Lawrence Berkeley National Laboratory

Recent Work

Title

EXTRACTION OF PHENOLS FROM COAL CON VERSION PROCESS CONDENSATE WATERS

Permalink https://escholarship.org/uc/item/4z38r6hh

Author Greminger, Douglas Carl

Publication Date 1979-06-01

RECEIVED LAWRENCE BERKELEY LABORATORY

> 19/9 JUL 9

LIBRARY AND DOCUMENTS SECTION

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dívísíon, Ext. 6782

Tec and Environment Division

Extraction of Phenols from Coal **Conversion Process Condensate Waters**

Douglas Carl Greminger and C. Judson King (M.S. Thesis)

Berkeley Laboratory University of California/Berkeley

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Douglas Carl Greminger

"Extraction of Phenols from Coal Conversion Process Condensate Waters"

ABSTRACT

Condensate water samples from two typical coal-conversion processes were analyzed for phenols by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Significant amounts of phenol, dihydroxybenzenes and the trihydroxybenzene phloroglucinol were found. The presence of a trihydroxybenzene is particularly important as trihydroxybenzenes are extremely resistant to biological oxidation.

The effects of water-phase pH on the extraction equilibria of the weakly acidic phenols were studied in a series of pH-controlled batch extractions of phenol, resorcinol, and hydroquinone into diisopropyl ether (DIPE) and hydroquinone into methyl isobutyl ketone (MIBK). The equilibrium distribution coefficient K_D decreased sharply in the pH range typical of condensate waters, 8.7-9.8, which is also the range of the pK_a 's of the phenols. A simple model combining the acid ionization and the phase distribution equilibria fit the data well.

Batch extractions of di- and trihydroxybenzenes into MIBK and DIPE showed MIBK to be clearly a better solvent than DIPE. The distribution coefficients in MIBK were an order of magnitude greater than those in DIPE, some of which were much less than unity. DIPE is currently used in the Phenosolvan process to extract phenol from coke-oven and coalconversion effluent waters. With the K_D's measured in this work, calculations showed that the Phenosolvan process, as currently run, will not remove polyhydroxybenzenes from alkaline water solution to the levels required for further treatment, recycle or discharge of the condensate waters.

Acknowledgements

I would like to express my appreciation to my Research Director, Professor C. J. King, for his guidance, interest and advice during the past year and one half. I have learned much and enjoyed working for him.

I would also like to thank Professor S. Lynn for his advice and interest in my work and for reviewing my thesis. I would also like to thank Professor S. D. Brown for his time and effort in reviewing my thesis. I am grateful to Dr. A. Newton for his condensate water analyses.

I would like to thank my good friends and co-workers Larry Ricker, Steve Lubic, and Ed Pittman for their assistance and advice. I greatly appreciate the time and effort Nancy Bell spent in proofreading the final draft, and the time Don Mohr spent in helping to assemble it. Finally, I would like to thank Stephanie Choy for efficient typing of the final draft.

My work was supported by the Lawrence Berkeley Laboratory and by HEW, through a Domestic Mining & Mineral Fuel Conservation Fellowship.

Table of Contents

			rage No
j.	Acknowled	lgements	i
	Table of	Contents	ii
	List of F	Figures	iii
	List of T	Tables	iv
	I.	Introduction	1
		A. Foul Water Sources in Coal Conversion	1.
		B. Condensate Water Analyses	· 2
		C. Current Treatment Technology	10
	an tha	D. Objectives of this Work	12
	II.	Experimental Procedure	17
		A. Methods Development	17
		B. Condensate Water Analyses	24
		C. Equilibrium Measurements	26
	III.	Water Analysis and Discussion	32
		A. Water Sample Sources and Ages	32
		B. Gas Chromatographic - Mass Spectrometric (GC-MS) Analysis	32
		C. High-Performance Liquid Chromatographic (HPLC) Analysis	39
	IV.	Batch Extraction Results and Discussion	46
		A. Extraction Model	46
		B. Controlled pH Extraction Results and Discussion	48
•		C. Solvent Selection	54
	v.	Summary	60
	Appendix	A: Batch Extraction Data	64
	Appendix	B: Theoretical Plate Count Calculation	71
	Appendix	C: Sample pH-Correction Calculation	73
. •	Appendix	D: Gas Chromatograph - Mass Spectrometer (GC-MS) Data	175
	Bibliogra	ıphy	89

List of Figures

1-1	Schematic of Coal Gasification Process
1-2	Phenosolvan Process Flow Diagram
2-1	Liquid Chromatogram of Polyhydroxybenzene Mixture, Methanol/Water Mobile Phase
2-2	Liquid Chromatogram of Polyhydroxybenzene Mixture, 100% Water Mobile Phase
3-1	Computer-Reconstructed Gas Chromatogram of Methylated Synthane Water
3-2	Mass Spectra Comparison: 1,2-Dimethoxybenzene and Methylated Synthane Water Peak #317
3-3	Liquid Chromatogram of SRC Condensate Water, Methanol/Water Mobile Phase
3-4	Liquid Chromatogram of SRC Condensate Water, 100% Water Mobile Phase
4-1	Distribution Coefficient for Phenol Between Diisopropyl Ether and Water as a Function of pH at 298°K
4-2	Distribution Coefficient for Resorcinol Between Diisopropyl Ether and Water as a Function of pH at 298°K
4-3	Distribution Coefficient for Hydroquinone Between Diisopropyl Ether and Water as a Function of pH at 298°K
4-4	Distribution Coefficient for Hydroquinone Between Methyl Isobutyl Ketone and Water as a Function of pH at 298°K
4-5	Energy-Efficient Phenol Extraction Process
B-1	Plate Count Calculations
D-1	Computer-Reconstructed Gas Chromatogram of Methylated Synthane Water
D-2	Computer-Reconstructed Gas Chromatogram of Methylated SRC Water
•	

List of Tables

1-1	Standard Analyses of Synthane Gasification Process Condensate Water
1-2	Standard Analyses of Solvent Refined Coal Process Condensate Water
1-3	Component Analysis of Process Condensate Water from the Synthane Gasification Process
1-4	Major Organic Constituents of Synthane Process Condensate Water
1-5	Major Organic Constituents of Exxon Donor Solvent (EDS) Liquefaction Condensate Water
1-6	Distribution Coefficients (K_{D}) of Hydroxybenzenes Between DIPE and Water at 298°K
1-7	Distribution Coefficients (K _D) for Phenols Between Water and Two Organic Solvents at High Dilution at 298.15°K
1-8	Common and IUPAC Names and Structural Formulas for Various Hydroxybenzenes
3-1	Mass Spectra Comparison: Methylated Synthane Water Peak #317 with Five Best Statistical Fits
3-2	Qualitative Analysis of Methylated Synthane Water by GC-MS
3-3	Qualitative Analysis of Methylated SRC Water by GC-MS
3-4	Quantitative Analysis of SRC Condensate Water by HPLC
4-1	Weak-Acid Equilibria of Hydroxybenzenes at High Dilution
4-2	Distribution Coefficients for Hydroxybenzenes in DIPE/Water and MIBK/Water Systems at Low pH and 298°K
A-1	K _D as a Function of pH for Phenol in a DIPE/Water System at 298°K
A-2	$K_{\rm D}$ as a Function of pH for Resorcinol in a DIPE/Water System at 298°K
A-3	K _D for Polyhydroxybenzenes in a DIPE/Water System at 298°K
A-4	K _D for Polyhydroxybenzenes in a MIBK/Water System at 298°K
D-1	Methoxybenzene Identification in Methylated Synthane Water
D-2	1-Methoxy-2-Methylbenzene Identification in Methylated Synthane Water
. р_ З	1-Methoxy-4-Methylbenzene Identification in Methylated Synthane Water

· · · ·	V
D-4	2-Ethyl-5-Methylphenol Identification in Methylated Synthane Water
D-5	1,2-Dimethoxybenzene Identification in Methylated Synthane Water
D-6	5-Methoxy-2,3-Dimethylphenol Identification in Methylated Synthane Water
D-7	3-Methoxy-2,4,6-Trimethylphenol Identification in Methylated Synthane Water
D-8	Methoxybenzene Identification in Methylated SRC Water
D-9	1-Methoxy-4-Methylbenzene Identification in Methylated SRC Water
D-10	1,2-Dimethoxybenzene Identification in Methylated SRC Water
D-11	5-Methoxy-2,3-Dimethylphenol Identification in Methylated SRC Water

Chapter I. Introduction

Securing adequate energy supplies for the future is becoming more difficult. Dwindling supplies of domestic oil and natural gas necessitate large imports of foreign oil and natural gas, damaging the balance of payments and subjecting the economy of the United States to the vagaries of international politics.

Coal conversion is one way of dealing with this problem. The United States has a major share of the world coal reserves. This coal can be converted to the liquid and gaseous fuels and petrochemical feedstocks in high demand. Sulfur, nitrogen, and ash are simultaneously removed, providing environmentally acceptable fuels. A major problem, however, is water use in coal conversion.

A. Foul Water Sources in Coal Conversion

Coal conversion both consumes and produces large quantities of water. A large portion of the water produced is process-condensate water, which is highly contaminated with organics, ammonia, and hydrogen sulfide. The other water streams produced are cleaner. The water produced during methanation in the production of substitute natural gas (SNG) can be used directly as boiler-feed water. However, the process condensate water must be treated before it can be released. In the arid western states, where large deposits of low-sulfur coal are located, the contaminated waters must be cleaned enough for recycle into the process.

For example, a $250\overline{M}$ SCFD (9.79x10⁹ BTU/hr) Lurgi SNG plant, the size proposed for the Four Corners Area, would produce 2700 GPM of this process-condensate water (1).

Similarly, a Solvent Refined Coal (SRC) plant producing 10,000 ton/day (13.3x10⁹ BTU/hr) of SRC would produce process-condensate water at the

rate of 700 GPM (2, p. 106).

In a typical gasifier, shown in Figure 1-1, process-condensate water is obtained from the gas quench step where the hot gas from the gasifier is quenched and scrubbed with water to remove most of the ammonia, hydrogen sulfide and organics. Additional condensate comes from the H_2 -CO shift reactor prior to methanation. In coal liquefication, water produced in the high-pressure liquefaction reactor and contained as moisture in the feed coal is flashed overhead along with ammonia, hydrogen sulfide, carbon dioxide and the light organics when the pressure on the reactor effluent is let down.

Water Purification Associates has detailed water requirements for gasification and liquefaction plants planned for the western United States (2). Water is needed for ash control and disposal, coal slurrying and revegetation of the mines, but the major uses are boiler-feed water and cooling tower make-up, both requiring quite clean water. Excessive levels of dissolved solids would cause scaling and fouling in the boilers and heat exchangers. Any water-recycle process must avoid the addition of dissolved solids to the condensate waters, as subsequent removal to produce high quality water would be expensive.

B. Condensate Water Analyses

Tables 1-1 and 1-2 list typical water analyses for condensate waters from Synthane gasification and SRC liquefaction processes, respectively (2, pp. 265 and 267). The high levels of ammonia make the waters alkaline, and, with the dissolved carbon dioxide, buffer the waters so that pH adjustment in a water treatment process would require large amounts of chemicals.

The figures listed in Tables 1-1 and 1-2 do not adequately reflect

[adapted from Pittman, (13)]

Figure 1-1. Schematic of Coal Gasification Process

Table 1-1. Standard Analyses of Synthane Gasification Process

Condensate Water^a

(All values in ppm except pH)

	Illinois No. 6 Coal	Wyoming Subbituminous Coal
pH	8.6	8.7
suspended solids	600	140
phenols (as phenol)	2600	6000
cod ^b	15,000	43,000
thiocyanate	152	23
cyanide	0.6	0.23
ammonia	8100	9520
chloride	500	
carbonate	6000	
bicarbonate	11,000	-
total sulfur	1400	

after Forney, et al., (3), as reported in (2)

chemical oxygen demand

a

ь

Table 1-2.

2. Standard Analyses of Solvent Refined Coal Process

Condensate Water^a

(all values ppm except pH)

<u>Coal</u>	Kentucky
pH	8.6
total carbon	9000
total organic carbon	6600
inorganic carbon	2400
COD	43,600
phenols (as phenol)	5000
total Kjeldahl N	8300
total ammonia as N	7900
cyanide as CN	10
total sulfur as S	10,500

^a values derived from (2)

ى

. स

the water quality, because of analytical shortcomings. In particular, the phenol concentrations were measured via a colorometric method involving reaction of phenols with 4-aminoantipyrene and potassium ferricyanide, a standard analysis for phenol in water (4). However, this method is highly approximate for substituted phenols, as different phenols will form differently colored dyes, and some of the para-substituted phenols will not react at all (4). No specific mention is made of the reactivity of polyhydroxybenzenes in the despcription of this test, but similar behavior should be expected. A few other sources give a more detailed breakdown of the organic contaminants in the waters. Table 1-3 shows the results of an early mass spectrometric analysis of a coal gasification wastewater [after Schmidt, et al, (5), as reported in (2), p. 264]. Later work by Ho, et al (6, 1976), presented in Table 1-4, does not show any dihydroxybenzenes in Synthane water. However, this could be due to the analytical methods used. It was found in the present work that analysis by gas chromatography, with conditions similar to those used by Ho, et al, and the same Tenox-GC column packing, failed to elute dihydroxybenzenes at all, while substituted monohydroxybenzenes did elute reasonably well.

Researchers at Exxon, developing the Exxon Donor Solvent (EDS) liquefaction process do report large concentrations of dihydroxybenzenes (7); their results are presented in Table 1-5.

The great differences in reported condensate water composition stem from a number of factors. The pilot plants supplying the water samples are experimental units, so that operating conditions are being varied, producing condensate waters that could also vary in composition. The samples may have been taken before steady-state operation was achieved. Different coals have different compositions, so that even when converted by the same process under the same conditions, different condensate waters

Table 1-3. Component Analysis of Process Condensate Water from

the Synthane Gasification Process^a

(All values in ppm)

	Illinois No. Coal	6	Wyoming	Subbituminous Coal
phenol	3400	• •		4050
cresols	2840			2090
C ₂ - phenols	1090			440
C ₃ - phenols	110		· · · ·	50
dihydric phenols	250		."	530
benzofuranols	70			100
acetophenones	150		• • •	110
hydroxybenzaldehydes	60			60
naphthols	160		· · ·	80
indenols	90	•		60
biphenols	40	•		40
benzothiophenol	110			20
pyridines	-			120
indoles			. · ·	20

a after Schmidt et al, (5), as reported in (2)

Table	1-4.	Major	Organic	Constituents	of	Synthane	Process
			-				

Condensate Water^a

Component	Concentration	(ppm
Phenols		
phenol	2100	•
m-, p-cresol	1800	÷.
o-cresol	670	· .
2,5-dimethy1pheno1	250	· · ·
3,5-dimethylphenol	230	
3,4-dimethylphenol	100	
2.6-dimethylphenol	40	•
2,3-dimethylphenol	30	. •
o-ethylphenol	30	
β-naphthol	30	•
α-naphthol	10	
Carboxylic Acids	*	
acetic acid	620	•
propanoic acid	60	·
n-butanoic acid	20	
n-pentanoic acid	10	
n-hexanoic acid	20	•
· .		

^a values derived from (6, p. 489)

	Concentration (ppm)		
Component	Averageb	Range	
propanol	230	137-349	
acetone	770	590-1070	
МЕК	160	114-221	
acetic acid	2130	5049-10,019	
propanoic acid	2790	1970-3737	
isobutyric acid	300	230-412	
n-butyric acid	840	576-1141	
pentanoic (valeric) acid	420	233-663	
phenol	2130	1638-2390	
o-cresol	135	93-216	
m-, p-cresol	1320	944-1579	
C ₂ + phenols	1310	696-1977	
resorcinol	3830	2674-4366	
others ^C	5600	3905-7006	
total organics	26,900	22,775-34,056	

Table 1-5. Major Organic Constituents of Exxon Dover Solvent

(EDS) Liquefaction Condensate Water^a

^a values from (7, p. 153)

^b average of 4 analyses

^c predominantly substituted dihydroxybenzenes

will be produced. Also, low-temperature liquefaction and gasification processes with short residence times tend to produce dirtier waters than high-temperature gasifiers (2, pg. 259). In addition to actual changes in water composition, the analytical methods used also contribute to the confusion surrounding the concentrations and identities of the phenols present in coal-conversion condensate waters.

C. Current Treatment Technology

Biological oxidation is the standard method of wastewater treatment. However, the high concentration of phenols in coal-conversion process condensate waters requires high dilution, even with phenol-adapted bacteria, to prevent the death of the bacteria. The high concentration of ammonia also presents a toxicity problem, requiring either ammoniastripping pretreatment or dilution. Accompanying the high dilution are high capital requirements and operating costs, and in arid areas, the lack of dilution water.

These facters, along with a phenol product credit, make recovery processes attractive. The Phenosolvan process, a proprietary German process developed in the 1940's, is used commercially to treat coke oven wastewaters and is used on some operating gasifiers (8). Coke oven waters are similar to the coal-conversion condensate waters except that the latter are produced at a much higher rate and contain more phenols and large amounts of dissolved carbon dioxide. Because of their smaller water output, and because coke ovens are not usually located in arid areas, lime can be added to the coke oven wastewaters to release ammonia for more complete stripping without producing a dissolved-solids problem.

Figure 1-2 is a flowsheet of the Phenosolvan process (1,8). The gravel bed filter removes a large share of the tar and particulates,

<u>r</u> 4

Figure 1-2. Phenosolvan Process Flow Diagram [after (1),(8)]

but the process must still be shut down every six months to remove tars and particulates from the heat exchangers and distillation columns (9). Diisopropyl ether (DIPE) extracts phenol from the water in a series of mixer-settlers. The solvent is recovered from the extract by distillation with the crude phenol product further stripped to remove residual DIPE. The raffinate is nitrogen-stripped to remove residual DIPE in a complex three-column system, with the nitrogen then phenol-scrubbed to remove the DIPE and then scrubbed with the feed water to remove the crude phenol, before being returned to the raffinate stripper. After nitrogen-stripping, the raffinate then proceeds to the acid gas and ammonia stripping operations.

Values of the equilibrium distribution coefficient K_D , which is defined as weight fraction solute in organic phase, for phenol and the dihydroxybenzenes between DIPE and water (10), presented in Table 1-6, raise doubts as to the ability of DIPE to extract dihydroxybenzenes adequately in plants designed to extract phenol. After treatment with the Phenosolvan process, the waters must normally be treated biologically to remove the last traces of the phenols. However, trihydroxybenzenes are known to be extremely resistant to biological oxidation (11), and, if present in the condensate waters, could prove very difficult to remove since their K_D 's should be even lower than those for the dihydroxybenzenes.

D. Objectives of this Work

From the questions surrounding the condensate water compositions, the first objective of this work was formulated: to analyze representative coal-conversion process condensate waters for phenols, particularly the hydroxybenzenes. This would require the development of an analytical method to measure the concentrations of phenols in water solution directly.

g 5.

Table 1-6. Equilibrium Distribution Coefficients (K_D) of Hydroxybenzenes Between DIPE and Water at 293°K^a

Solute	<u>K</u> D
phenol	28.9 <u>+</u> 1.7
catechol	4.2 <u>+</u> 0.2
resorcinol	1.9 <u>+</u> 0.1
hydroquinone	1.6 <u>+</u> 0.2

^a from (9). Based on measurement of water phrase concentrations only, before and after equilibrium The analytical method should also be suitable for routine analysis of single-solute phenolic solutions from the extraction studies to be performed in the second part of this work.

From the questions concerning polyhydroxybenzenes and the Phenosolvan Process, the second objective was formulated: to study the extraction of the various phenols themselves. Since phenols are weak acids, extraction from water should involve acid-base as well as distribution equilibria, and the effects of ionization of the phenols could be important in the alkaline condensate waters. Thus it was decided to measure the K_D 's of some representative phenols in DIPE as a function of pH to develop an understanding of these two equilibria. DIPE was studied since any process developed must compete with the Phenosolvan process, which uses a DIPE solvent. Additional extraction experiments would then be made to find a better solvent than DIPE for recovery of phenols from water.

Among the phenols, interest centered about the polyhydroxybenzenes because of the questions about their biodegradability and extractability raised in the previous section. Also, data reported by Won (12), listed in Table 1-7, show that K_D 's for methyl-substituted phenols are significantly higher than that of the parent phenol. The analytical-methods development and the solvent selection were directed towards the polyhydroxybenzenes, as they would be more polar and harder to extract. Table 1-8 lists the hydroxybenzenes studied and their structural formulas.

Table 1-7. Distribution Coefficients (K_{D}) for Phenols Between Water and Two Organic Solvents at High Dilution at 298.15°K^a

Solute	Butyl Acetate	MIBK
3,5-dimethyl phenol	540	814
m-cresol	153	264
phenol	65	110
catechol	13.2	20.3
resorcinol	9.9	15.2

a values derived from (11)

Table 1-8. Common and IUPAC Names and Structural

Formulas for Various Hydroxybenzenes

Common Name

IUPAC Name

Structural Formula

phenol

hydroxybenene

catechol

1,2-dihydroxybenzene

resorcinol

hydroquinone

pyrogallol

hydroxyquinol

phloroglucinol

1,4-dihydroxybenzene

1,3-dihydroxybenzene

1,2,3-trihydroxybenzene

1,2,4-trihydroxybenzene

1,3,5-trihydroxybenzene

·*? 🔨

∎. ≁,

Chapter II. Experimental Procedure

A. Methods Development

A major problem with the process condensates was finding a reliable analytical method for the individual phenols. For the extraction studies, an analytical method was needed that did not require elaborate sample preparation, as each step increases the chance of error and lengthens the time required for analysis. Characterization of the process condensates could use more elaborate procedures, as fewer samples needed to be analyzed.

A.1. Gas Chromatography

Because of instrument availability and operating experience, gas chromatography was investigated first. Porapak ^R porous polymeric packings, available from Varian, of Sunnyvale, California, were designed to separate polar organic compounds in water solution. Porapak Q, the least polar of the series, worked well for phenol itself and the methylsubstituted monohydroxybenzenes. But even when it was used at 240°C, near its temperature limit of 250°C, the dihydroxybenzenes eluted very poorly, giving a very low peak that tailed for hours. The column temperature of 240°C is still less than the boiling points of the dihydroxybenzenes, which range around 280°C.

Tenax-GC,^R also available from Varian, another porous polymeric packing similar to the Porapak packings but with a much higher temperature limit (375°C), was tried next. It behaved differently, retaining polar compounds less than Porapak Q. Compounds seem to be retained strongly until certain threshold temperatures are reached. This makes Tenax-GC better suited to separations using temperature programming than isothermal operation. This packing did not elute the dihydroxybenzenes at all, even at 350°C.

The dihydroxybenzenes did not elute, but the corresponding

dimethoxybenzenes eluted well. For qualitative analysis of the condensate waters, the methyl ether derivatives of the dihydroxybenzenes were made using dimethylsulfate. This procedure met with varying degrees of success. It did allow identification of the methyl ether derivatives of catechol (1,2-dihydroxybenzene) and 1,5-dihydroxy-2,3-dimethylbenzene using a gas chromatograph-mass spectometer (GC-MS). The methods used are described more fully in section B.1.

A.2. Liquid Chromatography

It was apparent that derivatization, followed by gas chromatography, would not be useful as a routine method of analysis. High-performance liquid chromatography (HPLC), however, is well suited to separations of nonvolatile materials. Separation is achieved by making use of the differences between the molecular interactions of the solutes within two immiscible liquid phases, one mobile and one affixed to a solid support.

The most basic HPLC instrument consists of a single high-pressure pump that pumps a constant-composition mobile phase through a chromatographic column and then a detector. Samples are injected into the mobile phase at the column inlet. This is known as an isocratic (constant mobilephase composition) system.

A more useful system involves gradient elution. Two pumps pumping different miscible mobile phases are controlled to give a mixed mobile phase whose composition varies according to the program used by the solvent programmer. Gradient elution gives the same control over peak shape and retention time that temperature programming does in gas chromatography.

An isocratic system was used in this work, consisting of a Spectra Physics injection valve and Model 740 pump, a Waters Associates Model 27324 reverse-phase μ Bondapak ^R C₁₈ column 300 mm long and 3.9 mm in

diameter, and a Waters Associates Model 440 Ultraviolet Absorbance Detector operating at 254 nm.

There are two types of liquid-liquid chromatography. Normal-phase chromatography is when the fixed phase is polar and the mobile phase is nonpolar. In reverse-phase chromatography, the fixed phase is nonpolar and the mobile phase polar. The fixed-phase liquid can be either coated on the solid support or chemically bonded to it. The chemically bonded packings have the advantage that contaminants can be removed by solvent washes that would strip the fixed phase from a coated support.

Normal-phase HPLC is used to separate nonpolar compounds. The highly polar fixed phase accentuates the small differences in the polarity of the solutes. Nonpolar or slightly polar solvents like isooctane or dichloromethane are commonly used.

Reverse-phase HPLC is used to separate polar compounds. Here the fixed phase is nonpolar. Strongly polar solutes have higher affinities for the polar mobile phase than weakly polar or nonpolar solutes do, and have lower affinities for the nonpolar fixed phase than the weakly polar or nonpolar solutes do, and thereby elute first. Polar-solvent systems like methanol/water or acetonitrile/water are commonly used. If a polar column were used to try to separate polar solutes, the fixed phase-solute interactions would be so strong that the retention times would be too long.

With these ideas in mind, a Waters Associates μ Bondapak C₁₈ bonded reverse phase column was selected to separate the phenols. The C₁₈ columns are versatile reverse-phase columns and have been previously used to separate polynuclear aromatic hydrocarbons (PAH) (29) as well as phenols. In HPLC, the nature of the mobile phase plays a much more important role than in GC. Instead of changing temperatures and columns to alter separations, as in GC, the mobile-phase composition is changed. In this work, the methanol/water system was chosen as the mobile phase to achieve separation on the reversed-phase column as methanol was more readily available, less expensive and less toxic than acetonitrile, which is often used because its mixtures with water possess a lower viscosity. The water portion of the mobile phase was processed by a Milli Q^R system, manufactured by Waters Associates, to remove particulates, organic and inorganic solutes by depth filtration, carbon adsorption and ion exchange, respectively. The spectral-grade methanol used was obtained from Matheson, Coleman & Bell, and was used as received.

Modern liquid chromatography has achieved high levels of performance through the use of small-size packing particles, typically 10 µm in diameter. Theoretical plate counts can be as high as 9000 theoretical plates per meter. Unlike some operating regimes of gas chromatography, the apparent plate counts of the peaks do not decrease with increasing mobilephase flowrate, being only a weak function of flowrate. Higher flowrates will give faster analyses, but because of the small packing particle size result in high pressure drops which increase pump wear, pressure drops should be kept below about 200 atm. For trace analysis, slower flows are used which allow more time for detector response.

Care should be taken to keep the efficiency high and the pressure drop low. The column is packed at less than maximum density. Pressure surges can compress the packing, causing channelling and thereby irreversibly reducing column efficiency. Therefore mobile phase rates should not be changed at rates greater than 1 ml^{-min⁻²}.

Similarly, mobile-phase composition should not be changed too quickly. Heat-of-mixing effects could cause the packing to shift, resulting in channelling. When one is changing mobile phases, a 50/50 mixture of the two should be used to flush the pump and then be pumped through the column until breakthrough occurs. For gradient-elution systems, a twominute linear gradient would be sufficient.

Because of the small packing particle size, all samples and mobile phases had to be filtered to prevent column plugging. The mobile phases were degassed while being vacuum filtered. Degassing prevents bubble formation in the pump, which would stop mobile-phase flow, and bubble formation in the detector cell, which would cause an extremely noisy signal. Cellulose acetate filters with a 0.5 μ m pore size were used to filter the aqueous mobile phases. As cellulose acetate is soluble in methanol and other organic solvents, all organic mobile phases were filtered with 0.5 μ m fluorocarbon filters.

Samples were filtered through 0.5 µm fluorocarbon filters. Water does not wet fluorocarbon filters, so they had to be wetted first with methanol before the water samples would pass through the filters.

Solutes not eluted by the mobile phase would build up on the column when condensate water or pure-component samples were injected. These contaminants would degrade the separations. Column contamination was measured by its effect on the plate counts of the peaks and by changes in peak shape. Residence times were not greatly affected. If the peaks started tailing or became broader, the theoretical plate count was checked to see if it had decreased. Appendix B gives a sample calculation of the plate count using the 5 σ method.

The contaminants were removed from the column after each series

of analyses by a number of washing methods. First, to avoid sudden mobile-phase composition changes and to flush corrosive buffer solutions out of the pump, a 50 vol. % solution of methanol in water was pumped through the system. This was followed by a 100% methanol mobile phase that eluted most of the contaminants. If further washing was desired, four or five 2 ml injections of dimethylsulfoxide (DMSO) could be made into the pump suction while pumping methanol at 2 ml/min. The DMSO would remove polar contaminants from the column. The last DMSO injection was followed by a 50 ml methanol wash to remove the last traces of DMSO.

A number of precautions have to be observed when using DMSO. First, DMSO is rapidly absorbed through the skin, taking anything dissolved in it directly into the bloodstream. All of these phenols are toxic and the PAH's are carcinogenic so any DMSO already used to remove column contaminants could be hazardous. Second, DMSO has a high viscosity. If too large a slug is injected or the 2 ml portions are injected too close to one another, column pressure could surge, compressing the column packing and causing channelling.

Another method was used to remove the nonpolar contaminants. Following a series of analyses, the column was washed with an elutropic series of mobile phases, at flow rates of 2-3 ml/min. Mobile phases of different polarity could be added to the series, and different amounts of mobile phase might be needed, but the following series worked well to restore column efficiency: first 50 ml of water, followed by 100 ml of methanol, then 100 ml of dichloromethane, followed by 100 ml of n-heptane, and then back to methanol with 50 ml of dichloromethane followed by 50 ml of methanol. One thing to remember when washing with an elutropic series is that adjacent mobile phases must be completely miscible, with 50/50

mixtures used in between.

The importance and presence of the column contaminants was learned after a column had been irreparably damaged when the accumulated contaminants from a series of wastewater analyses remained on the column for a long time. Apparently enough oxygen was present in the mobile phase to allow oxidation of the phenols, producing an insoluble product that destroyed column efficiency and increased column pressure drop tremendously. The contamination could not be removed with DMSO or an elutropic mobile-phase wash.

The column is normally stored with a methanol mobile phase. If the column will not be used for an extended period of time, it should be removed from the instrument and stored as it was shipped, with a small bellows of methanol/water mobile phase attached to keep the column wet. If the column dries out, it will be ruined. The methanol/water mobile phase also prevents bacterial growth.

Several different detectors are currently available for HPLC use. Refractive index detectors will respond to almost any solute but are not as sensitive as ultraviolet (UV) absorbance detectors. These can be either fixed-wavelength or variable-wavelength. Most of the polyhydroxybenzenes have absorbance maxima near 280 nm, which is a fixed wavelength available with the Waters model 440 detector when the proper parts are installed. The wavelength used in the analyses for this work was 254 nm. The phenols absorbed sufficiently at 254 nm for the experiments performed. A variable-wavelength detector would be extremely useful, as interfering peaks could be removed by operating at different wavelengths.

Fluorescence detectors are also available. These are an order of magnitude more sensitive than the absorbance detectors, and are useful in the analysis of PAH's, expected to be present in only trace quantities in the condensate waters.

Further information concerning column and mobile-phase selection and analytical techniques can be obtained elsewhere (14).

B. Condensate Water Analysis

Detailed experimental conditions and equipment used in the analysis of Synthane gasification and SRC liquefaction condensate waters are described in this section. The condensate waters were kept in cold storage at 4°C, away from light.

B.1. Analysis by Gas Chromatograph - Mass Spectrometer

As the phenols would not elute directly using gas chromatography, methyl ether derivatives were made using dimethyl sulfate $(CH_3)_2SO_4$ and NaOH by the procedure described for the synthesis of anisole (methyoxybenzene)(15). Because the phenols will oxidize under basic conditions in the presence of oxygen, the condensate water samples were nitrogen-sparged to remove dissolved oxygen before the NaOH was added. After reagent addition, the reaction mixture was refluxed overnight. Ammonia and low molecular weight amines were released from the condensate water samples by this procedure, as evidenced by a fishy smell and the high pH indicated by dampened pH test paper placed at the outlet of the reflux condenser (16).

After reaction, the mixture was extracted with ethyl ether to concentrate the methoxybenzenes. The ether extracts were analyzed on a Finnegan Model 4033 GC-MS (17) using a 10 m x 6.35 mm OV-101 column operated with a linear temperature program of 50°C for two minutes, 50° - 200°C at a rate of 5°C/min and then 200°C for 20 minutes. Peak identification was performed with the system's minicomputer. An attempt was made to quantify the results by derivatizing purecomponent water solutions of the phenols to get reaction yield. A GC equipped with a flame ionization detector was used, with external standardization.

B.2. Analysis by Liquid Chromatograph

Before filtration, 10 ml condensate-water samples were passed through C_{18} Sep-pak ^R cartridges, available from Waters Associates, to remove nonpolar contaminants like grease and oil. Any hydroxybenzenes retained by the Sep-pak were eluted with 2 ml of water.

By trial and error, a mobile phase of 25 vol % methanol in water was found to separate the dihydroxybenzenes. The water was buffered to pH 3 with 0.005 M H₃PO₄ and 0.04 M KH₂PO₄ before addition of the methanol. This suppressed the ionization of the phenols and reduced peak tailing.

The trihydroxybenzenes were not adequately separated by this mobile phase, as shown in Figure 2-1. At this composition, pyrogallol (1,2,4-trihydroxybenzene) and hydroquinone (1,4-dihydroxybenzene) coeluted. Pure water buffered to pH 3 did spearate the three trihydroxybenzenes with some overlap of the phloroglucinol and hydroquinone peaks. At this composition, though, the remaining two dihydroxybenzenes coeluted, as shown in Figure 2-2.

Short-chain organic acids are also found in these condensate waters (18,6). These have UV absorbance maxima near 208 nm. In an effort to separate the acids from the trihydroxybenzenes also expected to be present in the waters, a pH 7 buffered water mobile phase was tried. The pK_a 's of the acids are around 4.5 to 5 while those of the phenols range from 9.8 to 10.3. At pH 7 the ionization of the phenols would be suppressed and that of the acids promoted, thereby

increasing the polarity difference of the compounds and their separation. It was found that the separation between phloroglucinol and hydroquinone suffered at pH 7 and that the organic acids did not absorb at the 254 nm wavelength used.

C. Equilibrium Measurements

C.1. Batch Extractions

Equilibrium distribution coefficients (K_D) were measured for polyhydroxybenzenes distributing between water and diisopropyl ether (DIPE), and between water and methyl isobutyl ketone (MIBK), in a series of purecomponent batch extractions at 25°C. The effects of pH on these equilibria were studied by controlling the water phase pH with KOH.

As it was observed that basic water solutions of the phenols would darken and form precipitates when exposed to air, the extractions were performed under nitrogen in magnetically-stirred glass bottles sealed with serum stoppers. The water and the solvent were nitrogen-sparged to remove dissolved oxygen and saturated with each other before the solutes were added. Syringes were used to transfer feed solutions into the nitrogen-purged extractor bottles and to withdraw samples for analysis.

Acidic water solutions of phenols did not darken and degrade, except for the trihydroxybenzenes, which did, albeit slowly. As a result, extractions performed at low pH, except for the trihydroxybenzenes, were not performed under nitrogen. Water-phase samples of the higher pH extractions and those from the trihydroxybenzene extractions were acidpreserved with the addition of a few drops of 6 M HCl.

After extraction, three samples were taken: organic-phase and water-phase samples, both for solute concentration measurement, and a water-phase sample for pH measurement. The 10 ml pH sample was diluted with 20 ml of distilled water for ease of measurement on a Corning Model 12 Research pH Meter previously calibrated in the expected pH range of the sample with standard buffer solutions. The change in pH with dilution was small in most cases, as shown by calculations in Appendix C. Corrected pH's are reported in this work. The other samples were diluted for ease of measurement or acid preservation of the sample.

The feed concentrations, along with the equilibrium phase concentrations, were measured and used to calculate a solute material-balance closure error that gave an indication of the accuracy of the results. As both phases were saturated with each other before solute addition, the difference in total phase weight before and after extraction due to changes in solvent-water mutual solubility caused by the solute were minimized, making the material balance calculation more accurate. The details of this calculation are described more fully in Appendix A.

The solvents used in the extractions were purified before use. DIPE was distilled to remove peroxides and a heavy, UV-absorbing oxidation inhibitor, most likely hydroquinone. The distilled DIPE was stored at 4°C over water to help prevent peroxide formation. For the phenol extractions, 1000 ppm of hydroquinone was added to the DIPE as an inhibitor. For the polyhydroxybenzene extractions, it was found that storage at 4°C over water was sufficient by itself to prevent peroxide formation. Peroxides would be a problem as they would oxidize the polyhydroxybenzenes as well as presenting a safety hazard.

After distillation, the DIPE was extracted with water to remove the light impurities, mostly 2-propanol. Water extraction was also used to remove the light components from the MIBK. After these treatments, the solvents were analyzed by GC and estimated to be about 99.9 wt. % pure.
C.2. Phenol Equilibria for DIPE/Water

For phenol distributing between DIPE and water, a K_d of approximately 40 was expected (12). For the first few extractions, a synthetic wastewater containing about 10,000 ppm phenol was extracted. To leave a phenol concentration in the water phase high enough to be easily measurable and be near the level found in the coal-conversion process condensates, 40 ml of water was extracted by 10 ml of DIPE. Later extractions had the phenol dissolved in the DIPE feed, as less solute was transferred between phases, and measurement errors were reduced by dealing with more concentrated solutions.

The samples were analyzed with a Varian 1740 gas chromatograph, equipped with a flame ionization detector (FID) and a 2.4m x 3.175 mm column packed with Porapak Q. The column temperature was maintained at 240°C. The helium carrier gas and hydrogen flows were set at 25 ml/min, with air flow at 250 ml/min.

The samples were collected in tared bottles containing a weighed amount of 95% ethanol. The ethanol reduced the volatility of the DIPE dissolved in the water phase enough to prevent loss. In the DIPE phase, the ethanol diluted the phenol concentration to a level easier to measure, Water-phase samples were preserved with HCl.

Concentrations were calculated from the peak areas using the methods of internal standardization as described elsewhere (19,13). Experimentally determined FID factors for phenol (1.42), DIPE (1.14) and the internal standard MIBK (1.20), based on an assumed FID factor of 0.99 for methyl ethyl ketone, were used in the analysis.

C.3. Polyhydroxybenzene Equilibria for DIPE/Water and MIBK/Water

The polyhydroxybenzenes, being of low volatility, were analyzed by

liquid chromatography. The procedures used differed for the two solvents studied, DIPE and MIBK. In both cases, however, external standards were used and the sample concentrations were calculated using peak areas and Beer's Law, shown to be valid for the solutes experimentally. All samples were filtered and were acid preserved, except for the samples from the low-pH dihydroxybenzene extractions.

The differences between the DIPE and MIBK extractions center around the organic-phase analysis. In liquid chromatography the samples must be miscible with the mobile phase. In the MIBK extractions this was achieved by diluting the organic-phase sample by a factor of about 20 by weight into a 50 vol. % solution of methanol in water. However, for the DIPE extractions, the K_d 's were low enough that a diluted sample would be too dilute to be measured. Also, the water solubility of DIPE is lower than that of MIBK, making dilution more difficult.

The DIPE samples were injected directly. Good repeatability was observed. A separate ether-solution standard of the solute had to be used as the absorbance of the solutes depended on the sample solvent. The ether absorbances were lower. This bathochromic shift is probably due to increased association with water molecules in the water-phase samples. The ether-phase peaks tailed more also, but this was not a problem.

The mobile phase used in the extraction analyses consisted of a 25 vol. % solution of methanol in pH 3 buffered water. A H_3PO_4/KH_2PO_4 buffering system was used, with concentrations of 0.005 M and 0.04 M respectively. This mobile phase composition would effectively separate all the dihydroxybenzenes from each other but would not separate the trihydroxybenzenes. This was not a problem as the extractions were carried out in single-solute systems, and resulted in fast analyses.

XBL795-6294

Figure 2-1. Liquid Chromatogram of Polyhydroxybenzene Mixture, Methanol/Water Mobile Phase

ď

Chapter III. Water Analysis and Discussion

In this chapter the analyses of two coal-conversion process condensate waters for phenols will be presented.

A. Water Sample Sources and Ages

A condensate water sample from the Synthane gasification process being developed by the Department of Energy (DOE) at the Pittsburgh Energy Technology Center (PETC) was chosen as typical of the lowertemperature gasifiers which tend to produce highly contaminated waters. As typical of the liquefaction processes, water samples from the Solvent Refined Coal (SRC) process were obtained from the pilot plant in Ft. Lewis, Washington. SRC is being developed jointly by the Pittsburgh and Midway Coal Company and DOE.

To help prevent degradation, the samples were kept in cold storage at 4°C, away from light and air. The Synthane water sample, from run #40-CHMP-317, was received on December 12, 1977, after approximately one month in transit. The analysis of the sample by GC-MS was performed on March 10, 1978, when the sample was about four months old.

The SRC water, Sample #1003, from the Recycle Process Water Tank, was taken on November 17, 1977. It was analyzed by GC-MS on March 30, 1978, when the sample was about four and one-half months old. Analysis for dihydroxybenzenes by HPLC was performed on August 17, 1978, when the sample was nine months old. On March 19, 1979, the sample was analyzed by HPLC for trihydroxybenzenes. The sample was sixteen months old at that point.

B. Gas Chromatographic - Mass Spectrometric (GC-MS) Analysis

As described in Chapter 2, the condensate water samples were derivatized

and analyzed by GC-MS. Samples of the computer output for a methylated Synthane water are presented in Figures 3-1 and 3-2 and Table 3-1. The reconstructed gas chromatogram in Figure 3-1 is useful in locating peaks for comparison with chromatograms from other GC's with different detectors. This was important for quantification of the results, as the quadrupole mass analyzer in the MS used does not give quantitative information. The peak sizes on the reconstructed chromatograms did give a rough idea of the relative abundance of the components.

Table 3-1 shows the results for the largest peak in Figure 3-1. The five compounds in the library whose spectra best fit the spectrum of the peak are listed. The numbers in the columns under PURITY, FIT and RFIT are statistical measures of the fit between the compound listed and the peak. The closer all three numbers are to one thousand, the better the fit.

Figure 3-2 shows the mass spectrum of the same peak compared with the spectrum of the most likely fit, 1,2-dimethoxybenzene, the methyl ether derivative of catechol. Note that the peaks in the plot of the algebraic difference of the two spectra are small, indicating a good fit.

The other major peaks in the methylated Synthane condensate water were identified similarly, and are listed in Table 3-2. Results for the methylated SRC condensate water are listed in Table 3-3. The reconstructed chromatograms and statistical fit data are contained in Appendix D.

The results listed in the two Tables 3-2 and 3-3 have an important qualifier: the mass spectra of some of the structural isomers of the methoxybenzenes are quite similar. Indentification of the class of compound is definite, but its exact identity is not. For example, the

Figure 3-2. Mass Spectra Comparison: 1,2-Dimethoxybenzene and Methylated Synthane Water Peak #317

Table 3-1. Mass Spectra Comparison: Methylated Synthane Water Peak #317 with Five Best Statistical Fits

L IBRA 03/10 Sampl	RY SEARCH 178 10:20 E: METHYL	:00 + Ated 5	15:51 IYNTH91	De Ce Ve Watt	ATA: ME ALI: CA ER	THSY LOPT	18 • 38 •	317 1		BASE RIC:	M⁄E: 96	138 895.
25489 129	SPECTER MATCHED	IN LIB AT LEA	1292718 ST 5 (SEPRI	CHED FO 16 LAC	R MAN	(IM) PER	1 PU 13 I	N THE	UNKH	DUN	
RANK 1 6 2 17 3 42 4 17 5 24	IND NAME 15 ESN7E 89 BENTE 72 2-FDC 91 FEI DE 87 FNTE2	ME.1.2 PE.1.2 PENDIE PENDIE PENDIE		FIDSON- FIDSON	YLIDEX5 - 11-1 37			;-				
RANK 1 CS. 2 CB. 3 C9. 4 CB. 5 C10	FORMULA H10.02 H10.02 H10.02 H10.02 H10.02	•				13 13 13 13		.77 133 127 139 139	2 2 5 6 6	Tr ^a ?? ?? 65 64	FIT A 994 968 953 908 834	RFIT A 682 806 741 665 690
MRSS 38 29 41	INTEN D 37 71 123	1 ^C 139	2 ^C	.3 ^C 25 67	∠ ^C	5 ⁰ 65			••••			
43 50 51 52 53	56 113 148 34	\$3 114	58 81 56	308 46	63	37		•				
54 55 63 64 65	12 28 17 78 48 132	51 39 134	93 92 88	77	68 ⊿9 €8	65	- - 				• •	
66 67 68 69 74	13 45 9	59		110		53 25 21		• • •				• • •
77 76 79 80 81	257 41 26 63 8	268 27 48	52 30 50	51 117 279 101	56 121 25 43	23 33 191	•	·	· · .		 	•
82 91 92 93 94	3 41 31 8	25	50	·	51 46	51 26				•	· · · · · · · · · · · · · · · · · · ·	
95 96 105 107 109	313 22 4 15 12	336	311	262	178 43 185	383 66	· ·					
110 121 122 123 124	26 14 17 387 31	452 36	767 60	50 63 455	173	387						•
135 136 137 138 139	2 6 8 4 1020 88	927 84	537	839	\$72 115	446			×			•
140 150 152	6 3 2											

a statistical fit parameters

b peak intensities of unknown

с

peak intensities of library compounds

	and a second second second second second		
•••••••••••••••••••••••••••••••••••••••			
Peak Number ^a	Compound	Parent Phenol	Certainty of Fit
1	1,2-dimethoxybenzene	catechol	good
3	l-methoxy-4-methylbenzene or l-methoxy-3-methylbenzene	p-cresol m-cresol	both fix well, p-cresol slightly better
e	methoxybenzene	phenol	good
4	l-methoxy-2-methylbenzene	o-cresol	good
S	5-methoxy-2,3 dimethylphenol	<pre>1.5-dihydroxy-2,3-dimethylbenzene (dimethyl resorcinol)</pre>	fair
Ŷ	3-methoxy-2,4,6-trimethy1pheno1	<pre>1,3-dihydroxy-2,4,6-trimethylbenzene (trimethyl resorcinol)</pre>	fair
2		2-ethyl-5-methyl phenol	fair

corresponds to peak numbers on Figure 3-1.

. C

Compound	Parent Phenol C	Certainty of Fit
1,2-dimethoxybenzene	catchol	good
l-methoxy-l-methylbenzene	p-cresol	good
methoxybenzene	phenol	good
5-methoxy-2,3-dimethylpheno.	1 1,5-dihydroxy-2,3-dimethy benzene	ol fair

Table 3-3. Qualitative Analysis of Methylated SRC Water by GC-MS

methyl ether derivatives of all three of the cresols make a good match to the peak reported as the methylation product of p-cresol in Table 3-2, yet the fit to the methyl ether derivative of p-cresol is a little better than the others.

Attempts were made to quantify the results listed in Tables 3-2 and 3-3. To obtain yields for the methylation reaction, pure, singlecomponent water solutions were methylated and analyzed by GC. However, the yields in the complex condensate waters were not consistent with those in pure solution. In particular, the yield for the reaction producing anisole from phenol was very low in condensate water, yet very high in the single-component solutions. In the condensate waters, the dimethoxybenzene peaks were much larger than the anisole peak, yet of the phenols, phenol itself was present in the highest concentration, as shown by direct GC injection of the condensate water (phenol will elute) and by HPLC analysis presented in section C of this chapter. Although direct methylation of the condensate waters did not allow quantitation of the phenolic constituents, it did give qualitative identification very useful in confirming the results presented in the next section.

C. High-Performance Liquid Chromatographic (HPLC) Analysis

After the GC-MS analysis of the methylated condensate waters had been completed, the repeated exposure to air had degraded the Synthane water sample to the point where it was no longer useful. While the dark coloration could be caused by a small percentage of the solutes degrading to highly-colored compounds, large amounts of a dark precipitate formed also. This occurred, even with cold storage of the sample, by the time the Synthane sample was eight months old.

The degradation of the process condensate waters with increasing age

is most likely by reaction with atmospheric oxygen. The high concentrations of ammonia and phenols would be toxic to the bacteria necessary for biological oxidation. The polyhydroxybenzenes are not likely to be oxidation products of the other phenols. The dihydroxybenzenes catechol and hydroquinone are easily oxidized to o- and p-quinones, respectively. The other phenols also react via a free-radical mechanism to form highly conjugated, colored compounds (27, 28), observed here to have limited water solubility.

The SRC water, however, had not darkened, but appeared to be stable even when not kept cold. The SRC water was also fouler than the Synthane water, having a higher hydrogen sulfide content and a higher pH. HPLC confirmation and quantitation of the results obtained from the GC-MS proceeded with the SRC condensate water.

Initially the water was analyzed only for the dihydroxybenzenes. The dihydroxybenzene, phenol and cresol peaks were identified by matching retention times with a standard solution of the pure compounds. Concentrations were calculated from the peak areas of the sample and the standard using Beer's law.

There were a few problems with this initial analysis. The peak for catechol overlapped with others, preventing positive identification and quantification. Resorcinol was found in the SRC water by HPLC, yet the methyl ether derivative of resorcinol was not found in either methylated water. This could be due to a yield problem in the methylation of resorcinol by dimethyl sulfate, similar to the problem with phenol. The three cresol isomers were not resolved by the mobile phase used, 25 vol. % methanol in water, so an approximate concentration could be assigned to them by assuming them to be present in the same ratio as in the

standard and reporting the results as total cresols. As was explained in Chapter 1, as the cresols are less polar than phenol, they will be more easily extracted and therefore were of less interest in this work.

After the presence of the dihydroxybenzenes in the condensate waters had been confirmed and their extraction behavior studied, the SRC water was then analyzed for trihydroxybenzenes. The trihydroxybenzenes oxidize even more rapidly than the dihydroxybenzenes when in basic solution and exposed to oxygen. One would expect that their half-lives in the condensate waters might be very short, leaving nothing to analyze in an old sample. However, the same could be said for the dihydroxybenzenes with respect to phenol, yet the SRC water appeared stable. Thus it was decided to analyze the SRC water for trihydroxybenzenes. The concentrations found might not reflect those in a fresh sample, but the fact that they were present at all would be important.

One problem with the analysis for dihydroxybenzenes was not apparent until later when the SRC water was analyzed for trihydroxybenzenes. The mobile phase first used, 25 vol. % methanol in water, would not separate hydroquinone from phloroglucinol. The later analysis used a 100% water mobile phase which did resolve these peaks, revealing that a peak earlier identified as hydroquinone was in fact phloroglucinol, confirmed by spiking and matching retention times. The other trihydroxybenzenes were not observed.

Figures 3-3 and 3-4 are sample chromatograms of the SRC water. The quantitative results of the analysis are presented in Table 3-4. The phenol concentration is in line with that reported for SRC condensate in Table 1-2. The presence of the trihydroxybenzene phloroglucinol is quite

Column: 3.9mm 300mm µBondapak C₁₈ Mobile Phase: 100% pH 3 Buffered Water, 2ml/min Detector: 254 nm UV Absorbance Date: 19 March, 1979

XBL 795-6297

Phloroglucinol

Compound		Concentration, pp	<u>om</u>
phenol		6700	′.
cresols		2850	•
resorcinol	•	2360	
phloroglucinol		610 ^a	

Table 3-4. Quantitative Analysis of SRC Condensate Water by HPLC

^a analysis five months later than others

important, as previous works (2,3,5,6,7) had made no mention of trihydroxybenzenes, except to note their strong resistance to biological oxidation (10). The presence of trihydroxybenzenes makes a strong case for solvent extraction or some other recovery process to remove the phenols from the condensate waters, as other destructive removal methods such as ozonation have yet to be proven and are expensive.

With the presence of one of the dihydroxybenzenes and one of the trihydroxybenzenes confirmed, one would expect to find the other isomeric polyhydroxybenzenes present also. The fact that the analyses performed did not detect the other polyhydroxybenzenes does not necessarily imply their absence in the condensate waters. With the GC-MS analysis of the methylated waters, reaction yield problems probably occurred in the methylation of the phenols by dimethyl sulfate, similar to the problem with phenol, preventing methyl ether formation and subsequent identification by GC-MS. With the direct HPLC analysis of the SRC water, the samples had aged to the point where phenols present initially could have oxidized significantly, preventing their identification or reducing the levels The SRC water had not darkened, but did have a yellow color found. similar to that of an oxidized solution of hydroquinone, which could be one reason why no hydroquinone was found by HPLC. With the complex chemistry of these process condensate waters, speculation about reasons for the absence of certain phenols and the presence of others is very Now that suitable analytical methods have been developed, the difficult. problem of the condensate water compositions can be more thoroughly investigated with the freshest possible samples.

Chapter IV. Batch Extraction Results and Discussion

A. Extraction Model

Phenols are weak acids. Extraction of phenols from water solution will therefore involve two equilibria: one in the water phase between ionized and nonionized phenol, and the other between the nonionized phenol in both liquid phases. Ionization constants at high dilution for the hydroxybenzenes of interest are listed in Table 4-1. No data were found for hydroxyquinol. As the available data did not include values at 25°C for all of the hydroxybenzenes, some values were interpolated using the van't Hoff equation:

$$\frac{d \ln K_a}{d(1/T)} = \frac{-\Delta H_r}{R}$$
(4-1)

The second equilibrium is described by the distribution coefficient K_{D}^{-} . The two equilibria combine to give the following result (30):

$$K_{D}, \text{ apparent} = \frac{K_{D}, \text{ true}}{\frac{a}{K_{D}} + 1}$$
(4-2)

At low pH, where the phenol is essentially completely nonionized, the apparent K_D is equal to the true K_D . As the pH increases, the effects of ionization will become more important. Near the pK_a of the phenol, K_D , apparent will be decreased to half that of the low pH value, and at higher pH will approach zero.

This behavior is significant, as the pH of the coal-conversion process condensate waters is near the pK_a 's of the phenols, due to dissolved, ammonia. Because of the large amounts of carbon dioxide also dissolved, the waters are highly buffered, so unless the waters are first stripped to remove the dissolved gases, the pH cannot be altered without the

Table 4-1. Weak-acid Equilibria of Hydroxybenzenes at High Dilution^a

Compound	T°C	K _{al}	pK _{al}	K _{a 2}	pK _{a2}
phenol	25	1.05×10 ⁻¹⁰	9.98		
catechol	20 25 b 30	$1.41 \times 10^{-10} \\ 3.31 \times 10^{-10} \\ 7.50 \times 10^{-10}$	9.85 9.48 9.12	8.37x10 ⁻¹³	12.1
resorcinol	20 25 ^b 30	1.55x10 ⁻¹⁰ 3.36x10 ⁻¹⁰ 7.11x10 ⁻¹⁰	9.81 9.47 9.15	4.78x10 ⁻¹²	11.3
hydroquinone	20 25 ^b 30	4.47x10 ⁻¹¹ 7.45x10 ⁻¹¹ 1.22x10 ⁻¹⁰	10.3 10.1 9.91	9.18x10 ⁻¹³	12.0
pyrogallol	25	9.67x10 ⁻¹⁰	9.01	2.30×10^{-12}	11.6
phloroglucinol	25	3.56x10 ⁻⁹	8.44	1.32×10^{-9}	8.88

^a from (20).

^b interpolated (see text)

addition of large volumes of chemicals at great expense. For example, a 10 ml sample of SRC condensate water required one gram of hydrogen chloride to change the pH from an initial value of 9.1 to 5, the endpoint where the carbonate evolved as carbon dioxide. At a current bulk anhydrous hydrogen chloride price of \$0.17/kg (21), this corresponds to an acid cost of \$17/m³ (\$65/1000 gal) of condensate water. Less expensive sulfuric acid, at \$0.064/kg in bulk, (21) gives an acid cost of \$8.70/m³ (\$33/1000 gal) of condensate water, and generates a sludge disposal problem in the subsequent lime treatment step prior to ammonia stripping. As a general rule, the chemical cost for wastewater treatment should not exceed 10% of the total treatment cost. The cost of these acids alone far exceeds the total cost for a reasonable condensate water treatment process. Aside from the high chemicals cost, addition of ions to control pH must be discouraged as it would compound the dissolved-solids removal problem for both recycle and effluent waters.

B. Controlled-pH Extraction Results and Discussion

Figures 4-1, 4-2, 4-3, and 4-4 present the results of the four extraction series where the water-phase pH was varied. Aside from a few spurious data points in the phenol extractions, all of the data fall close to the curves predicted by Equation 4-2, when the equation is fit to the K_D measured at low pH and K_a is taken from Table 4-1. The effects of activity coefficients known to be different from unity in ionic solutions are ignored in this simple model. This does not introduce error into the results of the controlled-pH extractions as the ionic strengths of the water phase were low enough that the small effects of activity coefficient could not be detected with the analytical methods used. There could also be a cancellation in the weak-acid equilibrium

XBL 795-6298

Distribution Coefficient for Phenol Between Diisopropyl Ether and Water as a Function of pH at 298°K. Curve from Equation 4-2 with $K_D = 36.5$, $K_a = 1.05 \times 10^{-10}$.

£

Figure 4-3. Distribution Coefficient for Hydroquinone Between Diisopropyl Ether and Water as a Function of pH at 298°K. Curve from Equation 4-2, with $K_D = 1.03$, $K_a = 7.45 \times 10^{-11}$.

XBL 795-6301

Figure 4-4. Distribution Coefficient for Hydroquinone Between Methyl Isobutyl Ketone and Water as a Function of pH at 298°K. Curve from Equation 4-2, with K_D=9.92, K_a7.45x10⁻¹¹. expression Eq. 4.3:

Ka

$$= \frac{\gamma \pm [H^+][A^-]}{\gamma_{HA}[HA]}$$

where the mean ionic activity coefficient $\gamma \pm$, unity at infinite dilution and less than unity in most ionic solutions below concentrations of 6 molal, is about equal to the activity coefficient of the free aqueous phenol, normalized in reference to an ideal solution at infinite dilution. As the true K_D is already a ratio of activity coefficients, as shown in Appendix C, unless the ionic environment changes drastically, the true K_D should remain fairly constant at low water-phase phenolicsolute concentration. The net result is a good fit of the model to the experimental data.

The range of condensate water pH is also plotted on Figure 4-1, the phenol-DIPE extraction results. Significant decreases in the overall K_D occur in this range. Because the amount of dissolved NH₄HCO₃ in the condensate waters is larger than the amount of KOH used for pH control in the single-solute extractions, the effects of ionic strength on the extraction equilibria would be more important in the condensate waters than in the single-component extractions. The higher ionic strength would decrease $\gamma \pm$, and, by a salting-out effect, would increase γ_{HA} . Both of these changes would increase the apparent K_a , shifting the curves predicted by Equation 4-2 in Figures 4-1 through 4-4 to the left.

The Phenosolvan process, currently operated commercially to process coke oven and coal gasifier condensate waters, uses DIPE to extract the phenols. Beychok (1) describes the Phenosolvan process with some calculations using the Kremser equation (22):

53

(4 - 3)

$$\frac{X_{in}}{X_{out}} = \frac{\left(\frac{K_{D} \cdot S}{W}\right)^{N+1} - 1}{\left(\frac{K_{D} \cdot S}{W}\right)^{-1}}$$

where X and X refer to water phase concentrations, N is the number of stages, S and W refer to the solvent and water flow rates, respectively. The incoming solvent is assumed to be pure. Phenol and catechol, representative of the polyhydroxybenzenes, were assumed to be extracted from a Lurgi gasifier condensate. Using a solvent-to-feed ratio of 1:10 and a $K_{\rm D}$ for phenol of 20, 99.9% removal was calculated for 9 equilibrium stages. The K_{D} of 20 selected by Beychok accurately reflects the decrease due to water phase ionization of the phenol and corresponds to a pH of 9.8. But the K_n of 7.0 used for catechol is much too high. Table 4-2 lists the hydroxybenzene K_{D} 's measured in this work, both for DIPE/Water and MIBK/Water systems. In DIPE, catechol has the highest $K_{\rm D}$ of the polyhydroxybenzenes, but even at low pH it is only 4.86. Using the model, K_{D} for catechol is 1.57 at a pH of 9.8. Instead of the catechol removal of 70% quoted by Beychok for a solvent-to-feed ratio of 1:10 and nine stages, the removal would only be 15.7%. Removals of the other polyhydroxybenzenes would be even lower, so the 60% removal for the polyhydroxybenzenes quoted by Beychok is unrealistic. It is clear that a better solvent for the polyhydroxybenzenes is required.

C. Solvent Selection

Burns (23) has measured K_D 's for phenol distributing between MIBK and water at various temperatures, and found that K_D decreased with increasing temperature. At 30°C, the K_D of 60 is significantly higher than that for DIPE as a solvent. Burns also shows that significant energy savings can be realized using MIBK to extract phenol from coal-

54

(4 - 4)

Distribution Coefficients for Hydroxybenzenes in DIPE/Water and MIBK/Water Systems at Low pH and 298°K Table 4-2.

Solvent	Solute	Hd	K _D	Water Phase Concentration, ppm	Material Balance Closure Error
DIPE	phenol	5.56	36.5	1350	+6.2%
	catechol	5.88	4.86	2060	-0.55%
	resorcinol	4.16	2.06	1990	+2.1%
	hydroquinone	5.17	1.03	2790	-1.0%
	hydroxyquinol	4.64 ^c	0.181	2680	-6.0%
MIBK	phenol ^a	.	60	~2000	
• •	catechol	4.18	18.7	2290	-0.66%
	resorcinol	4.21	17.9	1800	+0.72%
	hydroquinone	3.88	9.92	2490	+0.27%
	hydroxyquinol	4.24 ^C	5.01	3000	+1.4%
•	phloroglucinol	4.53 ^c	3.92	~1500 ^b	+9.2%
	pyrogallol	4.52	3.58	3050	+4.1%
a at 303°K,	from (23).			•	· · · ·
b no extern	al standard used.	Based on	feed sol	ution concentration K	

^C not connected for sample dilution

conversion condensate waters instead of the DIPE used by the Phenosolvan process. The physical properties of MIBK are such that residual MIBK can be vacuum steam stripped from the raffinate using waste heat from the feed water, simultaneously cooling the feed water to give a higher K_D for extraction. DIPE is not suitable for vacuum steam stripping, and the Phenosolvan process uses a complicated three-column inert gas stripping system that increases internal recycle streams and distillation column loads greatly. Figure 4-5 is a diagram of Burns' proposed process. With this in mind, it was decided to investigate further the extraction of phenols from water with MIBK.

Referring again to Table 4-2, it is apparent that the K_D's for the hydroxybenzenes in MIBK are significantly higher than those in DIPE. This can be explained in a number of ways. First, MIBK, being a ketone, is more polar than DIPE, an ether. As the polyhydroxybenzenes are quite polar, they would have stronger dipole-dipole interactions with MIBK than DIPE. Second, the oxygen in the carbonyl group makes stronger hydrogen bonds than the ether oxygen does. The carbonyl C-O double bond donates electrons to the oxygen more readily than the C-O single bonds in the ether, making the carbonyl oxygen more negative than the ether oxygen and thereby increasing its hydrogen bonding ability. Also, hydrogen bonding is less sterically hindered in the ketone, as the hydrocarbon side chains are not attached to the oxygen, as in the ether, but to the carbonyl carbon.

It is interesting to note that for both solvents, the K_D 's decrease by about one order of magnitude with the addition of each hydroxyl group, but that the K_D 's for the polyhydroxybenzenes with MIBK are about one order of magnitude higher than for DIPE. The fact that the

Energy-Efficient Phenol Extraction Process [after Burns, (23)] Figure 4-5.

 K_{D} variation among the dihydroxybenzenes in DIPE is greater than that in MIBK again reflects the directional hydrogen bonding ability of MIBK, as the steric differences of the dihydroxybenzenes are minimized.

The ordering of the K_D 's for the dihydroxybenzenes can be similarly explained. As water is a very polar solvent, polar solutes would be expected to have lower activity coefficients than nonpolar solutes. The three dihydroxybenzenes, arranged in the order of increasing polarity, are hydroquinone, resorcinol and then catechol. On this basis, one would expect the same order when the dihydroxybenzenes are arranged in the order of decreasing K_D , with the most polar compound having the lowest K_D . But this is not the case.

Water solubilities give a better indication of the water phase activity coefficients. The water solubilities, in parts per 100 parts water, by weight, are as follows (24): catechol, 45.1 at 20°C; resorcinol, 147 at 12°C; and hydroquinone, 6 at 15°C. One would expect the least soluble material to have the highest K_D , giving, in the order of increasing K_D : catechol, resorcinol, hydroquinone. However, this is not the case either.

The answer probably is a combination of both ideas, albeit it is still a conjectural argument. Catechol is the most polar, but hydrogen bonding between catechol and water is more sterically hindered than in the other dihydroxybenzenes. Catechol tends to hydrogen bond to itself. Even though resorcinol is less polar, the lack of steric hinderance in hydrogen bonding makes its water solubility higher than that of catechol. As would then be expected, catechol is more easily extracted from water than resorcinol.

Contrasted with this, hydroquinone has no dipole moment, only a quadrupole moment. Even though hydrogen bonding is the least sterically

hindered compared to the other dihydroxybenzenes, the lack of a dipole moment makes hydrogen bonding with water weaker, as is reflected in its water solubility, the lowest of the three dihydroxybenzenes. One would then expect hydroquinone to have the highest K_D . But organic phase effects are important also. Hydroquinone, being nonpolar, lacks the dipolar interactions that catechol and resorcinol have in solutions of DIPE and MIBK. Consequently, it has the highest activity coefficient in the organic phase. The net effect is to give hydroquinone the lowest K_D .

The increased polarity and the directional hydrogen bonding ability of MIBK made it a better solvent than DIPE for extraction of the polyhydroxybenzenes. Additional increases in polarity through the use of different functional groups or increased numbers of functional groups is likely to prove counterproductive in attempting to find a better solvent than MIBK. Water solubility would increase also, increasing the cost of solvent recovery. If the hydrocarbon side chains were increased to lower the water solubility, the polarity would drop, negating the gain in Separation of the solvent from the crude phenols would become more K_D. difficult as the boiling point of the solvent would be getting closer to that of phenol. The atmospheric boiling points of MIBK and phenol are 116.9°C and 181.8°C respectively. Additionally, the more complicated solvent molecule that would result from the attempt to get a better solvent would probably be more expensive. Thus, MIBK appears to be the best physically-interacting solvent for the extraction of phenols from water.

Chapter V. Summary

This work was divided into two parts. The first was analysis of representative coal-conversion process condensate waters for phenols, particularly the unsubstituted hydroxybenzenes. The second was investigation of the ionization and phase-distribution equilibria in the extraction of the weakly acidic phenols from water solution. Solvent extraction is the method currently used to remove phenols from coke-oven water effluents and some coal-gasifier process condensate waters.

Phenol, cresols, non- and methyl- substituted dihydroxybenzenes were identified as methyl ether derivatives by gas chromatography-mass spectrometry, confirming earlier work (3,5,6,7). These analyses could not be quantified because of methylation-reaction yield inconsistencies.

The Synthane water sample degraded, even with careful storage, before the analytical method using high-performance liquid chromatography (HPLC) was developed, so work continued with the SRC condensate water, which appeared stable. Initial HPLC analysis of the SRC condensate water revealed 6700 ppm of phenol, 2900 ppm of mixed cresols, 2400 ppm of resorcinol, and a peak identified in later analyses as 610 ppm of phloroglucinol.

Sample aging could have led to the total loss of some components and reductions in the amounts of the others. Fresh condensate water samples from the Synthane and SRC processes, along with samples from other processes, should be analyzed for phenols by HPLC so that the removals necessary for compliance with effluent- or recycled-water standards can be determined.

The presence of the trihydroxybenzene phloroglucinol is most important, as trihydroxybenzenes air-oxidize easily, which would cause severe color problems for effluent water. Trihydroxybenzenes are also extremely resistant to biological oxidation (11), dictating removal by other means.

Batch extractions of phenol, resorcinol and hydroquinone into diisopropyl ether (DIPE), and of hydroquinone into methyl isobutyl ketone (MIBK), from water at different pH's showed that the water phase pH has a major influence on the distribution coefficient K_D of a weakly acidic phenol. This effect is accurately described by a simple model combining the weak acid ionization equilibrium in the water phase, having the equilibrium constant K_a , with the phase distribution equilibrium between the nonionized aqueous phenol and the organic phase phenol:

$$K_{D}$$
, apparent = $\frac{K_{D}$, true
 $\frac{K_{a}}{[H^+]}$ + 1

At the buffered high pH of the coal-conversion condensate waters, caused by large amounts of dissolved ammonia and carbon dioxide, the resultant reduction in the apparent K_D should cause problems in the extraction of the phenols. Postulation of optimistically high low-pH values for polyhydroxybenzenes has led to exaggerated projections of polyhydroxybenzene removal from coal-conversion condensate waters by the Phenosolvan process, a proprietary process that uses DIPE to extract phenols from effluent waters. Beychok (1) used a reasonable K_D of 20 for phenol, corresponding to a pH of 9.8, and with a solvent-to-feed ratio of 1:10 and nine equilibrium stages, calculated a phenol removal of 99.9%, and with a K_D of 7.0, calculated a catechol removal of 70% under the same conditions. Actual catechol removal under these conditions would be only 16%, based on a true K_D of 1.6 at a pH of 9.8. Removals of the other polyhydroxybenzenes will be even lower, as catechol has the highest K_D between DIPE and water of the polyhydroxybenzenes. With the

(4-2)

polyhydroxybenzenes present at levels in excess of 2000 ppm, the Phenosolvan process, as run, will not extract the process condensate waters to the degree necessary as a precursor to biological oxidation.

The batch extractions performed in this work show MIBK to be clearly a better solvent than DIPE for the extraction of phenols from water. The K_D 's for polyhydroxybenzenes with MIBK are an order of magnitude higher than with DIPE. In the case of the trihydroxybenzenes, at low pH the K_D for DIPE extraction was around 0.2, but for MIBK extraction was around 0.4. In addition, Burns (23) describes energy savings achieved by using MIBK instead of DIPE for phenol extraction from water solution.

MIBK is probably the best physical solvent for the extraction of phenols from coal-conversion condensate waters in terms of cost, energy efficiency and its lack of reactivity, but more work needs to be done. Process condensate waters will emerge from coal-conversion processes at temperatures in excess of 70°C. The K_D for phenol between MIBK and water decreases as the temperature increases (23), and the polyhydroxybenzenes are likely to exhibit the same behavior. Not much of a penalty for higher temperature operation can be tolerated as the polyhydroxybenzene K_D's are not extremely high even at low pH. As the extraction model is sensitve to the value of pK_a used, extrapolation from the available data to higher temperature could be risky, so experimental determination of the pK_a 's of the phenols at higher temperatures should be considered along with the distribution coefficient measurements.

Integration of the phenol recovery into the total water treatment stategy must also be investigated. The ammonia and acid gas stripping operations could occur before or after the phenol removal. The effects that the organics would have on these operations is presently unknown. Also, methods of performing these separations without using mineral acids and bases to adjust the water pH (25), releasing the acid gases and ammonia, respectively, must be investigated. Tar is another problem, as it accumulates in the Phenosolvan process, requiring semi-annual or more frequent shutdowns for equipment cleaning (9). All of these problems must be addressed in a total water treatment process.
Appendix A: Batch Extraction Data

Tables A-1 through A-4 present the raw data for the batch extractions done in this work. Material balance nonclosures for Extractions 1b through 1f were calculated taking advantage of the organic solvent concentrations that could be measured in the water feed and water phase solutions by gas chromatography. A zero loss of water and DIPE was assumed. The phenol in the DIPE phase was assumed to have no effect on the water solubility in DIPE, which in turn implies that the water content of the DIPE phase did not change during the extraction. Therefore, all the water in the water feed was assumed to appear in the raffinate. On this basis, the raffinate and extract phase masses were calculated as follows, for a water feed of 1: mass of water in water feed

Raffinate = $\frac{(\text{no loss to solvent phase, as evaporation})}{\text{concentration of water in raffinate}}$ (by difference)

 $R = \frac{1 - W_{ao}^{\beta}}{1 - W_{bf}^{\beta} - W_{cf}^{\beta}}$

(mass of solvent and dissolved) (mass of solvent transferred water in solvent feed) (to water phase during extraction concentration of solvent and water in extract (by difference)

Extract =

 $E = \frac{S(1 - w_{bo}^{\alpha}) - [R \cdot W_{af}^{\beta} - W_{ao}^{\beta}]}{1 - w_{bf}^{\alpha}}$

Material Balance = $\frac{-S \cdot W_{bo}^{\alpha} + R \cdot W_{bf}^{\alpha} + E \cdot W_{bf}^{\alpha}}{S \cdot W_{bo}^{\alpha}} \cdot 100$

(A - 2)

(A-1)

(A-3)

Table A-1. $k_{\rm D}$ as a Function of pH for Phenol in a DIPE/Water System at 298°K

-			Lator.	Dhaco					·
Extraction	H H	Å	Vale Concentr Phenol (ppm)	ations DIPE (ppm)	DIPE Phase Phenol (ppm)	DIPE in Water Feed (ppm)	Phenol in DIPE Feed (ppm)	Phenol Material Balance Non- closure, %	Solvent/ Water Phase Ratic by Weight
la	5.90	36.6	1360	9450	49800		9800 ^a	+7.6	0.185:1
•	5.28	36.6	1350	9460	49400		9800	+5.4	0.182:1
	5.50	36.3	1340	9560	48600		9800	+5.6	0.185:1
1b	6.18	36.8	1560	9040	57400	5330	64500	-0.42	0.185:1
•	6.6/. 5 01	51.3	1120	8870	57400	5330	64500	-4.1	0.186:1
	1 .0.1	C+ -	1.040	AT/U	00875	0555	64500	-1.9	0.188:1
lc	8.68	34.8	1740	9420	60600	5470	67700	+0.96	0.182.1
	8.69	36.1	1700	9330	61300	5470	67700	+1.9	0.185:1
	8.68	36.2	1690	9300	61100	5470	67700	+1.2	0.184:1
1d	9.14	24.2	2590	9470	62600	2650	68500	+7.4	0,190.1
•	9.12	23.6	2620	9360	61900	2650	68500	+6.5	0.192:1
	9.14	24.6	2610	9360	64100	2650	68500	+9.2	0.198:1
le	9.79	19.6	2510	9430	49300	8530	60800	+1.5	0.190:1
	9.92	19.8	2510	9420	49800	8530	60800	+2.5	0.188:1
	9.94	19.3	2540	9450	4 9000	8530	60800	+2.1	0.182:1
lf	10.58	6.72	5000	9150	33600	8530	60800	+0.36	0 176.1
	10.56	6.41	5210	9310	33400	8530	60800	+1.2	0.181:1
•	10.59	6.44	5260	9380	33900	8530	60800	+1.8	0.179:1

a water phase phenol feed

b approximately 1:4 by volume

 $K_{\rm D}$ as a Function of pH for Resorcinol in a DIPE/Water System at 298°K Table A-2.

Extraction	Hd	м 0 0	Water Phase Concentration (ppm)	DIPE Phase Concentration (ppm)	Resorcinol in DIPE Feed (ppm)	Resorcinol Material Balance Non- closure, (%)	Solvent Water Ph Ratio, Weight ^a
0 1	4.02 4.02	2.07 2.02 2.02	2000 2000 1970	4147 3987	6710 6710 6710	+2.5 +2.5 -0.45	0.733
2 b	7.88	1.95	2100	4100	6940	+0.38	0.728
	7.91	2.15	2000	4290	6940	+1.2	0.732
	7.78	2.05	2090	4290	6940	+2.4	0.723
2c	8.59	1.63	2080	3380	6280	+2.9	0.674
	8.61	1.63	2130	3480	6280	+2.6	0.717
	8.65	1.62	2130	3450	6280	+2.9	0.707
2d	9.50	0.902	2970	2680	6700	+1.5	0.721
	9.50	0.906	2970	2690	6700	+0.99	0.729
	9.48	0.912	2940	2680	6700	+0.87	0.721
2e	10.05	0.354	3960	1400	6700	+1.4	0.734
	10.09	0.351	3880	1360	6700	+2.1	0.708
	10.11	0.351	3900	1370	6700	+3.0	0.706
2f	12.13	0.00970	7070	68.6	10300	-1.2	0.700
	11.14	0.0106	7350	77.7	10300	-0.20	0.720
	11.07	0.0114	7510	85.8	10300	+0.30	0.733

a approximately 1:1 by volume

Extrac- tion	Solute	Hd	v ≏	Water Phase Concentration (ppm)	DIPE Phase Concentration (ppm)	Feed Solution Concentration (ppm)	Solute Material Balance Non- closure (%)	Solute/ Water Phase Ratio by Weight ^c
e	catechol	5.86 5.87 5.91	4.86 4.87 4.87	2030 2080 2070	9865 10130 10090	12930 ^a 12930 12930	-2.3 +0.37 +0.31	0.735:1 0.730:1 0.719:1
4a	hydroquinone	5.33 4.98 5.20	1.03 1.03 1.02	2760 2730 2710	2820 2800 2760	6590 ^a 6590 6590	-0.041 -1.1 -1.9	0.733:1 0.734:1 0.731:1
4Þ	hydroquinone	9.89 9.78 9.85	0.593 0.597 0.604	2360 2360 2350	1400 1410 1420	3360 ^b 3360 3360	+0.90 +1.2 +0.58	0.729:1 0.732:1 0.718:1
2	hydroxyquinol	4.61 ^d 4.67 ^d	0.180 0.182	2650 2710	476 494	3230 ^b 3230	-5.0	0.748:1 0.725:1
a solute	in DIPE feed	х. Э						
b solute	in water feed				•			

 ${\rm K}_{\rm D}$ for Polyhydroxybenzenes in a DIPE/Water System at 298°K Table A-3.

d not corrected for dilution of sample

c approximately 1:1 by volume

 $K^{}_{\rm D}$ for Polyhydroxybenzenes in a MIBK/Water System at 298°K Table A-4.

Water Phase Ratio by Weight^a 0.820:1 0.818:1 0.816:1 0.837:1 0.823:1 0.806:1 0.807:1 0.763:1 0.707:1 0.827.1 0.831:1 0.831:1 0.822:1 0.817:1 0.815:1 0.828:1 0.833:1 0.828:1 Solute/ closure (%) Balance Non-+0.0090 +0.051 -0.60 -0.76 +0.40 -0.89 +0.37 Material -1.4 +1.3 +3.0 +2.8 +1.1+1.1-1.1+4.7 +3.5 +6.0Solute +12. Concentration MIBK Feed 556^b 556^b (mqq) $18400 \\ 18400$ 45800 45800 45800 16700 16700 14100 14100 34200 34200 27700 16700 34200 27700 27700 Concentration MIBK Phase 473^b 428^b (mqq) 11000 10800 15300 42700 43000 42400 24800 24400 25000 14600 14400 15000 14800 32400 31800 32400 Concentration Water Phase $\frac{116^{\rm b}}{114^{\rm b}}$ (mqq) 3030 2970 3060 1810 2320 2290 2250 2470 2500 2490 1790 1770 1820 3020 1780 1820 10.0 9.76 10.0 4.08 8.16 8.14 8.24 5.15 3.63 3.53 4.90 18.4 18.8 18.8 17.9 17.9 17.8 ХO 4.55^c 4.51^c 4.20^C 4.27^C 9.45 9.43 3.88 3.86 3.90 9.41 4.54 4.50 4.19 4.284.19 4.17 4.19 4.17 Hq Phloroglucinol Hydroxyquinol Hydroquinone Hydroquinone **Pyrogallo1** Resorcinol Catecho1 Solute Extraction 8 8a 10 و ά 11

68

Solute was impure and a standard could not be made

not corrected for sample dilution

U,

approximately 1:1 by volume

ർ

standard area of peak.

م

where:

W is a mass fraction, 10⁻⁰x ppm

- α , β are superscripts denoting organic and water phases, respectively
- a,b are subscripts denoting DIPE and phenol solutes, respectively
- o,f are subscripts denoting before (feed) and after equilibrium, respectively

S is the solvent-to-water mass ratio

The material-balance nonclosures were calculated more simply in the polyhydroxybenzene extractions by assuming the raffinate and extract masses to be equal to the water and solvent feed masses, respectively. This assumption was made because the detector on the LC used is not sensitive to DIPE, so that for the DIPE extractions, the water phase samples would also have had to be analyzed by GC to get the solvent concentrations. This assumption causes less error for the polyhydroxybenzene extractions than it would for the phenol extractions. For the DIPE extractions, the polyhydroxybenzene K_{n} 's had a value nearer one than phenol did, so the effect of the solute on the water-phase DIPE solubility would be much smaller for the polyhydroxybenzenes than for phenol. The change in the water-phase DIPE solubility would also have a larger effect in the phenol extractions because the solvent-to-water mass feed ration was about four times lower than in the polyhydroxybenzene extractions. For the case in which the solute was fed in the organic solvent:

Material Balance =
$$\frac{-S \cdot W_{o}^{\alpha} + S \cdot W_{f}^{\alpha} + W_{f}^{c}}{S \cdot W_{f}^{\alpha}} \cdot 100 \qquad (A-4a)$$

For the case in which the solute was fed in the water phase:

Material Balance Nonclosure (%) = $\frac{-W_o^\beta + S \cdot W_f^\alpha + W_f^\beta}{W_o^\beta} \cdot 100$

All mass fractions in Equations A-4a and A-4b refer to the phenolic solute, with the other notation remaining as in Equations A-1 through A-3.

For a comparison of the two methods, the material-balance nonclosure for the first point in extraction #1b is-0.42%, using Equations A-1, A-2 and A-3. Using Equation A-4a, the nonclosure is +2.1%.

(A-4b)

Appendix B: Theoretical Plate Count Calculation

Column efficiency is most often measured in terms of the theoretical plate count of the column for a peak of interest. Column condition can be monitored numerically and appropriate column cleaning procedures instituted when contamination is indicated by a decrease in efficiency.

The method used most commonly is the tangent method. The theoretical plate count N is given by (26):

Ν

$$= 16 \left(\frac{R_{t}}{W}\right)^{2}$$
(B-1)

where R_t is the retention time in seconds of the peak and W is the peak width in seconds obtained by drawing tangents from the sides of the peak to the baseline. The peak is assumed to be symmetrical.

However, peaks are often not symmetrical. Tailing of peaks will not be reflected in a plate count based on an extrapolation from the middle of a peak, and column contamination first manifests itself as an increase in peak tailing. A more accurate method uses a peak width five times larger than the standard deviation (σ) of the curve, rather than the 4 σ width used in the tangent method. The 5 σ width is measured at 4.4% of the peak height and is used in the following equation for N (1):

$$N = 25 \left(\frac{R_t}{W}\right)^2$$
(B-2)

Figure B-1 shows how these two methods can differ radically for a tailing peak, the tailing making $N_{5\sigma}$ less than $N_{4\sigma}$.

In the extractions, a 10 ml water-phase sample was diluted to 30 ml before pH measurement. The pH of the original water phase was calculated as follows, with the calculation here done for the second data point in Extraction 1a (Table A-1):

concentrated solution: phenol = $1350 \text{ ppm} = 1.44 \times 10^{-2} \text{M}$ dilute solution: phenol = $1.44 \times 10^{-2} \text{M}/3 = 4.80 \times 10^{-3} \text{M}$

$$pH = 5.72, [H^+] = 1.91 \times 10^{-6} M$$

for phenol at 25°C: $K_a = 1.05 \times 10^{-10}$

Calculating the concentration of ionized phenol in the dilute solution using the ionization equilibrium:

$$1.05 \times 10^{-10} = \frac{(1.91 \times 10^{-6})(X)}{(4.80 \times 10^{-3} - X)}$$

$$X = 2.64 \times 10^{-7} M$$

Concentrations of the ions and free phenol before equilibration in the more concentrated solution:

$$[H^{+}] = 3 \cdot 1.91 \times 10^{-6} = 5.73 \times 10^{-6}$$
$$[Ph0^{-}] = 3 \cdot 2.64 \times 10^{-7} = 7.92 \times 10^{-7}$$
$$[Ph0H] = 3 \cdot 4.80 \times 10^{-3} = 1.44 \times 10^{-2}$$

Calculating the change caused by the concentration and re-equilibration:

$$1.05 \times 10^{-10} = \frac{[5.73 \times 10^{-6} - X][7.92 \times 10^{-7} - X]}{[1.44 \times 10^{-2} + X]}$$

Neglecting X in the denominator and solving for X:

$$X = 5.2 \times 10^{-7} M$$

For the concentrated solution: $[H^+] = 5.73 \times 10^{-6} - 5.2 \times 10^{-7} = 5.21 \times 10^{-6} M$

In the pH range 8-10, the buffering action of the phenols prevented pH change upon dilution.

Appendix D: Gas Chromatograph - Mass Spectrometer (GC-MS) Data

Peak identification for the methylated condensate waters was performed by comparison of the mass spectra of the unknown peaks with a library of spectra, using the integral minicomputer of the Finnegan GC-MS. The computerreconstructed gas chromatograms and the statistical comparisons for the peaks identified are contained in this appendix. Footnotes to Table D-1 explain the format of the computer output.

Table D-1. Methoxybenzene Identification in Methylated Synthane Water

L 18RAR 13/10/ SAMPLE	Y SEARCH 78 12:20: : METHNLA	00 + ITED 51	7:06 NTHANE	da" Cai Lateu	TA: MET 1: CAL R	nsinb Ogmar	• 142 • 1	BASE RIC:	M∕E:	108 517.
15403 (470 (OPESTRA 1 NATCHED P	N LIP	ARYNR ST 2 OF	SEFFC	450 504 2 LAPS	SIST PE	rum Plia Iaks IH	וויאייט פיקד דיצייט פיקד	NUN -	
1 88K J 1 90 2 89 3 1040 4 1991 5 1749	ND NATE 1 FENCES 8 HITRA 1 CAFED 9 PIRID 2 PYPID	IE, METO LINE, PI IICACII IIIOM, INIUM, IMIUM,	IDXY- IENYL- MITEN I-PMINO I-PMINO	1. PHEN)-2-112)-2-112	YLESTEI THYLI THYLI	R HYDRCXI CHLORII	DE, INN	ERSALT		
ЭнК 1 С7.Н 2 С6.Н 5 С8.Н 5 С6.Н 5 С6.Н	FCERLLA E.D IS.N2 IS.03 IS.M2 IS.M2 IS.N2.CL					н. UП 128 129 152 165 144	8.94 136 109 103 103 108	PUDITYA 870 592 599 431 464	F 1 TA 930 552 603 494 547	RFITA 999 925 971 950 849
*:ASS	INTEN D	1	2	3	4	5		·	•	
38 39 44 50 51 52 52 53	75	76 25 46 12	76 89 149 99	12 20 37	31 64 41 51	 	•		• • • • •	
59 63 64 65 66 67	199	26 15 218 14	29 22 127 29	34 14 252 17	223 111 39	199 60 3		· · ·		• • • • •
74 77 78 79 63 81	243	18 67 223 46	145 295 42	90 155 42	51 63 39 77 33	48 21			•	
91 92 93 94 95 94			97 222 172 110	247 57	629 235	598 240 10	• •		х.,	
107 105 152 153	1900	1222	1900	255 14	1017 117	1000 71		•		
stat	istica	l fi	t pa	rame	ters		•			· · ·

а

b peak intensities of unknown

^c peak intensities of library compounds

Table D-2.	1-Methoxy-2-Methylbenzene	Identification :	in Methylated
	· /		

F 1T F93 E78 847 815 B13

Synthane Water BASE M/E: 122 RIC: 1381. DATA: METHSYNB . 188 CALI: CALDOMAS . 1 LIBRARY SEARCH DATE 13/10/78 18:20:98 + 9:89 CAL SAMPLE: METHYLATED SYNTHAME WATER RIC:

25409 SPECTER IN LIBSERING SERROWER FOR MAXIMUM PURITY 127 MATCHED AT LEAST 5 OF THE OF LARGEST PERKS IN THE UNKNOWN

≂a:	NK IND	NAME
1	3002	PENZENE, 1-METHOXY-2-METHYL-
ż	1822	BENZENE, 1-METHONY-4-METHYL-
3	735	FHENDL, 2.5-DINETHYL-
4	1045	PHENOL, 2, 4-DINETHYL-
5	2674	EHENDL, 2, 3-DIMETHYL-
RA	NK FO	RITULA
1	CB.H10	.0
-		

2014	e nation						
						ក.ហា	B.PK
ANK P						122	122
C8.H	10.0					122	127
C8.H	10.0					122	122
5 C8.H	10.0					:22	122
1 C8.H	16.0		· · · ·			122	107
5 CB.H	18.0			•			
	TUTCH	1	2	3	4	5	
1H55 -	10.50	52	12	12	159	177	
39	12	42	13	12	185	114	
51			26				
52			26	39	87	71	
53		21	17		45		
63		21	3/	35	54	4 Å	
65		22	167	184	189	168	
77	195	140	75	61	65	68	
78	4	31	30	184	97	113	
79	41	14	114			•••	
89		45				•	
98		53		77	184	97	
91-	178	260	1/8				•
92		56	64				• *
93	.*			21		38	
.94					70	53	
103		· ·		41	30	19	
184	. 1				20		
105				- 20	E77	694	
107	475	398 -	2E 4	5/1	- 47	50	
128		40	72			275	
:21	127	171	351	726		677	
122	1000	527	- 215	6.1		FE	
123	- IE	55	72	ε.		لد مد	

DJ/10/78 18:20:00 + 9:48 CAL1: CA	AL89MAR •	1	RIC:	23135
-----------------------------------	-----------	---	------	-------

25409 SPECTRE IN LIBRARYNS SEARCHED FOR MAXIMUM PURITY 60 MATCHED RT LEPST 7 OF THE 16 LEPGEST PERKS IN THE UNKNOLN

CANK 140 NAIE 1 1022 GENZENE, 1-METHOXY-4-METHYL-2 913 GENZENE, 1-METHOXY-3-METHYL-3 3002 GENZENE, 1-METHOXY-2-METHYL-4 1045 PHENDL, 2, 4-DIMETHYL-5 726 PHENCL, 3, 4-DIMETHYL-

PANK 1 CB.H 2 CB.H 3 CG.H 4 CB.H 5 CB.H	FORTULA 118.0 118.0 118.0 118.0 118.0					M.LT 122 122 122 122 122	B.PK 122 122 122 122 122 107	PUR I TY 959 955 931 833 831	F 1T 987 981 960 287 874	RFIT 959 955 931 855 831
MASS	INTEN	1	2	3	4	5				
38	18				_					
39	58	47	69	5E	69	71				
43	6		÷							
41	4					~~				
50	25					26				
51	54	50	49	32	48	51				
52	2E	29	35			31				
53	28	29	37		52	.50				
61	1									
62	7	_			*0					
63	26	27	37	28	38	şr				
64	4			~ .	E 0	AC				
65	32	35	38	61	20	40				
74	· 3				107	202				
77	196	234	170	187	150	202				
78	⊿8	50	54	41	110	57				
79	123	166	147	99	110	04				
80	4			-						
89	16			35						
90	7			43	77	E 7				
91	258	125	236	216	(3					
92	81	57	166	46						
93	19		26							
96	i				70					
103					30					
164					2.					
105	1			-	667	641				
107	207	266	172	370	26.	-40				
105	13	23		42	4 .7	•-7				
:20	1					207				
- 121	32!	331	152	16.5	3,C	167				
122	1000	E 🗄 🕹	111.1	824	2.54	- 10 - 10				
125	51.	76	36	t⊻		ы ;				

Table D-4. 2

1 16RARY 	SEARCH 8 19:22: METHYLF	98 + 1 ATED S1	0:45 MTHAN	DA' Cai Latei	TA: ME' LI: CAI R	nsynb 1911ar	• 215 • 1	BRSE RIC:	₩E:	121 351.
25409 S 194 M	PECTPA I ATCHED (IN LIFT AT LEAS	ST 3 D	SEARCI THE	HED FOI 4 LAFI	P MANIM Gest Pe	SKS IN	THE UNKN)LIN	
ERNK IN 1 5449 2 3911 3 861 4 568 5 6076	D NAME PHENDI PHENDI PHENDI PHENDI PHENDI	L,2-ET L,2-ET L,4-(1 L,2-(1 L,2-(1	472-5-1 472-5- - ME THY - IE THY HY2-2-	NETHYL SETHYL LETHYL LETHYL METHYL	- -)-)-	·				
EANK F 1 C9.H1 2 C9.H1 3 C9.H1 4 C9.H1 5 C9.H1	ORMULA 2.0 12.0 12.0 12.0 12.0	•				M.WT 136 136 136 136 136	В.РК 121 121 121 121 121	PURITY 723 707 706 691 670	FIT 733 707 706 691 670	RF 11 973 962 972 974 981
MASS 79	INTEN	1 179	2 78	3 62 31	4 61	5 171				
51 53 63		104 73 53	48	36	50	126 83 57				
65 67		76	46 111	58	45	74				
77 78 79		308 76	327 75	418	441	396 186 142	•			
91 93 94	335	335 64	335 60	335 120 50	335 117	335				
102 103 104			34	147	19 247 23					• .
187 188		32	86	33	33	149 E6				
115 119 128		39	19	23 25	26 15					
121	1029 211	1182 107 22	927 FC 57	116F 107 16	1169 125	1203 152 37	•			
135	-18	.364	572 572	356 76	379 35	318 37				

Table D-5. 1,2-Dimethoxybenzene Identification in Methylated Synthane Water

LIBRARY SEARCH DATA: METHSYNB + 317 BASE M/E: 138 83/18/78 18:28:88 + 15:51 CAL1: CAL89MAR + 1 RIC: 96895. SAMPLE: METHYLATED SYNTHANE WATER

25489 SPECTER IN LIBRARY B SEPRCHED FOR MAXIMUM PURITY 129 MATCHED AT LEAST 5 OF THE 16 LARGEST FERIS IN THE UNKNOUN

RA	N'C THE	Hate
1	618	ESHPERE, 1, 2-DISTADIO-
2	1789	BENDE (F, 1, 4+D1) STADION-
3	4272	2-FROPRINGHE, 1-CACHORESOL (DENE-
4	1791	FELCEVEL JELEVETHOK.
5	2407	longual and ideal and the sub-sub-rate and set

R4NK 1 C6.H 2 C8.H 3 C9.H 4 C8.H 5 C10.	FFRMULA (16.02 (14.0 (14.0 (16.02 (15.02 (15.02)					11.07 1130 1130 1130 1130 1130	C.TY 135 127 139 139 138	212 232 235 537 665 664	F!T 994 928 853 908 834
MR55 38	INTER 37	1	2	3	4	5			
29 41 43	71 123	139	173	25 67 308		65 123	,	•	
50 51 52	56 113 140		58 81		. 83		. .		
53 54	34 12		56	46		37			
55 62	28			. 77		65	•		
64 65	40 132	39 134	92 80		49 66	• .			•
66 67 68 69	13	59		110	·	53 25 21			
74 77	9 257	288	52	51	56	23			5
78 .79 80	41 26 63	27 48	30	117	121 45	33			
81	8	-		181		191 51			
92 93	41 31	25	50		51 46				
94 95 96	313 22	336	311	26 2	178	26 303 66			
105	15 12	•			43 185			÷	
110	- 14	•		90 63	173				
122 123 124	17 397 3!	452 36	767 68	45 5		397		: .	
125 135 136	2 6 0							•	
137 138 139	4 1000 90	927 84	537 45	839 111	9 72 115	446 49			
150	3	·		•					

Table D-6. 5-Methoxy-2,3-Dimethylphenol Identification in Methylated Synthane Water

DATA: METHSYNBS + 358 ENHSNCED (5 348 2N 8T) BRSE M/E: 152 LIERORY SEARCH DATA 23/10/78 18:28:00 + 17:54 ENHS 30MPLE: METHYLATED SYNTHANE WATER 56511. P.IC :

25409 SPECTPA IN LIBRARYNG SEARCHED FOR MAXIMUM PUPITY 186 MATCHED AT LEAST 5 OF THE 16 LARGEST PEAKS IN THE UNKNOLN

TANK IND NAME 1 17660 PREMOL, 5-METHOXY-2, 3-DIMETHYL-2 2209 1-CYCLOHEXENE-1-CAREOXALDEHYDE, 2, 6, 6-TRIMETHYL-3 3454 PENZENE, 1-(ETHYLTHID)+4-METHYL-4 2836 2-CYCLOPENTEN-1-CNE, 4-HYDPOXY-3-METHYL-2-(2-PROPENYL)-5 17643 BENZENE, 1-(ETHYLTHID)-3-METHYL-

PANK 1 C9.H 2 C10. 3 C9.H 4 C9.H	FDRMULA 12.02 H16.0 12.5 12.02					M.UT 152 152 152 152	E.FK 152 152 152 152	PURITY 747 641 636 630 628	FIT 993 850 852 850 651	RF 1T 754 641 708 678 704	
5 C9.H	IZ.5	1	2	3	4	5	152	620	631		

39	165	189	_	91	85	85
40	4/		70		75	
41	30		30		159	
43			26	211		156
40	70			2,11		150
50	- 6 A	60				
51		05				· •
- JZ - F.Z - '	50	. 26		• •	96	
55	23			1.1		
63	21			66		78
64	18					
65	29	31		82		<u>.</u> 92
ē6	87	,				
67	12		112		69	
69		44		. 48	,	31
76	£					
77	134	196	•	66	74.	6 3 ·
78	47	151		26	_	
79	97	36	51	47	157 -	36
98	7					
8 i	55		155		95	
63	.15					07-
91	172	65 1	65	225	101 -	220
92	18	1.1		32		3~
93	17		56	24		46
94	85		22		67	
95	12				7.4	
105	21					
.25		96	.70			
107 .	10	-0	10			
100	22:	77			238	
110	14		•••			
					£ 1	
119	3		61			38
121	21	42	54	40		45
:22						
:23	15	62	272	141	٤5	54
124				177	75	2:0
133	1e					
135	16					
136	- 19					
137	374	- 439	685	453	373	464
130	39	58	69	43		4?
:39	2					
149	4					
151	. 33	294				
152	1856	889	634	. 90Ż	552	902
153	96	69		? 7 ,		E5
154	5			क्ष		· 43
166	C.C.					
167 -	3					

3-Methoxy-2,4,6-Trimethylphenol Identification in Methylated Table D-7.

Synthane Water

IBRARY SEARCH	DATA: METHSYNBS	٠
C3/10/78 19:20:00 + 19:48	ENHANCED (5 349	21
SAMPLE: METHYLATED SYNTHANE	LIATER	

396 BASE M/E: 151 10975. N BT) RIC:

25403 SPECTRE 11 LIBRARYNB 25ARCHED FOR MYNIMUM FURITY 55 MATCHED AT LEAST & DE THE 16 LARGEST PEAKS IN THE UNKHDUN

PARK IND KOME

 17684
 PHENOL, 3-TETHOXY-2,4,6-TRITETHYL

 17684
 PHENOL, 3-TETHOXY-2,5,6-TRITETHYL

 217652
 PHENOL, 3-TETHOXY-2,5,6-TRITETHYL

 32841
 ETHENDRE,1-(2-HYDROXY-4-TETHOXFHENYL)

 417681
 PHENOL,5-TETHOXY-2,3,4-TRITETH L

 5809
 1,2-BENZENEDIOL,4-(1,1-DITETHYLETHYL)

	RANK 1 C10 2 C10 3 C9	FORMULA .H14.C2 .H14.D2 H10.D3				•	M. UT 166 166 165	В.РК 165 165 151	P <u>URITY</u> 779 774 770	FIT 991 875 925	RF IT 809 817 814
	4 010	.H14.02					160	166	765	878	811
	5 010	.814.02	· · ·				166	151	764	836	816
	~ass	INTEN	1	2	3	4	- 5				
	39	45	45	50	44	40	45				
	48	- 11		•							
	41	7	66	·		42	63				
	43			45	142						
	. 58	6									
ʻ.,	51	48		30	36	34	42				
	52	12			31						
	53	22		48		48		· .			
	55	9	66		••						
	63	16			21	-	40		•		
	65	- 49		40	SE	35	49				
	67	N	35	39	20	45					
	69		33	63	20	97	G 1	· .			
	79	38	73	82		63	31				
	78	30	K C	72		73	29				
	. 69	64		12	31						
	60	5									
	99	š									
	91	188	135	180		84					
	. 92	9	57								
	93	3	-				44				
	94				13						
	\$5	182			97						
	95						28				
	103	20									
	105	53	27	32			73				
	106	19									
	107	49	35	35	13	37	39				
	· 168	72			18-		€5 j				• •
	109				14		41				
	116										
	111	•					4,7				
	212	12									
	120		50	10		15	•				
	121	6.5	20	40		17		· ·			
	122		57			2-	1.57				
		16	. • •			-				·	
		57	177	172		57	77				
	.35	12	1.57								
	137		37	76		75	58	•		٠.	
	138		•		22				· .		
	147	20									
	149				13						
	158	10			-		43		-		
	151	1808	539	51B	1188	567	1153				
	152	119	75	55	116	53	121				
	153				13						
	162	20									
	165	39	76	142	15	.157					· · ·
	166	569	851	768	410	753	349				
	167	57	65	67	43	63	42				

Table D-8. Methoxybenzene Identification in Methylated SRC Water

83/30/78 14:11:00 + 7:18 CALI: CALZ7MAR • SAMPLE: METHYLATED SYNTHOIL WATER	1	RIC: 4919.
--	---	------------

25409 SPECTR9 IN LIBRARYNB SEARCHED FOR MAXIMUM PURITY 139 MATCHED AT LEAST 5 OF THE 13 LARGEST PEAKS IN THE UNKNOWN

RANK IND HAME

		-	-	
1	90	1	BENZENE,	METHOXY-

1 901 BENZEREJNELHUNT 2 898 HYDRAZINE, PHENYL 3 10431 CARECHICACID HETHYLPHENYLESTER 4 19819 FYRIDINIUM, 1-AMINO-2-METHYL-JHYDPOMIDE, HHMERSALT 5 2462 EENECHURHH, 4,5,6,7-TETRAHYCEN-3,5-21, ETHYL-

BOUN	5025010					M.UT	5.8X	PURITY	FIT	REIT
RHINK						195	129	910	939	948
	0.0					168	169	727	737	915
2 10.0	10.112					152	108	679	725	695
3 15.7	0.17					198	108	580	619	658
4 Lb.n	10-112 .		•			158	109	538	549	785
2 L 10.	H14.0	•					• · · -			
MOSS	INTEN		2	3	4	5		· · · · ·		
70	17	31	-					•		
70	258	128	195			258		*.		
41	200					162				
43	6						1.1.1			
44	U			23						
50	22	47	138	39	53					
51	75	88	215	74	111	•	· · · ·			
52		22	101		75					
52					78	· .				
50				98		1.1				
63	- 18	43	39	52						
64		25	37	21		. ,				
65	487	342	160	434	497	26				
66		22	36	26	178		•			
67					59					
74		15								
77	98	108	186	150	66	61				
78	369	357	373	236	.109	23				
79	61	77	52	64	51	114				
89					101	26				
BI					43					
91			88			56				
92			202		548					
93	63		142	176	248	. 24				
94				27						
185						27				
106			85							
107		24								
108	1869	924	726	6 67	815	1024				
189	16	71			82	9 9				
121						24 -				
135						23				
149						17				
150						282				
151						31				
152				246						
153				13						

Table D-9. 1-Methoxy-4-Methylbenzene Identification in Methylated SRC Water

L IORAR' 83/30/ Sample	Y SEARCH 78 14:11 : METHYL	:08 + Ated S	9:48 YNTHO:	DA Ca Il uate	TA: ME LI: CA R	Thsynd L27Mar	● 196 ● 1	BASE RIC:	11/E:	122 2451.
25409 183 1	SPECTRA MATCHED	IN LIB AT LEA	RARYNI IST 5 (B SEARC	HED FO B LAR	R MAXIM Gest Pe	UM PUR AKS IN	THE UNK	IOUN	
RANK 1 1 182 2 300 3 91 4 73 5 274	ND NAME 2 BENZE 2 BENZE 3 BENZE 5 PHENO 4 BENZE	NE, 1-M NE, 1-M NE, 1-M NE, 1-M NE, 1-M	בדאסאי אנאדפי יביאסאי סוויביזי וויאסאיני	Y-4-MET Y-2-MET Y-3-MET HYL- HETHYL)	ዝሊ- - ሊ- ዝሊ- -					•
RANK 1 CB.H 2 CB.H 3 CB.H 4 CB.H 5 CB.H	FORMULA 10.0 10.0 10.0 10.0 10.0 10.0				• •	M.LT 122 122 122 122 122	B.F. 122 122 122 122 122 122	PURITY 878 841 829 745 720	517 878 841 823 747 778	RF1T 963 956 953 875 834
MRSS 39 51 52 53 63 64	INTEN 14	1 14 15 24 24 18	2 14 11 21	3 177 122 46 46 32	4 14 14 37	5 84 39 114 53	• •		•	
65 66 77 78 79	179 63	25 175 37 125	54 149 33 79 27	32 144 45 120	35 195 65 111	47 77 13 33 18		.•	· · · . · ·	· · · · ·
98 91 92 93 103	189 8	112 41	33 159 34	187 84 23	39 11 36	11 271 57				1 a 4 a
104 105 107 108 121 122 123	143 245 1000	254 21 343 773 68	358 36 150 815 76	168 141 1030 91	20 497 40 251 560 51	48 537 605 52	·	· · ·		•

Table D-10. 1,2-Dimethoxybenzene Identification in Methylate SRC Water

TARARY SEARCH	DATA:	METHSYND	٠	300	BASE M/E:	138
3/38/78 14:11:80 + 15:88	CAL 1 :	CAL27MAR	•	1	RIC:	6415.
SAMPLE: METHYLATED SYNTHOIL	WATER					

25409 SPECTRA IN LIBRARYNB SEARCHED FOR MAXIMUM PURITY 95 MATCHED AT LEAST 5 OF THE 15 LARGEST FEAKS IN THE UNKNOWN

RANK IND NAME 1 618 BENZENE, 1. 2-DIMETHOXY-

2 178 3 344 4 267 5 179	9 BENZE 6 PINZE 8 1,3-8 1 BENZE	NE, 1.2 NE, (E1 NE, 1.3	ED TOL JA B-D TMET	(10) - (0) - 4,5-D [] (HCXY-	€TP:YL-	•			
RANK 1 CB.H 2 CB.H 3 CB.H 4 CB.H 5 CB.H	FCRMULA 10.02 10.52 10.5 10.02 10.02			•	• •		B.PK 138 123 139 138 138	PUP 11Y 942 805 671 649 642	FIT 958 814 754 665 778
MASS	INTEN	1	2	3	4	5			
39 41	39	40	77	29	52				
43					43				
45.				56					,
- 51	31	33	26	40	35	•			
52	59	42	51	· · ·		61			•
53			35	· .	49				
55	·				46	C D	1		
63 64	12	18	57			60 ∡9			
65	45	46	50	64	50	87			
66				52					
67		20			40				
69			~~	47	86	E 1			
78	103	129	3r	33	90	116			
79	•	•••	22			43			
86	5	21	37			41 -			
84				29				· .	
91		12	77		100	64			
93			31			58		•	
95	194	165	232		95	223			•
107						39			
189			. *		77	95	1. T		
1105	10			263	23	130			1
111				24					
128					31 .				
121				<i></i>	35				
123	260	487	645	471	537			·	
124	19	52	21	40	30 1891				
138	1898	814	452	726	601	937			
139	57	73	38	69	54	111			
140				34			· .		

87

Table D-11. 5-Methoxy-2,3-Dimethylphenol Identification in Methylated SRC Water

L IBRAR 03/30/ SAMPLE	Y SEARCH 78 14:11 : METHYL	:88 + 1 ATED S	16:42 MTHO []	DA Ca Uate	TA: ME LI: CA R	THSYND 2711AR	• 334 • 1	BASE RIC:	¶∕E:	152 2763.
25489 74	SPECTRA MATCHED	IN LIB AT LEAS	RARYNB	SEARC THE	HED FOI	R MAXIM DEST PE	UM PUR AKS IN	THE UNKNO)UN	
RANK 1 1 345 2 1965 3 1768 4 1764 5 58	ND NAME 4 BENZE 8 2-CYC 8 PHEND 13 BENZE 13 ETHAN	NE, 1-(1 LORENT) L.S-ME ME, 1-(1 C.E.1-	ETHYLT EN-1-0: TH9XY-: ETHYLT (2,4-0	H10)-4 NE,4-A 2,3-01 H10)-3 18)780	I-METHY ICETIYL- IMETHYL I-METHYL IANTI L	L- 1,2,3,5 - L- - -	.5-PE'	;та че тнуц -	•	
RANK 1 C9.H 2 C12. 3 C9.H 4 C9.H 5 C8.H	FORMULA 112.5 H18.02 112.02 H12.5 H8.03		•			M. JT 152 194 152 152 152	9. PK 152 152 152 152 152 137	PURITY 738 728 720 713 649	FIT 768 843 721 742 665	RF 11 869 829 916 865 715
MASS	INTEN 28	1	2	3 83	110	5 20	•	1. ¹		
43		188			163	38				÷.,
51				47		- 17				
52			73	. 41	. •	29				
55			73		~ .			. 1		
63 65	6	19 23		47	27	10				
67			25	••	17	54		· · ·		
69 77	33	33		85	33	34				
78		- 13		67	10	. •		1		
79 81	10	.24	72	18	19	65				
91	24	131	58	55	131					
92 93		17	44		19					
94	6						5.5			
.95 187		· .	39	88						÷
108			~~			26				
109	84		25	~1	32	84				
121		37		37	37	-				•
123	117	135	189	55	180	Б				
137	257	489	376	442	435	757		. *		-
138	203	39	• •	58	41	62 7	•			
151				269	,	-				
152	1800	823	771	815	815	296			. • •	
153	13	89		82	39	20				
154			18 .	. '						
179		÷	6							
.194			9	1.1		•				

Bibliography

- 1. Beychok, M. R., "Coal Gasification and the Phenosolvan Process," ACS 168th National Meeting, Atlantic City, NJ (September 1974).
- Water Purification Associates, "Water Conservation and Pollution Control in Coal Conversion Processes," U.S. Environmental Protection Agency Report No. EPA-600/7-77-065, (June 1977).
- Forney, A. J., et al. "Analyses of Tars, Chars, Gases and Water Found in Effluents from the Synthane Process," Bureau of Mines (Pittsburgh) Technical Progress Report 76, January 1974; also in <u>Symposium Proceedings:</u> <u>Environmental Aspects of Fuel Conversion Technology</u>, St. Louis, 1974, EPA-650/2-74-118. (Information used as reported in reference 2).
 American Public Health Association, <u>Standard Methods for the Examination</u> <u>of Water and Wastewater</u>, method 510, p. 574, 14th edition (1976). Published in conjunction with the American Water Works Association and the Water Pollution Control Federation.
- 5. Schmidt, C. E., Sharkey, A. G., and Friedel, R. A., "Mass Spectrometric Analysis of Product Water from Coal Gasification," Bureau of Mines (Pittsburgh) Technical Progress Report 86, December 1974. (Information used as reported in reference 2).
- 6. Ho, C. H., Clark, B. R., and Guerin, M. R., "Direct Analysis of Organic Compounds in Aqueous By-Products from Fossil Fuel Conversion Processes: Oil Shale Retorting, Synthane Coal Gasification and COED Coal Liquefaction", <u>J. Environ. Sci. Health</u>, All, (7), 481-489 (1976).
- Exxon Research and Engineering Company, "EDS Liquefaction Process Development, Phase IIIA", Quarterly Technical Progress Report, p. 153, July 1-September 30, 1976.
 - Wurm, H. J., "The Treatment of Phenolic Wastes", Proc. 23rd Ind. Waste

Conf., Purdue University, Lafayette, Ind. (1968).

- 9. Wurm, H. J., "Recovery of Phenols from Coker Gas Liquor by the Phenosolvan Process," <u>Glückauf</u>, <u>104</u>, S. 517/523 (1968).
- Korenman, Ya. I., "Extraction of Dihydric Phenols," <u>Zh. Prikl. Khim.</u>, vol. 45, no. 9, pp. 2031-2034, (Sept. 1972).
- 11. Chambers, C. W., et al, "Degradation of Aromatic Compounds by Phenol-Adapted Bacteria," <u>J. Water Poll. Cont. Fed.</u>, 35(12), 1517 (1963).
- Won, K. W. and Prausnitz, J. M., "Distribution of Phenolic Solutes Between Water and Polar Organic Solvents," <u>J. Chem. Thermodynamics</u>, 7, 661-670 (1975).
- 13. Pittman, E. F., M. S. Thesis, University of California, Berkeley (1979).
- 14. Snyder, L. R. and J. J. Kirkland, <u>Introduction to Modern Liquid</u> Chromatography, Wiley-Interscience (1974).
- 15. Organic Synthesis, Coll. Vol. I, p. 58 (1941).
- 16. Lubic, S. P., Personal Communication, March 1978.
- 17. Newton, A. Personal Communication, March 1978.
- Singer, P. C., et al, "Composition and Biodegradability of Organics in Coal-Conversion Wastewaters," <u>Symposium Proceedings: Environmental</u> <u>Aspects of Fuel Conversion Technology, III</u>, (September 1977--Hollywood, Fla.), Report No. EPA-600/7-78-063, U.S. Environmental Protection Agency, pp. 461-486.
- 19. McNair, H. M. and E. J. Bonelli, <u>Basic Gas Chromatography</u>, Varian Aerograph, Walnut Creek, Calif. (1968).
- 20. Kortüm, G., W. Vogel and K. Andrussow, "Dissociation Constants of Organic Acids in Aqueous Solution," <u>Pure and Applied Chemistry</u>, Vol. 1, No. 2-3 (1961).

- 21. Chemical Marketing Reporter, 215:16 (April 16, 1979).
- 22. King, C. J., Separation Processes, McGraw-Hill, New York (1971).
- 23. Burns, G. P., M. S. Thesis, University of California, Berkeley (1979).
- 24. Perry, R. H. and C. H. Chilton, <u>Chemical Engineer's Handbook</u>, 5th ed., McGraw-Hill, New York (1973).
- 25. Air Products and Chemicals, Inc., "Environmental Control Implications of Generating Electric Power from Coal. Appendix B: Assessment of Status of Technology for Solvent Refining of Coal," Report No. ANL/ ECT-3, Appendix B, Argonne National Laboratory (December 1977).
- 26. Waters Associates, Inc., <u>μBondapak and μPorasil Liquid Chromatography</u> Columns Care and Use Manual, No. CU84588 Rev. E (September 1978).
- 27. Allinger, N. L., et al, <u>Organic Chemistry</u>, Worth Publishers, New York (1971), pg. 639.
- 28. Morrison, R. T. and R. N. Boyd, <u>Organic Chemistry</u>, Allyn and Bacon, Boston (1973), pg. 788.
- 29. Dark, W. A., W. H. McFadden, and D. L. Bradford, "Fractionation of Coal Liquids by HPLC with Structural Determination by LC-MS," <u>J.</u> Chrom. Sci., <u>15</u> (10), pp. 454-460 (1977).
- 30. Treybal, R. E., <u>Liquid Extraction</u>, 2nd ed., McGraw-Hill, New York (1963), pg. 48.

Extraction of Phenols from Coal Conversion Process Condensate Waters

By

Douglas Carl Greminger

B.S.E. (University of Michigan) 1976

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in 🖞

Chemical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved:

N.

Committee in Charge

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

1

Je ve

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DIVISION BERKELEY, CALIFORNIA 94720 UNIVERSITY OF CALIFORNIA