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Correlating structural and photochemical
heterogeneity in cyanobacteriochrome NpR6012g4
Sunghyuk Lima,1, Qinhong Yua,1, Sean M. Gottlieba,2, Che-Wei Changa,3, Nathan C. Rockwellb, Shelley S. Martinb,
Dorte Madsena, J. Clark Lagariasb,4, Delmar S. Larsena,4, and James B. Amesa,4

aDepartment of Chemistry, University of California, Davis, CA 95616; and bDepartment of Molecular and Cellular Biology, University of California, Davis,
CA 95616

Contributed by J. Clark Lagarias, March 20, 2018 (sent for review November 28, 2017; reviewed by Kevin H. Gardner, John T. M. Kennis, and Keith Moffat)

Phytochrome photoreceptors control plant growth, development,
and the shade avoidance response that limits crop yield in high-
density agricultural plantings. Cyanobacteriochromes (CBCRs) are
distantly related photosensory proteins that control cyanobacterial
metabolism and behavior in response to light. Photoreceptors in
both families reversibly photoconvert between two photostates via
photoisomerization of linear tetrapyrrole (bilin) chromophores.
Spectroscopic and biochemical studies have demonstrated hetero-
geneity in both photostates, but the structural basis for such
heterogeneity remains unclear. We report solution NMR structures
for both photostates of the red/green CBCR NpR6012g4 from
Nostoc punctiforme. In addition to identifying structural changes
accompanying photoconversion, these structures reveal structural
heterogeneity for residues Trp655 and Asp657 in the red-absorbing
NpR6012g4 dark state, yielding two distinct environments for the
phycocyanobilin chromophore. We use site-directed mutagenesis
and fluorescence and absorbance spectroscopy to assign an orange-
absorbing population in the NpR6012g4 dark state to the minority
configuration for Asp657. This population does not undergo full,
productive photoconversion, as shown by time-resolved spectros-
copy and absorption spectroscopy at cryogenic temperature.
Our studies thus elucidate the spectral and photochemical conse-
quences of structural heterogeneity in a member of the phyto-
chrome superfamily, insights that should inform efforts to improve
photochemical or fluorescence quantum yields in the phytochrome
superfamily.

biliprotein | light sensor | photoswitch | photoacclimation | optogenetics

Providing reliable food sources in the face of climate change
and expanding populations requires substantial improve-

ments in food production (1). Modern agriculture relies on high
planting densities of photosynthetic plants, but such densities
cause competition among individual plants for light and trigger the
shade avoidance response, reducing overall crop yield (2). Shade
avoidance responses are controlled by plant phytochromes, large
(≥1,100 aa) photoreceptors that reversibly photoconvert between
red- and far-red–absorbing photostates to act as master regulators
for light-dependent plant development [photomorphogenesis (3–
5)]. Improvements in agricultural performance are thus linked to
our ability to redirect the phytochrome shade avoidance response
in crop plants.
Phytochromes are also found in diverse bacteria, eukaryotic al-

gae, and fungi (6, 7), sharing a conserved three-domain photo-
sensory core module (PCM) (8–11) that binds a covalently attached
linear tetrapyrrole (bilin) chromophore. Photoisomerization of the
bilin 15,16-double bond allows phytochromes to reversibly photo-
convert between two photostates having distinct spectral and
biochemical properties with a photochemical quantum yield below
30% (3, 12–15). Phytochromes also exhibit several types of het-
erogeneity. Known structural heterogeneity includes differences in
side-chain rotamers and protonation state (16, 17). Known
spectral heterogeneity includes the presence of populations with
different peak wavelengths and fluorescence properties (14, 18–
20). Spectrally similar phytochrome populations can also exhibit
photochemical heterogeneity by having different excited-state

lifetimes and quantum yields (12–14). Plant phytochromes also
reveal biological heterogeneity, because different populations
have different signaling activity within a single photostate (21).
The connections between these types of heterogeneity are not
well understood, but biological heterogeneity has important
consequences for phytochrome function: maximal signaling ac-
tivity in plant phytochrome A occurs in a population of the red-
absorbing dark state generated by photoconversion (21), so the
low quantum yield of phytochrome and the presence of other
populations limit maximal signaling. Available crystal structures
do not elucidate the structural basis for any facet of phytochrome
heterogeneity. Solid-state NMR has allowed modeling of het-
erogeneity in a cyanobacterial phytochrome (17, 22) but does not
provide atomic resolution, and the complete phytochrome PCM
is too large for structure determination via conventional solution
NMR spectroscopy (23).
Fortunately, the phytochrome superfamily also includes cyano-

bacteriochromes (CBCRs), a spectrally diverse family of cyano-
bacterial photoreceptors. CBCRs control various aspects of
cyanobacterial photobiology (24–27) and exhibit a plethora of
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photocycles (6, 26, 28–31). Red/green CBCRs such as AnPixJg2
and slr1393g3 exhibit a red-absorbing dark state similar to that of
plant phytochrome but are much smaller (6, 32, 33). Crystal
structures demonstrate that the PCB chromophore adopts a C5-Z,syn
C10-Z,syn C15-Z,anti geometry in the red-sensing state, as in phyto-
chrome (8, 9, 11, 34). AnPixJg2 and slr1393g3 exhibit structural
heterogeneity at residues distant from the chromophore, but detailed
characterization of spectral or photochemical heterogeneity in these
two proteins has not been reported. AnPixJg2 is closely related to
NpR6012g4 from Nostoc punctiforme (35), which has been shown to
be photochemically heterogeneous on the ultrafast timescale (36–39).
NpR6012g4 has also been characterized using solution NMR, with
complete chromophore chemical shift assignments and secondary
structure already reported for both photostates (40–43).
We here report atomic-resolution solution structures for

NpR6012g4 in both photostates. The photoproduct state re-
sembles that of slr1393g3 [Protein Data Bank (PDB) ID code
5M82], whereas the dark state reveals unexpected structural
heterogeneity at key residues close to the PCB chromophore.
Thus, the protein matrix surrounding the bilin is heterogeneous
in red/green CBCRs despite an apparently homogenous chro-
mophore at the level of NMR spectroscopy (40, 41, 44, 45).
Comparison of NpR6012g4 variants with the observed hetero-
geneity of Trp655 predicts the existence of an orange-absorbing
population in the wild-type dark state. We confirm this predicted
spectral heterogeneity using absorption and fluorescence excitation
spectroscopy and demonstrate that the orange-absorbing pop-
ulation does not give rise to the photoproduct. Based on pH re-
sponses in both wild-type and variant NpR6012g4, we propose that
loss of hydrogen bonds between PCB and the structurally hetero-
geneous Asp657 causes the spectral shift in this photochemically
inactive population. This work thus explicitly links structural
heterogeneity at specific residues to spectral and photochemical
heterogeneity in a member of the phytochrome superfamily.

Results
Determination of Solution Structures for both Photostates of NpR6012g4.
We previously reported secondary-structure assignments (Biological
Magnetic Resonance Bank accession numbers 26577 and 26582)
and chromophore chemical shifts for NpR6012g4 in both photo-
states (40–43). We used these assignments to derive structural re-
straints and perform high-resolution structural analysis of both
photostates. Atomic-level structures were calculated using distance
restraints derived from nuclear Overhauser effect (NOE) cross-
peaks (Fig. S1) and long-range orientational restraints derived
from residual dipolar coupling (46) data (Fig. S2). The first 16 and
last 8 residues in NpR6012g4 were dynamically disordered and
are absent from the final structural ensembles, so NMR structures
were resolved for 155 aa from Ser599 to Val754 using numbering for
the full-length protein (GenBank accession number Npun_R6012).
The 10 lowest-energy NMR structures for the red-absorbing dark
state and green-absorbing photoproduct are shown in Fig. 1 A and
B, with structural statistics summarized in Table S1. We obtained an
rmsd of 0.61 Å (dark state) and 0.67 Å (photoproduct) for main-
chain coordinates. Energy-minimized average structures for each
state calculated from the ensembles in Fig. 1 have the expected
GAF domain topology (Fig. S3A) with a six-stranded antiparallel
β-sheet (β1, R620–F626; β2, V635–A640; β3, K645–V647; β4,
N673–V676; β5, A699–A707; β6, Q710–Q719) flanked by four
α-helices (α2, V601–L616; α3, H659–A669; α4, H688–Q694; α5,
E728–Q747). The average NMR structures of the two
NpR6012g4 photostates have an overall rmsd of 2.5 Å, and the
average structure of the dark state is quite similar to the crystal
structure of the red-absorbing dark state of AnPixJ (rmsd, 1.5 Å)
except for the absence of the N-terminal helix and the presence of a
shorter C-terminal helix. Photoconversion induces migration of a
short stretch of residues around Trp655. In the dark state, the
Trp655 indole ring forms a π-stacking interaction with the PCB D-
ring, and the indole NH is hydrogen bonded to the A-ring carbonyl
oxygen (Fig. 1C). Upon photoconversion, both of these protein–
chromophore interactions are lost (Fig. 1D). The indole ring is

instead extruded toward bulk solvent and is now close to the C3 side
chain on the A-ring, consistent with a similar migration observed in
crystal structures of slr1393g3 (PDB ID code 5M82).
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Fig. 1. Solution structures of NpR6012g4. (A) The ensemble of solution
structures is shown for the red-absorbing dark state (α-helix, purple; β-strand,
cyan; other, green). PCB chromophore and the covalently attached Cys687 are
indicated in stick view (gray, carbon; blue, nitrogen; red, oxygen; yellow, sul-
fur). PDB ID code 6BHN. (B) The ensemble of solution structures is shown for
the green-absorbing photoproduct as in A. PDB ID code 6BHO. (C) Trp655 is
shown packed onto PCB in the dark state, with residues 653–654 and 655–
657 highlighted in pink and purple, respectively. (D) The same region is shown
in the photoproduct. (E) The 15Z PCB chromophore of the dark state is shown
in the ensemble (Top) and as a schematic (Bottom; P, propionate). (F) The 15E
PCB chromophore of the photoproduct is shown as in E.
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Protein–Chromophore Interactions in NpR6012g4. In the dark state,
the PCB chromophore of NpR6012g4 adopts the expected C5-Z,
syn C10-Z,syn C15-Z,anti configuration (Fig. 1E) seen in the red-
absorbing states of AnPixJg2 and phytochromes (8, 9, 11, 34).
The A-ring and D-ring adopt α-facial dispositions relative to
the approximate plane defined by the B- and C-rings (47). The
8-propionate is well ordered, but the 12-propionate adopts several
conformations (Fig. S3B). Photoconversion results in photo-
isomerization of the 15,16-double bond to the 15E configuration
(Fig. 1 E and F) and rotation of the chromophore within the
chromophore-binding pocket (Fig. S3C), reminiscent of the flip-
and-rotate model proposed for phytochromes (48). The PCB
D-ring remains on the α face of the bilin, but the A-ring moves
from the α face to the β face while retaining the C5-Z,syn con-
figuration (Fig. 1F). Movement of the A-ring arises due to ap-
proximate inversion of the dihedral angle for the 5,6-single bond
(Table S2). The photoproduct chromophore exhibits increased
tilt of the A-ring relative to the B-ring, more modest increases in
B/C ring tilt and C/D ring tilt (Table S2), and increased disorder
of the 8-propionate (Fig. S3D). The C17-methyl group is within
5 Å of both the C15 methine proton and the C13 methyl group, in
keeping with intramolecular NOE cross-peaks specifically ob-
served in the photoproduct state (40). Overall, the photoproduct
chromophore is more twisted than that of the dark state, which
should result in weaker conjugation of the bilin π system con-
sistent with the blue-shifted photoproduct absorbance.

Some protein–chromophore interactions are retained upon
photoconversion, whereas others change. His659 is proximal to
the bilin C10 atom in both photostates (Table S2), consistent with
the ability of H659C NpR6012g4 to form a second linkage to the
chromophore at C10 (35). In the dark state, the 8-propionate forms
hydrogen bonds to His688 (10 out of 10 structures), Ser685 (7/10),
and His684 (1/10). Upon photoconversion, hydrogen bonds from
the 8-propionate to these three residues are still present (9/10, 9/10,
and 1/10, respectively). By contrast, the 12-propionate is hydro-
gen bonded to Arg667 (6/10), His659 (2/10), His684 (1/10), and
Tyr668 (1/10) in the dark state but to Tyr668 (7/10) and Tyr700
(9/10) in the photoproduct. There are also changes in the vicinity
of the photoactive D-ring. In the dark state, the D-ring and/or
C15 methine bridge are within 3.1 Å of Tyr624, Phe634, Trp655,
Asp657, Leu660, Ile702, and Tyr718 in eight or more structures
(Fig. 2 A and B). In the photoproduct, the D-ring and/or 15-
methine bridge are within 3.1 Å of Leu646, Asp657, His688,
Leu692, Phe695, and Val697 in eight or more structures (Fig. 2 C
and D).

A Photochemically Inert Orange-Absorbing Population in the NpR6012g4
Dark State. Substitutions for Trp655 have given varying results (15).
W655V and W655A variants both exhibited spectrally heterogeneous
15Z dark states containing both red- and orange-absorbing pop-
ulations, but W655H NpR6012g4 failed to bind chromophore (15).
The equivalent Trp289 adopted multiple conformations in a mi-
crosecond simulation of the AnPixJg2 dark state (49), so this
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Fig. 2. Protein–chromophore interactions around the photoactive D-ring of
NpR6012g4. (A) Representative stereoview of the PCB-binding pocket of the
NpR6012g4 dark state (Top). Heavy atoms of PCB chromophore and covalently
attached Cys687 are shown in stick view and colored by atom type (C, cyan; N,
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nificant effects). (B) Nuclear Overhauser effect (NOE) cross-peaks are shown for
the H182 methyl carbon of PCB in the dark state. Residues within 3.1 Å of the
D-ring follow the color code of A; other amino acids are indicated in gray, and
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for the PCB-binding pocket of the NpR6012g4 photoproduct as in A. (D) Nu-
clear Overhauser effect (NOE) cross-peaks are shown for the H182 methyl
carbon of PCB in the photoproduct as in B.

A

B

C

D

PCB

C687

PCB

C687

Trp-in Trp-in

PCB

C687

PCB

C687

Trp-out Trp-out

C687 C687

L660 L660

D657 D657

H659 H659

8/9 Trp-in
vertical D

8/9 Trp-in
vertical D

PCB PCB

PCBPCB
D657 D657

C687 C687

H659 H659
L660 L660

Trp-out
1/9 Trp-in
horizontal D

Trp-out
1/9 Trp-in
horizontal D

W655 W655

W655 W655

Fig. 3. Heterogeneity at Trp655 and Asp657 in the NpR6012g4 dark state.
(A) Stereoviews are shown for a representative Trp-in configuration of
Trp655. (B) Stereoviews are shown for the Trp-out configuration. (C) Ster-
eoviews are shown for a representative vertical configuration of Asp657,
with hydrogen bonds indicated. (D) Stereoviews are shown for a represen-
tative horizontal configuration of Asp657.

Lim et al. PNAS | April 24, 2018 | vol. 115 | no. 17 | 4389

BI
O
CH

EM
IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720682115/-/DCSupplemental


variation could be explained by structural heterogeneity of this Trp.
Remarkably, we observed structural heterogeneity at Trp655 in the
NpR6012g4 dark-state ensemble. The π-stacked orientation
(hereafter, “Trp-in”) was present in 9 out of 10 structures (Figs. 1C
and 3A). The other structure instead exhibited a Trp-out orienta-
tion in which the Trp side chain was rotated away from the D-ring
about the χ2 angle (Fig. S3E), disrupting both π stacking and the
hydrogen bond between Trp655 and the PCB A-ring (Fig. 3B). The
Trp-out configuration was seen in ∼10% of the structures in mul-
tiple independent ensembles, even though the region from Trp655
to Asp657 was well ordered (Fig. 1C). The side-chain Ne1 atom of
Trp655 exhibited modest but significant reductions in heteronuclear
NOE (hetNOE) and T1/T2 ratio in the dark state compared with
the backbone N atoms of residues 655–657 but not compared with
those of the more mobile Thr653 and Val654 (Fig. S3F). Such
differences were not observed in the photoproduct (Fig. S3G). We
thus conclude that Trp655 is a site of structural heterogeneity in the
NpR6012g4 dark state, with a minority population adopting the
Trp-out configuration.
W655V and W655A variants accumulate 15Z orange-absorbing

species (15), so we reasoned that the Trp-out population in wild-
type NpR6012g4 could absorb orange light. Such a population is
not seen in the wild-type absorption spectrum, but we confirmed
its presence using fluorescence excitation spectroscopy (Fig. 4A).
Moreover, the excitation spectrum for this species was similar to
that for the orange-absorbing population of W655A NpR6012g4
(Fig. 4A), implicating a common chromophore environment for
orange-absorbing species in both wild-type and variant NpR6012g4
proteins. These results confirm the presence of spectral hetero-
geneity in the NpR6012g4 dark state.
We next sought to enrich the orange-absorbing population in

wild-type NpR6012g4 to examine photochemical consequences
of spectral heterogeneity. Unlike wild-type NpR6012g4, the
W655V variant exhibited increased orange absorption with de-
creasing temperature (Fig. S4 A and B). We reasoned that a
similar process might occur in wild-type NpR6012g4 at cryogenic
temperatures. Indeed, we observed that rapid cooling of dark-
state NpR6012g4 to 150 K resulted in retention of red absor-
bance, whereas slow cooling resulted in formation of substantial
orange absorbance (Fig. 5A). We illuminated the slow-cooled
preparation with orange or green light and then compared the
resulting difference spectra for primary photoconversion to that
obtained upon illumination of the fast-cooled preparation with
red light (Fig. 5 A and B). Illumination of slow-cooled NpR6012g4
with orange or green light should preferentially excite the orange-
absorbing species, but all three conditions gave near-identical
difference spectra (Fig. 5B). Therefore, preferential excitation of
the orange-absorbing species did not result in formation of distinct
photoproducts at 150 K.
To examine potential reactivity of the orange-absorbing species

at physiologically relevant temperatures, we used time-resolved
spectroscopy. Previous work had shown that robust signals could
be obtained with 532-nm excitation of NpR6012g4 on a timescale

of nanoseconds to milliseconds (50), so we used this approach for
comparison with previously reported ultrafast spectroscopy (pi-
coseconds to nanoseconds) using 650-nm excitation (38). In this
experiment, 532-nm excitation preferentially enhances excitation
of the orange-absorbing population (Fig. 5C), and early secondary
spectra (<10 ns) showed enhanced negative bleach at 590 nm
compared with the bleach at 650 nm (Fig. S5 A–D). Consistent
with measurements at 150 K, a single positive band was ob-
served at 680 nm regardless of excitation wavelength (Fig. S5 A
and B). The bleach at 590 nm decayed much more rapidly than
that at 650 nm (∼20 ns and 1 μs, respectively), but the positive
band at 680 nm decayed on both timescales (Fig. S5C). This
difference was also observed in the two bleach amplitudes at
2 ns – 200 ns (Fig. S5A): bleach at 590 nm decayed, but that at
650 nm did not.
We conclude that 532-nm excitation generated Lumi-Of and

Lumi-Rf primary photoproducts from the orange- and red-absorbing
populations, respectively; the two photoproducts exhibited sim-
ilar positive absorption but different bleaches and decay kinetics.
We used the large difference in decay timescales of these in-
termediates to estimate the Lumi-Of spectrum by subtracting the
raw 10-ns spectrum from that at 2 ns (Fig. S5E, orange trace),
revealing a positive absorption resembling the positive absorp-
tion of Lumi-Rf under 650-nm excitation (Fig. S5B). Two other
transitions were also clear from the raw signals (Fig. S5 A–D):
evolution of the primary photoproduct absorption into a Meta-
Ry intermediate peaking at 570 nm and subsequent appearance
of a Meta-Rg intermediate peaking at ∼550 nm. Difference spectra
for these transitions could be approximated using 1-μs and 200-ns
spectra for Meta-Ry and 1-ms and 500-μs spectra for Meta-Rg (Fig.
S5E, red and green circles, respectively).
The amplitude of the positive 575-nm band for Meta-Ry for-

mation is comparable to that of the negative 650-nm band for
Lumi-Rf decay (compare 200-ns and 1-μs spectra, Fig. S5A).
Assuming comparable extinction coefficients for the two primary
photoproducts, which is plausible given their similar properties,
we can therefore estimate the amplitude of Lumi-Of in the
transient absorption (TA) signals as equal to or greater than
that of Lumi-Rf using the decay at 680 nm (Fig. S5 A and C).
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Were Lumi-Of to generate a subsequent photoproduct, this
species would be readily detectable before decay of Lumi-Rf.
However, Meta-Ry did not appear on this timescale (e.g., 50-ns
trace: Fig. S5A); instead, the additional bleach observed at
590 nm decayed without appearance of additional intermediates
(Fig. 5 A and C).
We next constructed a global target model to analyze the

secondary dynamics of NpR6012g4 (Fig. S6). We postulated
parallel excitation of red- and orange-absorbing species, each of
which generates a primary photoproduct. Consistent with the
apparent absence of Meta-Ry formation during Lumi-Of decay,
we postulated that only the red-absorbing species leads to pho-
toproduct. This model estimated a Lumi-Rf species-associated
difference spectrum (SADS) nearly identical to the equivalent
SADS estimated from the primary data (38) and to the cryo-
trapped intermediate (Fig. S5F), predicted a Lumi-Of SADS that
strongly resembles the 10-ns minus 2-ns spectrum (Fig. S5E), and
accurately described biphasic decay of absorbance at 680 nm
(Fig. S5C). Taken together, these results confirm the presence of
an orange-absorbing population in the dark state of wild-type
NpR0612g4 and demonstrate that this population does not un-
dergo full photoconversion.

Asp657 and Photochemical Heterogeneity. The behavior of the
W655A and W655V variants implicates a correlation between the
Trp-out population and the orange-absorbing species in the wild-
type NpR6012g4 dark state but does not explain why that pop-
ulation would exhibit orange absorbance. We noted that the
Asp657 sidechain adopts a “vertical” orientation in eight out of
nine Trp-in structures but a “horizontal” orientation in the Trp-
out structure and the ninth Trp-in structure (Fig. 3 C and D). The
vertical Asp side chain makes one hydrogen bond each to the PCB
B- and C-ring NH protons and a third to the backbone NH proton
of Leu660 (Fig. 3C), whereas the horizontal Asp side chain makes
one hydrogen bond each to the backbone NH protons of
His659 and Leu660 and does not hydrogen bond to PCB (Fig.
3D). Two conformations are also seen for Asp657 in the photo-
product (Fig. S3 H and I), but these differences do not result in
complete loss of hydrogen bonding to the B- and C-rings in the
photoproduct state. The horizontal Asp orientation in the dark
state results in such a loss, with no obvious counterion for the
cationic bilin π system. This environment could lead to orange
absorption in the dark state either via chromophore deprotonation
or via altered electron density in the absence of hydrogen bonding.
Asp657 is not amenable to site-directed mutagenesis (15), and

mutagenesis of Trp655 could alter the equilibrium between the
horizontal and vertical configurations of Asp657 regardless of the
bilin protonation state. However, the vertical Asp configuration
places the anionic carboxylate close to the cationic bilin ring sys-
tem, whereas the horizontal configuration does not. Therefore,
protonation of the Asp side chain would be expected to destabilize
the vertical configuration relative to the horizontal configuration
by weakening this electrostatic interaction. Deprotonation of the
chromophore would also have a similar effect, but deprotonation
of PCB and protonation of Asp657 would occur under opposite
pH conditions: low pH would suppress the orange-absorbing
population were deprotonation of PCB to be the cause for orange
absorption but would increase that population were protonation
of Asp657 to be the cause.
We therefore examined pH effects both in wild-type NpR6012g4

and in Trp655 variants. Absorption spectroscopy of W655V and
W655A NpR6012g4 clearly demonstrated decreasing red absor-
bance and increasing orange absorbance at pH 5 compared with pH
8 (Fig. S4 C and D). Similarly, red absorbance is decreased at low
pH in wild-type NpR6012g4, whereas fluorescence from the or-
ange-absorbing population is increased (Fig. 4B). We therefore
conclude that the orange-absorbing population of NpR6012g4 is
favored by protonation rather than deprotonation and cannot be
assigned to chromophore deprotonation.

Discussion
We report solution structures of NpR6012g4 in both photostates.
The photoproduct state resembles that recently determined for
the red/green CBCR slr1393g3 from Synechocystis sp. strain PCC
6803 (PDB ID code 5M82). In both cases, the 15E chromophore
adopts a twisted geometry at both the C5 and C15 methine
bridges, and this twisted geometry seems the likely cause of the
blue-shifted photoproduct absorption seen in this CBCR sub-
family. Within the calculated ensemble of structures for the dark
state, we observe multiple configurations for Trp655 and Asp657,
two residues known to play key roles in chromophorylation and
spectral tuning (15). Structural heterogeneity of the equivalent
Trp residue in AnPixJg2 has been reported in a simulation, but the
crystal structure of the AnPixJg2 dark state only contains the Trp-
in conformation (34, 49). We also observe a horizontal configu-
ration for the Asp657 side chain that ablates hydrogen bonding to
the chromophore B- and C-rings. Substitution of Trp655 results
in variant proteins that accumulate varying amounts of an orange-
absorbing 15Z population (spectral heterogeneity), and we
demonstrate the presence of a similar population in wild-type
NpR6012g4.
We propose that orange absorption arises due to the hori-

zontal Asp configuration. This minority configuration disrupts
hydrogen bonding to PCB, which could cause a spectral shift
either via formation of a deprotonated bilin π system (51) or via
loss of hydrogen bonding to a protonated π system. Orange-ab-
sorbing species increase at low pH both in wild-type NpR6012g4
and in variants with substitutions at Trp655 (Fig. 4B and Fig. S4
C and D), demonstrating that the orange-absorbing species does
not arise due to deprotonation of the bilin π system. We propose
that structural heterogeneity at Trp655 or substitutions for this
residue alter the equilibrium between the two configurations of
Asp657. We propose that the vertical Asp orientation still occurs
with lower occupancy in such variants, explaining the persistence
of red-absorbing species. Similarly, the observed pH effects
would be explained were the horizontal configuration to be fa-
vored by protonation of a titratable group at low pH. The or-
ange-absorbing species exhibited primary photoisomerization
but not full photoconversion, indicating that this species may be
photochemically inactive in other red/green CBCRs as well. Our
studies thus provide a plausible explanation for the 10-fold ob-
served variation in forward quantum yield for these proteins
(39), which impacts development of CBCRs for synthetic biology
(52–54).
Our work underscores the value of multiple, complementary

approaches in structural characterization of photoproteins.
Spectroscopic and photochemical heterogeneity is well estab-
lished in phytochromes and in CBCRs such as RcaE and
NpR6012g4 (13, 14, 16, 17, 19–21, 36–39, 51, 55), but connecting
this behavior to structural heterogeneity has proven difficult.
Using solution NMR structures, we present evidence that even
conserved residues proximal to the chromophore can exhibit
structural heterogeneity and link that heterogeneity to specific
effects in light perception and photochemistry. We anticipate
that similar effects connect structural, spectral, and photo-
chemical heterogeneity in other photoreceptor families (56–58).
Indeed, photoreceptors and other signaling “input” domains
need to be able to switch between two configurations to regulate
signaling; this may make them uniquely suited to the study of
structural heterogeneity and its functional consequences.

Materials and Methods
Details are described in SI Materials and Methods. This includes information
on expression and purification of NpR6012g4, structure determination, and
spectroscopic techniques. The PDB ID codes for this work are 6BHN (dark
state) and 6BHO (photoproduct).
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