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Abstract

Large-scale brain dynamics are believed to lie in a latent, low-dimensional space. Typi-

cally, the embeddings of brain scans are derived independently from different cognitive

tasks or resting-state data, ignoring a potentially large—and shared—portion of this space.

Here, we establish that a shared, robust, and interpretable low-dimensional space of

brain dynamics can be recovered from a rich repertoire of task-based functional mag-

netic resonance imaging (fMRI) data. This occurs when relying on nonlinear approaches

as opposed to traditional linear methods. The embedding maintains proper temporal pro-

gression of the tasks, revealing brain states and the dynamics of network integration.

We demonstrate that resting-state data embeds fully onto the same task embedding,

indicating similar brain states are present in both task and resting-state data. Our findings

suggest analysis of fMRI data from multiple cognitive tasks in a low-dimensional space is

possible and desirable.

K E YWORD S

diffusion maps, dynamic connectivity, integration, participation coefficient, segregation

1 | INTRODUCTION

Understanding large-scale brain dynamics is a major goal of modern

neuroscience (Jorgenson et al., 2015). However, due to the high-

dimensional nature of brain patterns, how to best operationalize

and tackle this problem remains an open question. Nevertheless,

the temporal dimensions that explain the observed dynamics are

small compared with the number of time points (Cunningham &

Byron, 2014). Thus, there is growing evidence to suggest that a

low-dimensional space—hidden from direct observation, learned

from the data, and derived from many brain regions—may be a

suitable model for studying temporal brain dynamics (Gao &

Ganguli, 2015).

These low-dimensional spaces have been observed using a vari-

ety of neural recordings and animal models (Ahrens et al., 2012;

Churchland et al., 2012; Kobak et al., 2016; Mishne et al., 2016;

Santhanam et al., 2009). Research suggests that linear methods, such

as principal component analysis (PCA), are appropriate when recorded

temporal data comes from simple stimuli that project onto a limited

area within a manifold (Cunningham & Byron, 2014). However, data

from richer tasks often project onto a larger portion of the manifold,

violating linear approximations (Cunningham & Byron, 2014; Gallego,
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Perich, Miller, & Solla, 2017). Nonlinear dimensionality reduction

methods, like diffusion maps (Coifman & Lafon, 2006), can overcome

this limitation by integrating local similarities into a global representa-

tion, which had better reflect the underlying temporal dynamics in

neural recordings.

Similar concepts have emerged in human functional magnetic res-

onance imaging (fMRI) studies to quantify moment-to-moment

changes in activity and connectivity (Hutchison et al., 2013; Preti, Bol-

ton, & Van De Ville, 2017). As with related research on temporal

recordings from animal models, dimensionality reduction methods are

used to project the fMRI time series onto a low-dimensional space

(Allen et al., 2014; Monti et al., 2017; Shine et al., 2016; Shine

et al., 2019). From the low-dimensional space, characteristic brain

states—or distinct, repeatable patterns of brain activity—are used to

quantify brain dynamics. Predominantly, these studies have relied on

linear methods (Allen et al., 2014; Monti et al., 2017; Shine

et al., 2016; Shine et al., 2019). However, given the rich repertoire of

tasks available in human fMRI, a manifold derived from nonlinear

methods may better capture the underlying geometry of the low-

dimensional space.

To address this, we use a recently introduced extension of diffu-

sion maps, 2-step Diffusion Maps (2sDM; Gao, Mishne, &

Scheinost, 2019). 2sDM extracts common variability between individ-

uals by performing dimensionality reduction of a third-order tensor in

a two-stage manner. In the first stage, time series data from each indi-

vidual are embedded into a low-dimensional Euclidean space. In the

second stage, embedding coordinates for the same time point from

different individuals are concatenated for use in a second embedding.

The second stage embeds similar time points across subjects to obtain

a low-dimensional group-wise representation of those time points.

This two-stage approach avoids directly comparing brain activation

across subjects, which can be imprecise without proper alignment

(Haxby et al., 2011). While diffusion maps have been applied to fMRI

data (Margulies et al., 2016; Nenning et al., 2020), we aim to embed

the time dimension rather than the spatial dimension.

We used 2sDM to embed time series from a rich repertoire of

tasks onto a single low-dimensional manifold in two fMRI datasets:

the Human Connectome Project and the UCLA Consortium for Neu-

ropsychiatric Phenomics. By using multiple tasks spanning a range of

cognitive functions and loads, we obtain a more even sampling of the

original high-dimensional space of recurring patterns of brain dynam-

ics (Cunningham & Byron, 2014; Gallego et al., 2017) to better project

individual time points onto a low-dimensional manifold. Our embed-

ding positioned different tasks by their cognitive load. Thus, it enables

scans to be compared both within the same task and across different

tasks. As our embedding also has a clear clustering structure, down-

stream analyses that are based on brain states or low-dimensional tra-

jectories are also straightforward to perform based on the embedding.

Additionally, we embedded resting-state data into the same task

embedding to investigate differences in brain dynamics between

resting-state and task performance. These results suggest that mani-

fold learning can uncover an interpretable low-dimensional embed-

ding for the study of brain dynamics in fMRI data.

2 | METHODS

2.1 | Dataset and imaging parameters

Data was obtained from the Human Connectome Project (HCP) 900 Sub-

ject release (Van Essen et al., 2013). We use fMRI data collected while

390 participants performed six tasks (gambling, motor, relational, social,

working memory—WM, and emotion). We restrict our analyses to those

subjects who participated in all nine fMRI conditions (seven task, two rest),

whose mean frame-to-frame displacement is less than 0.1 mm and whose

maximum frame-to-frame displacement is less than 0.15 mm, and for

whom the task block order is the same as other subjects (n¼390 ). All

fMRI data were acquired on a 3 T Siemens Skyra using a slice-acceler-

ated, multiband, gradient-eco, echo planar imaging (EPI) sequence

(TR = 720ms, TE = 33.1 ms, flip angle = 52�, resolution = 2.0mm3,

multiband factor = 8). Images acquired for each subject include a struc-

tural scan and 18 fMRI scans (working memory [WM] task, incentive

processing [gambling] task, motor task, language processing task, social

cognition task, relational processing task, emotion processing task, and

two resting-state scans; two runs per condition [one LR phase encoding

and one RL phase encoding run]) split between two sessions.

The UCLA Consortium for Neuropsychiatric Phenomics (CNP;

Poldrack et al., 2016) dataset is used for replication. Similar to the stan-

dards for the HCP dataset, we restrict our analyses to those subjects

who participated in all five fMRI conditions (four task, one rest), whose

mean frame-to-frame displacement is less than 0.1 mm and whose maxi-

mum frame-to-frame displacement is less than 0.15 mm. Seventy-seven

healthy controls are retained. These participants performed four tasks

(paired memory retrieval task—PAMRET, paired memory encoding task—

PAMENC, spatial working memory task—SCAP, task switching task—

TASKSWITCH). Details of the image acquisition parameters have been

published elsewhere (Poldrack et al., 2016). In brief, all data were

acquired on one of two 3T Siemens Trio scanners at UCLA. Functional

MRI data were collected using a T2*-weighted EPI sequence with the

following parameters: slice thickness = 4 mm, 34 slices, TR = 2 s,

TE = 30 ms, flip angle = 90�, matrix 64 � 64, FOV = 192 mm, oblique

slice orientation. Images acquired for each subject include a structural

scan and seven fMRI scans (balloon analog risk task (BART), paired-

associate memory retrieval (PAMRET), paired-associate memory

encoding (PAMENC), spatial capacity task (SCAP), stop signal task (SST),

task-switching task (TASKSWITCH) and breath holding task).

As 2sDM requires time series to be synchronized across individuals

(i.e., different individuals encounter the same task condition at the same

time point), the language task from the HCP and the stop signal task, bal-

loon analog risk task, and breath hold task from the CNP were not

included. These tasks are self-paced. Participants finished blocks at differ-

ent times, causing the task block to be unsynchronized across participants.

2.2 | fMRI processing

For the HCP dataset, the HCP minimal preprocessing pipeline was

used (Glasser et al., 2013), which includes artifact removal, motion
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correction, and registration to standard space. For the CNP dataset, struc-

tural scans were skull-stripped using OptiBet (Lutkenhoff et al., 2014) and

registered to the MNI template using a validated algorithm in BioImage

Suite (Joshi et al., 2011; Scheinost et al., 2017). Slice time and motion cor-

rection were performed in SPM8. For both datasets, all subsequent

preprocessing was performed using image analysis tools available in

BioImage Suite and included standard preprocessing procedures (Finn

et al., 2015). Several covariates of no interest were regressed from the data

including linear and quadratic drifts, mean cerebral-spinal-fluid signal, mean

white-matter signal, and mean gray matter signal. For additional control of

possible motion related confounds, a 24-parameter motion model (includ-

ing six rigid-body motion parameters, six temporal derivatives, and these

terms squared) was regressed from the data. The data were temporally

smoothed with a Gaussian filter (approximate cutoff frequency = 0.12 Hz).

Mean frame-to-frame displacement yielded seven motion values per sub-

ject, which were used for subject exclusion and motion analyses. We

restricted our analyses to subjects whose maximum frame-to-frame dis-

placement was less than 0.15 mm and mean frame-to-frame displacement

was less than 0.1 mm. This conservative threshold for exclusion due to

motion was used to mitigate the effect of motion on the embedding. We

used the Shen 268-node atlas to extract time series from the fMRI data for

further analysis (Shen, Tokoglu, Papademetris, & Constable, 2013). Time

series used for the embedding were the average of the basis of the “raw”
task time courses, with no removal of task-evoked activity, for each node

in the atlas. Finally, 2sDM was applied to embed a third-order tensor of

fMRI data (individual � region � time) onto a single low-dimensional

manifold.

2.3 | 2-step diffusion maps (2sDM)

Diffusion maps are part of a broad class of manifold learning algo-

rithms. Specifically, diffusion maps provide a global description of the

data by considering only local similarities and are robust to noise per-

turbations. The new nonlinear representation provided by diffusion

maps reveals underlying intrinsic parameters governing the data

(Coifman & Lafon, 2006). We briefly describe the diffusion maps algo-

rithm in general and in the following its application to fMRI data as

used in our approach. Given a dataset of n points xif gni¼1 a pairwise

similarity matrix S between pairs of data points xi and xj is con-

structed, for example using the Gaussian kernel wϵ xi ,xj
� �¼

exp � xi�xj
�� ��2=ϵ� �

, where k:k denotes the Euclidean norm. The

Gaussian Kernel omits global information, resulting in non-linearity.

Then the rows of the similarity matrix are normalized by P¼D�1S ,

where Dii ¼
P

jSij is the degree of point xi . This creates a random walk

matrix on the data with entries set to p xi ,xj
� �¼wϵ xi ,xj

� �
=d xið Þ, where

d xið Þ¼Dii, the degree of point xi. Taking the t-th powers of the matrix

P is equivalent to running the Markov chain corresponding to the ran-

dom walk on the data forward t times. The corresponding kernel

pt �, �ð Þ can then be interpreted as the transition probability between

two points in t time steps. The matrix P has a complete sequence of

bi-orthogonal left and right eigenvectors ϕi and ψi , respectively, and a

corresponding sequence of eigenvalues 1¼ λ0 ≥ λ1j j≥ λ2j j≥… .

Diffusion maps are a nonlinear embedding of the data points into a

low-dimensional space, where the mapping of point x is defined as

Ψ xð Þ¼ λt1ψ1 xð Þ,λt2ψ2 xð Þ,…,λtkψk xð Þ� �
, where t is the diffusion time.

Note that ψ0 is neglected because it is a constant vector. The diffu-

sion distance D2
t x,yð Þ between two data points is defined as:

D2
t x,yð Þ¼

X
z

pt x,zð Þ�pt y,zð Þð Þ2
ϕ0 zð Þ ð1Þ

where ϕ0 represents the stationary distribution of the random walk

described by the random walk matrix P . This measures the similarity

of two points by the evolution in the Markov chain and the distance

characterizes the probability of transition from x or y to the same

z point in t time steps. Two points are closer with smaller D2
t x,yð Þ if

there is a large probability of transition from x to y or vice versa,

suggesting that there are more short paths connecting them. It is thus

robust to noise as it considers all the possible paths between two

points and is thus less sensitive to noisy connections. It was proved

that the k -dimensional diffusion maps Ψ embed data points into a

Euclidean space ℝk where the Euclidean distance approximates the

diffusion distance (Coifman & Lafon, 2006). In practice, eigenvalues of

P typically exhibit a spectral gap such that the first few eigenvalues

are close to one with all additional eigenvalues being much smaller

than one. Thus, the diffusion distance can be well approximated by

only the first few eigenvectors. Therefore, we can obtain a low-

dimensional representation of the data by considering only the first

few eigenvectors of the diffusion maps. Intuitively, diffusion maps

embed data points closer when it is harder for the points to escape

their local neighborhood within time t.

To obtain a groupwise low-dimensional representation of dynam-

ics, a hierarchical diffusion maps-based manifold learning framework,

2-step diffusion maps (2sDM; Gao et al., 2019), was used to reduce

the dimensionality of high-dimensional multi-individual fMRI time

series. The framework is illustrated in Figure 1a. Under the assump-

tion that individuals' fMRI responses are time-synchronized, the fMRI

BOLD time series data are organized as three-dimensional array

X�ℝM�V�T (number of individuals M , number of regions or voxels V ,

number of time points T ). In the first step of 2sDM, each individual is

processed separately, by applying diffusion maps to the fMRI time

series of every single individual Xi�� �ℝV�T , thereby obtaining a d1

-dimensional temporal embedding of each individual Ψ 1ð Þ
i �ℝd1�T .

Then, in the second step, we first concatenate the new representa-

tions from all individuals into a matrix Ψ 1ð Þ �ℝ Md1ð Þ�T , such that each

time-point is now represented by the embeddings of that time-frame

aggregated from all M subjects. Then, a second-round diffusion

embedding is performed, further reducing the dimensionality of every

time-frame to d2 and the final time-frame representation with multi-

individual similarity is Ψ 2ð Þ �ℝd2�T , where d1 and d2 are predetermined

parameters that are smaller than V. The concatenation and two-round

embeddings are theoretically supported by the theorem that low-

dimensional diffusion maps approximate the diffusion distance

between time-frames (Gao et al., 2019): The distance between two

frames Ψ 2ð Þ tið Þ and Ψ 2ð Þ tj
� �

approximates the average diffusion
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distance between those time-frames across all individuals. We used

d1 ¼7 and d2 ¼3 in our experiment. It is worth noting that the

embedding results were robust under a certain range of different d1

and d2 (related discussion in Data S1 and Figure S3).

To reveal the progression of brain dynamics during tasks, we cal-

culated temporal trajectories (Shine et al., 2019) for each task block

by connecting points in the embedding in a temporal order. As the

tasks involve the same task blocks with repetitions (i.e., WM task con-

sists of interleaved blocks of 0-back and 2-back with the same length),

we averaged the time-frames belonging to the same task block to

obtain a smoothed representative trajectory of each task. Time frames

corresponding to the cue or fixation between tasks blocks were not

included.

To summarize the embedding into a more compact and easier to

analyze structure, we performed k-means clustering based on the first

three embedding dimensions to cluster time points sharing similar brain

activation patterns into discrete brain states. The Calinski–Harabasz cri-

terion (ratio between the within-cluster dispersion and the between-

cluster dispersion) was used to determine the number of clusters, evalu-

ating values of k¼ 2,…,10f g (Caliñski & Harabasz, 1974).

To illustrate that nonlinear discovers structure that linear

methods cannot recover, we used a 2-step PCA framework, similar to

2sDM. In the first step, a separate PCA is applied to each individual's

fMRI time series Xi,:,: �ℝV�T , resulting into a d1 -dimensional linear

temporal embedding of each individual c 1ð Þ
i �ℝd1�T , where the first d1

principal components with the maximum variances are included. Then

each individual's embedding is concatenated along the time dimension

form to a matrix C 1ð Þ ¼ c 1ð Þ
1 ,c 1ð Þ

2 ,c 1ð Þ
3 ,…,c 1ð Þ

M

h i
�ℝ Md1ð Þ�T . A second-

round PCA is performed to further reduce the dimensionality of this

concatenated matrix. Each time frame is then embedded into d2

dimensions and the final time-frame representation with multi-

individual similarity is C 2ð Þ �ℝd2�T . Same as 2sDM, we used d1 ¼7 and

d2 ¼3 in our experiment.

2.4 | Dynamic connectivity

To relate our task embedding to previously used handcrafted features

(Shine et al., 2016), we calculated the participation coefficient BT

using sliding-window-based functional connectivity and then aver-

aged BT across all subjects, as described in previous literature (Shine

et al., 2016). In this article, handcrafted features refer to features that

are designed manually, such as BT that is used here to characterize

the integration and segregation pattern of the brain network. The

dynamic functional connectivity is calculated by the multiplication of

temporal derivatives (MTD; Shine et al., 2015). MTD is calculated as

the point-wise product of the temporal derivatives of paired nodes (i, j)'s

time series:

MTDi,j,t ¼ 1
w

Xk¼tþw

k¼t

Δxi,k�Δxj,k
σΔxi �σΔxj

ð2Þ

where Δxi,t ¼ xi,t�xi,t�1 is the temporal derivative of node i at time t

with time series x, σΔxi is the SD of the Δxi over the entire time course

and w is the window length. At each time point, the dynamic func-

tional connectivity is calculated as the averaged MTD over a sliding

time window in order to reduce high-frequency noise. We chose the

length of the sliding window w¼14 for HCP (~10.8 s) and w¼4 for

CNP (~10s), based on previous literature (Shine et al., 2016).

The participation coefficient BT characterizes the extent to which

a region connects across all modules, where modules are normally

defined a priori from community detection methods that identify a set

of nodes as a module that are more strongly connected to each other

than nodes from another set. The time-resolved community structure

was used here according to (Shine et al., 2016) and it was estimated

by the Louvain modularity algorithm from the Brain Connectivity

Toolbox (Rubinov & Sporns, 2010). The participation coefficient for a

region i at time T is calculated as:

Bi,T ¼1�
XNM

s¼1

ki,s,T
ki,T

� �2

ð3Þ

where ki,s,T is the strength of the positive connections of node i to

nodes in module s at time T , ki,T is the sum of strengths of all positive

F IGURE 1 Schematic of manifold learning framework. (a) 2sDM
algorithm framework for time-synchronized multi-individual fMRI
time series. (b) 2-step out-of-sample extension framework with
BrainSync for new fMRI time points. Mathematical notations in the
figure are the same as those used in the corresponding Section 2.
fMRI, functional magnetic resonance imaging; 2sDM, 2-step
Diffusion Maps
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connections of node i at time T and NM is the number of modules, or

time-resolved communities in our setting. The participation coefficient

of a region is therefore close to 1 if its links are uniformly distributed

among all the modules and 0 if all its links are within its own module.

The whole brain participation coefficient BT represents the average of

Bi,T from each region and thus represents the integration and segrega-

tion pattern of the brain. BT is closer to 1 if our whole brain is more

integrated and closer to 0 if our whole brain is more d.

2.5 | 2-Step out-of-sample extension (OOSE) for
resting-state fMRI

To investigate the generalization of the task manifold and associated

brain states, resting-state data were embedding onto the manifold.

One of the challenges in nonlinear dimensionality reduction is to

extend new data points to the embedding space. Unlike linear dimen-

sionality reduction methods like PCA, there is no explicit mapping

from the original features to the new coordinates. Moreover,

appending the new data and redoing the dimensionality reduction is

often computationally costly. To deal with this, we specially designed

a corresponding 2-step out-of-sample extension (OOSE) framework

to embed new time points onto the existing temporal manifold.

The framework is illustrated in Figure 1b. The framework follows

a similar two-step structure to 2sDM where the Nyström extension

(Fowlkes, Belongie, Chung, & Malik, 2004) (a nonparametric OOSE

method, details provided in Data S1) is used to approximate the

reduced representation of the new time series in each step. Specifi-

cally, given new fMRI time series ~Xi,:,: �ℝV�T0
, i¼1,…,M from the same

group of individuals used for 2sDM embedding, we first approximate

the eigenvectors Ψ̂ 1ð Þ
i for each individual using Nyström extension.

Then we concatenate all the individuals' eigenvectors Ψ̂ 1ð Þ
i as the new

data points and approximate its eigenvectors Ψ̂ 2ð Þ
as the final

representation.

As the 2sDM algorithm requires the task designs across individ-

uals to be the same, this prevents embedding multi-individual resting-

state fMRI time series directly, which is also a problem for any other

scans that are not time-synchronized, for example, the language task

in the HCP dataset. To synchronize different individual's time series,

we used BrainSync, a framework that synchronizes fMRI time series

across individuals (Joshi, Chong, Li, Choi, & Leahy, 2018). BrainSync

synchronizes one individual's time series data Y�ℝV�T to another ref-

erence individual X�ℝV�T by finding an optimal orthogonal transfor-

mation that minimizes summed moment-to-moment squared error

Os ¼ argminO �O Tð Þ Xk �YOt
��2 . The validity of BrainSync is based on

the observation that the resting-state fMRI data exhibit similar con-

nectivity patterns across individuals and thus an orthogonal transfor-

mation is able to align two individual's time points as the time points

lie on a hypersphere. The problem can be solved by the Kabsch algo-

rithm (Kabsch, 1976). The T�T cross-correlation matrix XtY is first

formed and its singular value decomposition can be calculated as

XtY¼UΣVt . The optimal Os can be found by Os ¼UVt and Y can be

synchronized to X by YOst . By choosing a random individual as the

reference, BrainSync was applied to all the other individuals and their

time series were synchronized to the reference individual. After syn-

chronizing across individuals, we then used the 2-step OOSE frame-

work to extend them onto the task manifold and find the temporal

representation of resting-state fMRI for the reference individual.

To validate the 2-step OOSE framework, we used the task fMRI

data to cross-validate the accuracy of the OOSE framework. Using

leave-one-task-out cross-validation, a single task was held out when

generating the 2sDM manifold. The left-out task was then embedded

in the new manifold using our OOSE framework and compared with

the original embedding created using all tasks. If the held-out task's

extended coordinates are similar to the coordinates of the original

embedding, it suggests that the OOSE framework is accurate.

2.6 | Characterizing changes in brain states

By utilizing the temporal order of time points, we characterized the

brain dynamics across the four brain states by state transition proba-

bility and dwell time. State transition probabilities were calculated

based on the temporally adjacent time points' brain states. From these

state transition probabilities, a stochastic matrix and the dwelling

times (i.e., the stationary probability distribution of the stochastic

matrix) were calculated and visualized as Markov chain models. The

stationary distribution of the Markov transition matrix Ptrans is defined

as the distribution that does not change under application of the tran-

sition matrix π¼πPtrans , which is the left eigenvector of Ptrans . It rep-

resents the distribution to which the Markov process converges. It

was used in our experiment to represent the dwell-time distribution

of discrete brain states. As tasks putatively put a participant into cer-

tain states (as opposed to the unconstrained nature of the resting

state), we investigated differences in the temporal dynamics of state

switching during task and rest. We calculated entropy—a measure of

the randomness—of the transition probability from one brain state to

the other states. Entropy of a discrete probability distribution mea-

sures the uncertainty of the outcome. It is calculated as the negative

expectation of the logarithm of the probability mass function's value

S¼�ΣiPilogPi ¼�Ep logP½ � . In our experiment, entropy of the brain

state transition probability was used to assess the randomness of

brain state transitioning with lower entropy representing more easy-

to-predict brain state transition dynamics. Greater entropy indicates a

less predictable transition from one state to another.

2.7 | Experimental design and statistical analysis

No statistical methods were used to predetermine sample sizes. Other

than the stated exclusion criteria for motion and complete imaging

data, no participants and data points were excluded from the analysis.

Following exclusion for motion, there was no significant correlation

between motion and the embedding dimension. Parametric statistics

(e.g., t-test, correlation, and chi-squared test) were used when

appropriate.
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2.8 | Data availability

The HCP data used in this study are publicly available from the Con-

nectomeDB database (https://db.humanconnectome.org). The CNP

data used in this study are publicly available from OpenNeuro.org

(https://openneuro.org/datasets/ds000030). MATLAB scripts to run

the 2sDM analyses can be found at (https://github.com/carricky/

2sDM). BioImage Suite tools used for analysis can be accessed at

(https://bioimagesuiteweb.github.io/).

3 | RESULTS

3.1 | Brain dynamics during tasks embed onto a
low-dimensional space

Although each task is different in many ways, individual time points in

the fMRI data from all tasks mapped onto a single low-dimensional

manifold (Figure 2a). We find a global representation across multiple

tasks that positioned tasks with similar cognitive loads together. By

F IGURE 2 Nonlinear embedding of fMRI time series data. (a) 2sDM embedding of seven tasks (relational, social, motor, gambling, emotion,
working memory 2-back, and working memory 0-back) from the HCP dataset. Four different views of the manifold are shown. Each point in these
subplots represents a single time point and is colored by the task type. (b) Averaged temporal trajectory of each task with the embedding colored
by the corresponding brain state as the background. (c) WM task's 0-back and 2-back task blocks visualized separately with major cues and
fixations points annotated. Arrows show the progression direction of the trajectory. Trajectory in (b) and (c) uses the same colormap as (a). fMRI,
functional magnetic resonance imaging; HCP, Human Connectome Project; 2sDM, 2-step Diffusion Maps
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embedding multiple tasks together, rather than in isolation, the close-

ness of different blocks and tasks in the manifold suggest that similar,

recurring patterns of brain dynamics exist across a variety of tasks.

For example, in the manifold, the 2-back blocks of the WM task are

significantly (t¼201:9,p< :01,df¼175,102 ) closer to time points

from the gambling task (Euclidean distance: 0:0258�0:0096 ) than

the 0-back blocks of the WM task (Euclidean distance: 0:0355�
0:0100), despite the fact that the 2-back and 0-back blocks were col-

lected in the same fMRI run. The 2-back blocks of the WM task and

the gambling task both entail a higher cognitive load. In contrast, the

0-back blocks of WM task overlap with the motor task in the ψ1 coor-

dinate. These tasks are simpler response tasks and less cognitively

demanding. Overall, these time points are positioned based on the

similarity of the cognitive load at that time point, instead of by task.

For all tasks, the average trajectories from each task are found to

start near the corner where cues (task cues preceding each task block)

reside and end in the other corners depending on the task progression

patterns. These smooth trajectories indicate that the embedding pre-

serves proper temporal associations between blocks when arranging

time points in discrete states. All trajectories start in the same brain

state (bottom left corner) and are clustered together at the start. Then

the trajectories from each task traverses through different proportions

of the embeddings. As can be expected, the paths of these temporal

trajectories depend on the cognitive processes of the task block. For

example, the 2-back task traverses through the upper part of the man-

ifold (higher value in terms of ψ3), and, in contrast, the 0-back task tra-

verses through the lower part of the manifold (Figure 2b). More

detailed analysis of the task trajectories is included in the third sub-

section of Section 3 (Figure 5c). Moreover, as can be seen from the

top 20 eigenvalues of the diffusion matrix the spectrum decays rap-

idly, which suggests that the data is low-dimensional (Figure S1).

When projecting task fMRI time-frames into 3D space using

the first three coordinates of PCA, the embedding separates the

different task, rather than the different cognitive components

shared across tasks (Figure S4). In the 2sDM embedding, all tasks

have a similar arc-shaped and fill a wider range in the embedding

space (Figure 3). Individual time points are clustered accordingly to

their putative cognitive load. For example, time points in the fixa-

tion and cue task block concentrate in one of the two corners of

the arc. While time points for more demanding cognitive loads,

cluster near the peak of the arc. In contrast, for the 2-step PCA

embedding, time points are clearly only clustered by task and no

consistent pattern across tasks in the embedding are observed. In

other words, in the 2sDM, a clear gradient of cognitive demand

that is common across the tasks is observed. No such pattern is

observable with the 2-step PCA embedding. Other detailed com-

parison between 2-step PCA and 2sDM embeddings are included in

Figures S4–S7.

3.2 | Task embedding captures handcrafted
features in an unsupervised manner

In Figure 4, each time point in our task embedding is colored by its

subject-averaged BT , showing a clear pattern of decreasing BT starting

from the top left corner of the embedding; higher BT at the top of the

embedding (i.e., high cognitive load tasks such as social, 2back, rela-

tional and gambling) indicates time points of higher integration and

lower BT at the tails of the embedding (i.e., cues and fixations) indi-

cates time points of higher segregation (r z,BTð Þ¼ 0:41,df¼
3018,p< :01, where z is the projection coordinates of points onto the

diagonal of the triangular embedding; Figure 4b).

F IGURE 3 Each task independently visualized in the embedding. (a) 2-step Diffusion Maps embedding. (b) 2-step PCA embedding. The x, y
axis limits are kept the same within (a) and (b) for better cross-task comparison. The same task block colormap is the same used in Figure 2a. PCA,
principal component analysis
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3.3 | Operationalizing discrete, recurring brain
states from task dynamics

When clustering the task embedding, k¼4 gives the largest Calinski-

Harabasz score among a range, suggesting that the embedding has a

clear interpretable structure (Figure S6). Based on the task contents

of the temporal clusters, we labeled the four brain states as: fixation,

transition, lower-level cognition, and higher-level cognition. Function-

ally reasonable and distinct patterns of activation during the different

states are observed, for example, canonical patterns of default mode

network activity for the fixation state (Figure 5a). To relate these brain

states to previous handcrafted features, we calculated the average BT

for each brain state (Figure 5b). The four states followed the expected

patterns of BT , with the higher-level cognition state showing the

highest BT (t¼13:2,p< :01,df¼1527) and the fixation state showing

the lowest BT (t¼14:3,p< :01,df¼1297 ). The clustering results are

similar with an increased number of clusters or of embedding

dimensions.

With the help of the four brain states, the dynamic trajectories can

further reveal each task's cognitive process (Figure 5c). For example, the

motor task's trajectory reveals a dynamic cognitive process as following.

In the beginning, the individuals start from the cue state that was the

common starting state across the other tasks. Then, the individuals

briefly enter the high-cog state, but not deep in the state. Finally, individ-

uals enter and stay in the low-cog state. The trajectory also reveals that,

on average, individuals wander towards the fixation state in the middle

of the task block, suggesting a fatigue or practice effect. Towards the

end of the task block, individuals return deep into the low-cog state and

moved towards the cue state for the next task block to start.

Even for tasks like relational and social tasks that both require a

certain level of high-level cognitive ability (Shine et al., 2016), there

are differences that can be revealed by the trajectories. The relational

task starts from the transition cluster, then entered the higher-level

cognition cluster and ends in the low-cog state, which suggests a lack

of high-level cognitive ability involvement (adaptive to the task

design) in the later stage of the relational task blocks. In comparison,

the social task starts near the transition cluster, goes deep into the

high-cog state and returns to the transition state near the end of

the task, which suggests a constant requirement of higher-level cogni-

tive ability. This trajectory view of each task enables a better under-

standing of the cognitive process and can also help in the future task

designs.

The transitions between states are similar for all tasks except for

the motor task (which had a high probability of transiting into the

lower-level cognition state and out of the higher-level cognition state;

Figure 6a). Except for the WM task, which contains an equal propor-

tion of high (2-back) and low (0-back) cognitive loads), dwell times for

the four states exhibit a nonuniform distribution (χ2 > 16:3,d:f:¼
3,p < 0:001 ; Figure 6b), indicating participants spent most of their

time in certain limited states in a task-specific manner. For example,

the lower-level cognition state occurs most frequently in the motor

task, while the higher-level cognitive state dominates in social task

time points.

3.4 | Brain dynamics during rest embed onto the
same recurring brain states which appeared
during tasks

Once embedded onto the task manifold, time points from the resting-

state data spread across the whole manifold, including parts of the

manifold corresponding to higher cognitive loads (Figure 7a). To

F IGURE 4 2sDM embedding is related with participation coefficient. (a) 2sDM embedding in HCP dataset colored by the time-resolved BT .
(b) Scatter plot of the BT with the projection onto the diagonal of the embedding structure (z). Correlation of z with BT is shown with a line of best
fit. Projection direction z was determined manually as the approximate diagonal direction of the embedding. HCP, Human Connectome Project;
2sDM, 2-step Diffusion Maps
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quantify the distribution of states during rest, we assigned each

resting-state time point to one of the four previously identified brain

states based on the brain state of the nearest task time point. As with

the task data, we next calculated the brain state dwell time distribu-

tion across the entire resting-state scan (Figure 7b). A non-uniform

dwell-time distribution is discovered, with fixation and transition

states having a higher proportion of time points than the cognitive

states (χ2 ¼205,df¼3,p< :001). Except for the lower-level cognition

and the transition states in the social task (which have very few time

points to robustly calculate entropy, see Figure 7c), all states exhibit

higher entropy in the resting state than during a given task.

In Figure S2, we plot the extension of the WM task. The 2-back

and 0-back task blocks go to the correct higher-level cognition or

lower-level cognition state respectively, while the fixation and cue

time frames are also located in the correct brain states. The correla-

tion between the extended coordinates and the coordinates from the

original embedding was highly significant (r¼ :939,p< :001). Holding

out the other tasks produced similar results as the WM task.

3.5 | Replication of embedding

Notably, we replicated the dimensionality reduction result using par-

ticipants from the CNP dataset. A similar low-dimensional structure,

brain states were found, verifying the robustness of the observed

embeddings (Figure 8). Moreover, the same task scans from the

schizophrenia cohorts were also embedded separately and found to

be similar to the embedding from the HCP dataset and healthy control

cohorts in the CNP dataset (Figure S8). This laid foundation for the

downstream brain dynamics analysis (resting-state brain dynamics)

that would be based on brain states as similar brain states could be

identified in both groups.

F IGURE 5 Brain states during tasks. (a) Results of k-means clustering of the task manifold. Averaged brain activation patterns across subjects
in the circled representative time points are shown for each brain state. (b) BT averaged over all the time points in each brain state. (c) Two-
dimensional view of task trajectories with the embedding points. Trajectories are colored by each task and data points are colored by the brain
states as in (a)
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4 | DISCUSSION

Using a recently validated manifold learning framework, named 2-step

Diffusion Maps—2sDM (Gao et al., 2019), we demonstrate that fMRI

data from different tasks span the same low-dimensional embedding

(i.e., brain states). In other words, moment-to-moment dynamics from

any of these tasks group into the same small number of representative

patterns that are hidden from direct observation. The embedding

maintained proper temporal progression of the tasks, revealing brain

states and temporal dynamics of changes in network integration. Fur-

ther, we demonstrate that resting-state data project onto the same

task embedding using a specially designed out-of-sample-extension

method, indicating similar brain states are present. Finally, we validate

this embedding using an independent dataset.

Several other publications have organized the temporal dynamics of

the brain into a low dimension space or into distinct brain states (Allen

et al., 2014; Saggar et al., 2018; Vidaurre, Smith, & Woolrich, 2017) using

data from resting-state or a single task to construct the embedding

(Gallego et al., 2017; Shine et al., 2019). Together, these works suggest

that a low-dimensional structure exists; however, it is unclear how these

structures adapt to diverse cognitive loads. By projecting a rich repertoire

of task data into a single manifold, we show that, across different tasks,

parts of the embedding (i.e., brain states) are well characterized by the

extent to which the brain is integrated. Overall, the discrete states and

association with complex network measures suggest that our embedding

finds an intrinsic, latent structure of brain dynamics.

These results are in line with the theory that the brain is able to

reconfigure its large-scale organization dynamically either between

different cognitive tasks or within resting-state (Cohen &

D'Esposito, 2016; Shine et al., 2016). Further, they emphasize that

this reconfiguration is shared across different cognitive loads and,

importantly, resting-state. In other words, the same highly integrated

state that characterizes a cognitively demanding task, such as a

2-back WM task, can be observed during resting-states and less

F IGURE 6 Brain state
dynamics differ between tasks.
(a) Brain state dynamics
visualized as the Markov chain.
Transition probability is
visualized by the color of the
directed edges. Edges with
transition probability less than
0.03 are omitted for clarity.

(b) Stationary distribution
probability visualized for each
task and positioned by the
proportion of higher-level
cognition and lower-level
cognition brain states. Chi-square
test result against the uniform
distribution is also shown
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cognitively demanding tasks, just with less frequency. These states

can also be viewed from a dynamic system perspective (Taghia

et al., 2018). As clustering based on the eigenvectors of the normal-

ized graph Laplacian has been used to find meta-stable state in the

stochastic dynamical systems (Huisinga, Best, Roitzsch, Schütte, &

Cordes, 1999), the four brain states defined from the task scan can

also be viewed as four different metastable states. Further, the tem-

poral trajectories can separate different portions of tasks based on

cognitive demand, suggesting a potential utility of the embedding for

other downstream analyses of brain dynamics.

In line with this, the dynamics between states, rather than within

brain states themselves, appear to be the key distinguishing factor

between task and rest. In support of this, how the brain transitions

between different states is dependent on the task being performed

and is less predictable in resting-state compared to tasks. Executing a

task limits the transitions between states; while, during resting-state,

the brain can more liberally traverse through different states. Though

speculative, these results offer an explanation as to why task connec-

tivity data is better at identifying individuals and subsequent

predicting behaviors than resting-state connectivity data (Finn

et al., 2017; Greene, Gao, Scheinost, & Constable, 2018). Together,

while the resting state may exhibit similar states as observed during

task, the temporal dynamics of switching states are less predictable in

resting state compared to task.

F IGURE 7 Resting-state extended onto the task manifold. (a) Representative task activation patterns of each state and the neighboring
resting-state activation pattern are visualized. Correlation of the activation between task and rest is calculated with higher correlation

representing more accurate out-of-sample extension. (b) Stationary probability distribution of the four brain states during resting state.
(c) Entropy of each brain state's transition probability in different tasks. Dots are colored by tasks they represent, and the gray box plot shows the
entropy values of resting state with BrainSync (see Section 2) referenced to different individuals
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Previous work demonstrates that brain networks fluctuate

between states of low and high global integration during tasks as

characterized by the participation coefficient (BT ) from sliding-window

functional connectivity. Tasks requiring higher cognitive loads, such as

the 2-back condition in the WM task, exhibit greater integration while

less cognitive load, such as the motor task, exhibits lower integration

(Shine et al., 2016). A key drawback of these results is that they rely

on two intermediate steps (e.g., the method used to construct

dynamic functional connectivity and topological metrics to study),

rather than the learned features from unsupervised methods.

Together, our results suggest that the task embedding reveals latent

information about changes in network topology without the need for

handcrafted features. For example, each task can be effectively char-

acterized from the proportion of time spent in lower-level and higher-

level cognition states creating a similar ordering of task (see Figure 6b)

as in (Shine et al., 2016).

While resting-state fMRI is a powerful tool to map the functional

organization of the brain, inherent limitations exist. Resting-state is

often conceptualized as a single task state. Though emerging data,

including our results, suggest that resting-state is not one single,

monolithic state, but rather a collection of multiple states associated

with different cognitive loads that also appear during tasks (Cornblath

et al., 2020; van der Meer, Breakspear, Chang, Sonkusare, &

Cocchi, 2020; Vidaurre et al., 2017). In this paper, we find that

resting-state is dominated by both the fixation and transition state.

This aligns well with the previous research that also illustrates this bis-

table dynamic (Cornblath et al., 2020; van der Meer et al., 2020;

Vidaurre et al., 2017). Moreover, while the majority of resting-state

time points cluster into a single part of the manifold (such as the fixa-

tion blocks, which putatively are the most like “rest”), nearly a third of

the time points more closely match cognitive states. Perhaps, more

importantly different groups may have differences in “performing”
rest (Buckner, Krienen, & Yeo, 2013). How best to interpret changes

in resting-state connectivity in the presence of group differences in

dynamics is still an open question.

A key strength of our embedding framework is its data-driven

nature. We demonstrated that the embedding coordinates could

reveal topological information originally found using dynamic func-

tional connectivity methods (Shine et al., 2016). This brain topology

was found without specifying common modeling choices in dynamic

functional connectivity, such as how to model the functional connec-

tivity (i.e., statistical interdependence of signals) between brain

regions, an underlying graph/network, or even information about task

stimuli (e.g., block lengths). As a multitude of methodological choices

have been proposed to analyses (Calhoun, Miller, Pearlson, &

Adali, 2014; Hutchison et al., 2013; e.g., ways of estimating connectiv-

ity [Allen et al., 2014; Chang & Glover, 2010; Shine et al., 2015], con-

structing a weighted or unweighted graph [Rubinov & Sporns, 2010],

F IGURE 8 2sDM embedding and k-means clustering result of CNP dataset. CNP, Consortium for Neuropsychiatric Phenomics; 2sDM, 2-step
Diffusion Maps
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specific graph theory measures [Honey, Kotter, Breakspear, &

Sporns, 2007; Meunier, Lambiotte, & Bullmore, 2010; Shine

et al., 2016; Sizemore & Bassett, 2018]), our embedding framework

provides an end-to-end, data-driven approach without the need for

modeling choices to investigate brain dynamics. More generally, hand-

crafted features are being substituted by more automatic feature

learning-based nonlinear methods such as deep learning and nonlinear

embedding methods (Hamilton, Ying, & Leskovec, 2017). Our results

show a specific scenario in which “let the data speak for itself” is an

achievable option for modeling fMRI data.

A limitation of this work is that the embedding can only “look
under the light.” That is to say that, while a rich amount of task data

was needed to create the embedding, we could not include every pos-

sible task in creating the embedding. Indeed, it is highly likely that

many more than four brain states exist and that we have not detected

every single one. A finer grade delineation of states, probably through

further advancement in non-linear embedding methods, is a needed

future direction of work. Moreover, although here brain states are

defined based on the k-means clustering result, it does not rule out

other ways to define brain states. For example, at each time point, the

brain can also be modeled as being at different states with distinct

probabilities (Vidaurre et al., 2017), which can be achieved by a fuzzy-

clustering algorithm. Moreover, the brain state can also be character-

ized by the temporal trajectory, Trajectory clustering technique can be

used to cluster trajectories into trajectory-based brain states, which

takes account the temporal information of the embedding (Lee,

Han, & Whang, 2007). Our k-means clustering approach to defining

brain state is only one of the ways to summarize information of the

embedding and serves as a proof-of-concept that our embedding con-

tains information that is relevant to brain dynamics. Nevertheless, the

observed task embedding was similar across two different input

datasets with different tasks, suggesting that embedding is general to

factors such as scanner, task, processing, and sample size.

One of the assumptions of 2sDM is that the time frames from all

individuals are temporally aligned so that a group-average embedding

of the time frames can be obtained. However, this does not rule out

the applicability of the task scans that has different task block

lengths/orders across individuals (e.g., language task in the HCP

dataset) or the resting-state scans, which we have demonstrated in

the paper by applying BrainSync. Thus, task scans with distinct block

lengths/orders can also be embedded with 2sDM by applying

BrainSync first. It is worth noting that as BrainSync requires a specific

individual chosen as the reference, by aligning all the other individuals

to the same selected individual, the group-average embedding then

will approximate a cleaner temporal embedding of the selected indi-

vidual, which can be used to investigate individual-level dynamics.

Finally, 2sDM relies on diffusion maps to perform the embedding.

Other nonlinear embedding methods exist, such as t-Distributed Sto-

chastic Neighbor Embedding (t-SNE) and Potential of Heat-diffusion

for Affinity-based Trajectory Embedding (PHATE). Future work will be

to investigate the potential of these methods in embed timeseries

from a rich repertoire of tasks onto a single low-dimensional manifold

in using a similar two step framework. While nonlinear embedding

methods are better able to reveal manifold structures, the mappings

between the raw neural space and the low-dimensional coordinates

are harder to interpret. Future work will also address in more details

that how the neural spaces is interrelated with the 2sDM coordinates.

The ability to use data-driven methods to clearly identify a low-

dimensional space of brain dynamics, regardless of how the brain is

engaged during imaging, indicates that these brain dynamics are

robust and reliable across conditions in addition to being unique.

Together, these advances suggest that analysis of individual fMRI data

from multiple cognitive tasks in a low-dimensional space is possible,

and indeed, desirable.
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