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Abstract

Motivation: DNA methylation signatures in rheumatoid arthritis (RA) have been identified in fibro-

blast-like synoviocytes (FLS) with Illumina HumanMethylation450 array. Since <2% of CpG sites

are covered by the Illumina 450K array and whole genome bisulfite sequencing is still too expen-

sive for many samples, computationally predicting DNA methylation levels based on 450K data

would be valuable to discover more RA-related genes.

Results: We developed a computational model that is trained on 14 tissues with both whole gen-

ome bisulfite sequencing and 450K array data. This model integrates information derived from the

similarity of local methylation pattern between tissues, the methylation information of flanking

CpG sites and the methylation tendency of flanking DNA sequences. The predicted and measured

methylation values were highly correlated with a Pearson correlation coefficient of 0.9 in leave-

one-tissue-out cross-validations. Importantly, the majority (76%) of the top 10% differentially

methylated loci among the 14 tissues was correctly detected using the predicted methylation val-

ues. Applying this model to 450K data of RA, osteoarthritis and normal FLS, we successfully ex-

panded the coverage of CpG sites 18.5-fold and accounts for about 30% of all the CpGs in the

human genome. By integrative omics study, we identified genes and pathways tightly related to

RA pathogenesis, among which 12 genes were supported by triple evidences, including 6 genes al-

ready known to perform specific roles in RA and 6 genes as new potential therapeutic targets.

Availability and implementation: The source code, required data for prediction, and demo data for

test are freely available at: http://wanglab.ucsd.edu/star/LR450K/.

Contact: wei-wang@ucsd.edu or gfirestein@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease marked by syn-

ovial hyperplasia and invasion into cartilage and bone (Firestein,

2003). Fibroblast-like synoviocytes (FLS), which form the inner lin-

ing of the synovium, display an aggressive phenotype in RA that per-

sists in long-term culture. The mechanism that contributes to

functional alterations in RA FLS is only partially understood.
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Recent studies have applied Illumina HumanMethylation450

BeadChip array to reveal distinct DNA methylation patterns that

distinguish RA samples from osteoarthritis (OA) and normal (NL)

FLS. Integrative analysis on the differentially methylated loci

(DML), the associated genes and relevant pathways has provided in-

sightful clues for identification of therapeutic targets (Ai et al.,

2015; Ekwall et al., 2015; Nakano et al., 2013; Whitaker et al.,

2013, 2015). A significant limitation of the Illumina 450K array is

that it only covers less than 2% of CpG loci in the entire human gen-

ome. Expanding the coverage of CpG loci in defining the DNA

methylation pattern of RA is becoming an urgent need.

Previously, computational methods have been developed to predict

methylation values based on DNA sequences, histone modifications or

integration of DNA methylation data from different techniques.

Methods using only DNA sequence features can learn the methylation

tendency for a CpG site based on its surrounding sequence compos-

itions in a specific tissue (Bock et al., 2006; Fang et al., 2006; Feltus

et al., 2003; Feng et al., 2014), but the trained model cannot be trans-

ferred to predict methylation levels in different tissues because the in-

put sequence features remain the same and cell-type specific

methylation obviously vary from one cell type to another. Histone

modification features can reflect cell specificity and incorporating his-

tone modifications allows prediction of cell-specific DNA methylation

patterns (Bock et al., 2009; Fan et al., 2008; Zheng et al., 2013).

Using these models require histone modification data to be available

in the cell type of interest, which is not always the case. Recently com-

putational methods were developed to infer DNA methylation levels

in the entire genome using MeDIP-seq and MRE-seq data (Stevens,

et al., 2013). Since neither histone modification data nor MeDIP-seq/

MRE-seq data are available for RA, a new computational method to

expand the coverage of Illumina 450K array is no doubt valuable to

further refine the DNA methylation signature of RA.

In this study, we developed a prediction model integrating cell-

type specific 450K array data and common DNA-sequence features.

The model was trained on 14 cell types/tissues that have both 450K

array and whole genome bisulfite sequencing (WGBS) data as local

DNA methylation patterns are similar between similar tissues (Byun

et al., 2009; Fan and Zhang, 2009), and the methylation status of a

CpG in one tissue is correlated with or affected by its flanking CpG

sites and sequence compositions (Lister et al., 2009; Stadler et al.,

2011). The model aims to capture such local similarity of DNA

methylation patterns across cell types/tissues. We performed cross

validations to confirm the success of this method, with an average

prediction correlation coefficient around 0.9, accuracy over 0.9, and

AUC close to 0.9. Particularly, 70–80% of differential methylation

loci were correctly retrieved using the predicted methylation levels.

We previously used 450K array data to identify a characteristic

DNA methylation pattern in RA FLS, which are pathogenic cells that

form the lining of the joint (Firestein, 2003; Whitaker et al., 2013,

2015). These data implicated genes and pathways in the pathogenesis

of RA, especially related to immunity, cell adhesion and matrix regu-

lation. Applying this model to the original 28 FLS 450K array data,

we expanded the CpG coverage to 8 555 846 sites, which is over 18-

fold greater than the number of CpG sites covered by 450K array.

Using the predicted methylation sites, we found 3874 genes differen-

tially methylated between RA and OA/NL (referred as differentially

methylated genes, DMGs). Combing these DMGs, genes differentially

expressed between RA and OA/NL (DEGs), and RA-associated genes

from Genome-Wide Association Study (GWAS) studies, we found 11

enriched KEGG pathways. Most of these pathways are related to im-

mune system and expand upon with those found by 450K array data

only. Twelve genes were supported by three-way evidences of DML,

DMG and GWAS, among which half are related to RA such as HLA-

DQA1, LBH and ELMO1 (Castro et al., 2001; Ekwall et al., 2015;

Whitaker et al., 2015).

2 Methods and results

2.1 Prediction model
We proposed the following strategy to predict the methylation levels

of CpGs outside the Illumina 450K covered sites. This model is

based on the following assumptions:

1) The methylation level of a CpG site in two cell types or tissues

is similar if their flanking methylation patterns are similar (local

methylation pattern);

2) The methylation level of a CpG site is related to its adjacent

upstream and downstream CpG sites in the same cell type or tissue

(neighbor CpG methylation levels);

3) The methylation level of a CpG site is related to its flanking

DNA sequence composition.

Let variables x1, x2 and x3 represent local methylation pattern,

neighbor CpG methylation levels and methylation information

derived from flanking DNA sequence composition, respectively. We

constructed a logistic regression model b ¼ f ðx1; x2;x3Þ to predict

the methylation values of a given CpG site (Fig. 1).

In Figure 1A, methylation patterns of tissue 1 to tissue n were

measured by both WGBS and 450K array. In order to get the methy-

lation value of the CpG locus l not covered by 450K array, we com-

pared its local 450K methylation pattern of region Rl with the n

tissues, and selected the WGBS methylation value of locus l from the

tissue which has the most similar local methylation pattern. The local

methylation pattern of region Rl was represented by the 450K methy-

lation values of the closest 10 CpG loci, 5 upstream and downstream

in the genome. The similarity was measured by the Pearson correl-

ation coefficient between the local methylation patterns of different

tissues. As the methylation level of locus l would be weakly correlated

with CpG loci far away from it, we only considered the locus l within

5 kbp of a CpG site covered by 450K array.

3'5'

Covered by 450K Array

ATCCCAATT..…GGTGCAGCCGACGCAA..…CCTATCGCGT

3'5'

Covered by 450K Array

3'5'

Detected  by both 450K and 
WGBS

Tissue 1

3'5'

……

Tissue n

Query tissue

Most Similar Tissue based on 
methylation pattern of local R1 region

Covered by 450K Array

R1

R1

R1

A

B

C

x1 = f (methylation value from most similar tissue)

β = f (x1, x2, x3)
x2 = f (M1, M2)

x3 = f (sequence)

Fig. 1. The work flow of the computational expansion strategy (Color version

of this figure is available at Bioinformatics online.)
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In Figure 1B, x2 of CpG locus l is the weighted450K methylation

values of its closest upstream and downstream CpGs. The normal-

ized weights of upstream and downstream CpG are inversely pro-

portional to its genomic distance to CpG locus l. To model the

relationship between DNA methylation and sequence composition,

we trained a sub-model before merging the three variables into

the final model to avoid the large number of sequence feature

dominating the final model (Fig. 1C). We extracted 362 features

including NpN ratio, NpN content (N represents any nucleotide,

i.e. A/G/T/C) and 1- to 4-mers occurrence frequencies (Fig. 1C), where

NpN content¼ (#N þ #N)/len(Sequence), and NpN ratio¼ (#NpN �
len(Sequence)))/(#N�#N). Then we performed feature selection using

random forest. For each chromosome of each tissue, 3-fold cross-

validation was repeated 10 times, and we recorded the 50 most fre-

quently selected sequence features. Support vector regression was used

to construct the sub model to obtain the methylation information x3 as

it showed better prediction results based on DNA-sequence features

(Bock et al., 2006; Fan et al., 2008; Fang et al., 2006).

2.2 The model showed superior performance in

leave-one-tissue-out cross validations
We retrieved 14 tissues or cell lines that have both WGBS and 450K

array data, including adipose, adrenal, aorta, esophagus, H1, H9,

hippocampus, intestine, liver, lung, muscle, pancreas, spleen, thy-

mus, generated by the NIH epigenomics roadmap project (Bernstein

et al., 2010). The methylation proportion values of WGBS data and

beta values of 450K array were downloaded from the GEO

Database directly. Both WGBS data and 450K array data were

quantile normalized. The performance of our strategy was assessed

by leave-one-tissue-out cross validation on all the 22 autosomes.

The evaluation metrics included Pearson correlation coefficient,

Concordance (the percent of CpGs with a methylation proportion

difference <0.25 (Harris et al., 2010), Sensitivity (SE), Specificity

(SP), Accuracy (ACC), Matthew’s correlation coefficient (MCC)

and AUC (Area Under ROC Curve). For calculating SE, SP, ACC

and MCC, we defined the methylation status asþ1 if the methyla-

tion value is larger than 0.5, and the methylation status as �1

otherwise.

In leave-one-tissue-out cross validation, we trained the predic-

tion model on the remaining 13 tissues, and evaluated the prediction

performance on the left-out tissue. Figure 2A shows that the Pearson

correlation coefficients between the predicted and measured values

were 0.9025 6 0.0093, indicating that the predicted methylation

values are overall similar to the WGBS measurements. The scatter

plots between predicted and measured WGBS values of the 22

chromosomes (Supplementary Figure S1 in Supplementary

Materials) showed that the majority of the dots distributed along

the diagonal line. Consistently, high concordance (0.9103 6

0.0040), SE (0.9684 6 0.0039), SP (0.8260 6 0.0224), ACC

(0.9318 6 0.0045), MCC (0.8160 6 0.0167) and AUC (0.8565 6

0.124) also demonstrated a satisfactory performance of our pro-

posed strategy.

The most challenging but also the most meaningful prediction is

to correctly identify DMLs across tissues. To define DMLs, we cal-

culated the methylation value variation of each CpG site across the

14 tissues. CpG sites were sorted according to their methylation

variation. The CpG locus with larger variations would be regarded

to be more differentially methylated. We called DMLs using both

measured WGBS and predicted DNA methylation values. The over-

lapping of measured and predicted DMLs among the 14 tissues are

shown in Figure 2B. In the most distinguished 5, 10 and 15% of

DMLs called by the WGBS data, 68.38 6 0.93%, 75.51 6 0.95%

and 78.91 6 0.92% were correctly identified by DML called by the

predicted DNA methylation values, respectively. When focusing on

the CpG loci corresponding to the top 10% DMLs, we got the aver-

age prediction ACCof 0.7033 6 0.0073 and AUC of 0.6856 6

0.0092, respectively (Fig. 2C).

We also investigated whether one tissue was always selected for

predicting another tissue. Figure 2D shows that the most predictive

tissues/cell line for the query tissue/cell was not dominant by a single

tissue/cell line, except H1 and H9. More than 75% of CpG loci of

H1 and H9 shared the most similar local methylation patterns,

which is not surprising because both H1 and H9 are human embry-

onic stem cell lines. The selected percentages of other tissues are

relatively evenly distributed, which indicates no biased selection of

predictive WGBS data in the model based on tissue/cell similarity.

2.3 Predicted RA methylation patterns
Illumina 450K array data on 11 RA, 11 OA and 6 NL samples were

generated in our previous studies (Whitaker et al., 2013). Applying

the prediction model to FLS samples, we predicted methylation val-

ues for the CpG sites within 5 kbp of any 450K CpG. The over-

lapped CpG sites in the 14 tissues/cell lines and 28 FLS samples after
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Fig. 2. Evaluating the model performance using leave-one-tissue-out cross

validations. (A) Pearson correlation, Concordance, SE, SP, ACC, MCC and

AUC on 22 autosomal chromosomes.Prediction performance of detecting

DML are in (b) and (c). (B) The overlap between the DMLs called based on

WGBS and predicted DNA methylation data in the 14 tissues. (C) The SE, SP,

ACC and AUC of the prediction model for the top 10% DMLs called by the

WGBS data. (D) The percentage of the most predictive tissue
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array quality filtering were 462 105. The number of predicted CpG

sites was 8 555 846, which is 18.5 times of the sites covered by

450K array and about 30% of all the CpGs in the human genome.

The expanded number of CpGs in each of the 22 autosomes is

shown in Figure 3A. Consistent with the cross validations, the pre-

dictive tissues for each RA/OA/NL tissue based on the local methy-

lation pattern were wide spread over the 14 tissues (Fig. 3B), which

further confirmed that the selection was not biased. For the valid-

ation purpose, we also predicted the methylation levels of CpGs cov-

ered in 450K array using our model and then calculated the

correlations between the predicted and measured values (Fig. 3C).

All the Pearson correlation coefficients were around 0.95, confirm-

ing the success of the prediction model.

2.4 Identification of RA-related genes and pathways
We collected the original 450K data and the expanded CpG methy-

lation values from our predictions, based on which we aimed to

identify the DMGs between 11 RA, 11 OA and 6 NL samples.

Welch’s t-test was used to calculate the P-values of CpGs located in

promoter regions [(TSS-2500 bp, TSSþ500 bp)] by comparing RA

versus OA, RA versus NL and RA versus (OAþNL). For each CpG

locus, the lowest P-value in the three pairs of comparison tests was

selected. For each promoter, the Fisher’s combined test was used to

evaluate whether a gene is differentially methylated. Then P-values

were adjusted to q-values. 3874 genes with q-value < 0.05 and

mean difference of DNA methylation>0.1 were selected as DMGs.

Next, we performed integration analysis from the expanded

DNA methylation data, gene expression data and GWAS studies to

identify gens whose relevance to RA are supported by multiple lines

of evidences. For Differentially Expressed Genes (DEGs) in RA, we

downloaded the microarray data of 9 RA, 11 OA and 11 NL FLS

samples from GEO database (Del Rey et al., 2012) (GEO ID

GSE29746). Using the same processing method in our previous

work (Whitaker et al., 2015), we took genes>2-fold change in ex-

pression and P-value< 0.05(Welch’s t-test), and found 2947 DEGs.

Furthermore, we collected GWAS genes from reference Hindorff

et al. (2009) and a recent meta-analysis of over 100 000 cases and

controls (Okada et al., 2014).

There were 484 genes supported by two evidences (Fig. 4A). We

first analyzed the GO terms of these 484 genes. Totally, there were 8

enriched GO Molecular Function (MF) terms, 25 cellular compo-

nent (CC) terms and 132 biological process (BP) terms. Some en-

riched GO termed related to RA are listed in Table 1 and others are

given in the Supplementary Materials. We next analyzed the enrich-

ment of KEGG pathways (Kanehisa and Goto, 2000) in these genes.

The enrichment P-value was calculated with hypergeometric distri-

bution and then adjusted to q-values. Pathways with q-value<0.05

were considered to as significantly enriched. This way we found 11

enriched pathways (Fig. 4B). Among them, five are related to human
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Fig. 3. Prediction results on the RA data. (A) The expanded CpG sites of the

RA data on the 22 automal chromosomes. (B) The percentage of predictive

tissue for each FLS samples. (C) The correlations between predicted methyla-

tion values and detected methylation values with 450K array (Color version of

this figure is available at Bioinformatics online.)
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immune diseases: Graft-versus-host disease, Allograft rejection,

Autoimmune thyroid disease, Asthma, RA, which covers 62.5% of

all the 8 annotated immune disease related pathwaysin human; two

of them are immune system pathways: Intestinal immune network

for IgA production, Antigen processing and presentation; two are

signaling pathways: cell adhesion molecules, Cytokine-cytokine re-

ceptor interaction. These genes and pathways are highly relevant to

the pathogenesis of RA, which are consistent with our previous re-

sults based on only 450K array data (Whitaker et al., 2015). Despite

increasing the number of CpGs by 18-fold, differentially methylated

pathways remained highly relevant to RA pathogenesis. Biologic

validation of the newly identified genes will be important, but the

fact that they are consistent with previously identified RA-associated

genes suggests that the results are not random.

There were 12 genes supported by all three evidences, including

IL23R, LBH, CASP8, HLA-DQA1, OLIG3, HLA-G, IRF5,

ELMO1, TRHDE, SLCO1C1, PLD4, AIRE. Five of them over-

lapped with the seven triple-evidenced genes identified from 450K

array data only analysis. More importantly, six of them have re-

ported association with RA. HLA-DQA1 has known roles in RA

(Castro et al., 2001), LBH is a regulator of cell cycle in RA FLS and

also a potential RA therapeutic target (Ekwall et al., 2015) and

ELMO1 contributes to the pathogenesis of RA as a regulator of FLS

migration and invasion (Whitaker et al., 2015); The AIRE gene was

identified as a genetic risk factor for RA in a GWAS study(Garcia-

Lozano et al., 2013; Shao et al., 2014; Terao et al., 2011); IRF5 con-

fers susceptibility to RA and influences its erosive phenotype

(Dawidowicz et al., 2011); GWAS replication study confirmed the

association of PDE3A–SLCO1C1 with anti-TNF therapy response

in RA in reference Acosta-Colman et al. (2013).

Among the remaining six genes, HLA-G was reported to be a

candidate biomarker for prognosis and disease activity in early RA

patients (Rizzo et al., 2013); IL23R, which plays a role in Th17 cell

differentiation, was a controversial gene: one group found associ-

ation of two IL23R SNPs with RA in Hungarian population (Farago

et al., 2008; Szabo et al., 2013), while in a Spanish study no associ-

ation was detected (Orozco et al., 2007); OLIG3 was reported for

association with susceptibility and severity in an inception cohort in

Morgan et al. (2010), while a later study found it was not associated

with the severity of joint destruction in RA (Knevel et al., 2012); For

TRHDE, there was only one work reporting that it might be a RA

susceptibility genes based on Korean RA samples (Freudenberg

et al., 2011); For PLD4, there was no report showing its direct rela-

tion with RA.

To make sure that these results were not dominated by the 450K

array data, we repeated the above analyses using only the expanded

CpG loci not covered by 450K array. We called DMGs identified

this way as eDMGs (Fig. 4C and D). There were 391 genes sup-

ported by two evidences and the enriched pathways are shown in

Figure 4D. The 11 enriched pathways are the same as those analyzed

with CpG loci including 450K array data. There were 11 genes sup-

ported by all three evidences including LBH, CASP8, HLA-DQA1,

OLIG3, HLA-G, IRF5, ELMO1, TRHDE, SLCO1C1, PLD4, AIRE

(only IL23R was missed and its role in RA is controversial). These

results suggested that the expanded methylation data alone is in-

formative of RA pathogenesis.

Furthermore, we investigated the DMGs only identified by the ex-

panded data but not by 450K array data. We repeated the above ana-

lyses using eDMGs exclusively identified from the predicted data.

There were 275 genes supported by two evidences (Fig. 4E). The 12

enriched pathways are shown in Figure 4F, among which 11 are the

same as those found in the above two analyses and the additional

Jak-STAT signaling pathway is known to be important for RA.

3 Discussion

Illumina 450K BeadChip array is a useful way to investigate the dif-

ferent DNA methylation patterns in RA and many diseases. In fact,

tens of thousands of Illumina 450K array data have been generated

on precious disease samples. Despite the invaluable insights gener-

ated by these 450K array data, the small coverage of the CpG sites

limited the scope of the investigated DNA methylation patterns in

RA and other diseases. Our computational strategy to predict DNA

methylation based on 450K data alone opens a new avenue of repro-

cessing the existing data that were previously generated by 450K

array to uncover new disease-related genes before these samples are

re-analyzed using WGBS. When applying to a new sample, our

model only requires input of 450K array data and avoids the need of

histone modification or MeDIP-seq/MRE-seq data that are not al-

ways available, which significantly expands its applicability.

Illumina recently released a new Infinium MethylationEPIC

Array which is to replace the current methylation450K array

(referred to as the 850K array), which covers about 3% of CpGs of

the human genome. It is straightforward to apply our expanding al-

gorithm to significantly expand the coverage of the 850K array once

enough 850K array data are available.

Our method significantly expanded the coverage of CpG sites,

which is 18.5 times of the CpGs covered by 450K array and ac-

counts for about 30% of all the CpGs in the human genome. The

current model is trained on 14 tissues that have both WGBS and

450K array data. The performance of the model is expected to be

further improved when more tissues/cells are included in training

the model. Importantly, our model can successfully predict DML

and its performance was confirmed by both leave-one-tissue-out

cross validations and identification of RA-related genes/pathways.

The 12 triple-evidenced genes with predicted DNA methylation

data, a significant increase from 7 based on 450K array data, include

6 genes with reported functions in RA and 6 genes as potential

therapeutic targets. We expect the similar applications to other dis-

eases would greatly facilitate discovery of new drug targets and

understanding of disease mechanisms.

Table 1. Selected enriched GO terms related to RA

GO terms GO type Enrichment q-value

MHC class II protein complex CC >5 9.35E-03

Integral component of lumenal

side of endoplasmic reticulum

membrane

CC >5 5.35E-03

Positive regulation of T cell

activation

BP 4.81 5.03E-05

Inflammatory response BP 2.76 2.44E-02

Immune response-regulating

signaling pathway

BP 2.75 5.97E-04

Cytokine-mediated signaling

pathway

BP 2.72 9.25E-03

Response to cytokine BP 2.42 3.02E-03

Immune response BP 2.23 1.68E-06

Immune system process BP 2.06 1.42E-08

Signal transduction BP 1.63 8.63E-09

Cytokine receptor binding MF 3.37 8.70E-03
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