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PREFACE

As an engineer by early construction, I had the understanding of how important estimation

and filtering are. While it is in many situations fortunate that engineers can design well-behaved

machines, such that PID controllers are efficient, the estimation problem seemed to me irreducible

and less understood. Disturbances are mainly introduced by what we could not engineer or

model, and therefore more obscure.

This dissertation is based on two questions asked by my advisor Professor Bitmead. The

questions are “How can we use the Expectation Maximization algorithm in state estimation?”

and “What is a good state estimate for control?”, Chapters 2 and 3, respectively, are my answers.

The first question made me dig deep into the statistics and Monte Carlo literature, while trying to

maintain my control theory wording and notation. The latter was harder. For the second question,

I realized, thanks to Charlotte Striebel [50], that correcting the wording is what I needed, the best

A to B is an A such that B is best. Not accurate, but a telling analogy: my best partner is the

one that makes me feel best. Therefore, the evaluation of control objective in selecting the state

is necessary to answer the second question seriously. This was an invitation to stochastic control,

the interaction between control and estimation, and understanding the difference between open-

and closed-loop control.

x
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ABSTRACT OF THE DISSERTATION

State Estimation for Control

by

Mohammad S. Ramadan

Doctor of Philosophy in Engineering Sciences (Mechanical and Aerospace Engineering)

University of California San Diego, 2023
San Diego State University, 2023

Professor Robert Bitmead, Co-Chair
Professor Ke Huang, Co-Chair

Deterministic control theory is built on the presumptive luxury of complete access to the

states. This premise is false in many applications. Hence, rendering questionable, the validity of

the implemented control algorithms. On the other hand, acknowledging the lack or partial access

to the states is an invitation to the realms of stochastic optimal control. A field of many platonic

objects [38] and folk definitions, with hopes of advancement harshly met with computational

intractability.

The dissertation focuses on finding suboptimal solutions to the stochastic control problem,

via utilizing the machinery developed for deterministic control. This is done through reducing

xv



the infinite dimensional information state, represented by the state filtered density, to one state

value of (small) finite dimension. This reduction is guided by two arguments forming the bases

of Chapters 2 and 3.

The first approach is built on statistical means, in which a point estimate, like the Maxi-

mum Likelihood Estimate, may have more claims to certainty equivalence in some applications

than the typically used conditional mean. We derive a Maximum Likelihood recursive state esti-

mator for non-linear state-space models, by combining the Expectation Maximization algorithm,

and a particle filter. We prove that for nonlinear state-space systems with linear measurements

and additive Gaussian noises, our formulation reduces to a gradient-free optimization in a form

of a fixed-point iteration. The convergence properties of the sequences out of these iterations are

inherited from the Expectation Maximization algorithm.

The second method engages directly with the control objective to achieve a state value or

“estimate” that helps achieving this control objective. The State Selection Algorithm, which will

be presented in Chapter 3, compiles the information about the state density, dynamics, constraints,

and a given controller, and returns the best state value based on optimizing a prescribed finite-

horizon performance function. The set of candidate states is provided by a particle filter. In the

linear quadratic problem with polyhedral constraints, we show that the algorithm reduces to a

quadratic program for the state value.

xvi



Chapter 1

Background

1.1 Introduction

As usually taught in undergraduate feedback control class, the dichotomy between open-

loop and closed-loop control arises with the mere existence of any uncertainty [8]. Stability,

robustness and disturbance rejection are the main attributes of feedback control. Since one rarely

enjoys the luxury of perfect information and modeling of the dynamics and the incorporated

exogenous disturbances, the necessity of these attributes becomes apparent.

Optimal feedback control laws are desirable, in large measure, due to their theoretically

guaranteed stability and feasibility. Such attributes can be represented explicitly or implicitly

in the cost function, or in the constraints, of the respective optimal control problem. The corre-

sponding optimal feedback law is then guaranteed to have these attributes, by its construction.

A control designer may finish crafting their own cost function, then simply define the

optimal control by writing arg min to the left. Although this can be a valid mathematical

definition of an optimal control law, whether it is physically realizable or computable, is a

different story. One must remember that the mathematical well-definedness does not imply

tractability, and in effect, many optimal control problems can end up as platonic objects that

are impossible to solve for. Acquiring such control laws, that are valid over infinite horizons

from any initial condition, requires solving a Dynamic Programming problem (tantamount to

Hamilton-Jacobi-Bellman (HJB) partial differential equations in continuous time). This path has

1



proven early on to be prohibitively intractable for most applications of interest.

1.2 Deterministic optimal control

Many control design problems require, at first, the identification of a model, maybe a

state-space model, from noisy data. We might be even required to design the experiment in

which this data is acquired. Here we assume we are fortunate enough, and as control designers,

the operators of the hidden technology [2], we are given a state-space model

xk+1 = f(xk, uk), (1.1)

for which, uk needs to be selected for any time-step k. The determination of uk, if an optimal

controller is sought, is guided by optimizing an objective function, typically of an additive form

J =
N∑
k=0

`k(xk, uk), (1.2)

where the `ks are non-negative stage costs. The control objective might also dictate satisfying

input and state constraints, that is, uk ∈ U and xk ∈ X, for all k. Notice that these constraints,

and the value of J are in fact functions of the initial state x0, and the control sequence u0:N =

(u0, . . . , uN). Therefore, the optimal control sequence u?0:N is simply defined as

u?0:N = arg min
u0:N

J(x0, u0:N),

subject to

xk+1 = f(xk, uk),

xk ∈X, uk ∈ U, k = 0, . . . , N.

This control sequence is optimal if the initial state value is indeed x0. For a different

initial state, the above minimization problem has to be solved again for the corresponding optimal

2



control sequence. If we suppose that U is a finite set (probably a discretized version of an infinite

set), with number of elements M , the number of possible open-loop control sequences is MN .

Even for a toy problem, with M = 50 and N = 5, there are more than 312 million different

control sequences. Evaluating the corresponding cost of each trajectory, that is, finding the

optimal control sequence by brute force, over the whole state-space, is impractical even for toy

problems.

1.3 Dynamic Programming and the “curse of dimensional-
ity”

Dynamic Programming (DP) is an algorithm (or can be seen as set of algorithms) to solve

optimal control problems. DP does not reduce the searching space that we need to visit to find an

optimal control sequence. However, from the data efficiency angle; repeated function evaluations

are avoided through recording them. This is described as Bellman’s optimality principle, which

states that the tail sub-trajectories of an optimal trajectory are themselves optimal [52]. In other

words, if the shortest path to a city B from city A passes through city C, the sub-path from C to

B is the shortest starting from C. Therefore, if we know the optimal path from A to B, we saved

ourselves finding the optimal path from any point on this A→ B path to point B. DP utilizes the

optimality principle, and the Markov property of the states. It propagates backwards in time, and

finds solutions to the tail sub-problems first, which are then used to solve the original problem.

For the state-space system in (1.1) and the corresponding cost (1.2), the principle of

optimality states that the tail sub-problems have to be optimal, hence, the last control uN−1

(typically the terminal stage cost is not a function of uN , that is, with abuse of notation,

`N(xN , uN) = `N(xN)) must be optimal. The cost of the last step starting from different

values of xN−1 in the state-space,

VN−1(xN−1) = min
uN−1

{`N−1(xN−1, uN−1) + `N(xN)} .

3



This is the optimal cost (often denoted the cost-to-go) starting from any value of xN−1. To define

a recursion, we can let VN(xN−1) = `N(xN), and therefore, the Dynamic Programming Equation

at time-step N − 1 is

VN−1(xN−1) = min
uN−1

{`N−1(xN−1, uN−1) + VN(xN)} ,

and the Dynamic Programming Equation for any k = 0, 1, . . . , N − 1

Vk−1(xk−1) = min
uk−1

{`k−1(xk−1, uk−1) + Vk(xk)} .

The causality condition dictates that any control, say at time k, must depend only on the

information available up to time k. This is satisfied by Markov control laws, which has the form

uk = uk(xk). Indeed, the optimal control u?k, once the above Dynamic Programming recursion

is completed, can be evaluated as in

uk−1 = arg min
uk−1

{`k−1(xk−1, uk−1) + Vk(f(xk−1, uk−1))} ,

and the right-hand-side is clearly a function of xk−1.

The above Dynamic Programming recursion can be reduced into a difference Reccati

Equation in linear Gaussian quadratic problems. However, in general, the state-space is to

be discretized. If the state-space grid size is S, the Dynamic Programming algorithm is of

complexity of O(NS2M). This can be vastly reduced if the transition matrix (the dynamics

restricted to the discretized grid) sparsity is exploited. The quadratic dependence on S, the size

of the state-space grid and the fact that a grid of a size exponentially increasing with the state

dimension is required for convergence, are what creates the so called “curse of dimensionality”.
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1.4 Open-loop control: No grids, no “curse of dimensional-
ity”

The state-space grid is required in Dynamic Programming approach since the solutions

of what we called the tail sub-problems are to be recorded along the way to solving the original

problem. Differently from the optimality principle introduced by Bellman, Pontryagin introduced

the maximum principle, which is restricted to deterministic optimal control problems and to

finding open-loop solutions only.

Rather than blindly searching the input space, or gridding the state-space as in DP, the

maximum principle presents the necessary and sufficient conditions for an optimal control. These

conditions provide an alternative and less cumbersome way to find the optimal control. One can

show, in the deterministic case, both principles yield the same control input sequence. The differ-

ence, however, starts to appear with the existence of state disturbances. Pontryagin’s principle

becomes inapplicable, while on the other hand, Dynamic Programming can be generalized to

handle the stochastic, but full state-feedback case.

Although Pontryagin’s principle and the developed toolboxes for deterministic optimal

control and Model Predictve Control have shown great success, these toolboxes, in general,

fail to handle stochastic systems, or nonlinear systems with nonconvex constraints. For such

scenarios, the necessity of Dynamic Programming becomes apparent. DP as a grid based method,

at least in principle, can handle nonlinearity and stochasticity (nonlinear dynamics replaced by

discrete transitions and expectations, probabilities replaced by their discrete approximants over

the grid).

The above discussion is another supporting example to a fact undergraduates learn in

their control class; uncertainty requires feedback laws. Dynamic Programming is capable of

handling uncertainties, since it provides feedback control policies. Furthermore, DP can naturally

handle probabilities and expectations by simply approximating them by their discrete versions.

On the other hand, open-loop control, which solves only for one trajectory and one control
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sequence, fails to handle uncertainty, by its formulation.

Great effort has been made to solve the difficulties faced by the two approaches: the curse

of dimensionality in the principle of optimality, and the inability to provide the feedback attributes:

stability and robustness guarantees, when using the maximum principle. One idea relies on

replacing the Dynamic Programming algorithm by stochastic approximation procedures [55], to

form what is called Approximate Dynamic Programming [49], more famously Reinforcement

Learning [42]. Another method is a very successful approach, conceptually simple and can

handle complex systems and constraints, which is Model Predictive Control (MPC) [20]. In this

approach, finite-horizon optimal control problem is solved in open-loop, online, that is, at each

time-step, and the first control input in the optimal control sequence is applied.

1.5 Two great ideas behind MPC

Through solving an open-loop optimal control problem, at the current state only, MPC

dodges the need to solve for the optimal control at many points in the state-space. The need

for a function approximation procedure of a value function or an explicit feedback policy over

the state-space [32] is therefore avoided. Furthermore, the open-loop solution offers more

flexibility in handling constraints. From computational perspective, this set of arguments can

be considered the first great idea of MPC. A less immediate, yet as important, idea of MPC is

achieving closed-loop features through conducting open-loop solutions in a receding horizon

fashion. Thanks to the receding horizon part, MPC yields asymptotic stability and recursive

feasibility, under specific terminal conditions, over the infinite horizon. This is a foundational

core result of Model Predictive Control due to Keerthi, and Gilbert [20], which is that properties

of the open-loop finite-horizon can yield features of the closed-loop infinite horizon optimal

feedback control.

It is a great success story, that of MPC. However, in the next sections, we provide a

glimpse into problems, which are very realistic, but yet, cannot be handled by MPC.
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1.6 Stochastic full-state-feedback control

In the previous sections, the dynamics considered, (1.1), are deterministic. Hence, open-

and closed-loop control yield the same control sequences and state trajectories. Therefore,

open-loop control can be used to avoid DP and its attendant, the curse of dimensionality. In

this section however, state equation disturbance is considered, and the dynamics are no longer

deterministic.

Suppose at time k = 0, we are given the following state space model

xk+1 = f(xk, uk, wk), (1.3)

where xk ∈ Rrx is the state, uk ∈ Rru the control input and wk ∈ Rrw exogenous disturbance,

with densityW . The control law is admissible if it satisfies the causality condition, and retains

the Markovianness of the state equation (given that {wk} is white), that is, it has the form

uk = uk(xk).

Proposition 1. If the stochastic process {wk} is white, {xk} is Markov.

The requirement of having {xk}Markov stems from the fact that it is defined as the state,

that is, the sufficient statistic in the following sense

p(xk+1 | x0, . . . , xk, u0, . . . , uk) = p(xk+1 | xk, uk),

in other words, out of the prior information as a whole, knowing xk is sufficient to deduce the

density of xk+1, once uk is chosen. This holds only if the process {wk} is white (since if it is not

white, conditioning on wk yields more information about xk+1), and therefore we proceed with

this assumption.

Suppose for the dynamics above, the states and inputs are to be within the constraint sets,

X and U, respectively, with ε ∈ [0, 1), an acceptable probabilistic constraint violation rate. If
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the initial state value is x0, MPC is implemented through first solving the following open-loop

control problem

J(x0) = min
u0:N−1

E w0:N−1

{
N∑
k=0

`k(xk, uk)

}
,

subject to uk ∈ U, “xk ∈ X”, for all k = 0, . . . , N,

where `ks are the stage costs, and the expectation is taken over all possible realizations of the

process w0:N−1 = (w0, . . . , wN−1). The constraint “xk ∈ X” needs a more careful treatment,

since xk as defined in (1.3) is random. In Chapter 3, we adopt the notion of chance constraints

for constraints involving random state vectors.

We call the above problem a stochastic full state-feedback MPC problem. Although

deterministic problems are the natural scope of MPC and its solvers, several engineering tricks can

be made to stitch this gap. Typically, these tricks use a deterministic version of the problem, with

information about the uncertainty used to tighten the constraints of the new deterministic problem,

therefore replacing the stochastic MPC with a deterministic MPC with tighter constraints.

These methods are called tube-based methods [24]. The formulation of tube-based methods is

typically for linear systems with convex constraints. For general nonlinear systems, with general

constraints, these methods can become inapplicable, as the constraint tightening procedures are

complex and computationally demanding in such cases.

1.7 Partial state observation

Typically, the state is not directly accessible to measurement, and instead, we have access

to some observation yk. This observation conveys some information about the state xk. In
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mathematical terms, we have

xk+1 = f(xk, uk, wk), (1.4a)

yk = g(xk, vk), (1.4b)

where xk ∈ Rrx is the state, uk ∈ Rru the control input and wk ∈ Rrw , vk ∈ Rrv exogenous

disturbances. The initial state x0 has a density p(x0).

Notice that the state in (1.4a) is still Markov if {wk} is a white process, since the

discussion after Proposition 1 is still valid. However, the prior information we considered

before, that is, the set of past inputs and states, is not anymore so. Instead, prior information is

represented by the set of inputs, observations and initial state density. Therefore it is a “Hidden”

Markov process. We can only track the state densities instead of the true states.

It is typical to assume the stochastic processes, {vk} and {wk}, each to be white, and

that they are independent from each other and from x0, the initial state. The whiteness of {wk}

guarantees the Markovianness of {xk}, per Proposition 1. The whiteness of {wk} and {vk} and

their independence of x0, guarantee the conditional independence of yk, when conditioned on xk.

Proposition 2. For system (1.4), if {wk} and {vk} are white, and wk, vk and x0 are mutually

independent for all k, then yk conditioned on xk is conditionally independent from both x0:k−1 =

{x0, x1, . . . , xk−1} and Y0:k−1, that is

p(yk|xk, x0:k−1,Y0:k−1) = p(yk|xk).

This is a special case of Lemma 1 in the next chapter. This result, together with the

Markovianness of {xk}, avoid unnecessary technical complications, especially in the derivation

of the Bayesian filter.

The objective here is to find a control law uk = κ(·) to minimize the finite-horizon
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trajectory cost function J

J = E x0,w0:N−1,v1:N

{
N∑
k=0

`k(xk, uk)

}
, (1.5)

subject to some suitable description of the constraints, where the expectation is with respect to a

probability space of elements: x0, wk and vk, for k = 0, . . . , N . The control law uk is admissible

if restricted to the causal form uk = uk(Zk), where Zk = (y0, . . . , yk, u0, . . . , uk−1) [5]. This

restriction maintains the causality condition, that is, any decision must be dependent only on the

information available then. Furthermore, this admits stochastic Dynamic Programming equation

and the concept of information state, which will be discussed next.

1.8 Stochastic optimal control

For linear Gaussian systems with quadratic costs, the cost is explicitly a quadratic

function of the state mean trajectory. An optimal stochastic controller under these settings is an

LQR control of the deterministic state mean dynamics, and a Kalman filter tracking the state

conditional density. This is the separation principle commonly attached with its famous example,

LQG control [3]. This, however, does not hold in general, and the stochastic optimal control is a

function of the information state [5], as will be shown in the following discussion.

1.8.1 Information state and the Bayesian filter

Given the the values of xk and uk,

p(xk+1 | xk, xk−1, . . . , x0, uk, . . . , u0) = p(xk+1 | xk, uk),

which is a restatement of the fact of xk being a state. However, the premise of knowing xk is not

true for general dynamics as in (1.4), where, typically, yk 6= xk. This leads to the concept of the

information state [21], which at time-k, is the filtered density function p(xk | Zk).
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The information state can be propagated through the Bayesian filter, which consists of

two steps,

1. Time update:

p(xk+1 | uk,Zk) =

∫
p(xk+1 | uk, xk)p(xk | Zk) dxk, (1.6)

2. Measurement update

p(xk+1 | Zk+1) =
p(yk+1 | xk+1)p(xk+1 | uk,Zk)∫
p(yk+1 | xk+1)p(xk+1 | uk,Zk) dxk

. (1.7)

Notice that to move from the filtered density at time-k to k + 1, the values of uk and yk+1 are

used. If, to simplify the notation, πk|k = p(xk | Zk) and πk+1|k = p(xk+1 | uk,Zk), these two

steps combined define the mapping

πk+1|k+1 = T (πk|k, uk, yk+1), (1.8)

where T maps πk|k to πk+1|k using uk in (1.6), then to πk+1|k+1 using yk+1 in (1.7).

1.8.2 Stochastic Dynamic Programming

The stochastic optimal control consists of two distinct parts [13, ch. 25]:

v A Bayesian filter that tracks the state filtered density, which is the information state (also

called the hyperstate [4]).

v A control law that produces uk as a function of the state filtered density provided by the

filter, and minimizes (1.5).

The causality condition dictates that the control input used is a function of the available

information up to the time of deciding the value of this control input. This information is the
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information state, or the state filtered density as we discussed above. The last decision to be

made, uN−1, has to minimize the last tail sub-problem, according to the principle of optimality.

Therefore, the cost of the last step, given the information Zk available then

min
uN−1

E {`N−1(xN−1, uN−1) + `N(xN) | uN−1,ZN−1} .

This expectation is taken with respect to all involved random variables, which are: xN−1, wN−1

and vN . The state equation disturbance wN−1 has a known densityW . Hence, given the filtered

density of xN−1, applying the time-update (1.6) yields the predicted density p(xN | uN−1,ZN−1).

The measurement noise vN is known as well, thus, the likelihood density p(yN | uN−1,ZN−1)

can be determined, at least in principle. Therefore, the above term is solely a function of the

filtered density, that is, the information state at N − 1, πN−1|N−1 = p(xN−1 | ZN−1),

VN−1(πN−1|N−1) = min
uN−1

E {`N−1(xN−1, uN−1) + `N(xN) | uN−1,ZN−1} .

Writing the expectation in its integral form

VN−1(πN−1|N−1) = min
uN−1

∫
(`N−1(xN−1, uN−1) + `N(xN))×

p(xN , xN−1, yN | uN−1,ZN−1) dxNdxN−1dyN .

Define VN(πN |N) = E {`N(xN) | ZN}, then the last stage recursion

VN−1(πN−1|N−1) = min
uN−1

∫ (
`N−1(xN−1, uN−1) + VN(T (πN−1|N−1, uN−1, yN))

)
×

p(xN , xN−1, yN | uN−1,ZN−1) dxNdxN−1dyN .

This recursion can be written for any k = 0, 1, . . . , N − 1, starting from the terminal function

VN(πN |N) and solving backwards in time. It is called the stochastic Dynamic Programming
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equation.

In the linear dynamics case, the information state can be equivalently described by the

first two central moments, the state conditional mean and the covariance. If the random vectors

x0, wk, vk for all k, are Gaussian, the system is unconstrained and the stage costs are quadratic,

Vk is indifferent to the state conditional covariance and is only a function of the state conditional

mean. However, for general systems, stochastic Dynamic Programming equation is intractable,

not because of the curse of dimensionality over the states, xks, but much worse, the curse of

dimensionality over the information states, the πk|ks.

As explained in [53], the capability of approximating the conditional density, does not

solve half the problem. Although stochastic optimal control admits the separation of the filter and

the control, the intractability is mainly due to the curse of dimensionality, since the information

state in the case of a Bayesian filter is of infinite dimension. In the following chapters, we rely

on a particle filter to provide us with the information state, as a set of particles or weighted

particles. Although such representations of the information state are not of infinite dimensions,

they typically consist of a large number of particles, and hence they still require reduction.

1.8.3 Particle information state

In this section, a basic particle filter algorithm is presented as a convenient approximant

of the Bayesian filter. It is in effect the generator of the information state as will be used in the

subsequent chapters.

Particle filtering is a sequential importance sampling/resampling method [13], which

exploits the strong law of large numbers to evaluate integrals by propagating many state estimates,

called particles.

The dynamics in (1.4) can be written in an equivalent form using transition and measure-

ment densities [46] p(xk+1 | xk, uk) and p(yk | xk), respectively, deduced from the densities V

andW , and the dynamics f and g in (1.4), and starting from the initial state density p0, which is

given.
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A basic particle filter algorithm consists of the same two major steps of the Bayesian

filter,

1. The time update step, in which, the set of particles {xk|k,j}Lj=1 are propagated through the

state equation (1.4a), with a chosen uk, using L realizations of the disturbance wk,j ∼ W

and the resulting particles are denoted {xk+1|k,j}Lj=1. That is, given the particle filtered

density

p(xk | Zk) =
L∑
j=1

δ(xk − xk|k,j), (1.9)

where δ is the delta function, the predicted density can be evaluated through propagating

the particles {xk|k,j}Lj=1 via

xk+1|k,j = f(xk|k,j, uk, wk,j),

where {wk,j}Lj are L−independent realizations of wk.

2. The measurement update step, when yk+1 becomes available, consists of computing the

importance weights {Ωk+1,j}Lj=1 by:

Ωk+1,j =
p(yk+1 | xk+1|k,j)∑L
j=1 p(yk+1 | xk+1|k,j)

, j = 1, . . . , L. (1.10)

This equation is a direct consequence of substituting the predicted density evaluated from

the time-update step

p(xk+1 | uk,Zk) =
L∑
j=1

δ(xk+1 − xk+1|k,j),
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in the measurement update step of the Bayesian filter (1.7)

p(xk+1 | Zk+1) =
p(yk+1 | xk+1)p(xk+1 | uk,Zk)∫
p(yk+1 | xk+1)p(xk+1 | uk,Zk) dxk

,

=
p(yk+1 | xk+1)

∑L
j=1 δ(xk+1 − xk+1|k,j)∫

p(yk+1 | xk+1)
∑L

j=1 δ(xk+1 − xk+1|k,j) dxk
,

=
p(yk+1 | xk+1)

∑L
j=1 δ(xk+1 − xk+1|k,j)∑L

j=1 p(yk+1 | xk+1|k,j)
.

We want this filtered density, p(xk+1 | Zk+1), to be represented by the particle set

{xk+1|k,j}Lj=1. We have

p(xk+1|k,i | Zk+1) =
L∑
j=1

p(yk+1 | xk+1|k,i)δ(xk+1 − xk+1|k,j)∑L
j=1 p(yk+1 | xk+1|k,j)

,

=
p(yk+1 | xk+1|k,i)∑L
j=1 p(yk+1 | xk+1|k,j)

,

for i = 1, . . . , L. This is gives the importance weights updating formula in (1.10).

The conditional mean at any time k can be found by evaluating the weighted sample

average, which under regularity conditions,

E [xk | y0, . . . , yk] ≈
L∑
j=1

Ωk,jxk|k−1,j.

Notice that we started this particle filter algorithm, in the time-update, with a set of

unweighted particles, or more accurately, with equal weights 1/L each. However, we ended the

measurement update step with a filtered density represented by the particles {xk+1|k,j}j and their

weights {Ωk,j}j . We assume a resampling step is done at each time-step, such that the filtered
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density at time-step k + 1 is represented by the equally weighted particles {xk+1|k+1,j}j

p(xk+1 | Zk+1) =
L∑
j=1

Ωk,jδ(xk+1 − xk+1|k,j),=
L∑
j=1

δ(xk+1 − xk+1|k+1,j).

The resampling step

The resampling step is achieved through generating the cumulative distribution function

of the weighted particles {xk+1|k,j}j and {Ωk,j}j . To avoid sorting the particles, we generate a

cumulative distribution over the index set {1, 2, . . . , L}

F (i) =
i∑

j=1

Ωk,j.

Figure 1.1 shows a cumulative distribution function of 50 weighted particles, the weights of

these particle were randomly generated then normalized such that they add up to 1.
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Figure 1.1. The cumulative distribution function of 50 particles, that is, F (i) for i = 1, . . . , 50

The resampling step proceeds by sampling a random variable, say rj from the uniform

distribution uniform[0, 1]. Then

xk+1|k+1,j = xk+1|k,i, if rj ∈ (F (i− 1), F (i)],

and for i = 1 we define F (−1) = 0. Notice that the probability of picking a particle xk+1|k,i is

the probability of having rj ∈ (F (i− 1), F (i)], which is F (i)− F (i− 1) = Ωk+1,i. Therefore,

the probability of resampling a particle is this particle’s weight.
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1.9 Certainty Equivalence, a wormhole from deterministic
to stochastic control

Certainty Equivalence (CE), similarly to the separation principle, suffers from the lack

of a unique, agreed upon, universal definition. We therefore introduce our own folk definition,

which we will be using in the next discussion and reasoning.

Certainty Equivalence is the “action” of replacing the information state by a
single state value, when solving for an optimal control law in (1.5).

If CE is adopted, the reduction of the information state to a single state value allows us to avoid

stochastic Dynamic Programming and instead use the machinery developed for full-state feedback

systems. Although this reduction is wrong, in general, and a deviation from the original dynamics

(1.4), the resulting alleviation, of the intimidating computational and analytical complexities, is

appealing for a control designer.

In our work, we use CE and enjoy the luxury of having a state value to feed to a full state

feedback controller. However, this state value is selected with reasoning to help achieve a control

objective. In Chapter 2, we reduce the information state (or the particle information state) to

a Maximum Likelihood Estimate of the state. This estimate can serve as the state value to be

used under CE, since in many applications, Maximum Likelihood state estimates may have more

justifications under CE compared to other statistical point estimates, such as the conditional

mean. For instance, the Maximum Likelihood Estimate is always in the support set of a density

function, and might be better to handle heavy tails and skewness. In Chapter 3, we do not seek

a statistical state estimate to use under CE, and instead, we select a state value that helps the

closed-loop system, as a whole, achieve some control objective. This is done by formulating a

cost function, not over control sequences, but over initial states of a fictitious closed-loop state

sequence, which we will denote x′k.
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Chapter 2

Maximum Likelihood Recursive State Es-
timation using the Expectation Maximiza-
tion Algorithm

Abstract

A Maximum Likelihood recursive state estimator is derived for non-linear state-space

models. The estimator iteratively combines a particle filter to generate the predicted/filtered

state densities and the Expectation Maximization algorithm to compute the maximum likeli-

hood filtered state estimate. Algorithms for maximum likelihood state filtering, prediction and

smoothing are derived. The convergence properties of these algorithms, which are inherited from

the Expectation Maximization algorithm and the particle filter, are examined in two examples.

For nonlinear state-space systems with linear measurements and additive Gaussian noises, it is

shown that the filtering and prediction algorithms reduce to gradient-free optimization in a form

of a fixed-point iteration. It is also shown that, with randomized reinitialization, which is feasible

because of the simplicity of the algorithm, these methods are able to converge to the Maximum

Likelihood Estimate (MLE) of multimodal, truncated and skewed densities, as well as those of

disjoint support.
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2.1 Introduction

We derive a maximum likelihood (ML) recursive state estimator for nonlinear systems

based on: knowledge of the system equations and process noise and measurement noise densities;

the operation of a particle filter to propagate predicted state conditional densities; and the

Expectation Maximization (EM) algorithm [12, 37] to generate the ML filtered state estimate.

If the state at time k is denoted xk, and given the sequence of outputs up to time k, namely

Y0:k = {y0, y1, . . . , yk}, the algorithm provides an estimate of the maximizer of the posterior state

density p(xk|Y0:k). This contrasts with Least-Squares estimators, which produce the conditional

mean of this density. The contribution of this chapter is to provide an easily implementable

algorithm which is recursive and which yields this Maximum Likelihood Estimate (MLE). We

propagate the conditional densities, both prior and posterior, using a particle filter, and the

EM algorithm is used to compute the MLE of the posterior density from the particles of the

prior density, the current measurement and the known noise densities1. The observation is that

knowledge of the noise densities permits computation of successive functions whose maximizers

are non-decreasing in their likelihood with respect to the posterior density, which follows from

the desirable convergence properties of the EM algorithm. If the system under consideration

has additive Gaussian noises and linear measurement equation, the algorithm simplifies to a

fixed-point iteration. This chapter clarifies these details in relation to the particle filter, the EM

algorithm and MLE.

In many scenarios, the conditional state density can: be multimodal as when tracking a

group of objects [36, 48]; have skewness, limited support, one-sidedness as in some Stochastic

Volatility Models [54, 27]; or be governed by inequality state constraints [26], leading to truncated

or disjoint support such as might arise in stochastic Model Predictive Control. The justification

for the choice of the conditional mean as the point estimate of a filter may be weakened or render

1The extension to the case including a known exogenous input or control signal as part of the system equations
is direct in a particle filter. Therefore, it is omitted here.
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an estimate which is infeasible under the density. In such scenarios, the MLE may have more

reasonable grounds for use. Since finding the MLE requires optimization over the posterior

density, the recursive procedure involves two stages: the propagation of the state densities, for

which we rely on a particle filter, and an iterative optimization to find the maximizer. However,

the density provided by the particle filter is a collection of point masses, usually with the same

singleton mass, and so is not suited to Newton-like optimization. A novelty of this chapter and

its algorithms is that the previous time’s posterior density plus the current measurement are

combined with the known continuous densities of the process and measurement noises to yield a

gradient based likelihood maximizer.

Recursive propagation of prior/predicted and posterior/filtered conditional state densities

in nonlinear Bayesian filtering involves two distinct steps.

1. From the measurement equation, compute p(yk|xk) and then, using the prior density,

p(xk|Y0:k−1), compute the weighted intermediate product

p(yk|xk)p(xk|Y0:k−1), which is then normalized to create the posterior density. Bayes tells

us that

p(xk|Y0:k) =
p(yk|xk)p(xk|Y0:k−1)∫
p(yk|xk)p(xk|Y0:k−1) dxk

.

2. Using the state equation and the process noise density, the posterior (filtered) density,

p(xk|Y0:k), is propagated to the next prior density, p(xk+1|Y0:k).

For the bootstrap particle filter, the measurement-update or filtering Step 1 is achieved by

resampling the original particles under the product density. The time-update step involves

propagating each particle through the state equation and sampling from the process noise density.

In our algorithm, we apply EM directly to maximize the intermediate product to produce the

filtered MLE.
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Figure 2.1. In blue is the histogram of 100 particles independently sampled according to a
standard normal, N (0, 1), the red curve.
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Figure 2.2. The same 100-particle distribution weighted by a Gaussian of mean 1 and variance 1,
N (1, 1). The red curve is the pointwise productN (0, 1).×N (1, 1), whose maximizer is sought
and is the (unknown) unnormalized likelihood describing the weighted particles.

Figure 2.1 is a histogram in blue which depicts 100 particles (samples) drawn from a

standard normal density,N (0, 1), which is in red. The spatial distribution of the particles captures

the underlying density. Since the density is continuous and the histogram has infinitesimally

wide bins, each particle has frequency one. So, the particle frequency cannot directly be used

to determine the likelihood maximizer. Similarly, Figure 2.2 shows the intermediate product of

densities, where each particle in Figure 2.1 is multiplied by its corresponding value of p(yk|xk),

hereN (1, 1). The red curve is the (unknown) product function, the unnormalized filtered density,

in this example also of Gaussian shape. The aim of an ML state estimator is to determine the
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maximizer of the red curve from these weighted blue values. For us, this involves successive

smoothing over the weighted particles in the E-step followed by maximization in the M-step.

In [31], a piecewise continuous cumulative distribution function is constructed from the

weighted particles approximating the filtered state density p(xk|Y0:k), limited to the case when

the state-space is one-dimensional. In [11], this solution is extended to a multi-dimensional

state-space. However, it has a computational complexity of O(N2), where N is the number

of particles, and a nonstandard particle filtering scheme, as reported in [18]. Earlier, in the

construction of the auxiliary particle filter [39], it was shown that it is possible to construct a

smooth approximation of p(xk|Y0:k) under the name of “the empirical filtered density” using the

weighted particles approximating p(xk−1|Y0:k−1) and the current measurement. We extend this

construction with the computation of an approximate smooth function, Q, as shall be explained

shortly. This constructed smooth function could be directly maximized using various search

methods and the new calculation permits gradient search for the MLE. We introduce the EM

algorithm as an iterative procedure to achieve this, perhaps with multiple initial starting values in

the multimodal case. This yields a sequence of estimates with non-decreasing likelihood which

converges to a stationary point [57, 12]. This will be supported by computational examples in

Sections 2.6.1 and 2.6.2.

In effect, the EM algorithm smooths and recenters the empirical filtered density in the E-

step, taking into account the weights of the particles and their spatial density, before maximizing

at the M-step. The iterations refine and localize the smoothing to approach the MLE. Ultimately,

this is limited by the quality of the empirical density.

The EM algorithm [12] is versatile with many variations [34, 56, 23] and applications

primarily in parameter estimation. It consists of two major steps: the expectation (E) step, in

which an approximant to the log-likelihood function is constructed, followed by the maximization

(M) step, which seeks to find the maximizer of this function. Hence, EM iterations deliver

a sequence of functions for which their maximizers are non-decreasing with respect to the

likelihood function under consideration [57].

23



Contribution

Equipped with Monte-Carlo particle methods, the EM algorithm is widely used in

parameter estimation for nonlinear non-Gaussian systems [46, 40, 28, 25]. We examine the use

of EM in the context of state estimation; to our knowledge this is a novel application and different

in principle, since, unlike parameters, the components of the state are dynamically changing

according to the tailored system model. Because of this, the MLE estimator needs to be recursive

and to forget or deemphasize data from the distant past. This is achieved by the particle filter

under suitable mixing conditions. For parameter estimation, prediction, filtering and smoothing

are indistiguishable; not so for state estimation. Here is how our algorithm compares to the

existing literature

• In [46], EM is used together with a particle smoother to evaluate the MLE of a constant

parameter in a nonlinear state-space model, using a sequence of measurements.

• The work in [51] applies a recursive stochastic gradient search using a particle approxima-

tion of the gradient of the log likelihood function of the data with respect to a constant

parameter.

• Differently from [46], our algorithm processes measurements recursively in time. And,

differently from both [46] and [51], it is applied in state estimation which can be time-

varying and stochastic, as opposed to constant parameters.

Outline

In Section 2.2, the underlying assumptions on the state-space model under consideration

are elucidated. In Section 2.3, the EM state filter (EMSF) algorithm is introduced. It is shown,

in Section 4, that EMSF reduces to a convergent fixed-point iteration method under mild

assumptions. The extensions of EMSF to the contexts of state prediction and smoothing are

provided in Subsections 2.5.1 and 2.5.2, respectively. In Section 2.6, EMSF is applied to two
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examples: firstly, to a linear Gaussian problem where the Kalman filter also yields the MLE; and

then to a nonlinear problem with multimodal state densities.

2.2 Formulation

Consider the following nonlinear dynamical system additive in the noises2:

xk+1 = f(xk) + wk, xk ∈ Rrx , (2.1a)

yk = g(xk) + vk, yk ∈ Rry , (2.1b)

wk ∼ Wk(.), vk ∼ Vk(.),

x0 ∼ p0(.),

where,

• the integers rx > 0 and ry > 0 are the dimensions of the state and output vectors,

respectively,

• the stochastic processes {wk} and {vk} are white and mutually independent, and their

probability density functions, Wk(·) and Vk(·), are known and continuously differentiable

for all k,

• xk is the state vector, with initial value, x0, having a known initial distribution which is

independent of {wk} and {vk},

• yk is the measurement vector,

• the functions f and g are known continuously differentiable functions.
2The notation ∼ here means “is distributed as the density on the right”.

25



Problem Statement
Given the observation sequence, Y0:k = {y0, y1, . . . , yk}, the problem is to find the MLE

of the state-vector xk using the log-likelihood function log p(xk|Y0:m), for m = k (filtering),

m > k (smoothing), and m < k (prediction).

2.3 ML state filtering by the expectation maximization
algorithm

For the problem statement at time k, given:

• the measurement yk,

• the filtered density at the previous time k − 1, i.e. p(xk−1|Y0:k−1),

• initial time-k state estimate x0
k,

we set iteration counter i = 0 and seek to find xi+1
k such that log p(xi+1

k |Y0:k) ≥ log p(xik|Y0:k)

[57]. This is achieved by two major steps: the expectation step (E-step), followed by the

maximization step (M-step). We continue with these iterations in i until we satisfy a convergence

criterion, which is guaranteed by the non-decreasing property. At this stage, we either restart

with a different initial condition, x0
k, or move to time k + 1.

2.3.1 E-step

The E-step is performed by evaluating the following expectation,

Qx(xk, x
i
k) = E {log p(xk|xk−1,Y0:k)|xik,Y0:k},

=

∫
log p(xk|xk−1,Y0:k)p(xk−1|xik,Y0:k) dxk−1, (2.2)

whose calculation in terms of available densities will be presented shortly in the next theorem.

Before presenting the theorem, we clarify a notational aspect: the function p(xk |

xik−1,Y0:k), for example, is the probability density function of xk conditioned on both xik−1 and
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Y0:k. Also, note that

p(xk, x
i
k−1|Y0:k) = p(xk|xik−1,Y0:k)p(x

i
k−1|Y0:k).

After taking the logarithm of both sides,

log p(xk, x
i
k−1|Y0:k) = log p(xk|xik−1,Y0:k) + log p(xik−1|Y0:k),

the second term in the right-hand-side is independent from xk. Thus, maximizing either the the

joint (p(xk, xik−1|Y0:k)) or the conditional (p(xk|xik−1,Y0:k)) likelihood functions leads to the

same result in the M-step; since the maximization is executed with respect to xk.

Lemma 1. For system (3.1) at time n ≥ k, yn conditioned on xk is conditionally independent

from both x0:k−1 = {x0, x1, . . . , xk−1} and Y0:k−1, that is

p(yn|xk, x0:k−1,Y0:k−1) = p(yn|xk).

Proof. From (3.1) and for n ≥ k, yn is a function of xk, wk:n−1 and vn. Since wk:n−1 and vn are

independent from x0:k−1 and Y0:k−1, we have the result.

This is a restatement of the Markovianness of the state equation (3.1).

Theorem 1. Given the dynamical system (3.1), the filtered density p(xk−1|Y0:k−1), the current

measurement yk, and xik, the integral in (2.2) is, apart from a positive multiplicative constant

and an additive constant both independent from xk, equal to

Qx(xk, x
i
k) =

∫ [
log Vk(yk − g(xk)) + logWk−1(xk − f(xk−1))

]
×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1) dxk−1, (2.3)
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and its gradient is given by

∇xkQx(xk, x
i
k) =

∫ [
∇xk log Vk(yk − g(xk)) +∇xk logWk−1(xk − f(xk−1))

]
×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)dxk−1. (2.4)

Proof. We use Bayes’ rule and Lemma 1, to yield

p(xk|xk−1,Y0:k) =
p(yk|xk, xk−1,Y0:k−1)p(xk|xk−1,Y0:k−1)

p(yk|xk−1,Y0:k−1)
,

=
p(yk|xk)p(xk|xk−1)

p(yk|xk−1)
.

Thus,

p(xk|xk−1,Y0:k) = log p(yk|xk) + log p(xk|xk−1)− log p(yk|xk−1),

= log Vk(yk − g(xk)) + logWk−1(xk − f(xk−1))− C̃, (2.5)

where C̃ = log p(yk|xk−1) is independent from xk and so integrates to an additive constant in

the expectation inside (2.2).

Similarly, by Bayes’ rule and Lemma 1,

p(xk−1|xik,Y0:k) = p(xk−1|xik,Y0:k−1, yk),

=
p(yk|xik, xk−1,Y0:k−1)p(xk−1|xik,Y0:k−1)

p(yk|xik,Y0:k−1)
,

=
p(yk|xik)p(xk−1|xik,Y0:k−1)

p(yk|xik)
,

= p(xk−1|xik,Y0:k−1).
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Applying Bayes’ rule again,

p(xk−1|xik,Y0:k) =
p(xik|xk−1)p(xk−1|Y0:k−1)

p(xik|Y0:k−1)
.

Hence,

p(xk−1|xik,Y0:k) = p(xk−1|xik,Y0:k−1),

=
Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)

Ĉ
, (2.6)

where Ĉ = p(xik|Y0:k−1) is independent from xk−1 and leads to a positive multiplicative constant

in the expectation inside (2.2).

Substituting (2.5) and (2.6) into (2.2) and neglecting the additive and positive multiplica-

tive constants above yields

Qx(xk, x
i
k) =

∫ {
[ log p(yk|xk) + log p(xk|xk−1)]×

p(xik|xk−1)p(xk−1|Y0:k−1)
}
dxk−1

=

∫ {
[ log Vk(yk − g(xk)) + logWk−1(xk − f(xk−1))]×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)
}
dxk−1.

The smoothness assumptions in Section 2.2 permit exchanging differentiation and integration to

arrive at the gradient formula.

∇xkQx(xk, x
i
k) = ∇xk

∫ {
[ log Vk(yk − g(xk)) + logWk−1(xk − f(xk−1))]×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)
}
dxk−1

=

∫ {
[∇xk log Vk(yk − g(xk)) +∇xk logWk−1(xk − f(xk−1))]×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)
}
dxk−1.

29



The gradient ∇xkQx(xk, x
i
k) can be used within a gradient search algorithm to evaluate

the M-step, which follows immediately.

2.3.2 M-step

The M-step maximizes the expectation in the E-step with respect to xk, choosing xi+1
k to

be the maximizer,

xi+1
k = arg max

xk∈Rrx
Q(xk, x

i
k). (2.7)

This choice of xi+1
k will be shown in Theorem 2 to be non-decreasing in its likelihood compared

to xik. A proof of the general statement of EM algorithm can be found in [57]. We sketch the

proof in the context of state filtering as opposed to the estimation of a constant parameter.

Theorem 2. The sequence {xik}i≥0, commencing at x0
k ∈ Rrx and satisfying the recursion (2.7),

has the property that {log p(xik|Y0:k)}i≥0 is monotonically non-decreasing.

Proof. The generic EM algorithm is posed with three variables: the unknown latent variable

X , the measured data Y , and the unknown fixed parameter θ. In the context here, (X, Y, θ) are

identified with (xk−1,Y0:k, xk) and we can appeal to the proof of [57] for convergence.

Corollary 1. If the log-likelihood function log p(xk|Y0:k) is unimodal with the MLE being the

only stationary point, then {xik}i≥0 converges to this MLE.

This parallels Corollary 1 in [57].

The EM algorithm for ML state filtering at time-step k follows.
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Algorithm 1
1: Given the current measurement yk, the prior filtered density p(xk−1|Y0:k−1) and initial time-k

state estimate x0
k, set i← 0.

2: Evaluate the integral:

Qx(xk, x
i
k) =

∫ {[
log Vk(yk − g(xk)) + logWk−1(xk − f(xk−1))

]
×

Wk−1(xik − f(xk−1))p(xk−1|Y0:k−1)
}
dxk−1. (2.8)

3: Evaluate xi+1
k :

xi+1
k = arg max

xk∈Rrx
Qx(xk, x

i
k). (2.9)

4: If {xik}i≥0 satisfies a convergence criterion: set xMLE
k = xik and terminate. Else: i← i+ 1

and go to Step 2.

As guaranteed by Theorem 2, Algorithm 1 generates a sequence of estimates {xik}i≥0

which is non-decreasing in its likelihoods with respect to the filtered density.

With the generality of classes of functions f, g, Wk, and Vk implied by the problem

formulation, the existence of an explicit solution to the M-step (2.7) cannot be concluded. And

the user is left to pick a convenient maximization algorithm. However, gradient search algorithms,

such as steepest ascent, can be a reasonable choice when the gradient exists. Its formula is given

in Theorem 1, and its particle approximation in (2.11) below.

Although the densities Vk and Wk are assumed to be known, the integral (2.12) in Algo-

rithm 1 requires the knowledge of p(xk−1|Y0:k−1) as well. In general, outside the linear Gaussian

case, such an integral cannot be analytically evaluated. Hence, a numerical approximation has to

be considered. In this chapter, we turn to using a particle filter.
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2.3.3 EM with a particle filter

The EM algorithm, so far, relies on the provision of the previous times’ filtered density

p(xk−1|Y0:k−1) for the calculation in the E-step. A particle filter [13] provides a version of this

information through a set of particles, i.e. a collection of values of {x̃jk−1}Nj=1, and possibly their

corresponding importance weights {ωjk−1|k−1}Nj=1, as illustrated in Figures 1 and 2. The density

is approximated by

p(xk−1|Y0:k−1) =
N∑
j=1

ωjk−1|k−1δ(xk−1 − x̃jk−1), (2.10)

where δ(·) is the Dirac delta function. If the particles are produced by resampling then each of

the importance weights ωjk−1|k−1 = 1/N , even though the samples themselves can be repeated.

Using these particles in (2.10), the expectation inside Qx(xk, x
i
k) in (2.8) can be replaced by its

particle approximation Q̂N
x (xk, x

i
k) in (2.12). And if a gradient search algorithm is to be used,

the particle approximation of the gradient in (2.4) is

∇xkQ̂
N
x (xk, x

i
k) =

N∑
j=1

[
∇xk log Vk(yk − g(xk)) +∇xk logWk−1(xk − f(x̃jk−1))

]
×

Wk−1(xik − f(x̃jk−1))ωjk−1|k−1. (2.11)

Algorithm 1 can then be recast using the particles for the E-step as follows.
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Algorithm 2. EM State Filter (EMSF) Algorithm

1: Given yk, the particles {x̃jk−1}Nj=1, their normalized importance weights {ωjk−1|k−1}Nj=1 and

initial time-k state estimate x0
k, set i← 0.

2: Evaluate the summation:

Q̂N
x (xk, x

i
k) =

N∑
j=1

[
log Vk(yk − g(xk)) + logWk−1(xk − f(x̃jk−1))

]
×

Wk−1(xik − f(x̃jk−1))ωjk−1|k−1. (2.12)

3: Evaluate xi+1
k :

xi+1
k = arg max

xk∈Rrx
Q̂N
x (xk, x

i
k). (2.13)

4: If {xik}i≥0 satisfies a convergence criterion: set xMLE
k = xik and terminate. Else: i← i+ 1

and go to Step 2.

Notice that

p(xk|Y0:k) = p(xk|yk,Y0:k−1),

∝ p(yk|xk).p(xk|Y0:k−1),

∝ p(yk|xk)
∫
p(xk|xk−1)p(xk−1|Y0:k−1) dxk−1.

By using the particle approximation of the filtered density p(xk−1|Y0:k−1), the following approx-

imate density

p(xk|Y0:k) = p(yk|xk)
N∑
j=1

p(xk|x̃jk−1)ωjk−1|k−1,

is the empirical filtered density [39], which Algorithm 2 seeks to maximize using EM. This

density, which can be evaluated pointwise, can be used to compare the likelihoods of the

convergence points, of multiple initializations, x0
ks, of Algorithm 2. The multiple initializations
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become necessary when the unimodality hypothesis of Corollary 1 fails to hold, as will be shown

in the example in Subsection 2.5.2.

2.4 Gaussian state-space models with linear measurement
equations

In the case of a nonlinear state-space model with linear measurement and additive

Gaussian noises, Algorithm 2 reduces to a fixed-point iteration method which is convergent to

a stationary point of the empirical filtered density. We use the term N (x|µ,Σ) to denote the

multivariate normal density of mean µ and covariance Σ evaluated at x.

Theorem 3. For the nonlinear state-space system (3.1) with g(xk) = Hxk for H ∈ Rry×rx and

wk ∼ N (0, Sk), vk ∼ N (0, Rk), Steps 2 and 3 of Algorithm 2 reduce to the following fixed-point

iteration.

xi+1
k =

1∑N
l=1 λ

lωlk−1|k−1

×
[ N∑
j=1

f(x̃jk−1)λjωjk−1|k−1+

Bk(yk −H
N∑
j=1

f(x̃jk−1)λjωjk−1|k−1)
]
, (2.14)

where

Bk = Sk−1H
T (HSk−1H

T +Rk)
−1,

and

λj = N (xik − f(x̃jk−1)|0, Sk−1), j = 1, 2, . . . N. (2.15)

34



Proof. The summation (2.12) in Algorithm 2 reduces to

Q̂N
x (xk, x

i
k) =

N∑
j=1

[
− (yk − g(xk))

TR−1
k (yk − g(xk))

− (xk − f(x̃jk−1))TS−1
k−1(xk − f(x̃jk−1))

]
× λjωjk−1|k−1

which is quadratic in xk. Hence, the unique maximizer of QN
x (xk, x

i
k) can be found by setting

∇xkQ
N
x (xk, x

i
k) to zero. Thus,

xi+1
k =

[
HTR−1

k H + S−1
k−1

]−1 1∑N
l=1 λ

lωlk−1|k−1

×

{
HTR−1

k yk + S−1
k−1

N∑
j=1

f(x̃jk−1)λjωjk−1|k−1

}
.

Applying the matrix inversion lemma completes the proof.

We have the following ML state filtering algorithm.

Algorithm 3. EMSF Algorithm for systems with linear measurements and additive Gaussian
noises

1: Subject to the assumptions of Theorem 3 and given: yk, the particles {x̃jk−1}Nj=1, their

normalized importance weights {ωjk−1|k−1}Nj=1 and initial time-k state estimate x0
k, set

i ← 0.

2: Update xik to xi+1
k per (2.14) of Theorem 3.

3: If {xik}i≥0 satisfies a convergence criterion: set xMLE
k = xik and terminate. Else: i ← i+ 1

and go to step 2.

2.5 ML state prediction and smoothing by the expectation
maximization algorithm

The EMSF algorithm uses the previous time’s particle filtered density and the current

measurement to produce the estimate. ML state prediction and smoothing rely on different
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particle densities, and for smoothing several such densities plus the current measurement. These

data are used in fashions distinct from EMSF, as we now explain.

2.5.1 Prediction

Given,

• the particle approximation of the time-m filtered density p(xm|Y0:m), for m ∈ {1, . . . , k−

1}, i.e.

p(xm|Y0:m) =
N∑
j=1

ωjm|mδ(xm − x̃
j
m|m).

• initial state estimate x0
k,

the prediction problem is to find the MLE of the state-vector xk using the log-likelihood function

log p(xk|Y0:m) for m < k.

The time-update of the bootstrap particle filter can be used to propagate the particles and

achieve the particle approximation

p(xk−1|Y0:m) =
N∑
j=1

ωjm|mδ(xk−1 − x̃jk−1|m). (2.16)

The importance weights are unchanged because no extra measurements are available after time-

m. The EM algorithm can then be used to evaluate the MLE of xk of the predicted density

p(xk|Y0:m), using the particle approximation (2.16). The E-step is performed by evaluating the

following expectation

Qp
x(xk, x

i
k) = E {log p(xk|xk−1,Y0:m)|xik,Y0:m},

=

∫ {
log p(xk|xk−1,Y0:m)p(xk−1|xik,Y0:m)

}
dxk−1,
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which, analogous to the proof of Theorem 1, is equivalent to

Qp
x(xk, x

i
k) =

∫ {
[ logWk−1(xk − f(xk−1))]×Wk−1(xik − f(xk−1))p(xk−1|Y0:m)

}
dxk−1.

(2.17)

The particle approximation (2.16) can be used to construct Qp,N
x , an approximant of

(2.17) up to additive and multiplicative constants, which are independent from xk,

Q̂p.N
x (xk, x

i
k) =

N∑
j=1

[
logWk−1(xk − f(x̃jk−1|m))

]
×Wk−1|m(xik − f(x̃jk−1|m))ωjm|m.

The M-step is performed by maximizing this approximant over xk. Hence, the EM algorithm for

ML state prediction,

Algorithm 4. EM State Predictor (EMSP) Algorithm

1: Given the particles {x̃jk−1|m}Nj=1, their normalized importance weights {ωjm|m}Nj=1 and initial

time-k state estimate x0
k, set i← 0.

2: Evaluate the summation:

Q̂p.N
x (xk, x

i
k) =

N∑
j=1

[
logWk−1(xk − f(x̃jk−1|m))

]
×Wk−1(xik − f(x̃jk−1|m))ωjm|m. (2.18)

3: Evaluate xi+1
k :

xi+1
k = arg max

xk∈Rrx
Q̂p,N
x (xk, x

i
k). (2.19)

4: If {xik}i≥0 satisfies a convergence criterion: set xMLE
k = xik and terminate. Else: i← i+ 1

and go to step 2.

Similar versions of Theorem 2 and Corollary 1 hold for the sequence {xik}i≥0 generated

by Algorithm 4, i.e. the sequence {log p(xik|Ym)}i≥0 is non-decreasing, and if log p(xk|Ym) is

unimodal and its MLE is the only stationary point, then {xik}i≥0 of Algorithm 4 converges to the
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MLE.

2.5.2 Smoothing

In contrast to prediction and filtering, smoothed state estimation involves considerably

greater complexity and, in the MLE environment, greater demands of the particle filter. This

leads to an EM algorithm which has complexity O(N2). The algorithm EMSS, however, follows

directly, as we now show.

Given,

• the measurements sequence Y0:n, for n > k,

• The particle approximations of the following densities:

p(xk−1|Y0:k−1) =
N∑
j=1

ωjk−1|k−1δ(xk−1 − x̃jk−1|k−1), (2.20)

p(xk|Y0:k) =
N∑
j=1

ωjk|kδ(xk − x̃
j
k|k), (2.21)

p(xk+1|Y0:n) =
N∑
j=1

ωjk+1|nδ(xk+1 − x̃jk+1|n), (2.22)

which can be supplied by a forward–backward particle smoother [13],

• initial state estimate x0
k,

the smoothing problem is to find the MLE of the state-vector xk using the log-likelihood function

log p(xk|Y0:n) for n > k + 1.

The EM algorithm can be used to evaluate the MLE of xk of the smoothed density
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p(xk|Y0:n). The E-step is performed by evaluating

QS
x(xk, x

i
k)

= E {log p(xk|xk+1,Y0:n)|xik,Y0:n},

=

∫
log p(xk|xk+1,Y0:n)p(xk+1|xik,Y0:n) dxk+1. (2.23)

Where in (2.23), using Bayes’ rule 3 times and Lemma 1, the density

p(xk|xk+1,Y0:n) =
p(Yk+1:n|xk+1, xk,Y0:k)p(xk|xk+1,Y0:k)

p(Yk+1:n|xk+1,Y0:k)
,

=
p(Yk+1:n|xk+1)p(xk|xk+1,Y0:k)

p(Yk+1:n|xk+1)
,

= p(xk|xk+1,Y0:k),

=
p(xk+1|xk)p(xk|Y0:k)

p(xk+1|Y0:k)
,

=
p(xk+1|xk)p(yk|xk)p(xk|Y0:k−1)

p(xk+1|Y0:k)p(yk|Y0:k−1)
.

The term p(yk|Y0:k−1) is independent from xk and leads to an additive constant in the expectation

inside (2.23). Thus,

log p(xk|xk+1,Y0:n)

∝ log p(xk+1|xk) + log p(yk|xk) + log p(xk|Y0:k−1),

∝ logWk(xk+1 − f(xk))

+ log Vk(yk − g(xk)) + log p(xk|Y0:k−1). (2.24)

The other density in (2.23), using the same conditional independence result and Bayes’
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rule,

p(xk+1|xik,Y0:n) =
p(xik|xk+1,Y0:n)p(xk+1|Y0:n)

p(xik|Y0:n)
,

=
p(xik|xk+1,Y0:k)p(xk+1|Y0:n)

p(xik|Y0:n)
,

=
p(xk+1|xik)p(xik|Y0:k)p(xk+1|Y0:n)

p(xk+1|Y0:k)p(xik|Y0:n)
, (2.25)

where the terms p(xik|Y0:k) and p(xik|Y0:n) are independent from xk+1 and yield a positive

multiplicative constant in the expectation inside (2.23). Hence,

p(xk+1|xik,Y0:n) ∝ p(xk+1|xik)p(xk+1|Y0:n)

p(xk+1|Y0:k)
,

∝ Wk(xk+1 − f(xik))p(xk+1|Y0:n)

p(xk+1|Y0:k)
. (2.26)

Substituting (2.24) and (2.26) in (2.23), after dropping the additive and the multiplicative

constants, results in

QS
x(xk, x

i
k) = log Vk(yk − g(xk)) + log p(xk|Y0:k−1)+∫ {

[ logWk(xk+1 − f(xk))]×
Wk(xk+1 − f(xik))p(xk+1|Y0:n)

p(xk+1|Y0:k)

}
dxk+1. (2.27)

Notice that, for the construction of (2.27), the densities p(xk|Y0:k−1), p(xk+1|Y0:n)

and p(xk+1|Y0:k) are required. The particle calculation (2.21) can be used to approximate

p(xk+1|Y0:k):

p(xk+1|Y0:k) =

∫
p(xk+1|xk)p(xk|Y0:k) dxk =

N∑
j=1

ωjk|kWk(xk+1 − f(x̃jk|k)). (2.28)
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Similarly, the density p(xk|Y0:k−1) can be approximated using (2.20),

log p(xk|Y0:k−1) = log
N∑
j=1

ωjk−1|k−1Wk−1(xk − f(x̃jk−1|k−1)). (2.29)

Finally, by using (2.29) and (2.28) in (2.27), and (2.22) to approximate the integral term in (2.27),

after neglecting additive and multiplicative constants, we obtain Q̂S.N
x , the particle approximation

of QS
x ,

Q̂S.N
x (xk, x

i
k) = log Vk(yk − g(xk)) + log

N∑
j=1

ωjk−1|k−1Wk−1(xk − f(x̃jk−1|k−1))+

N∑
t=1

[
logWk(x̃

t
k+1|n − f(xk))

]
×

Wk(x̃
t
k+1|n − f(xik))∑N

d=1 ω
d
k|kWk(x̃tk+1|n − f(x̃dk|k))

ωtk+1|n. (2.30)

The EM algorithm for ML state smoothing,

Algorithm 5. EM State Smoother (EMSS) Algorithm

1: Given the sets of particles {x̃jk−1|k−1}Nj=1, {x̃jk|k}Nj=1, {x̃jk+1|n}Nj=1, their corresponding nor-

malized importance weights, and initial time-k state estimate x0
k, set i ← 0.

2: Evaluate:

Q̂S.N
x (xk, x

i
k) = log Vk(yk − g(xk)) + log

N∑
j=1

ωjk−1|k−1Wk−1(xk − f(x̃jk−1|k−1))+

N∑
t=1

[
logWk(x̃

t
k+1|n − f(xk))

]
×

Wk(x̃
t
k+1|n − f(xik))∑N

d=1 ω
d
k|kWk(x̃tk+1|n − f(x̃dk|k))

ωtk+1|n. (2.31)

3: Evaluate xi+1
k :

xi+1
k = arg max

xk∈Rrx
Q̂S,N
x (xk, x

i
k). (2.32)

4: If {xik}i≥0 satisfies a convergence criterion: set xMLE
k = xik and terminate. Else: i← i+ 1

and go to step 2.
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2.6 Examples

We apply EMSF to the following computed examples, both of which satisfy the structure

of Theorem 3.

2.6.1 Example 1: Linear Gaussian state-space model

In the linear Gaussian state-space model case, all random variables under consideration

are Gaussian. Hence, the conditional mean is equivalent to the conditional mode [41]. In

the following example, the Kalman filter, which is designed to track the propagation of the

conditional mean, is compared the EMSF. It will be shown that the EMSF, starting from a

random initialization x0
k, converges to the Kalman Filter solution, which, for known densities, is

guaranteed by Corollary 1.

Consider the following model,

xk+1 = Fxk + wk,

yk = Hxk + vk,

vk ∼ N (0, R), wk ∼ N (0, S),

x0 ∼ N (x0|−1,Σ0|−1),

(2.33)

where: x0|−1 and Σ0|−1 are respectively the mean and the covariance matrix of x0|−1 prior to

receiving measurements, the sequences {wk} and {vk} and the random variable x0 follow the

independence and whiteness assumptions as in Section 2.2.
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We apply Algorithm 3, yielding

λj = Wk−1(xik − Fx̃
j
k−1) = N (xik − Fx̃

j
k−1|0, S),

xi+1
k =

[
HTR−1H + S−1

]−1 1∑N
l=1 λ

lωlk−1|k−1

×
{
HTR−1yk + S−1F

N∑
j=1

x̃jk−1λ
jωjk−1|k−1

}
.

(2.34)

Or, using the matrix inversion lemma,

xi+1
k =

[
F

N∑
j=1

x̃jk−1λ
jωjk−1|k−1 + B(yk −HF

N∑
j=1

x̃jk−1λ
jωjk−1|k−1)

] 1∑N
l=1 λ

lωlk−1|k−1

, (2.35)

with B = SHT (HSHT + R)−1. Note that (2.35) bears a passing resemblance to the Kalman

filter recursion as does (2.34) to the information filter.

Now take

xk =


xk,1

xk,2

xk,3

 , F =


0.66 −1.31 −1.11

0.07 0.73 −0.06

0.00 0.08 0.80

 ,

H =

[
0 1 1

]
, S =


0.2 0 0

0 0.3 0

0 0 0.5

 , R = 0.1,

x0|−1 =

0

0

 , Σ0|−1 =


0.3 0 0

0 0.3 0

0 0 0.3

 .

A simulation over 100 time-steps, with N = 2000 particles, is conducted with the results

plotted in Figure 2.3. The recursion (2.35) at each time-step k is initialized by x0
k ∼ N (0, I3×3).

The results show that the EMSF converges to the Kalman Filter solution. The Kalman Filter
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solution, i.e. the conditional mean, is also the conditional mode for linear Gaussian state-space

models. Therefore, by Corollary 1, the EMSF solution and the Kalman Filter solution should

match, subject to the adequacy of the particle filter, which is shown by this example.
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Figure 2.3. The Kalman Filter solution in black, and the EMSF solution in orange dots.

Figure 2.4 depicts the convergence of the iterates at three individual times of xk,1. The

algorithm stops whenever the maximum absolute relative error is below 0.005, i.e.

max q∈{1,2,3}|(xi+1
k,q − x

i
k,q)/x

i+1
k,q |≤ 0.5%.
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Figure 2.4. The convergence of the sequences {xik,1 : i ≥ 0} for k = 15, 55, 90 in green, orange
and purple, respectively.

The EMSF algorithm is of O(N) computational complexity, per iteration, with N the

number of particles. Ten simulations were conducted using MATLAB, an uncompiled interpretive

program, on a computer with a 2.5 GHz Intel Core i5-7200U processor and 8.00 GB of RAM. The

running times for the one hundred time points averaged over the ten runs were: 3 milliseconds

for the Kalman filter, 3.4 seconds for the bootstrap particle filter, and 26.4 seconds for EMSF

including the bootstrap particle filter.

2.6.2 Example 2: Nonlinear state-space model with multimodal/skewed
state distribution

In this example, the EMSF is tested with a nonlinear state-space model with highly

skewed and/or multimodal state densities. The EMSF solution is compared to the conditional

mean of the bootstrap particle filter. This example also conforms to the conditions of Theorem 3.

Consider the following nonlinear state-space model,

xk+1 = αk tanh (πxk) + wk,

yk =
1

2
xk + vk,

wk ∼ N (0,
1

5
), vk ∼ N (0, 1),

x0 ∼ N (0, 1),

(2.36)
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where αk = (1 + 0.5 sin(2πk/20)). Theorem 3 yields the following recursion

xi+1
k =

1

10.5

1∑N
l=1 λ

lωlk−1|k−1

×

N∑
l=1

[yk + 10αk tanh (πx̃jk−1)λjωjk−1|k−1], (2.37)

where λj = N (xik − αk−1 tanh(πx̃jk−1)|0, 1/5).

The simulation is carried out over 40 time-steps, and N = 500 particles. The EMSF,

at each time k, is defined by the recursion (2.37) and is initialized by five independent initial

guesses x0
k ∼ U [−2, 2]. The number of iterations is set to be ≤ 10, and the point of highest final

likelihood is taken over the five initial conditions. For this example, the empirical filtered density

at each time step k is

p(xk|Y0:k) = N (yk −
1

2
xk|0, 1)×

N∑
j=1

N (xk − αk−1 tanh(πx̃jk−1)|0, 1

5
)ωjk−1|k−1,

where the particles are {x̃jk−1} and their weights are {ωjk−1|k−1}. This density can be used to

compare the likelihoods of the convergence points resulting from multiple initial guesses. The

results are shown in Figures 2.5 to 2.7.
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Figure 2.5. The coloring represents the empirical density function (unnormalized). In black is
the output of the EMSF algorithm, and in blue is the conditional mean of the bootstrap particle
filter.

Each vertical time-section of the coloring in Figure 2.5 is the unnormalized empirical

filtered density. The EMSF ML estimate is shown in black. The conditional mean from the

particle filter, computed by averaging, is shown in blue. The EMSF is able to track the ML

estimate in spite of multimodality and skewness of the underlying density. The simulation in this

figure uses 500 particles. It takes 1.8 seconds on a computer with a 2.5 GHz Intel Core i5-7200U

processor and 8.00 GB of RAM running MATLAB.
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Figure 2.6. The bi-modal empirical filtered density function of xk at k = 26 (apart from
a multiplicative constant). xEMSF is the solution of the EMSF algorithm and xCM is the
conditional mean of the bootstrap particle filter.
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Figure 2.7. The highly skewed empirical filtered density function of xk at k = 10. xEMSF is the
solution of the EMSF algorithm and xCM is the conditional mean of the bootstrap particle filter.

Figures 2.6 and 2.7 show the unnormalized empirical filtered densities at different times

from this simulation. The EMSF estimate, xEMSF , in both cases, converges to the modes of

these densities while the conditional mean is a less useful statistic from the particle filter for ML

estimation because of multimodality and skewness.
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2.7 Conclusion

This chapter contributes a novel approach to incorporate the EM algorithm, along with a

particle filter, into the problem of maximum likelihood state estimation. Algorithms for maximum

likelihood state filtering, prediction, and smoothing are presented, together with the desirable

convergence properties they inherit from the EM algorithm and the bootstrap particle filter.

Additionally, for the wide range of nonlinear state-space systems possessing linear measurements

with additive Gaussian noises, the filtering and prediction algorithms reduce to derivative-free

optimization through a fixed-point iteration. The EMSF algorithm is tested on two examples:

1. The system in the first example is linear third-order Gaussian. In comparison with the

Kalman filter, this example demonstrates:

• the concordance of the estimates;

• the computational simplicity of the Kalman filter;

• the computational feasibility of the EMSF combined with its attendant particle filter.

2. The second example demonstrates:

• the ability of the EMSF to estimate the MLE of a state density which exhibits

multimodality and strong skewness;

• the simplicity of the EMSF algorithm after it is reduced to a fixed-point iteration.

Further work is being pursued to understand the role of MLE state estimates in constrained con-

trol, such as Model Predictive Control where linearity and Gaussian assumptions can contravene

the problem formulation.
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Chapter 3

State estimation for control: an approach
for output-feedback stochastic MPC

Abstract

This chapter provides a new approach to the determination of a single state value for

stochastic output feedback problems using paradigms from Model Predictive Control, particularly

the distinction between open-loop and closed-loop control and between deterministic optimal

control and stochastic optimal control. The State Selection Algorithm is presented and relies

on given dynamics and constraints, a nominal deterministic state-feedback controller, and a

sampling based method to select the best state value, based on optimizing a prescribed finite-

horizon performance function, over the available candidates provided by a particle filter. The

cost function is minimized over the horizon with controls determined by the nominal controller

and the selected states. So, the minimization is performed not over the selection of the control

other than through the choice of state value to use. The algorithm applies generally to nonlinear

stochastic systems and relies on Monte Carlo sampling and averaging. However, in linear

quadratic polyhedrally constrained cases the technique reduces to a quadratic program for the

state value. The algorithm is evaluated in a set of computational examples, which illustrate its

efficacy and limitations. Numerical aspects and the opportunity for parallelization are discussed.

The examples demonstrate the algorithm operating, in closed-loop with its attendant particle

filter, over the long horizon.
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3.1 Introduction

We consider state selection for output feedback control of nonlinear stochastic systems.

Starting with a filtered particle density of the state and a nominal control law, an algorithm is

presented to choose a single state value from the density, which is then used in the control. The

algorithm proceeds from the repeated selection of a single particle followed by a closed-loop

stage, which generates a set of candidate control sequences, which then are evaluated for open-

loop performance averaged over all the particles. This appearance of open-loop and closed-loop

calculations highlights a significant distinction between deterministic and stochastic optimal

feedback control, as is the propagation of single estimates versus whole densities. Both are

discussed shortly. This also brings to the fore a difficulty in the formulation of output feedback

stochastic MPC, which provides a touchstone control problem from which to appreciate the

methods and, in part, their genealogy.

Context and MPC

The surge of interest and research in Model Predictive Control (MPC) since the late

1980s is in large measure attributable to its capacity to handle constraints [32]. It does this within

a receding-horizon optimal control context, which solves repeatedly a constrained open-loop

optimal control problem from the current state, presumed to be available. That is, MPC is

formulated as full-state feedback with the feedback being achieved by the receding horizon

device of applying only the first element of the open-loop control sequence, each element of

which is a function of the initial state, before measuring the next state and re-solving the open-

loop problem. Being open-loop, each of these constrained optimization problems is manageable

in its complexity.

MPC using partially observed states enters into the realms of stochastic optimal control,

which is known to be computationally intractable in all but the simplest of cases [15, 5], with or

without constraints. Further, the presence of an equivalent open-loop optimal solution sequence
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for these problems evanesces; optimal controls are necessarily feedback only [21]. Our study

here is to walk a middle path between the in computational intractability (and optimality) of

stochastic optimal control and the convenience of open-loop methods. Given a specific state

feedback control law, uk = κ(xk), as might be provided, say, by explicit MPC, we develop an

heuristic (and evidently suboptimal) approach to the selection of a single state value from the

state particle filtered conditional density. The control law κ thus effected relies on the filtered

density solely through the selection process. For unconstrained Linear Quadratic problems,

the selection of the conditional mean of the particle density would be optimal [3]. However

for constrained and/or nonlinear problems, state selection depends on the given control law

and evaluation, in open-loop and on the particle ensemble, of both constraint satisfaction and

a performance measure. The evaluation of candidate state vectors builds on the finite-horizon

open-loop nature of the MPC iteration and combines two aspects along a prediction horizon: the

probability of constraint violation and the calculation of a predicted performance function, both

averaged over the particle density, as is explicated later.

Stochastic optimal control with partially observed state, which we abbreviate to stochastic

optimal control, is solved using Stochastic Dynamic Programming [21, 8] which requires

propagation of full conditional densities at each time. The optimal control law necessarily is

feedback-only; it cannot be precomputed along a horizon because it depends on anticipated

measurements and the associated conditional density propagation. This should be compared to

deterministic optimal control (and implicitly MPC methods) where the open-loop optimal control

can be computed, say via Pontryagin’s Maximum Principle, and coincides as a function of time

with the feedback optimal control of dynamic programming. It is this feature of deterministic

optimal control, which receding-horizon MPC relies upon for the generation of a feedback

control law from an open-loop constrained optimization. The optimization, since it is open-

loop, is computationally achievable. These concepts of open- and closed-loop underpin the

computational issues in stochastic optimal control.

Because of the proscriptive burden of stochastic optimal control, several less cumbersome
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but approximate and suboptimal approaches to these problems have been developed.

] Wide-sense approaches, in which state uncertainty is presented by approximates of its first

two central moments, and an approximate dynamics by linearization or Taylor expansion,

of the propagation of these moments with the input and anticipated measurements, is used

[5].

] Explicit probing, that is, including a state variance-based expression explicitly in the cost

of a deterministic version of the stochastic problem, as in [22].

] Stochastic MPC approaches in which active learning, or the reliance on future measure-

ments, is typically dropped. This permits achieving an open-loop solution. Example

stochastic MPC approaches that are designed to deal with initial state uncertainty include:

K a modified version of scenario-based approaches directed towards initial state uncer-

tainty [47],

K sequential Monte Carlo approaches for sampling the input space, for nonlinear but

unconstrained problems [19],

K stochastic tube approaches [58, 9, 16], which by their formulation are limited in

applicability to linear systems.

A more complete review of stochastic MPC approaches can be found in [35]. Here, we present

an algorithm akin to the stochastic MPC approaches (or equivalently to open-loop feedback

control [8]). Differently from these approaches, we seek to select the initial state value rather

than designing the controller. At variance from stochastic tube approaches, our formulation

extends naturally to constrained nonlinear dynamics. This is due to the sampling approach we

use, which, in contrast to [19], is parallelizable over the samples.

As discussed by Striebel in [50], purpose or function should guide data reduction efforts.

Our approach is to focus on the selection of a single state vector value from the ensemble of
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particles representing the density. This reduction is influenced by a stated control objective, with

a given – as yet, neither necessarily stabilizing, nor optimal nor constraint-feasible – nominal

control law. So the control value, guided by the control objective, is indirectly determined by

the nominal law and the selection process. This differs from the other methods which directly

select the control value. The method proceeds from the following information: the system

state equation with white process noise, a nominal state-feedback control law, the constraints,

the noise density, a filtered particle state density, a cost function along the prediction horizon,

state and input constraints, and their violation rate tolerance. Running alongside this control

computation is the propagation of the filtered state particle density, whose properties also affect

the closed-loop behavior.

The incorporation of the initial state as a decision variable in MPC was used previously in

the literature, for linear dynamics with full state-feedback. In [45], the initial state is augmented

to the decision variable of a tube-based MPC problem, to increase the likelihood of establishing

feasibility. Also, in [33], the previous concept of augmentation is used, but to achieve constant

value function over an invariant set around the origin. our approach does not assume a known

initial state and extends naturally to nonlinear dynamics.

In the linear problem with linear nominal feedback control, quadratic cost and polyhedral

constraints, the solution developed by the state selection approach coincides with a quadratic

program on the initial states.

Outline

The precise problem formulation and our proposed algorithm are given in Section 3.2.

Section 3.3 provides some rudimentary properties of our approach and relates it to stochastic

MPC. The computational workload, including the propagation of the state particle state filter,

and the possibility of parallel computing of the proposed algorithm are explained in Section 3.4.

The algorithm’s special case, for linear systems with polyhedral constraints, is discussed in

Section 3.5, along with a result showing that, in the unconstrained case, the algorithm yields the

55



conditional mean. These properties of the algorithm in the linear, quadratic, polyhedral case are

the strongest technical support for the algorithm. Section 3.6 includes numerical examples for

the nonlinear case and linear special case.

3.2 Problem Formulation

At the current time k = 0, we possess the following information.

I. Discrete-time state dynamics

xk+1 = f(xk, uk, wk), (3.1)

where state xk ∈ Rrx , control input uk ∈ Rru , exogenous disturbance wk ∈ Rrw .

II. Stochastic disturbance process, {wk}, assumed to be independent and identically dis-

tributed (i.i.d.) possessing known densityW . State x0 is independent of wk for all k.

III. State and input constraint sets, X and U, respectively, and ε ∈ [0, 1), an acceptable

probabilistic constraint violation rate.

IV. Initial state x0-density p0, provided as a collection of particles Ξ = {ξi0 ∈ Rrx , j =

1, . . . , L}.

V. Nominal full-state-feedback control law uk = κ(xk), which is (so far) neither assumed to

be recursively feasible with respect to X and U nor optimal with respect to the following,

or indeed any, cost.1

VI. An N -stage finite-horizon trajectory cost function J

J =
N∑
k=0

`k(xk, uk).

1While the nominal control law need not be feasible nor optimal, its selection is material for the performance
and feasibility of state selection. This is demonstrated in Section 3.6 by evaluation of the state selection algorithm
with several controllers.
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Because the initial state x0 is not precisely known (unless p0 is a point mass function), we

seek to select a candidate state value, x?0, supported by the initial density which yields: feasibility,

perhaps probabilistically or statistically in simulation, on the finite horizon; and, a favorable

influence on the subsequent evaluation of the trajectory cost J in ensemble average over the

particles.

If the dynamics in (3.1) have wks zero and x0 known, we refer to this as the deterministic

case.

Next we propose an algorithm, the State Selection Algorithm, which returns a candidate

state x?0, which is fed to the control u0 = κ(x?0) and applied to the system. The system output is

used to update the particle filter density and the process repeated with new current time k = 0.

This will be shown by the examples provided in Section 3.6.

State Selection Algorithm

1. Select sample repetition number M and statistical feasibility tolerance α ∈ [0, ε), parame-

ters of the algorithm.

2. For each i ∈ {1, 2, . . . , L}, choose x′0 = ξi ∈ Ξ.

(a) With (Nrw)-vectors

W ′
j =

(
w′

T

0,j . . . w′
T

N−1,j

)T
,

W ′′
j =

(
w′′

T

0,j . . . w′′
T

N−1,j

)T
,

sample, from WN and Ξ, M independent realizations of the (2Nrw + rx)-vector

sequence 


W ′
j

W ′′
j

x′′0,j

 : j = 1, . . . ,M

 .
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(b) For each j and k, compute the κ-closed-loop state sequence from x′0, that is, x′0,j =

x′0.

x′k+1,j = f(x′k,j, κ(x′k,j), w
′
k,j). (3.2)

This defines theM samples of theN -long closed-loop control sequence {κ(x′k,j)}N−1
k=0

from the current initial state candidate x′0.

(c) For each j ∈ {1, . . . ,M} and k ∈ {0, N − 1}, compute the open-loop-controlled

state sequence from x′′0,j ,

x′′k+1,j = f(x′′k,j, κ(x′k,j), w
′′
k,j). (3.3)

(d) Compute for each k the sample-average closed-loop control violation rate,2

β̂k(x
′
0) =

1

M

M∑
j=1

1(κ(x′k,j) ∈ U). (3.4)

(e) Compute for each k the sample-average open-loop-controlled state violation rate,

λ̂k(x
′
0) =

1

M

M∑
j=1

1(x′′k,j ∈ X). (3.5)

(f) If β̂k(x′0) ≥ 1 − α and λ̂k(x′0) ≥ 1 − α, for all k, then declare this candidate state,

x′0, to be feasible and proceed. Otherwise, return to Step 2.

(g) If x′0 is feasible, calculate its sample-average performance,

JMc (x′0) =
1

M

M∑
j=1

N∑
k=0

`k(x
′′
k,j, κ(x′k,j)).

2
1(·) is the indicator function of an event.
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3. Pick x?0 to be the feasible x′0 minimizing JMc (·), provided the feasible set is non-empty.

In this algorithm, the sequences {x′k,j}k and {x′′k,j}k are realizations of the stochastic

processes generated by recursions (3.2) and (3.3) driven by constructed independent white noise

sequences W ′
j and W ′′

j .

The processes are functions of κ and x′0. To keep our notation compact, we omit this

dependency. For a large number of realizations, M , the average cost JMc (·) converges, under

regularity conditions [43, 13],

Jc(x
′
0) = E

(
N∑
k=0

`k (x′′k, κ (x′k))

)
,

= E x′′0
EW ′EW ′′

(
N∑
k=0

`k (x′′k, κ (x′k))

)
. (3.6)

The expectation is factored due to the mutual independence between the elements x′′0,W
′,W ′′

[43]. Further, the sample averages of indicator functions in (3.4) and (3.5) converge to probabili-

ties of constraint satisfaction.

We shall denote the set of feasible state values x′0 under this probability distribution as

Xε
0 = {x′0 ∈ Ξ|P(x′′k ∈ X) ≥ 1− ε, k = 0, 1, . . . , N,

P(κ(x′k) ∈ U) ≥ 1− ε, k = 0, 1, . . . , N − 1}. (3.7)

We define the candidate state x?0 as

x?0 = arg min
x′0∈Xε0

Jc(x
′
0). (3.8)

The corresponding cost of x?0 is J?c

J?c = min
x′0∈Xε0

Jc(x
′
0) = Jc(x

?
0). (3.9)
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Although these definitions are predicated on an infinite M , it will be shown later that M

of O(logL) is sufficient for providing feasibility and optimality guarantees with probabil-

ity/reliability at least 1 − δ. For example, M = 135 is used in the numerical examples in

Section 3.6. Where proofs are developed in the next two sections, the results are derived in terms

of expectations and probabilities.

An interpretation of the central recursions (3.2) and (3.3) is that, for each particle x′0 ∈ Ξ,

(3.2) generates M control sequences {uk,j = κ(x′k,j)} of a stochastically excited closed-loop

system. Recursion (3.3) then uses sample averages of the open-loop cost of these closed-loop

sequences themselves then averages over the particle state density. In a sense, the search is

over the performance, averaged along the horizon N and over the particle density Ξ, of those

randomized closed-loop sequences as functions of x′0.

Regularity conditions for the State Selection Algorithm

Step (2b) above creates a collection of M closed-loop control sequences {κ(x′k,j)}N−1
k=0 ,

which are functions of x′0,j and the w′k,js; the steps after that examine the feasibility with respect

to (X,U) and performance with J . In order that this stage is informative for state selection,

it is important that the states and control law are suitable excited by differing x′0 and by w′k.

Considering the system

x′k+1 = f(x′k, κ(x′k), w
′
k), x′0, (3.10)

u′k = κ(x′k), (3.11)

the algorithm requires the accessibility of (3.10) from process noise w′k, and the observability

and reconstructibility of the pair (3.10)-(3.11). This is to ensure the sensitivity of the control

sequences to the initial state value and the noise process. These are conditions on the system and

control law κ. Without a diverse set of control sequences for selecting x′0, the non-emptiness of

Xε
0 cannot be assured and the minimization be effective.

60



As with stochastic optimal control, the closed-loop performance rests on both the control

law, κ, and on the information state, Ξ. The propagation of the particle filter should avoid

depletion issues and should properly reflect the conditional state density. We assume that it

contains the conditional mean, for example, and is sufficiently encompassing to yield a rich set

of feasible control sequences.

Other than these remarks, we do not delve deeper. Although, in the computed examples

we point to problems with accessibility of feasible states and with the performance limitations

when the particle filter is too localized.

3.3 Properties of the candidate state

Borrowing from certainty equivalence control, where the least-squares-best state estimate,

ξ̂0|0 the conditional mean of Ξ, is selected as the candidate state, we compare the cost Jc for x?0

versus that for ξ̂0|0.

Proposition 3. Suppose that ξ̂0|0, the sample average of the particles in Ξ, is feasible, that is,

ξ̂0|0 ∈ Xε
0. Then Jc(x?0) = J?c ≤ Jc(ξ̂0|0).

This is an immediate consequence of the minimization over x′0 in the final stage of the

state selection algorithm.

Next, we define and compare the design cost function Jdes for comparison purposes with

the cost Jc.

Definition (design cost). Assuming full state feedback in (3.1), the design cost of state value x′0

and its associated optimal causal control law κ? are given by

Jdes(x
′
0) = min

κ
EW ′

(
N∑
k=0

`k(x
′
k, κ(x′k))

)
,

= EW ′

(
N∑
k=0

`k(x
′
k, κ

∗(x′k))

)
, (3.12)
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where κ∗ is the minimizing causal control law. In the first line of (3.12), {x′k}k≥0 is

constructed using nominal control law κ, while in the second line, using κ?. The minimizer is

assumed to exist, otherwise min is replaced by inf.

Proposition 4. If the initial state is known and feasible, that is, p0 is a point mass located at

z ∈ Rrx , and Xε
0 = {z}, then Jdes(z) ≤ J∗c .

Proof.

J∗c = Jc(z),

= EW ′EW ′′

(
N∑
k=0

`k (x′′k, κ
∗ (x′k))

)
,

≥ EW ′EW ′′

(
N∑
k=0

`k (x′k, κ
∗ (x′k))

)
,

= EW ′

(
N∑
k=0

`k (x′k, κ
∗ (x′k))

)
,

= Jdes(z),

where the inequality is due to {x′k}k being the optimal sequence resulting from applying the

optimal control law κ∗ and starting from x′0 = x′′0 = z.

Notice that for Jdes full state feedback is assumed for all k ≥ 0, while the hypothesis of

Proposition 4 assumes full state feedback at time-0 only, in J∗c .

Proposition 5. In the deterministic case, that is, Ξ = {z} and wk = 0, for all k, if z is feasible,

then J∗des(z) = J∗c .

Proof. Having W ′ = W ′′ = 0 and x′0 = x′′0 = z imply x′k = x′′k for all k, by the definitions (3.2)
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and (3.3) of these two state sequences. Thus,

J∗c = Jc(z),

= EW ′EW ′′

(
T∑
k=0

`k (x′′k, κ
∗ (x′k))

)
,

=

(
N∑
k=0

`k (x′k, κ
∗ (x′k))

)
,

= Jdes(z),

Proposition 5 is a restatement that for the deterministic case, open- and closed-loop

controls are equivalent and full state feedback for k ≥ 0 is equivalent to full state feedback at

k = 0 only. In such case, the candidate state for the optimal control κ∗ is the true state itself.

3.4 Computational complexity of the state selection algo-
rithm

First, a lower bound on M is found, for guaranteeing ε-probabilistic feasibility with a

margin δ. Then, the computation time required for applying the state selection algorithm is

discussed.

3.4.1 M = O(logL)

From Section 3.2, the initial state density is given as a finite particle mass function over

the particle set Ξ = {ξi| i = 1, 2, . . . , L}.

p0(·) =
L∑
i=1

δ(· − ξi), (3.13)
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where δ is the Dirac-delta function on Rrx . Since Ξ is finite, so too is Xε
0 in (3.7), can be written

Xε
0 =

N⋂
k=1

{x′0 ∈ Ξ|P(x′′k ∈ X) ≥ 1− ε}
⋂

N−1⋂
k=0

{x′0 ∈ Ξ|P(κ(x′k) ∈ U) ≥ 1− ε}.

By construction of the random vectors x′′k and x′k, the condition {x′′k ∈ X} depends on x′0, x′′0,

W ′ and W ′′, while {κ(x′k) ∈ U} depends on x′0 and W ′. Hence, both are functions of x′0 and

Λ = (x′′0,W
′,W ′′). They can be rewritten as

Gk(x
′
0,Λ) = {x′′k ∈ X}, k = 1, . . . , N,

and

Gk+N+1(x′0,Λ) = {κ(x′k) ∈ U}, k = 0, . . . , N − 1.

Hence, more compactly,

Xε
0 =

2N⋂
k=1

{x′0 ∈ Ξ|P(Gk(x
′
0,Λ)) ≥ 1− ε}.

Statistical feasibility tolerance, α, at Step 1 of the algorithm satisfies α ∈ [0, ε) and Λj ,

for j = 1, 2, . . . ,M , at Step 2a, are independent Monte Carlo samples of Λ. Define the set

Xα,M
0 =

2N⋂
k=1

{x′0 ∈ Ξ| 1

M

M∑
j=1

1(Gk(x
′
0,Λ

j)) ≥ 1− α}. (3.14)

This set is a subset of Xε
0 with probability dependent on the number of samples, M . For a given

reliability δ ∈ (0, 1), a sufficiently large value of M can be found so that the computed sample

average, Xα,M
0 , provides a suitable approximation of Xε

0.
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The following theorem is a version of Theorem 5 of [30] modified to suit the problem

formulation of this chapter.

Theorem 4. For any δ ∈ (0, 1), if

M ≥ 1

2(ε− α)2
log

(
L

δ

)
, (3.15)

then

P(Xα,M
0 ⊆ Xε

0) ≥ 1− δ. (3.16)

Lemma 2. (Hoeffding’s inequality [17]). For independent random variables Zq, q = 1, . . . , M̄ ,

P(Zq ∈ [aq, bq]) = 1, aq ≤ bq, for all t ≥ 0

P

(
M̄∑
q=1

(Zq − E Zq) ≥ tM̄

)
≤ exp

(
− 2M̄2t2∑M̄

q=1(bq − aq)2

)

Proof. (of Theorem 4). Let x ∈ Ξ\Xε
0. Then there exists l, a minimizer of P(Gl(x,Λ)),

l ∈ {1, 2, . . . , N}. By definition of x, we have P(Gl(x,Λ)) < 1 − ε. Define the random

variables Yj , for j = 1, 2, . . . ,M , such that Yj = 1{Gl(x,Λ
j)}. Consequently,

EYj = P
(
Gl(x,Λ

j)
)
< 1− ε. (3.17)
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Hence,

P(x ∈ Xα,M
0 )

≤ 1© P

(
x ∈ {x′0 ∈ Ξ| 1

M

M∑
j=1

1(Gl(x
′
0,Λ

j)) ≥ 1− α}

)
,

= 2© P

(
1

M

M∑
j=1

Yj ≥ 1− α

)
,

≤ 3© P

(
1

M

M∑
j=1

(Yj − EYj) ≥ −1 + ε+ 1− α

)
,

≤ P

(
M∑
j=1

(Yj − EYj) ≥M(ε− α)

)
,

≤ 4© exp
(
−2M(ε− α)2

)
,

where the numbered inequalities follow from: 1©- probability of an intersection of events

underbounds that of any single event; 2©, 3©- the definition of Yj in (3.17); 4©- Hoeffding’s

inequality, Lemma 2, with aj = 0, bj = 1 for all j ∈ {1, 2, . . . ,M}. Therefore,

P
(
Xα,M

0 6⊆ Xε
0

)
= P

{
there exists x ∈ Xα,M

0 s.t. x 6∈ Xε
0

}
,

≤
∑

x∈Ξ\Xε0

P(x ∈ Xα,M
0 ),

≤ L exp
(
−2M(ε− α)2

)
.

If the left-hand-side is to be δ ∈ (0, 1), then, taking the log(·) of both sides, results in (3.15).

If x′0 ∈ Xα,M
0 , then x ∈ Xε

0 with probability at least 1 − δ. A similar result providing

a lower bound of M of O(logL) can be found for achieving optimality: x′0 in Step 3 of the

algorithm satisfies (3.8) with probability close to one, using an extension of Corollary 6 of [30].

The approximations inherent in selecting parameters α ∈ (0, ε) and δ ∈ (0, 1), together

with the imprecision in the inequality (3.15), are the source of the inbuilt conservatism of the
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quantifications of the State Selection Algorithm. This will become evident in the achieved

constraint violation rates in Section 3.6 where computational examples are conducted with

sample repetition value M = 135 and particle count L = 400.

3.4.2 Computation time

The State Selection Algorithm has computational complexity O(NL logL), per time-

step. It is parallelizable in: its second step; across i in the choice of x′0; and also across j over

the samples. Using a graphics processing unit (GPU) would further decrease the computation

time required.

As the dimension, rx, of the state increases, the complexity of this approach increases

via the requisite (perhaps dramatic) increase in the number of samples, L, of the particle filter.

Once L is fixed, however, the calculations for M given ε, α and δ abide.

3.5 Constrained stochastic linear systems with quadratic
cost

In this section, we show that under the assumptions of: linear dynamics, linear state

feedback control law, quadratic stage costs, and polyhedral state and input constraints, the

candidate state is the solution of a quadratic program over Rrx based on the second-order

moments of the densities. This obviates the need for: calculation of M sample sequences and

their sample averages of constraint violations and costs, and the inclusion of margin parameters

α and δ earlier. We assume that the filtered conditional state density is described by its first two

moments, which, in turn, might be provided by a Kalman filter or particle filter.

At time k = 0, we have:

I. Discrete-time linear state dynamics

xk+1 = Fxk +Guk + wk. (3.18)
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II. {wk} is i.i.d., Ewk = 0 and cov(wk) = Σw, for all k.

III. Minimal constraint violation probability ε ∈ (0, 1) for polyhedral state and input constraint

sets,

X = {xk ∈ Rrx|Txk ≤ x̄}, x̄ ∈ Rt,

U = {uk ∈ Rru|Suk ≤ ū}, ū ∈ Rm,

(3.19)

where T ∈ Rt×rx and S ∈ Rm×ru have full row rank.

IV. The first two moments, Ex0 = x̂0 and cov(x0) = Σ0, of the density of the initial state x0,

which is independent from wk for all k.

V. Linear full-state-feedback control law uk = Kxk, which is yet neither assumed to be

recursively feasible with respect to X and U nor optimal with respect to a cost, nor indeed

stabilizing.

VI. A finite-horizon quadratic trajectory cost function J

J = xTkQNxk +
N−1∑
k=0

[
xTkQxk + uTkRuk

]
.

We derive a variant of the State Selection Algorithm for this case, where expectations of

states, costs, constraint violation are directly characterized without the need for sample averages

of simulations. The net result is a quadratic program to determine the selected state x?0. This

is tantamount to operating the State Selection Algorithm with very large M and without the

attendant computational demands.

We shall see in the numerical examples later that the state selection algorithm for these

constrained linear quadratic problems returns the conditional mean when the constraints are

inactive.
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The state sequences in (3.2) and (3.3) become

x′k+1 = (F +GK)x′k + w′k, x
′
0 ∈ Rrx , (3.20)

x′′k+1 = Fx′′k +GKx′k + w′′k , x
′′
0 ∼ p0. (3.21)

These recursions from the State Selection Algorithm yield:

• x′k affine in x′0 and w′k−j ,

• x′′k affine in x′0, x′′0, w′k−j and w′′k−j .

In turn, this implies that the expected cost function, Jc of (3.6), is quadratic in x′0. The analysis

of the constraints is more work but results in new, but more conservative, polyhedral constraints

on x′0.

3.5.1 The cost function Jc

For x′0 ∈ Xε
0, the cost function Jc is given by (3.6).

Jc(x
′
0) = E x′′0

EW ′EW ′′

(N−1∑
k=0

[
(x′′k)

TQx′′k + (x′k)
TKTRKx′k

]
+ (x′′N)TQNx

′′
N

)
, (3.22)

= E x′′0
EW ′EW ′′

(N−1∑
k=0

[
tr(Qx′′k(x

′′
k)
T ) + tr(KTRKx′k(x

′
k)
T )
]

+ tr(QNx
′′
N(x′′N)T )

)
.

(3.23)

From (3.20) and (3.21),

x′k = F k
Kx
′
0 +

k−1∑
p=0

F p
Kw
′
k−p−1, (3.24)

x′′k = F kx′′0 +
k−1∑
j=0

F jw′′k−1−j + Ψk−1x
′
0 +

k−1∑
h=0

F hGK

k−h−2∑
p=0

F p
Kw
′
k−h−2−p, (3.25)
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where FK = (F + GK) and Ψk−1 =
∑k−1

h=0 F
hGKF k−h−1

K . That is, these state sequences are

affine functions of x′′0 and x′0. Hence, the cost Jc is quadratic in x′0 and x′′0.

Denoting mean values, x̂′k = EW ′x
′
k and x̂′′k = E x′′0

EW ′EW ′′x
′′
k, we have

x̂′k = F k
Kx
′
0, x̂′′k = F kx̂′′0 + Ψk−1x

′
0.

Hence, the errors x̃′k = x′k − x̂′k and x̃′′k = x′′k − x̂′′k are zero by dint of w′k and w′′k being

zero mean.

Using independence assumptions, and ignoring additive constants,

Jc(x
′
0) = (x′0)TA1x

′
0 + (x̂′′0)TA2x

′
0. (3.26)

The formulæ for and derivation of A1 and A2 can be found in the Appendix.

Corollary 2. Suppose that Kk is the optimal time-variant feedback gain of the unconstrained

N-horizon LQ problem with Q, R and QN . Then the candidate state is the conditional mean.

This result follows directly from the discrete-time equivalent of the argument provided in

[1, p. 221] and the monotonic dependence of the control performance on the trace of the state

estimate covariance in the unconstrained case.

3.5.2 The constraints

The state and input sequences {x′′k}, {uk} = {Kx′k} are both stochastic by construction.

The prediction covariance, Σ′k, of x′k can be described by

Σ′k+1 = (F +GK)Σ′k(F +GK) + Σw, Σ′0 = 0, (3.27)
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where the initial covariance is zero because x′0 is deterministic. For Σ′′k, the covariance of x′′k, we

have

Σ′′k+1 = FΣ′′kF
T +GKΣ′kK

TGT + Σw, Σ′′0 = Σ0. (3.28)

The initial covariance Σ0 is provided at Item IV. in the linear problem statement.

The input sequence covariance follows from (3.27).

cov(uk) = cov(Kx′k) = KΣ′kK
T . (3.29)

Next, we show how the probabilistic constraints in (3.19) can be transformed into

deterministic linear constraints in terms of the state sequence means (3.26) and covariances

(3.27), (3.28).

Proposition 6. The probabilistic polyhedral state constraints in (3.19) are satisfied if the follow-

ing deterministic polyhedral constraints are satisfied

T x̂′′k ≤ x̄−
√
t− ε
ε

√
diag(TΣkT T ), (3.30)

where: t is the number of rows of Tk, the function diag(·) returns the diagonal of a square matrix

as a column vector and the second square root is elementwise.

Lemma 3. (Cantelli’s inequality) For a scalar random variable γ with mean γ̂ and variance Γ,

P(γ − γ̂ ≥ η) ≤ Γ

Γ + η2
, η ≥ 0. (3.31)

Lemma 4. For j = 1, . . . , t, let T (j) be the j th row of T and x̄(j) be the j th element of x̄. The
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probabilistic constraints

P
(
T (j)x′′k ≤ x̄(j)

)
≤ 1− ε

t
, (3.32)

are satisfied if the following linear inequality holds

T (j)x̂′′k ≤ x̄(j)−
√
t− ε
ε

√
T (j)Σ′′kT (j)T . (3.33)

Proof. Analogous to the work in [14], suppose there exists ρ ≥ 0 such that

T (j)x̂′′ ≤ x̄− ρ, (3.34)

hence the condition T (j)x′′ ≥ T (j)x̂′′ + ρ is implied by T (j)x′′ ≥ x̄(j), so that,

P
(
T (j)x′′ ≥ x̄

)
≤ P

(
T (j)x′′ ≥ T (j)x̂′′ + ρ

)
,

= P
(
T (j)x′′ − T (j)x̂′′ ≥ ρ

)
,

≤ T (j)Σ′′T (j)T

T (j)Σ′′T (j)T + ρ2
,

where the last inequality follows from Cantelli’s inequality (3.31). If ρ is sufficiently large that

the last term is upper bounded by ε/t,

T (j)Σ′′T (j)T

T (j)Σ′′T (j)T + ρ2
≤ ε

t
,

or equivalently

ρ ≥
√
t− ε
ε

√
T (j)Σ′′T (j)T .

This lower bound of ρ, when used in (3.34), yields (3.33).
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Lemma 5. Let (Ω,B,P) be a probability space andEi ∈ B for i = 1, . . . , n. If P(Ei) ≥ 1−ε/n,

for all i = 1, . . . , n, then P(
⋂n
i=1Ei) ≥ 1− ε.

Proof. (of Proposition 6). Notice that the state constraint sets in (3.19) can be written as

intersection of sets

Xk = {xk ∈ Rrx|Txk ≤ x̄k},

=
t⋂

j=1

{xk ∈ Rrx|T (j)xk ≤ x̄k(j)},

since all rows are to be enforced simultaneously [30]. By Lemma 5, P(xk ∈ Xk) ≥ 1 − ε

is implied by P({xk ∈ Rrx |T (j)xk ≤ x̄k(j)}) ≥ 1 − ε/t. The latter is implied by (3.33) in

Lemma 4. Stacking the inequalities in (3.33) for all of the t rows of T , we get (3.30). Notice that

with an increase in the number of rows t, the constraints become tighter and the approximation

more conservative.

Using parallel arguments, results analogous to those above hold for the probabilistic

input constraints. Finally, the probabilistic constraints (3.19) remain polyhedral in x′0 as follows

with K being the nominal state feedback gain and S the matrix in the control constraint (3.19).

T x̂′′k ≤ x̄−
√
t− ε
ε

√
diag(TΣ′′kT

T ),

for all k = 1, 2, . . . , N,

SKx̂′k ≤ ū−
√
m− ε
ε

√
diag(SKΣ′kK

TST ),

for all k = 1, 2, . . . , N − 1,

SKx̂′0 ≤ ū,

(3.35)

where x̂′k and x̂′′k are solely functions of x′0, as in (3.26). The covariance matrices Σ′k and Σ′′k

can be computed offline and are independent from x′0. The last inequality is due to the fact that

Σ′0 = 0.
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We follow [58] in the usage of the ‘closed-loop covariance’ in (3.35). That is, we replace

the covariance matrices Σ′k and Σ′′k by their one step ahead predictions

Σ′1 = Σw, Σ′′1 = FΣ′′0F
T + Σw, (3.36)

where Σ′′0 = Σ0 is given in (3.1). This accounts for the fact that at the next time step, a new

measurement of the system will be available. Thus, this relaxes the constraints and avoids the

unbounded growth in k of Σ′′k when F is unstable.

The minimization problem, to find x?0, in a compact form is a quadratic program in x′0.

min
x′0

(x′0)TA1x
′
0 + (x̂′′0)TA2x

′
0,

subject to

TΨk−1x
′
0 ≤ x̄−

√
t− ε
ε

√
diag(TΣ′′1T

T )− TF kx̂′′0,

for all k = 1, 2, . . . , N

SKF k
Kx
′
0 ≤ ū−

√
m− ε
ε

√
diag(SKΣwKTST ),

for all k = 1, 2, . . . , N − 1

SKx′0 ≤ ū,

(3.37)

For linear quadratic stochastic problems with polyhedral constraints, the reduction of

the State Selection Algorithm to a quadratic program for x′0 admits an appreciation of the

methodology absent the sampling and the sample-average convergence requirements. In turn,

this allows comparison with known solutions from the deterministic case [6] and conditional

mean state estimates from Kalman filtering.
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3.6 Numerical examples

In this section, we present computational examples in which the State Selection Algorithm

of Section 3.4 is applied. We also present an example that belongs to the case of linear systems

with quadratic cost and polyhedral constraints; amenable to the quadratic program methods

presented in Section 3.5. The computational burden of the algorithm is also evaluated, including

the propagation of the bootstrap particle filter.

3.6.1 Nonlinear system

We follow the problem formulation schema from Section 3.2.

I. The state dynamics are described by

zk+1 = 0.9zk + 0.2hk + w1
k,

hk+1 = −0.15zk + 0.9hk + 0.05zkhk + uk + w2
k,

yk = zk + vk.

Here xk = ( zk hk )T ∈ R2 is the state vector, uk the scalar control, yk the scalar

measurement, and wk = ( w1
k w2

k
)T ∈ R2 the process noise, and vk is the scalar

measurement noise.

II. The noises wk ∼ N (02, 0.3I2) and vk ∼ N (0, 0.3)3.

III. The input constraint set is U = [−3, 3]. The state constraint set, X, is the complement of

L in R2, where L = [3, 5]× [−4, 2]∪ [−2, 5]× [−7,−4]. This L-shaped set to be avoided

is depicted in the figures below. The constraint violation rate is ε = 0.3.

IV. The x0 state density is provided by a collection of L = 400 particles in R2.

V. We consider two successive nominal controllers:
3N (µ,Σ) denotes a Gaussian density with mean vector µ and covariance matrix Σ.
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(a) the stabilizing feedback-linearizing control law uk = κ1(xk) = −0.05zkhk; and

then,

(b) a feasible optimal controller, κ2(xk), to be detailed shortly.

VI. The running cost is `k(xk, uk) = xTk xk + u2
k. The horizon N = 6.

For the State Selection Algorithm, choose α = .1, δ = .01. Theorem 4 then admits M = 135.

The following sequence is then conducted starting from Ξ being L = 400 particles sampled from

N (( 7.5 −7.5 )T , .5I2).

i) The selected state, x?0, is applied in the control uk = κ(x?0),

ii) The output yk+1 is measured,

iii) A bootstrap particle filter computes an updated set, Ξ, of L filtered particles for xk+1,

iv) The state selection is re-performed.

With this iteration, the State Selection Algorithm, its attendant particle filter, and the nominal

control law can be evaluated jointly for their control performance and constraint handling. Since

the chapter purports to study state estimation for control, this is a critical evaluation.

To visualize the open-loop dynamics better, Figure 3.1 displays the streamlines of the

state dynamics with zero input and zero state disturbances.
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Figure 3.1. The streamlines of the nonlinear system state with uk and wk set to zero.

Example 1: stabilizing controller

We conduct two comparative simulations of the controlled nonlinear system: one with

the State Selection Algorithm, as outlined above, i.e. uk = κ1(x?0); and the other with what might

be termed the certainty equivalence controller, uk = κ1(x̂0|0) with x̂0|0 being the corresponding

particle filter conditional mean. In each case the particle filter evolves according to the respective

measured output, which in turn depends on the applied control. Figure 3.2 displays the controlled

state filtered particle density with the State Selection Algorithm feedback. Figure 3.3 shows the

corresponding conditional mean feedback case. Figure 3.4 shows the percentage of the particles,

at each time step, which violate the state constraints and land inside the set L. This shows that

State Selection Algorithm enforcing more caution.
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Figure 3.2. State Selection Algorithm: The evolution of the particle filtered density with
uk = κ1(x?0), that is, the candidate state x?0 being used by the controller at each time step.
The black squares indicate the location of the selected states from the particle densities. The
cross-hatched object is the complement of the state constraint set, X.
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Figure 3.3. Conditional mean: The evolution of the particle filtered density with uk = κ1(x̂0|0),
where x̂0|0 is the conditional mean of the particle filtered density indicated by the black square at
each time.

We make the following observations concerning these two simulations.

• The closed-loop particle densities evolve differently because the control signals, and

therefore states and measurements, differ.

• The State Selection Algorithm avoids state constraint violation, perhaps too conservatively,

while the conditional mean control violates the state constraint requirements, as measured

using the particle density.

• It is evident that the selected state enforces caution into the subsequent particle density by

choosing x?0 close to the constraint boundary. This is a property dependent on the nominal

control law κ1(·).

• The state selection simulation stopped at time-step k = 22 because the feasible set of
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states in the particle density, Xα,M
0 , was empty. That is, no state choice x′0 yielded a

feasible solution. Again, this is a property stemming from the lack of reachability of the

κ1-controlled dynamic system close to the origin.

0 5 10 15 20 25 30

k

0

10

20

30

v
io
la
ti
o
n

%

Figure 3.4. The blue triangles indicate the state constraint violation rate for the nonlinear system
with control uk = κ1(x̂0|0), that is, using the current conditional mean of the particle density.
The red circles indicate the same rate for the control uk = κ1(x?0) based on the state selection
algorithm.

The simulations were conducted using PYTHON, an uncompiled interpretive program, on

an M1-chip 2021 MacBook Pro with 16.00 GB of RAM. The average running time for each time

step of the simulation in Figure 3.2, comprising the State Selection Algorithm (the dominant

load) and the particle filter, is about 4.9 seconds. The algorithm is completely parallelizable,

over the state choice x′0 and over the corresponding samples. Although this was not implemented

here, it can offer a potential improvement in computation time.

Example 2: feasible optimal controller

We next re-conduct the previous experiment with state feedback controller κ2(·): a

(U,X)-feasible, infinite-horizon discounted-cost, optimal controller computed by sampling and a

value iteration. Its construction is detailed in the Appendix.
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Figure 3.5. State Selection Algorithm: The evolution of the particle filtered density with
uk = κ2(x?0). That is, the candidate state x?0, indicated by the black squares, being used by the
controller at each current time step. The black squares indicate the selected state.

81



−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

zk

−12

−10

−8

−6

−4

−2

0

2

4

h
k

Figure 3.6. Conditional mean: The evolution of the particle filtered density with uk = κ2(x̂0|0),
that is, the particle filter conditional mean being used by the controller at each current time step.

For control law κ2(·), two closed-loop simulations were conducted. Figure 3.5 displays

the result of using the State Selection Algorithm’s x?0 in the controller. Figure 3.6 shows the

corresponding behavior when the particle filters’ conditional mean, x̂0|0, is used. Figure 3.7

shows the percentage of the particles, at each time step, which violate the state constraints. The

value of ε is 0.3.
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Figure 3.7. The blue triangles indicate the state constraint violation rate for the nonlinear system
with control uk = κ2(x̂0|0), that is, using the conditional mean of the particle density. The red
circles indicate the same rate for the control uk = κ2(x?0) based on the state selection algorithm.
The value of ε is 30%.

Remark. The information state/particle density Ξ, as discussed in Section 3.2, plays a central

role in the State Selection Algorithm; it diversifies the closed-loop control sequences {κ(x′k,j)}Nk=0,

since x′0 is chosen from the particles in Ξ. Therefore, the requirements of a particle filter in the

State Selection Algorithm can be categorized in two parts. Firstly, the particle filter has to be

a sufficiently accurate approximation to the Bayesian filter. This is a foundational assumption

upon which the algorithm is built. Secondly, particle depletion must be avoided in order that

particle variability is preserved.

In the above examples, we used a measurement disturbance, vk, of variance 0.3 and state

disturbance, wk, of covariance 0.3I2. This facilitated retaining diversity in the particle filtered

density as shown in the figures. Selecting the variance of the measurement disturbance to be 0.1

for instance, with the number of particles fixed to 400, resulted in particle depletion and hence to

infeasibility issues with the State Selection Algorithm and furthermore to a poor representation

of the Bayesian filter density.

Converse to but alongside the requirements of the particle filter rest those for the control

law, κ, and the state disturbance wk. This subject is broached in Section 3.2 as a regularity

condition. For the State Selection Algorithm the accessibility of the state and control signals
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from wk affects the closed-loop feasibility set, Xε
0, for the algorithm. In the nonlinear example

with feedback linearizing controller, κ1, the feasible set is empty after 22 steps – this changes

with each run. This is a result of a diminished control gain near the origin resulting in poor

excitation.

Example 3: Linear dynamics with polyhedral constraints

In this example, a standard DC-DC converter regulation problem is considered. It is a

benchmark in the stochastic MPC literature and used in [45, 10, 29].

• The dynamics are described by

x1
k+1

x2
k+1

 = xk+1 = Fxk +Guk + wk,

yk = Hxk + vk,

where

F =

 1 0.0075

−0.143 0.996

 , G =

4.798

0.115

 ,
H = I2×2.

• Noise signals wk and vk are white with zero means, and independent from each other and

from x0.

cov(wk) = Σw = 0.1I2×2, cov(vk) = diag(0.5, 0.4),

Ex0 = (0.6455, 1.3751)T , cov(x0) = Σ0 = 0.1I2×2.

We take the densities to be Gaussian in the simulations.
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• The probabilistic constraints are

P(x1
k ≤ 2) ≥ 1− ε, for all k = 1, . . . , N

where ε = 10%, differently from the 40% of [45]. According to Proposition 6 and (3.37),

this is implied by

TΨk−1x̂0 ≤ x̄−
√
t− ε
ε

√
diag(TΣ′′1T

T )− TF kx̂′′0,

for all k = 1, . . . , N . Where T = (1, 0), x̄ = 2, t = 1, and Σ′′1 is the prediction covariance

and defined in (3.36).

• The linear state-feedback controller uk = Kxk is chosen to be the infinite horizon LQR

controller with the weighting matrices, similar to those in [45], Q = diag(1, 10) and

R = 10

K =

[
−0.2409 0.3930

]
,

these weighting matrices are also used in forming the optimization problem (3.37), and

QN = Q.

• The prediction horizon, for (3.37), is chosen to be N = 8. The associated matrices A1 and

A2 are

A1 =

 47.23 −43.76

−43.76 45.51

 , A2 =

−93.98 87.18

85.33 −89.45

 ,

The quadratic program (3.37) is solved at each time to find the candidate state x?0, which

is used by the linear state-feedback controller. The state conditional mean and covariance are

updated using the Kalman filter, which is the least-squares optimal unbiased estimator still.

The result of 100 closed-loop iterations is shown in Figure 3.8. The corresponding simulation
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using the state conditional mean from the Kalman filter with the linear controller is shown in

Figure 3.9.

Notice that when x2
k is below a certain line, the optimization problem returns, approxi-

mately, the conditional mean as the candidate state. However, above that line, the candidate state

differs. This is the effect of the constraint, present in the state section process but not in LQR or

the Kalman filter.
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Figure 3.8. Values of the Kalman filter conditional mean (red squares) with control uk = Kx?0.
The blue dots indicate the values chosen for the candidate state, x?0, used by the controller.
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Figure 3.9. Values of the Kalman filter conditional mean, x̂0|0, with uk = Kx̂0|0.

Figure 3.10 shows: the conditional mean of x1
k, from Figure 3.8; its two-sigma intervals

propagated by the Kalman filter (the square root of the (1,1) entry of the conditional covariance);

and the true state. The shaded area is two standard deviations, or 95% confidence interval. Since

the tolerance used in the algorithm for this example is ε = 10%, the solution is conservative.
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Figure 3.10. The dark blue line is the conditional mean of x1
k, the shaded area is the two standard

deviations about the conditional mean, and the true state is shown as black squares.
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3.7 Conclusion

The State Selection Algorithm requires a non-empty set of initial states Xε
0 to run. The

estimator, a particle filter in this case, and the fixed controller κ, have their roles in the feasibility

of the algorithm, as we discussed earlier. A particle filter that is prone to depletion restricts the

variability of Ξ, and is a poor approximant to the Bayesian filter. While a controller, say κ = 0,

eliminates all control sensitivity to the initial state and to the w′k, as is shown in the first example

of Section 3.6. Such a controller would also extirpate the variation seen in the averaged cost.

While replacing the hard probabilistic constraints with soft ones can avoid infeasibility

issues, at least in an algorithmic sense. A more concrete understanding of the problem is required,

and hence our future work is towards

• Enriching the proposed distribution of control sequences with more options, potentially by

having w′k of a different statistics than w′′k .

• Identifying more practical characteristics required of the controller κ.

• Exploring parameter estimation for control. This can be done by a simple state augmen-

tation, and the provided framework, whether from the particle filter side, or the State

Selection Algorithm, can naturally adapt.
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Appendix A

Derivation of A1, A2 and the computation
of the controller κ2 in Chapter 3

Derivation of A1 and A2

Substituting the states in terms of their means and errors, from (3.26), in equation (3.23)

Jc(x
′
0) = E x′′0

EW ′EW ′′

(N−1∑
k=0

[
tr(Qx̂′′k(x̂

′′
k)
T ) + tr(KTRKx̂′k(x̂

′
k)
T ) + tr(Qx̃′′k(x̃

′′
k)
T )+

+ tr(KTRKx̃′k(x̃
′
k)
T )
]

+ tr(QN x̂
′′
N(x̂′′N)T ) + tr(QN x̃

′′
N(x̃′′N)T )

)
, (A.1)

where the cross-terms (means and errors) are ignored due to the states’ errors’ zero means,

eventually by expectation.

The error covariances are not functions of x′0, and thus can be replaced by some constant

C in the cost in (A.1) without altering the minimizer. Hence, up to an additive constant

Jc(x
′
0) =

N−1∑
k=0

[
(x̂′′k)

TQx̂′′k + (x̂′k)
TKTRKx̂′k + (x̂′′N)TQN x̂

′′
N

]
+ C, (A.2)

where the traces are returned to their quadratic forms. Substituting x̂′k and x̂′′k from (3.26) in
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(A.2) yields

Jc(x
′
0) =

N−1∑
k=0

[
(x̂′′0)T (F k)TQF kx̂′′0 + 2(x̂′′0)T (F k)TQΨk−1x

′
0 + (x′0)TΨT

k−1QΨk−1x
′
0

+ (x′0)T (F k
K)TKTRKF k

Kx
′
0 + (x̂′′0)T (FN)TQFN x̂′′0 + 2(x̂′′0)T (FN)TQΨN−1x

′
0

+ (x′0)TΨT
N−1QΨN−1x

′
0

]
+ C. (A.3)

All terms which are constants with respect to x′0 can be added to C to be C1,

Jc(x
′
0) =

N−1∑
k=0

[
2(x̂′′0)T (F k)TQΨk−1x

′
0 + (x′0)TΨT

k−1QΨk−1x
′
0 + (x′0)T (F k

K)TKTRKF k
Kx
′
0

+ 2(x̂′′0)T (FN)TQNΨN−1x
′
0 + (x′0)TΨT

N−1QNΨN−1x
′
0

]
+ C1, (A.4)

or in a compact form, ignoring additive constants

Jc(x
′
0) = (x′0)TA1x

′
0 + (x̂′′0)TA2x

′
0, (A.5)

where

A2 =
N−1∑
k=0

[
2(F k)TQΨk−1

]
+ 2(FN)TQNΨN−1, (A.6)

A1 =
N−1∑
k=0

[
ΨT
k−1QΨk−1 + (F k

K)TKTRKF k
K

]
+

ΨT
N−1QNΨN−1. (A.7)

Computation of κ2

Let V be the value function, the optimal cost, of the infinite-horizon discounted-cost

whose stage costs are `k(xk, uk) = xTk xk + u2
k and with a discount factor γ = 0.9 [8]. We define
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κ2 as the corresponding optimal control. That is, the Dynamic Programming Equation is

V (xk) = xTk xk + min
uk∈Ū(xk)

{
u2
k + γE wkV (f(xk, uk, wk))

}
, (A.8)

where Ū(xk) is the state dependent input constraint set, defined as Ū(xk) = {u ∈ U |

P(f(xk, uk, wk) ∈ L) < ε}.

The controller κ2 can be computed via the Value Iteration over the finite gridded state

space and input space Markov Decision Process, which if the grid size of these spaces is large

enough, κ2 is optimal with respect to the original infinite state-space problem [7].

Following the dynamic programming approach in [44], uniformly randomized grids of

4000 points over [−10, 10]× [−5, 15] in the state space and 50 points in [−3, 3], the control space

U, are generated. The continuous probability in the definition of Ū(x) is replaced by discrete

over the points of the grid which are inside L, and the expectation in (A.8) by its sample average

over the grid. Value Iteration was conducted over the grid until convergence, which is guaranteed.

The resulting optimal control

κ2(xk) = arg min
uk∈Ū(xk)

{
u2
k + γE wkV (f(xk, uk, wk))

}
, (A.9)

can be computed by replacing the expectation with its sample average over the grid. A point ζ

on the grid such that κ(ζ) is infeasible is included into the grid defining L.

After evaluating κ2, it is then fitted into a piecewise linear surface over the region

[−10, 10]× [−15, 5] of the state space, and κ2(x) is then acquired by 2D linear interpolation.

91



Bibliography

[1] Brian D.O. Anderson and John B. Moore. Optimal Control: Linear Quadratic Methods.
Prentice-Hall, 1989.
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