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Abstract

While named entity recognition (NER) from speech has been around as long as NER from written

text has, the accuracy of NER from speech has generally been much lower than that of NER from

text. The rise in popularity of spoken dialog systems such as Siri or Alexa highlights the need

for more accurate NER from speech because NER is a core component for understanding what

users said in dialogs. Deployed spoken dialog systems receive user input in the form of automatic

speech recognition (ASR) transcripts, and simply applying NER model trained on written text to

ASR transcripts often leads to low accuracy because compared to written text, ASR transcripts

lack important cues such as punctuation and capitalization. Besides, errors in ASR transcripts

also make NER from speech challenging. We propose two models that exploit dialog context

and speech pattern clues to extract named entities more accurately from open-domain dialogs

in spoken dialog systems. Our results show the benefit of modeling dialog context and speech

patterns in two settings: a standard setting with random partition of data and a more realistic but

also more difficult setting where many named entities encountered during deployment are unseen

during training.
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1 Introduction

1.1 Background

Named entity recognition (NER) is the task of extracting proper names of people, locations, and

so on from text or speech (Grishman and Sundheim, 1996). There has been a lot of work on NER

from written text with many systems achieving impressive results (Devlin et al., 2019; Akbik,

Bergmann, and Vollgraf, 2019). Although, NER from speech has been around for the same time as

NER from text (starting with work by Kubala et al. (1998)), accuracy of NER from speech still lags

behind the accuracy of NER from text. The rise in popularity of spoken dialog systems such as Siri

or Alexa highlights the need for more accurate NER from speech because NER is a core component

for understanding what users said in dialogs. In spoken dialog systems, humans interact with

the systems using natural speech to accomplish certain tasks (task-oriented dialog) or just to be

entertained (chit-chat or open-domain dialog) (Jurafsky and Martin, 2009). These systems require

speech transcripts as input in real-time and the transcripts are obtained using automatic speech

recognition (ASR) components (Turmo et al., 2009).

Much previous work on NER from speech data, such as broadcast news, applied text-based

NER systems to the output of an ASR system (Palmer and Ostendorf, 2001). However, NER perfor-

mance degraded significantly (20 points drop in F1 score) when applying a NER trained on written

data to transcribed speech (Kubala et al., 1998). This could be because applying text-based NER

system to ASR output ignores the differences in styles and conventions in written and spoken lan-

guage (Palmer and Ostendorf, 2001). For example, spoken utterances in spontaneous speech are

usually much shorter than written prose so the utterances could be ambiguous when taken out of

1



context. In addition, speech also contains disfluencies, repetitions, restarts and corrections (Turmo

et al., 2009). Besides, text-based NER system may depend on cues such as sentence punctuation

and capitalization which are not present in ASR transcripts (Shriberg et al., 2000). Furthermore,

ASR is not error-free and errors in ASR transcripts lead to cascading errors in NER (Turmo et al.,

2009). Due to factors such as greater variation in speakers, greater variation in content because

of the open-ended nature of open-domain dialogs, and less professional recording environment,

ASR transcripts from spoken dialog systems often contain more errors than that from broadcast

news, making NER in dialogs a much more challenging task.

1.2 Related Work

Recent NER models perform well on clean text datasets such as CoNLL (Tjong Kim Sang and De

Meulder, 2003) and OntoNotes (Hovy et al., 2006), but less well on noisy data (Mayhew, Gupta,

and Roth, 2020) such as the WNUT dataset (Derczynski et al., 2017). In term of F1 score, the

current state-of-the-art model (Akbik, Bergmann, and Vollgraf, 2019) achieves 93% on the CoNLL

dataset but only 49% on the WNUT dataset. The overreliance of NER models on the convention of

capitalizing named entities (Derczynski et al., 2017) partly explains why they perform poorly on

text where capitalization is absent or noisy. In spoken dialog systems, inputs to NER models are

ASR transcripts which not only lack capitalization and punctuation but also contain transcription

errors (Sundheim, 1995; Lenzi, Speranza, and Sprugnoli, 2012). Although, joint decoding of ASR

transcript and NER output (Caubrière et al., 2020) partly lessens the impact of ASR errors on NER,

detecting named entities in ASR transcripts remains a challenging problem (Galibert et al., 2014).

Prior work on NER from ASR transcripts focus on reducing ASR errors (Palmer and Osten-

dorf, 2001), exploiting multiple ASR hypotheses (Horlock and King, 2003; Béchet et al., 2004), or

exploiting additional information such as speech pattern features (Katerenchuk and Rosenberg,

2014). Examples of speech pattern features are ASR confidence (Sudoh, Tsukada, and Isozaki,

2006), pauses, and word durations (Hakkani-Tür et al., 1999). Recently, Cervantes and Ward (2020)
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used solely prosidic speech features to spot location mentions. Our work is similar to Katerenchuk

and Rosenberg (2014) in that we also utilize speech pattern features. However, while Katerenchuk

and Rosenberg (2014) focused on broadcast news speech, our work focuses on spoken dialogs.

Thus, besides speech pattern features, our models also exploit dialog context for more accurate

NER. In addition, Katerenchuk and Rosenberg (2014) used a separate classifier trained on data

from a small set of speakers to derive speech pattern features, so the predicted features may not

generalize to more diverse populations. In contrast, our approach is more integrated since the

speech pattern features encoder is part of the proposed models thereby encouraging the models

to learn features that are more generalizable.

1.3 Contribution

We propose two models that exploit dialog context and speech patterns which are available in

open-domain dialogs from spoken dialog systems to achieve more accurate NER. Our results

show the benefit of modeling dialog context and speech patterns in two settings: a standard setting

with random partition of data and a more realistic but also more difficult setting where there is

little overlap between named entities during training and testing.
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2 Methods

2.1 Motivation

Dialog utterances are usually short and ambiguous when taken out of context, therefore identi-

fying named entities in dialog utterances can be challenging. Figure 2.1 shows two challenging

cases where dialog context and speech patterns can aid NER. Although users’ utterances are simi-

FIGURE 2.1: Dialog context and speech patterns help distinguishing “her” in (a) is
a mentioned pronoun and “her” in (b) is a named entity (the 2013 sci-fi movie Her).

Examples are not actual interaction data.

lar, the phrase “her” is a named entity in the second case but not in the first case. Without knowing

what the bot said (i.e. dialog context), the best guess is that “her” refers to a person and therefore

not a named entity. However, when “i like her” is a response to the question “What is your favorite

sci-fi movie?”, “her” is a named entity (the 2013 sci-fi movie Her). Although users usually mention

their favorite movies when asked, they can also change topic, making contextual NER non-trivial.
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Thus, exploiting dialog context could help resolving named entities in users’ utterances in more

difficult cases.

Besides context, speech pattern features, which include prosodic and non-prosodic features (Shriberg

et al., 2000), might also help identifying named entities. In particular, pauses’ duration, words’ du-

ration, and tokens’ ASR confidence are some readily available features that may be useful for NER.

Pauses might occur when speakers were choosing their words (Goldman-Eisler, 1958), so pauses

might indicate subsequent named entities in utterances. Figure 2.1b shows the user pausing prior

to uttering the named entity “her” as the user might have been considering different named en-

tities. In contrast, in Figure 2.1a, there was no pause probably because the user was saying a set

phrase so there was no difficult choice involved. Furthermore, pauses could signal boundaries

(punctuation) between grammatical structures within utterances (Reich, 1980; Chen, 1999). Since

punctuation is an important feature in NER (Nadeau and Sekine, 2007) and punctuation is missing

in ASR transcript, pauses could potentially replace the missing punctuation. Exaggerated varia-

tion in word durations and pauses could be present when pronouncing non-native names (Fitt,

1995; Rangarajan and Narayanan, 2006). Tokens’ confidence might also predict the presence of

named entities since named entities appear less often than other words in ASR training data. To-

kens’ confidence have been used previously in NER task (Palmer and Ostendorf, 2001; Sudoh,

Tsukada, and Isozaki, 2006).

2.2 Model

We propose two NER models for dialog which take a dialog exchange as input. A dialog exchange

consists of a bot’s utterance followed by an user’s utterance, and the models must label named

entities in the user’s utterance, taking into account the context (the bot’s utterance). The user’s

utterance includes lexical features (i.e. word tokens or word pieces) and speech pattern features

which are pauses’ duration, words’ duration, and tokens’ ASR confidence. Both models have three

components: (1) a context encoder, (2) a speech pattern encoder, and (3) a sequence tagger. The
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context encoder and speech pattern encoder are the same in both models and the encoders pro-

vide additional clues for the sequence tagger to accurately label named entities. The first model’s

sequence tagger is a widely used model for NER from written text based on BiLSTM-CRF (Ma and

Hovy, 2016; Lample et al., 2016), which combines bidirectional LSTM (Graves and Schmidhuber,

2005) with conditional random field (Lafferty, McCallum, and Pereira, 2001). The second model’s

sequence tagger is based on BERT (Devlin et al., 2019), which achieved state-of-the-art result for

the CoNLL dataset.

FIGURE 2.2: Models’ structure. (a) Aggregate context using bag of embeddings. (b)
Construct lexical representations of tokens in user’s utterance. (c) Construct rep-
resentations from speech pattern features. (d) Combine context, lexical, and speech
pattern representations, and then output the tokens’ tags. Word E: word embedding,

Ch. E: character embedding, SP: speech pattern

Figure 2.2 shows the models’ structure. The context encoder is a bag-of-embedding model

(Figure 2.2a), which encodes the bot’s utterance and outputs a single context vector. Specifically,

the tokens’ embeddings (concatenation of word and character embeddings) in the bot’s utterance
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are fed through a max-pooling layer to produce the context vector. The context vector and the lexi-

cal vectors (Figure 2.2b) are combined as models’ input using element-wise addition (Figure 2.2d).

The speech pattern encoder is a BiLSTM (Figure 2.2c), which encodes speech pattern features as

vectors. These vectors are concatenated with the outputs from the last hidden layer of BiLSTM

or BERT. While BiLSTM uses a conditional random field to tag the tokens, BERT uses a fully-

connected layer instead (similar to (Devlin et al., 2019)).

Since BERT uses sub-word tokens, some words may be split into multiple tokens. For exam-

ple, “interstellar” is split into “inter” and “#stellar”. However, as the speech pattern features are

only available for individual words and not for word pieces, these features have to be split up

for multi-token words. In particular, the sub-word tokens have the same ASR confidence and

duration as the word’s ASR confidence and duration. Although the durations of the sub-word

tokens should be shorter than the word’s duration, it is not clear how to derive the correct du-

rations. For the pauses, the preceding pause value is assigned to the first sub-word token while

the succeeding pause value is assigned to the last sub-word token. Similar to (Devlin et al., 2019),

a fully-connected layer is used to predict the tags instead of using conditional random field, and

only the first sub-word token of the words are used to predict the tags.
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3 Experiments

3.1 Data

The data are from conversations between humans and the Gunrock chatbot (Liang et al., 2020),

which participated in the 2019 Amazon Alexa Prize. Conversations were collected during the

period from December 2019 to May 2020. Each data sample consists of one chatbot utterance and

the following human utterance (Figure 2.1). Chatbot utterances are in mixed-case while human

utterances are output from an ASR system and are in lower case.

Tokens Avg. Len.

Turns Bot User Bot User

Train 22,908 624,168 146,858 27.2 6.4

Standard Split

Dev 3,000 80,749 19,585 26.9 6.5
Test 3,000 81,668 19,279 27.2 6.4

Hard Split

Dev 3,000 81,585 19,984 27.1 6.6
Test 3,000 82,137 20,583 27.3 6.8

TABLE 3.1: Data statistics. The data were collected during the period from Decem-
ber 2019 to May 2020. The data are divided into two different splits (standard and
hard) with a shared training set. The hard split is used to test the robustness of the
proposed model while the standard split is common practice in machine learning.

The data are divided into two different splits: a standard split and a hard split, and the two

splits share the same training set (Table 3.1). While the training, development, and test set of the

standard split are formed by randomly partitioning the data, the development and test set of the
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Standard Split Hard Split

Dev 46.26% 14.45%
Test 46.75% 14.36%

TABLE 3.2: Number of unique named entities that are also in the training set (vocab-
ulary transfer)

hard split are created such that they have more named entities that are not seen in the training set

(i.e. little named entity overlap). Table 3.2 illustrates the difference in term of named entity over-

lap measured using vocabulary transfer rate (Palmer and Day, 1997). Vocabulary transfer is the

proportion of unique named entities appearing in both training and test set, and as expected, the

development and test sets of the hard split have much lower vocabulary transfer than that of the

standard split. Although standard split is a common practice in machine learning, deep learning

models can perform well on the standard split by exploiting the spurious patterns in the data (Jia

and Liang, 2017). Thus, the hard split is necessary for measuring how well the models can gen-

eralize, since NER models relying heavily on surface patterns will underperform when there are

a lot of unseen named entities (Augenstein, Derczynski, and Bontcheva, 2017). Furthermore, the

test set of the hard split more closely resembles the test data during deployment because the data

the models see during deployment usually differ from the data collected during training (little

overlap of named entities). Thus, the performance on the hard split is a more realistic reflection of

the models performance during deployment. A comparison between the size of the dataset used

in this paper and that of popular public NER datasets is shown in Table 3.3.

Although named entities are typically classified into three big types: Person, Location, and

Organization (Nadeau and Sekine, 2007), fine-grained typing may be more useful, especially for

question-answering and information retrieval (Fleischman, 2001). For example, Location can be

subdivided into City, State, and Country (Lee and Lee, 2005). Similarly, Person can be subdivided

into Politician and Entertainer (Fleischman and Hovy, 2002). In addition, special types may be used

to address systems’ specific needs, for example Film (Etzioni et al., 2005), Book title (Brin, 1998;

9



Train Dev Test

Number of Tokens

CoNLL 203,621 51,362 46,435
OntoNotes 1,088,503 147,724 152,728
WNUT 62,730 15,733 23,394

Standard split 146,858 19,585 19,279
Hard split 146,858 19,984 20,583

Number of Entities

CoNLL 23,499 5,942 5,648
OntoNotes 81,829 11,066 11,257
WNUT 1,975 836 1,079

Standard split 7,402 934 952
Hard split 7,402 1,254 1,391

TABLE 3.3: Comparing the dataset used in this paper against public NER datasets.

Witten et al., 1999), Brand (Bick, 2004), Protein (Shen et al., 2003; Tsuruoka and Tsujii, 2003; Set-

tles, 2004), Drug (Rindflesch et al., 1999), and Chemical (Narayanaswamy, Ravikumar, and Vijay-

Shanker, 2002).

Since the Gunrock chatbot needs to converse with users in different topics, fine-grained typing

is more useful for accurately retrieving information about named entities. Named entities in data

samples were manually labelled by Gunrock team members using 6 named entity types: Movie,

Book, Song, Person, Character, and Other. The BIO scheme was used for labeling the data. Figure 3.1

and Table 3.4 show the distribution of named entities by types and the average entity length by

types respectively. The Movie, Book, and Song types are for names of movies and TV shows, books,

and songs respectively. The Person type includes names of real people or musical groups (e.g. Tom

Hanks or Imagine Dragons). The Character type includes names of fictional people in movies or

stories (e.g. Anna and Elsa in the movie Frozen). The Other type is for the other named entities

(e.g. US or Siri) that do not belong to any of the previous 5 types. For labeling polysemous entities,

context (i.e. chatbot utterance) is taken into account to determine the correct type. For example,

for the human response “yes harry potter”, “harry potter” is a Character with regard to the question
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FIGURE 3.1: Entities by types, S: Standard, H: Hard

“Do you have a favorite character in the book?”. However, when the question is “Did you watch any

movie recently?”, “harry potter” is labeled as a Movie.

3.2 Implementation Details

The models are implemented using PyTorch (Paszke et al., 2019) and transformers (Wolf et al., 2020)

libraries. For BiLSTM-CRF models, word embeddings and character embeddings were concate-

nated to form the context input and lexical input. The size of word embeddings and character
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Type Movie Book Song
Average Length 2.3 3.0 2.7
Type Person Character Other
Average Length 2.0 1.3 1.6

TABLE 3.4: Average entity length (tokens) by entity types

embeddings are 300 and 100 respectively. Word embeddings were initialized using GloVe word

vectors from (Pennington, Socher, and Manning, 2014). For BERT models, lexical input only in-

cludes sub-word embeddings. The size of the context encoder’s word embedding and character

layer are 600 and 168 respectively (so that the concatenated size is 768, matching the dimension of

BERT). The parameters of the BERT model were initialized using the pre-trained uncased BERT

base model. The speech pattern encoder is a two-layer BiLSTM with the hidden state size of 256.

The dropout (Srivastava et al., 2014) rate of the speech pattern encoder was set at 0.3. The input

to the encoder are speech pattern features which include: token ASR confidence, token duration,

the pauses preceding and succeeding the token. Due to constraints in the Alexa data collection,

other acoustic/prosodic speech features are unavailable. The token duration is thresholded at 1.5

second which is the 99th percentile value. The preceding (succeeding) pause is a binary variable,

indicating whether there is a gap more than 30 milliseconds before (after) the token.

BiLSTM-CRF

Learning rate 3e-3, 1e-3, 3e-4, 1e-4, 3e-5
Dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Dimension 128, 256, 512
BiLSTM layers 1, 2, 3, 4
Weight decay 1e-7, 1e-6, 1e-5

BERT

Learning rate 1e-4, 6e-5, 3e-5, 1e-5
Weight decay 0.01

TABLE 3.5: Hyperparameter grids for random search

All models were trained for 100 epochs with the batch size of 128. BiLSTM-CRF models were

trained using Adam (Kingma and Ba, 2014), while BERT models were trained using AdamW (Loshchilov

12



FIGURE 3.2: Context is always beneficial while speech pattern features are more
beneficial in the hard split evaluation. Detailed results are in Table 3.6.

and Hutter, 2018). Linear learning rate schedule is used for training BERT whereby learning rate

peaks after 10% of the training steps and then decreases to 0. We find models’ hyperparameters

using random search (Bergstra and Bengio, 2012) in 80 trials (see Table 3.5).

3.3 Results

Following CoNLL evaluation method, the models are evaluated using F1 score computed using

complete spans of named entities. As shown in Figure 3.2, modeling context consistently leads to

significant gain in F1 score, regardless of the data split or the model structure. For the standard

split, the BiLSTM-CRF’s F1 improved from 62.8% to 70.8% while BERT’s F1 improved from 67.3%

to 72.4%. Similarly for the hard split, the BiLSTM-CRF’s F1 improved from 48.0% to 56.1% while

BERT’s F1 improved from 59.2% to 64.7%.

Adding speech pattern features did not lead to notable changes in F1 score when testing on the

standard split. BiLSTM-CRF’s F1 improved by 0.2% (62.8% to 63.0%) while BERT’s F1 improved

by 0.6% (67.3% to 67.9%) (see Table 3.6). However, when testing on the hard split, the gap between

13



Standard Split

Lx. Ct. SP P R F1

LSTM Y 59.8 66.1 62.8
LSTM Y Y 69.2 72.4 70.8
LSTM Y Y 58.3 68.6 63.0
LSTM Y Y Y 69.5 73.2 71.3

BERT Y 66.4 68.3 67.3
BERT Y Y 71.1 73.7 72.4
BERT Y Y 65.2 70.9 67.9
BERT Y Y Y 71.1 75.1 73.0

Hard Split

Lx. Ct. SP P R F1

LSTM Y 42.5 55.1 48.0
LSTM Y Y 51.3 62.0 56.1
LSTM Y Y 42.6 57.6 49.0
LSTM Y Y Y 51.8 65.6 57.9

BERT Y 56.0 62.8 59.2
BERT Y Y 62.9 66.7 64.7
BERT Y Y 55.6 65.3 60.1
BERT Y Y Y 62.5 69.0 65.6

TABLE 3.6: Context and speech pattern features improve NER performance. Lx.:
Lexical, Ct.: Context, SP: Speech pattern features

using and not using speech pattern features is more noticeable. BiLSTM-CRF’s F1 improved by

1.0% (48.0% to 49.0%) while BERT’s F1 improved by 0.9% (59.2% to 60.1%). This is perhaps un-

surprising since the lexical overlap (i.e. number of shared named entities) between the standard

split’s training and test set is quite high (see Table 3.2), so exploiting complementary features like

speech pattern may be less beneficial.

In all setups, combining speech pattern features with context resulted in the highest F1 scores.

Besides, BERT models outperformed BiLSTM-CRF models as the former were pre-trained on a

large amount of data while the latter were trained from scratch. Lastly, performance on the hard

split is still lower than that on the standard split, indicating room for improving the models’

robustness.
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Standard Split

Lx. Ct. SP P R F1

BERT 4F Y Y 65.2 70.9 67.9
BERT 3F Y Y 65.9 68.7 67.2
BERT 2F Y Y 66.0 70.2 68.0

BERT 4F Y Y Y 71.1 75.1 73.0
BERT 3F Y Y Y 71.7 76.2 73.9
BERT 2F Y Y Y 72.2 77.7 74.8

Hard Split

Lx. Ct. SP P R F1

BERT 4F Y Y 55.6 65.3 60.1
BERT 3F Y Y 56.8 62.9 59.7
BERT 2F Y Y 55.5 62.2 58.7

BERT 4F Y Y Y 62.5 69.0 65.6
BERT 3F Y Y Y 62.3 66.9 64.5
BERT 2F Y Y Y 60.6 67.1 63.7

TABLE 3.7: Speech pattern features ablation. 4F: all features, 3F: without ASR con-
fidence, 2F: without ASR confidence and token duration. Lx.: Lexical, Ct.: Context,

SP: Speech pattern features

3.4 Ablation

In order to determine the usefulness of different speech pattern features, we conducted ablation

study by removing the features one by one. In particular, starting with a model that uses all 4

features (denoted as 4F): namely token ASR confidence, token duration, the pauses preceding and

succeeding the token, we first remove the ASR confidence from the model input (denoted as 3F)

and then remove the token duration from the model input (denoted as 2F). We trained all the

models with ablated features from scratch with hyperparameter search similar to what was done

in Section 3.2.

For the hard split, the BERT 4F model did better than the BERT 3F model, showing that the ASR

confidence is probably useful. Low ASR confidence can indicate names which appear infrequently

(e.g. ASR: “herman hess”, ASR confidence [0.3, 0.1], actual name: “Hermann Hesse”). Similarly,

the BERT 3F model did better than the BERT 2F model, suggesting that token duration is also
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Standard Split

Lx. Ct. SP P R F1

LSTM Y Y Y 69.5 73.2 71.3
BERT† Y Y Y 62.9 70.6 66.5
BERT Y Y Y 71.1 75.1 73.0

Hard Split

Lx. Ct. SP P R F1

LSTM Y Y Y 51.8 65.6 57.9
BERT† Y Y Y 41.4 55.9 47.5
BERT Y Y Y 62.5 69.0 65.6

TABLE 3.8: Effect of pre-training. Lx.: Lexical, Ct.: Context, SP: Speech pattern, †:
trained from scratch

probably useful. Surprisingly, for the standard split BERT 2F outperformed BERT 4F, suggesting

that ASR confidence and token duration may be less useful when there is high lexical overlap.

Although, the pre-trained BERT model beat the BiLSTM-CRF model (Section 3.3), when the

BERT model is trained from scratch, it did worse than the BiLSTM-CRF model (Table 3.8). Evi-

dently, pre-training provided a massive boost in performance. Although, the NER performance of

BERT training from scratch could be improved via extensive hyperparameter search, BiLSTM-CRF

is a competitive model when pre-training is not viable.
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4 Discussion

4.1 Roles of context and speech patterns

Although unknown words may pose a challenge to NER systems, entities that have multiple types

are harder to deal with than unknown words (Bernier-Colborne and Langlais, 2020). Dialog con-

text may help resolving the type of an entity when the entity belongs to multiple types. Figure 4.1 1

shows that, without context, both BiLSTM-CRF and BERT predicted “lord of the rings” as Book (in-

correct) instead of Movie. Knowing dialog context also helps when named entities are common

phrases. Without context, BiLSTM-CRF missed the entity “the notebook”, while BERT misclassi-

fied it as Book.

FIGURE 4.1: Without context, both models either predicted the wrong entity type or
missed the named entity.

1Examples shown in this section are from internal user studies and are not in the training, development, or test sets.
Users have given consent for the release of these examples. Some parts have been anonymized to protect users’ privacy.
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In contrast, speech pattern features may help locating the named entities. Figure 4.2 shows

that NER models without speech pattern features might predict the wrong text spans as named

entities (e.g. “jonas brothers once” instead of “jonas brothers”). Interestingly, although the predicted

FIGURE 4.2: Speech pattern helps locating named entities. Without speech pat-
tern, models predicted the wrong entity spans (e.g. “jonas brothers once” and “with

mclovin”). SP: speech patterns

type is not correct, the type of “mclovin” predicted by BERT is more plausible than BiLSTM-CRF.

This might be because BERT gained some world knowledge after pre-training, and NER models

usually benefit from external sources of knowledge (Ratinov and Roth, 2009; Passos, Kumar, and

McCallum, 2014).

4.2 Towards robust NER in dialog system

Current ASR systems still perform poorly in domains that require special vocabulary and under

noisy conditions (Georgila et al., 2020). Unfamiliar words or recording noise may lead to ASR

errors that affect downstream tasks such as NER. Although continuously retraining the ASR and
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NER models can reduce these errors, such effort may be costly. Integrating features such as speech

pattern features, which are less affected by changing vocabulary and recording conditions, could

make NER models more robust and reduce the frequency of having to retrain the models.

Speech pattern features have been used for NER in spoken broadcast news although this did

not lead to improvement in performance (Hakkani-Tür et al., 1999). This could be because these

features might also encode other phenomena such as stressing that are not relevant for NER

task (Hakkani-Tür et al., 1999). In contrast to (Hakkani-Tür et al., 1999) where the features en-

coder and the NER tagging model were trained, we trained the models jointly so they are more

sensitive to cases when speech pattern features are indicative of named entities. Our proposed

models show consistent improvement over lexical-features-only baselines, especially when train-

ing and testing data are significantly different, demonstrating that it is possible to combine lexical

and speech pattern features to achieve more robust NER system.

4.3 Future work

We show that short context and minimal speech pattern features can improve NER performance.

Better performance might be achieved by modeling longer context and more features (e.g. prosodies,

parts of speech, punctuation) from a state-of-the-art ASR system. Prosodic features can also be

extracted automatically to better align to sub-word tokens (Tran et al., 2018). It would also be

interesting to see how robust NER would improve entity linking especially when entity mentions

contain ASR errors.

Since our work only explored open-domain conversations between humans and a chatbot,

it is important to validate the benefits of modeling context and speech pattern features in other

settings. Examples of other settings include open-domain conversations between humans or task-

oriented conversations between humans or between humans and chatbots. For these different

settings, NER models might need longer context or speech pattern features other than what were

used in this paper. However, many previous studies have shown the usefulness of these additional
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features in other tasks so there are reasons to believe that the findings should translate to other

datasets and settings.

4.4 Conclusions

Named entity recognition for dialogs is difficult because utterances are ambiguous out of context

and ASR transcripts are noisy due to ASR errors and the lack of punctuation and capitalization. We

proposed two NER models exploiting dialog context and speech patterns to address the ambiguity

issue and ASR noise. Our results show that context usually improves NER accuracy while speech

patterns help in the more difficult but more realistic scenario with many unseen named entities.

Further studies on exploiting features from non-text modalities are warranted to enhance NER in

dialog systems.
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