I l!: : 
... 1:: ll 
.. g:: ll 
. ... ... (U, 11 

lfr I 

7,fift:": I 
(>I . J) • • l 

!>I. ,, •• !1 
" · l • . ~ ,.,, l •.• 

<d> 

! t: :111:: :11 

1. ' u . ' 111 . • 
1 

u . • 
(U: : g: !I 
u. •l 17 . • 

1 u. ·1 .. . u . ' •. ' • . • • . 41 
• . • lt. •) 
• . •••. <I 

JI . •1 H . ,, 
(It . • I . !I 
(~~: . ~ :: :, 

s. •I 
t . •I 

~ : :1 
(U. 41(U . 41 
(U . 41 !l.J. 41 
(1' . •I U . •I , ... ·11•. 'I (J.•. ' lt . ' 
{JJ . 41 (U . ' 
(11 . •I !u. •I 
(17 . •I 1.1 . •I 
(17. •l u . •I 

.g:: ~ 
(lt . •I .... !19. •l .. . >t . <I 

:. lt :1 
1ii: ., 1;:: :1 
(U. •I h•. •I 
<~:::~) : : ,., 
1' . ' • . 
n . ' •. s 

l. • • 
I . S U. S 
L. s u . ' u. ,, ll. ' 

!
u. s i1 . 
11. S) 17. S) 

n: :1 1
: : ~ 

Ill. ~ •. ~ '· .. t . s lt. 
' · lt. H . s 14. S 

Figure 11: Scheduling the 18th Livermore Loop. 

19 

- - - - - - --- -- - - ------



• , 
I 

I 

• • 
i 
• l 

• 
' ' 

' ' 

( Q.) 

....... 
(31 . n (20. ~ (l1 . 7 (2l. 
(27 . 7 !2l. 
(27 . 24. 
(32 . 7) 24. 

l~t ~
71 

i:: ~ 
! ~t i . j ; ii 

o . . ...... . 
1. . ..... . 
J , . ..... .. 
4 . • ....•.. 
s .. ..... .. 
s . . .. ... .. 
7 . ·1 · .. .. .. 
7 .... .. .. . 

•• •• t . 
11. 

(14 . 
(10 . 

!
u. 
u . 
u . 
17. 

ll• . 
11. 
31. 
31. 
27, 
27 , 
32. 
23. 
21, 
ll . 

15 . • 
15 . • a.• 
19 •• 
21 •• 
20, • 
22 • • 
22 • • 
24 •• 
H . I 
25, • 

••• 
lt. ( 2. " o. 

1 . 
3, 
4. 
s. 9 
s. 9 .. . .. . . 
7, ' ...... . 
1. 9 ..... .. 
•• 9 ....•.. 
• • 9 ..•.•.• 
9, ' ... . •.• 

u. 9 
14. 9 
11, ' .. ... .. 

tl: : 
1
. ii . a .. 

u. 9 15. 
11. ' a. 

( b> 

Figure 12: Scheduling the fifth order elliptic filter. 

20 

(~ : :11~! : : 
31. 9 2l. ' 
27 . t ll. ' 
11 . 9) (l4. ' 
32 . 9 (24. 9 
23 . 9 (ll , ' 
21 . ' (1' . 9 
ll . ' .. . .. . . 
29 t .. L.L.101-iJ! .. ..... 

l . 10 
4 . 10 
S. 10 
S. 10 
7 . 10 
7 . 10 
6 . 10 
1 . 10 
9 . 10 .. .... . 

11 . 10) <. . .... . 
a.10 .. .. .. 
10.10 
12 . 10 

ll . 10 11.S 10) u . 10 u: 10 
17 . 10 16. 10 
30,10 19. 10 
11. 10 21 . 10 
31. 10 lO, 10 
31, 10 21 . 10 
27.10 22 . 10 
21.10 24. 10 
ll.10 24.10 
l3 . 10 ll. 10 
21.10 lt.10 

1~:i: ..i.' iill 
i:~ ..... .. 
l,U . . .. . . . 
4.U ... . • .• 
s.u ....... 
s.u 
7,U 
7,U 
•.u 
a.u 
9 , U 

u.u 
14,U 
10 . u ....... 
u.u 
U.U (l.S.U) 



presence of unpredictable communication cost. 

5 Conclusion 

In this paper we have presented a new technique to schedule non-vectorizable loops for MIMD 

machines which can produce higher percentage parallelism than conventional iteration-based 

pipelining techniques. We have proved our algorithm is correct and compared its performance 

against a conventional iteration-based pipelining technique. The results show that our ap­

proach can achieve higher performance, even when the estimation of communication cost is 

far off the mark, and the actual cost of communication is relatively high ( 7 times the basic 

node execution time). Thus our approach shows a great deal of robustness under adverse 

circumstances. 

22 



or equal to 40 nodes and less than or equal to 20 led 's and sd 's. We have repeated the same 

process with different seeds (1 to 25) , producing 25 different loops . 

For each loop generated, we have extracted only Cyclic nodes 16 , and scheduled them using 

our algorithm and DOACROSS . The resulting schedules were executed on a simulated mul­

tiprocessor. We assumed fully overlapped communication , and the estimated communication 

time for our algorithm was k = 3 cycles . To model the fluctuation in the actual communica­

tion time and asynchrony by the processors , we used a varying factor mm. With this varying 

factor, the run time cost of each communication link varied between k and k +mm - 1. We 

compared our algorithm with DO ACROSS under three different mm' s: mm = 1 (no fluctu­

ation), mm= 3 ( maximum 673 of delay in communication time), and mm= 5 (maximum 

1303 of delay in communication time) . Thus the schedule our algorithm produces is based 

on the estimated k , while at run time a/I communication takes k +mm - 1 cycles, clearly a 

worst case scenario. 

The result of performance comparison is in Table l(a). For each loop, we ran the simu­

lated multiprocessor and measured the parallel execution time. By subtracting it from the 

sequential execution time and dividing the result by the sequential execution time, we calcu­

lated the percentage parallelism. The entry in Table 1( a) shows the percentage parallelism, 

obtained this way, for each loop. When mm = 1, our algorithm produced better schedules 

than DOACROSS in all loops. The average percentage parallelism of our algorithm is a.bout 

a factor of 2.9 higher than that of DOACROSS. (See Table l(b).) When mm= 3, in only 

one out of the 25 loops our algorithm produced a worse schedule than DOACROSS; when 

mm = 5, only two such loops out of the 25 loops. But in both cases, the average percentage 

parallelism of our algorithm are about a factor of 3.0 (mm = 3 case) and 3.2 (mm = 5 

case) higher than those of DO ACROSS as shown in Table l(b ). One thing to note is that 

mm = 5 implies the communication cost was underestimated by a factor of 2.3, which will 

happen only in a very unstable asynchronous traffic. Even under this unpredictable situation, 

our algorithm exploits more parallelism than DOACROSS on average. In fact, despite our 

expectation that our algorithm performance would worsen under such adverse conditions, 

Table l(b) shows that in the presence of unstable . communication cost, our relative perfor­

mance versus DOACROSS actually improves (see the factor of speedup over DOA CROSS in 

the table). This suggests that careful scheduling can be both robust and profitable in the 

18 Non-Cyclic nodes wouldn't increa.se parallel execution time in our case since the critical path in the schedule 

is formed only by the Cyclic nodes. The execution time in DOACROSS would not be delayed considerably by 

them either, if we properly separate them from Cyclic nodes through reordering of operatiou. Thus, we ca.n 

put aside non-Cyclic nodes for the purpose of comparison between our algorithm a.nd DOACROSS. 

21 



mm= l mm= 3 mm = 5 

loop I x doa.cross x doa.cross : :ic doa.crou 
45 .2 18 .6 
l5 .2 0.0 

o 51 .8 26 .8 I 
l 36. l o.o I 

51 .J 23 .7 I 

26 .0 0.0 
2 55 .8 38 .7 50 .9 33.0 45.8 27.9 

26.6 8.0 
55.7 7.2 
18.2 0.8 
33.2 8.3 

31 41.2 19.0 
4 68 .5 11.4 
5 39.8 10 .5 
6 ~ 48 .6 l6 .9 

34.2 13.8 
62.1 9.2 
28.5 6.8 
40.9 12.4 

j -42 .0 14 .2 30.8 9.2 15.2 6.2 
8 65.7 40.i 60.5 37.7 56 .7 33 .l 
9 21.2 15.J 6.0 11.3 o.o 7.1 

10 48 .5 l5. 7 44. l l3.4 39.4 8.6 
ll 56.0 31.1 52.3 27.5 47.8 24.2 
l2 66.0 20 .0 61.4 l6 .2 57.1 ll .l 
13 55.6 l0 .5 47.7 7.7 36.4 4.6 
14 36.6 31.1 32.3 28.3 23.3 26.9 
15 44.3 l3 . l 31.6 10.4 22.0 5.9 
16 34. 1 0.0 22.5 0.0 12.8 o.o 
17 36. l 11.5 25.0 8.5 13.8 5.5 
18 56. 7 11.7 43.5 7.5 30.0 2.9 
19 36.4 25.3 30.3 21.2 18.7 17.3 
20 47.3 0.0 39.2 0.0 29.8 0.0 
21 42.9 18.8 30.6 14. 1 16. 7 8. 7 
22 34.4 3.7 29.2 1.2 17.7 0.0 
23 49.3 9.6 41.9 5.8 34 . .S l.l 
24 61.3 11.l 52.7 6.5 44.l 2.2 

'------'~--"~~~......_~ ...... ~~--"l--~l--~...;...;;....11 

'0.) 

mm= l mm =3 mm=5 
x 47.4046 39.0674 30.2776 

DO ACROSS 16.3135 13.0623 9.4823 

Fa.ctor 
of speed-up 2.9 3.0 3.3 

over DOACROSS 

( b> 

Table 1: Comparison of performance between our algorithm (denoted by x) and DOACROSS. 

23 

--- -- ------ - ----- - -- --- - -



References 

[AiNi88a.] Aiken, A. a.nd Nicola.u, A. 1988. Optimal loop pa.ralleliza.tion. In Proceedings of the 

1988 ACM SIG PLAN Conference on Progra.mming La.nguage Design a.nd lmplementa.tion, 

June. 

[AiNi88bj Aiken, A. and ~icola.u, A. 1988. Perfect Pipelining: A new loop parallelization 

technique. In Proceedings of the 1988 European Symposim on Programming. Springer 

Verla.g Lecture Notes in Computer Science no. 300, Ma.rch. 

[A1Ke83] Allen,J.R., Kennedy K., Porterfield, C. and Warren, J. 1983. Conversion of control 

dependence to data. Dependence. In Proceedings of the 1983 Symposium on Principles of 

Progra.mming Languages, pp. 177-189, January. 

(Cytron84] Cytron, R.G . 1984 Compile-time Scheduling a.nd Optimiza.tion for Asynchronous 

machines. PhD Thesis, University of Illinois at Urbana.-Cha.mpagne. 

[Cytron86] Cytron, R.G. 1986 Doacross: Beyond Vectorization for Multiprocessors. In Pro­

ceedings of the 1986 Interna.tional Conference on Pa.rallel Processing, St. Cha.rles, IL, pp. 

836-844, August. 

(FiDo84] Fisher, J.A. and O'Donnell, J.J. 1984. VLIW ma.chines: Multiprocessors we can 

a.ctually progra.m. In Proceedings of CompCon Spring 84, pp. 299-305. IEEE Computer 

Society, Februa.ry. 

[MuSi87] Munshi, A.A. a.nd Simons, B. 1987. Scheduling Sequential Loops on Pa.rallel Pro­

cessors. In Proceedings of the 1987 International Conference on Parallel Processing, St. 

Charles, Illinois, August. 

[Padua79] Padua, D.A. Multiprocessors: discussion of some theoretical and practical prob­

lems. PhD Thesis, University of Illinois at Urbana.-Champagne. 

[PaKn89] Paulin, P.G. a.nd Knight, J.P. 1989. Force-directed scheduling for the Behaviora.l 

Synthesis of ASIC's. In IEEE transactions on Computer-Aided Design, Vol.8, No.6, June. 

24 




