UC Irvine
ICS Technical Reports

Title
Behavioral modeling of the Intel 8255A/8255A-5 programmable peripheral interface

Permalink
https://escholarship.org/uc/item/4z04x0ch

Authors

Chaiyakul, Viraphol
Dutt, Nikil D.
Gajski, Daniel D.

Publication Date
1991-03-18

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4z04x0cb
https://escholarship.org
http://www.cdlib.org/

//\ ™~
: LIBRARY ™

Notice: This Material & nivaetty of Catorain ™, =
may be protected ST gy
by Copyright Law o ©
(Title 17 U.S.C.) !

Behavioral Modeling of
The Intel 8255A/8255A 5
Programmable Peripheral Interface

Viraphol (Chaiydkul‘?,,_
Nikil D. Dutt
Daniel D.Gajski

Technical Report #91-27
March 18, 1991

Dept. of Information and Computer Science
University of California, Irvine
Irvine, CA 92717
(714) 856-8059

viraphol@ics.uci.edu

Contents

1 Introduction

2 The Intel 8255A
2.1 Functional Description of the Intel 8255A,

2.2 Structural Description of the Intel 8255A

3 Modeling Approach

3.1 Assumptions of Some Functionalities
3.2 Treatment of Timing Behavior
3.3 Simulator Specifics

4 Behavioral Model of The Intel 8255A

4.1 ACTIVE State e e e e
4.2 8255 Operational Behavior.
5 Testing
5.1 Example 1. . . 0 o e e e
52 Example2.................. e
5.3 Example 3. . . . o e
54 Exampled
5.5 Example 5. e e
5.6 Example 6. e e e
5.7 Example 7. . o o o o e e e e e e e e e e e

6 Summary

7 Acknowledgements

9

11

11

11

17

22

24

24

25

25

26

26

26

27

27

8 References

9 Appendix I

10 Appendix II

11 Appendix III

28

29

44

59

List of Figures

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Typical Application for the 8255A.« . .. 6
8255A Block Diagram and Pin Configuration. 6
Intel 8255A SpecCharts e 12
Flowchart For READ State 29
Flowchart For MODE 0 PORT A INPUT State 29
Flowchart For MODE 0 PORT B INPUT State 30
Flowchart For MODE 1 PORT A INPUT State 30
Flowchart For MODE 1 PORT B INPUT State 31
Flowchart For MODE 0 LOWER PORT C INPUT State 31
Flowchart For MODE 1 LOWER PORT C INPUT State 32
Flowchart For MODE 0 UPPER PORT C INPUT State 32
Flowchart For MODE 1 UPPER PORT C-45 INPUT State 32
Flowchart For MODE 1 UPPER PORT C-67 INPUT State 33
Flowchart For WRITE State 33
Flowchart For BIT SET State L3
Flowchart For BIT RESET State 35
Flowchart For PORT A MODE SELECTOR State 35
Flowchart For PORT B MODE SELECTOR State 36
Flowchart For UPPER PORT C MODE SELECTOR State 37
Flowchart For LOWER PORT C MODE SELECTOR State 38
Flowchart For MODE 0 PORT A OUTPUT State 39
Flowchart For MODE 0 PORT B OUTPUT State 39
Flowchart For MODE 1 PORT A OUTPUT State 40

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Flowchart For MODE 1 PORT B OUTPUT State 41
Flowchart For MODE 0 LOWER PORT C OUTPUT State e 41
Flowchart For MODE 1 LOWER PORT C OUTPUT State 42
Flowchart For MODE 0 UPPER PORT C OVUTPUT State 42
Flowchart For MODE 1 UPPER PORT C-45 OUTPUT State 42
Flowchart For MODE 1 UPPER PORT C-67 OUTPUT State 43
Test Vector For Example 1 45
Simulation Result For Example 1 e 46
Test Vector For Example 2 47
Simulation Result For Example 2 48
Test Vector For Example 3 49
Simulation Result For Example 3 50
Test Vector For Example 4 51
Simulation Result For Example4 52
Test Vector For Example 5 53
Simulation Result For Example 5 54
Test Vector For Example 6 55
Simulation Result For Example 6 56
Test Vector For Example 7 B 57
Simulation Result For Example 7 58

1 Introduction

This report describes the behavioral modeling of the Intel 8255A, Programmable Peripheral
Interface, which is designed for the use with Intel micro processors. We have used the
Intel data book [Intel87] description as the primary source of information. The information
provided in this data book includes the chip’s functionality according to its input/output,
timing and operational characteristics, and a functional block diagram. The report illustrates
a modeling approach in detail using state-charts, flowcharts and VHDL. The resultant model

was coded in VHDL and tested with the Vantage Analysis Systems VHDL simulator [Vant39].

This report is divided into 6 sections. Section 2 summarizes the functionalities and
structural view of the Intel 8255A. Section 3 discusses the modeling approach. Section
4 describes. the behavioral model of the chip using SpecCharts [VaNaGal, flowcharts and
pseudo-code. Section 5 outlines the testing stratégy for the resultant model, and a description
of each test scenario. Appendix I contains detailed flowcharts for the model. Appendix II
contains test vectors and test waveforms for those test scenarios describes in Section 5. And

finally, Appendix III provides a listing of the actual VHDL code for our behavioral model of

the Intel 8255A.

2 The Intel 8255A

The Intel 8255A is a general purpose programmable peripheral interface device designed
for use with Intel micro processors. Its function is to interface peripheral equipment to the

microcomputer system bus, as shown in Figure 1.

The Intel 8255A has 24 I/O pins which can be individually configured into 2 groups of

12 or 3 groups of 8 and used in 3 major modes of operation.

The configuration is programmed by the system software so that normally no external

logic is necessary to interface peripheral devices or structures.

2.1 Functional Description of the Intel 8255A

Figure 2 shows the block diagram for the 8255A. It contains three 8-bit ports(A, B, and C).
All can be configured in a wide variety of functional characteristics by the system software .

but each has its own special features or ”personality” to further enhance the poWer and

flexibility of the 8255A.

00..07

PA
P8
&-bit Peripheral
cPU < 8255-A <-'ﬁ:> Equipment
L ———

Figure 1: Typical Application for the 8255A.

- PiN CONFIGURATION
g ve ma NS w[) rag
':' c_-:}""" rar (2 =[] e
s a7 re
._-| rae(Je Y ear
B 0w
! ; ade » (7 sasay
o " w0 L]=LN
T K = g =D,
S (e M=
< (Jre ne
L Julll 2684 »J o,
> " sy nDo,
oA O o = wCo
fd 7 -
| »ce e e
' P 7 j [3ka i} a0 Ve
' : Lis] nl
‘ ! ' rea]r rl) .o
R — .'_'_‘.?' el 2 R canes mdw nh -
S e ":" E:'v”‘" e ni) -
[— - [1sf) n) e
l T
tl—-———T
PIN NAMES

{uy vy OATA BUS i
T AOSET PUT |
cHiP WLICY]

.. READ INPUT
L. WRITE INPUT
b A POAT ADORESE
PRAIPAS | PORT 4 (BT
RORT N T
w7 T

AV 18
["owo JvoLTe

|

ﬁl

Figure 2: 8255A Block Diagram and Pin Configuration.

o PortA consists of one 3-bit data output latch/buffer and one 3-bit data input latch.

o PortB consists of one 8-bit data input/output latch/buffer and one 8-bit data input

buffer.

e PortC consists of one 8-bit data output latch/buffer and one 8-bit data input buffer
(no latch for input). This port can be divided into two 4-bit ports under the mode
control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal

outputs and status signal inputs in conjunction with ports A and B.

These 24 1/O pins may be individually programmed in 2 groups of 12 and used in 3
major modes of operation. In the first mode (MODE 0), each group of 12 I/O pins may be
programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group
may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used
for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a

bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one

from the other group, for handshaking.

2.2 Structural Description of the Intel 8255A

e Data Bus Buffer
This 3-state bidirectional 8-bit buffer is used to interface the 8255A to the system
bus. Data is transmitted or received by the buffer upon execution of input or output
instructions by the micro processor. Control words and status information are also

transferred through the data bus buffer.

e CS_BAR (chip select)
A "low” on this input pin enables the communication between the 8255A and the micro

processor.

e RD_BAR (read)

A "low” on this input pin enables the 8255A to send the data or status information to

the micro processor on the data bus. In essence, it allows the micro processor to "read

from” the 8255A.

e WR_BAR (write)
A "low” on this input pin enables the micro processor to write data or control words

into the 8255A.

¢ AOLMODE and A1.MODE (port select 0 and port select 1)

These input signals, in conjunctions with the RD_BAR and WR_BAR inputs, control
the selection of one of the three ports or the control word registers. They are normally

connected to the least significant bits of the address bus.

e RESET
A 7high” on this input clears the control registers and all ports (A,B,C) are set to the

input mode.

e I/O PORTS (port A, B, and C)
These ports can be configured individually in a wide variety of functional characteristics

by the system software.

3 Modeling Approach

We have divided the modeling task into three major phases of incremental development. Dur-
ing the first phase, behavior of the Intel 8255A was described using state-charts, flowcharts
and pseudo-code. Description of the Intel 8255A chip from Intel data book [Intel87] is used as
a main source of specification. Since many aspects of the chip’s functionality are not clearly
described in the Intel data sheet, several assumptions have been made. More explanation

on these assumptions can be found later in this section.

In the second phase, each state and its corresponding flowchart is then converted into
VHDL code. The state is primarily modeled with process and block structures. The guard

at each entry to each block signifies the conditions under which a state is to be entered.

In the final phase, the VHDL code is compiled, simulated, and its resultant waveforms

are compared to those given in the Intel data book [Intel87].

3.1 Assumptions of Some Functionalities

The Intel data sheet description of the Intel 8255A was the only available source of specifica-
tion we could locate. Most of the chip’s functionalities can be extracted from the data sheet.
But some of these functions are either vaguely described or are entirely missing. Hence, we

made logical assumptions to fill these gaps in the behavior. These assumptions are listed

below:

e Reset Operation

The data sheet does not clearly say what happens if the chip is reset while in the
middle of a wait operation (e.g. waiting for handshaking signals). In our model,
we assume that if a RESET signal is activated, the chip will abort any encountered
waiting operations while trying to complete the current I/O operation. The chip then
puts itself into the RESET state. Hence, in the scenario where the chip is waiting on a

handshaking signal, the chip will abort the wait, finish the current operation and enter
the RESET state.

To model this process, an additional check for the RESET signal is added to every
waiting operation in every state. The condition of the wait should be satisfied if the

RESET signal is activated. (See the actual VHDL code in the Appendix III for more

detail).

Chip Enable Operation

In our model, we assume that if the chip is disabled, communication between the 8255A
and the micro processor will be disabled. However, in some modes, communication
between the 8255A and external devices is allowed. For example, in mode 1 input
(handshaking operation), latching of data from external devices is performed regardless
of whether the chip is enabled or disabled. The data will remain in the latch until the
chip (8255A) is enabled again. Similarly, durin‘g‘ a handshaking output operation, if
the chip is disabled after the data is latched from the micro processor data bus, the

data will remain in the latch until the external device acknowledges the acceptance.

Mode Select Operation

A new setting of the chip’s configuration will only take effect at the beginning of any

read /write cycle. In another word, if the chip is in the middle of a read/write operation

10

when its configuration is altered, the chip will maintain the old configuration until
it completes that read/write cycle. Subsequently, it will be configured to the new

configuration setting.

3.2 Treatment of Timing Behavior

Timing specifications of the Intel 8255A from the Intel data book [Intel87] represent physical
characteristics of the real chip. All timing delays are coded as inertial delays in the final
VHDL model. However timing constraints (e.g., setup time, hold time etc.) are controlled

by VHDL assertions. Error messages are reported when timing constraints are violated.

3.3 Simulator Specifics

The VHDL model given in Appendix III has been successfully simulated under the Vantage

Analysis Systems, version 1.08 [Vant89]. The waveforms given in Appendix II are direct

screen dumps from the Sun workstation.

4 Behavioral Model of The Intel 8255A

The behavioral of the Intel 8255A can be modeled using SpecCharts [VaNaGa) consisting of

2 primary states: RESET state and ACTIVE state (Figure 3).

A brief description of each state is given below. Appendix I shows detailed flowcharts for

each state of the SpecCharts in Figure 3.

11

lntel 8255A port A mode = { modeQ In, mode0d out, mode1 in, modet out, mode2 }
B o - ode0 i modeC aut moded n, mode! 94t} all mods
. pon 8 = in out, o1 in @1 out, nu e
INTERNAL SIGNALS: u port C mode = { moded in, mode0 out, mode1 in, mode1-45 in, mode 145 out,
mode1-67 in, mode1-67 out, nuil mode}
read req A, read req B, read req | C, read req u C, out en A, out en B, out en | C, out en u C, bit satreset en,

config en
RESET =1
RESET F
RESE‘ 0 RESET = 1
READ ‘AODEO PORTA g MODE1 PORT A |MODED PORT B §MODE1 PORT B
AD=04CE =0 INPUT) ut INPUT
= - Bport A mode = moded in TbortA mode = made irfo .pons ode = Modep in hxamoda.mnoq n
ku | .\,‘ i B s\‘ i k‘
] [] | []
b4 ' I ' ! 9
AD=04CE=0 %onAmodo- in & RoortA mods « modet infe ' oce = moded in & i
goxireqAn 'm;A-1 lmrqB- m n Imuaar:o‘d. =mode{in &
---ER----- RO N E S W O O R R I U W O m W - N R D e e
"MODEO LOW MODE1 LOWER MODEO UPPER
PORT C INPUT (\ 8poRT ¢ INPUT E PORT CINPUT
| portC mode = mode0n § ! ponC mode = moda ! i i U portC mods = mode0 in
L ['
[] i
| portC mode = mode? jn & i ' : 1
- | portC mode « oou‘t portC mode = &
readreqiCat d :rmmqm.'m n : r“':”.qrr:‘c- mode0 in
-----ﬁ----------'--- - O - WO E s W s
[MODE1 UPPPER MODE1 UPPER MODE1 UPPER TMODE1 UPPER
C 45INPUT IpoRTC 57|Npu1- EPORT C45 OUTPUT EIPORT C 670UTPUT
1 poriC = mode1 § U PortC mode » mode Ju portC mode = Mode1-45 1 u porC mode = mode 167 4
] [] []
i 1]
PoriC mode = mode i 1 1
. | poriC mode = mode!-67in & - -
read r6qIC = 1 ‘ | V.P:fm“""lc_‘ l:!fg:fqﬂf?ﬂmodﬂ -45 1 upovgqn:’odc mode 167 0
WRITE i MODED PORT A lMODEi PORT A .MODEO PORT B' ' MODE1 PORT B
e OUTPUT OUTPUT OUTPUT OUTPUT L
WR=04aZE~0 HportA mode = moded out RpoAm (JoortB mode = Moded o 1 port8 mode = mod
1 [|] []
1 1 1 1
1 1] 1
WR=04CE~0 - 1A mods = moda 18 moda = modeo b [] .
g B)] B gt R ™
0 MODE1 LOWER MODEO UPPER
PORT C OUTPUT 1 pORT C OUTPUT 1 pORT € OUTPUT
1 portC mode = moded out 1 | poriC mode = modet out 1 u portC mode = Mode0 out
[] N [] .
1 1
' ? ' h 4
lporCmodo-modoOou(& B | portC mode = modet out &] U porC mode = Mode0 out &
outen!Ce i g oteniCat 1 outenuC=1
I W = E e N Ew --------'-------- -------r------l
PORTB UPPER PORT C LOWER PORT C

ORT A
BITSETRESET 400 SeiecToR TMODE SELECTOR !MODE SELECTOR $MODE SELECTOR

§ L]
%rsermessrm 1 I CONFIGEN=1 | CONFIG EN = 1 B CONFIG EN = 1 | CONFIG EN = 1
1 1 L,] 1
[] 1 1 1
]] . @ [] 9 []
BIT SET/RESET L 1 CONFIG EN = 1 : CONFIG EN = : CONFIG EN x {
[]

Figure 3: Intel 8255A SpecCharts

12

e RESET State

This state performs the reset operation. It can be invoked at anytime by activating
the reset signal. In this state, control registers are cleared and all ports (A,B,C) are

set to the input mode 0. The chip will remain in this state until the reset signal is

deactivated.

e ACTIVE State

This state consists of 25 concurrent states. They are modeled concurrently because
external devices can communicate with the 8255A through any of its 3 ports simul-
taneously. But since a port can only operate in one mode at a time, a port mode
internal signal is assigned to each port as a control signal. The only exception is port
C, which has two signals, since its upper and lower half can be configured differently.

These control signals are described below.

Note that among these 25 concurrent states, there is no special state to handle mode?2
configuration of the chip. This is because we have modeled the configuration of mode?2

as a combination of operations from other modes.

The model consists of several internal signals. These signals are used as control signals

to determine the activation of each state in the model. Descriptions for these signals are

given below:

e port A mode

This signal indicates the mode cohﬁguration for port A. The port A mode signal can

be set to only one value/mode as specified in Figure 3 (mode 0 input, mode 0 output,

13

mode 1 input, mode 1 output, mode 2). Hence, I/O operations from/to port A need

to consult port A mode signal before initiating the operation.

port B mode

This signal indicates the mode configuration for port B. The port B mode signal can
be set to only one value/mode as specified in Figure 3 (mode 0 input, mode 0 output,
mode 1 input, mode 1 output). Hence, I/O operations from/to port B need to consult

port B mode signal before initiating the operation.

l(ower) port C mode

This signal indicates the mode configuration for the lower 4 bits (C0-3) of port C. The
[port C mode signal can be set to only one value/mode as specified in Figure 3 (mode
0 input, mode 0 output, mode 1 input, mode 1 output, null mode). null mode occurs
when all the lower 4 bits of port C are used as handshaking signals (e.g. combination
of mode 1). Hence, I/O operations from/to lower 4 bits of port C need to consult the

[port C' mode signal before initiating the operation.

u(pper) port C mode

This signal indicates the mode configuration for the upper 4 bits (C4-7) of port C. The
u port C mode signal can be set to only value/mode as specified in Figure 3 (mode
0 input, mode 0 output, mode 1-45 input (only bit 4 and 5 are activated), mode 1-
45 output, mode 1-67 input (only bit 6 and 7 are activated), mode 1-67 output, null
mode). null mode occurs when all upper 4 bits of port C are used as handshaking
signals (e.g. mode 2). Hence, I/O operations from/to upper 4 bits of port C need to

consult the u port C' mode signal before initiating the operation.

14

o read req(uest) (port) A

This signal is controlled by the READ process. The signal is activated when the micro
processor issues a read command. When active, the read req A signal indicates the

- transfer of data from port A onto the micro processor data bus.

e read req(uest) (port) B

This signal is controlled by the READ process. The signal is activated when the micro

processor issues a read command. When active, the read req B signal indicates the

transfer of data from port B onto the micro processor data bus.

e read req(uest) l(lower) (port) C

This signal is controlled by the READ process. The signal is activated when the micro
processor issues a read command. When active, the read req | C signal indicates the

transfer of data from the lower 4 bits (C0-C3) of port C onto the micro processor data

bus.

e read req(uest) u(pper) (port) C

This signal is controlled by the READ process. The signal is activated when the micro
processor issues a read command. When active, the read req u C signal indicates the

transfer of data from the upper 4 bits (C4-C7) of port C onto the micro processor

data bus.

e out en(able) (port) A

This signal is controlled by the WRITE process. The signal is activated when the micro

processor issues a write command. When active, the out en A indicates the transfer

15

of data from the micro processor data bus into the internal latch of the 8255A or into

the external device data bus through port A, depending on the port configuration.

out en(able) (port) B

This signal is controlled by the WRITE process. The signal is activated when the micro
processor issues a write command. When active, the out en B indicates the transfer

of data from the micro processor data bus into the internal latch of the 8255A or into

the external device data bus through port B, depending on the nort configuration.

out en(able) l(ower) (port) C

This signal is controlled by the WRITE process. The signal is activated when the micro
processor issues a write command. When active, the out en [Cindicates the transfer
of data from the micro processor data bus into the internal latch of the 8255A or into

the external device data bus through the lower 4 bits (C0-C3) of port C, depending on

the port configuration.

out en(able) u(pper) (port) C

This signal is controlled by the WRITE process. The signal is activated when the micro
processor issues a write command. When active, out en u C indicates the transfer of
data from the micro processor data bus into the internal latch of the 8255A or into

the external device data bus through the upper 4 bits (C4-C7) of port C, depending

on the port configuration.

bit set/reset en(able)

This signal is controlled by the WRITE process. The signal is activated when the

micro processor requests any of the eight bits of port C to be set or reset. This feature

16

reduces software requirements in control-based applications.

e config(uration) en(able)

This signal is controlled by the WRITE process. The signal is activated when the

micro processor requires alteration of the chip’s configuration.

4.1 ACTIVE State

A brief discussion of the 25 concurrent states within the ACTIVE state are provided as

follow:

¢ READ State

This state is responsible for controlling read operations. During a read cycle, the read
enable signal is activated from this state to the port specified by the micro processor
(through the signals A0 and Al). This results in the transfer of data from the internal

latch or external devices onto the micro processor data bus.

¢ MODE 0 PORT A INPUT State

This state is activated if port A is configured to mode 0 input and a read request

signal is received. Data from port A is transfered onto the micro processor data bus

on completion of this state.

e MODE 0 PORT B INPUT State

This state is activated if port B is configured to mode 0 input and a read request
signal is received. Data from port B is transfered onto the micro processor data bus

on completion of this state.

17

e MODE 1 PORT A INPUT State

This state is activated if port A is configured to mode 1 input or mode2, and strobe
signal is received from the external device. This state performs the handshaking input

operation with the external device that is connected to port A.

e MODE 1 PORT B INPUT State

This state is activated if port B is configured to mode I input and strobe signal is

received from the external device. This state performs handshaking input operation

with the external device that is connected to port B.

¢ MODE 0 LOWER PORT C INPUT State

This state is activated if the lower port C is configured to mode 0 input and a read
request signal is received. The lower 4 bits of data from port C (C0-C3) are transfered

onto the micro processor data bus on completion of this state.

¢ MODE 1 LOWER PORT C INPUT State

This state is activated if lower the port C is configured to mode I input and a read
request signal is received. Data from bits 0-2 of port C are transfered onto the micro

processor data bus on completion of this state (this state happens in mode2 configu-

ration).

¢ MODE 0 UPPER PORT C INPUT State

This state is activated if the upper port C is configured to mode 0 input and a read
request signal is received. The upper 4 bits data from port C (C4-C7) are transfered

onto the micro processor data bus on completion of this state.

¢ MODE 1 UPPER PORT C-45 INPUT State

18

This state is activated if the upper port C is configured to mode 1 bit 4-5 input and a
read request signal is received. Data from bits 4 and 5 of port C are transfered onto

the micro processor data bus on completion of this state.

MODE 1 UPPER PORT C-67 INPUT State

This state is activated if the upper port C is configured to mode 1 bit 6-7 input and a

read request signal is received. Data from bits 6 and 7 of port C are transfered onto

the micro processor data bus on completion of this state.

WRITE State

This state is responsible for controlling write operations. During a write cycle, out
en(able) signal is activated from this state to the port specified by the micro processor
(through A0 and Al signals). This results in the transfer of data from the micro

processor data bus into the 8255A latches or onto the external device data bus.

In the case of a mode selection operation, the configuration enable signal will be ac-
tivated from, this state. And in the case of a bit set/reset operation, the bit set/reset

enable signal will be activated from this state.

BIT SET/RESET State

This state is responsible for setting and resetting any of the eight bits of port C and
interrupt flip-flops. It is activated by the bit set/reset en(able) signal which is controlled

by the WRITE state.

PORT A MODE SELECTOR State

This state waits for the config(uration) en(able) signal to be activated by the WRITE

state. Upon the activation, it reads the data bus and sets the internal control signal

19

port A mode to the mode which is specified by the configuration given on the micro

processor data bus.

e PORT B MODE SELECTOR State

This state waits for the config(uration) en(able) signal to be activated by the WRITE
state. Upon the activation, it reads the data bus and sets the internal control signal

port B mode to the mode which is specified by the configuration given on the micro

processor data bus.

¢ UPPER PORT C MODE SELECTOR State

This state waits for the config(uration) en(able) signal to be activated by the WRITE
state. Upon the activation, it reads the data bus and sets the internal control signal

- u(pper) port C mode to the mode which is specified by the configuration given on the

micro processor data bus.

¢ LOWER PORT C MODE SELECTOR State

This state waits for the config(uration) en(able) signal to be activated by the WRITE
state. Upon the activation, it reads the data bus and sets the internal control signal

I(ower) port C mode to the mode which is specified by the configuration given on the

micro processor data bus.

¢ MODE 0 PORT A OUTPUT State

This state is activated if the control port A mode signal is set to mode 0 output and out
en(able) signal for port A is activated. Subsequently, it transfers data from the micro

processor data bus onto the external device bus connected to port A.

e MODE 0 PORT B OUTPUT State

20

This state is activated if the control port B mode signal is set to mode 0 output and out
en(able) signal for port B is activated. It then transfers data from the micro processor

data bus onto the external device bus connected to port B.

e MODE 1 PORT A OUTPUT State

This state is activated if the control port A mode signal is set to mode 1 output or mode

2, and out en(able) signal for port A is activated. This state performs handshaking

communication with the external device.

e MODE 1 PORT B OUTPUT State

This state is activated if the control port B mode signal is set to mode 1 output and out

en(able) signal for port B is activated. This state performs handshaking communication

with the external device.

¢ MODE 0 LOWER PORT C OUTPUT State

This state is activated if the control /(ower) port C signal is set to mode 0 output and
out en(able) signal for lower port C is activated. It then transfers data from the micro

processor data bus onto the external device connected to lower 4 bits of port C.

¢ MODE 1 LOWER PORT C OUTPUT State

This state is activated if the control [(ower) port C signal is set to mode I output and
out en(able) signal for lower port C is activated. It then transfers data in bit 0-2 of

the micro processor data bus onto bit 0-2 of the external device connected to port C

(this situation happens in mode2 configuration).

e MODE 0 UPPER PORT C OUTPUT State

21

This state is activated if the control lfower) port (' signal is set to mode I output and
out en(able) signal for lower port C is activated. It then transfers lower 4 bits data

from the micro processor data bus onto the external device which is connected to port

C.

e MODE 1 UPPER PORT C-45 OUTPUT State

This state is activated if the control u(pper) port C signal is set to mode 1 C-45 output
and out en(able) signal for upper port C is activated. It then transfers data in bits 4

and 5 of the micro processor data bus onto bits 4 and 5 of port C.

e MODE 1 UPPER PORT C-67 OUTPUT State
This state is activated if the control u(pper) port C'signal is set to mode 1 C-67 output
and out en(able) signal for upper port C is activated. It then it transfers data in bits

6 and 7 of the micro processor data bus onto bits 6 and 7 of port C.

¢

4.2 8255 Operational Behavior

A typical sequence of operations for the Intel 8255A would involve enabling the chip (CE_BAR

= 0) and then resetting the chip (RESET = 1). Subsequently, data can be read from or

written to external ports according to the current port configuration.

For data to be written to external ports from the micro processor, the following sequence
of events occurs: The micro processor places the data on the data bus and sets the control
signals specifying which port is to be written into. Then, the micro processor sets the

WRITE_BAR signal low, which causes data to be latched into the internal registers. At

22

the same time as when WRITE_BAR goes low, the chip enters Write state, decodes the
controlled signals and sends the out en(able) signal to the port which is specified by the
controlled signals. This activates one of the concurrent OUPUT states to perform its function

depending on the current mode setting.

For a data to be read from external ports into the micro processor data bus, a sequence
of the following events occur: The micro processor gives a combination of control signals
which specify which port is to be read from. Then it places a low signal on the READ_BAR
line. Upon sensing the low on READ_BAR, the chip enters the Read State, decodes the

port control signals and sends a read req(uest) which wakes up one of the concurrent INPUT

States to perform the read operation.

To change the configuration of the chip, the micro processor places a control word on the
data bus and invokes the Write process by giving low signal on the WRITE_BAR line. In the
Write state the chip decodes the control words and detects a mode changing operation. This
enables the MODE SELECTOR states (by activating the config(uration) en(able)'signa,l) to

change the mode according to the given control word.

To set or reset the interrupt masking register or handshaking signals, the micro pro-
cessor places a control word on the micro processor data bus and set a low signal on the
WRITE_BAR line. When WRITE_BAR goes low, the chip enters the Write state. If it
detects the control word to be a Bit Set/Reset operation, it enables the bit set/reset en(able)
signal and thereby brings itself into the BIT SET/RESET State. In this state, the signals

and registers are set/reset depending on the given control word.

23

5 Testing

This section describes seven typical operational scenarios for the Intel 8255A chip. These test
scenarios are derived from typical operational sequences specified in the data book description
of the 8255A [Intel87]. Each of these scenarios (labeled as "Example”) is accompanied by a
test vector, in the Vantage Analysis Systems’ simulator format, and waveforms showing the

result of the simulation on the Vantage Analysis Systems VHDL Simulator[Vant89]. (Test

vectors and waveforms can be found in Appendix II.)

5.1 Examplel

In this example all ports are set to mode 0. Then a sequence of data is set on the data bus

to be written to each of the 3 ports in the following sequence:
Data Bus — Port C
Data Bus — Port B

Data Bus — Port A

The test vector for this example is provided in Figure 30 and its corresponded wave form

is given in Figure 31.

24

5.2 Example 2

In this example all ports are set to Mode 0. Then a sequence of data is read in from each of

the 3 ports in the following sequence:
Port A — Data Bus
Port B — Data Bus
Port C — Data Bus

The test vector for this example is provided in Figure 32 and its corresponded wave form

1s given in Figure 33.

5.3 Example 3

In this example the test vectors are set up to test the Mode 1 read operation of Port A.

Port A — Data Bus (MODE 1)

The test vector for this example is provided in Figure 34 and its corresponded wave form

is given in Figure 35.

5.4 Example 4

In this example the test vectors are set up to test the Mode 1 write operation of Port A.

Data Bus — Port A (MODE 1)

25

The test vector for this example is provided in Figure 36 and its corresponded wave form

is given in Figure 37.

5.5 Example 5

In this example the test vectors are set up to test the Mode 1 read operation of Port B.

Port B — Data Bus (MODE 1)

The test vector for this example is provided in Figure 38 and its corresponded wave form
is given in Figure 39.
5.6 Example 6

In this example the test vectors are set up to test the Mode 1 write operation of Port B.

Data Bus — Port B (MODE 1)

The test vector for this example is provided in Figure 40 and its corresponded wave form

is given in Figure 41.

5.7 Example 7

In this example the test vectors are set up to test both read and write operations in Mode

2 of Port A, in the following sequence:

26

Data Bus — Port A (MODE 2)

Port A — Data Bus (MODE 2)

The test vector for this example is provided in Figure 42 and its corresponded wave form

is given in Figure 43.

6 Summary

This report described the behavioral model of a commercial chip: the Intel 8255A. The
modeling was derived from the Intel data book description as the initial specification. The
behavioral model was developed using SpecCharts, flowcharts and pseudo-code. Subse-
quently, these flowcharts were coded in VHDL and tested on a commercial VHDL simulator
(Vantage Analysis Systems). To verify the correctness of the behavior, a set of seven typical
operational test cases were used as stimuli in the simulation and resultant waveforms were

compared to those given in the Intel data book.

7 Acknowledgements

The authors of this report would like to thank Sanjiv Narayan, Joe Lis, and Rajesh Gupta

for their help. We gratefully acknowledge the support of SRC under contract 90-DJ-146 and

NSF under grant MIP-9009239.

27

8 References

[Intel87]

[Vant89]

[VaNaGa]

[VHDLS7]

Intel data book, November 1987, pp. 6-63 to 6-86, Order Number:

231308-002.
Vantage Analysis Systems, Inc, Fremont, CA 1989.

Vahid, F., Narayan, S., and Gajski, D.D., "SpecCharts: A Language
for System Level Specification and Synthests”, University of California,

Irvine, Technical report 90-19, July 1990.

[EEE Standard VHDL Language Reference Manual, IEEE, 1987.

28

9 Appendix 1

This appendix contains detailed flowcharts for behavior model of the Intel 8255A. Explana-

tion for each of this flowchart is given in Section 4.

IF A0_MODE = 0 AND
A1 MODE =0

L]
YEB
{F AO_MODE =1 AND
A1_MODE =0
NO
IF AO_MODE = 0 AND
A1_MOOE =1

I WAIT UNTIL (READ_ACK = I)J

L

I DATA_BUS = INTERNAL_REGISYER,

READ_REQ_PORT_A =1

READ_REQ_PORT 8= 1

READ_REQ_PORT_C =t

Figure 4: Flowchart For READ State

INTERNAL_REG(0..7) = PORT_A(0..7)
READ_ACK = 1

END

Figure 5: Flowchart For MODE 0 PORT A INPUT State

INTERNAL_REG(0..7) = PORT_B(0..7)
READ_ACK = 1

END

Figure 6: Flowchart For MODE 0 PORT B INPUT State

WAIT UNTIL PORT_C(4) = 0

1

PORT_C(5) = 1

IF RD_BAR = 1 AND
INTEA = 1

Nor-

WAIT UNTIL RD_BAR =

1

YES .| WAIT UNTIL PORT_C(5) = 1 AND
PORT_C(4) =1
0 PORT_C(3) = 1

INTERNAL_REG(0..7) = PORT_A(0..7)

READ_ACK = 1
PORT_C(3) =0

L

WAIT UNTIL PORT_C(4) = 1 AND

RD_BAR = 1

1

PORT_C(5) = 0

Figure 7: Flowchart For MODE 1 PORT A INPUT State

30

WAIT UNTIL PORT_C(2) = 0

1

PORT_C(1) = 1

IF RD_BAR = 1 AND YES p| WAIT UNTIL PORT_C(1) = 1 AND
INTEB = 1 PORT_C(2) = 1
NO i: l
WAIT UNTIL RD_BAR =0 PORT_C(0) = 1

1 4

INTERNAL_REG(0..7) = PORT_B(0..7)
READ_ACK = 1
PORT_C(0) =0

1

WAIT UNTIL PORT_C(2) = 1 AND
RD_BAR = 1

1

PORT_C(1) = 0

Figure 8: Flowchart For MODE 1 PORT B INPUT State

INTERNAL_REG(0..4) = PORT_C(0..4)
READ_ACK = 1

il

Figure 9: Flowchart For MODE 0 LOWER PORT C INPUT State

31

INTERNAL_REG(0..2) = PORT_G(0..2)
READ_ACK =1

END

Figure 10: Flowchart For MODE 1 LOWER PORT C INPUT State

!

INTERNAL_REG(4..7) = PORT_C(4..7)
READ_ACK = 1

END

Figure 11: Flowchart For MODE 0 UPPER PORT C INPUT State

INTERNAL_REG(4..5) = PORT_C(4..5)
READ_ACK = 1

END

Figure 12: Flowchart For MODE 1 UPPER PORT C-45 INPUT State

32

INTERNAL_REG(6..7) = PORT_C(6..7)
READ_ACK = 1

Figure 13: Flowchart For MODE 1 UPPER PORT C-67 INPUT State

INTERNAL_REGISTER = DATA_BUS

1

IF AO_MODE = 0 AND

A1_MODE =0 WRITE_REQ_PORT_A=
YES
IF AO_MODE = 1 AND WRITE_REQ_PORT B =1
A1_MODE =0
NO
IF A0_MODE = 0 AND YES ‘
A1 MODE = 1 WRITE_REQ_PORT C =1
NO
YES
|F AO_MODE =1 AND j
A1_MODE =1 CONFIG_EN =1
END

Figure 14: Flowchart For WRITE State

33

an
INTERNAL_REGQ an

IF INTERNAL_| REG 3) =
INTERNAL_] REG

[+]
-0
=0

=0 and
O and

REG(2

1F INTERN:L REG;G;
INTERNAL_REG (1

ERNAL_REG(2! and

IF INTERNAL REG(J) = ¢ and
INT =0
INTERNAL_REG(1) =« Q

RNAL_REG

tF INTERNAL_HEG{S; g
INTERNAL_REG(1) = 0

= 0 and
=0 and
0

IF INTEANAL_REG(3)
INTERNALJQEG{zE
INTERNAL_REG((t

=0 and
INTERANAL_REG(2) = 0 and

IF INTERNA L._REGg
INTEANAL_REG(1

=0 and
NAL_REQG(2 0 and

iF INTEHNAL RE G
INTERNALZREG(1

IF INTERNA REG
INTERNAL _REG (2
lNTEHNAL REG(1

Figure 15:

_——> C(3) = INTERNAL_REG(0)

—————-’ < INTERNAL_REG(0) _ﬂ
h}TE2 INTERNAL_RE 20)
c(e’ INTERNAL_REG(0!
—_—p G TRA v I N |
INTEA = INTERNAL_ _REG(0)

C(0) = INTERNAL_REG(0) e

C(1) = INTERNAL_REG(0) r_.___h

INTERNAL_REG(Q
IN(TEB INTERNKL_RE(G)(O)

G(5) = INTERNAL_REG(0)

C(7) = INTERNAL_REG(0)

Flowchart For BIT SET State

34

BEGIN

h 4

INTEA =0
INTEB =0
INTE1 =0
INTE2 =0

END

Figure 16: Flowchart For BIT RESET State

PORT A « MODEQ INPUT

PORT A = MODE 1 NPUT PORT A =~ MODE1 NPUT

I j 1

) 4

YES
1F INTERNAL_REG(8) = 1 PORT A = MODE2

END

Figure 17: Flowchart For PORT A MODE SELECTOR State

39

PORT B = MODEQ INPUT

1
NO
IF INTERNAL_REG(2) = 0
YES
NO
PORT B = MODEO OUTPUT AT 8 = MODE 0 INPUT
L o1
YES
IF INTERNAL_REG(1) = 1 PORT B = MODE 1 NPUT »‘
1 No
PORT B = MODE! INPUT
e
END

Figure 18: Flowchart For PORT B MODE SELECTOR State

36

PORT A(0..7) = INTERNAL_REG(0..7)

Figure 21: Flowchart For MODE 0 PORT A OUTPUT State

PORT B(0..7) = INTERNAL_REG(0..7)

L

Figure 22: Flowchart For MODE 0 PORT B OUTPUT State

39

WAIT UNTILWR_BAR =0

YES
IFINTEA =1 PORT C(3) =0

1

NoI'-

PORT A(0..7) = DATA BUS (0..7)

=){ PORT C(7) = 0]
1

IF PORT C(6) =

[WAIT UNTIL PORT C(8

WAIT UNTIL POHT C{7) = 1 AND
PORT C(6) = 1 AND
WR_ BAR =1

| PORTC -0

Figure 23: Flowchart For MODE 1 PORT A OUTPUT State

40

WAIT UNTIL WR_BAR =0

YES |
IFINTEB =1 »i PORT C(0) =0

NoI-
PORT B(0..7) = DATA BUS (0..7)
IF PORT C(2) = 1 es >! PORT C(1) = 0 l
1

I WAIT UNTIL PORT C(2) =0

PORT C(1

WAIT UNTIL PORT C(2) =1 AND
PORT C(1) =1 AND
WR BAR =1

PORT C(O) 0

Figure 24: Flowchart For MODE 1 PORT B OUTPUT State

PORT C(0..4) = INTERNAL_REG(0..4)

END

Figure 25: Flowchart For MODE 0 LOWER PORT C OUTPUT State

41

!

PORT C(0..2) = INTERNAL_REG(0..2)

QF

Figure 26: Flowchart For MODE 1 LOWER PORT C OUTPUT State

PORT C(4..7) = INTERNAL_REG(4..7)

Jr

END

Figure 27: Flowchart For MODE 0 UPPER PORT C OUTPUT State

PORT C(4..5) = INTERNAL_REG(4..5)

Figure 28: Flowchart For MODE 1 UPPER PORT C-45 OUTPUT State

42

PORT C(6..7) = INTERNAL_REG(6..7)

L

Figure 29: Flowchart For MODE 1 UPPER PORT C-67 OUTPUT State

43

10 Appendix II

This appendix contains test vectors and test waveforms for those test scenario describes in

Section 5.

44

addev [CS_BAR] :signal {[FO
addev [WR_BAR] :signal {[F1

[FO @ 1900 ns],

@ 0 nsl};

Q
[FO @ 700 ns],
[F1 @
[F1 @ 2400 ns] };

addev [RD_BAR] :signal {[F1 @ O ns]};

0 ns], [FO @ 100 ns], [F1 @ 600 ns],

1200 ns], [FO @ 1300 ns],[F1 @ 1800 ns],

addev[RESET] : signal {[FO @ 0 ns], [F1 @ 1 ns], [FO @ § ns] };

addev [DO] :

addev[D1]:
addev [D2] :

addev [D3]:
addev[D4]:

addev [D5] :
addev[D6] :

addev [D7]:

signal

signal
signal

signal
signal

signal
signal

signal

{lzx
[Fi
{[zX
{[zx
(F1
{[zX
{[zx
[F1
{[Zx
[FO
{[zX
[FO
{[zX
(FO

addev[AO_MODE] : signal

addev[A1_MODE]: signal {[F1 @ 0 ns],

[F1

@ 0 ns],[FO @ 10 ns], [ZX
@ 1850 nsl};
@ 0 ns],[FO @ 10 ns], (ZX
@ 0 ns],[FO @ 10 ns], [2X
@ 1250 nsl};
@ 0 ns],[FO @ 10 ns],[ZX
@ 0 ns],[FO @ 10 ns],[2X
@ 1850 nsl};
Q@ 0 ns],[FO @ 10 ns],[ZX
@ 1250 nsl};
@ 0 ns],[FO @ 10 ns],[ZX
@ 1850 ns]l};
Q@ 0 ns],[F1 @ 10 ns],[ZX
@ 1850 nsl};

Q

(=]

650 ns],[FO @ 680 ns],

650 ns],[FO @ 680 nsl};
650 ns],[FO @ 680 ns],

650 ns],[FO @ 680 nsl};
650 ns], [F1 @ 680 ns],

650 ns], [F1 @ 680 ns],
650 ns], [F1 @ 680 ns],

650 ns],[F1 @ 680 ns],

{[F1 @ 0 ns], [FO @ 670 ns], [FO @ 1280 ns],

Q@ 1890 nsl};

[F1 @ 670 ns],[FO @ 1280 nsl};

Figure 30: Test Vector For Example 1

45

'VANTAGE :

1989 1288 1488 1688 1888 2800 ‘ 2208 2408

26088

'

2808

Jgee

32

1

1

RO.BAR

RESET

A1_MODE
AB_MODE . —

J

.

YR_BAR N M

e

CS_BAR

Begin Time = 8 Time Units

1 ns

Rl
ISigna)l /DB has been agdeq tc tme Prode u's:
hs:gna1 '/D7" nas oeen aoded to tme Probe .is:

Figure 31: Simulation Result For Example 1

46

addev[CS_BAR] :signal {[FO
addev[WR_BAR] :signal {[F1
addev[RD_BAR] :signal {[F1
(F1

[(FO @ 3300 ns], [F1
addev[RESET] : signal {[FO

addev[DO]:
addev([D1]:
addev([D2]:
addev[D3]:
addev[D4]:
addev[D5] :
addev[D6] :
addev([D7]:

addev[PAO] :
addev[PA1]:
addev[PA2]:
addev[PA3]:
addev[PA4]:
addev[PAS]:
addev[PA6]:
addev[PAT7]:

addev[PBO]:
addev[PBi]:
addev[PB2]:
addev (PB3]:
addev[PB4]:
addev[PB5]:
addev[PB6] :
addev [PB7]:

addev [PCO] :
addev[PC1]:
addev[PC2]:
addev[PC3]:
addev[PC4]:
addev [PCS5] :
addev[PC6] :
addev[PCT]:

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

{[zX
{[2X
{[ZX
{0zX
{[2X
{zX
{[ZX
{0zX

{[F1
{[F1
{[FoO
{[Fo
{[F1
{[FoO
{[Fo
{[F1

{[F1
{[F1
{[FoO
{[F1
{[F1
{[Fo
{[FoO
{[FO

{[Fo
{[Fo
{[Fo
{[F1
{[F1
{[F1
{[F1
{[F1

o 0 0 b o o o o

o 0 0 O o b o o o 0 OV 0 0 oo o

o 6 0 0 b O b B

o 06 0 6 ©

0 nsl};

0 ns], [FO @ 100 ns], [Ft @ 600 nsl};

0 ns],[FO @ 1800 ns],

2200 ns], [FO @ 2700 ns],[F1 @ 3000 ns],
3800 ns] };

0 ns],

[F1 @ 1 ns], [FO @ 5 ns] };

ns], [F1
ns], [F1
ns], [FO
ns], [F1
ns], [F1
ns], [FO
ns], [FO
ns], [F1

10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};

10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};

10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};
10 nsl};

70
70
70
70
70
70
70
70

o 0 O O 0 0 0 o

ns],[ZX @ 700 nsl};
ns],[2ZX @ 700 nsl};
ns],[ZX @ 700 nsl};
ns],[ZX @ 700 nsl};
ns], [ZX @ 700 nsl};
ns], [ZX @ 700 nsl};
ns], [ZX @ 700 nsl};
ns],[2X @ 700 nsl};

addev[AO_MODE]: signal {[F1 @ O ns], [FO @ 810 ns], [F1 @ 2300 ns],

[FO @ 3100 nsl};
addev[A1_MODE]: signal {[F1 @ 0 ns], [FO @ 810 ns], [F1 @ 3100 nsl};

Figure 32: Test Vector For Example 2

47

f RD_BAR
RESET

A1_MOOE

AQ_MQDE

VR_BAR
CS_BAR

Begin Time

8 Time Units

1 ns

-

Signa) ‘/06’ has been added to the Probe List.
Signal ’/07’ nhas been aaded to ‘he Probe List.

l:mc)

48

Figure 33: Simulation Result For Example 2

addev[PAO]:signal {[F1 @ O nsl};
addev[PA1]:signal {[F1 @ 0 nsl};
addev[PA2] :signal {[F1 @ O nsl};
addev[PA3] :signal {[F1 @ O nsl};
addev[PA4] :signal {[FO @ 0 nsl};
addev[PAS] :signal {[FO @ O nsl};
addev[PA6] :signal {[FO @ O nsl};
addev[PA7] :signal {[FO @ O nsl};

addev[DO]:signal {[ZX @ 0 ns],[FO
[FO @ 3100 ns],[ZX @ 4500 ns]};
addev[D1] :signal {[2X @ O ns],[F1
[FO @ 3100 ns],[ZX @ 4500 nsl};
addev[D2] :signal {[ZX @ 0 ns],[FO
[FO @ 3100 ns], [2ZX @ 4500 nsl};
addev[D3]:signal {[zX @ 0 ns],[F1
[F1 @ 3100 ns],[ZX @ 4500 ns]l};
addev[D4]:signal {[ZX @ 0 ns], [FO
[F1 @ 3100 ns], [2X @ 4500 nsl};
addev[D5]:signal {[ZX @ O ns], (FO
[F1 @ 3100 ns],[ZX @ 4500 ns]};
addev[D6] :signal {[zX @ O ns],[FO
[FO @ 3100 ns],[ZX @ 4500 nsl};
addev[D7]:signal {[zX @ 0 ns],[FO
[F1 @ 3100 ns],[ZX @ 4500 ns]};

addev[CS_BAR] :signal {[FO @ O nsl};

addev[WR_BAR] :signal {[F1 @ 0 ns], [FO @ 200 ns], [F1 @ 700 ns],

100

100

100

100

100

100

100

100

ns], [FO
ns], [F1
ns], [F1
ns], [FO
ns], [FO
ns], [FO
ns], [FO

ns], [FO

1000

1000

1000

1000

1000

1000

1000

1000

ns], [F1
ns], [FO
ns], [F1
ns], [F1
ns], [FO
ns], [FO
ns], [FO

ns], [FO

2100

2100

2100

2100

2100

2100

2100

2100

[FO @ 1200 ns], [F1 @ 2000 ns], [FO @ 2300 ns],
[F1 @ 3000 ns],[FO @ 3300 ns],[F1 @ 4000 ns]};
addev[RESET] :signal {[FO @ 0 ns], [F1 @ 7 ns], [FO @9 nsl};
addev[AO_MODE] :signal {[F1 @ 0 ns], [FO @ 4200 nsl};
addev[A1_MODE] :signal {[F1 @ 0 ns], [FO @ 4200 nsl};
addev[PC4] :signal {[F1 @ O ns],[FO @ 5000 ns],[F1 @ 6000 nsl};

addev[RD_BAR] :signal {[F1 @ O ns],[FO @ 7000 ns],[F1 @ 7900 nsl};

Figure 34: Test Vector For Example 3

49

ns],
ns],
ns],
ns],
ns],
ns],
ns],

ns],

<388 4588 S@ee S508 6868 65868 7008 7508 8¢

PCB
PCS
pC4 ‘
PC3 : : '

PC2 e
per T T S - ,

Nece Q77 T T
P87 e T Ty P, ———m - e mmmmme———-
Y- e S T X . .

PBS
P84
P83
P82
PB1
P88
PA?

(o

{ el

RO_BAR
RESET
AL_MODE
AB_MQDE
VYR_BAR
CS_BAR

Begin Time = 8 Time Units = | ns

l] ;
Stgnal ’/D6’ has been agded to 'ne Prooce List.
Signal ‘/07’ has been aaded to the Probe List. :

cmd>

Figure 35: Simulation Result For Example 3

50

addev[PAO] :signal {[ZX @ O nsl};
addev([PA1]:signal {[ZX @ O nsl};
addev[PA2] :signal {[ZX @ 0 ns]};
addev[PA3] :signal {[ZX @ O nsl};
addev[PA4] :signal {[ZX @ O nsl};
addev[PAS]:signal {[ZX @ O nsl};
addev[PA6] :signal {[ZX @ O nsl};
addev[PA7]:signal {[ZX @ O nsl};

addev[DO] :signal {[ZX @ O ns],[F1 @ 100 ns],[F1 @ 1000 ns], [F1 @ 2100 ns],

[FO @ 3100 ns],[ZX @ 4500 ns], [FO @ 4700 nsl}t;

addev(D1]:signal {[ZX @ O ns],[F1 @ 100 ns],[F1 @ 1000 ns], (FO @ 2100 ns],

[FO @ 3100 ns],[ZX @ 4500 ns], [FO @ 4700 nsl};

addev[D2] :signal {[ZX @ O ns],[F1 @ 100 ns],[F1 @ 1000 ns],[F1 @ 2100 ns],

[FO @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl};

addev[D3]:signal {[ZX ¢ O ns],[F1 @ 100 ns],[FO @ 1000 ns],{F1 @ 2100 ns],
l
|
|
|
|
|
!
|
!

[F1 @ 3100 ns], [ZX @ 4500 ns],[F1 @ 4700 nsl};
addev[D4]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],
[FO @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 ns]};
addev(D5]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 nsj,
[F1 @ 3100 ns],[2ZX @ 4500 ns],[F1 @ 4700 ns]};
addev[D6]:signal {[ZX @ O ns],[FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],
[FO @ 3100 ns], [ZX @ 4500 ns],[F1 @ 4700 nsl};
addev([D7]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],
[F1 @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl}t;

addev[CS_BAR] :signal {[FO @ O nsl};

addev[WR_BAR] :signal {[F1 @ O ns], [FO @ 200 ns], [F1 @ 700 ns],
[FO @ 1200 ns], [F1 @ 2000 ns], [FO @ 2300 ns],
[F1 @ 3000 ns],[FO @ 3300 ns],[F1 @ 4000 ns],
[FO @ 5000 ns],[F1 @ 5800 nsl};

addev [RESET] :signal {[FO @ 0 ns], [F1 @ 7 ns], [FO @ 9 nsl};

addev[AO_MODE] :signal {[F1 @ 0 ns]l, [FO @ 4200 nsl};

addev[A1_MODE] :signal {[F1 @ O ns], [FO @ 4200 nsl};

addev[PC6] :signal {[F1 @ 0 ns],[FO @ 9200 ns],[F1 ¢ 9800 nsl};

addev[RD_BAR] :signal {[F1 @ O nsl};

Figure 36: Test Vector For Example 4

51

9889

AS,sLam Frle Setuc ~e's Isplay
1890 2808 3eee 4p88 5808 5800 We

(=]
~
‘-

o
wn
'

o
(%]
‘

S
!

P B I O e e L L)

PC2
PC1

P87
P86
P8S
PB4
P83
P82
| PB1

Peg

PA?

PAG

PAS

PA4

PA3
PA2

PAl

PAB

RO_BAR

RESET

A1_MODE

AB_MODE

VR_BAR I

CS_BAR

Begin Time = @ Time Units

1 ns

-
Signal ‘/D6’ has been added to the Probe List.
Signal ‘/07’ has been added to the ®rone List.

;f-:md>

Figure 37: Simulation Result For Example 4

addev[PBO] :signal {[F1 @ O nsl};
addev[PB1] :signal {[F1 @ 0 nsl};
addev[PB2] :signal {[F1 @ O nsl};
addev[PB3]:signal {[F1 @ O nsl]};
addev[PB4] :signal {[FO @ O nsl};
addev[PBS] :signal {[FO @ O nsl};
addev[PB6] :signal {[FO @ O nsl};
addev[PB7] :signal {[FO @ O nsl};

addev[D0]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[F1 @ 2100
[FO @ 3100 ns],[ZX @ 4500 nsl};

addev[D1]:signal {[ZX @ O ns], [FO @ 100 ns],[F1 @ 1000 ns], [FO @ 2100
[F1 @ 3100 ns],[ZX @ 4500 nsl}; '
addev[D2]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[F1 @ 2100
[F1 @ 3100 ns],[ZX @ 4500 ns]};

addev[D3]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100
[F1 @ 3100 ns],[ZX @ 4500 nsl};

addev{D4] :signal {[ZX @ 0 ns],[FO @ 100 ns], [FO @ 1000 ns],[FO @ 2100
[F1 @ 3100 ns],[2X @ 4500 nsl};

addev[D5]:signal {[ZX @ O ns],[FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100
[F1 @ 3100 ns],[ZX @ 4500 ns]};

addev[D6]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100
[FO @ 3100 ns],[ZX @ 4500 ns]};

addev[D7]:signal {[zX @ 0 ns],[FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100
[F1 @ 3100 ns],[ZX @ 4500 nsl};

addev[CS_BAR] :signal {[FO @ O nsl};
addev[WR_BAR] :signal {[F1 @ 0 ns], [FO @ 200 ns], [F1 @ 700 ns],
[FO @ 1200 ns], [F1 @ 2000 ns], [FO @ 2300 ns],
[F1 @ 3000 ns],[FO @ 3300 ns], [F1 @ 4000 nsl};
addev[RESET] :signal {[FO @ O ns], [F1 @ 7 ns], [FO @ 9 nsl};
addev[AO_MODE] :signal {[F1 @ O ns], [F1 @ 4200 nsl};
addev[A1_MODE] :signal {[F1 @ O ns], [FO @ 4200 nsl};
addev[PC2] :signal {[F1 @ 0 ns],[FO @ 5000 ns],[F1 @ 6000 nsl};
addev[RD_BAR] :signal {[F1 @ 0 ns],[FO @ 7000 ns],[F1 @ 7900 nsl};

Figure 38: Test Vector For Example 5

53

ns],
ns],
ns],
ns],
ns],
ns],
ns],

ns],

VANTAGE

RD_3AR
RESCT

Al_MOOE

AB_MODE
¥R_BAR

Bagin Time = B8 Time Units

1t ns

1g-al '/DB’ nas been aczec t: tne Prore st

Lsigral ‘/07’ nas been added to tre Probs L'st

o,

Figure 39: Simulation Result For Example 5

54

addev[PAO] :signal {[ZX @ O nsl};
addev[PA1] :signal {[ZX @ O nsl};
addev[PA2] :signal {[ZX @ O nsl};
addev[PA3]:signal {[ZX @ O nsl};
addev[PA4] :signal {[ZX @ O nsl};
addev[PAS] :signal {[ZX @ O ns]};
addev[PA6] :signal {[ZX @ O nsl};
addev[PA7] :signal {[2X @ O nsl};

addev[DO]:signal {[ZX @ O ns],[F1 @ 100 ns],[F1 @ 1000 ns], [F1 @ 2100 ns],
(FO @ 3100 ns],[ZX @ 4500 ns], [FO @ 4700 ns]};
addev[D1]:signal {[ZX @ O ns],[F1 @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],

[FO @ 3100 ns],[ZX @ 4500 ns], (FO @ 4700 nsl};

addev[D2]:signal {[ZX @ O ns],[FO @ 100 ns],[FO @ 1000 ns], [F1 @ 2100 ns],
[F1 @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl};

addev[D3]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],
[F1 @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl}; '
addev[D4]:signal {[2X @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],
[FO @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl};

addev[D5]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns], [FO @ 2100 ns],
[F1 @ 3100 ns],[2X @ 4500 ns],[F1 @ 4700 nsl};

addev[D6]:signal {[ZX @ O ns], [FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],

[FO @ 3100 nsl,[ZX @ 4500 ns],[F1 @ 4700 ns]};
addev[D7]:signal {[zX @ 0 ns],[FO @ 100 ns],[FO @ 1000 ns],[FO @ 2100 ns],

[F1 @ 3100 ns],[ZX @ 4500 ns],[F1 @ 4700 nsl};

addev[CS_BAR] :signal {[FO @ O nsl};

addev [WR_BAR] :signal {[F1 @ 0 ns], [FO @ 200 ns], [F1 @ 700 ns],
[FO @ 1200 ns], [F1 @ 2000 ns], [FO @ 2300 nsJ,
[F1 @ 3000 ns],[FO @ 3300 ns], [F1 @ 4000 ns],
[FO @ 5000 ns],[F1 @ 5800 nsl};

addev[RESET] :signal {[FO @ 0 ns], [F1 @ 7 ns], [FO @ 9 nsl};

addev[AO_MODE] :signal {[F1 @ 0 ns], [F1 @ 4200 ns]};

addev[A1_MODE] :signal {[F1 @ O ns], [FO @ 4200 nsl};

addev[PC2] :signal {[F1 @ O ns],[FO @ 9200 ns],[F1 @ 9800 nsl};

addev[RD_BAR] :signal {[F1 @ 0 ns]};

Figure 40: Test Vector For Example 6

55

VANTAGE

BResD 1.y

System Fi'e Set.p SE TR TR

PC?

PC1

PBS
P4

PA3
| PL2
! eat
il P28
I RD_BAR
| RESET
i A1_MODE
|
|

AB_MODE
¥R_BAR

il cs_aar
I Begin Time = @ Time Units = L ng

ol
Signal */D6’ has been aoded to the Prove List.
Signal ’/D7’ has been added to the Probe List.

HBGR)

Figure 41: Simulation Result For Example 6

56

addev[PAO] :signal {[ZX @ O ns], [F1 @ 15000 nsl]};
addev[PA1]:signal {[ZX @ O ns],[F1 @ 15000 ns]};
addev[PA2] :signal {[zX @ 0 ns],[F1 @ 15000 nsl};
addev[PA3] :signal {[ZX @ 0 ns],[F1 @ 15000 ns]};
addev[PA4]:signal {[ZX @ O ns],[F1 @ 15000 nsl};
addev[PAS]:signal {[2zX @ O ns],[F1 @ 15000 ns]};
addev [PA6] :signal {[ZX @ 0 ns],[F1 @ 15000 nsl]};
addev[PA7] :signal {[ZX @ O ns],[F1 @ 15000 nsl};

addev [DO] :signal {[ZX @ O ns], [FO @ 100 ns],[F1 @

[F1 @ 3100 ns],[F1 @ 4600 ns],[F1 @ 5800
[ZX @ 15000 nsl};
addev[D1]:signal {[ZX @ O nsl,[F1 @ 100
[FO @ 3100 ns],[FO @ 4600 ns],[F1 @ 5800
[ZX @ 15000 nsl};
addev[D2]:signal {[ZX @ 0 ns],[FO @ 100
[FO @ 3100 ns],[F1 @ 4600 ns],[F1 @ 5800
[ZX @ 15000 nsl};
addev[D3]:signal {[ZX @ 0 ns],[F1 @ 100
[F1 @ 3100 ns],[F1 @ 4600 ns],[F1 @ 5800
[ZX @ 15000 nsl};
addev[D4] :signal {[ZX @ 0 ns],[FO @ 100
[FO @ 3100 ns],[FO @ 4600 ns],[F1 @ 5800
[ZX @ 15000 nsl};
addev[D5]:signal {[ZX @ O ns],[FO @ 100
[FO @ 3100 ns],[FO @ 4600 ns],[F1 @ 5800
[zZX @ 15000 nsl};
addev[D6]:signal {[ZX @ 0 ns],[FO @ 100
[FO @ 3100 ns],[FO @ 4600 ns],[F1 @ 5800
[2X @ 15000 nsl};
addev[D7]:signal {[ZX @ O ns], [FO @ 100
[FO @ 3100 ns],[FO @ 4600 ns],[F1 @ 5800
[2X @ 15000 nsl};
addev[CS_BAR] :signal {[FO @ O ns]};
addev[WR_BAR] :signal {[F1
"[FO

[Fo
[FO
[Fo

ns], [F1

ns], [F1
ns], [FO

ns], [F1
ns], (FO

ns], [FO
ns], [FO

ns], [FO
ns], [FO

ns], [FO
ns], [F1

ns], [FO
ns], [F1

ns], [FO
ns], [F1

¢}

1000
7500

1000
7500

1000
7500

1000
7500

1000
7500

1000
7500

1000
7500

1000
7500

4800 ns],[F1 @ 5500 ns],
6000 ns],[F1 @ 7000 ns],
8000 ns],[F1 @ 8800 nsl};

ns], [F1
ns],

ns], [F1
ns],

ns],[F1
ns],

ns], [F1
ns],

ns], [FO
ns],

ns], [FO
ns],

ns], [FO
nsi,

ns], [FO
ns],

Q
@ 0 ns], [FO @ 200 ns], [F1 @ 700 ns],
@ 1200 ns], [F1 @ 2000 ns],[FO @ 2300 ns],
[F1 @ 3000 ns],[FO @ 3300 ns],[F1 @ 4000 nsJ],
Q
Q
Q

addev[RESET] :signal {[FO @ 0 ns], [F1 @ 7 ns], [FO @ 9 nsl};
addev[AO_MODE] :signal {[F1 @ 0 ns], [FO @ 7500 ns]};
addev[A1_MODE]:signal {[F1 @ 0 ns], [FO @ 7500 ns]};

addev[PC4] :signal {[F1 @ 0 ns],[FO @ 17000 ns],[F1 @ 18000 ns]};
addev[PC6] :signal {[F1 @ 0O ns],[FO @ 12000 ns],[F1 @ 13000 nsl};

2100

2100

2100

2100

2100

2100

2100

2100

addev[RD_BAR] :signal {[F1 @ O ns], [FO @ 20000 ns],[F1 @ 21000 ns]};

Figure 42: Test Vector For Example 7

57

ns],

ns],

ns],

ns],

ns],

ns],

ns],

ns],

3088 13628 12088 14880 ‘&e 18888 28888 22088 248

RC .8BAR

RE ET

;A L_MODE

Ao _MODE
YR_BAR
CS.BAR

Begin Time = 8 Time Units = 1 ns

1 j_)

al /06’ has been acdeg to "2 Srige L3t
7 1al “/07’ has been auded to tre Prooe L't

)

7

Figure 43: Simunlation Result For Example 7

58

11 Appendix III

This appendix contains listing of the actual VHDL behavioral model code for the Intel 8255A.

This code is implemented such that it is correctly simulated under the the Vantage Analysis

Systems, version 1.08 [Vant39].

59

ar 18 21:34 1991 8255A behavior.tex Page 1 ar 18 21:34 1991 B255A behavior.tex Page 2

“- RD = 0 to INTR = 0 delay
tRIT : time := 400 ns;

- RD =1 to IBF= 0 delay
—= 8255A behavior.vhdl tRIB : time := 300 ns;
— Description: . -~ STB =1 to INTR = 1 delay
- This file contains VHDL behavioral description of the TtSIT : time := 300 ns;
= Intel B255A. The code has been successfully compiled
- and simulated using Vantage Analysis Systems (ver 1.108). “~ STB = 0 to IBF = 1 delay
- tSIB : time := 300 ns;
- DATE :
- 6/12/90 -~ ACK = 0 to OBF = 1 delay
- tAOB : time := 350 ns;
== COMMENT:
- 1) All timing information in this file is obtained from - ACK = 1 to INTR = 1 delay
- the TTL data book (issue date November 1987). tAIT : time := 350 ns;
- 2) To compile this file, first compile the file "common.vhdl"
—- which contains user—defined data structures which are used -~ WR = 1 to OBF = 0 delay
- in this file. . tWOB : time := 650 ns;

r- BY: ~- Address stable before READ
- Viraphol Chaiyakul tAR : time := 0 ns;

-~ Address stable after READ
tRA : time := 0 ns;

use pre-defined Vantage's standard logic type —— READ pulse width
tRR : time := 300 ns;
e work.std_logic.all;

~- Time between READs and/or WRITEs
Also use user-defined data structure in the “comuon" package. This tRV : time := 850 ns;

package is defined in the file "common.vhld"

—— Address stable before WRITE
luse work.common.all; tAW : time := 0 ns;

-~ Entity declaration of the Intel 8255a -~ Address stable after WRITE

tWA : time := 20 ns;
entity i8255a_e is

—~ WRITE pulse width
~— The following timing information is obtained from the TTL data book tWW : time := 400 ns;

generic (~— Data valid to WRITE

tDW : time := 100 ns;
—— WR enable to output delay

tWB : time := 350 ns; -- Data valid after WRITE

tWD : time := 30 ns;
~— Data valid from read delay

tRD : time := 250 ns; ~-— Peripheral data before RD

tIR : time := 0 ns;
—— Data float after read delay

tDF : time := 10 ns; -~ Peripheral data after RD

tHR : time := 0 ns;
~— WR = 0 to INTR = 0 delay .

tWIT : time := 850 ns; -— ACK pulse width

tAK : time := 300 ns;

Mar 18 21:34 1991 8255A behavior.tex Page 3

-— STB pulse width
tST : time := 500 ns;

~- Peripheral data before T.E. of STB
tPS : time := 0 ns;

-— Peripheral data after T.E. of STB
tPH : time := 180 ns;

~= ACK = 0 to output
tAD : time := 300 ns;

—— ACK = 1 to output float
tKD : time := 20 ns);

-- Ports declaration. Note that the Vantage's pre-defined logic is used
I~ as the basic-data type. This pre-defined data type is defined in the
[~ Vantage's STD_LOGIC package together with its bus resolution functions
— (refer to the "STD LOGIC VHDL Package" manual, dated April 3,1990, by
[~ Vantage Analysis System, Inc.)

‘port (

—— control signals
signal CS_BAR, WR_BAR, A0 _MODE, Al_MODE, RESET , RD BAR: in t_wlogic;

~= Output Port A interface

signal PAO,PAl,PA2,PA3,PA4,PAS,PAG,PA7 inout t_wlogic bus;

- Output Port B interface

signal PBO,PBl,PB2,PB3,PB4,PB5,PB6,PB7 inout t_wlogic bus;

— Output Port C interface

signal PCO,PCl,PC2,PC3,PC4,PCS,PC6,PCT inout t_wlogic bus;

— Input Data bus interface

signal DO,D1,D2,D3,D4,D5,D6,D7 inout t_wlogic bus);

lend i8255a_e;

- Architecture declaration
architecture i8255a_a of i8255a e is
— Internal signals declaration

- pres mode_a tells the current mode for the port A operations
signal pres_modea : mode port a;

—— pres_mode_b tells the current mode for the port B operations
signal pres_modeb : mode port_b;

—— pres_mode_upc tells the current mode for the upper 4 bits of port C
—— operations.

ar 18 21:34 1991 8255A behavior.tex Page 4

signal pres mode upc : mode port_up c;

~~ pres_mode_lowc tells the current mode for the lower 4 bits of port C
-- operations.

signal pres_mode lowc : mode _port_low_c;
—- enable signals for write operations for all 3 ports (enable high)
signal out_en_a,out_en_b,out_en_c t wlogic;

-- read request signal for read operations for all 3 ports (enable high)
signal req read a,req_read_b,req_read_c : t_wlogic;

-~ internal register for transter between input and output operations.

-~ These signal should have been implenented as bus. The reason it is

-- declared as register because we want to retain the value on these signals
—— even though their drivers have been shut off.

signal inb0, inbl, inb2, inb3, inb4, inbs, inb6, inb7: t_wlogic register;

—— enable controling the changing of current mode status (enable high)
signal cntl_en: t_wlogic;

—— read acknowledgement (active high)
signal ack_read : t_wlogic bus;

—~ control for bit set and reset operation (active high)
signal bit_set, bit_reset: t_wlogic;

-~ internal registers holding current value on the bus interface for each
—-— port

signal c0,C1,C2,C3,C4,C5,C6,C7
signal AO,Al,A2,A3,A4,A5,A6,A7
signal BO,Bl,B2,B3,B4,B5,B6,B7

t_wlogic register;
t_wlogic register;
t_wlogic register;

—- interrupt signal for hand-shaking modes (check TTL data book)
signal INTEA : t_wlogic register;
signal INTEB : t_wlogic register;
signal INTEl t_wlogic register;
signal INTE2 t_wlogic register;

begin

I S R T T
—— READ CONTROL PROCESS

-= This process controls the read operations. When it senses the activation
—— of the read process (RD_BAR active low), it will send read request signal
—— to the port specified by the AO_MODE and Al_MODE control lines. Upon the
—~ completion of the read operation from the specified port, it transfers

© —— the data from internal transfer register to the CPU data bus.)
—— The process also can be activated by the chip RESET signal, upon which,
-= it will float the CPU data bus interface lines and reset all read request
——- signals.
process
begin

wait on RD_BAR,RESET;

Mar 18 21:34 1991 8255A behavior.tex Page 5

—~ process will performm operation only if the chip select line is active
if (CS_BAR = '0') then

—— if reset then float the data bus and reset all read request lines.
if (RESET = '1') then

DO <= ZX;
Dl <= ZX;
D2 <= 2X;
D3 <= ZX;
D4 <= ZX;
D5 <= 2X;
D6 <= ZX;
D7 <= ZX;

req _read_a <= FO;
req read b <= FO;
req read_c <= FO;

—-= if not reseting, then if the READ operation is active then sends
—— required signals to the specified port.
elsif (RD_BAR'EVENT) and (RD_BAR = '0O') then

—-~ Port A read request
if (A1_MODE = '0') and (AO_MODE = '0') then
req _read_a <= Fl, FO after tRD;

—— Port B read request
elsif (Al_MODE = '0') and (AO_MOLE = 'l') then
req read_b <= F1, FO after tRD;

- Port C read request

elsif (A1_MODE = ‘1') and (AO_MODE = 'O') then
req read_c <= Fl, FO after tRD;

end if;

-~ wait until the ports control finished the read operations, then
-~ placed signals from the internal transfer register to the CPU
-— data bus interface.
wait until (ack read = 'l') or (RESET = 'l1');
if (RESET = '0') then

DO <= inb0 , 2X after tRD;

Dl <= inbl, ZX after tRD;

D2 <= inb2 , 2X after tRD;
D3 <= inb3 , 2ZX after tRD;
D4 <= inb4 , ZX after tRD;
D5 <= inb5 , ZX after tRD;
D6 <= inb6 , ZX after tRD;
D7 <= inb7 , ZX after tRD;
end if;
end if;
end if;

end process;

B e R o i N S AL T T T F U P TR
- WRITE CONTROL PROCESS

Mar 18 21:34 1991 8255A behavior.tex Page 6

This process controls the write operations. When il senses the activation
-= of the write process (WR_BAR active low), it will place the signals value
from the CPU data bus interface onto the internal transfer register.
Then it sends signal to the porl specified by the AD_MODE and Al MODH
- control lines to perform the output operations. In the case of bit seot
or reset operation, it will activate the conlrol line for that operat ion.
-~ The mode configuration also can be altered by the write process by invoking
-~ a different combination of control lines. In this case, the process
~~ simply enable the mode control line so the mode selector process can
alter the current configuration of the chip.
process
begin
wait on WR_BAR, RESET;

i

— Process will only function if the chip select is enabled
if (CS_BAR = '0') then

-=- If it is a reset operation then disable all internal transfer register
== drivers and all control lines
if (RESET = '1') then

inb0 <= null;

inbl <= null;

inb2 <= null;

inb3 <= null;

inb4 <= null;

inb5 <= null;

inb6 <= null;

inb7 <= null;

out_en_a <= FO;

out_en_b <= FO;

out_en_c <= FO;

bit_set <= FO;

bit reset <= Fl, FO after 2 ns;

-— If it is a write operation then transfer the value on the data bus
—— onto internal register and invoke necessary control lines.
elsif (WR_BAR'EVENT) and (WR_BAR = '1') then

-— transfer data from the CPU data bus interface to the internal
-— register

inb0 <= DO, null after twD;

inbl <= D1, null after twD;

inb2 <= D2, null after twD;

inb3 <= D3, null after twD;

inb4 <= D4, null after twD;

inb5 <= D5, null after tWD;

inb6 <= D6, null after tWwD;

inb7 <= D7, null after twD;

~- If bit set/reset operation then enable the bit_set line
if (Al MODE = '1') and (A0 MODE = '1') and (D7 = '0') then
bit _set <= F1, FO after tDF;

-- enable control lines for specitied output port
elsif (A1_MODE = '0') and (A0 MOLE = '0O') then
out_en_a <= F1, FO after LDF;

ar 18 21:34 1991 82553 behavior.tex Page 7

elsif (Al MODE = '0') and (AO_MOLE = '1') then
out_en_b <= Fl, FO after tDF;

elsif (Al MODE = 'l') and (AO_MODE = '0') then
out_en _c <= Fl, FO after tDF;

—— If it is the chip's configuration alteration process then enable
-- the mode selector control line
elsif (Al MODE = 'l1') and (AO_MODE = ‘1') then
cntl_en <= F1, FO after tDF;
end if;
end if;
end if;
end process;

e o S O O A T R A A S S T S W W O
~~ BITRESET PROCESS
=~ This process control the bit reset operation. when active, it will reset
- all the interrupt control registers
BITRESET: block (bit_reset = '1')
begin
process
begin

it active then resel all interrupt control registers. Note that the
delay before turning off the driver is set to be a conslanl (5 ns.)
becuase there is no such delay specified in the TTL data book.
il quard then
INI'EA <= FO, null after 5 ns;
INTEB <= F0, null after 5 ns;
INTE]l <= ¥0, null after 5 ns;
INTE2 <= FO0, null after 5 ns;
else
INTEA <= null;
INTEB <= null;
INTEl <= null;
INTE2 <= null;
end if;
wait on guard;
end process;
end block BITRESET;

B R R R ARt L e ST TS
~— BITSET PROCESS

~— This process control the bit set operation. Wwhen active, it will set
—- all interrupt control registers and all the output of port C.
BITSET: block (bit_set = '1* or RESET = '1')
begin
process
begin
if guard then

ar 18 21:34 1991 #255A behavior.tex Page 8

If it is a reset operation then disable al] drivers.
if (RESET = ‘1') then

INTEA <= null;

INTEB <= null;

INTEL <= null;

INTE2 <= null;

CO <= null;

Cl <= pull;
C2 <= null;
C3 <= null;
C4 <= null;
CS5 <= null;
C6 <= null;

C7 <= null;

Else it is a bit set operation. Bit is set according to the

control signals which has becn placed on the internal transfer
-° register in the WRITE process. Set bits specified by the control
- register. Nolte that there is a delay before disable the driver
-- which is set to be a constant (2 ns) becuase no such delay parametoers
- are given in the TTL data book.
else

if (inb3 - '0') and (inb2 - '0') and (inbl + '0') then

CO <= inb0,null after 2 ns;

elsif (inb3 = '0') and (inb2 '0') and (inbl = '1') then
Cl <= inb0,null after 2 ns;
elsif (inb3 - '0') and (inb2 '1') and (inbl - '0') then

C2 <= inb0,null after 2 ns;
INTEB <= inb0O, null atter S ns;

elsit (inb3 = '0') and (inb2 - '1") and (inbl = '1') then
C3 <= inb0,null after 2 ns;

elsif (inb3 = '1') and (inb2 = '0') and (inbl = '0') then
C4 <= inb0,null after 2 ns;
INTE2 <= inb0, null after 5 ns;

elsif (inb3 = '1') and (inb2 = '0') and (inbl = '1') then
C5 <= inb0O,null after 2 ns;
elsif (inb3 = '1') and (inb2 = '1') and (inbl = ‘0') then

C6 <= inb0,null after 2 ns;
INTEA <= inb0, null after 2 ns;
INTE1 <= inb0O, null after 2 ns;
elsif (inb3 = '1') and (inb2 = '1') and (inbl = '1') then
C7 <= inb0O,null after 2 ns;
end if;
end if;
end if;
wait on guard;
end process;
end block BITSET;

R e AR A a SRR S R S R S S SR SR
-~ PORT A MODE-SELECTOR PROCESS

—~ This is the mode selector process for port A. It is activated when the
-~ WRITE operation specified the alteration of mode gonflguratlop.
-— It will set the mode control for each port depending on the given

ar 18 21:34 1991 8255A behavior.tex Page 9

-~ configuration which has been written onto the internal Lransfer register
—- in the WRITE process.

process (cntl_en, RESET)

begin

—- Only functions if the chip scleet is cnabled
if (CS_BAR = '0') then

—— if reset then put the chip to mode0 input
if (RESET = '1') then
pres_modea <= modela_input;

-— otherwise, set the mode according to the given configuration
elsif (cntl_en'EVENT) and (cntl en = '1') then
if (inb6 = '0') and (inb5 = '0') then
if (inb4 = '1') then
pres_modea <= modela_input;
elsif (inb4 = '0') then
pres_modea <= modela_output;
end if;
elsif (inb6 = '0') and (inb5 = ‘1') then
if (inb4 = '1') then
pres _modea <= modela_input;
elsif (inb4 = '0') then
pres_modea <= modela_output;
end if;
elsif (inb6 = '1') then
pres_modea <~ modela;
end if;
end if;
oend if;
ond process;

R R e N L T Y I NN
-~ PORT B MODE-SELECTOR PROCESS

-~ This is the mode selector process for port B. It is activated when the
~~ WRITE operation specified the alteration of mode configuration.

—-— It will set the mode control for each port depending on the given .
-~ configuration which has been written onto the internal transfer register
—= in the WRITE process.

process (cntl_en, RESET)

begin

— Only functions if the chip select is enabled
if (CS_BAR = '0') then

—— if reset then put the chip to mode0 input
if (RESET = 'l1') then
pres_modeb <= modeOb_input;

—— otherwise, set the mode according to the given configuration
elsif (cntl_en'EVENT) and (cntl_en = '1') then
if (inb2 = ‘0') then
if (inbl = '1') then

Mar 18 21:34 1991 8255A_behavior.tex Page 10

pres_modeb <= modeOb_input;
elsif (inbl = '0') then
pres_modeb <+ modeOb_output ;

end if;
elsif (inb2 = ‘'1') then
if (inbl - '1') thaon

pres modeb <= modelb_input;
elsif (inbl = '0') then
pres_modeb <= modelb_output;
end if;
end if;
end if;
end if;
end process;

i+1f+*fH+}f!lf’i—iifi++iIf+§9+4~604-k+|0*10H+++#H»++++++++++++~i++6H RN
-~ UPPER PORT C MODE-SELECTOR PROCESS

- This is the mode sclector process for upper port C. It is activated when
- the WRITE operation specified the alteration of mode configuration.
Tt will set the mode control for each port depending on the given

- configuration which has been written onto the internal transfer register
=~ in the WRITE process.
process (cntl_en, RESET)
begin

- functions only it the chip select is enabled
if (CS_BAR = '0') then

-~ if reset then put the upper 4 bits of port ¢ into mode 0 input
if (RESET = '1') then
pres_mode_upc <= modelOupc _input;

-~ otherwise, set the upper 4 bits port ¢ control to the mode specitied
-= by the configuration.
elsif (cntl_en'EVENT) and (cntl en = '1') then
if (inb6 = '0') and (inb5 = '0') then
if (inb3 = '1') then
pres_mode_upc <= modeOupc_input;
elsif (inb3 = '0') then
pres_mode_upc <= modelupc_output;
end if;
elsif (inb6 = '0') and (inb5 = '1') then
if (inb4 = '1') then .
if (inb3 = '1') then
pres_mode_upc <= modelupc67_input;
elsif (inb3 = '0') then
pres mode_upc <= modelupcé67_output;

end if;
elsif (inb4 = '0') then
if (inb3 = '1') then

pres_mode_upc <= modelupc45_input;
elsif (inb3 = '0') then

pres_mode_upc <= modelupc45 _output ;
end if;

flar 18 21:34 1991 8255A_behavior.tex Page 11

end if;
else
pres_mode_upc <= null_mode;
end if;
end if;
end if;
end process;

B R R R a L L T RN RN S UT T
—— LOWER PORT C MODE-SELECTOR PROCESS

-~ This is the mode selector process for lower port C. It is activated when
-~ the WRITE operation specified the alteration of mode configuration.

-~ It will set the mode control for each port depending on the given

-~ configuration which has been written onto the internal transfer register
~= in the WRITE process. .

process (cntl _en, RESET)

begin

— functions only if the chip select is enabled
if (CS_BAR = '0') then

—- if reset then put the lower 4 bits of port C into mode0 input mode
if (RESET = '1') then
pres_mode_lowe <= modeOlowe input;

- otherwise, change the control of the lower 4 bits of port C according
to the specified confiquration.
¢lsif (cntl_en'EVENT) and (entl_en = '1') then
if (inb2 = '0') and (inb6 = '0') and (inb5 = '0') then
if (inb0 = ‘1') then
pres_mode lowc <= modeOlowc_input;
elsif (inb0 = '0') then
pres_mode lowe <= modeOlowc_output;
end if;
elsif (inb2 = '0') then
if (inbl = '1') then
pres_mode lowc <= modellowc_input;
elsif (inbl = '0') then
pres_mode lowc <= modellowc_output;
end if;
else
pres_mode_lowc <= null_mode;
end if;
end if;
end if;
end process;

R e R R B R A o B S N S B A B S A I O ST SR S O GV AT
—— MODEO-PORT A-OUT PROCESS

- This process perform the mode 0 output operation for port A. This is

-- a simple output operation. No "handshaking" is required, data is simply
-- written to the port.

Mar 18 21:34 1991 B8255A behavior.tex Page 12

modela_out: block (pres_modea = modela_output and RESET = '0Y)

begin
process
begin
if guard then

-- wait until output enable signal is active then placed the content
-— of the internal transfer register to the port.
wait until (out_en a='1");

A0 <= inb0 after tWB, null after (twB + 2 ns);
Al <= inbl after tWB, null after (tWB + 2 ns);
A2 <= inb2 after twB, null after (twWB + 2 ns);
A3 <= inb3 after tWB, null after (tWB + 2 ns);
A4 <= inb4 after twB, null after (tWB + 2 ns);
A5 <= inb5 after tWB, null after (twWwB + 2 ns);
A6 <= inb6 after tWB, null after (tWB 4+ 2 ns);
A7 <= inb7 after tWwB, null after (twWp + 2 ns);
else
A0 <= null;
Al <= null;
A2 <= null;
A3 <= null;
A4 <= nul};
A5 <= null;
A6 <= null;
A7 <= null;
end if;

wait on guard;
end process;
end block modela_out ;

R R R R N N R N R R S R R R R TR RN NN NN
==~ MODEO-PORT A~ IN PROCESS

-~ This process perform the mode 0 input operation for port A. This is
= a simple input operation. No "handshaking" is required, data is simply
- read from the port and placed onto the interna] transfer register.

modela_in: block (pres modea = modeOa input and RESET = '0' and
req read a = 'l')
begin
process
begin

place the content read from the port into the internal transfer reqister:
~- then enable the read acknowledge line so that the READ process can be
- awaken and place the content onto the CPU data bus.
if guard then

inb0 <= AOQ;
inbl <= al;
inb2 <= A2;
inb3 <= A3;

inb4 <= A4;

ar 18 21:34 1991 82557 behavior.tex Page 13 Mar 18 21:34 1991 8255A_behavior.tex Page 14

inb5 <= A5;
inb6 <= A6; -~ deactivate the OBF BAR line
inb7 <= A7; wait unlil (C6 = '0') or (RESET = '1');
ack_read <= F1 , FO after tRD,2X after (tRD + 5 ns); c7 <= Fl after t.AOB;
else
inb0 <= null; - deautlvate the interrupt line
inbl <= null; wailt until ((C6 = '1') and (C7 = '1') and (WR_BAR = ‘1'y) or
inb2 <= null; (RESET = '1'); -
inb3 <= null; C3 <= Fl after tAIT;
inb4 <= null; else
inb5 <= null; A0 <= null;
inb6 <= null; Al <= null;
inb7 <= null; A2 <= null;
ack_read <= 2X; A3 <= null;
end if; A4 <= null;
wait on guard; A5 <= null;
end process; A6 <= null;
end block modela_in; A7 <= null;
C3 <= null;
C7 <= null;
- +++F+++++++++++++++++++*++++++++++++++++++++++++++++++++++++++1+++i++++++ end if;

—— MODE1-PORT A-OUT PROCESS

-- This process performs the mode 1 output operations on port A. This mode
—-— provides a mean for transferrlng output data from the internal transfer
-~ registers to the port A in conjunction with handshaking signals.

wait on guard;
end process Ml_out;
end block modela out;

modela_out: block ((pres_modea = modela_output or pres_modea = modela)

- ++f+++++&1+0+9}}040|04+}0ft404{0{fi}1lil+}il{f+l4i0ii+++¥{+++{+f|IOlI’OIl
and RESET = '0')

=~ MODE1-PORT A-IN PROCESS

beqgin
Ml out: process
begin
it guard then

©~ This process performs the mode 1 input operations on port A. This mode
-~ provides a means for transferring input data from port A to the internal
—~ transfer registers in conjunction with strobes signals.

modela_in: block ((pres_modea = modela_input or pres_modea = mode2a)

—— wait for the write enable and RESET = '0')

wait until (out_en a = 'l' or RESET = '1'); begin

Ml_in: process
~— if interrupt masking register is set then send the interrupt to CPU
if (INTEA = '1') then

—- internal latches to hold the input data (latching effect)
C3 <= FO after tWIT, null after (tWIT + 2 ns);

variable reg_a0,req_al,reqg_a2,req_al,reg_a4,reg_a5,req_a6,

end if; reg_al : t_wlogic;
variable 1 : integer;
—— placed output from data bus to the port begin
A0 <= DO after tWB, null after (tWB + 2 ns); if guard then
Al <= Dl after tWB, null after (tWB + 2 ns);
A2 <= D2 after tWB, null after (tWB + 2 ns); -- wait until strobe signal (STH BAR) active then read in value
A3 <= D3 after tWB, null after (tWB + 2 ns); -- from port A into internal temporary register.
A4 <= D4 after tWB, null after (tWB + 2 ns);
A5 <= D5 after tWB, null after (tWB + 2 ns); wait until ((C4'EVENT) and (C4 = '0')) or (RESET = '1');
A6 <= D6 after tWB, null after (tWB + 2 ns); reg_al:= AQ;
A7 <= D7 after tWB, null after (tWB + 2 ns); reg_al:= Al;
reg_a2:= A2;

—— if the data has been accepted (ACK BAR) then indicate that the reg_alj:= A3;
—— CPU has written data out to the port A (OBF_BAR). reg_ad:= A4;
if (C6 = '1') then reg_a5:= A5;

C7 <= FO after tWOB; reg_ab:= A6;
end if; reqg_a7:= A7;

ar 18 21:34 1991 8255A behavior.tex Page 15

indicate that the data has been loaded into the input latch;
—— in essence, an acknowledgement . (IBF)
C5 <= Fl after tSIB, null after (LSIB + 2 ns);

—— interrupt the CPU when the dévice request the service.
if (RD_BAR = '1') and (INTEA = '1') then
wait until ((C5 = '1') and (C4 = '1')) or (RESET = "1y,
C3 <= F1 after tSIT, null after (tSIT + 2 ns);
end if;

—— wait until READ line is activated then transfer data from the
— internal latch to the internal transfer register. Then send
—~ a read acknowledgement to activate READ process.

wait until (read_req a = 'l') or (RESET = '1Y);
inb0 <= reg_a0,null after tRD;
inbl <= reg_al,null after tRD;
inb2 <= reg_a2,null after tRD;
inb3 <= reg_a3,null after tRD;
inb4 <= reg a4,null after tRD;
inb5 <= reg a5,null after tRD;
inbé <= reg_a6,null after LRD;
inb7 <= reg_a7,null after tRD;
ack_read <= Fl1 , FO after tRD;

—— deactivate the interrupt and buffer indicator lines.

C3 <= FO after tRIT, null after (tRIT + 2 ns);

wail until ((C4 = 'l') and (RD BAR = '1')) or (RESET = '1');
C5 <= FO after tRIB, null after (tRIB + 2 ns);

else
C3 <= null;
C5 <= null;

inb0 <= null;

inbl <= null;

inb2 <= null;

inb3 <= null;

inb4 <= null;

inb5 <= null;

inb6 <= null;

inb7 <= null;
ack_read <= null;

end if;

wait on guard;

end process M1_in;

end block modela_in;

R e 2 L O A O O S O N O S QA G S Y SO B I S A AR S A
-~ MODEO-PORT B-IN PROCESS
-~ This process perform the mode 0 input operation for port B. This is
-~ a simple input operation. No "handshaking" is required, data is simply
-~ read from the port and placed onto the internal transfer register.
modeOb_in: block (pres_modeb = modeOb_input and RESET = '0' and

req read_b = '1')

ar 18 21:34 1991 8255A_behavior.tex Page 16

begin
process
begin
~~ place the contenlL read from the port into the internal transfer

registers then enable the read acknowledge line so that the READ

process can be awaken and place the content onto the CPU data bus.

if guard then

inb0 <= BO;
inbl <= B1;
inb2 <= B2;
inb3 <= B3;
inb4 <= B4;
inb5 <= BS;
inb6 <= B6;
inb7 <= B7;
ack_read <= F1 , F0O atter tRD,%X after (tRD t 5 ns);
else

inb0 <= null;
inbl <= null;
inb2 <= nuli;
inb3 <= null;
inb4 <= null;
inb5 <= null;
inb6 <= null;
inb7 <= null;
ack_read <= 2X;

end if;

wait on gquard;

end process;

end block modeOb in;

e e R e R N R R R R R R S R R N o o S R RS I
—= MODEO-PORT B-OUT PROCESS

—= This process perform the mode 0 output operation for port B. This is

~~ a simple output operation. No “handshaking" is required, data is simply
-~ written to the port.

modeOb_out: block (pres_modeb = modeOb_output and RESET = '0')

begin
process
begin

if guard then
—- wait until output enable signal is active then placed the content

- of the internal transfer register to the port.
wait until ((out_en b='1') or (RESET = '1'));

BO <= inb0 after twB, null after (LWB t 2 ns);
Bl <= inbl after tWB, null after (twWwB | 2 ns);
B2 <= inb2 after twB, null after (tWB | 2 ns);
B3 <= inb3 after twB, null after (tWB I 2 ns);
B4 <= inb4 after tws, null alter (LWB + 2 ns);

ar 18 21:34 1991 8255A behavior.tex Page 17

BS <= inb5 after twWB, null after (tWB + 2 ns);

B6 <= inb6 after tWB, null after (tWB + 2 ns);

B7 <= inb7 after tWB, null after (tWB + 2 ns);
else

BO <= null;

Bl <= null;

B2 <= null;

B3 <= null;

B4 <= null;

BS <= null;

B6 <= null;

B7 <= null;
end if;

wait on guard;
end process;
end block modeOb_out;

I B T S S I S S WS ST
—— MODE1-PORT B-OUT PROCESS

This process performs the mode 1 output operations on port B. This mode
provides a means for transferring output data from the internal transfer
registers to the port A in conjunction with handshaking signals.

modelb_out: block (pres modeb = modelb_output and RESET = '0')
begin
Mlb_out: process
begin
if guard then

-~ wait for the write enable
wait until (out en b = '1' or RESET = '1');

~— if interrupt masking register is set then send the interrupt to CPU
if (INTEB = 'l1') then

CO <= FO after tWIT, null after (tWIT + 2 ns);
end if;

—= placed output from data bus to the port
2

BO <= DO after tWB, null after (tWB + ns);
Bl <= Dl after tWB, null after (tWB + 2 ns);
B2 <= D2 after tWB, null after (tWB + 2 ns);
B3 <= D3 after tWB, null after (tWB + 2 ns);
B4 <= D4 after tWB, null after (tWB + 2 ns);
B5 <= D5 after tWB, null after (tWB + 2 ns);
B6 <= D6 after tWB, null after (tWB + 2 ns);
B7 <= D7 after tWB, null after (tWB + 2 ns);

-~ if the data has been accepted (ACK BAR) then indicate that the
—— CPU has written data out to the port B (OBF_BAR).
if (C2 = '1') then
Cl <= FO after tWOB;
end if;

—— deactivate the OBF_BAR line

ar 18 21:34 1991 8255A behavior. tex Page 18

wait until (C2 = '0') or RESET = ‘1
Cl <= F1 after tAOB;

—-— deactivate the interrupt line

wait until ((C2 = '1') and (C1 = ‘1') and (WR_BAR = '1')) or RESET-'1';

CO0 <= Fl after tAIT;
else

BO <= null;

Bl <= null;

B2 <= null;

B3 <= null;

B4 <= null;

BS <= null;

B6 <= null;

B7 <= null;

CO0 <= null;

Cl <= null;
end if;

wait on guard;
end process Mlb_out;
end block modelb_out;

B R R E R R N S S S S S S SO O
—— MODE1-PORT B-IN PROCESS
—— This process performs the mode 1 input operations on port B. This mode
—~ provides a means for transferring input data from port B to the internal
-~ transfer registers in conjunction with strobes signals.
modelb_in: block (pres_modeb = modelb_input and RESET = '0')
begin

Mlb_in: process

—— internal latches to hold the input data (latching effect)
variable reg_b0,reg bl,reg b2,reg b3, reg_b4,reg_b5,reg b6,
reg_b7 : t_wlogic;
variable I : integer;
begin
if guard then

-— wait until strobe signal (STB BAR) active then read in value
- from port B into internal temporary register.

wait until ((C2'EVENT) and (C2 = '0')) or (RESET = '1');

reg_b0:= BO;
reqg_bl:= Bl;
reg_b2:= B2;
reg_b3:= B3;
reqg_b4:= B4;
reg_b5:= BS;
reg_b6 B6;
reg_b7:= B7;

-~ indicate that the data has been loaded into the input latch;
-~ in essence, an acknowledgement. (IBF)
Cl <= F1 after tSIi, null after (tSIB + 2 ns);

ar 18 21:34 1991 8255A behavior.tex Page 19

—~ interrupt the CPU when the device request the service.
if (RD_BAR = 'l') and (INTEB = 'l') then
wait until ((Cl = '1') and (C2 = ‘1')) or (RESET = 'l1'y;
CO <= F1 after tSIT, null after (tSIT + 2 ns);
end if;

== wait until READ line is activated then iransfer data from the
—— internal latch to the internal transfer register. Then send
~~ a read acknowledgement to activate READ process.

wait until ((RD_BAR = 'O') or (RESET = 1Yy,

inb0 <= reg b0,null after tRD;

inbl <= reg bl,null after tRD;

inb2 <= reg_b2,null after tRD;

inb3 <= reg_b3,null after tRD;

inb4 <= reg b4,null after tRD;

inb5 <= reg b5,null after tRD;

inb6 <= reg_b6,null after tRD;

inb7 <= reg b7,null after tRD;

ack_read <= F1 , FO after tRD;

— deactivate the interrupt and buffer indicator lines.

CO <= FO0 after tRIT, null after (tRIT + 2 ns);

wait until ((C2 = '1') and (RD_BAR = '1')) or (RESET = '1');
Cl <= FO after tRIB, null after (tRIB + 2 ns);

else
CO0 <= null;
Cl <= null;

inb0 <= null;
inbl <= null;
inb2 <= null;
inb3 <= null;
inb4 <= null;
inbS <= null;
inb6 <= null;
inb7 <= null;
ack_read <= null;
end if;
wait on guard;
end process M1b_in;
end block modelb_in;

—= MODEO-LOWER PORT
—~ This process performs the mode 0 input operation for lower port C. This i
-~ a simple input operation. No "handshaking” is required, data is simply
—— read from the port and placed onto the internal transfer register.
modellowc_in: block (pres_mode lowe = modeOlowc input and RESET = '0O' and

req read_c = ‘1)
begin

process
begin

— place the content read from the port into the internal transfer
— registers then enable the read acknowledge line so that the READ
—— process can be awaken and place the content onto the CPU data bus.

Mar 18 21:34 1991 8255A behavior. Lex Page 20

if guard then

inb0 <= CO;

inbl <= C1;

inb2 <= C2;

inb3 <= C3;

ack_read <= F1 , FO after tRD),ZX after (tRD + 5 ns);
else

inb0 <= null;
inbl <= null;
inb2 <= null;
inb3 <= pull;
ack_read <= 2X;

end if;

wait on guard;

end process;

end block modellowe in;

B R S R R R Rl L R S S O S S S ST
—~ MODEO-LOWER PORT C-OUT PROCESS

—— This process performs the mode 0 oulput operation for lower port C.

—— This is a simple output operation. No “handshaking" is required, data is
—-- simply written to the port.

modeOlowc_out: block (pres mode lowe = modeOlowc_output and RESET = '0')

begin
process
begin
if guard then

-— wait until output enable signal is active then placed the content
—— of the internal transfer register to the port.
wait until (out_en c = '1');

CO <= inb0 after tWB, null after (tWB + 2 ns);
Cl <= inbl after tWB, null after (tWB + 2 ns);
C2 <= inb2 after tWB, null after (tWB + 2 ns);
C3 <= inb3 after tWB, null after (tWB + 2 ns);
else
CO <= null;
Cl <= null;
C2 <= null;
C3 <= null;
end if;

wait on gquard;
end process;
end block modeOlowc_out;

B B R I B I R ER eSS R e e e AR ERE]

—— MODE1-LOWER PORT C-IN PROCESS

-~ This process performs mode 1 input operation for lower port C. Basically,

-~ in this mode only two bits of lower port C, namely bit 0 and bit 1, will

—— acts as the output port. This is a simple input operation.

modellowc_in: block (pres_mode lowc = modellowc_input and RESET = '0' and
req read_c = 'l')

ar 18 21:34 1991 8255A behavior.tex Page 21

begin
process
begin
if guard then
inb0 <= CO;
inbl <= C1;
inb2 <= C2;
ack_read <= F1 , FO after tRD,2ZX after (tRD 4 5 ns) ;
else

inb0 <= null;
inbl <= null;
inb2 <= null;
ack_read <= 2X;

end if;

wait on guard;

end process;

end block modellowc_in;

R e o N R S N NSNS PTG
== MODE1-LOWER PORT C-OUT PROCESS

-= in this mode only two bits of lower port C, namely bit 0 and bit 1, will
—- acts as the input port. This is a simple output operation.

modellowc_out: block (pres mode lowe = modellowc_output and RESET = ‘0' and
out_en_c = '1')
begin
process
begin
if guard then
CO0 <= inb0;
Cl <= inbl;
C2 <= inb2;
else
CO <= null;
Cl <= null;
C2 <= null;
end if; N

. wait on guard;
end process;
end block modellowc_out;

B A a R g S RS PR NSRS RS S
—— MODEO-UPPER PORT C-IN PROCESS
-— This process performs the mode 0 input operation for upper port C. This is
~- a simple input operation. No "handshaking" is required, data is simply
—~ read from the port and placed onto the internal transfer register
modefupc_in: block (pres_mode upc = modeOupc_input and RESET = '0' and
req read c = '1')

begin

process

begin

-~ This process performs mode 1 output operation for lower port C. Basically,

Mar 18 21:34 1991 8255A behavior.tex Page 22

- place the content read from the port into the internal transfer
registers then enable the read acknowledge line so that the READ

7T process can be awaken and place the content onto the CPU data bus.
it guard then :

inb4 <= C4;
inb5 <= C5;
inb6é <= C6;

inb7 <= ¢7;
ack_read <= F1 , FO after tRD,%X after (tkD + 5 ns);
else
inb4 <= null;
inbS <= null;
inb6 <= null;
inb7 <= null;
ack_read <= 2X;
end if;
wait on guard;
end process;
end block modeOupc in;

R R RN N N NN R RN R RN S R I RS R RN RN AR ET
—~ MODEO-UPPER PORT C-OUI' PROCESS

~—+ This process performs the mode 0 outpul operation for upper port C.

This is a simple outpul operation. No "handshaking" is required, data is
-~ simply written to the port.

modeOupc_out: block (pres_mode upc - modeOupc_output and RESET = '0')

begin
process
begin
if guard then

—— wait until output enable signal is active then placed the content
= of the internal transfer register to the port.

wait until (out_en_c = 'l') or RESET = 'l';

C4 <= inb4 after tWB, null after (tWB + 2 ns);

C5 <= inb5 after tWB, null after (tWB + 2 ns);

C6 <= inb6 after tWB, null after (tWB + 2 ns);

C7 <= inb7 after tWB, null after (tWB + 2 ns);

else
‘C4 <= null;
C5 <= null;
C6 <= null;
C7 <= null;
end if;

wait on guard;
end process;
end block modeOupc_out ;

e R AR AR N el R o o S R ¥ NS W S
—— MODE1-UPPER PORT C BIT4,5-IN PROCESS

~~ This process performs mode 1 input operation for upper port C. Basically,

Mar 18 21:34 1991 8255A behavior.tex Page 23

-~ in this mode only two bits of upper port C, namely bit 4 and bit 5, will

"~ acts as the output port. This is a simple input operat.ion.

modelupe45_in: block (pres_mode upe = modelupc45_input and RESET = '0' and
req read_c = 'l')

begin
process
begin
if guard then
inb4 <= C4;
inb5 <= C5;
ack_read <= Fl1 , FO after tRD,ZX after (tRD + 5 ns);
else

inb4 <= null;
inb5 <= null;
ack_read <= zX;
end if;
wait on guard;
end process;
end block modelupc45 in;

B o o B B o o o B S SRR N I A S W W e
—— MODE1-UPPER PORT C BIT4,5-OUT PROCESS

—= This process performs mode 1 output operation for upper port C. Basically,
= in this mode only two bits of upper port C, namely bit 4 and bit 5, will
~~ acts as the input port. This is a simple output operation.
modelupcd5_out: block (pres_mode upc = modelupc45_output and RESET = '0' and

out en_c = '1")
begin
process
begin
if guard then
C4 <= inb4;
C5 <= inb5;
else
C4 <= null;
C5 <= null;
end if;

wait on guard;

end process;
-end block modelupc45_out;
—— MODE1-UPPER PORT C BIT6,7-IN
—— This process performs mode 1 input operation for upper port C. Basically,
= in this mode only two bits of upper port C, namely bit 6 and bit 7, will
—— acts as the output port. This is a simple input operation.
modelupc67_in: block (pres mode _upc = modelupc67_input and RESET = '0' and

req read_c = ‘1')

b4+
t++ 4444+

R R R L N S

begin
process
begin
if guard then
inb6 <= C6;
inb7 <= C7;

Mar 18 21:34 1991 8255A behavior.tex Page 24

ack_read <= Pl , FO after tRD,2X after (tRD + 5 ns);
else
inb6 <= null;
inb7 <= null;
ack_read <= 2X;
end if;
wait on guard;
end process;
end block modelupcé? in;

A SR AR N R N N RN N N N I S S AU I I PR
-~ MODE1-UPPER PORT C BITG,7 OUT PROCESS

This process performs mode 1 output operation for upper port €. Basically,
-- in this mode only two bits of upper port C, namely bit 6 and bit 7, will
-~ acts as the output port. This is a simple output operation.

modelupc67_out: block (pres mode upc - modelupc67_output and RESET = '0' and
out_en_c = '1')
begin
process
begin
if guard then
C6 <= inbb;
C7 <= inb7;
else
C6 <= null;
C7 <= null;
end if;

walit on gﬁard;
end process;
end block modelupc67_out;

I s ads N S S N B R G NN T
—— PORT A-INTERFACE PROCESSES

~— The following processes are used as input/output interface from the
-— internal registers holding content of port A to the external bus A.
-~ The reason we have to use such interface because as a bus, when the
~-— driver is deactivated, its value will be re-calculate. But we want to
-~ retain those value, hence, we have to use registers as buffers.
process (A0)
begin
PAO <= RO;
end process;
process (Al)
begin
PAl <= Al;
end process;
process (A2)
begin
PA2 <= A2;
end process;
process (A3)
begin

ar 18 21:34 1991 8255A_behavior.tex Page 25

PA3 <= A3;
end process;
process (A4)
begin
PA4 <= B4;
end process;
process (A5S)
begin
PAS <= BA5;
end process;
process (A6)
begin
PA6 <= A6;
end process;
process (A7)
begin
PA7 <= A7;
end process;
process (PAO)
begin
A0 <= PAO, null after 1 ns;
end process;
process (PAl)
begin
Al <= PAl, null afler 1 ns;
end process;
process (PA2)
begin
A2 <= PA2, null after 1 ns;
end process;
process (PA3)
begin
A3 <= PA3, null after 1 ns;
end process;
process (P3a4)
begin
A4 <= PA4, null after 1 ns;
end process;
process (PAS)
begin
A5 <= PAS, null after 1 ns;-
end process;
process (PA6)
begin
A6 <= PA6,null after 1 ns;
end process;
process (PA7)
begin
A7 <= PA7,null after 1 ns;
end process;
process (BO)
begin
PBO <= BO;
end process;

Mar 18 21:34 1991 B8255A behavior.tex Page 26

AR I R b b bbb b b b4 14 F)
~~ PORT B-INTERFACE PROCESSES

The following processes are used as input/output interface from the
internal registers holding content of port A to the external bus A.
~- The reason we have to use such interface because as a bus, when the
-- driver is deactivated, its value will be re-calculate. But we want to
-~ retain those value, hence, we have to use registers as buffers.
process (Bl)
begin
PBl1 <= BIl;
end process;
process (B2)
begin
PB2 <= B2;
end process;
process (B3)
begin
PB3 <= B3;
end process;
process (B4)

begin
PB4 <= B4;
end process;
process (BS)
begin
PBS <= BS;

end process;
process (B6)
begin
PB6 <= B6;
end process;
process (B7)
begin
PB7 <= B7;
end process;
process (PBO)
begin
BO <= PBO, null after 1 ns;
end process;
process (PBl)
begin
Bl <= PBl, null after 1 ns;
end process;
process (PB2)
begin
B2 <= PB2, null after 1 ns;
end process;
process (PB3)
begin
B3 <= PB3, null after 1 ns;
end process;
process (PB4)
begin
B4 <= PB4, null after 1 ns;
end process;

Mar 18 21:34 1991 8255A behavior.tex Page 27

process (PB5)
begin
B5 <= PB5, null after 1 ns;
end process;
process (PB6)
begin
B6 <= PB6,null after 1 ns;
end process;
process (PB7)
begin
B7 <= PB7,null after 1 ns;
end process;

B N S S SN R T T TSR
~~ PORT C-INTERFACE PROCESSES

—~ The following processes are used as input/output interface from the
-~ internal registers holding content of port A to the external bus A.
—- The reason we have to use such interface because as a bus, when the
—— driver is deactivated, its value will be re-calculate. But we want to
~~ retain those value, hence, we have to use registers as buffers.
process (CO)
begin
PCO <= CO;
end process;
process (Cl)
begin
PCl <= C1;
end process;
process (C2)
begin
pC2 <= C2;
end process;
process (C3)
begin
PC3 <= C3;
end process;
process (C4)
begin
PC4 <= C4;
end process;
process (C5)
begin
PC5 <= C5;
end process;
process (C6)
begin
PC6 <= C6;
end process;
process (C7)
begin
PC7 <= C7;
end process;
process (PCO)
begin

Mar 18 21:34 1991 8255A behavior.tex Page 28

CO <= PCO, null after 1 ns;
end process;
process (PCl)
begin
Cl <= PCl1l, null after 1 ns;
end process;
process (PC2)
begin
C2 <= PC2, null after 1 ns;
end process;
process (PC3)
begin
C3 <= PC3, null after 1 ns;
end process;
process (PC4)
begin
C4 <= PC4, null after 1 ns;
end process;
process (PC5)
begin
C5 <= PC5, null after 1 ns;
end process;
process (PC6)
begin
C6 <= PC6,null after 1 ns;
end process;
process (PCT)
begin
C7 <= PC7,null after 1 ns;
end process;

e R R R AR R N R NN NN SRR R R RS R S N NN EN
-~ This process acts as a timming constraint checker for RD_BAR pulse widlh
process (RD _BAR)
variable readlastevent : time :- 0 ns;
begin
if (RD_BAR'EVENT) and (RD BAR = '1') then
assert (NOW = 0 ns) or ((NOW - readlastevent) >= tRR)
report "RD_BAR pulse width is less than tRR" severity warning;
elsif (RD_BAR'EVENT) and (RD_BAR = '0') then
readlastevent := NOW;
end if;
end process;

R I B e I o e O B O A B I R e S S AR
—— This process acts as a timming constraint checker for WR_BAR pulse width
process (WR_BAR)
variable writelastevent : time := 0 ns;
begin
if (WR_BAR'EVENT) and (WR_BAR = '1') then
assert (NOW = 0 ns) or ((NOW - writelastevent) >= tWW)
report "WR_BAR pulse width is less than tWW" severity warning;
elsif (WR_BAR'EVENT) and (WR_BAR = '0') then
writelastevent := NOW;
end if;
end process;

\
|
|

ar 18 21:34 1991 8255A behavior.tex Page 29

R R R e R R e R R g S S o g R S R

~= This process acts as a timming constraint checker for hold/setup time
—- for address after/before read pulse width

process (RD_BAR, AO_MODE, Al_MODE, CS_BAR)
variable readlastevent time := 0 ns;
variable addresslastevent time := 0 ns;
begin
if (AO_MODE'EVENT) or (Al_MODE'EVENT) or (CS_BAR'EVENT) then
assert (NOW = 0 ns) or ((NOW - readlastevent) >= tRA)
report "Address stable not longer than tRA after read pulse"
severity warning;
addresslastevent := NOW;
end if;

if (RD_BAR'EVENT) and (RD BAR = '0') then

assert (NOW = 0 ns) or ((NOW - addresslastevent) >= tAR)

report "Address stable not longer than tAR before read pulse"
severity warning;

elsif (RD_BAR'EVENT) and (RD_BAR = '1') then

readlastevent := NOW;
end if;
end process;

e o L R e I R I R e B B O O B R U o I SR B S Y S N SR A SR R A S AN S SN 0 R A A,
== This process acts as a timming constraint checker for hold/setup time
- for address after/betore write pulse width

process (WR_BAR, AO_MODE, Al _MODE, CS_BAR)
variable writelastevent : time := 0 ns;
variable addresslastevent : time := 0 ns;
begin
if (A0 _MODE'EVENT) or (Al_MODE'EVENT) or (CS_BAR'EVENT) then
assert (NOW = 0 ns) or ((NOW - writelastevent) >= tWA)
report "Address stable not longer than tWA after write pulse"
severity warning;
addresslastevent := NOW;
end if;

if (WR_BAR'EVENT) and (WR_BAR = '0O') then

assert (NOW = 0 ns) or ((NOW - addresslastevent) >= tAW)

report "Address stable not longer than tAW before write pulse”
severity warning;

elsif (WR_BAR'EVENT) and (WR_BAR = 'l1') then

writelastevent := NOW;
end if;
end process;

e e I O B o e R R o B O O S A S O S S S O R A N A S S S ap e
—— This process acts as a timming constraint checker for time between read
~— and write pulse

process (RD _BAR, WR_BAR)
variable readlastevent : time := 0 ns;
variable writelastevent : time := 0 ns;

Mar 18 21:34 1991 8255A_behavior.tex Page 30

begin
if (RD_BAR'EVENT) and (RD_BAR = '0') then
assert. (NOW = 0 ns) or ((NOW - writelastevent) >= tRV) or
(writelastevent = 0 ns)
report "Time between read and write is smaller than tRV"
severity warning;

readlastevent := NOW;

end if;

if (WR_BAR'EVENT) and (WR_BAR = '0') then
assert (NOW = 0 ns) or ((NOW — readlastevent) >= tRV) or
(readlastevent = 0 ns)
report "Time between read and write is smaller than tRV"
severity warning;
writelastevent := NOW;
end if;

end process;

e R R R RN R N R R R N R B SRS S S g S
~— This process acts as a timming constraint checker for hold/setup time tor
-~ data atter/before write pulse width

process (WR BAR,DO,D1,D2,D3,D4,D5,D6,D7)

variable writelastevent : time := 0 ns;
variable writelow : integer :+ 0;
variable datalasteven! : time := 0 ns;

begin
if ((DO'EVENT) or (D1'EVENT) or (D2'EVENT) or
(D3'EVENT) or (D4'EVENT) or (DS'EVENT) or
(U6 'EVENT) or (D7'EVENT)) and (CS_BAR'EVENT)
and (WR_BAR = '1')then
assert (NOW = 0 ns) or ((NOW - writelastevent) >= tWD)
report "Data valid atter write is shorter than twD"
severity warning;
elsif ((DO'EVENT) or (DI'EVENT) or (D2'EVENT) or
(D3'EVENT) or (D4 'EVENT) or (DS'EVENT) or
(D6'EVENT) or (D7'EVENT)) and (CS_BAR'EVENT)
and (WR_BAR = '0') and (writelow = l)then
datalastevent := NOW;
end if;

if (WR_BAR'EVENT) and (WR BAR = 'l1') then
assert (NOW = 0 ns) or ((NOW - datalastevent) >= tDW)
report '"Data valid before write is shorter than tDW"
severity warning;

writelastevent := NOW;
writelow := 0;

elsif (WR_BAR'EVENT) and (WR_BAR = '0') then
writelow := 1;

end if;

end process;

end i8255a_a;

0/6l €

Mar 18 21:34 1991 8255A behavior.tex Page 31

-- configuration declaration
configuration i8255a_c of iB8255a_e is
for iB255a_a

end for;

lend i8255a_c;

vZvy 28800

I

