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Over the last years extraordinary advances in experimental and theoretical tools

have allowed us to monitor and control matter at short time and atomic scales with

a high-degree of precision. An appealing and challenging route towards engineering

materials with tailored properties is to find ways to design or selectively manipulate

materials, especially at the quantum level. To this end, having a state-of-the-art

ab initio computer simulation tool that enables a reliable and accurate simulation

of light-induced changes in the physical and chemical properties of complex systems

is of utmost importance. The first principles real-space-based Octopus project was

born with that idea in mind, providing an unique framework allowing to describe

non-equilibrium phenomena in molecular complexes, low dimensional materials, and

extended systems by accounting for electronic, ionic, and photon quantum mechani-

cal effects within a generalized time-dependent density functional theory framework.

The present article aims to present the new features that have been implemented

over the last few years, including technical developments related to performance and

massive parallelism. We also describe the major theoretical developments to ad-

dress ultrafast light-driven processes, like the new theoretical framework of quantum

electrodynamics density-functional formalism (QEDFT) for the description of novel

light-matter hybrid states. Those advances, and other being released soon as part of

the Octopus package, will enable the scientific community to simulate and character-

ize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and

materials, and new emergent states of matter (QED-materials).

a)Electronic mail: nicolas.tancogne-dejean@mpsd.mpg.de
b)Electronic mail: micael.oliveira@mpsd.mpg.de
c)Electronic mail: angel.rubio@mpsd.mpg.de
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I. INTRODUCTION

It is a general challenge in the electronic structure community to develop accurate and

efficient methods of modeling materials of ever increasing complexity in order to predict

their properties. In this respect, time-dependent density functional theory (TDDFT) and

related methods have become a natural choice for modeling materials and complex systems

in and out of their equilibrium.

During the last years, novel directions of research emerged in the field of chemistry,

physics, and material science that required the development of novel simulation tools needed

to face the new challenges posed by those experimental advances and emerging phenomena.

Among these new fields of research, one could cite some examples: the strong coupling

between light and matter (including materials embedded in cavities), new states of matter

(hidden phases and topological solids and molecules), and the strong field dynamics in

periodic systems. Whereas the strong-field dynamics of atoms and molecules is now well

understood, the strong-field dynamics in solids is an active field of research. Real-time

TDDFT1,2 represents a natural tool to study highly non-linear phenomena in solids and

low-dimensional materials and the development of efficient numerical methods to perform

real-time TDDFT in such periodic or semi-periodic systems is crucial to explore this new

phenomena (including the quantum nature of light and phonons). Indeed, it allows to

describe highly nonlinear processes without having to resort to the perturbation theory on

top of equilibrium DFT calculations.

Recent years have seen tremendous experimental progress in the field of strong light-

matter interactions,3–5 where the strong coupling of light to chemical systems, quantum

materials, or nanoplasmonic systems, among others, has been demonstrated. In this regime,

light and matter meet on the same footing and the electron-photon interaction has to be

explicitly considered.4–9 A theoretically novel approach accelerating this field is quantum-

electrodynamical density-functional theory (QEDFT),4,5,10–14 which complements TDDFT

with the photonic degrees of freedom and provides reliable and predictive simulations in this

emerging field of research.

In this paper we explore the recent advances in the Octopus code project.15–19 We focus

our attention on the recently added features, and particularly on the ones that have not

been described in the previous papers.17–19 These new features include the implementation
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of new levels of self-consistent and microscopic couplings of light and matter, the treatment

of solvent effects through the polarizable continuum model, the implementation of various

methods to treat van der Waals interactions, new methods to calculate magnons, conductiv-

ities, and photoelectron spectroscopy from real-time TDDFT, and the calculation of orbital

magneto-optical responses. Advances in numerical algorithms and methods, such as new

propagators and the use of iterative eigensolvers in the context of reduced density matrix

functional theory, are also discussed. Finally, recent improvements in the treatment of peri-

odic systems, as well as more technical code improvements, are also presented. For a more

detailed explanation about how to use these newly introduced features in practice, we refer

the readers to the Octopus webpage,20 as new tutorials and examples are regularly being

added to it.

This paper is organized as follow. First, we present in Sec. II to Sec. XII new implemen-

tations of physical theories and algorithms that allow us to deal with new non-equilibrium

phenomena in materials and nanostructures. This is followed by a second set of sections,

from Sec. XIII to Sec. XVI, dealing with technical developments that are fundamental in im-

proving the code performance and the algorithm’s stability. Finally, we draw our conclusions

in Sec. XVII. Unless otherwise stated, atomic units are used throughout the paper.

II. COUPLED MAXWELL-KOHN-SHAM EQUATIONS

In most cases when light-matter interactions are considered, a decoupling of light and

matter is performed at the outset. Either the electromagnetic fields are prescribed and then

properties of the matter subsystem are determined, as frequently found in, e.g., quantum

chemistry or solid-state physics, or the properties of matter are prescribed and then the

properties of the photon subsystem are determined, as done in, e.g., quantum optics or

photonics.12,21

The microscopic interaction of light and matter in Octopus has followed this decoupling

strategy and has been treated so far only in forward-coupling direction. In this approxima-

tion an external classical laser pulse or kick is prescribed and the response of the system is

computed by evolving the Kohn-Sham orbitals.22 The back-action of the matter subsystem

on the laser pulse, and the subsequent effect of this modified pulse on matter, and so on, is

ignored. This forward-coupling approximation is highly accurate when the generated total
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current in the system is comparably small, such as in atoms or smaller molecules. This has

been exploited in Octopus and many different types of spectroscopies have been computed

successfully in the past using this approach.

In contrast, in classical electromagnetic modeling the opposite view is taken. Here the

material properties are prescribed and the resulting electromagnetic fields are computed. In

practice, the material properties are routinely approximated by a local continuum model or

the dielectric function of the system, such as a Debye, Lorentz, or Drude model and then

Maxwell’s equations are solved for linear dielectric media arranged in appropriate geome-

tries.23

It is clear that both perspectives, a focus on matter dynamics alone or a focus on elec-

tromagnetic field dynamics alone, break down when the total induced currents become

large and when electromagnetic near-field effects on the scale of the material system are

not negligible anymore. Prime examples for such cases are nanoplasmonic systems, surface

plasmon-polaritons, or tip-enhanced spectroscopies. In these cases the back-action of the

material response on the system itself has to be taken into account leading to screening

and retardation effects. The proper theoretical framework which encompasses all these ef-

fects is quantum electrodynamics. Starting with a generalized Pauli-Fierz field theory for

the combined system of electrons, nuclei, and photons, we have recently derived different

levels of self-consistent and microscopic couplings of light and matter. In the classical limit

this results in a coupled set of Ehrenfest-Maxwell-Pauli-Kohn-Sham equations.21 To im-

plement these equations, we have added a Maxwell solver to the Octopus code which we

couple self-consistently to the dynamics of the electrons and nuclei. In the following, we

briefly summarize the basic ingredients for this implementation and show an example of

self-consistent light-matter interactions for a nanoplasmonic system. Further details of the

implementation and nano-optical applications can be found in Ref. 21.

Since over the years Octopus has been optimized heavily to solve time-dependent

Schrödinger and Kohn-Sham equations, we have exploited the fact that Maxwell’s equa-

tions can be formulated in Schrödinger form24 to benefit from the efficient time-evolution

in the code. This reformulation is based on the Riemann-Silberstein vector,25 which is a

combination of the electric E(r, t) and magnetic field B(r, t)

F±(r, t) =

√
ε0
2
E(r, t)± i

√
1

2µ0

B(r, t) . (1)
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The sign of the imaginary part of the Riemann-Silberstein vector corresponds to different

helicities. The reformulation of Maxwell’s equations in Schrödinger form is purely algebraic

and starts out with the microscopic Maxwell’s equations

∇ · E =
ρ

ε0
, ∇ ·B = 0 , (2)

∇×B =
1

c2

∂E

∂t
+ µ0J, ∇× E = −∂B

∂t
, (3)

where E and B are the classical electric and magnetic fields, ρ and J are the charge and

current densities, ε0 and µ0 are the vacuum permittivity and permeability, and c = (ε0µ0)−1/2

is the speed of light. Using the Riemann-Silberstein vector, the electric and magnetic Gauss

laws may now be combined in real and imaginary part

∇ · F =
1√
2ε0

ρ (4)

and, likewise, the Faraday and Ampere law can be combined into one evolution equation for

the Riemann-Silberstein vector

i~
∂F

∂t
= c

(
S · ~

i
∇
)

F− i~√
2ε0

J . (5)

Here S = (Sx, Sy, Sz) denotes a vector of spin one matrices

Sx =


0 0 0

0 0 −i
0 i 0

 , Sy =


0 0 i

0 0 0

−i 0 0

 , Sz =


0 −i 0

i 0 0

0 0 0

 , (6)

which are analogous to the Pauli matrices and show the spin-one character of the pho-

ton. Having cast Maxwell’s equations as an inhomogeneous Schrödinger equation, it is now

straightforward to use the time-evolution algorithms in Octopus to time-evolve the Riemann-

Silberstein vector. The only difference to the matter propagation is that we are now dealing

with the “Maxwell Hamiltonian”

HEM = c

(
S · ~

i
∇
)
, (7)

which acts on six orbitals of the Riemann-Silberstein vector corresponding to the three

components of the electric and magnetic field vectors. As in the matter case in Octopus, the

discretization of the gradient in the Maxwell Hamiltonian is performed with finite-difference
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stencils and the domain parallelization of Octopus can be used seamlessly for the Maxwell

case as well. While also finite-difference discretizations are used for the Maxwell solver in

Octopus, the difference to finite-difference time-domain (FDTD) codes based on the Yee

algorithm is that we employ not two shifted grids for the electric and magnetic fields,23 but

rather a single grid for the Riemann-Silberstein vector. This simplifies the coupling to matter

and allows us to use higher-order finite-difference discretizations for the gradient. Since

the spatial discretization is connected to the temporal discretization through the Courant

condition, this in turn allows to take larger time-steps and, from our experience, a unified

grid also improves the stability compared to FDTD.

Instead of using the constitutive relations, we couple Maxwell’s equations directly to

the microscopic current density of the matter subsystem, consisting of the usual paramag-

netic current term, the diamagnetic current term, and the magnetization current term. For

the coupling of the electromagnetic fields to the matter subsystem, we are relying on the

Power-Zienau-Woolley transformation,26,27 which leads to a multipole expansion. We have

implemented the first two orders of this expansion: the dipole approximation in lowest or-

der and electrical-quadrupole and magnetic-dipole coupling in the next order. In addition,

we are currently working on implementing the full minimal coupling with a full position

dependence of the vector potential.

The time evolution of the Kohn-Sham orbitals and the Maxwell fields is performed side-

by-side and the two subsystems are coupled self-consistently in each time-step, as illustrated

in Fig. 1. To propagate different subsystems with different Hamiltonians and different sets of

orbitals simultaneously, we have implemented a multi-system framework in Octopus (more

details about this can be found in Subsection XVI C).

Similar to the matter propagation, also in the Maxwell case outgoing waves that reach

the box boundary of the simulation box have to be absorbed to avoid artificial reflections

and backscattering at the boundaries. Our first attempt was to use also the mask functions

that are used for the matter propagation in Octopus. However, in the electromagnetic case

the mask absorption of outgoing waves turned out to be not efficient enough so that we

implemented a perfectly matched layer (PML)23 for the Maxwell propagation.

When considering incoming electromagnetic fields with optical wavelengths, the coupling

to atomistic or nano-scale systems leads to a multi-scale problem. The optical wavelength

of the radiation is in this case much larger than the de Broglie wavelength of the matter.
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Only forward coupling Self-consistent forward and backward coupling

Figure 1. The figure on the left-hand side illustrates the standard forward-coupling approximation:

the electromagnetic fields (in blue) propagate freely and only influence the propagation of the

matter (in red). The back reaction of the matter currents on the electromagnetic fields is neglected.

In the figure on the right-hand side we illustrate a fully self-consistent predictor-corrector scheme for

a coupled Maxwell-Pauli-Kohn-Sham time-stepping. As before, the electromagnetic fields influence

the propagation of the matter (forward coupling). However, in addition, here the currents from

the matter propagation also influence the propagation of the electromagnetic fields (backward

coupling). A given time-step for the matter wavefunctions and the electromagnetic fields is repeated

until self-consistency is found (self-consistent forward-backward coupling).

Likewise, the electromagnetic waves are traveling with the speed of light, which requires

sub-attosecond time-steps. We have therefore implemented different multi-scale couplings

in space and time. For example, the Maxwell simulation box can be on the same scale as the

matter box. In this case the electromagnetic waves are represented as incoming analytical

time-dependent boundary conditions and are propagated numerically inside the simulation

box. Alternatively, the Maxwell simulation box can be much larger than the matter box

to fully encompass laser pulses with optical wavelengths. In this case prolongations and

interpolations have to be used similar to multi-grid methods. Since the electronic and nuclear

motion is much slower than the time-evolution of the electromagnetic waves, we also have

implemented a multi-scale approach for the real-time propagation. The Riemann-Silberstein

vector is propagated with frozen electronic current from the last point of interaction for many

intermediate time-steps before a coupling to the matter subsystem takes place. The number

of intermediate steps is a convergence parameter and depends on the physical situation at

hand.

Since we now include the description of classical electromagnetic fields explicitly in our
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real-time simulations, we have directly access to the outgoing electromagnetic radiation.

This allows to define electromagnetic detectors at the box boundaries which accumulate

the outgoing electromagnetic waves. We have implemented such electromagnetic detectors

in Octopus and this allows to run simulations in close analogy with experiments and to

directly observe the outgoing radiation. For example, it is then no longer needed to Fourier

transform the time signal of the matter dipole to get optical spectra, but we rather have

access to the spectrum directly on the Maxwell grid.

As an example of a coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham propagation with Oc-

topus we have selected a nano-optical application. We consider in this example two almost

spherical sodium nanoparticles with 297 sodium atoms each, which are arranged in a dimer

configuration. This system is excited with an incoming laser pulse which excites either the

internal dipole or quadrupole plasmon motion of the dimer. In Fig. 2 we show the resulting

electromagnetic field enhancements for different levels of light-matter coupling. In panels a)

and b) we show the temporal profile of the incoming laser pulse and the resulting current

density at the center point between the two nanoparticles. The field enhancement can be

seen in panels c)-e). Including a self-consistent back reaction in the light-matter coupling,

the field enhancement is reduced at the center point between the two nanoparticles, as can

be seen in panel c), while far away from the dimer, as shown in panels d) and e), the field

enhancement is larger than in the forward coupled case. Furthermore, frequency shifts can

also be observed, which are more pronounced in the near-field. We have found that the

field enhancement is also sensitive to the coupling terms of the multipole expansion which

are included and that the quantitative difference of switching from LDA to PBE for the

exchange-correlation functional is in this case smaller than including the back reaction in

the light-matter coupling, cf. Ref. 21.

To conclude, with our new efficient implementation for coupled Ehrenfest-Maxwell-Pauli-

Kohn-Sham equations in Octopus we have now a very versatile tool at hand which allows to

compute fully self-consistent forward-backward light-matter coupling in real-time and real-

space for a vast set of applications and in close analogy to experiments. As the coupling to

Maxwell’s equations of motion represents the classical limit of the light-matter interaction,

this development leads to the classical limit of QEDFT.
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Figure 2. Electric field values and current density in the z-direction for a dimer of sodium

nanoparticles. The centers of the two nanoparticles are located along the z-axis and the

distance between the two effective spheres of the nanoparticles is 0.5 nm. The electric field

values are calculated at two different points: the center point rcp between the two nanoparti-

cles, located at the origin, and an off-center point rocpx located along the x-axis at a distance

of 1.957 nm from rcp. The first panel a) illustrates the incident cosinusoidal laser pulse

with frequency ω1 = 3.05 eV (0.112 a.u.), λ1 = 406.5 nm (7681.84 a.u.), and amplitude of

E0
z = 5.142 × 107 V/m (10−4 a.u.), which drives the system. The second panel b) displays

the current density at rcp. In panels c) − e), we show the electric field enhancement at rcp,

the electric field enhancement at rocpx, and the average of the electric field over the detector

surface close to the box boundary, respectively. The curve in bright gray in panel c) has been

added to simplify the comparison and is identical to the laser pulse in panel a). The period

T1 = 1.36 fs corresponding to the laser frequency ω1 is indicated with grey vertical lines.
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III. STRONG ELECTRON-PHOTON INTERACTIONS IN REAL SPACE:

QUANTUM-ELECTRODYNAMICAL DENSITY-FUNCTIONAL THEORY

(QEDFT)

The nascent field of strong light-matter interaction expanded over the past decades from

small atomic structures to chemistry3 and material science.28 This development necessitates

predictive first-principles methods capable to describe light and matter on the same footing.

We have introduced for the first time a time-dependent density functional theory for quantum

electrodynamics (QEDFT)4,10 to treat ab-initio weak and strong light-matter interactions,

and its applications to chemistry and materials, that provides a unique framework to explore,

predict, and control new states of matter out of equilibrium. This generalization of the

time-dependent density-functional method allows us, for the first time, to explore the effects

of dressing electronic states with photons, while retaining the electronic properties of real

materials.

A general non-relativistic Hamiltonian for light-matter systems treating N interacting

electrons coupled to Np photonic modes in the case of the so-called length-gauge, and after

employing the long-wavelength (dipole) approximation,13 reads as follows:

Ĥ =
N∑
k=1

[
−1

2
∂2
rk

+ v(rk, t)
]

+ 1
2

∑
k 6=l

w(rk, rl) +
1

2

Np∑
α=1

− ∂2

∂q2α
+

(
ωαqα − λα ·

N∑
k=1

rk

)2

+ 2
j

(α)
ext (t)

ωα
qα

 .

(8)

Here the first two terms on the right-hand side correspond to the usual electronic many-body

Hamiltonian, while the last term describes the photon mode, which is characterized for each

photon mode α by its elongation qα, frequency ωα, and electron-photon coupling strength

vector λα that includes the polarization of the photon mode and introduces the coupling

to the total dipole
∑N

k=1 rk of the electronic system. The external variable for the photon

system is the time-dependent current j
(α)
ext (t).

QEDFT4,10 is structurally similar to time-dependent density-functional theory in that

it is based on a one-to-one correspondence between internal and external variables. If now

photons are also considered, the set of internal variables has to be expanded. In the frame of

Eq. 8, the internal variables become the density n(r, t) and the mode-resolved contributions

to the electric displacement field qα(t). By introducing and exploiting the bijective mapping

of these internal and the external variables (vext(r, t) and jext(t)), the auxiliary Kohn-Sham
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system can be set up which is characterized by the electronic Kohn-Sham equations as

well as Maxwell’s equations,5 leading to no exchange-correlation contribution in the photon

subsystem (j
(α)
xc (t) = 0). This reformulation subsumes the ’quantumness’ of the light-matter

interaction solely into the local exchange-correlation potential that now features a component

due to the electron-photon interactions, in addition to the part due to electron-electron

interaction part, i.e., vxcσ(r, t) = veexcσ(r, t) + vepxcσ(r, t).4,10,12 Extending the coupled Maxwell-

Kohn-Sham equations to consider quantum photons is thus condensed into the calculation

of the local exchange-correlation potential.

In practice, QEDFT requires the construction of an additional exchange-correlation po-

tential that describes the electron-photon interaction. First attempts to construct this po-

tential are based on many-body perturbation theory within the exact exchange approxima-

tion13,29 by utilizing the optimized-effective potential (OEP) method.30

A. The optimized effective potential (OEP)

The OEP photon energy has been introduced in Ref. 29 and depends on occupied and

unoccupied orbitals of the system. Alternatively, the OEP photon energy can also be formu-

lated using occupied orbitals and orbitals shifts only.13 The full energy expression is given

by

Exc = E(ee)
xc +

Np∑
α=1

E(α)
x , (9)

where E
(ee)
xc describes the electronic exchange-correlation energy and E

(α)
x the exchange en-

ergy due to the interaction of the electrons with the photon mode α. Avoiding unoccupied

orbitals is computationally much more favorable for larger systems and the photonic induced

exchange energy can be correspondingly expressed as sum over the Nσ occupied orbitals of

spin channel σ

E(α)
x =

∑
σ=↑,↓

Nσ∑
i=1

√
ωα
8
〈Φ(1)

iσ,α| d̂α |ϕiσ〉+
1

4
〈Φ(2)

iσ,α| d̂α |ϕiσ〉+ c.c. , (10)

where ωα describes the αth mode of the electromagnetic field and d̂α = λα · r describes

the dipole operator and the electron-photon coupling strength. We can now reformulate

the problem in terms of two electron-photon orbital shifts. The Kohn-Sham orbitals ϕiσ
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contribute to both electron-photon orbital shifts Φ
(1)
iσ,α and Φ

(2)
iσ,α that can be calculated

using the Sternheimer equations.13 The first electron-photon orbital shift can be obtained

explicitly by the solution of a linear equation, i.e., a Sternheimer equation[
ĥsσ − (εiσ − ωα)

]
Φ

(1)
iσ,α(r) = −

√
ωα
2
d̂αϕiσ(r) +

√
ωα
2

Nσ∑
k=1

d
(α)
kiσϕkσ (r) , (11)

with the matrix element d
(α)
ijσ = 〈ϕiσ| d̂α |ϕjσ〉. In contrast, the second electron-photon orbital

shift Φ
(2)
iσ,α(r) can be defined explicitly as follows

Φ
(2)
iσ,α(r) = d̂αϕiσ(r)−

Nσ∑
k=1

d
(α)
kiσϕkσ (r). (12)

From Eq. (10), we can now deduce the potential using

vxcσ(r) =
δExc
δnσ(r)

. (13)

Doing these reformulations, we find for the final OEP equation including electron-electron

effects as well as electron-photon effects

Nσ∑
i=1

ψ∗iσ(r)ϕiσ(r)− Λiσ(r) + c.c. = 0 . (14)

where the homogeneity Λiσ(r) is given by

Λiσ(r) =
1

2

Np∑
α=1

[
Φ

(1)∗
iσ,α(r)Φ

(1)
iσ,α(r)− 〈Φ(1)

iσ,α|Φ(1)
iσ,α〉ϕ∗iσ(r)ϕiσ(r)

]
In Eq. 14 we defined a third orbital shift, the exchange-correlation orbital shift, that will

be used to obtain the corresponding exchange correlation potential and is defined along the

lines of the orbital shift usually used in OEP calculations.30 We can obtain ψ∗iσ(r) using a

Sternheimer equation (
ĥsσ − εiσ

)
ψ∗iσ(r) = M∗

iσ(r)− 〈Miσ|ϕiσ〉ϕ∗iσ(r) , (15)

where M∗
iσ(r) now consist of the electron-photon orbital shifts and the Kohn-Sham orbitals,

as described in Ref. 13. Accordingly we define this quantity as

M∗
iσ(r) =− (vxσ(r)− uxiσ(r))ϕ∗iσ(r) (16)

+

Np∑
α=1

[
d̂α

(√
ωα
2

Φ
(1)∗
iσ,α(r) +

1

2
d̂αϕ

∗
iσ(r)

)

−
Nσ∑
k=1

d
(α)
ikσ

(√
ωα
2

Φ
(1)∗
kσ,α(r) + d̂αϕ

∗
kσ(r)

)]
.
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Figure 3. Ground-state density of two sodium dimers affected by the vacuum-field of a cavity:

In (a) we show the electron density, in (b) the difference of the electron density inside and outside

the cavity for the OEP and the KLI approximations (see main text for details). We find for the

exchange energy E
(α)
x = 6.52 meV and the number of photons in the correlated light-matter ground-

state npt = 〈a†αaα〉 = 2.03×10−3 for the OEP case, and E
(α)
x = 6.67 meV and npt = 2.22×10−3 for

KLI. Panel (c) shows the convergence of |S(r)|2 as defined by Eq. 17 using a constant with c = 20,

and using the Barzilai-Borwein (BB) scheme. The simulation is set up as described in Refs. 12 and

13, with ~ωα = 2.19 eV, λα = 2.95 eV1/2nm−1, λα = λαey, and the real-space grid is sampled as

31.75× 31.75× 31.75 Å3, with a grid spacing of 0.265 Å.

and include here effects of the electron-electron interaction in the quantity uxiσ(r). For

instance in exchange-only calculations this quantity is defined as uxiσ(r) = 1
ϕ∗iσ(r)

δE
(ee)
x [{ϕjτ}]
δϕiσ(r)

,

where E
(ee)
x is the usual Fock exchange energy.

Eq. 15 has to be solved self-consistently with Eq. (11). By this reformulation, we have

replaced the problem of calculating the OEP equation using all unoccupied states by a

problem of solving Np+1 Sternheimer equations that each only invoke occupied orbitals. In

this way, the formulation of the problem becomes similar to the one of Ref. 31 for electrons

only, and which can be easily extended.

For the practical implementation, we reformulate the OEP equation in the following form,

as it is commonly done to construct the electronic OEP30:

Sσ(r) =
Nσ∑
i=1

ψ∗iσ(r)ϕiσ(r)− Λiσ(r) + c.c. (17)
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and update the potential with

v(new)
xσ (r) = v(old)

xσ (r) + c(r)Sσ(r) . (18)

The quantity Sσ(r) becomes a measure for convergence, since it is vanishing in the case

of convergence (compare Eq. (17) and Eq. (14)). For the function c(r), we have different

possibilities, like using a constant or using the inverse of the electron density, as used in

Ref. 31. Other methods are also possible, such as the Barzilai-Borwein method.32 We found

stable algorithms when using a constant and when using the Barzilai-Borwein method.

While we will show the computational feasibility of this approach in the following, often

a simplified solution is beneficial as starting point for the self-consistency procedure. Such

a simplified approximation can be deduced by reformulating Eq. (15) into the following

equivalent form:

vxσ(r) =
1

2nσ(r)

Nσ∑
i=1

(
〈ϕiσ| vxσ |ϕiσ〉 |ϕiσ(r)|2 +

[
{M∗

iσ(r) + vxσ(r)ϕ∗iσ(r)}

− 〈{Miσ + vxσϕiσ}|ϕiσ〉ϕ∗iσ(r)− (ĥsσ(r)− εiσ)ψ∗iσ(r)

]
ϕiσ(r)

)
+ c.c.

(19)

and subsequently assuming (ĥsσ(r)− εiσ)ψ∗iσ(r) = 0 to start the iterative process. In situa-

tions where Λiσ(r) = 0, such as pure electronic exact exchange, this approximation is exact

for a single electron and is referred to as the Krieger-Li-Iafrate (KLI) approximation.13,31,33–35

By multiplying Eq. (19) by |ϕjσ(r)|2 and integrating over the spatial coordinates, we arrive

at a linear equation which in turn can be solved for the approximate vxσ. This approxima-

tion scheme has proven to often deliver sufficiently accurate results for electronic structure

calculation with significantly lower computational effort and reliable stability. As this ap-

proximation can be seen as a diagonal approximation to the response function, it unavoidably

fails in accurately describing polarization features. In the context of light-matter correlated

ground-states, this leads to a slight unbalancing when approximating components including

photonic excitations (introduced by Φ(1)) and self-polarization interaction (introduced by

Φ(2)).13,29,36,37 This results in a violation of translational invariance and introduces an ar-

tificial dependence on the permanent dipole. When performing KLI calculations including

light-matter interaction, we thus suggest moving the set of coordinates into the electronic

center-of-charge instead of the center-of-mass frame. To reduce the effect of this dependence

during a self-consistent calculation, the optional input parameter KLIpt coc has been intro-

16



duced in the code. When activated, this option defines the dipole operator d̂α with respect

to the electronic center-of-charge and can improve the stability of the algorithm.

Finally, in Fig. 3 we show the capabilities of the new implementation, where we calculate

two sodium dimers in the weak coupling regime under light-matter coupling. Figure 3 (a)

shows the electron density and Fig. 3 (b) shows the comparison of OEP and KLI results.

As shown in Ref. 13, in the weak-coupling regime the KLI is close to the OEP result. In

Fig. 3 (c) we show the convergence behavior when using a constant in Eq. (18) and when

using the Barzilai-Borwein method.32

Extensions of QEDFT to the regime of vibrational strong coupling,38 the linear-response

regime,39 as well as multitrajectory methods that capture quantum fluctuations40 are cur-

rently work in progress and will further strengthen the capabilities of the Octopus code for

the real-space description of strong light-matter coupled systems. To describe effects of the

ultra-strong coupling regime, one can use an alternative method that is presented in the

next section.

IV. DRESSED REDUCED DENSITY MATRIX FUNCTIONAL THEORY

FOR ULTRA-STRONGLY COUPLED LIGHT-MATTER SYSTEMS

The accurate description of the (ultra-)strong coupling regime of light-matter systems

is a formidable task. In many cases the known functionals for QEDFT (see Sec. III)

are inaccurate and for complex electronic systems typical few-level approximations become

unreliable.41,42 In this section, we present the Octopus implementation of an alternative real-

space ab-initio method for coupled light-matter systems. Dressed Reduced Density Matrix

Functional Theory (dressed RDMFT)43 extends standard electronic RDMFT to coupled

light-matter systems similarly to how QEDFT extends DFT. First tests on simple model

systems suggest that dressed RDMFT remains accurate from the weak to the ultra-strong

coupling regime. A proper introduction of the theory, examples, and convergence studies

can be found in Ref. 44.

This approach allows for the description of an interacting N -electron system coupled to

one photonic mode within the dipole approximation. The respective Hamiltonian is given

in Eq. (8) of Sec. III. Note that we set jext = 0 throughout this section and that the ground

state Ψ of Eq. (8) depends on 4N + 1 coordinates, i.e., Ψ = Ψ(r1, σ1, ...rN , σN , p), where
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{σi} denote the spin degrees of freedom and p is the elongation of the photon mode.

Within dressed RDMFT, the original Hamiltonian (8) of N electrons in d dimensions and

one mode is replaced with an extended auxiliary Hamiltonian of N dressed fermions in d+1

dimensions with coordinates z = (r, q) ∈ Rd+1. This auxiliary Hamiltonian reads

Ĥ ′ =
N∑
k=1

[
−1

2
∆′k + v′(zk)

]
+ 1

2

∑
k 6=l

w′(zk, zl) (20)

and gives access to the same physics (see Ref. 44, Sec. 4). For a d = 1 matter subsystem,

the operators introduced in Eq. (20) read: the dressed Laplacian ∆′ = ∂2

∂x2
+ ∂2

∂q2
, the dressed

local potential

v′(z) = v(x) +
[

1
2
ω2q2 − ω√

N
λqx+ 1

2
(λx)2

]
, (21)

and the dressed interaction kernel

w′(z, z′) = w(x, x′) +
[
− ω√

N
λqx′ − ω√

N
λq′x+ λ2xx′

]
. (22)

The ground state Ψ′(z1, σ1, ...,zN , σN) = Ψ(x1, σ1, ..., xN , σn)⊗χ(p2, ..., pN) of Ĥ ′ is a prod-

uct of the original physical ground state Ψ and the ground state of χ, which in turn is the

product of N−1 harmonic oscillator ground states. The auxiliary Hamiltonian (20) contains

only one-body and two-body terms in terms of the dressed coordinates, which makes in prin-

ciple every standard electronic structure method applicable (see also Ref. 44, Secs. 4 and

5). We use this construction to develop dressed RDMFT and dressed Hartree-Fock (HF).

For that, we define the dressed (spin-summed) first order reduced density matrix (1RDM)

γ′(z, z′) = N
∑

σ1,...,σN

∫
d2(N−1)zΨ′

∗
(z′σ1, z2σ2, ...,zNσN)Ψ′(zσ1, z2σ2, ...,zNσN) . (23)

To apply RDMFT theory on the auxiliary system, we have to replace the total energy

functional of electronic RDMFT, given in Ref. 45, with the newly introduced quantities of

the dressed system, i.e., the auxiliary Hamiltonian of Eq. (20) (approximately) evaluated by

the dressed 1RDM γ′ of Eq. (23). By that, common approximations for the two-body energy

expression in terms of the 1RDM can be directly transferred from electronic theory to the

dressed system.46 The minimization is performed like in the electronic case and is based

on the RDMFT implementation of Octopus, though the convergence of the dressed system

requires a more complicated protocol that can be found in the Supplement of Ref. 44. The

current implementation in Octopus approximates the conditions under which the dressed
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Figure 4. Differences of dressed HF (dHF) and dressed RDMFT (dRDMFT) from the exact

ground state energies (in hartree, left) and from the exact photon number (right) as a function

of the coupling g/ω for the stretched H2 molecule in the dressed orbital description. Dressed

RDMFT improves considerably upon dressed HF for the energy, which is especially due to the

better description of the electronic correlation. The photon number, an example of a photonic

observable, is captured similarly with both methods.

1RDM corresponds to a wave function by ensuring the fermionic ensemble N-representability

conditions.47 However, the auxiliary wave function exhibits also another exchange symmetry

with respect to the auxiliary coordinates, which is currently neglected. For the practical

validity of this approach, the reader is referred to Ref. 44 (Sec. 5 and the Supplement).

As an example, we consider the one-dimensional H2 molecule in a soft-Coulomb potential

with a slightly stretched bond-length of b = 2.0 bohr48 that is modeled by the local potential

vH2(x) = − 1√
(x− b/2)2 + 1

− 1√
(x+ b/2)2 + 1

+
1√
b2 + 1

, (24)

and the soft Coulomb interaction

w(x, x′) =
1√

|x− x′|2 + 1
. (25)

In Fig. 4, we show the total energy and the total photon number of the dressed RDMFT,

the dressed HF, and the exact many-body calculations49 for different coupling strengths.
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We see that for small couplings, both observables are captured well by dressed RDMFT

and dressed HF. With increasing coupling strength, both approximations fail to capture the

strongly increasing photon number. For the total energy instead, dressed RDMFT remains

very close to the exact result, whereas the deviations to dressed HF increase with increas-

ing coupling strength. This shows the potential of dressed RDMFT to describe correlated

electron systems that are strongly coupled to a cavity mode. In the future, we plan to

investigate better approximations to the polaritonic N-representability conditions that also

account for the symmetry of the many-body wave function with respect to the exchange of

photon coordinates.

V. TOWARDS DYNAMICS OF STRONGLY CORRELATED SYSTEMS:

THE TDDFT+U FUNCTIONAL

It was soon recognized that the standard local and semilocal functionals of DFT tend to

over-delocalize the electrons, as usual approximations are based on the homogeneous electron

gas. This leads to several failures of DFT for materials in which the localization of electrons

plays a critical role in dictating the system’s properties. This is, for instance, the case for

transition metals oxides. The DFT+U method was originally proposed to compensate for

some of the failures of the LDA for such materials.50–53 In essence, the DFT+U method aims

at a better description of the local electron-electron interaction, which is achieved by adding

the mean-field Hubbard model on a chosen localized subspace to the DFT total energy.

The double counting of electron interaction in this localized subspace is then removed. The

DFT+U total energy functional reads

EDFT+U[n, {nI,σmm′}] = EDFT[n] + Eee[{nI,σmm′}]− Edc[{nI,σmm′}] , (26)

where Eee is the usual electron-electron interaction energy, and Edc accounts for the double

counting of the electron-electron interaction already present in EDFT. This double-counting

term is not known in the general case and this is a general problem to all +U methods.

Several approximated forms have been proposed along the years.54,55 In the Octopus code,

we implemented the most commonly used double-counting terms: the fully localized limit

(FLL)56 and the around-mean field (AMF) double-counting terms.57 They respectively read
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as55

EFLL
dc [{nI,σmm′}] =

U

2
N(N − 1)− J

2

∑
σ

Nσ(Nσ − 1) (27)

and

EAMF
dc [{nI,σmm′}] = UN↑N↓ − (U − J)

2l

2l + 1

∑
σ

N2
σ , (28)

where Nσ =
∑

m n
σ
mm and N = N↑ + N↓. The Eee and Edc energies depend on the density

matrix of a localized orbital basis set {φI,m}, which are localized orbitals attached to the

atom I. In the following we refer to the elements of the density matrix of the localized

basis as occupation matrices and we denote them {nI,σmm′}. In the rotational-invariant form

of DFT+U proposed by Dudarev et al.,56 and for the FLL double-counting term, we obtain

the EU energy to be added to the DFT total energy, which only depends on an effective

Hubbard U parameter U eff = U − J :

EU [{nI,σmm′}] = Eee[{nI,σmm′}]−Edc[{nI,σmm′}] =
∑
I,n,l

U eff
I,n,l

2

∑
m,σ

(
nI,n,l,σmm −

∑
m′

nI,n,l,σmm′ n
I,n,l,σ
m′m

)
, (29)

where I is an atom index, σ is the spin index, and n, l, and m refer to the principal,

azimuthal, and angular quantum numbers, respectively. In the case of a periodic system,

the occupation matrices nI,n,l,σmm′ are given by

nI,n,l,σmm′ =
∑
n

BZ∑
k

wkf
σ
nk 〈ψσn,k|φI,n,l,m〉 〈φI,n,l,m′|ψσn,k〉 , (30)

where wk is the k-point weight and fσnk is the occupation of the Bloch state |ψσn,k〉. Here,

|φI,n,l,m〉 are the localized orbitals that form the basis used to describe the electron local-

ization. Details of the implementation can be found in Ref. 58. We recently extended our

original implementation to be able to construct a localized subspace from localized states,

such as Wannier states,59 and to treat the intersite interaction.60

In its usual formulation, the DFT+U method is an empirical method, in which the effec-

tive U is a parameter of the calculation. However, it recently became possible to evaluate

U and J fully ab initio and self-consistently, using the ACBN0 functional.61 We also imple-

mented this method in Octopus and extended it to the time-dependent case58 in order to

be able to investigate strongly correlated materials out-of equilibrium. We showed that the

absorption spectra of transition metal oxides, such as NiO or MnO, are well reproduced by

our TDDFT+U simulations.58
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Figure 5. Self-consistent dynamics of Hubbard U for the Ni 3d orbitals (bottom panel) for pump

intensities as indicated. The top panel represents the time-dependent vector potential and the

vertical dashed lines indicates the extrema of the vector potential, i.e., the minima of the driving

electric field. Results from Ref. 63.

Figure 5 shows the calculated time profile of the effective Hubbard Ueff = U − J for

the 3d orbitals of Ni, for light-driven NiO. The top panel shows the time profile of the

driving vector potential. This shows that strongly-driven correlated materials cannot be

described by simply assuming that the effective electronic parameters (here, the effective

Hubbard U) remain constant out of equilibrium. Moreover, the possibility to tune these

effective electronic parameters offers opportunities for light-driven phase transitions, such

as light-induced magnetic Weyl semimetals.62

VI. VAN DER WAALS INTERACTIONS

The van der Waals (vdW) interactions arise from correlations between electrons and are

in principle described by the exact energy functional through the exchange and correlation

energy Exc[n(r)]. However, the vdW interactions are inherently non-local and long-range
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and, by construction, cannot be described by usual local and semi-local functionals.64 There-

fore, much work has been devoted to finding consistent ways to enhance available functionals

to correctly describe the necessary correlations yielding vdW forces.

Within a pure DFT approach, the inclusion of vdW interactions should be done through

the exchange and correlation functional. To this end, a family of non-local density functionals

has been proposed.65 The so-called vdW density functionals (vdW-DF) are derived ab-initio

from the screened response of the homogeneous electron gas.64 Another route to include vdW

interactions in DFT calculations is by adding explicit corrections to the energy and forces

based on atomic parametrizations. The most well-known method of this type is probably

the vdW-D3 scheme of dispersion corrections from Grimme.66 Although computationally

more favorable than the vdW-DF method, the major disadvantage of this type of approach,

particularly from the perspective of time-dependent simulations, is that it fails to correctly

describe effects that cannot simply be understood from atomic configurations. A trivial

example would be a lone electron traveling through space. Another scheme based on explicit

corrections to the energy and forces was proposed by Tkatchenko and Scheffler (vdW-TS).67

This scheme has the advantage of retaining much of the low computational cost of the vdW-

D3 scheme, while making the atomic parametrization dependent on the electronic density.

Recently, these three schemes (vdW-DF, vdW-TS, and vdW-D3) were implemented in the

Octopus code to deal with vdW interactions in isolated and periodic systems.

A. vdW-DF

Octopus supports vdW-DF functionals65 through the libvdwxc library.68 The vdW-DF

functionals are expressed as a sum,

EvdW-DF
xc [n] = ELDA

c [n] + EGGA
x [n] + Enl

c [n] , (31)

of the LDA correlation energy,69 a GGA exchange energy, and a fully non-local correlation

term. The latter is the integral over a kernel function φ(q0, q
′
0, r),

Enl
c =

1

2

∫∫
n(r)φ(q0(r), q0(r′), |r− r′|)n(r′) dr dr′ , (32)

where q0(r) depends on the local density and its gradient. Explicit evaluation of this 6-

dimensional integral is very expensive and scales as volume squared, O(N2). Roman-Pérez
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and Soler proposed an efficient method which approximates it as a sum of 3-dimensional

integrals.70 The method works by expressing the integrand as a convolution using a lim-

ited set of helper functions, then applying the Fourier convolution theorem for a scaling

of O(N logN) and much lower prefactor. This has since become the standard method for

evaluating vdW-DF functionals.

As implemented in Octopus, the density is redistributed from its normal uniform grid of

arbitrary shape onto a uniform 3D grid forming a cube or parallelepiped, which is suitable

for 3D Fourier transforms. libvdwxc then evaluates the non-local energy and contributions

to the potential, relying on the FFTW library71 for efficient parallel Fourier transforms.

After calculating the energy and potential, the potential is redistributed back to the original

form.

Octopus supports the standard functionals vdW-DF1,72,73 vdW-DF2,74 and vdW-DF-

cx,75 as well as other common forms that differ by substituting a different GGA exchange

functional in Eq. (31). Some common supported variations are vdW-DF-optPBE, vdW-DF-

optB88,76 and vdW-DF-C09.77

B. vdW-TS

Since the vdW-TS approach depends on the density, the effect of the van der Waals

interaction can be observed in properties other than the forces. In particular, we expect to

observe an effect in the excited states of systems that interact through vdW forces. We use

the hydrogen fluoride dimer as a simple model system for a proof-of-concept application of

the modular implementation of the TS-vdW functional correction on TDDFT calculations.

The dimer geometry is setup as shown in Fig. 6. The hydrogen fluoride monomers are

placed in anti-parallel fashion, each one with its main symmetry axis oriented along the

y-axis. The hydrogen fluoride bond in each monomer is 0.92 Å long and the molecules

are separated by 2.8 Å along the z-axis. At this distance, the van der Waals interaction

between the monomers is the strongest, according to the TS-vdW model. We choose this

dimer model because it is a conveniently small system in which the effects of including the

dispersion correction can be shown at an affordable computationally cost.

To calculate absorption, we excite the system with an infinitesimal electric-field pulse,

and then the time-dependent Kohn-Sham equations are propagated for 30.38535 ~/eV. The
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Figure 6. Absorption cross section spectrum of the hydrogen fluoride dimer with and without van

der Waals effects. A zoom-in of the absorption feature at around 133 nm illustrates a small red

shift when van der Waals effects are considered. Both hydrogen fluoride molecules are placed on

the same plane at a separation of 2.8 Å.

singlet dipole spectrum is evaluated from the time-dependent dipole moment. The strength

of the perturbation is set to 0.01 Å−1 and it is polarized in the z-axis. The time evolution is

carried out using the Enforced Time-Reversal Symmetry (ETRS) propagator, with (default)

time steps of 0.03352 ~/eV.

The results on Fig. 6 show a small van der Waals-induced bathochromic-like (red) shift in

the optical spectrum of the hydrogen fluoride dimer calculated with the LDA. This example

opens the door for a new series of applications in supra-molecular chemistry, structural

biology, polymer science, etc., that incorporate van der Waals effects on real-time electron

dynamics.

C. vdW-D3

Octopus also supports the DFT-D3 van der Waals correction.66 This correction depends

only on the atomic positions and does not depend on the atomic density. It is implemented
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in Octopus by linking to the DFT-D3 library provided by the authors. As we have validated

Octopus results with the reference data provided with the library, the results are guaranteed

to be consistent with other codes that implement this correction.

The only modification we did to the library was to move the very large set of coefficients

from a source file to a stand alone text file that is parsed only when necessary. This speeds

up compilation and reduces the size of the binaries. The modified library is distributed with

Octopus, so users need not compile it separately.

VII. POLARIZABLE CONTINUUM MODEL

The Polarizable Continuum Model (PCM)78 comprises a family of implicit-solvent ap-

proaches to tackle quantum-mechanical calculations of molecules in solution. PCM as-

sumes that (i) the solvent is a continuum and infinite dielectric medium characterized by

a frequency-dependent dielectric function; and that (ii) a void cavity of appropriate shape

and size encapsulates the solute molecule, separating it from the solvent by a sharp inter-

face. The numerical implementation of PCM relies on the Apparent Surface Charge (ASC)

approach and the Boundary Element Method (BEM).79 In this framework, the solvent polar-

ization response induced by the molecule’s charge density is modeled by a reaction potential

defined by a set of point charges q = {q1, q2, ..., qT} that spread over a tessellated cavity

surface consisting of T finite surface elements or tesserae.80 The reaction potential is the

object through which the complex dielectric environment is accounted for.81 The implemen-

tation of the PCM in Octopus rests on the Integral Equation Formalism (IEF).82 The key

IEF-PCM equation for computing the polarization charges is

q = QV , (33)

where q and V are T × 1 column vectors storing the induced polarization charges and the

molecule’s electrostatic potential at the tesserae representative points, respectively. Q is the

T ×T PCM response matrix, which depends on the geometry of the cavity and the dielectric

function of the solvent.78

A realistic description of the molecular cavity is key to capture accurate electronic and

optical properties of molecules in solution. In principle, the cavity should (i) exclude the

solvent, (ii) comprise most of the solute electronic density, and (iii) conform with the molec-

ular shape. Octopus uses the GEPOL algorithm,83 which builds up the van der Waals
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cavity from the union of interlocking spheres with element-specific radii centered at each

atom position (by default no spheres are built around hydrogen atoms). Within GEPOL,

the BEM tessellation of the solute-solvent interface is done starting from a 60- or 240-face

circumscribed polyhedron per sphere, selecting only exposed tesserae and properly reshap-

ing those that are partially exposed. The BEM tessellation is a surface grid constructed

independently from the real-space three-dimensional grid used in Octopus to represent both

the Kohn-Sham electronic Hamiltonian and molecular orbitals. The mismatch between the

two discrete representations might cause numerical problems arising from the Coulomb sin-

gularities whenever tesserae and grid points are close to each other. The implementation of

the PCM in Octopus regularizes such singularities by using normalized spherical Gaussian

functions to smooth the discretized polarization charges q.81

Having briefly described the implementation, we now look at specific and relevant cases

for chemical reactions, namely solvation energies and ground-state stabilization. The most

evident effect of the presence of a solvent is to change the total energy of a system com-

pared to its value in vacuum. In the framework of DFT, the Kohn-Sham Hamiltonian of the

solvated molecule contains the solvent reaction potential, which is a functional of the elec-

tronic and nuclear densities of the solute molecule.81 The latter implies that the Kohn-Sham

and IEF-PCM equations become coupled and the polarization charges qe = QVHartree[ρ
e],

induced by the molecule’s electronic density, have to be computed at each Kohn-Sham iter-

ation until convergence is reached. The resulting electronic density can be used to compute

the electrostatic contribution to the solvation free energy ∆Gel = G[ρesolv]−E[ρevac], where G

and E denote the free and total energy functionals of the molecule in solvent and in vacuum,

respectively. The current PCM implementation in Octopus81 has been thoroughly tested on

a benchmark set of organic molecules and compared with analogous calculations performed

with the quantum chemistry package Gamess.84 As an example of the solvent stabilization

effect in the ground state, we studied the nitrobenzene molecule in water (static dielectric

constant set to εs = 80).

In Fig. 7, we show the convergence of the solvation free energy as a function of the Kohn-

Sham iteration. The solvation free energy is stabilized already after 10 Kohn-Sham iterations

out of the 19 required to optimize the molecular orbitals of the solvated molecule. We have

also verified that the numerical error inherent to the discretization of the solute cavity surface

is very small. For example, the total polarization charge QPCM =
∑T

i=1 q
e
i at each Kohn-
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Figure 7. (Left panel) Nitrobenzene molecule in water (εs = 80) surrounded by the ground state

PCM charges distributed on the solvation cavity. The actual distribution of the charges in 3D

can be seen in the supplementary animation SM1. (Right panel) Electrostatic contribution to

the solvation free energy of the computed at each Kohn-Sham iteration. Kohn-Sham equations

were solved in real-space as implemented in Octopus using the GGA-PBE approximation85 to the

exchange-correlation energy. The simulation box was built using spheres of radius 5 Å and an

uniform spacing of 0.19 Å between grid points. The radii of the spheres used to build the cavity

surface of the solute molecule are 2.4 Å for carbon, 1.8 Å for oxygen and 1.9 Å for nitrogen.

Sham iteration only deviates by only 0.03% from the actual number of valence electrons

in the nitrobenzene molecule (the relation between q and solute charge is determined by

Gauss’s theorem78). However, the magnitude of this error will depend in general on the size

and the geometry of the molecule.

Now we move forward and describe the extension of the previous PCM method to the time

domain, using real-time PCM and non-equilibrium solvation. Ground state PCM is unable

to capture the complex dynamical interactions between the solvent and the solute when the

latter is in an excited state. Fortunately, the PCM admits a generalization to account for sol-

vation dynamics.86 The time-dependent PCM (TD-PCM) implementation in Octopus comes

in three flavors of increasing complexity, all coupled with real-time TDDFT calculations of

the solute molecules. The first one, called equilibrium TD-PCM,81 assumes that the solvent

is fast enough to instantaneously equilibrate the solute charge density fluctuations and to

polarize accordingly. This approach is physically sound for weakly polar solvents, having

28



similar values for the static and dynamic dielectric constants. The second is a nonequilibrium

approach called inertial TD-PCM and amounts to partitioning the solvent response in a fast

(dynamic) and a slow (inertial) part.87 Faster degrees of freedom respond instantaneously

to the changes of the applied potential (either of molecular or external in origin), whereas

slower degrees of freedom remain “frozen” and in equilibrium with the initial value of the

field. This approximation works well when the solvent relaxation times are large enough

with respect to the electronic excitations in the solute molecule (e.g., within the picosecond

scale). The third TD-PCM approach, called equation of motion (EOM) TD-PCM, considers

the full history-dependent evolution of the solvent polarization through a set of equations of

motion for the polarization charges.88 Nonequilibrium polarization effects of this sort origi-

nate from the frequency-dependent dielectric response of the solvent, encoding the fact that

it takes a different non-negligible time to adjust to fast or slow electrostatic perturbations.

Solvation dynamics affect strongly and non-trivially the absorption spectrum of molecules,

especially for fast and polar solvents, by inducing solvatochromic shifts of the peaks in the

UV-Vis absorption spectrum and modifying their relative amplitudes. The details about

the implementation of all of these schemes and a detailed discussion of their effects can be

found in Refs. 81 and 89.

Here we show the differences among the TD-PCM flavors described above for the case of

the nitrobenzene molecule in aqueous solution, excited with an electrical dipole perturbation

in the x direction. We take the dynamic dielectric constant of water, entering in the inertial

and EOM TD-PCMs, as εd = 1.786. Figure 8 shows the photo-absorption spectrum of

the gas-phase and solvated molecule. We can see that, with respect to the absorption in

vacuo, all of the TD-PCM methods produce shifts of the features (in this case, toward lower

excitation energies). The shifts are not rigid overall, but depend on the excited state and

on the specific solvation scheme (equilibrium, inertial, EOM). Within Debye’s model, the

equilibrium and inertial TD-PCMs are limiting cases for the dynamics when the relaxation

time is zero or infinite, respectively. The EOM TD-PCM, with a finite relaxation time,

interpolates between these limits. Water has a large relaxation time of 3.37 ps and, therefore,

the absorption spectrum is almost coincident for the EOM and the inertial TD-PCMs, as

can be seen in Fig. 8. Whenever the solvent is as slow as water, there is not much gain

in selecting EOM over inertial TD-PCM and the latter is the method of choice in terms of

computational performance. Instead, for faster solvents, the EOM results depart from those
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of the inertial algorithm, approaching to those of the equilibrium TD-PCM. In Fig. 8, we

have considered an effective solvent having the same static and dynamic dielectric constants

as water, but with a 1 fs relaxation. The EOM TD-PCM for such a model solvent produces

almost the same excitation energy shifts of equilibrium TD-PCM and peak intensities in

between the inertial and the equilibrium TD-PCMs, as expected.

A real-time representation of the molecular dipole coupled with the PCM surface charges

can be appreciated in the supplementary movie SM2, which also highlights how the different

TD-PCM approaches affect the time-evolution of the dipole.

When studying the evolution of a solvated molecule under the effect of an external time-

dependent electromagnetic field, a separate treatment is required to take into account that

there are two solvent polarization contributions interacting with the solute molecule, namely
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Figure 8. Absorption spectrum of nitrobenzene in vacuo and in water (εs = 80, εd = 1.786) for all

the TD-PCM schemes. The inset shows the normalized cavity field factor (CFF) vs. the excitation

energy for the two EOM TD-PCMs, with solvent relaxation times of 3.37 ps (slow) and 1 fs (fast)

corresponding to CFFmax = 1.27 and 2.55, respectively. Real-time TDDFT simulations of 20 fs

with a time step of 1.7×10−3 fs were performed to obtain the absorption spectra. An electric dipole

perturbation within the linear regime and oriented along x was applied as an initial perturbation.

The rest of the computational details are shared with the ground-state DFT calculations leading

to Fig. 7.
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the reaction and the cavity fields.90 The reaction field comes from the polarization induced

by solute molecule itself, while the cavity field arises as a polarization induced by the external

electric field. Both reaction and cavity field effects can be accounted for in static and real-

time quantum-mechanical calculations of molecules within PCM and TD-PCM simulations

in Octopus.89

All of the TD-PCM calculations shown here were performed using both reaction- and

cavity-field effects, although the redshift of the peaks in each TD-PCM scheme is mainly a

feature of the reaction-field, as ascertained in test calculations (not shown) and as expected.91

Cavity field effects impact directly on the peak intensities, by making the absorption more

favorable depending on how large the effective local field acting on the molecule is allowed

to be by solvent dielectric properties and the geometry of the cavity (normally, reassem-

bling the molecular shape). Still, cavity field effects can have a non-trivial influence in

the absorption spectrum shape when considering non-equilibrium solvation dynamics (EOM

TD-PCM), by changing the relative peak intensities. This effect can be seen in the inset of

the Fig. 8, where the normalized cavity field factor (CFF) – the ratio between absorption

cross-section with and without cavity field effects – is plotted against the excitation energy

for the EOM TD-PCM simulations with water and the aforementioned faster water-like sol-

vent. The large difference in absorption peak intensities between the equilibrium and the

rest of the TD-PCMs in Fig. 8 is also related to the modification of the probing electro-

magnetic field inside the dielectric. The photo-absorption cross-section is, by definition, the

ratio between the absorbed and the incoming power of light. In our case, both increase

with the dielectric constant: (i) the larger the dielectric constant of a medium the larger

the CFF; but also (ii) a larger dielectric constant implies a smaller phase velocity of light,

therefore increasing the power of the traveling electromagnetic wave. The impact of the lat-

ter effect (∝ refractive index =
√

(|ε(ω)|+ <ε(ω))/2) is stronger than the former (∝ CFF,

e.g., for a spherical cavity90 ∝
∣∣∣ 3ε(ω)

2ε(ω)+1

∣∣∣2) for a large enough dielectric constant such as the

one corresponding to the equilibrium TD-PCM for water (εs = 80).

In conclusion, Octopus is now capable of including an implicit dielectric continuum model

as an environment for quantum mechanical calculations of excited states in the time-domain.

The different versions of the TD-PCM scheme implemented allow us to select the most

suitable to capture the relevant physics accounting for a full range of different relaxation

and response times.
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VIII. MAGNONS FROM REAL-TIME TDDFT

In the last couple of years the first studies investigating magnetization dynamics from

first principles in real time have emerged.92–97 Here we are interested in transverse magnetic

excitations, specifically magnons, which are long wavelength collective excitations with a

typical energy of tens to hundreds of milli electronvolts. We recently developed an alternative

to the linear-response TDDFT formulation95,96,98 to compute the spin susceptibilities of

magnetic systems, based on real-time TDDFT.99 Our approach follows the work of Bertsch

et al. for optical excitations. In the original work of Bertsch et al. the system is perturbed

by a sudden change in the vector potential, which induces a charge- and current-density

response. To investigate magnons, we employ a “transverse magnetic kick”, which induces

magnetic fluctuations in the system. To be more precise, our perturbation corresponds to

an infinitely short application of a Zeeman term,

δĤq(t) =
B
2
δ(t)

∫
d3r
[
e−iq·rσ̂+(r) + eiq·rσ̂−(r)

]
, (34)

where q is the momentum of the spin wave we are exciting, B is the strength of the pertur-

bation, and σ± = σx ± iσy are Pauli matrices. In this expression, the z axis is taken to be

along the direction of the magnetization of the system before excitation. In case the system

has a preferred magnetization direction due to the presence of spin-orbit coupling, usually

referred as an “easy axis”, we perform a kick in the transverse direction with respect to this

“easy axis” of the system.

The subsequent time evolution of the spin magnetization m(r, t), governed by the time-

dependent Schrödinger equation, is then computed and analyzed in Fourier space to spin

susceptibilities. If we perturb our system from its ground state and we assume linear re-

sponse, we directly have that

m+(q;ω) = χ+−(q;ω)
B
2
, (35)

where χ+−(q;ω) is the spin susceptibility we want to extract. A similar expression is ob-

tained for χ−+(q;ω).

In order to access finite momenta which are a fraction of the Brillouin zone, one typically

has to employ large supercells to perform the dynamics, which can be computationally very

expensive when a few meV energy resolution is needed. Fortunately, there is a way to cir-

cumvent the construction of supercells, the so-called generalized Bloch theorem (GBT). The
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GBT has been introduced by Sandradskii100 for the calculation of ground-state spin waves

and requires the implementation of specific boundary conditions. Therefore, we also imple-

mented the GBT for the real-time calculation of magnons, taking advantage that Octopus

is a real-space finite differences code, for which we can easily specify any type of bound-

ary conditions. However, it is important to note that this applies only in the absence of

spin-orbit coupling. The boundary condition, described below, depends on the momentum

q of the perturbation and acts differently depending on whether a state was originally “up”

or “down” with respect to the unperturbed magnetization. This is determined by the sign

of 〈Φnk|Sz|Φnk〉 just before the perturbation, for each spinor state |Φnk〉. If we label these

states α and β, the boundary condition reads

Φα,kn(r, t) = eik·r

 u↑α,kn(r, t)

eiq·ru↓α,kn(r, t)

 , (36)

Φβ,kn(r, t) = eik·r

e−iq·ru↑β,kn(r, t)

u↓β,kn(r, t)

 .

We checked that performing the simulation using the GBT or the supercell approach

was leading to the same results, up to numerical precision. We tested our approach against

cubic Ni, Fe, and Co, which have been widely studied using linear response TDDFT, and

we found that our results are in very good agreement with previous works,93 thus validating

our implementation. Figure 9 shows the results obtained for bulk nickel using the adiabatic

local-density approximation. We used here a real-space grid spacing of 0.27 bohr, norm-

conserving pseudopotentials, and we employed a 16× 16× 16 k-point grid shifted 4 times in

order to resolve momenta q which are multiples of 2π/(16a), where a is the lattice parameter

of Ni, which we took to be 3.436 Å. In order to obtain the response within linear response,

we took B = 0.02 and we propagated during 435.4 fs, using a time-step of 1.81 as. To reduce

the numerical burden, symmetries were employed.

Let us now comment on the interest of the proposed approach. So far, we only used this

new method for investigating weak magnetic kicks, where we recover the results from linear

response theory. However, our approach does not rely on the assumptions of small perturba-

tions and can be used to investigate nonlinear phenomena induced by strong magnetic field,

as well as out-of-equilibrium situations where the system is kicked from an excited state,

which is a strength of a real-time method.102–105 Moreover, we can directly investigate the
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Figure 9. Calculated magnon dispersion: Spin susceptibility of bulk Ni along the ΓX direction,

displayed in logarithmic scale. Numerical details are given in the main text. The experimental

data are taken from Ref. 101.

coupling with other degrees of freedom, such as phonons or photons, without any new theory

or code development. Using the real-space method, we benefit from the favorable scaling

of the time propagation, which is linear in the number of states, whereas sum-over-states

approaches usually scale quadratically with the number of states. Finally, our approach

offers the great advantage of not requiring the use of an exchange-correlation kernel, as only

the exchange-correlation potential is needed to perform a time propagation. This is very

interesting in order to test new functionals and theory levels, for which deriving the expres-

sion of the exchange-correlation kernel can become complicated. These different aspects will

be investigated in future works.

IX. ORBITAL MAGNETO-OPTICAL RESPONSE OF SOLIDS AND

MOLECULES FROM A STERNHEIMER APPROACH

In the present section we review the implemented routines for magneto-optical phenom-

ena, which arise from the loss of symmetry between left and right circularly polarized light

in the presence of a magnetic field.106,107 While magneto-optical spectra can be straight-

forwardly computed for molecules,108–112 the theory for solids has been developed only re-
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cently.113 The reason is that external electromagnetic fields break the translational symmetry

of periodic systems, which is formally expressed through the unboundness of the position op-

erator.114–116 The orbital response to magnetic fields is especially complicated to describe, as

such fields lead to non-perturbative changes in wavefunctions and introduce vector coupling

to electron dynamics.117–119 Here we will focus on calculations of changes in the linear optical

response in the presence of the magnetic field within the Sternheimer approach.19,120–122

To treat uniform magnetic fields in periodic systems, we use the approach based on

perturbation theory for the one-particle density matrix.113,117,119 Such an approach allows us

to work under purely periodic boundary conditions and to automatically take into account

gauge invariance. A periodic and gauge-invariant counterpart Õ is distinguished for any

operator O = Or1r2 defined for two points r1 and r2 in real space

Or1r2 = Õr1r2exp

(
− i
c

∫ r1

r2

A(r)dr

)
, (37)

where A is the vector potential associated with external electric (E = −c−1∂tA, c is the

speed of light) and magnetic (B = ∇×A) fields and the integral is taken along the straight

line between points r2 and r1.

The time-dependent Liouville equation for the gauge-invariant counterpart ρ̃ of the one-

particle density matrix to the first order in E and B takes the form113

− i∂tρ̃+ [H0, ρ̃] = −1

2

{
E +

1

c
V ×B, [r, ρ̃]

}
− [δH̃, ρ̃] . (38)

Here the commutator and anticommutator of operators O(1) and O(2) are denoted as

[O(1),O(2)] and {O(1),O(2)}, respectively, the velocity operator V = −i[r, H̃] is computed

with account of all non-local contributions to the Hamiltonian, such as from non-local

pseudopotentials, and the Hamiltonian is represented as H̃ = H0 + δH̃, where the differ-

ence δH̃ between the gauge-invariant counterpart H̃ of the Hamiltonian and unperturbed

Hamiltonian H0 is related to the local-field effects. Unlike the singular position operator r,

the commutator [r, ρ̃] of the position operator with the periodic function ρ̃ is well defined

in Eq. (38) and corresponds to the derivative with respect to the wave vector, i∂kρ̃k, in

reciprocal space. Differentiating Eq. (38), one finds the derivatives of the density matrix

ρ̃(P ) = ∂ρ̃/∂P with respect to external perturbations P (E, B, etc.).

For TDDFT calculations in Octopus, ρ is the Kohn-Sham density matrix. The n-th

order derivative ρ̃(P ) describing the joint response to the perturbations P = P1P2...Pn is
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divided into four blocks within and between the occupied (V) and unoccupied subspaces (C):

ρ̃
(P )
VV = Pvρ̃

(P )Pv, ρ̃
(P )
CC = Pcρ̃

(P )Pc, ρ̃
(P )
VC = Pvρ̃

(P )Pc, and ρ̃
(P )
CV = Pcρ̃

(P )Pv, where Pv = ρ(0) and

Pc = 1−Pv are the projectors onto the occupied and unoccupied bands. In accordance with

the density matrix perturbation theory,123 to get the elements ρ̃
(P )
CV , Eq. (38) is projected

onto unperturbed Kohn-Sham wavefunctions |ψ(0)
vk 〉 of occupied bands v to give an equation

for the response function |η(P )
vk 〉 = ρ̃

(P )
CV(Ω)|ψ(0)

vk 〉

Lvk(Ω)|η(P )
vk 〉 = PcR

(P )[ρ̃(n−1), ..., ρ(0), n(P )]|ψ(0)
vk 〉 . (39)

Here the operator on the left-hand side is given by Lvk(Ω) = Ω + H0 − εvk, where Ω is the

frequency considered and εvk is the energy of the unperturbed state |ψ(0)
vk 〉. The operator R

comes from the right-hand side of Eq. (38) and is determined by the derivatives of the density

matrix of the previous orders. If the local-field effects are taken into account, the right-hand

side R also depends on the derivative of the electron density n(P )(r1) = ρ(P )(r1, r2)δ(r1−r2).

In this case, Eq. (39) needs to be solved self-consistently. The calculations in practice work

with the periodic parts of the wavefunctions, |u(0)
vk 〉. The commutator [r, ρ̃] corresponding to

i∂kρ̃k in reciprocal space is computed within the k ·p theory.19,121,122 Equation (39) is solved

using the efficient Sternheimer approach,19,120–122 where the function |η(P )
vk (Ω)〉 that fits into

Eq. (39) is found iteratively at each frequency Ω. To avoid divergences at resonances, a small

but finite imaginary frequency iδ is added to the frequency Ω0 of the external perturbation

so that Ω = Ω0 + iδ.

Once the solution of Eq. 39 is known, the elements ρ̃
(P )
CV are obtained as

ρ̃
(P )
CV(Ω) =

∫
BZ

dk

(2π)3

∑
v

|η(P )
vk (Ω)〉〈ψ(0)

vk | . (40)

The elements of ρ̃(P ) between the occupied and unoccupied subspaces are found using the

relation ρ̃
(P )
VC (Ω) = (ρ̃

(P )
CV(−Ω∗))∗ and, for that, Eq. 39 is also solved for the frequency −Ω∗.

To find the elements within the occupied ρ̃
(P )
VV and unoccupied ρ̃

(P )
CC subspaces, the idem-

potency condition ρ = ρρ is used. In terms of the periodic counterpart ρ̃ of the density

matrix and to the first order in the magnetic field, it is written as117,119

ρ̃ = ρ̃ρ̃+
i

2c
B · [r, ρ̃]× [r, ρ̃]. (41)

The contribution ανµ,γ to the polarizability in the presence of the magnetic field (ανµ =

α0νµ + ανµ,γBγ) is finally obtained from the current response as

ανµ,γ(Ω) =
i

Ω
Tr
[
Vν ρ̃

(EµBγ)(Ω)
]
, (42)
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where indices ν, µ, and γ are used to denote components of the vectors V, E, and B. The

dielectric tensor in the presence of the magnetic field is computed as ενµ = δνµ + 4πανµ/w,

where w is the unit cell volume. Note that according to the “2n+ 1” theorem,124,125 there is

no need to calculate explicitly the second-order derivative ρ(EµBγ). Instead, ανµ,γ is expressed

through the first-order derivatives to the perturbations P = Eµ, Bγ and a supplementary

perturbation corresponding to a vector potential P = Aν at frequency −Ω.113

To test the developed formalism for solids, it has been applied to bulk silicon and the

corresponding results are shown in Fig. 10. The full details of the calculations can be

found in Ref. 113. It is seen in Fig. 10 (b) that even without account of excitonic effects, the

calculated spectra Re/Im εxy for the transverse component of the dielectric tensor are already

qualitatively similar to the experimental curves107 at the direct absorption edge. To model

excitonic effects, we have used the model from Ref. 126. The spectra computed with account

of excitonic effects show a better agreement with the experimental results (Figs. 10(a) and

10(b)). Although the magnitudes of the peaks in the magneto-optical spectra are about a

factor of two smaller than in the magneto-optical measurements,107 they can be corrected

by reducing the linewidth δ assumed in the calculations.

In the limit of a large supercell, this formalism becomes equivalent to the simpler standard

formulation for finite systems, which we have also implemented for reference. In this case,

the Liouville equation for the density matrix is written in the Coulomb gauge as

Ωρ+ [H0, ρ] = [d · E + m ·B− δH, ρ] , (43)

where d = −r is the electric dipole moment, m = −r×V/2c is the orbital magnetic dipole

moment, and δH describes local-field effects. The change in the polarizability ανµ,γBγ in

the presence of the magnetic field is calculated from the dipole response

ανµ,γ(Ω) = Tr
[
dνρ

(EµBγ)(Ω)
]
. (44)

As in the periodic case, based on the “2n + 1” theorem,124,125 explicit calculation of

the second-order derivative ρ(EµBγ) is avoided. Instead, a supplementary electric field at

frequency −Ω, E ′ν , is introduced.113 In the case of real wavefunctions, as can be chosen

for finite systems in real space in the presence of time-reversal symmetry, |η(E′ν)
v (−Ω)〉 =

(|η(Eν)
v (−Ω∗)〉)∗ and there is no need to solve additionally the Liouville equation for this

supplementary electric field.
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Figure 10. Calculated components (a) εxx and (b) εxy of the dielectric tensor of silicon for different

frequencies of light Ω0 (in eV) and the magnetic field of 1 T along the z axis (with and without

account of excitonic effects). The linewidth δ = 0.1 eV is used. The blue shift by 0.7 eV is applied

to take into account the GW correction to the band gap.127,128 The experimental data for εxx
129

and εxy
107 (scaled by 1/2) are indicated by symbols.

The efficiency of the present scheme to compute magneto-optics is comparable to standard

linear-response calculations of simple optical polarizability in the absence of the magnetic

field.113 When local-field effects are included self-consistently, the calculations of magneto-

optical spectra for solids take only twice as long as those of polarizability. For finite systems,

the computational effort is the same as for the simple optical polarizability.

X. TIME-DEPENDENT ANGULAR RESOLVED PHOTOELECTRON

SPECTROSCOPY

The real-space representation of the dynamics of the electronic structure allows for a

seamless and straightforward description of dynamics processes outside the material, i.e.,

processes where electrons are excited into the vacuum. Beyond simply describing the ioniza-

tion process, Octopus has routines implemented that compute photoelectron spectroscopy in
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different flavors. Photoelectron spectroscopy is particularly ubiquitous for the characteriza-

tion of the electronic structure in solids, because it provides a direct observable of the energy

and momentum distribution of electronic states, known as the bandstructure. In contrast

to other electronic structure methods that compute quantities linked to the photoelectron

spectrum, most commonly the single-quasiparticle spectral function obtained through the

GW approximation to the many-body self-energy, the approach described here does not con-

sider unit cells of bulk materials, but instead directly computes the energy and momentum

resolved ionization probability.104,130 Besides the study of the electronic structure of solids,

photoelectron spectra of atoms and molecules are of equal interest and the implementation

in Octopus is capable to describe accurately all such systems on equal footing.

The most detailed quantity available in the experiments is the momentum-resolved photo-

electron probability P(p), i.e., the probability to detect an electron with a given momentum

p. In some cases the experimental setup offers the possibility to measure the spin polar-

ization along a given axis. The formalism we are going to outline can easily accommodate

a non-collinear spin structure and, therefore, calculate spin-resolved quantities, but for the

sake of simplicity, in the following, we are going to restrict ourselves to closed shell systems

with collinear spins, i.e., where all the orbitals are doubly occupied with electrons having

opposite spins. The reader interested in the most general case can find a detailed description

in Ref. 131. From P(p) one can obtain other derived quantities by simple manipulation. For

instance, the energy-resolved spectrum P(E), used to identify the occupied energy levels,

can be obtained with a change of variable using the free electron energy dispersion relation

E = p2/2. The angle-resolved photoelectron spectrum (ARPES), normally employed to

measure the quasiparticle bandstructure, is simply obtained by taking the energy resolved

spectrum as a function of the electron momentum parallel to the surface P(p‖, E).

The t-SURFF method was first proposed by Scrinzi132 for one-electron systems and later

extended to many electrons with TDDFT for periodic131 and non-periodic systems.133 It is

based on the assumption that the Kohn-Sham Hamiltonian describing the full experimental

process, i.e., including the ionization and detection, can be decomposed into the sum of two

Hamiltonians acting into complementary spatial regions, inner and outer, and that can be

approximated in different ways. In the inner region surrounding the system the electron

dynamics is governed by the interacting Kohn-Sham Hamiltonian ĤKS(r, t) while in the

outer region, electrons are free from the Coulomb tails of the parent system and behave as
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independent particles driven by an external field and therefore are described by the Volkov

Hamiltonian ĤV(r, t) = 1/2 (−i∇−A(t)/c)2. We express the field with a time dependent

vector potential potential A(t) in the dipole approximation, i.e. by discarding the spatial

dependence of the field A(r, t) ≈ A(t). The advantage of this approach is provided by the

fact that the time-dependent Schrödinger equation associated with the Volkov Hamiltonian,

can be solved analytically and that the solutions, the Volkov waves

χp(r, t) =
1

(2π)
3
2

eip·reiΦ(p,t) , (45)

with

Φ(p, t) =

∫ t

0

dτ

(
p− A(t)

c

)2

, (46)

are eigenstates of the momentum operator. We can therefore expand the Kohn-Sham orbitals

ϕi as a superposition of detector states in the form of Volkov waves

ϕi(r, t) =

∫
dp bi(p, t)χp(r, t) (47)

and obtain the photoelectron probability in terms of the expansion coefficients by summing

up the contribution of all the orbitals: P(p) = limt→∞ 2/N
∑N/2

i=1 |bi(p, t)|2.

Using the continuity equation, t-SURFF allows us to express the coefficients bi, and thus

P(p), as a time integral of the photo-current flux through the surface S separating the

domains of the two Hamiltonians. More specifically

bi(p, t) = −
∫ t

0

dτ

∮
S

ds · 〈χp(τ)|̂j|ϕi(τ)〉 , (48)

with the single-particle current density operator matrix element given by

〈χp(τ)|̂j|ϕi(τ)〉 =
1

2

{
iϕi(r, τ)∇χ∗p(r, τ)− iχ∗p(r, τ)∇ϕi(r, τ)− 2

A(t)

c
χ∗p(r, τ)ϕi(r, τ)

}
.

(49)

The flexibility offered by the definition of the boundary surface S allows us to easily

adapt t-SURFF to periodic and non-periodic systems. For periodic systems we choose S

as a plane parallel to the material surface, while for the non-periodic case the most natural

choice is a sphere as shown in Fig. 11 (a) and (b).

For periodic systems one can apply the Bloch theorem to the Volkov Hamiltonian and

further reduce Eq. (48) to an expression where only the periodic part of the Bloch waves are

employed.131
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Figure 11. Calculated photoelectron spectrum with t-SURFF, as implemented in Octopus.133

The geometries employed to calculate the flux of the photoelectron current are depicted in (a)

for periodic and (b) non-periodic systems. (c) Pump-probe ARPES spectrum of monolayer h-BN

driven by a laser field resonant with the gap at K, adapted from Ref. 131. (d) Photoelectron

angular distribution obtained by strong-field ionization of C60 with an IR field polarized along x,

adapted from Ref. 133. All the electrons rescattering at the same time in one period of the field end

up with final momenta forming a ring (dashed) centered at the value of A(tr) at the rescattering

time, tr. The two arrows represent the graphical decomposition of the final momentum of the

photoelectron in the vector potential at the moment of rescattering (horizontal arrow) plus the

rescattering momentum.
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The present computation of the photoelectron spectrum relies on the condition that the

Volkov Hamiltonian can be used to describe electrons in a region of space, which entails the

following approximations: the ionized electrons i) become non-interacting at some distance

from the system and ii) they are free with respect to the tail of the Coulomb potential of

the system, i.e., it has to be possible to neglect it at some distance. Both conditions are

controlled by the placement of the analyzing surface S for the evaluation of the flux and

in practice this has to be converged by placing it at successively larger distances form the

system. This method needs an explicit description of the vacuum around the probed system,

which for solids requires an explicit construction of the electronic structure of the surface

layer and, if bulk properties are probed, one needs to converge a slab of material. Compared

to unit cell calculations of solids, this puts the present method at a disadvantage. However,

when aiming at simulating specific experiments, it natively includes signals coming from the

surface layers and thus can capture more of the experimental reality of the spectroscopic

process compared with standard perturbative many-body approaches which are directly

performed in the bulk unit cell.

In practical calculations, in order to avoid spurious reflection of electrons from the bound-

aries of the simulation box, one has to employ absorbing boundaries and, depending on the

condition on their transparency, this can add up to the size of the simulation box.134 Other

than the increased size of the computational box, this method is not computationally costly,

as it requires only the evaluation of the gradient operator on surface points S and straight-

forwardly supports existing k-points, states, and mesh parallelizations.

Pump-probe configurations can be naturally simulated since there is no restriction on

the functional form of the vector potential A(t) and, therefore, we can accommodate any

linear combination of pulses. As an example, in Fig. 11 (c) we show the result of a simu-

lated pump-probe time-resolved ARPES measurement of monolayer hexagonal boron nitride

(hBN) driven by a field resonant with the gap at the K-point in the Brillouin zone. As it is

apparent from the simulation, the excited state population transfer to the conduction band

is well observed in the resulting ARPES spectrum.

The method is not limited to simple photoelectron spectroscopy, but can be used to sim-

ulate complex experimental techniques, such as the reconstruction of attosecond beating by

interference of two-photon transitions (RABBITT).135 Furthermore, due to the versatility of

the real-time description in Octopus, the underlying excitation does not need to be coming
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from an optical pulse (i.e., an external vector potential) and, since the ions can move ac-

cording to the TDDFT-Ehrenfest dynamics,136 one can also simulate features coming from

the ionic or lattice motion, specifically electron-phonon coupling signature in ARPES.137

Pump-probe simulations are not limited to dynamical process of excitations, but can also be

employed to study steady-state modifications of driven electronic states.138 This opens the

possibility of studying Floquet physics from an ab-initio perspective and to directly simulate

the effect that a periodic force would have on the dressed electronic structure – an impor-

tant aspect to underline given the growing interest in the field of Floquet engineering139 and

Floquet analysis.140

Finally, t-SURFF is particularly suited to simulating strong field ionization processes

such as in laser-induced photoelectron diffraction (LIED) experiments, where the ionization

takes place by direct tunnelling into the continuum and the field is so strong as to drive

electrons in trajectories recolliding with the parent system. In fact, since in Eq. (48) we

accumulate the flux through S over the time of the propagation, with t-SURFF electrons

can seamlessly flow back and forth through the surface without producing any artifact in

the final spectrum. As an example, in Fig 11 (d) we present the photoelectron angular

distribution of C60 ionized by a strong IR pulse capable of inducing rescattering dynamics,

which then gets imprinted in the photoelectron spectrum as characteristic rings centered in

the value of the vector potential at the instant of rescattering.141 In this regime, the result of

simulations obtained with Octopus are in excellent agreement with the experiments.142,143

XI. ELECTRIC AND THERMAL CONDUCTIVITIES

Electrical conductivity in real materials can be described to a first approximation by

Ohm’s Law, which is a linear relationship between the applied electric field and the cur-

rent density generated in response. The standard method to study electrical and thermal

conductivity is to carry out a DFT calculation at equilibrium and apply Kubo-Greenwood

linear response theory to evaluate the conductivities. Although this method has been used

successfully in the past to calculate transport properties,144,145 the application is limited to

systems in the linear response regime. It is known that in many cases, especially in the

presence of strong external fields, Ohm’s law is no longer valid and the system exhibits

non-linear behavior. In order to capture these complex behaviors in materials, one must
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go beyond simple, linear approximations and describe electron interactions in a non-trivial

manner.

One promising route to go beyond linear response is to use density functional methods

to directly study thermoelectric transport. This topic has received less attention, but has

recently been implemented in Octopus and applied to liquid aluminum146. For detailed

descriptions and derivations of non-equilibrium thermoelectric phenomena using density

based methods, we refer the reader to Ref. 147.

In Octopus, we are able to calculate the current density and heat current density at each

step during a time-dependent simulation. A current is induced in this study by applying an

electric field of the form E(t) = E0δ(t), where E0 describes the magnitude and direction of

the field. The electric field is induced through a time-dependent vector potential (E(t) =

−c−1∂tA(t), c is the speed of light) in the Hamiltonian. This vector potential satisfies the

periodic boundary conditions of an extended system. It should be noted that there is no

limitation on the form of the applied electric field in general. We are able to evaluate the

macroscopic current density as

J(t) = − i

Ω

∫
dr

N∑
j

ϕi(r, t)[Ĥ(t), r̂]ϕi(r, t) , (50)

where Ω is the volume of the unit cell. The energy current density, Ĵh(r, t) is expressed as

Ĵh(r, t) = Ĵt(r, t) + Ĵv(r, t) + Ĵu(r, t) + Ĵf (r, t) , (51)

where Ĵt(r) is the kinetic energy contribution given as

[Ĵt(r, t)]i =
i

8

(
[∂iϕ̂

†][∇2ϕ̂]− [∇2ϕ̂†][∂iϕ̂]− [∂i∇ϕ†] · [∇ϕ]− [∇ϕ̂†] · [∂i∇ϕ̂]
)

(52)

and ϕ = ϕ(r, t) are understood to be the time-dependent states. The output of the time-

dependent simulation can be further analyzed to yield the frequency-dependent conductivity.

The electrical (or thermal) conductivity σ can be found by Fourier transforming the corre-

sponding current as

σij(ω) =
1

[E0]i

∫ ∞
0

dte−iωtJj(t) . (53)

In general, it is possible to study the conductivity of an extended system in the presence

of an applied electric field. Here, we illustrate the use of this method on hydrogen at 1400 K

and 400 GPa. At this temperature and pressure, hydrogen is in its liquid metallic phase. A
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Figure 12. (Left) Time-dependent current density for one ionic snapshot of a supercell of 128

atoms of hydrogen in the liquid phase at 1400 K and 400 GPa with an initial electric field E0 of

0.1 a.u. The blue line represents the current density as given in Eq. (50) and the red line is the heat

current evaluated from Eq. (52). Both currents are shown decaying to zero. (Right) The Fourier

transform of the respective currents gives the frequency-dependent conductivities.

molecular dynamics simulation was carried out in VASP to produce several ionic snapshots

of the system. For each ionic snapshot, we performed a TDDFT simulation with a time

step of 0.05 a.u. (0.00121 fs) for a total time of 3 fs. The initial electric field E0 was 0.1 a.u.

The calculation was carried out on a 3x3x3 k-point grid to ensure that the current density

decays to zero.

In Fig. 12, we have plotted the time-dependent current density and heat current density

as a function of time after an initial electric field is applied at time zero. Both currents

are shown to decay to zero by the end of the simulation. It should be noted that the heat

current corresponds to the kinetic energy contribution given in Eq. (52). In general, this

heat current is related to the Peltier coefficient, since it describes the heat generated from

the response to an electric current. The remaining contributions in Eq. (51) are not yet

implemented in Octopus. Both Ju and Jf arise from electron-electron interactions and Jv

is the potential energy. In future work it would be interesting to evaluate these remaining

contributions to determine if they are large or can reasonably be ignored for some systems.

The electrical conductivity and the heat conductivity can be evaluated using Eq. (53). These

frequency-dependent conductivities are shown in the right hand panel of Fig. 12. One may
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also calculate the DC conductivity by taking ω = 0.

This suite of tools implemented in Octopus will allow for the study of time-dependent

thermoelectric phenomena using TDDFT. This approach to study current and conductivity

is more general and widely applicable than the standard Kubo-Greenwood approach. While

Kubo-Greenwood is a linear response theory, this method can be applied to study materials

where non-linear conduction effects can appear. In a recent study, this TDDFT method was

been used to illustrate non-linear conductivity effects in liquid aluminum,146 which would

not be possible by applying standard linear response theory. In the future, we plan to extend

these tools by implementing a thermal vector potential that can induce a heat current in an

extended system during a time-dependent simulation.

XII. LOCAL DOMAIN CONTRIBUTION TO PHYSICAL OBSERVABLES

Usually, we are interested in studying systems consisting of different atoms, molecules,

regions, or domains. In such cases, we might want to understand the different contributions

from different parts of the system towards a specific observable. Based on the Hohengberg-

Kohn theorems for the DFT,148 and its extension, the Runge-Gross theorem,149 for TDDFT,

we can state that any physical observable of the system is a functional of the electronic

density, either static (ground state) or time dependent. In other words, the expectation

value of an operator Ô can be expressed as functional of the electronic density

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉 . (54)

Let’s now consider the case where we write the total electronic density as a sum of N

densities

n(r) =
N∑
i

ni(r) , (55)

and no further constraints are imposed on n nor on ni. Such partitioning of the density is

at the basis of subsystem DFT, which allows to divide a system into several Kohn-Sham

subsystems that interact with each other in a theoretically well justified manner (see Ref. 150

and references therein). However, in our case, we are only interested in this kind of partition

for post-processing purposes where we assign a density ni to a specific part of the system

in order to identify how it contributes to a given observable. We are thus interested in
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operators for which the following condition is true

O[n] =
N∑
i

O[ni] . (56)

Such operators are said to be additive. One example of an additive operator that is partic-

ularly relevant in the context of TDDFT is the time-dependent dipole

d(t) =

∫
rn(r, t)dr =

N∑
i

∫
rni(r, t)dr , (57)

as this is the relevant observable for obtaining the optical absorption cross section of finite

systems.

The range of operators that fulfill Eq. (56) can be further expanded if we now consider

non-overlapping densities, that is, densities ni that are non-zero only in a given domain

Vi and that the domains do not overlap. We refer to this type of partitioning as a local

domain partitioning. In such case, any (semi-)local operator that depends (semi-)locally on

the density should fulfill Eq. (56). In this context, an example of a relevant observable is

the exchange-correlation energy within the LDA approximation

ELDA
xc [n] =

∫
n(r)eLDA

xc (n(r))dr =
N∑
i

∫
Vi

ni(r)eLDA
xc (ni(r))dr , (58)

where eLDA
xc is the exchange-correlation energy per unit particle.

Currently, several different options can be used in Octopus to define specific regions of

the simulation box. These options include simple geometric shapes, such as spheres centered

on particular points of space, atom-dependent domains, such as an union of spheres centred

on the atoms, or the definition of Bader volumes. The latter option follows the Quantum

Theory of Atoms in Molecules (QTAIM)151 and associates a density region to a given atom

through a density gradient path, such that the boundaries of each volume are defined as the

surfaces through which the charge density gradient has a zero flux. Note that some of these

options allow for the user to specify overlapping regions. In that case the overlap must be

taken into account when analyzing the results and extra care is required when comparing

results from different domains.

Let us exemplify the applicability of the local domain partitioning by decomposing the

optical response for a coupled chromophore system. Similar to Frozen Density Embedding
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real-time TDDFT (FDE-rt-TDDFT),152 we decompose the total optical spectrum as a sum

of the local response within each domain

α(ω) =
∑
i

αi(ω) , (59)

where α is the dynamic polarizability. In addition, from each local dynamic polarizabilty

tensor we can compute for each fragment the corresponding cross-section. This is justified

by the fact that the relevant operator to calculate α is the dipole operator and, as shown

above, this is an additive operator that fulfills Eq. (56).

As an example, we performed a series of optical spectrum simulations using real-time

TDDFT for a benzene-fulvene dimer with different π-stacking separation, ranging from 4 Å

to 8 Å. We use the standard PBE exchange-correlation functional153,154 and the Optimized

Norm-Conserving Vanderbilt PBE pseudopotential (sg15) set.155 The real-space grid is de-

fined as a parallelepiped box with length 16 Å, 17 Å and 20 Å in the three Cartesian axes.

The spacing between points is set to be 0.13 Å.

For each intermolecular separation we carry out a single ground-state calculation and

three time-propagations. For each time-propagation a dipolar electric perturbation is applied

along one of the Cartesian axes.122 We let the perturbed Kohn-Sham states evolve for a

propagation time of T = 24 ~/eV (15.8 fs), with resolution of 0.26 eV (2π/T ). The ground-

state electron density is fragmented following the Bader atomic decomposition and each

molecular domain is defined as the sum of these atomic volumes. Then, the corresponding

dipole operator is applied over each defined domain. Finally, by Fourier transform of the

local time-dependent dipole moment, the local polarizability tensor is recovered.

Figure 13 shows the spectral decomposition of the benzene-fulvene system as a function

of the intermolecular separation. The full system at large intermolecular separation (8 Å)

shows two major peaks located at the same frequencies as for the isolated molecules. As the

intermolecular distance becomes smaller, the global spectrum changes due to electrostatic

effects induced by the electronic cloud of the neighbouring molecule. We can see that the

peak located at around 5 eV suffers a red-shift, while the stronger peak between 6.5 and

7 eV reduces its intensity, giving rise to an oscillator strength transfer to excited states at

higher energy. The local domain analysis reveals that the major change is caused by the

reduction of the oscillator strength of the fulvene peak located at around 6.5 eV.

These results are in agreement with the FDE-rt-TDDFT calculations of Ref. 152, further
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Figure 13. Top: Schematic representation of the benzene-fulvene dimer with π-stacking along the

z axis and a intermolecular distance of 4 Å. From left to right, the electronic density for the global

system for an isosurface of 0.006 Å-3 and the QTAIM local density for the fulvene and benzene

molecules respectively. Visualized with USCF Chimera software.156 Bottom: Photo-absorption

cross section obtained from, from left to right, the full system density, the fulvene local density,

and the benzene local density.

validating our strategy. In addition, the local domains methodology does not require any

previous fragmentation, selection, or localization of the basis set, allowing also to treat very

large systems, such as biological molecules like the major light harvesting complex LHC-II.157

More recently, we have shown that this technique also allows for exciton coupling calculations

when combined with a new formulation of the transition densities from real-time TDDFT.158

XIII. NEW PROPAGATORS FOR REAL-TIME TDDFT

At the core of most Octopus calculations lies the need to integrate the time-dependent

Kohn-Sham equations (TDKS). These are a set of non-linear equations, given the dependence

of the Kohn-Sham Hamiltonian with the electronic density. Upon the discretization of the

electronic Hilbert space, they take the generic form of a first-order ordinary differential

equation (ODE) system

ϕ̇ = f(ϕ(t), t) , (60)
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ϕ(t0) = ϕ0 , (61)

where t0 is the initial time, ϕ is an array containing all the Kohn-Sham orbitals, {ϕNm} (ϕ0

is its initial value), and f is a vector function (f = (f1, . . . , fN)) given by the action of the

Kohn-Sham Hamiltonian Ĥ[n(t), t]

fi(ϕ(t), t) = −iĤ[n(t), t]ϕi(t) , (i = 1, . . . , N) (62)

Note that: (1) If the nuclei are also to be propagated, the state should be supplemented with

their position and momenta, and the equations with the corresponding nuclear equations

of motion. (2) Likewise, the formalism for solids includes a polarization vector field22 that

must also be included in the system definition and propagation. (3) Strictly speaking, the

TDKS equations are not ordinary but “delay differential equations” (i.e. equations for which

the derivative of the unknown function at a certain time depends on the function values at

previous times), due to the dependence of the exact exchange and correlation potential

functional on past densities. This is ignored in the adiabatic approximation, which is almost

always assumed.

A myriad of numerical propagators for ODEs are available, all of them theoretically

applicable to the TDKS equations. Ideally, however, one should choose a propagator that

respects all the mathematical properties of the equations that describe the problem at hand,

for example, the preservation of the norm of the orbitals. But also, in the case of the TDKS

equations in the adiabatic approximation, another such property is symplecticity (a fact that

is demonstrated in Ref. 159). This property is usually stated in terms of the conservation

of the volume of the flow of the system of ODEs in the phase space, although the precise

definition is as follows:

Any system of ODEs can be viewed as a “flow”, a differentiable map g : Rp → Rp that

transforms the state y(t0) at some point in time t0 into the state at time t, y(t) = g(y(t0)).

For systems described with complex variables such as ours, since it can be split into a real

and an imaginary part, p is even: g : R2N → R2N . A map with an even number of variables

such as this one is defined to be symplectic if and only if

∂g

∂x

T

J
∂g

∂x
= J , J =

 0 I

−I 0

 , (63)

where I is the unit matrix of dimension N , and x ∈ R2N (conventionally, the first N variables

of x are called the “coordinates”, and the second half are the “momenta”, but no physical
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meaning should be assumed for them in this purely mathematical definition). A numerical

propagator is also a differentiable map that relates the solution y(t) to y(t+ ∆t). As such,

it may respect or not the symplecticity – and other properties – of the original flow.

The symplecticity also means that the system has to be “Hamiltonian”: one may find a

set of coordinates q ∈ RN , p ∈ RN (in this case, the real and imaginary part of the orbitals

coefficients), and some scalar function H(q, p) (the Hamiltonian expectation value), that

permits us to rewrite the system into the well known form of Hamilton’s equations:

q̇i =
∂H(p, q)

∂pi
, (64a)

ṗi = −∂H(p, q)

∂qi
. (64b)

The relevance of the symplectic numerical propagators stems from the fact that they present

some features, such as a better conservation of the energy at long times, where the value

of the energy ends up oscillating around the true value instead of diverging. For a more

detailed discussion about symplecticity on numerical propagators, check Ref. 160.

The Octopus code has several propagator options, many of them already described in

Ref. 161, such as the Crank-Nicolson, standard Runge-Kutta, exponential midpoint rule

and variations (e.g., the “enforced time-reversal symmetry” scheme), split operator tech-

niques, etc. In a recent paper,159 some of the present authors have studied propagators of

different families that had been scarcely (or not at all) tested for the TDKS equations: mul-

tistep, exponential Runge-Kutta, and commutator-free Magnus (CFM) expansions. After

considering both the accuracy, stability, and the performance of the propagators, the CFM

techniques were identified as suitable schemes for TDDFT problems and implemented in

Octopus. In this section, we make a brief description.

Developed in Ref. 162 for linear non-autonomous systems, the CFM expansion offer an

alternative to the “standard” Magnus expansion, which requires expensive application of

nested commutators of the Hamiltonian with itself at different times. In essence, a CFM

expansions Γ(t+ ∆t, t) consists of substituting the propagator Û(t+ ∆t, t) by a product of

exponentials

Γ(t+ ∆t, t) =
m∏
i=1

exp(D̂i) . (65)

The m linear operators D̂i are either the Hamiltonian at different times within the interval

[t, t+ ∆t], or parts of it.
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We have implemented in Octopus an order four (q=4) version, given for example in

Eq. 43 of Ref. 162, which we call hereafter CFM4. This propagator requires two exponentials

(m = 2),

ϕ(t+ ∆t) = exp
(
−i∆t(α1Ĥ[t1] + α2Ĥ[t2])

)
exp

(
−i∆t(α2Ĥ[t1] + α1Ĥ[t2])

)
ϕ(t) , (66)

where

α1 =
3− 2

√
3

12
, t1 = t+

(
1

2
−
√

3

6

)
∆t , (67)

α2 =
3 + 2

√
3

12
, t2 = t+

(
1

2
+

√
3

6

)
∆t . (68)

Ĥ[t1] and Ĥ[t2] are the Hamiltonians at times t1 and t2, which are in fact unknown because

they depend on the Kohn-Sham states through the density: we are dealing with a non-linear

problem and the CFM expansions were in fact developed for linear systems. We have various

options to extend them for our non-linear problem: for example, one could define Ĥ[t1] and

Ĥ[t2] as interpolated Hamiltonians from Ĥ[t] and Ĥ[t+ ∆t], in which case we end up with

an implicit equation for ϕ(t+ ∆t) that we would have to solve at a substantial cost.

The alternative that we have implemented, however, is to approximate Ĥ[ti] via an extrap-

olation from the Hamiltonian at various previous time steps (in practice, it is the Hartree,

exchange, and correlation parts that must be extrapolated). The resulting method is then

explicit, i.e., no linear or non-linear algebraic equations need to be solved. The fourth order

accuracy is preserved as long as the extrapolation is also done at order four.

As an example, Fig. 14 shows the performance of this CFM4 method against the well

known exponential midpoint rule (EMR). The benchmark system consists of a benzene

molecule. It is subject to an instantaneous perturbation at the beginning of the propagation,

and then it evolves freely for some fixed interval of time. The propagations are performed

at varying values of ∆t. The plot displays the cost of the propagation vs. the accuracy

achieved in each case. As we can see, the CFM4 outperforms the EMR for all the values

of the error examined, although the differences become more obvious when higher accuracy

is demanded. The key difference between the two methods is the fourth-order accuracy of

CFM4 scheme – at the cost of requiring two exponentials, instead of just one, while the

EMR is only second-order accurate. This is reflected in the different slopes of the curves as

the error becomes smaller, i.e., as ∆t→ 0.
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Figure 14. Wall-time computational cost of the method (seconds) against the error in the wave

function (defined as Error(T,∆t) =
√∑

m
||ϕm(T )− ϕexactm (T )||2, where the ϕexactm are the values of

the Kohn-Sham orbitals computed using the explicit fourth-order Runge-Kutta integrator with a

very small time-step) for the EMR and CFM4 propagators.

XIV. CONJUGATE GRADIENT IMPLEMENTATION IN RDMFT

The RDMFT implementation in Octopus has been described in detail in a previous

paper.19 In this Section we briefly review the existing implementation, providing some new

insights, and introduce a recently implemented method to solve the RDMFT equations that

is better suited to the real-space grids used in the code.

The optimization of the natural orbitals in RDMFT is subject to an orthonormalization

constraint for the orbitals. One minimizes the functional

Etotal −
M∑

j,k=1

λjk

(∫
drψ∗j (r)ψk(r)− δjk

)
, (69)

where Etotal and M denote the total energy and the number of natural orbitals ψj included in

the calculation, respectively. λjk are the Lagrange multipliers which ensure the orthonormal-

ity of the natural orbitals at the solution point. We note that, for a RDMFT calculation, the

number of natural orbitals has to be larger than the number of electrons in the system (core

electrons which are included in the pseudopotential do not count). The exact number M is
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system-dependent and should be treated as an additional parameter with respect to which

a convergence study should be carried out, just like it is done for the basis set or the grid

parameters. Typically, the optimization is performed using the so-called Piris method,163

which was the method previously implemented in Octopus. Within this approach one uses

the orthonormality constraint of the natural orbitals, which implies that a certain matrix

constructed from the Lagrange multipliers λjk is diagonal at the solution point. As an im-

mediate consequence of the Piris method, the natural orbitals at the solution point are linear

combinations of the orbitals used as starting point for the minimization. In other words, the

initial orbitals serve as a basis. Consequently, the necessary matrix elements for different

energy contributions can be calculated for the basis functions (initial orbitals) before the

iterative optimization of the natural orbitals and their occupation numbers is started. In

addition, the optimization of the occupation numbers can be turned off completely, resulting

in a Hartree-Fock calculation in the basis of the initial orbitals.

For the existing implementation in Octopus of the Piris method, the initial orbitals are

taken to be the solutions obtained with a different level of theory, like independent particles

or DFT. In order to better understand the effect of the choice of basis, we have tested the

following choices: (i) independent particles, density functional theory within (ii) the local

density approximation (LDA) or (iii) the exact exchange (EXX) approximation, as well

as (iv) the Hartree-Fock approximation. In all cases we have to ensure that the number

of unoccupied states in the calculation is sufficient to cover all the natural orbitals which

will obtain significant occupation in the the following RDMFT calculation. The results for

the convergence of the total energy of a one-dimensional (1D) hydrogen molecule using the

Müller functional164 are given in Fig. 15. The calculations were performed on a 1D grid

extending from −12.0 to 12.0 bohr, with a grid spacing of 0.03 bohr. The nuclear potential

for the 1D molecule reads

v(x) = − 1√
(x− d)2 + 1

− 1√
(x+ d)2 + 1

, (70)

with d = 1.628 bohr, which corresponds to the equilibrium geometry. The electron-electron

interaction in one dimension is described by the soft-Coulomb interaction

w(x, x′) =
1√

(x− x′)2 + 1
. (71)

Since Octopus performs all calculations on a finite grid, we typically obtain a finite

number of bound states in the calculations for the basis set and any additional orbitals
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Figure 15. Total energy for the RDMFT calculation for one-dimensional H2
165 using the Piris

method with different basis sets and using the conjugate gradient implementation. The inset

shows a zoom into the area where convergence is reached. We employ the Müller functional164 for

all calculations.

extend over the whole grid, i.e., they are unbound and therefore delocalized. However, all

natural orbitals with non-zero occupation, because they decay with the ionization potential

of the system,166 are localized on the system. Hence, the extended basis states will only

contribute with very small coefficients, if at all, and their inclusion in the basis set does not

lead to a significant improvement of the results. In the past, this problem was addressed

by performing an additional step to localize the initial states before starting the RDMFT

calculation. However, further investigations showed that this only improves the results for a

small number of natural orbitals in the calculation. Testing the convergence with respect to

the number of natural orbitals then showed that the additional localization step slows down

the convergence with respect to the number of basis functions. The fastest convergence

and lowest total energies are obtained by using the results from an independent particles

calculation, as those yield the largest number of localized orbitals from all the different basis

sets that were tested, as shown in Fig. 15. As the additional localization step proved to be

unnecessary and even hinders convergence, it has been removed from the new version of the

code.

Since the natural way of representing quantities in Octopus is directly on the real-space
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grid, and to circumvent the limitations with the quality of the basis sets available for the

Piris method, we have decided to implement a conjugate gradient optimization of the natural

orbitals. This implementation follows the procedure for DFT explained in Ref. 167, which

we adapted for RDMFT. This procedure allows us to take advantage of the full flexibility of a

real-space grid and provides a systematic way of improving the results by enlarging the grid

and reducing the spacing between grid points. The conjugate gradient algorithm requires

a set of initial orbitals to start the self-consistent calculation, however, at convergence the

results are independent of that starting point. Therefore, while the calculation using the

Piris method requires a set of initial states which serve as the basis, the conjugate gradient

algorithm can be used starting from a initial set of random states. In our tests of the

conjugate gradient implementation, the quality of the initial states only had an influence

on the number of iterations necessary for the convergence, but not on the final result. We

suggest to use the orbitals obtained from an independent particles calculation as initial states

since they can be obtained for small numerical costs and simultaneously can serve as a basis

set in the Piris implementation.

Since we are not solving an eigenvalue equation to obtain the natural orbitals, they are

not automatically orthogonal. As mentioned above, the orthogonality is taken into account

via a constraint. Compared to Ref. 167, the non-diagonal Lagrange multipliers λjk lead to

two modifications in the conjugate gradient procedure. First, the steepest-descent direction

(cf. Eq. (5.10) of Ref. 167) reads here

ζmi = −Ĥψmi +
M∑
k=1

λikψ
m
k , (72)

where

λik = 〈ψmi |Ĥψmk 〉 . (73)

Second, one parameter of the line-minimization (cf. Eq. (5.26) of Ref. 167) is changed to

∂Etotal

∂Θ
= 〈φ′im|Ĥψmi 〉+ 〈ψmi |Ĥφ′im〉 −

∑
k

(λki 〈φ′im|ψmi 〉+ λik 〈ψmi |φ′im〉) , (74)

where Θ parameterizes the descend in the direction of the gradient and the single-particle

Hamiltonian acting on a state |φ〉 is defined as

Ĥ |φ〉 =
∂Etotal

∂φ∗
. (75)
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For details of the notation, we refer the reader to the paper by Payne et al.167

The convergence study with respect to the number of natural orbitals for the conjugate

gradient algorithm is also included in Fig. 15. As one can see, a smaller number of natural

orbitals needs to be included in the calculation than for the basis set implementations with

the Piris method. As the number of natural orbitals equals the number of basis functions

in these calculations, this is mostly due to the fact that the available basis sets are of

rather poor quality. In addition, the converged total energy for the conjugate gradient

algorithm is slightly lower than for all the basis sets using the Piris method (see inset of

Fig. 15), which shows that the conjugate gradient algorithm exploits the full flexibility of

the grid implementation, allowing for contributions to the natural orbitals which are not

covered by any of the basis sets. We have also verified that the converged result of the

conjugate gradient method is indeed independent of the choice of initial state for the Müller

functional164 employed in our calculations. The Müller functional is known to be convex

when all infinitely many natural orbitals are included.168 This property is most likely not

shared by all available RDMFT functionals. In addition, the number of natural orbitals in

any practical calculation is always finite. Consequently, in practice one needs to test the

convergence for the different starting points, as the appearance of local minima cannot be

excluded.

XV. PERIODIC SYSTEMS AND SYMMETRIES

Electronic structure in periodic systems is usually described using plane waves, but real-

space grids have been shown to be a viable alternative when performing DFT and TDDFT

calculations.22,169 Unfortunately, the discretization introduced by the real-space grid often

breaks the direct connection between the physical system and the basis set, as symmetries

and translations are, in most of the cases, not compatible with the discretized grid. However,

real-space grids offer many advantages, such as natural mixed periodic-boundary conditions

for semi-periodic systems, and the calculation of the exchange and correlation term of DFT

is straightforwardly obtained on the grid.

One of the main challenges for treating periodic systems in real space is the generation

of the real-space grid, and the corresponding weights for the finite differences. This be-

comes relevant when the grid is generated along the primitive axes of the Wigner-Seitz cell
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(primitive cell) of a solid, where the generating axes are usually non-orthogonal.

In Octopus, the grid points are generated along the primitive axes, and the calculation of

the finite-difference weights follows the implementation described in Ref. 170. Once the grid

is generated, and the weights for the finite differences (gradient and Laplacian) are obtained,

it is necessary to deal with the discretization of the reciprocal space. Indeed, for periodic

systems, the full crystal is replaced by the primitive cell of the crystal in real-space, thanks

to the Bloch theorem, but is then complemented by the Brillouin zone, which also needs to

be sampled. This grid, usually called k-point grid, is common to any type of basis sets, as

long as one decides to reduce the crystal to its primitive cell.

In order to reduce the numerical effort associated with the description of periodic systems,

we make use of the symmetries to reduce the Brillouin zone to its irreducible Brillouin zone,

which can drastically reduce the number of k-points. The space group of the crystal, as well

as its symmetries, are obtained thanks to the spglib library.171 In the present implementa-

tion, we restrict the symmetries to the symmorphic symmetries (inversion, rotations and

mirror planes), leaving for later the so-called non-symmorphic symmetries, i.e., symmetries

involving a fractional translation, as they are not compatible with arbitrary real-space grids.

In order to assess the validity of our implementation, we used the so-called Delta-factor

test.172 Using the Schlipf-Gygi ONCVPSP 2015 pseudopotential set, we obtained the value

of 1.50 meV/atom, which is very close to the value obtained by other codes using the same

pseudopotential set.

When investigating the electron dynamics driven by a laser field, or any type of symmetry-

breaking perturbation (vector potentials, kicks with a finite momentum, strain, etc), some

of the original symmetries are lost. To deal with that, Octopus finds the small group

of symmetries corresponding to the original space-group of the solid, retaining only the

symmetries that leave invariant the perturbation direction. This defines the symmetries

that are used for a time-dependent calculation.

One important aspect when using symmetries, is the symmetrization (in real-space) of

the charge and current densities, as well as other observables, such as kinetic energy density

for instance. In complement to the reduction of the Brillouin zone to its irreducible Brillouin

zone, we implemented a real-space symmetrization. We found that performing the real-space

symmetrization is very important to achieve good and stable numerical results when taking

into account symmetries.
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For a comprehensive description of periodic systems, the ion dynamics has to be consid-

ered in addition to the electron dynamics. For isolated systems, it is often described with the

TDDFT-Ehrenfest dynamics method,17,173 where the ions obey the Newton equation with

force fields computed by the TDDFT. In contrast, for periodic systems, the ion dynamics

has to be described with two sets of equations: One is the Newton equation for ions on the

reduced coordinates in the primitive cell, and the other is the equation of motion for the

primitive cell itself, as the ionic coordinates of periodic systems are described by the combi-

nation of the reduced coordinates with the lattice vectors of the primitive cell. The lattice

dynamics is often treated with the Parrinello-Rahman method,174,175 and the key ingredient

of the equation of motion is the stress tensor. Therefore, to realize the ab initio simulations

for electron-ion-lattice dynamics based on the TDDFT, the calculation of the stress-tensor

has been implemented based on Ref. 176, and the implementation of the lattice dynamics is

under way.

XVI. ADDITIONAL TECHNICAL CODE IMPROVEMENTS

In order to make all the new developments and applications described in the above sec-

tions possible, the code needs to be accurate, efficient, and reliable. Also, when a code

reaches the size and complexity of Octopus (currently more than 200,000 lines of source

code), the amount of time required for maintenance and for adding new features becomes

considerable. Therefore, continuous efforts at optimizing, validating, and improving the

source code quality are needed. These efforts are essential, but often do not get the atten-

tion they deserve. In this section we present some noteworthy developments to improve the

code reliability and efficiency, to make the project easier to maintain, and to tackle new

computer architecture challenges.

A. Web application for analyzing regression tests

In a complex code like Octopus, every new development may have unintended side effects,

possibly introducing errors to already existing features. To avoid such a regression, every

change to the code is required to pass a suite of tests before being accepted. This suite is

executed automatically using Buildbot177 and is integrated with the continuous integration
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framework of the gitlab platform where Octopus is hosted for several years now. The testsuite

is executed with 30 different toolchains spanning a variety of architectures, compilers, and

MPI libraries. It contains currently about 180 tests that execute Octopus roughly 740 times

and that contain about 12000 comparisons to reference values. The overall coverage of the

tests is determined using the codecov.io service and lies at about 71% at the moment.

Although the testsuite is efficient in avoiding regressions, analyzing why a test failed

has been difficult so far due to the large amount of data generated. Thus, we have imple-

mented an interactive analysis and visualization of the testsuite results as a web application

available at https://octopus-code.org/testsuite/. This application makes it easier to

understand why a test failed: is it a problem with just one toolchain, e.g., a particular ar-

chitecture, or is it simply a larger numerical variation of the results? Moreover, it facilitates

updating the tests and improving the testsuite itself.

The application has been implemented using the web framework Django coupled to a

Postgres database. The testsuite results are automatically uploaded by the Buildbot service

as soon as they are available. The application allows to analyze single toolchain runs and

single comparison matches and to compare all toolchain runs for a single commit in git. It

provides histograms to judge if there are outliers or if it is a broad distribution; moreover

this allows to determine, e.g., if there is a difference between MPI and non-MPI toolchains.

This application has already helped to identify bugs causing regressions and will continue

to be useful to understand failed tests, update them, and to improve the testsuite.

B. Improving ground-state calculations

To improve the reliability of ground-state calculations with Octopus, the default eigen-

solver used inside the self-consistent field (SCF) cycle has been improved and different

real-space preconditioners for the eigensolvers have been evaluated.

The default eigensolver, a conjugate-gradients algorithm, has been improved over the

previous implementation by now following closely Ref. 167, which greatly improves the

reliability of the solver. The updated implementation differs from Ref. 167 in only one

point: by default, the current band is not orthogonalized against all bands, instead it is only

orthogonalized against previously computed bands with lower energies. According to our

tests, in Octopus, this leads to a faster convergence for most cases.
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Preconditioners for eigensolvers are an integral part of SCF calculations because they

greatly accelerate convergence. They achieve this by applying an approximate inverse of

the Hamiltonian in each iteration that leaves the solution invariant and brings the system

closer to the real solution. As Octopus uses a real-space grid (as opposed to plane waves

like in Ref. 167), different preconditioners are needed. A range of preconditioners has been

compared for a wide variety of systems, comprising molecules, semiconductors, metallic

systems, and surfaces to test convergence for very different cases.

The default preconditioner in Octopus is a low-pass filter obtained by adding the neigh-

bouring values in each dimension to the current value at a grid point, weighted by a certain

factor α

ψ′i,j,k = αψi,j,k + (1− α) (ψi−1,j,k + ψi+1,j,k + ψi,j−1,k + ψi,j+1,k + ψi,j,k−1 + ψi,j,k+1) . (76)

This preconditioner was first described by Saad et al.178 with α = 0.5. It has proven to be

the most effective preconditioner in our comparison because it is quite cheap to apply and it

nevertheless decreases the number of SCF iterations noticeably. It can also be understood

as two weighted Jacobi iterations (up to a prefactor) to solve for the inverse of the kinetic

term of the Hamiltonian (i.e., 0.5∆ψ′ = ψ). From the convergence radius of the Jacobi

iterations, we can conclude that the allowed values for α are between 0.5 and 1. From

theoretical considerations of damping of different spatial wavelengths during Jacobi itera-

tions (see Ref. 179, Secs. 4.1.3, 4.2), the ideal value should be 0.75 to most effectively damp

high spatial frequencies. In practice, we find that this depends on the system. Moreover,

increasing the number of Jacobi iterations does not make the preconditioner more effective.

Also, using a single Jacobi iteration (i.e., dividing by the diagonal of the Laplacian) does

not speed up the convergence significantly.

A multigrid method similar to the one implemented in GPAW180 also uses Jacobi iter-

ations to solve for the kinetic Hamiltonian, but employs different grids to reach a faster

decrease of the error. Although this method reduces the number of SCF iterations, it is

computationally more expensive because the Laplacian is applied several times for each

iteration and thus less effective than the filter preconditioner.

A preconditioner specifically targeting real-space methods was proposed by Seitsonen

et al.181 It uses the ratio between the difference of the energy and the potential to the

kinetic energy (their Eq. (3)) with a preconditioning function (their Eq. (4)) originally from
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Ref. 167. However, this preconditioner did not speed up convergence significantly when used

in Octopus.

Another way to get an approximate inverse of the Hamiltonian is to solve the Poisson

equation associated with the kinetic part of the Hamiltonian. This reduces the number of

iterations needed to converge the SCF calculation, but it increases the total calculation time,

as each iteration is much more costly.

In summary, we find that for our real-space code, the filter preconditioner is most effective

in reducing the total time needed to compute ground states because it reduces the total

number of iterations without being computationally too expensive.

Nonetheless, sometimes certain states cannot be fully converged using a preconditioner,

especially for calculations with many unoccupied states. In this case, restarting without

preconditioner is needed to obtain full SCF convergence. The reasons are still under inves-

tigation.

C. Novel multi-system framework

In the way Octopus was originally designed, the entire code was structured around the

idea that there was only one system (albeit of arbitrary size and complexity) with an associ-

ated Hamiltonian. This was typically a combined system of electrons and nuclei, where the

former were described using DFT and the latter were treated classically. All possible sorts of

interactions of this system with some external source (e.g., external electromagnetic fields,

solvents described with the PCM, etc) were then added in an ad hoc fashion. Although this

approach worked well for many features and applications, its limitations became evident

with several recent developments, in particular the coupled Maxwell-Kohn-Sham equations

described in Sec. II, where the Kohn-Sham orbitals need to be time-propagated alongside

the Maxwell fields.

This has prompted us to start a major refactoring of the code, where the full physical

system is treated as several subsystems interacting with each other. Such subsystems can

be electrons, nuclei, Maxwell fields, etc. While this framework was mainly motivated by the

Maxwell-TDDFT coupling, it has been implemented very generically so that all the existing

features can be converted to it and that, in the future, many other developments which

require the coupling of several subsystems can be based on this.
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D. Memory layout

A new memory layout for storing the orbitals was introduced in Ref. 182, where all

states are stored in a number of smaller batches with the innermost index being the state

index instead of the real-space grid index. Thus, for all states in a batch, exactly the same

operations can be executed when looping over the grid while accessing memory contiguously.

This allows efficient parallelization on GPUs, where all threads in a warp need to execute

the same instructions, as well as vectorization on CPUs, where one instruction can operate

on several data points. To fully utilize these instructions, the kernel for computing finite

differences (e.g., the Laplacian) has been specialized to explicitly use SSE, AVX, or AVX512

instructions. Now, more parts of the code have been ported to use this new layout to increase

their performance and, whenever possible, the code will use this layout by default.

E. GPUs

The first GPU implementation has been described in Ref. 182. This was based on OpenCL

and was limited to a small selection of numerical algorithms and calculation modes. These

included some of the most commonly used features of the code or algorithms that were

particularly suited for GPU porting, like the RMM-DIIS eigensolver for ground-state calcu-

lations or the enforced time-reversal-symmetry propagator for time-dependent calculations.

Since then, the GPU implementation has been expanded in several different ways. Most

notably, it now supports CUDA through an additional compatibility layer. The number of

supported features and algorithms has also been increasing steadily, such that most time-

dependent calculations can now be run efficiently on GPUs. The implementation has also

been expanded to support multiple devices per host. Using the packed storage format de-

scribed above, Octopus is able to store the states fully in the GPU memory, provided the

memory is large enough, thus reducing memory transfers to a minimum. Recently, this was

improved further by removing frequent allocations and deallocations of temporary variables

on the GPU, now using a custom memory management for those. This proved very effective

in improving the scaling to several GPUs, also to several nodes with GPUs.

We show two examples of time-dependent runs in Fig. 16. For the first example (left

panel), β-cyclodextrine was used as an input system and the simulation was run on the GPU
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Figure 16. Scaling plots for the GPU implementation of Octopus. The left panel shows speed-up

for a machine with two 20-core Intel Xeon 6148 Gold sockets (Skylake architecture) and two V100

GPUs (PCIe) per node. The right panel shows speed-up for a Supermicro server with 8 V100

GPUs (NVLink).

island of the COBRA supercomputer at the Max Planck Computing and Data Facility. Each

node in this island consists of two 20-core Intel Xeon 6148 Gold sockets (Skylake architecture)

with two Nvidia Volta 100 GPUs (PCIe); the nodes are connected with an Omnipath fabric

(100 Gbit/s). When executed on a full node with GPUs, the average time step for the

example is a factor of 4.8 faster than on one full CPU node, i.e., the time to solution is

reduced by a factor of 4.8. This also means that the GPU version consumes less energy:

although one GPU node draws more power than a CPU node (ca. 950 W vs 450 W), the

faster execution time reduces the overall energy to solution by a factor of 2.3 when running

on a GPU node. When scaling to 2, 4, and 8 nodes, the speed-up is 1.26, 2.14 and 3.37,

respectively, and the corresponding parallel efficiency is 63%, 54%, and 42%. Although

the scaling is not yet perfect, it has improved considerably and also hints at the need for

improving inter-node communication. For the second example (Fig. 16, right panel), a time-

dependent simulation of a part of a chlorophyll complex was executed on a Supermicro

server with two 8-core Intel Xeon 6134 Gold CPUs (Skylake architecture) and eight Nvidia

Volta 100 GPUs interconnected with NVLink. Here, the speed-up of the average time step

of the simulation when using 2, 4, and 8 GPUs is 1.95, 3.70, and 5.97 which corresponds to

parallel efficiencies of 97%, 93%, and 75%. These efficiencies are much better than for the

multi-node example, probably because data is only communicated within one node. For both

examples, all states were stored in the GPU memory, and the parallelization was achieved
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by distributing the states only. Distributing the grid (i.e., parallelization over domain) is

not as effective, because it leads to more frequent communication, and thus has a larger

overhead.

Our current and future efforts regarding the GPU implementation are focused on two

aspects. First, we are planning to enhance the existing implementation by improving the

communication, possibly by overlapping computation and communication, and by optimiz-

ing the existing kernels. Second, we want to port more algorithms that are currently only

implemented for the CPU version, especially for spin-dependent calculations and ground-

state runs. This is a long-term effort and the ultimate goal is to have as many features and

algorithms as possible running efficiently on GPUs.

XVII. CONCLUSIONS

It has been almost 20 years since the development of Octopus started. During this period

the code has matured and expanded to cover an ever-growing range of methods, theories,

applications, and systems. It has also continuously adapted to the available computer archi-

tectures and computing paradigms, allowing researchers to tackle increasingly challenging

problems in electronic structure theory.

Although many of the code capabilities have been routinely used by many groups around

the world, mainly to study electronic excited states properties and dynamics, which still

remain to a large extent the core of Octopus, we believe the main reason for the code’s success

lies elsewhere. From the beginning, the code has been designed to take full advantage of the

flexibility and versatility offered by the use of real-space grids and provide developers with a

framework to easily implement and test new ideas and methods that can be later on adopted

by other codes (as it has already been the case with quite a few features previously developed

within Octopus). This is demonstrated by the number of new theoretical methodologies and

frameworks presented in this paper to deal with non-equilibrium phenomena of complex

systems and to address the combined dynamics of electrons, phonons, and photons that go

beyond what can be found in other electronic structure codes. This includes several novel

approaches to treat the coupling of the electronic systems to the photons, like the coupled

Maxwell-Kohn-Sham equations, the OEP approach to the electron-photon coupling, and the

dressed RDMFT. Other examples include the description of magnons in real-time and the
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orbital magneto-optical response in solids and molecules using the Sternheimer approach.

In the case of magnons, supercells need to be employed, and the scalability of real-space

grid methods make this approach very promising for future applications in more complex

correlated magnetic systems. We expect that many of these methods and approaches will

be integrated into other electronic-structure codes and will become standard tools in the

near future.

The code flexibility is also demonstrated by the variety of systems that it can efficiently

treat, as the applications showcased in this paper include molecules, nanoparticles, model

systems, solvents, solids, monolayers, etc. Particularly noteworthy is the efficient treatment

of periodic systems, which traditionally have been described using plane-wave basis-sets,

and this has been achieved without loss of accuracy, as shown by our results for the Delta-

factor test. In the end, it is our hope that combining this flexibility with a growing range

of methodologies will provide researchers with the necessary tools to study new challenging

phenomena, like novel correlated materials, out of equilibrium physics, or coupled electron-

boson systems.

We have also discussed recent improvements in performance and scalability, with par-

ticular emphasis on the GPU support. These developments are crucial in the view of the

new challenges that electronic-structure applications are facing with the upcoming exaflop

supercomputers.

Finally, several other implementations are in the pipeline, such as Floquet and cavity QED

materials engineering, multitrajectory methods to deal with the nonadiabatic electron-ion

dynamics, treatement of open quantum dissipative systems, spectroscopies with entangled

photons, etc. All of these should be available to the users in the next years, so we invite you

to stay tuned to the Octopus webpage at https://octopus-code.org/.
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“Density-functional theory and NiO photoemission spectra,” Physical Review B 48, 16929

(1993).

52A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, “Density-functional theory and strong

interactions: Orbital ordering in Mott-Hubbard insulators,” Physical Review B 52, R5467

(1995).

53V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, “First-principles calculations of

the electronic structure and spectra of strongly correlated systems: the lda+ u method,”

Journal of Physics: Condensed Matter 9, 767 (1997).

54K. Haule, “Exact double counting in combining the dynamical mean field theory and the

density functional theory,” Phys. Rev. Lett. 115, 196403 (2015).

55A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, “Correlated metals and

the LDA + u method,” Phys. Rev. B 67, 153106 (2003).

56S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton,

“Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u

study,” Phys. Rev. B 57, 1505–1509 (1998).
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