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Abstract

Communicable diseases spread from human to human through viruses, bacteria, parasites,

and fungi via direct contact with an infected individual, the individual’s discharge, or by

indirect means (i.e. vectors). Treatment of communicable diseases is simultaneously a

private good by reducing disability in treated individuals and a public good by reducing

the likelihood of disease transmission between infected and susceptible individuals. Due

to their inherent nature, optimal treatment of communicable diseases is difficult, if not

impossible, to achieve without intervention from a social planner. In the three chapters

of this dissertation, I identify the sources of potential inefficiencies that may occur in

the treatment of environmentally transmitted diseases without vaccines and an emerging

disease that has a newly developed vaccine. In the first chapter, I highlight how treatment

inefficiencies may arise when there are several ways of treating the disease. I show that

when recommendations of the different treatments are determined independently, there is

excessive usage of public funds and overutilization of treatments. In the second chapter, I

show the benefits of targeting public health interventions to specific geographical areas—

which may differ for various reasons such as the timing of the outbreak, the age structure

of the population, or the number of essential workers—when resources are scarce, rather

than using some ad hoc rule based on, for instance, relative population size. I also

investigate how robust the optimal allocation is when allocation decisions must be made

before uncertainty is resolved (e.g. before the duration of immunity is known). In the

third chapter, I examine potential unintended consequences that may arise when the main

driver of some public health intervention is the economic benefits indirectly derived by it;

this shows the importance of considering the impact of human behavior when designing

public health policies. As a whole, this dissertation uses various examples to show why

treatment of communicable diseases requires intervention from a social planner and how

inefficient disease management can lead to dire economic and health consequences. It also

offers different context-specific avenues to mitigate the impact of communicable diseases.
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1 Chapter 1: “Cost-Effectiveness of Combining Drug

and Environmental Treatments for Environmen-

tally Transmitted Diseases”

Abstract

Control of neglected tropical diseases (NTDs) via mass drug administration (MDA) in-

creased considerably over the past decade but strategies focused exclusively on human

treatment show limited efficacy. This paper investigated trade-offs between drug and

environmental treatments in the fight against NTDs by using schistosomiasis as a case

study. We use optimal control techniques where the planner’s objective is to treat the

disease over a time horizon at the lowest possible total cost, where the total costs in-

clude treatment, transportation, and damages (reduction in human health). We show

that combining environmental treatments and drug treatments reduces the dependency

on MDAs and that this reduction increases when the planners take a longer run perspec-

tive on the fight to reduce NTDs. Our results suggest that NTDs with environmental

reservoirs require moving away from a reliance solely on MDA to integrated treatment

involving investment in both drug and environmental controls.

Key words: economic epidemiology, applied numerical methods, efficient treatment of

diseases, misallocation of resources.

1.1 Introduction

Neglected tropical diseases (NTDs) affect approximately one in six people, mainly in the

poorest rural and remote areas, urban slums, and conflict zones. The loss of disability-

adjusted life years due to NTDs (48 million) is as high as tuberculosis (49 million), and

more than half of malaria (83 million) and HIV/AIDS (82 million) [1]. NTDs also increase

the risk of coinfection; they are responsible for one-half and one-third of sub-Saharan

Africa’s malaria and HIV/AIDS disease burden, respectively [2]. Despite major donations
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from pharmaceutical companies, private foundations (e.g., Bill and Melinda Gates) and

foreign governments (e.g., UK and US), the World Health Organization (WHO) estimated

that an additional 2 billion US dollars was needed to administer preventive chemotherapy

to all individuals who were at risk of contracting an NTD between 2012 and 2015 [3].

A subset of NTDs are environmentally transmitted diseases (ETDs) where pathogens

rely partially, or entirely, on non-human hosts, reservoirs or vectors. ETDs with focal

transmission exhibit a direct link between the infection rate in the hosts and the level of

the pathogen in an environmental reservoir [4]. The link can create an inherent cycle be-

tween the population’s infection rate and the environmental degradation of contaminated

reservoirs.

Schistosomiasis, which is a focus of this paper, is an example of an ETD with focal trans-

mission [4]. The global disease burden of schistosomiasis has remained relatively stable

despite the development almost a half century ago of an anthelmintic drug, praziquantel,

that promised widespread control. In the last two decades, over 1.4 billion US dollars

was spent on a mass drug administration (MDA) treatment protocol for schistosomiasis

[5].

Completely eliminating schistosomiasis’ pathogen transmission seems difficult, if not im-

possible, to achieve. The WHO’s guidelines [6] recommend to target school-age children,

given the facility to deliver treatment in schools (see, e.g., [7; 8; 9; 10]), with community

wide treatment (i.e., including adults) being recommended in high prevalence commu-

nities (see, e.g., [11; 12]). Elimination is very challenging, because targeting children

reduces, but does not eliminate the shedding of pathogens into the reservoir (see Fig-

ure 1 for different treatment alternatives and how they interrupt the life-cycle of the

pathogen). Even if the whole community could be treated, shedding of pathogen into the

environment remains due to noncompliance to drug treatment [13; 14; 15] and limited

effectiveness of drug controls [16; 17]. Furthermore, the fact that individuals treated via

MDA often have no other alternative but to return to parasite-contaminated waters [4]

means that reinfection is likely to occur.
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Although most treatment of NTDs consists of implementing MDAs [6], there is increasing

evidence for focally-transmitted ETDs that water quality, sanitation and hygiene (WASH)

measures and environmental treatments (EnvTre) can have significant positive impacts on

health outcomes by reducing contamination (e.g., via sanitation measures) and exposure

to pathogens (e.g., by providing safe water) (see Andres et al. [18] for a meta-analysis of

WASH impact evaluations). Environmental treatments act in a similar manner to WASH

by reducing the transmission pathways between the disease reservoir and human contact

but focus more directly on reducing pathogen abundance in the reservoir or preventing

transmission from the reservoir to humans (Figure 1). For example, an environmental

treatment, EnvTre for short, can reduce reservoir, vector or intermediate host populations

(e.g., chemical molluscicides or insecticides) or reduce the pathogens directly via targeting

their free-living stages in water or soil (e.g., chlorination).

Figure 1: Modeled treatment options and transmission pathways for schistosomiasis.

The combination of multiple types of treatment for schistosomiasis and other ETDs can

potentially reduce the overall cost associated with treating the disease and reduce the

disease burden [5; 12; 19; 20]. For example, Lo et al. [12] demonstrate a cost-effective

combination of controls that reduce the prevalence of the shistosomiasis pathogen in the

environment with school-based MDA treatment. Most of the current literature considers

combinations of controls using simulation (scenario) analysis under the assumption of

a fixed level of MDA treatment occurring on a pre-determined set interval (e.g., every
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other year) and a fixed level of a WASH or environmental treatment on a similarly fixed

interval (not necessarily the same as the MDA treatment interval). In these analyses,

understanding the when, where, and how much to combine to achieve the most cost-

effective combination is challenging due to potential direct and indirect effects of one

type of treatment on another and all of the possible combinations of multiple treatments

available over time.

Our paper makes a number of important contributions to the literature on treatment for

ETDs and specifically shistosomiasis control. First, we consider multiple combinations of

treatments that include MDA and environmental controls in an optimal control frame-

work that solves for the optimal cost-effective solution (for other applications of optimal

control to schistosomiasis, see [21; 22; 23; 24]). We use optimal control to examine the

use of both MDA and environmental treatments, and to understand under what condi-

tions both approaches should be used in combination or in series. Our methodological

advance enables us to examine optimal trade-offs across time and interventions that are

more human targeted (i.e, school-based MDA) vs more environmentally oriented (i.e.,

environmental treatment, EnvTre) when used in isolation and in combination with each

other. Investigating these trade-offs using simulation analysis would be a monumental

task as the combinatorial nature of the possibilities are significant. Second, we show

how the implementation of an optimal environmental treatment reduces the dependency

on mass drug administration and that this reduction increases when the planner consid-

ers a longer planning period. This latter result highlights potential biases in treatment

protocols that are based on simulation analysis using short planning horizons.

1.2 Material and Methods

Our economic–epidemiological model of schistosomiasis captures the realistic situation

where a central planning agency needs to decide when, what type, and how much treat-

ment to provide to a remote village where the disease is currently endemic. The objective

of the central planning agency is to treat the disease at the lowest possible total cost,

where the costs include treatment, transportation, and damages (reduction in human
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health). The epidemiological model describes the dynamics of infected intermediate hosts

living in the environmental reservoir, the population dynamics of the intermediate host

themselves, and the dynamics of the infectious human populations.

The structure of our model incorporates both economic and disease ecological factors

that vary based on the nature of the treatments. The model structure and parameters

represent schistosomiasis but it is not meant to be a tactical tool. Rather our results are

indicative and qualitative. More tactical tools could adopt our optimal control framework

but would require adaptations to the particular setting and better data for parameteri-

zation.

1.2.1 Model of Disease Transmission

The disease model predicts the dynamics of infection of adult and children in a closed pop-

ulation, and the number of intermediate hosts in the environmental reservoir. Adult and

children contract the parasite through contact with the environmental reservoir, which

here is a body of water next to the village where the disease is endemic, and contribute

parasites in the environment via shedding. We assume that part of the population re-

ceives MDA (i.e., the children), meaning that it is impossible to completely interrupt the

transmission of pathogens into the environment. The number of infected children and

adults can go down over time from natural recovery.

In epidemiology, the basic reproduction ratio R0 is defined as being the expected number

of secondary infections, at a disease-free equilibrium, caused by a typical infected individ-

ual over its entire infectious period [25]. In our model, R0 is a function of relative shedding

rates of adult and children, natural recovery rates, and contact rates with the environmen-

tal reservoir. New infections of the intermediate hosts depend on the relative shedding

rates of adults and children, while the loss of infectious hosts is due to natural mortality

and the application of a non-selective environmental treatment that kills both susceptible

and infected intermediate hosts. Following Lo et al. [12], intermediate infected hosts can-

not reproduce. We model a chemical treatment to reduce the freshwater snails, which are

the intermediate hosts of schistosomiasis. Disease model parameters are derived from the
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literature on schistosomiasis [6; 7; 9; 11; 12; 16; 17; 20; 26; 27; 28; 29; 30; 31; 32; 33; 34].

See the electronic supplementary material (ESM) for details of the disease transmission

model and the parameter levels.

1.2.2 Model of Economic Costs

Economic components of the model include treatment costs, damages, and transportation

and management costs. We assume damages are additively separable across children and

adults. Treatment of children via MDA often occurs in a school setting [6; 9], which

reduces the treatment costs associated with administering the drug to children in the

village. Based on this approach, we model the treatment cost of children as the level of

MDA treatment times the cost of a dose of praziquantel. The cost of the environmental

treatment is linear in the amount of chemical treatment, which assumes realistically that

increasing the application either through more chemical per unit area or larger area of

application increases the cost in a linear manner. To calibrate the cost, we specify a

certain size of environmental reservoir and use estimates for variable costs of snail control

(e.g., chemical, labor) from the literature [7; 12; 33].

Damages derive from disability and reduced intellectual function [35] causing lower school

participation for children [36] and lower worker productivity for adults [37; 38; 39; 40].

For simplicity, we assume that the per unit damage costs are identical across adults and

children for a given infection prevalence, but the cost parameters—representing damages

on the whole subpopulation and not just one individual—differ due to the proportions

of adults and children in the village. We utilize data from Senegal, a country with a

GDP per capita close to Africa’s median, to calibrate the proportions of children and

adults in our population; this gives us a population composed of 40% children (0-14

years) and 60% adults (15 years and over) [31]. The level of damages are set such that

in the absence of treatment, there is a prevalence of 38% in a community of 5,000 people

and this yields losses of 550 disability-adjusted life years (DALYs) [12]. The value of a

DALY was set to be approximately the median value of the GDP per capita of an African

country (approximately $3,000 USD).
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We model transportation and management costs as a fixed cost in each period during

the planning period regardless of whether treatment is being undertaken. We account

for potential economies of scale across the different treatment options with a single fixed

cost incurred regardless of whether children or environmental treatments are applied. We

parameterize the fixed cost from the literature (see, for example, [6; 7; 9; 11; 12; 32; 33]).

See the ESM for details of the cost functions and the calibration of the parameter levels.

1.2.3 Planners Decision

Compared to scenario analysis, optimal control techniques require an assumption about

the objective of the planning agency. In scenario analysis, one usually computes, for

instance, the average cost of an averted DALY to determine the best policy among the

simulated ones; highly cost-effective treatments occur when this average cost is below

some threshold (e.g., the per-capita gross domestic product) [11]. With optimal control,

we solve for the best (i.e., optimal) policy, conditional on the objective of the planner.

In our case, we assume that the objective of the planning agency is to minimize the

damages and treatment costs of the disease in a remote village where the disease is

currently endemic. The objective function is the net present value of the treatment,

damages, and transportation and management costs over a period of years, where we

assume a four percent discount rate in the base case.

The main analysis considers a ten-year horizon following the prior literature investigating

the cost-effectiveness of schistosomiasis treatment options [4; 12; 41; 42]. We consider

longer time horizons in the sensitivity analysis. We also assume that the planning agency

does not set any target level in year ten for the level of infection prevalence in humans,

the level of infected hosts, and the host population size (specifically, we are allowing

free endpoint conditions, which implies a set of transversality conditions in the optimal

control problem). This allows us to investigate whether eradication is the cost-minimizing

outcome at the end of the horizon rather than imposing it as the solution of the planning

agency.
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Given the cost functions of MDA treatment for children and of the environmental treat-

ment, the controls appear linearly in the formulation. Solutions to linear optimal control

models often have a bang-bang nature. That is, the optimal level of the control resides

at one limit (e.g., the maximum) for a period of time then switches off to a singular (i.e.,

intermediate) level or another limit (e.g., the minimum) in another phase of the solution

[43]. In these problems, the optimal solution of the control over time consists of discrete

switch times. For example, we might expect that the optimal treatment of children to be

at the maximum possible level for a certain period of time and then drop to zero, after the

infection level in children drops below some endogenous threshold. Given the literature

on the non-compliance with MDA treatments [13; 14; 15], the maximum treatment at

any instant is equal to 90 percent of the population of school-age children. The limited

effectiveness and compliance of MDA treatment [16; 17] further reduces the extent of

successful treatment and transmission reduction.

1.2.4 Analysis

To examine the optimal set of MDA and environmental treatment, we numerically solve

the optimal control problem across four different scenarios: no controls, school-based

MDA, environmental treatment (i.e., snail control), and school-based MDA and environ-

mental treatment.

We use pseudospectral collocation to solve for the optimal dynamics of treatment and

infection over time (see [44; 45; 46] for applications of this technique and see the ESM

for more details). We present results from a numerical simulation where initially all

state variables are at their no-treatment steady-state levels (sensitivity analyses of initial

conditions are presented in the ESM; see Figure A.5). The chosen parameter values

imply that without any treatment, the infection prevalence for both the children and

adult populations will converge to approximately 38% (consistent with the findings of Lo

et al. [12]). The steady-state snail population size will converge to the carrying capacity,

while the number of infected snails will converge to 54% of total population.
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We investigate the impacts of environmental treatments on school-based MDAs by map-

ping out how the cost of environmental treatments impact the switch time or time at

which the planner stops treating school-aged children. Switching off of MDA earlier rep-

resents a reduction in treatments and generally a lower reliance on drug treatment as the

primary means to address the disease. We also compare the net present value and its

components across the different treatment scenarios, and we normalize to one the value

of the no treatment case to make comparison easier between cases.

1.3 Results

At our preferred specification of the parameters, we find that the terminal infection

levels of the children population are less than 1% when continuously treated with MDA

(Figure 2.A). This continuous treatment differs from a pulse treatment, which occurs

on a pre-determined fixed interval. Instead of treating the village, e.g., every year, our

control mimics a case where the population is being continuously given MDA. The optimal

drug treatment (Figure 2.C) is consistent with previous literature on optimal control

of epidemics: the disease needs to be hit as hard as possible and as soon as possible

[47]. Environmental treatments alone barely reduce the infection level in the children

population (Figure 2.A), while driving the infection prevalence in intermediate hosts to

about 2% of total intermediate host population (4% of steady-state infection level; Figure

2.B). Unlike the human infection levels that are driven almost to eradication, there are no

damages associated with the infected intermediate host, and the incentive to eliminate

the disease in the infected intermediate hosts comes exclusively from its effect in the

disease’s life cycle and its indirect impact on human populations.

Under the optimal scenario, combining environmental treatments with MDA affects the

optimal level of drug administrated to children by reducing the switch time (Figure

2.C). Since an environmental treatment (i.e., EnvTre) reduces the level of contaminated

intermediate hosts in the environmental reservoir, the transmission of the disease from

the intermediate hosts to human populations is reduced, everything else being equal. As a

result, less MDA is needed to fight the NTD. The optimal solution suggests that the level
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of environmental treatment is only slightly impacted (reduced time spent at maximum

control) with the addition of MDA treatments (Figure 2.D)

Figure 2: Optimal solutions at base case. This figure shows the change over time of the
infection level of the child population (Panel A), the infection level of the intermediate
host population (Panel B), the optimal path of drug treatment (Panel C) and the optimal
path of environmental treatment (Panel D). Infection levels are expressed as a proportion
of their respective steady-state value.

Table 1 summarizes the results in terms of the net present value (NPV, which includes

damages and treatment costs), damages (for both the child and adult populations), child

MDA costs, costs related to the environmental treatment, and total expenditures (in-

cluding transportation and management costs) across the different optimal scenarios. By

definition, when adding an additional control variable in an optimal control problem,

the planner cannot do worse because it could always choose not to utilize this new con-

trol variable. To make comparison easier between scenarios, we normalize the measures

against the appropriate base (damages are normalized against the no-treatment case).

At these parameter levels, school-based drug treatment (SBDT) reduces NPV by 33 per-

cent. Consistent with Figure 2, environmental treatments only barely impact the level of
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infected children and therefore reduce damages by one percent after ten years of optimal

chemical snail control. Across both cases, environmental treatments do not contribute

to a significant reduction in damages. On the other hand, we find that implementing

an environmental treatment reduces the amount of time spent at maximum treatment of

MDA by more than one year out of the ten year time horizon, resulting in about a ten

percent reduction in MDA expenditures. This cost reduction in MDA could be offset by

the increase in costs due to environmental treatments. We find that implementing an

optimal environmental treatment requires a slight increase in expenditures, implying that

funds are redistributed from MDA to environmental treatments (Table 1; total expen-

ditures are slightly increased when SBDT is combined with environmental treatments).

Even though total expenditures are increased, this situation is still preferable given the

lower net present value.

EnvTre MDA NPV
Damages Expenditures

Child Adult Child EnvTre Total

No
None 1 1 1 – – –
SBDT 0.67 0.17 1.00 1 – 1

Yes
None 0.99 0.98 0.98 – 1 0.99
SBDT 0.66 0.16 0.98 0.90 0.97 1.08

Table 1: Normalized values of net present value (NPV), damages (reduction in human
health), treatment costs (child, environmental treatment (EnvTre), and total which in-
cludes transportation and management costs) for when the planning horizon considered
by the social planner is T = 10 years.

Our results highlight important trade-offs between direct (e.g., treatment of school-aged

children) and indirect (e.g., treatment of intermediate hosts) treatments and suggest that

the optimal amount of MDA is reduced when the policy is combined with an environ-

mental treatment policy. However, the magnitude of the reduction in MDA due to the

implementation of an environmental treatment inherently depends on (i) the costs asso-

ciated with the environmental treatment (here, the marginal cost of snail control), and

(ii) the basic reproduction ratio of the disease, R0. We find not surprisingly that as the

cost of the environmental treatment goes up, the planner reduces the time during which

the maximum control is applied (Figure 3, bottom panel). Consistent with our base
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case, we find that as the cost of environmental treatment goes down, the planner utilizes

less MDA, as measured by the shorter proportion of the time spent at the maximum

treatment level (Figure 3, top panel). As the cost increases, we converge to the solution

where no environmental treatments is the optimal solution. While we are agnostic on the

source of this cost increase, one potential source could stem from the damages of these

environmental treatments on other species in the ecosystem (for environmental damages

associated with snail control to fight schistosomiasis, see [35; 48; 49; 50]).

Figure 3: Proportion of total treatment time spent at the maximum level of control
(MDA or environmental treatment) as a function of the cost parameter associated with
the environmental treatment (EnvTre) . The point given by ”Base Case” represents the
switch time and environmental treatment cost parameter of Figure 2 and Table 1.

According to Sokolow et al. [20], the expected range of R0 for schistosomiasis ranges from

1 to 7. While our base case is 3.5, we investigate the range given in Sokolow et al. [20].

There are multiple parameters that affect R0 (see ESM for derivation) and the ones for

which we have less information are the contact rates and the shedding rates. By varying

these parameters to vary the R0, we find that for the majority of the range of R0, our
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finding on the optimal substitution away from MDA to environmental treatment holds

qualitatively (Figure A.2, top two panels); the impact seems relatively constant at least

between 2 and 7. With a R0 higher than in our base case, the amount time spent at the

maximum level of environmental treatment will be slightly higher, everything else equal,

and more so if this higher R0 is due to higher contact rates, and vice versa (Figure A.2,

bottom panel). Only when the R0 approaches one do we find significant changes to the

switch times for MDA and environmental treatment.

Our parameterization of the contact rates (1 infection per 200 water contacts) and shed-

ding rates (1 intermediate host infection per 555 sheds) are consistent with the literature

[20; 26], but there are multiple different combinations of these parameters that could yield

the same basic reproduction ratio. We investigate potential impacts of these combina-

tions by keeping our base case value of 3.5 constant and varying the level of contact rate

relative to the shedding rate. We find that (i) the substitution away from MDA due to

the environmental treatment remains approximately the same regardless of the relative

levels of the contact rate and shedding rate, and (ii) both MDA and the environmental

treatment increase as the contact rate becomes relatively higher in magnitude relative to

the shedding rate (Figure A.3)

Following the previous literature [4; 12; 41; 42], we use a ten-year planning period. In

our optimal control framework, the implications of a ten-year horizon either imply that

costs are no longer incurred after year ten, or that the central planning agency does

not consider costs incurred after year ten; both interpretations seem unrealistic. In

our model, this implicit assumption explains why, even in a ten year planning horizon,

the optimal solution requires an abandonment of MDA. In the prior literature using

scenario analysis, the implicit assumption is that treatment will continue indefinitely in

the same ad hoc pattern. Considering only shorter planning horizons, however, could bias

treatment prescriptions to those that work immediately, which might be a good strategy

during an outbreak but not necessarily for an area with endemic disease.
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To investigate the interaction between optimal treatment prescriptions and planning hori-

zons, we solve the optimal control model over longer time horizons. We do not impose

that either treatment must occur after year ten. That is, we could find that the optimal

solution is to abandon the village at some point in the future (i.e., both treatments are

optimally set to zero). Our results suggest that as the planning horizon increases, the op-

timal solution is to substitute away from MDA to environmental treatment. For example,

while in our base case the environmental treatment reduced MDA switch time by a little

over one year, when the planning horizon is 50 years, this reduction is approximately 40

years (Figure 4).

Figure 4: Proportion of total treatment time spent at the maximum level of MDA as a
function of the time horizon, T , considered in our analysis. We show the result for the
MDA alone case, and for the MDA & EnvTre case.

This reduction in MDA treatment translates into a more than 50 percent reduction in

MDA expenditures over the entire planning horizon. As such, implementing optimal

environmental treatment does not require significantly more expenditures (see Table 2).
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EnvTre MDA NPV
Damages Expenditures

Child Adult Child EnvTre Total

No
None 1 1 1 – – –
SBDT 0.64 0.07 1.00 1 – 1

Yes
None 0.94 0.94 0.94 – 1 0.97
SBDT 0.59 0.06 0.94 0.47 0.90 1.01

Table 2: Normalized values of net present value (NPV), damages (reduction in human
health), treatment costs (child, EnvTre), and total which includes transportation and
management costs) for when the planning horizon considered by the social planner is
T = 50 years.

With a ten year planning period, the optimal treatment went from the maximum to zero,

and remained there for the rest of the planning period (see bottom panels of Figure 2).

While the same holds for slightly longer planning periods (see for instance Figure A.11

for when T = 15 years), we find that this is not necessarily always true. When the

planning period is relatively longer, the switch time more often represents the time where

treatment goes from the maximum possible level to a non-zero level that varies over time

(see Figure A.12 for when T = 30 years and Figure A.13 for when T = 50 years).

The qualitative nature of our results are robust to several modeling assumptions. If

children represent a greater proportion of the total population, everything else equal,

the total amount of time spent treating children does not change (Figure A.4). As long

as initial levels of infection are at least 20 percent of the no treatment steady-state

values, the qualitative nature of the result remains the same; only when initial infection

levels approach 10 percent of the no treatment steady-state values do we find a significant

reduction in the substitution away from MDA due to the environmental treatment (Figure

A.5). For the levels of discounting we considered (0-20 percent), the MDA switch times

remain the same (Figure A.6). Because damages are much larger than treatment costs,

the discount rate needs to be very high before it has an impact on the MDA switch times.

The amount of time spent on the environmental treatment decreases with higher discount

rates, because the long-term benefits to environmental treatment are less important to

the optimal solution when the discount rate is high (Figure A.6). This latter result is

consistent with the findings under longer planning horizons. The MDA switch times are
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invariant to the variations in the effectiveness of the environmental treatment (0.6 to 1,

base case 0.88; Figure A.9) and to variations of ±50% in the snails’ population growth

rate (Figure A.10). Only when the population growth rate of snails approaches its death

rate that the amount of time spent at maximum treatment reduces.

Our sensitivity analyses reveal that the reduction in switch time of MDA due to the

environmental treatment is mainly affected by (i) the value of a DALY (Figure A.7) and

(ii) the effectiveness of MDA control (Figure A.8). As the value of a DALY increases,

everything else equal, damages due to disease burden become relatively more important

than treatment and transportation costs; to compensate for the relative increase in dam-

ages, optimal MDA treatment needs to last for a longer period of time. Hence, with a

higher value of a DALY, the substitution away from MDA to the environmental treat-

ment reduces (Figure A.7) because higher MDA effort is preferable, everything else equal.

We assumed in our main analysis that treatment was effective 80 percent of the time.

Our sensitivity analyses reveal that by improving the effectiveness of drug treatment, the

substitution away from MDA to the environmental treatment could be significantly more

important (Figure A.8). Higher MDA effectiveness reduces the amount of time spent on

MDA treatment, and even more so when combined with an environmental treatment due

to reduced reinfection.

1.4 Conclusion

We show the potential value of using integrated treatment guidelines. We find that com-

bining environmental controls and mass drug administrations (MDAs) can significantly

reduce the time span over which one has to administer drug treatment, especially when

considering a long-term planning horizon. Although WHO recognizes both the advan-

tages [51] and the cost-effectiveness [52; 53] of environmental treatments (in particular

snail control), its priority is on MDAs since the development of an anthelmintic drug,

praziquantel. School-based deliveries in particular are now the main focus of WHO [6]

given the facility to deliver treatment in schools and that children are usually associated

with higher disease burden [54].
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However, few studies have demonstrated the optimal distribution of integrated approaches

and under what conditions different treatments should be used in combination or in

series. Specifically, we show that, to achieve an optimal outcome in terms of minimized

costs and damages, MDA usage rates can be reduced when used in combination with

environmental controls. Similarly, using guidelines that are independently optimal but

jointly non-optimal for MDA and environmental controls might lead to inefficiencies:

excessive usage of public funds and over-utilization of drug and environmental treatments.

In our analysis, we assume unlimited public funds and perfect flexibility of these funds

across time, relevant future work could investigate the role of budget constraints and lack

of flexibility of rolling funds over from year to year or from one type of treatment to

another.

We also show that when transportation and management costs of different types of treat-

ment can be combined in one coordinated program, utilizing both types of controls,

instead of only using one control strategy (MDA or environmental control), does not

significantly increase total expenditure over 10 to 50 year time horizons. If these costs

were only present during the treatment period, then the reduction in time spent treating

due to using the combination of multiple types of treatment could lead to further reduc-

tion in costs. These additional savings would reinforce the importance of considering an

integrated approach to using both drug and environmental treatments.

The environmental treatment we consider in this paper consists of a chemical treatment

of the environment. Such a treatment may have a declining efficacy over time. For

instance, chemical pesticides used against mosquitoes in malaria-endemic areas have faced

limitations due to resistance evolution, non-target effects, and environmental damage [55].

For schistosomiasis, it is well documented that molluscicide niclosamide (the chemical

compound used in snail control) can be toxic to other species [35; 48; 49; 50]. Future

work could include both the potential ecosystem damages from environmental treatment

and potential reductions in efficacy over time. Another possible path is to investigate the

feasibility of interventions that focus on reducing pathogen prevalence in the environment

that might not have these additional damages or issues with declining efficacy.
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For schistosomiasis, there is recent evidence in support of an ecological intervention where

snail predator populations are restored [20]. Biological controls using snail predators (e.g.,

fish, prawns, ducks, crayfish) aid in schistosomiasis control as they reduce snail-to-man

transmission by feeding off of the intermediate host population [20]. A potential ancillary

benefit of introducing this treatment is the support of fisheries and aquaculture revenue,

since many of the candidate natural enemies of snails are also seafood commodities. In

fact, this might be a case where treatment does not only improve health outcomes directly

but indirectly offers a source of sustainable development that could address food insecurity

[42]. However, aligning the incentives of those who indirectly benefit from aquaculture or

fisheries restoration with the public health costs associated with schistosomiasis could be

challenging [56]. Optimal control methodologies, like the one applied here, are a fruitful

approach to understanding the potential benefits and costs of aquatic snail predator

restoration or aquaculture for reductions in disease burden and sustainable development.

Building on our results that redistributing funds across controls (e.g., from MDA to an

environmental treatment) can be cost-effective, another important area for future research

is also considering the optimal gains from redistributing funds across diseases (e.g., from

HIV to NTDs, see Mbah et al., 2013) [57].
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2 Chapter 2: “Spatial Allocation of Scarce COVID-

19 Vaccines”

Abstract

Although the COVID-19 disease burden is heterogeneous across space, the U.S. Na-

tional Academies of Sciences, Engineering, and Medicine recommends an equitable spa-

tial allocation of vaccines based, for example, on population size, in the interest of speed

and workability. Utilizing economic–epidemiological modeling, we benchmark the per-

formance of this ad hoc allocation rule by comparing it to the rule that minimizes the

economic damages and expenditures over time, including a penalty cost representing the

social costs of deviating from ad hoc allocations that favor speed and workability. Under

different levels of vaccine scarcity and different demographic characteristics, we consider

scenarios where length of immunity and compliance to travel restrictions vary, and con-

sider the robustness of the rules when assumptions regarding these factors are incorrect.

The benefits from deviating are especially high when immunity is permanent, when there

is compliance to travel restrictions, when the supply of vaccine is low, and when there is

heterogeneity in demographic characteristics. Interestingly, a lack of compliance to travel

restrictions pushes the optimal allocations of vaccine towards the ad hoc and improves

the relative robustness of the ad hoc rules, as the mixing of the populations reduces the

spatial heterogeneity in disease burden.

Key words: economic epidemiology, applied numerical methods, efficient disease inter-

vention, allocation of scarce resources.

2.1 Introduction

Now that several vaccines against coronavirus disease 2019 (COVID-19) have been de-

veloped, an ongoing question for policymakers around the globe is to determine how

to allocate the limited supplies. Most of the scientific literature on allocation has fo-
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cused on demographic considerations within one jurisdiction [58; 59; 60] or on a global

scale [61; 62; 63; 64]. This prior work has made important contributions to the debate. A

missing piece in the allocation question is how to divide up limited quantities across juris-

dictions (e.g. state, counties) that might have different demographic and epidemiological

characteristics. A report on the allocation of a COVID-19 vaccine by the U.S. National

Academies of Sciences, Engineering, and Medicine (NASEM) [65] states that “[i]f the

federal government were to provide states with an allotment of COVID-19 vaccine, in the

interest of speed and workability, federal allocation to states could be conducted based

on these jurisdictions’ population size.” Such a rule could also be deployed by states,

provinces, or territories when deciding how to allocate within their boundaries.

In this paper, we explore the economic and epidemiological trade-offs associated with

such a fixed ad hoc allocation rule by comparing it to the optimal rule conditional on

the level of scarcity of the vaccine. Throughout this paper when we refer to the “ad hoc

allocation,” what we mean is a rule of thumb that favors “speed and workability,” so

we follow the U.S. NASEM [65] allocation recommendation based on the jurisdictions’

population size. The optimal rule we consider is assumed to be one that minimizes the

economic costs from health-related damages, vaccine expenditures, and a workability cost

imposed on the planner for deviating from the ad hoc rule.

In a world where two jurisdictions are identical in terms of population, the ad hoc rule

would divide the limited supply equally between the jurisdictions. However, it is much

more likely that two jurisdictions, even if equally sized, have heterogeneous levels of

infections (e.g. in terms of cases) at the time a vaccine is licensed and starts to be

administered. Based on prior literature on spatial-dynamics of disease management,

heterogeneity in infection levels may lead to significant deviations between the optimal

spatial allocation and the ad hoc rule (see [66] for example).

Mechanisms leading to heterogeneous infection include the timing of the outbreak, de-

mographic characteristics of the population (e.g. age structure [67] and essential worker

status [68]), and the implementation of and compliance with preventative interventions;
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see [69; 70] for more details on how SARS-CoV-2 (i.e. the virus that causes COVID-

19) prevalence varies across space. While compliance to preventive measures may seem

independent from vaccine allocation, it affects the initial conditions (i.e. the conditions

before the vaccine is licensed and starts to be administered) and the conditions under

which the limited supplies will be allocated. For example, compliance to shelter-in-place

and travel restrictions results in little to no movement of the virus from one jurisdiction

to another. When regions are non-interacting, Brandeau et al. [71] show for a general

susceptible–infected–susceptible (SIS) model that the optimal allocation of resources de-

pends on numerous intrinsic factors, including the size of the populations of each region

and the initial level of infection. When regions are interacting, Rowthorn et al. [47] show

when there is no immunity (i.e. in an SIS model) that treatment should be preferentially

directed towards the region that has the lower level of infection. While these results in-

dicate that a fixed ad hoc rule is less cost-effective in an SIS model, whether compliance

to travel restrictions makes the ad hoc rule relatively more cost-effective in the case of

COVID-19 is an open question.

Our findings illustrate that the vaccines should be optimally allocated over time depend-

ing on: (i) if the jurisdiction has initially a lower or higher disease burden, (ii) if immunity

is permanent (see Zhou et al. [72]) or temporary (Gersovitz and Hammer [73] already

pointed out that the optimal allocation is conditional on the duration of immunity),

(iii) whether there is compliance to travel restrictions or not, (iv) the amount of vaccine

available, and (v) the average demographic characteristics of the population (i.e. age

structure and essential worker status). We proxy variability in demographics by assum-

ing that the population of one jurisdiction has a higher case-fatality ratio (mimicking

an older population) or a higher contact rate (mimicking a population containing more

essential workers) than the other. We find that the benefits of deviating from the ad hoc

rule are especially high when immunity is permanent, when there is compliance to travel

restrictions, when the vaccine supply is low, and when there is heterogeneity in demo-

graphic characteristics. Allocating a vaccine based on an ad hoc allocation rule generally

leads to an over-utilization in jurisdictions where disease prevalence is higher, an under-
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utilization in jurisdictions where disease prevalence is lower, and overall a higher number

of cumulative cases. Whether these inefficiencies outweigh the “speed and workability”

inherent in ad hoc rules is an important question for policymakers. Our research can aid

in that discussion by illuminating the trade-offs involved in such complex epidemiological,

economic, and social decisions by providing optimal benchmarks from which to compare

ad hoc rules.

While the optimal allocation is conditional on a number of factors mentioned above,

the science remains unresolved on the duration of immunity to SARS-CoV-2, and it

is difficult to anticipate and subsequently estimate the extent to which populations in

different jurisdictions comply with the travel restrictions. On the other hand, the ad

hoc allocations have the advantage of being based on easily observable factors (e.g. a

jurisdiction’s population size). To gain insights into the robustness of optimal and ad

hoc policies in the presence of such uncertainties, we investigate the economic and public

health consequences that could occur if we design an optimal policy or evaluate the

performance of ad hoc rules under a set of assumptions on immunity and compliance

that turn out to be incorrect.

We make a number of contributions to the literature. First, we develop an economic–

epidemiological model and solve for the optimal allocation of vaccines over time to min-

imize the economic costs from damages, vaccine expenditures, and a workability cost

imposed on the planner for deviating from the ad hoc rule. Prior literature considering

the trade-offs involved with ad hoc rules does not consider that deviating from them

entails potential workability costs (see, for example, [74]). Second, we consider how vac-

cine allocations are influenced by compliance with preventative interventions (i.e. travel

restrictions). Third, we demonstrate how vaccine allocations are dependent on various

demographics (i.e. age structure and essential worker status). Fourth, we show that, in

general, optimal rules are robust to incorrect assumptions about the duration of immunity

but differences in public health outcomes (cumulative cases) appear when compliance to

a travel restrictions is assumed when in fact there is not compliance; it is, however, much

preferable from a public health outcome perspective to comply with travel restrictions.
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The paper is divided as follow. In Section 2.2, we detail the different types of interven-

tions, we present the components of the economic-epidemiological model, and detail the

technique used to analyse the allocation question. Section 2.3 presents the results while

Section 2.4 concludes the paper.

2.2 Material and Methods

We develop an economic–epidemiological model to describe the dynamics of SARS-CoV-

2. The model captures a situation where a central planning agency (e.g. the federal

government) must decide when and how much of the scarce vaccines to allocate to two

jurisdictions where disease burden is heterogeneous at the moment the vaccine is licensed

and starts to be administered. We assume that the objective of the central planner is to

minimize costs across both jurisdictions, including damages associated with the morbidity

and deaths of infected individuals, the expenditures related to the pharmaceutical inter-

vention, and a penalty cost mimicking the increased workability costs incurred for any

deviation from the ad hoc allocation. The dynamics of SARS-CoV-2 are modeled using

an SEIR epidemiological model, which tracks the change over time of the susceptible (S),

exposed (E), infected (I), and recovered (R) populations for two separate jurisdictions

(see Appendix B.1 for more details on the calibration of the model). We note that while

we generally talk about these jurisdictions as being two different states, they can very

well represent two counties, or regions within one state.

2.2.1 Modelling Different Types of Intervention

There are two different types of interventions we consider: travel restrictions and vaccines.

We assume that travel restrictions affect both jurisdictions simultaneously (e.g. by an

order from the central government), and that the populations either comply perfectly or

imperfectly to the travel restrictions (for examples of optimal lockdown policies see, e.g.,

[75; 76]). When compliance is perfect, individuals in different jurisdictions do not interact

with each other and thus susceptible individuals can only get infected by being in contact

with some infected individual in their own jurisdiction. When compliance is imperfect,
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susceptible individuals from one jurisdiction can also travel to the other jurisdiction

where they can be in contact with infected individuals, or infected individuals from one

jurisdiction can travel to the other jurisdiction and infect susceptible individuals there;

this discrete shift in the number of contacts effectively increases the transmissibility of

the virus (see Appendix B.1 more details).

We assume that the analysis starts when a vaccine has already been developed, licensed,

and is available in a relatively high quantity. For simplicity, the amount of available

vaccine is assumed to be exogenous to the model and fixed over time, which is likely

given the short time frames we consider in the paper. However, we consider different

levels of vaccine supply to investigate how different levels of vaccine scarcity may affect

their optimal allocation. In our model, vaccines reduce the pool of susceptible individuals

by providing them with immunity from the virus, as early evidence suggests that vaccines

could be transmission blocking in addition to preventing severe disease [77].

2.2.2 Model of Disease Transmission

We use a frequency-dependent [78] susceptible–exposed–infected–recovered (SEIR) model

that describes the dynamics of COVID-19 in two separate jurisdictions i = 1, 2 (e.g.

states/provinces or counties/administrative regions); each jurisdiction contains a popula-

tion of Ni individuals that is either susceptible, exposed, infected, or recovered (see Figure

5). We also consider scenarios where immunity is temporary (i.e. lasts 6 months, for more

details see [79]), thus also using an SEIR–Susceptible (SEIRS) model (for COVID-19 ap-

plications see, e.g., [80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90]). In such scenarios, the Ri

recovered individuals are immune for a mean period of 1
ω

months.

In each jurisdiction i, the Si susceptible individuals are in contact with the Ii infected

individuals of their own jurisdiction at a rate of βii and are in contact with the Ij infected

individuals of the other jurisdiction at a rate of βij. We assume βij = 0 (i.e. no mixing

between jurisdictions) when there is perfect compliance to travel restrictions, and βij > 0

if not. To highlight the role of travel restriction compliance and initial disease burden,

we initially assume that the contact rate is identical across jurisdictions, meaning that
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β11 = β22 = βii and β12 = β21 = βij (in Section 2.3.2 we relax this assumption and

investigate the optimal allocation when there is heterogeneity in the contact rate). We

assume there is no permanent migration of individuals from one jurisdiction to another

(see for instance [91] and see [92] for an example applied to COVID-19) in the sense that

individuals who do not comply with travel restrictions do not permanently move to the

other state, but instead travel to it temporarily. An implication is that we are assuming

that the two jurisdictions are close enough for such travel and mixing to be economically

feasible.

We model the control variables for vaccines as non-proportional controls, i.e. available in

a constant amount each month [47; 60; 93; 94]. The change in susceptible individuals is

Ṡi = ωRi − βiiSi
Ii
Ni

− βijSi
Ij
Nj

− qV uVi (1)

where uVi represents the number of individuals being treated via vaccine in a given time

period (i.e. a month) in Jurisdiction i, and qV represents the effectiveness of the vaccine.

We note that our model does not distinguish between individuals whose vaccine has failed

and those who have not been vaccinated at all. As such, individuals with vaccine failure

can be re-vaccinated in subsequent months.

After being infected, susceptible individuals transition into the exposed class Ei where the

disease remains latent for a mean period of time of 1
σ
, before the onset of infectiousness.

The change in the number of exposed individuals is

Ėi = βiiSi
Ii
Ni

+ βijSi
Ij
Nj

− σEi. (2)

Exposed individuals eventually become infectious for a mean period of time of 1
γ+ϕi

and in

turn can infect susceptible individuals. Infected individuals either recover naturally from

the disease at a rate of γ or die from complications related to infection at a disease induced

mortality rate of ϕi. In our base case we assume identical disease induced mortality rates

across jurisdictions, i.e. ϕ1 = ϕ2 = ϕ but investigate the optimal allocation when ϕ1 6= ϕ2
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in Section 2.3.2. The growth of the infected individuals is

İi = σEi − γIi − ϕiIi. (3)

The recovered population Ri includes individuals that recover naturally from the dis-

ease at a rate of γ and the individuals that are successfully vaccinated every month

(qV uVi); if immunity is temporary (ω > 0), a fraction of the recovered will leave this

compartment. Our model does not distinguish between vaccine-acquired immunity and

naturally-acquired immunity. The number of recovered individuals in Jurisdiction i thus

changes according to

Ṙi = γIi + qV uVi − ωRi. (4)

At any instant in time, we have that Ni = Si + Ei + Ii + Ri, which in turn implies that

the growth of the population over time is

Ṅi = −ϕiIi. (5)

In keeping with much of the previous economic epidemiology literature [73] as well as

recent applications to COVID-19 (see for example [95]), we have omitted natural births

and non-COVID-related deaths due to the short time frame of our model (4 months) and

assume reductions in international travel [96] effectively lead to a closed population (i.e.

there is no exogenous importation of infected individuals). See Appendix B.1 for more

details about the parameterization of the epidemiological model.
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Figure 5: This schematic shows the model interventions and disease transmission path-
ways for our model of COVID-19. The full lines represent the transition between, or
out of, compartments while the dotted lines represent contact between susceptible and
infected individuals. Black lines represent situations that do not vary, while yellow lines
represent key factors that we vary in our model to see how they impact our results. The
green line represent the vaccines and the red line represents mortality.

2.2.3 Modelling Ad Hoc Allocations

We model an ad hoc allocation rule that favors “speed and workability” [65]. We follow

the NASEM approach [65] and impose that the allocation is based on relative population

sizes. Specifically, the rule for Jurisdiction i is that

uVi ≤
(

Ni

N1 +N2

)
ūV (6)

where ūV is the limited amount of vaccine available for both jurisdictions. When the

population sizes are the same, the ad hoc rule will divide equally the limited doses to the

two jurisdictions.

In the ad hoc scenarios, we model the allocation rule as an inequality because towards the

end of the horizon after periods of vaccinations, the level of susceptible in the population
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may be such that the limited supply of vaccines is not an issue. Other ad hoc rules are

possible, such as, allocate all to the largest or smallest population [74], but we concentrate

on the one currently being advocated for by NASEM [65].

2.2.4 Model of Economic Costs

The model of economic costs include damages related to morbidity and deaths, costs

spent on the vaccines, and the workability cost described above that is incurred for any

deviation from the ad hoc allocation rule. Damages represent consequences related to

a temporary disability associated with severe or critical symptoms, and loss of life in

the worst cases. The damages are assumed to be linear and additively separable across

jurisdictions, meaning that they are identical across individuals and across jurisdictions.

The marginal value of damages (i.e. the damages associated with the death of one

individual) is assumed to be constant over time and given by the value of a statistical

life (VSL) that the U.S. Environmental Protection Agency [97] uses (see Appendix B.1

for more details on the parameterization). Damages incurred from a temporary disability

associated with severe or critical symptoms can be compared to deaths via some disability

weight w; given the World Health Organization (WHO) has not yet published disability

values associated with COVID-19, following the literature (see for instance [98]), we

use the disability value associated with lower respiratory tract infections. The damage

function for Jurisdiction i is

ci(Ii) = (w + ϕi)cIi (7)

where c is the damage parameter associated infectious individuals (i.e. the VSL).

We model a scenario where the central planner is focused on the allocation of vaccines

where the costs for its development have already been incurred. This implies that vaccine

development costs have already been utilized (in technical terms we say that the costs are

sunk) and therefore do not affect the decision of the central planning agency. We model

the vaccination cost as linear, where the cost parameter represents the cost of treating
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one individual. The vaccine cost function is denoted cVi(uVi), with i = 1, 2. We assume

that the vaccination cost is additively separable across jurisdictions such that we denote

the cost of treating uVi individuals as

cVi(uVi) = cV uVi for i = 1, 2, (8)

where cV represents the cost of treating one individual via vaccine. Calibration of the

cost parameter is based on current vaccine prices (see Appendix B.1 for more details

about the parameterization of the economic model).

We assume that the central planning agency incurs a workability cost representing the

social (transaction) costs of deviating from the ad hoc allocation rule (for another appli-

cation of this concept, see [99]). The workability cost function is:

cA(uV1 , uV2 , N1, N2) = cA

((
N2

N1 +N2

)
uV1 −

(
N1

N1 +N2

)
uV2

)2

(9)

where cA is the parameter associated with the workability cost. When the gains from

deviating from the ad hoc allocations (i.e. a reduction in damages in one jurisdiction)

outweigh the costs (i.e. an increase in damages in the other jurisdiction and the increased

workability costs incurred), the central planning agency will prioritize this allocation as it

will lead to lower total costs. By imposing the ad hoc rule ex ante, the decision-maker is

essentially assuming that this workability cost is infinite. Everything else being equal, we

expect that the presence of the workability cost will push the optimal allocation towards

the ad hoc rules (see Figure B.18 for a sensitivity analysis of our results to the workability

cost parameter). Therefore, when we do find deviations, we need to consider that these

include this workability cost and if workability costs smaller, then the deviations and

trade-offs would be greater.
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2.2.5 Planner’s Objective

In optimal control theory, the best, or optimal, path of the control variables (here the

allocation of the limited supply of vaccines) is conditional on the objective of the central

planning agency. We assume that the objective is to minimize the economic damages and

the costs of the pharmaceutical intervention across jurisdictions over time, rather than a

solely epidemiological objective (see for instance [47]). The objective function is the net

present value of damages, expenditures related to vaccination, and the workability cost

over an exogenously determined planning horizon (4 months). Specifically, the planner’s

objective is:

min
uV1 ,uV2

∫ T

0

e−rt
{
c1(I1) + c2(I2) + cV1(uV1) + cV2(uV2) + cA(uV1 , uV2 , N1, N2)

}
dt (10)

where r is monthly discount rate. The planner solves equation (10) over a fixed time in-

terval, T , subject to equations (1), (2), (3), (4), (5), along with constraints on availability

of vaccines (uV1 + uV2 ≤ ūV ), non-negativity conditions, physical constraints on vaccines,

initial disease burdens in each jurisdictions, and free endpoints (see discussion on terminal

conditions in the next section). In the ad hoc scenarios, we also impose equation (6).

2.2.6 Initial and Terminal Conditions

The disease burden in each jurisdiction at the beginning of the time horizon (i.e. in

t = 0 when the vaccine is already licensed and starts to be administered) is calibrated

using the epidemiological model (equations (1), (2), (3), (4), and (5)). At the beginning

of the outbreak, we assume that, in each jurisdiction, there is one exposed individual

in an otherwise entirely susceptible population of 10 million individuals (approximately

the population of Michigan), and that populations of the different jurisdictions comply

with the travel restrictions. The only difference between the two jurisdictions is that the

outbreak started one week earlier in State 2. We simulate the outbreak for approximately

nine months to yield the initial conditions; see Appendix B.2 for more details. In Section

2.3.2 when we consider heterogeneity in demographic characteristics (varying case-fatality
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ratio and contact rate), we modify the initial conditions accordingly assuming an identical

timing in the outbreak of the disease.

We impose no conditions on the number of susceptible, exposed, infected, and recovered

individuals at the end of the planning horizon; in technical terms, we say that the state

variables are free (see Appendix B.2 for more details). Under our free endpoint conditions,

there is a transversality condition (i.e. a necessary condition for the vaccine allocation

to be optimal) for each state variable that requires the product of the state variable

(Si, Ei, Ii, Ri or Ni) and its corresponding costate variable (i.e. the shadow value, or

cost, associated with the state variable) is equal to zero. Hence, at the end of the time

horizon, either the state variable equals zero, the shadow value associated with the state

variable equals zero, or both. In any case, allowing state variables to be free guarantees

that the terminal levels of the state variables are optimally determined. Another possible

assumption could be that over a fixed interval we find the optimal policy such that at the

end of the horizon there is a given percent reduction in infected or susceptible individuals.

Our approach nests this more restricted scenario.

2.3 Results

To examine the optimal allocations of vaccine over time, we numerically solve the optimal

control problem across three different scenarios: no controls, optimal vaccine allocation,

and ad hoc vaccine allocation. We investigate how to allocate vaccines by mapping out

the different allocation rules for different immunity–travel restrictions–capacity scenarios.

Any deviation from the ad hoc allocation rule is optimal despite incurring the workability

cost. As the workability cost parameter cA goes to zero, the problem becomes linear in the

controls where the optimal allocations in linear problems follow singular solutions. We use

pseudospectral collocation to solve for the optimal dynamics of vaccine and infection over

time, which converts the continuous time optimal control problem into a constrained non-

linear programming problem solving for the coefficients of the approximating polynomials

at the collocation nodes (see [45; 100] for other applications, and see Appendix B.2 for

more details on this technique).
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We present the results for our preferred specification of the parameters (i.e. following

what was estimated in the literature; see details in Appendix B.1) and for the case where

immunity is permanent and the case where immunity is temporary. We detail the optimal

deviation based on whether the populations of the different jurisdictions are compliant

to travel restrictions or not, and for different levels of capacity constraints. The total

available quantity of vaccine in a given time period (i.e. a month; ūV ) is based on a

certain percentage (5%, 10%, or 15%) of the total population size. We focus our analysis

on the period of time when the scarcity of the vaccine constraint is binding, as once the

constraint relaxes the allocation question becomes moot.

2.3.1 Base Case: Homogeneous Demographic Characteristics

Compliance to travel restrictions impacts the optimal allocation of vaccines, regardless

of whether immunity is temporary or permanent and regardless of the amount of vaccine

available. Noncompliance to travel restrictions reduces both the oscillation (i.e. back-

and-forth movement of resources between jurisdictions) of the optimal allocation and

the amplitude of the deviations from the ad hoc rule (see Figure 6 for when immunity is

permanent, and see Figure B.1 for when immunity is temporary). Because noncompliance

to travel restrictions decreases the structural heterogeneity in the system, the optimal

allocation of vaccine converges towards the ad hoc allocation when populations mix with

each other. This result clearly demonstrates how the performance of the allocation rule

is dependent on how citizens in the jurisdictions comply with travel restrictions.
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Figure 6: Vaccine allocation with and without compliance to travel restric-
tions. Change over time in the optimal and ad hoc allocations (panels A and B) and the
corresponding infection levels (panels C and D) for State 1 (in blue, the initially lowest-
burdened state) and State 2 (in red, the initially highest-burdened state) depending on
whether there is compliance to travel restrictions (panels A and C) or not (panels B and
D) for the case where the vaccine capacity constraint is 10% and immunity is permanent.
Note the changing y-axis in panels C and D in order to better highlight the infection
levels.

Noncompliance to travel restrictions leads to the initially less infected state being favored

by the optimal allocation for low levels of vaccine capacity (e.g. 5% capacity; see Figure

7 Panel A for when immunity is permanent and Figure B.4 Panel A for when immunity

is temporary). On the other hand, the more infected state will be prioritized at the

beginning of the time horizon for a very short period of time when vaccine capacity is

larger (e.g. 10% or 15% capacity; see Figure 7 panels B and C for when immunity is

permanent and Figure B.4 panels B and C for when immunity is temporary). More

generally, regardless of whether or not populations are compliant with travel restrictions,

and regardless of whether immunity is temporary of permanent, a higher vaccine capacity

implies that relatively more of the supply should be given to the more infected state at
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the beginning of the time horizon (see figures 7 and B.2 for the case where immunity is

permanent; see figures B.3 and B.4 for the case where immunity is temporary).

Figure 7: Vaccine allocations under different levels of scarcity without compli-
ance to travel restrictions. Change over time in the optimal and ad hoc allocations
(panels A, B, and C) and the corresponding infection levels (panels D, E, and F) for
State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially
highest-burdened state) depending on whether capacity is 5% (panels A and D), 10%
(panels B and E), or 15% (panels C and F), for the case where immunity is permanent
and there is no compliance to travel restrictions.

Interestingly, temporary immunity has a different effect on the optimal vaccine allocation

depending on whether or not populations are compliant to travel restrictions. When

populations comply with travel restrictions, temporary immunity increases the oscillation

of the optimal allocation because benefits from vaccination are only temporary, and since

the population gradually loses its immunity, it forces more back-and-forth movement of

resources between jurisdictions (see Figure B.5). When populations do not comply with

travel restrictions, temporary immunity reduces the amplitude of the deviations from

the ad hoc rule because it further dampens the structural heterogeneity in the system,

since the infection and recovery level of both jurisdictions will eventually reach the same
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positive steady-state level (recall the only heterogeneity in the system is the initial disease

burden in the base case).

While the optimal allocation of vaccine is unequal from a resource allocation perspective,

it equalizes the current infection levels across jurisdictions (Figure 6 Panel C). As the

vaccine capacity increases, however, the ad hoc allocation rule performs better and in

turn the amplitude of the optimal deviation decreases (see Figure B.2 panels A, B and C,

or Figure B.3 panels A, B, and C). These optimal cost-minimizing deviations that lead

to equal current infection levels across jurisdictions towards the end of the time horizon

imply that the optimal cumulative number of cases is more unequal than in the ad hoc

allocation (Figure 8). Hence, the optimal allocation makes the current infection level more

equal, while the ad hoc allocation makes cumulative infection more equal. In fact, in all

scenarios considered, the optimal allocation will lead to lower cumulative damages in the

less infected jurisdiction but higher cumulative damages in the most infected jurisdiction

(see Figure 8 with vaccine capacity of 10%, and see figures B.7 and B.8 with vaccine

capacity of 5% and 15%, respectively).
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Figure 8: Epidemiological outcomes under different scenarios with vaccines.
Cumulative relative difference (panels A, B, C, and D) and cumulative absolute differ-
ence per 1M people (panels E, F, G, and H) between the number of infections in different
allocations rules and the no-vaccine case for different immunity–travel restrictions sce-
narios and for when vaccine capacity is 10%.

2.3.2 Heterogeneous Demographic Characteristics

In our main analyses, we introduced heterogeneity in infection across jurisdictions by

assuming a different timing in the outbreak of the virus. While this leads to hetero-

geneity in the disease burden, there are other mechanisms that could lead to similar

differences in the disease burden at the time the vaccine is licensed and starts to be

administered. For instance, in jurisdictions that have an older population on average,

we expect SARS-Cov-2 to have a higher case-fatality ratio [67] which would effectively

decrease the transmissibility of the virus (see Appendix B.1 more details). If we assume

that one jurisdiction has a higher case-fatality ratio and start the initial outbreak at

the same time, then we find the population with the highest case-fatality ratio also has

the largest population of susceptible individuals at the time the vaccine is administered.

The heterogeneity in initial disease burden stems from the lower transmissibility in the
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jurisdiction with the higher case fatality ratio. The heterogeneity in case fatality ratio

therefore not only leads to heterogeneity in the initial disease burden but it also implies

that the benefits of vaccination are no longer homogeneous across jurisdictions. These

differences lead the optimal allocation to favor even more the least burdened jurisdiction,

which is also the most vulnerable (aka more older individuals) of the two populations.

Overall, introducing heterogeneity in case fatality ratio strengthens our main set of results

(see Figure B.9 for when immunity is permanent and see Figure B.10 for when immunity

lasts 6 months).

Another source of heterogeneity in infection could stem from one jurisdiction having

more essential workers than the other (for more details on how the risk of infection is

occupation-dependent, see [68]). In our model, we can capture this by considering spatial

heterogeneity in the contact rate, where a higher contact rate proxies for more essential

workers. This in turn leads to a higher initial disease burden in the jurisdiction with higher

contact rate. We find that priority is given to the state with a higher contact rate (aka

more essential workers) in almost all cases. As the state with a higher contact rate gets

vaccinated, we eventually shift priority to the state with the lowest contact rate because

either the number of cases starts decreasing in the jurisdiction that has the higher contact

rate, or the low-contact state eventually reaches a point where its infection level becomes

higher than the high-contact state (see Figure B.11 for when immunity permanent and

see Figure B.12 for when immunity lasts 6 months). In the case when immunity lasts

6 months and there is compliance to travel restrictions (Figure B.12, Panel A), we find

that priority is given to the low-contact jurisdiction, which contradicts many notions of

fairness associated with vaccine allocation. With the gains of vaccination temporary and

no movement of people, it turns out that the greatest return per vaccination is in the place

where you can best avoid future cases (low contact rate jurisdiction). This prioritization

is only fleeting however and there is more back-and-forth movement of resources between

jurisdictions in this case, even though the workability cost is being incurred each time.
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2.3.3 Robustness of Spatial Allocations

There is significant uncertainty associated with the duration of immunity (i.e. if it is

permanent or temporary) and to what extent populations comply with travel restrictions.

One argument for the ad hoc allocation is that uncertainty in these parameters makes

the optimal allocation impossible to achieve. This uncertainty is not yet resolved and

public health officials have to choose vaccine allocations based on potentially incorrect

assumptions. We compare the robustness of the optimal spatial allocation to the ad hoc

allocation. By definition, the optimal allocation minimizes the net present value of the

health-related damages and total expenditures (including vaccine expenditures and the

workability cost incurred because of the deviations from the ad hoc allocation), and thus

cannot do worse on this dimension than the ad hoc allocation. We measure robustness by

first inserting the optimal solution under one set of assumptions into the disease dynamics

under another set and compute the changes in total expenditures (i.e. the pharmaceutical

intervention and the workability cost) and public health outcomes (cumulative cases)

over time. We then calculate the distance of these changes in percentage terms to the

optimal solution derived under the “correct” assumptions (represented by the point (0, 0)

in Figure 9). For example, suppose immunity is permanent and there is perfect compliance

to a travel restriction. We derive the optimal policy under these assumptions and use

it to measure the robustness of the optimal policies that are derived under assumptions

that immunity is temporary and/or there is noncompliance. The ad hoc policies being

based on observable factors are then compared to the incorrectly applied optimal policies.

We illustrate the case for 10% scarcity and include other scarcity cases in Appendix B.3.

When demographic characteristics are homogeneous across jurisdictions, we find overall

that immunity length has a lesser impact on both economic and epidemiological outcomes

than compliance to travel restrictions (compare the distance from the origin between the

plusses and the stars in Figure 9). There are more nuanced trade-offs, however (e.g.

compare position of the stars across the panels in Figure 9). Across the economic dimen-

sion (expenditures), for example, we find that assuming compliance when in fact there

is very little leads to greater expenditures. Recall by design, the ad hoc allocations have
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lower expenditures than the optimal policies because the central planner is not incurring

the workability costs from deviating off of the allocation. At the same time, greater cu-

mulative cases result when the opposite holds, that is, assuming no compliance when in

fact there is compliance. We also see that in some instances that the combined effect of

incorrectly assuming the wrong immunity and compliance can offset some deviations (e.g.

see Figure 9 Panel C) while in other cases the results are dominated by non-compliance.

Finally, when there is compliance to travel restrictions the ad hoc allocation performs

worse than any of the optimal allocations, while the ad hoc allocation performs relatively

well when there is no compliance to travel restrictions. Varying the level of scarcity does

not change the qualitative nature of results (see figures B.13 and B.14 for when vaccine

capacity is 5% and 15% respectively), except for one anomaly where the ad hoc does

not always perform worse under assumptions on compliance to travel restrictions (Figure

B.14).
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Figure 9: Robustness of epidemiological and economic outcomes under different
scenarios with vaccines. Percentage change in expenditures (y-axis) and percentage
change in cumulative cases (x-axis) from the optimal allocation for different immunity–
travel restrictions scenarios and for when vaccine capacity is 10%. The x-axis represent
small percentage changes but when scaled up to population level effects translate into
significant differences in public health outcomes.

We also investigate the robustness of the optimal allocations when the demographic

characteristics are heterogeneous across jurisdictions. When jurisdictions have a different

case-fatality ratio, the ad hoc allocation performs better than the optimal allocations

when considering cases as the main health outcome (Figure B.15). However, this approach

is misleading because when case-fatality ratios are heterogeneous across jurisdictions,

the cumulative aggregate number of cases (all jurisdictions together) is a poor outcome

measure as a case in one place is not the same as a case in another jurisdiction. In this

setting, the disease burden and cumulative damages give a more accurate depiction of the

situation. In fact, while the ad hoc allocation outperforms the optimal allocations in terms

of cumulative cases, it performs considerably more poorly when considering cumulative

damages. We generally find that the optimal allocations outperform the ad hoc allocation
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in all scenarios considered (Figure B.16). When jurisdictions have a different contact rate,

the same pattern as in Figure 9 holds in the sense that when there is compliance to travel

restrictions, the optimal allocations outperform the ad hoc allocation, while the ad hoc

generally performs better than the optimal allocations when there is noncompliance to

travel restrictions (Figure B.17).

2.3.4 Sensitivity Analyses

The previous section considers the robustness of optimal allocations to incorrect assump-

tions about parameters (e.g. assuming permanent immunity while in fact it is temporary).

Public health officials will also want to know how much optimal allocations change when

parameters change (e.g. because vaccine effectiveness is lower against a new strain of the

virus). We address those questions in this section. While both sets of analyses address

parameter uncertainty, you can consider in this section that the uncertainty is resolved

before the public health officials have to make the vaccine allocation, while in the pre-

vious section the uncertainty was not resolved and public health officials had to choose

allocations based on potentially incorrect assumptions.

Two key parameters in our analysis are the scale of the workability cost (cA in Equation

(9)) and the level of vaccine effectiveness (see Appendix B.3 for more details). While

imposing the ad hoc rule ex ante implicitly means that the cost of deviating from the ad

hoc allocation is infinite, in practice it is likely finite but hard to quantify, as it depends on

logistical, political, and cultural factors. We investigate the sensitivity of our results by

solving for optimal vaccine allocation over a range of values. We find greater deviations

off of the ad hoc at lower workability costs resulting in greater differences in cumulative

cases, and smaller deviations as the workability cost parameter increases (Figure B.18

panels A, B, C, and D). Specifically, we find that when the cost is in the neighborhood

of the VSL (c in Equation (7) and Figure B.18 black line represents the VSL), that the

planner no longer deviates from the ad hoc.

The base case parameter for vaccine effectiveness we utilized in the paper is based on

estimates of the influenza vaccine [101] (see Appendix B.1 for more details). Recent
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evidence from the COVID-19 vaccines suggest that effectiveness could be considerably

higher. We find that the more effective a vaccine is, the more a central planner would

want to deviate from the ad hoc allocation (in blue; Figure B.19 panels A, B, C, and D).

As a result of this greater deviation, we see a larger difference in terms of the reduction

in cumulative cases (in red; Figure B.19 panels A, B, C, and D).

2.4 Conclusion

Recent studies have discussed how a vaccine against the coronavirus disease (COVID-

19) should be allocated within a geographical area (see for instance [58; 59; 60]) and

on a global scale (see for instance [61; 62; 63; 64]). Building off the spatial-dynamic

literature in epidemiology, we contribute to this body of work by addressing the question

of distributing a relatively scarce COVID-19 vaccine across smaller geographic areas, such

as counties, regions, or states. The U.S. National Academies of Sciences, Engineering,

and Medicine (NASEM) [65] recommends to allocate a vaccine against COVID-19 based

on the jurisdictions’ population size. In this paper, we show the potential economic and

public health benefits of deviating from such ad hoc allocation rule, which in turn provides

policymakers with information on the trade-offs involved with different allocations. There

are many factors that come into play in these allocation decisions and the methodology

proposed here provides a way to benchmark these rules to illustrate the trade-offs. Other

methodologies that do not solve for the optimal policies are left to benchmark one set of

ad hoc rules against another, where the set of possible ad hoc rules is infinite.

We considered several different scenarios where the length of immunity, the compliance

to travel restrictions, the vaccine capacity constraint, and the demographics across juris-

dictions are varied. In most of these scenarios, we find that priority should be given to

jurisdictions that initially have lower disease burden. The intuition behind this result—

already put forward by Rowthorn et al. [47] when investigating optimal control of epi-

demics in a scenario where no immunity to the disease is developed—is that the priority

should be to protect the greater population of susceptible individuals, and that focusing

on a subset of the population, rather than on the entire population, can make a significant
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difference [102]. We find that higher vaccine capacity can lead to the opposite result for

a short period of time at the beginning of the time horizon, and we find that the high

burden jurisdiction should be prioritized when it has more essential workers, as long as its

infection level is increasing and remains higher than the jurisdiction with fewer essential

workers. Our results also suggest that deviations from an ad hoc allocation rule based on

population size are highly beneficial when one jurisdiction has a population with higher

mortality rates.

We also show the value of complying to a travel restriction, as compliance leads to lower

cumulative damages across both jurisdictions, regardless of whether immunity is perma-

nent or temporary. The reduction in cumulative damages is particularly important for

the jurisdiction with fewer infected individuals. Considering nonlinear damages due to an

overload of health care systems [103; 104] and a corresponding varying death rate due to

scarce intensive care unit beds [75], and other second-order problems such as consump-

tion losses [105; 106; 107], excess mortality [108], and psychological distress [109] could

further highlight the benefits of complying to travel restrictions.

Despite having to pay a workability cost for deviating from the ad hoc allocation, we show

that it is still in the interest of the central planning agency (e.g. the federal government)

to deviate from this rule of thumb for a wide range of values we considered; this result

holds in all scenarios we considered in our analysis. We considered ad hoc allocation

rules that favor “speed and workability” (put forward by NASEM [65]). Other allocation

rules are possible. For instance, in the base case of our paper, we assumed identical

contact rates across jurisdictions. In turn, this implied that the movement within a

given jurisdiction is assumed to be identical across jurisdictions. In practice, population

mobility likely differs from one jurisdiction to another and an ad hoc allocation could

be based on population mobility and contact structure. The methodology employed in

this paper can investigate the trade-offs of other ad hoc rules and as a result, can offer

potentially important information to policymakers that face the challenge of allocating

scarce COVID-19 vaccines to their jurisdictions.
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Extrapolating our results to the entire U.S. suggests that allocating a vaccine based

on the ad hoc allocation rule advocated for by NASEM can have serious public health

consequences. How many additional cases accrue depends on several factors including

epidemiological (i.e. length of immunity), behavioral (i.e. compliance to travel restric-

tions), and logistical (i.e. vaccine capacity) factors. In the United States alone and with

10 percent vaccination capacity, the increase in the number of cases due to an allocation

of a scarce COVID-19 vaccine based on the relative population size of the states could

imply as little as 28,000 additional cases, but according to our model this number could

be as high as 1.03 million additional cases. Fortunately, additional vaccine capacity in the

range considered in the paper improves the relative performance of the ad hoc allocation

when there is compliance to travel restrictions, but at the same time, the performance

of the ad hoc allocation when there is noncompliance to travel restrictions is worsened.

For instance, when vaccine capacity is 5%, the range goes from 21,000 to 1.05 million

additional cases, and when vaccine capacity is 15%, the range goes from 34,000 to 950,000

additional cases.

There are, however, important factors that have received significant attention in the lit-

erature that we should fully incorporate in future research. For example, the composition

of the population of a jurisdiction is assumed to be homogeneous. To mimic the fact that

the virus disproportionately affects elderly people [67] and/or people with pre-existing

conditions [110], and also to mimic the fact that the risk of infection is highly occupa-

tion dependent [68], we simply assumed that the average case-fatality ratio and contact

rate was higher in one jurisdiction. In practice, however, the composition of a population

within a given jurisdiction is not homogeneous. Further research combining heterogeneity

both across jurisdictions in the form of different disease burden and within jurisdictions

in the form of different risk of complications and risk of infection could add additional

valuable insights into the trade-offs inherent in these different allocations rules.

Finally, while our paper and most of the discussion revolves around the allocation of

a vaccine, a similar allocation problem may arise if an antiviral drug were to become

available (for a discussion on antiviral treatments for SARS-Cov-2, see [111]). Because
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drugs and vaccines have different goals—treating infected individuals and prophylaxis,

respectively—the economic and public health trade-offs of different allocation rules may

be unique to the type of pharmaceutical intervention. Future work considering the joint

allocation question of antiviral drugs and vaccines could be valuable in understanding the

trade-offs and complementarities between these different pharmaceutical interventions.
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3 Chapter 3: “Ecological Interventions to Fight Dis-

eases: When Objectives are Misaligned”

Abstract

Ecological interventions are nonpharmaceutical actions that individuals and communities

can take to reduce disease transmission by considering interactions among the different

disease-carrying organisms and their environment. They are receiving increasing interest

by both researchers and practitioners to prevent and manage environmentally transmitted

diseases because of their potential to maintain control of the disease burden in a decentral-

ized way. When the main drivers of such interventions are the economic benefits derived

from undertaking the activity, ecological interventions also have the potential to be sus-

tainable. While economic incentives are key in making such interventions viable, they can

also have unintended consequences that hinder their public health purpose. In this paper,

we investigate the consequences that profit-maximizing behavior has on the transmission

of an environmentally transmitted disease using schistosomiasis and prawn aquaculture

as a case study. Freshwater prawn, a natural predator of the intermediate host snail, is

a food source for local human populations, and it maintains disease prevalence at low

levels in the environment. We simulate the behavior of a profit-maximizing aquaculture

farmer whose activity has the potential to create ancillary public health benefits, but

whose decision-making concerning supplemental feeding can mitigate these same public

health benefits. Our results suggest that feeding prawns to maximize profits can lead to

a divergence between the health- and profit-maximizing outcomes. We investigate the

performance of two policies (standardized rotation length and a limited feeding season)

to reduce this divergence and realize the public health benefits from prawn aquaculture.

Key words: economic epidemiology, applied numerical methods, optimal timing, aqua-

culture regulation.
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3.1 Introduction

Vaccines, drugs, and pesticides are conventional tools used to fight infectious diseases.

These interventions target the risk in humans (e.g. vaccines, drugs) or their immediate

environments (e.g. pesticides) [56]. Despite uncontestable public health and economic

benefits attributable to these pharmaceutical interventions for some diseases (for instance,

see [112] for smallpox and [113; 114] for Covid-19), they show limited effectiveness against

other diseases that are environmentally transmitted and have complex life cycles involving

non-human host [5].

An example of a disease with such a complex life cycle is schistosomiasis, a debilitating

parasitic disease that affects over 250 million people worldwide [115], and its transmission

relies on a non-human intermediate host (a freshwater snail) [35]. The parasite’s life

cycle requires a phase of asexual replication within the intermediate host, resulting in

the shedding of cercariae (the larval form of the parasite) that contaminates rivers, lakes,

or other bodies of freshwater with which humans may be in contact [35]. Conventional

interventions to fight schistosomiasis—including a drug that effectively eliminates the

parasites in humans [6] and molluscicides that eliminate the intermediate host in the

environment [54]—have their share of problems. Despite being developed in the mid

1970s, investments in the billions of US dollars in mass drug administrations have had

little effect on the global disease burden [5], likely because treated individuals often

have no other option but to continue using to parasite-contaminated waters [4]. The

molluscicides used in bodies of freshwater where snails are present are also toxic to other

species [35; 48; 49; 50] and could be prone to resistance evolution [56] (for an example

of resistance evolution for insecticides used for malaria control, see [55]). Combining

multiple types of treatment can reduce the overall cost of treatment and the disease

burden [5; 12; 19; 116], but separate guidelines for each type of treatment, such as current

World Health Organization (WHO) recommendations, considerably increase the time

span over which drug treatment needs to be administered [100].
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Because of these numerous problems, researchers and practitioners are considering eco-

logical approaches to address these challenges. Ecological interventions are based on the

complex interactions between human and non-human hosts, and how they interact with

their environments [56]. Examples include fertility control of the intermediate host us-

ing, for example, gene-drive technologies (see [117] for the use of such technologies to

fight malaria and see [118] for the potential of such technologies to fight schistosomiasis),

natural habitat manipulation (see [119; 120; 121; 122] for examples relating to schistoso-

miasis), or the use of predators of the intermediate host as biological controls (the focus

of this paper). Introducing non-native predators reduces schistosomiasis prevalence in

humans [123], but using non-native species as biological controls can be risky due to

potential catastrophic nontarget effects [124]. Modern biological controls can be safe and

effective when done properly and when using native species [125]; an example of this in

the context of schistosomiasis is the restoration of native freshwater prawns (a natural

predator of snails), which reduces snail-to-man transmission in areas where schistoso-

miasis is endemic [116]. A recent study [42] showed that prawn aquaculture has the

potential to reduce the snail population, aid in schistosomiasis control, and be a source

of sustainable development.

An important advantage of prawn aquaculture to fight schistosomiasis is that the eco-

nomic incentives can be the driving force of the intervention. The public health benefits

that prawn aquaculture provides could be a positive externality created by the economic

activity. To sustain decentralized management of this ecological approach to fight schis-

tosomiasis, economic incentives are key; otherwise there is no guarantee of having partic-

ipation of local communities in the endemic areas. While prawn aquaculture as a means

to fight schistosomiasis may seem like a win-win situation if the economic incentives are

present, issues may arise if the public health objective differs from the private profit-

maximizing objective (i.e., if there is a misalignment of objectives between the central

planner and the decentralized economic agents). The reason why a divergence may occur

is that the ones who bear the costs of aquaculture do not incur all the benefits of the

activity. For instance, the aquaculture farmers are not the only ones benefiting from the
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reduction in disease transmission. The aquaculture farmers may also not consider (or

realize) the health benefits that they themselves reap from their own activities.

In this paper, we explore a potential mechanism that could lead to a divergence between

the health-maximizing optimum and the profit-maximizing optimum. Specifically, we

simulate a situation where the aquaculture farmer can supplement the prawns’ diet with

feed. The supplemental feed increases prawn growth but reduces predation of snails,

which in turn can mitigate the public health benefits associated with prawn aquaculture.

We use optimal control techniques to compare the dynamics of infected intermediate hosts

and infected humans in scenarios that differ because of the objective of the decision-maker.

Our findings suggest that ignoring potential investments in optimizing the returns from

prawn aquaculture due to a profit-maximizing behavior (i.e. ignoring the fact that farmers

may want to feed prawns to increase their profits) could lead to an important divergence

between the public health and the private optima. The extent to which these two out-

comes differ inherently depends on (i) the degree to which prawns substitute away from

snails when they are fed, and (ii) the extent to which prawns are generalist predators. We

investigate how these different aspects affect epidemiological outcomes, and we present

different policies that could be implemented to incentivize aquaculture farmers to make

decisions that result in a greater reduction in disease transmission.

This paper is divided as follows. In Section 3.2, we detail the components of the predator–

prey model, the epidemiological model, and the economic objective of the decision-maker.

Section 3.3 presents the base case results, the simulated policies meant to reduce the

impact of feed, and the sensitivity analyses of key parameters. Section 3.4 concludes the

paper.

3.2 Model

To illustrate the challenges of using prawn aquaculture for public health goals, we develop

a stylistic model for a single representative prawn aquaculture enclosure. A nearby small

village (5,000 people, following Hoover et al. [42]) is assumed to come into contact with
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freshwater only within the boundaries of the aquaculture enclosure. The snail population

is assumed to be closed within the enclosure (i.e. there is no movement in or out of it) and

the larval stage of the parasite living in freshwater is assumed stay within the boundaries

of the enclosure and not be able to migrate into it. The objective consists of optimizing

the harvest time of the prawns, where their growth is affected by both exogenous factors

(i.e. the predation of snail and non-snail prey) and endogenous factors (i.e. supplemental

feed).

There are many analogies between the profit-maximizing aquaculture problem studied in

this paper and optimal rotation lengths in forestry. The trade-off faced by the decision-

maker is between the marginal value of waiting an extra period of time (in our case, the

additional aquaculture profits earned by allowing prawns to grow one more day) and the

opportunity cost of the aquaculture operation (i.e. the foregone benefits of not harvesting

today); the optimal rotation length is given by the point in time when these two objects

are equal to each other. When farmers do not feed the prawns, this trade-off is solely

affected by biological factors (i.e. the prawns’ growth rate) and time preference (i.e.

the discount rate). When farmers feed prawns (analogous to silviculture in forestry),

feed affects both sides of the equation. Everything else equal, feed increases the marginal

value of waiting an extra period of time since the biomass (and thus profits) tomorrow will

be larger if prawns are fed, and it also increases the opportunity cost of the aquaculture

operation since supplemental feeding leads to higher intertemporal profits. The last—but

yet very important—analogy to be made with forestry is that prawns procure ancillary

public health benefits, analogous to amenity values in forestry problems; see e.g. [126].

By being a generalist predator [127], prawns consume the freshwater snails, which spread

the pathogens in the freshwater where villagers go for their everyday activities. This may

create a divergence between the health- and profit-maximizing outcome if the private

decision-maker does not take this into account.

We solve the problem for different objectives. Specifically, we consider (i) a private

objective where only aquaculture profits are maximized and (ii) a public health objective

where avoided infection costs are maximized net of stocking and feeding costs.
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3.2.1 Predator–Prey Model

The predator–prey model of this paper is inspired by the work of Hoover et al. [42].

The main difference is that we explicitly model two components of the prawns’ diet:

freshwater snails (N) and supplemental feed (U). The prawns’ somatic growth is

L̇(t) =

(
max

{
k, αN(t)N(t)

}
+ αU

√
U(t)

1 + gΩ(t)

)(
L∞ − L(t)

)
(11)

where L(t) is the average length of prawns at time t, L∞ is the asymptotic length of

prawns, k is the intrinsic growth parameter, αi with i = N,U is the attack rate of

prawns on snails (i = N) and supplemental feed (i = U), and g is parameterized to

mimic a reduction in somatic growth at higher biomass Ω(t) levels [128]. Note that

while the prawns’ attack rate on snails αN(t) varies over time due to changes in prawn-

to-snail body size ratio [42; 129], the prawns’ attack rate on supplemental feed αU is

assumed constant. The number of prawns P (t) varies according to some mortality rate

that exponentially decreases with increasing body size [130] and that is dependent on

biomass because of a density-dependent competition for food [128]. The prawn enclosure

is assumed to contain all males [131; 132] or all females [133], meaning that prawns do

not reproduce. See Equation (C.3) in Appendix C.1 for more details on the dynamics of

the prawn population.

The prawns’ predation is dependent on the relative abundance of a prey, its handling

time, and the attack rate. We illustrate the case for the W (t) infected snails below, but

the per-capita predation rate for the X(t) susceptible snails can be found by substituting

the numerator accordingly; note that the sum of the infected and susceptible snails is

equal to the total population of snails, i.e. W (t) + X(t) = N(t). The per-capita prawn

predation rate of snails is modelled as a Holling type III functional response [134]:

ψW (t) =

(
αN(t)εW (t)n

1 + αN(t)ThN(t)εN(t)n + αUThUU(t)n

)
(12)
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where Thi for i = N,U is the prawns handling time of snails (i = N) and supplemental

feed (i = U), ε represents additional searching costs not present in laboratory settings

where parameters were estimated [129], and n represents the exponent of Holling’s type III

functional response. Note that a Holling type III functional response implicitly accounts

for other non-snail prey in the prawns’ diet [134]; see [42; 135] for other applications of

a Holling type III functional response to prawn predation of snails. Like their respective

attack rates, the prawns’ handling time of snails ThN(t) varies over time due to changes in

prawn-to-snail body size ratio [42; 129], but the prawns’ handling time of supplemental

feed ThU is assumed to be constant.

3.2.2 Model of Disease Transmission

The dynamics of schistosomiasis are modeled using a SIS-W model, which tracks the

dynamics of the fraction of susceptible humans (S), the fraction of infected humans (I),

and the dynamics of the infected intermediate hosts (W) in the environmental reservoir

(i.e. the aquaculture enclosure next to a village where the disease is endemic); see [4]

for a general model of environmental disease transmission. Susceptible humans, which

we denote as (1 − I) to reduce the number of variables, contract the parasite through

contact with the contaminated reservoir at a rate of β; the fraction of infected humans

goes down over time from natural recovery [27]. The fraction of infected humans grows

according to:

İ(t) = βW (t)
(

1− I(t)
)
− γI(t) (13)

where γ is the natural recovery rate.

Infected humans shed parasites in the environment at rate of λ, and the shed parasites

in turn infect the susceptible snails. The snails grow according to a logistic-type repro-

duction function, and only healthy snails can reproduce since the parasite castrates the

snails [12; 42; 100; 116]. The infected snails are either consumed by the prawns or die

at a disease-induced mortality rate of δ. Note that intrinsic density-dependent mortal-
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ity is implicitly accounted for in the nonlinear term of the logistic growth equation; see

Equation (C.4) in Appendix C.1 for more details. The growth of infected snails is:

Ẇ (t) = λI(t)X(t)− δW (t)− ψW (t)P (t) (14)

where ψW (t)P (t) represents the total predation of infected snails.

3.2.3 Profit- and Health-Maximizing Objectives

The aquaculture farmer’s objective is to maximize profits. We assume the farmer only

considers their own profits and does not take into account the indirect public health

benefits of aquaculture (i.e. the reduced disease transmission). The farmer must incur a

startup cost to purchase the juvenile prawns (at a per-unit cost of cP ) that will grow in

the enclosure; here we must assume the farmer has the means to purchase the juvenile

prawns. To maximize profits, the farmer choose the optimal date T ∗ on which to harvest

the prawns, and potentially, to determine the prawns’ optimal feeding path over the

endogenously determined time horizon (Appendix C.1 details the cost function defined

as cU
(
U(t)

)
). After growing for T ∗ days, the prawn biomass Ω(T ∗) is sold at a price

of p per kg; revenues and feeding costs are discounted at a nonnegative rate of r. The

single-rotation profit-maximizing objective is

max
T,U(t)

e−rTpΩ(T )− cPP (0)−
∫ T

0

e−rtcU
(
U(t)

)
dt (15)

subject to the predators’ dynamics (equations 11 and C.3), the preys’ dynamics (Equa-

tion C.4), and the dynamics of disease transmission (equations 13 and 14), along with

non-negativity and physical constraints on the predators, preys, and feed, and the free

endpoint conditions (see Appendix C.2 for more details).

The single-rotation objective described above is a simplified version of the actual problem.

Using this objective essentially assumes that the decision-maker chooses the rotation

length and feeding path without considering that another rotation will start anew once

the current one finishes. Given the short length of the aquaculture rotations (see e.g. [42],
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where optimal rotation lengths vary between 164 and 331 days when prawns are not fed),

we need to consider a multi-rotation objective. When pushed to the limit—that is, when

the farmer cares about an infinite number of rotations—the objective function needs to

be modified accordingly. This is the profit-maximizing objective of interest in the paper;

see Equation (C.8) in Appendix C.2. Note that we assume constant parameters over

time, so they do not change from one rotation to another, which implies every rotation

is identical.

The health objective maximizes the avoided infection costs, net of any feeding and stock-

ing costs. The avoided infection costs are defined as being the difference in discounted

damages between the beginning and ending infection levels. For illustration purposes, we

present the single-rotation health-maximizing objective; it is given by:

max
T,U(t)

cI

[
I(0)− e−rT I(T )

]
− cPP (0)−

∫ T

0

e−rtcU
(
U(t)

)
dt (16)

where cI is a cost parameter representing the loss of disability-adjusted life years (see

[12] for an estimate of the number of disability-adjusted life years lost). The health

objective is subject to the same constraints as the private objective defined above. As in

the profit-maximizing case, our objective of interest in the health-maximizing case is the

infinite-horizon harvest, which is given by Equation (C.9) in Appendix C.2.

3.3 Results

We solve for the optimal rotation length and the optimal feeding path over the en-

dogenously determined time horizon. In particular, we focus on two different scenarios:

(i) the infinite-horizon health-maximizing objective and (ii) the infinite-horizon profit-

maximizing objective. We investigate the effect of the different objectives by mapping

out the dynamics of the aquaculture profits, the infected snails, and the feeding paths.

We use pseudospectral collocation to solve for the optimal harvest time and optimal

feeding path. This method for solving optimal control problems converts the continuous

time problem into a constrained non-linear programming problem and finds the coeffi-
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cients that best fit the polynomial at the endogenously determined collocation nodes;

see [45; 100; 136] for other applications of this technique and see Appendix C.2 for more

details.

3.3.1 Base Case: No Central Planner Intervention

The results using our preferred specification of the parameters (see Appendix C.1 for

more details) are presented in Figure 10. Panel A shows the aquaculture profits of one

rotation as a function of time (in days) for the health-maximizing objective (in blue) and

for the profit-maximizing objective (in red). Panel B shows the dynamics of the infected

freshwater snails (as proportion of their steady-state) as a function of time (also in days)

for the same two objectives. Panel C shows the health- and profit-maximizing feeding

paths. In each of the three panels of Figure 10, the blue and red lines stop at their

corresponding optimal objective-dependent rotation length.

From Figure 10 we note that farmers have a private incentive to feed prawns (Figure 10,

Panel A; the red line, here representing profits, is higher than the blue line) because it

increases the growth rate of prawns (see Equation 11) and in turn leads to higher profits.

There is a social cost associated with feeding that they do not account for (Figure 10,

Panel B; the red line, here representing infected snails, is higher than the blue line)

that stems from the fact that feeding prawns decreases prawn predation on snails (see

Equation 12).

We see two main forces at play when looking at the feeding paths (Figure 10, Panel C).

On the one hand, health-related benefits (i.e. the avoided infection costs) pushes the

health-maximizing decision-maker to feed prawns relatively more at the beginning and

ending of the time horizon (i.e. the health-maximizing feeding path is U -shaped; see the

blue line in Figure 10, Panel C). On the other hand, aquaculture benefits pushes a profit-

maximizing decision-maker to gradually increase feed at the beginning of the time horizon

until reaching a peak and then slowly reducing until the optimal stoppage time (i.e. the

profit-maximizing feeding path has an inverse U -shape; see the red line in Figure 10,

Panel C). Note that while the pattern differs between the health- and profit-maximizing
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feeding paths, the magnitude of feed remains considerably higher in the profit-maximizing

case (in Figure 10, Panel C, there is a separate y-axis for each objective).

Figure 10: Economic and epidemiological outcomes under the health-
maximizing (in blue) and profit-maximizing (in red) objectives. This figure
shows the dynamics (in days) of the discounted aquaculture profits of one rotation (Panel
A), the corresponding number of infected snails as a proportion of its initial steady-state
value (Panels B), and the health-maximizing feeding path (Panel C, main y-axis in blue)
and profit-maximizing feeding path (Panel C, secondary y-axis in red).

These results indicate that the objective of the decision-maker can greatly affect epidemi-

ological outcomes. Because of supplemental feed, a profit-maximizing decision-maker

could create an important divergence between the health- and profit-maximizing out-

comes that the previous literature did not identify [42]. This shows the importance of

better understanding the implications of aquaculture profit-maximization.

Table 3 summarizes the impact of the divergence between the health-maximizing outcome

and the profit-maximizing outcome. It shows (i) the different rotation lengths (in days),

(ii) the average snail density at the end of the rotation, (iii) the additional human cases

per 1M people attributable to profit-maximization, and (iv) the aquaculture profits of a
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single rotation. We can see that the health- and profit-maximizing objectives lead to an

important divergence in average final snail densities, which results in important human

health impacts. Because of this important divergence, it takes approximately 5.65 years

for the profit-maximizing snail density to reach similar levels as the health-maximizing

snail density, which results in 7,760 additional human cases per 1 million people. Finally,

fed prawns grow faster and provide considerably more profits than non-fed prawns, so a

profit-maximizing decision-maker will be incentivized to feed.

Objective
Rotation Average Final Additional Aquaculture

Length Snail Density Human Cases Profits
(Days) (per m2) (per 1M People) (USD)

Health 106 0.48 – 633

Profits 89 46.98 7,760 1,112

Table 3: Impact of the divergence of outcomes between the health- and profit-
maximizing optima. This table shows the rotation length (in days), average final snail
density (per m2), additional human cases due to profit-maximization (per 1M people),
and aquaculture profits (USD) for the health- and profit-maximizing outcomes with and
without supplemental feed.

3.3.2 Social Planner Intervention and Sensitivity Analyses

In this section, we simulate two different policies that a central planner could implement to

limit the impact of profit-maximization on health outcomes. Specifically, we impose (i) a

minimum, or standardized, rotation length and (ii) a limited feeding season. By imposing

these policies and by varying parameters that play a key role in determining the rotation

length, we investigate how these policies affect the dynamics of the key economic and

epidemiological outcomes—the aquaculture profits, the population of infected snails, and

the feeding paths.

In both the minimum rotation length and limited feeding season, the regulation is based

on the optimal rotation length of the health-maximizing objective. In the minimum ro-

tation length policy, the profit-maximizing rotation length needs to be at least as long as

the health-maximizing one. Hence, we first find the health-maximizing rotation length

and we impose it as a constraint to solve the profit-maximizing case. Because feeding

reduces prawn predation of snails, this regulation does not guarantee that the snail pop-
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ulation in the health- and profit-maximizing cases are identical across the no-policy and

policy cases, but it does guarantee that the shortness of the profit-maximization rotation

is not the driving force of the divergence.

For the limited feeding season, we model it by banning feeding for the latter part of the

rotation. As before, we first find the health-maximizing rotation length, but this time,

we allow feeding to occur only for the first half of the health-maximizing rotation length.

Compared to the minimum rotation length regulation, there is no constraint on how long

the rotation needs to be so the divergence between the health- and profit-maximizing

cases can be due to shorter rotations and reduced predation of prawns on snails.

Efficiency of Prawns at Converting Supplemental Feed

Figure 11 shows the effect that varying prawn feed conversion efficiency—i.e. the effect

feed has on prawn growth— has on the aquaculture profits of a single rotation. It presents

different cases where there is no intervention from the social planner (Figure 11, panels A,

D, and G), where the social planner imposes a standardized rotation length (Figure 11,

panels B, E, and H), and where the social planner limits the feeding season (Figure 11,

panels C, F, and I). We see that rotation lengths and the aquaculture profits of a single

rotation increase as the prawns’ feed conversion efficiency increases (Figure 11; compare

the height and length of the upper panels with the height and length of the lower panels).

While health-maximizing rotation lengths are shorter than profit-maximizing rotation

lengths at lower levels of feed conversion efficiency (e.g. compare rotation lengths in

Panel A of Figure 11), the opposite is true for high levels of feed conversion efficiency

(e.g. compare rotation lengths in Panel G of Figure 11).
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Figure 11: Dynamics of the aquaculture profit functions under different policies
and for different feed conversion efficiencies. The figure depicts the change in
harvesting profits when there is no policy (panels A, D, and G), with a minimum rotation
length policy (panels B, E, and H), and with a limited feeding season policy (panels C,
F, and I) for the health- (in blue) and profit-maximizing (in red) objectives. Panels
A, B, and C represent the case where prawns have a lower feed conversion efficiency
than in the base case (i.e. 50% lower); panels D, E, and F represent the base case feed
conversion efficiency; panels G, H, and I represent a case where prawns have a higher
feed conversion efficiency than in the base case (i.e. 50% higher). See Figure C.1 for an
alternative representation of these results.

Figure 12 presents the effect on snail dynamics of varying the prawns’ efficiency to convert

supplemental feed. When there is no policy in place, higher feed conversion efficiency

implies a lower predation of snails, which implies worsened health outcomes (the red line

gets less and less steep as we go from Panel A to Panel D, and from Panel D to Panel G)

because more and more feed is used (red lines with secondary y-axis; Figure 13, panels

A, D, and G). The minimum rotation length policy is only effective at higher levels of

feed conversion efficiency (Figure 12, panel H); it has very little, or no, effect at lower

levels when health- and profit-maximizing rotation lengths are similar. Compared to the

minimum rotation length, the limited feeding season performs better at lower levels of
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feed conversion efficiency because the health-maximizing rotation length is short and so

feeding is only allowed for a very short period of time (see e.g. Figure 12, Panel C).

When feed conversion efficiency is higher, the health-maximizing rotation length is much

longer and more than double that of the profit-maximizing rotation, meaning that the

policy has no effect. The limited feeding season policy generally seems to yield a more

health-maximizing result than the minimum rotation length (i.e. the red line ends up

being closer to the blue one in the third column (Figure 11 panels C, F, and I) than in

the second column (Figure 11 panels B, E, and H)). The reason for this is that if the

marginal value of waiting an extra period is still higher than the foregone benefits of

not harvesting today when feeding is banned, the predation of prawns on snails will be

very high (as prawns will be considerably larger than their juvenile size) and the snail

population will be eliminated very quickly (e.g., see Figure 12, panels C and F).
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Figure 12: Dynamics of the infected snail population under different policies
and for different feed conversion efficiencies. The figure depicts the change over
time in the number of infected snails as a proportion of its steady-state value when there
is no policy (panels A, D, and G), with a minimum rotation length policy (panels B,
E, and H), and with a limited feeding season policy (panels C, F, and I) for the health-
(in blue) and profit-maximizing (in red) objectives. Panels A, B, and C represent the
case where prawns have a lower feed conversion efficiency than in the base case (i.e. 50%
lower); panels D, E, and F represent the base case feed conversion efficiency; panels G,
H, and I represent a case where prawns have a higher feed conversion efficiency than in
the base case (i.e. 50% higher). See Figure C.2 for an alternative representation of these
results.

Figure 13 shows the feeding paths for different feed efficiency conversions and for the

different policies. Without any decision-constraining policies, a higher feed conversion ef-

ficiency implies a higher level of feed for both the health- and profit-maximizing objectives

(Figure 13, panels A, D, and G). However, the policies affect the feeding path differently.

In anticipation of the limited feeding season, profit-maximizing decision-makers increase

feed initially to compensate (red lines with secondary y-axis; Figure 13 panels C and F).

When the minimum rotation length policy is most effective (i.e. in Figure 13, Panel H),

the feeding path is reduced compare to a case where no policy is in place (Figure 13,
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Panel G) because the farmer knows it will have to wait until harvesting and does not

want to reach the maximum of the profit function as quickly as it would have without

any regulation.

Figure 13: Dynamics of the feeding paths under different policies and for dif-
ferent feed conversion efficiencies. The figure depicts the change over time in feed
when there is no policy (panels A, D, and G), with a minimum rotation length policy
(panels B, E, and H), and with a limited feeding season policy (panels C, F, and I) for the
health- (in blue) and profit-maximizing (in red) objective. Panels A, B, and C represent
the case where prawns have a lower feed conversion efficiency than in the base case (i.e.
50% lower); panels D, E, and F represent the base case feed conversion efficiency; panels
G, H, and I represent a case where prawns have a higher feed conversion efficiency than
in the base case (i.e. 50% higher). See Figure C.3 for an alternative representation of
these results.

Specialist or Generalist Predators

Figures C.4, C.5, and C.6 in Appendix B.3 show respectively the dynamics of the aqua-

culture profits, the infected snail population, and the feeding path when the exponent of

the Holling type III functional response is varied. A smaller exponent mimics a situa-

tion where prawns are more specialist predators (i.e. rely more on feed and snails) and a

higher exponent mimics a case where prawns are more generalized predators (i.e. rely less

62



on feed and snails) [134]. The more generalist predators that prawns are, the lesser the

impact of feed, which in turn implies a longer health-maximizing rotation (Figure C.4;

compare the rotation length between e.g. Panel A and Panel C) and a higher feeding path

(Figure C.6; compare the blue feeding paths of e.g. Panel A and Panel C). Since feed

conversion efficiency is held constant throughout (at our base case), the degree to which

prawns are specialist or generalist predators has practically no impact when prawns are

fed to maximize profits (Figure C.4; compare the rotation length and red profit functions

between panels A, B, and C).

Generally, the more generalist predators that prawns are, the less snails play a role in

their diet, and the higher the final snail population will be (Figure C.5; compare the red

lines of e.g. Panel A and Panel C). Because the more generalist prawns lead to longer

health-maximizing rotations, the minimum rotation length policy is most effective when

prawns are more generalist predators (Figure C.4; e.g. the red lines in panels A and B

and those in D and E are very similar). The limited feeding season policy performs poorly

when prawns are more specialist predators, because the policy is not binding. The profits

are considerably lower than in the no-policy case (Figure C.4; compare panels A and C),

and the policy does not have the anticipated effect in terms of reducing the population of

infected snails (Figure C.5, Panel C). The health-maximizing rotation length, on which

the policy is based, is considerably shorter, which pushes a profit-maximizing agent to

feed a very large amount of feed initially and then harvest at the point in time when the

ban on feed starts.

Overall, we find that the greater degree prawns are generalist predators, the more a

health-maximizing decision-maker will initially feed since it needs to compensate for the

decreased effect of feed to get the same effect as when the prawn is more a specialist

predator (Figure C.6; compare the initial level of the blue line in Panel A and Panel C).
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3.4 Discussion

We show the importance of considering the impact of human behavior when designing

public health policies. Our work contributes to the growing literature that predation of in-

termediate hosts can be an effective way to control schistosomiasis [42; 116; 123; 137; 138];

a debilitating parasitic disease that is transmitted to humans via contact with contam-

inated freshwater [35]. Previous studies have focused on identifying potential preda-

tors of the intermediate host (freshwater snails) [137], found that introducing non-native

predators reduces disease prevalence in humans [123], showed that prawns can reduce

snail-to-man transmission of schistosomiasis [116], and showed that prawn aquaculture

reduces the disease’s intermediate host population, and in turn aids in schistosomiasis

control while being a source of sustainable development [42]. While these are important

contributions towards a better understanding of how biological controls can help reduce

schistosomiasis prevalence in the environment, our work contributes to this literature by

showing how human behavior can potentially mitigate these public health benefits, and

by offering potential solutions to this problem.

While previous work has taken into account the aquaculture farmers’ profit-maximizing

behavior (e.g. Hoover et al. [42] maximize profits over a 10-year planning horizon), they

do not consider that profit-maximization may lead to changes in farming practices. In this

paper, we allow for the possibility that aquaculture farmers can supplement the prawns’

diet with feed. In turn, the objective of the decision-maker drives the intensity (i.e. the

intensive margin) and extent (i.e. the extensive margin) to which feed is utilized, where

the former represents the amount of feed provided to prawns in a given period and the

latter represents the amount of time over which feed in provided (which in many cases is

also the rotation length).

In our model, it is assumed that supplemental feed results in an increase growth of

prawns and a reduction in the predation of snails. We find that if supplemental feeding

results in the faster growth of prawns, the aquaculture farmer will be incentivized to feed

the prawns as long as it is economical to do so (i.e., as long as the additional revenues
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outweigh the feeding costs). If supplemental feeding results in a decreased predation of

prawns on snails, our results suggest that the ancillary public health benefits of prawn

aquaculture will be mitigated. The extent to which the public health benefits are reduced

depends on several factors, including the prawns efficiency to convert supplemental feed

into growth and the degree to which prawns are specialist or generalist predators. We find

that a higher feed efficiency and a higher degree of generalist predation lead to decreased

predation of snails, and in turn worsened human health outcomes.

Our results suggest that policy-makers and non-governmental organizations (NGOs) de-

signing aquaculture programs in order to reduce schistosomiasis prevalence in the envi-

ronment should account for the possibility that the profit-maximizing behavior of prawn

aquaculture farmers may mitigate the anticipated public health benefits. Here, we pro-

pose two different policies that attenuate the effect of supplemental feeding: (i) a mini-

mum, or standardized, rotation length and (ii) a limited feeding season. The standardized

rotation length outperforms the limited feeding season when the health-maximizing rota-

tion length (and thus minimum rotation length) is longer; this is the case if feed conversion

efficiency is higher or when prawns are more generalist predators. The limited feeding

season performs better when the health-maximizing rotation length (and thus the feeding

season) is shorter; this occurs when feed conversion efficiency is low.

An important limitation of our paper is the assumption that human contact with fresh-

water only occurs within the boundaries of the enclosure and that the enclosure’s snail

and parasite populations are closed. Although relaxing these assumptions would dampen

the negative impact of feed, we do believe that it would not change our main result: we

need to account for potential unintended consequences that human behavior may have

when designing such public health policies. Further modelling issues would also neces-

sarily arise because assumptions, or further studies, would be required to understand

how humans behave with the prawn enclosure and non-enclosed open water, and on how

parasites and snails move in and out of the enclosure (see [139] for an example of how

river currents can affect movement of cercariae).
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While our paper makes important contributions to understanding what behavioral as-

pects need to be taken into account when designing and implementing large-scale aqua-

culture projects in order to fight schistosomiasis, it does not consider that policy-makers

and NGOs implementing these policies are likely to also be responsible for other public

health interventions meant to reduce schistosomiasis transmission, e.g., mass drug ad-

ministrations of praziquantel [6]. This is important because there is mounting evidence

that combining several types of treatments can make a considerable difference in the

overall treatment cost and disease burden [5; 12; 19; 116]. Perhaps more importantly,

integrated treatment guidelines for different types of treatment is necessary to avoid an

over-utilization of public funds [100]. We believe future work should incorporate prawn

aquaculture into integrated public health policies combining pharmaceutical and non-

pharmaceutical interventions, rather than considering it as a separate and independent

policy tool.
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A Chapter 1

A.1 Model Description

A.1.1 Epidemiological Model

We assume two closed human sub-populations i = C,A, representing the children (C)

and adult (A) populations, respectively. Let Ii denote the proportion of infected humans

in population i. We incorporate into a single parameter the rate of reproduction of

propagules released in the environment by population i and the fraction of propagules

that reach the environment; this parameter represents the shedding rate of infectious

humans and it is denoted by λi.

We separate the population of intermediate hosts (i.e., the freshwater snails) in two epi-

demiological classes: susceptible (X) and infected (W ). We denote the total population

of intermediate hosts as N which means that by definition 0 ≤ X +W = N ≤ K where

K is the carrying capacity of the ecosystem. Following the convention in the literature

on disease dynamics [1; 2; 3; 4; 5; 6; 7], we model the growth of infected intermediate

hosts as

Ẇ =
(
αCλCIC + αAλAIA

)
X −

(
δ + qWuW

)
W (A.1)

where αi represents the proportion of population i in total population, δ is the natural

death rate of infected intermediate hosts, uW is the level of environmental treatment

(EnvTre), and qW , with 0 < qW < 1, represents the fact that there is an upper bound

on the effectiveness of EnvTre [8]. In this formulation, entry of intermediate hosts in the

infectious compartment is represented by the first term of Equation (A.1), and exit of

intermediate hosts from the infectious compartment (i.e., death of infected intermediate

hosts) is represented by the second term of Equation (A.1). New infections of intermediate

hosts thus rely on the relative (αi) shedding (λi) of infectious humans (Ii), while the loss

of infectious intermediate hosts relies on the natural death rate (δ) and the fact that we

apply an imperfect (qW ) and non-selective treatment (uW ) that kills both susceptible and

infected intermediate hosts.
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The intermediate hosts are assumed to grow according to a logistic-type reproduction

function [2; 3; 5]. Normalizing the carrying capacity K to one such that 0 ≤ X + W =

N ≤ K = 1, the growth of the susceptible class of intermediate hosts is

Ẋ = fX
(

1−N
)
− qWuWX −

(
αCλCIC + αAλAIA

)
X (A.2)

where f is the maximal reproduction rate. Note that density dependent mortality (or

fecundity) of susceptible snails is implicitly accounted for in the nonlinear term of the

logistic growth function (i.e., accounted for in the first term of Equation A.2); only

susceptible snails can reproduce since the parasite castrates the snails [3; 5]. Given that

we model the control of intermediate hosts as non-selective, controlling the population

of infected intermediate hosts also affects susceptible intermediate hosts (second term of

Equation A.2). Finally, the third term of Equation (A.2) represents the susceptible snails

becoming infected.

We focus on a case where there is contact with the disease exclusively through the envi-

ronment; it infects susceptible humans at rate βi (for i = C,A) through the W infected

intermediate hosts living in the environmental reservoir. We assume that only children

are treated via drugs, which allows us to focus on a more realistic case where only part

of the human-to-environment transmission is reduced. The proportion of infected human

children and adults respectively grow according to

İC = βCW
(

1− IC
)
−
(
γC + qCuC

)
IC (A.3a)

İA = βAW
(

1− IA
)
− γAIA (A.3b)

where γi (for i = C,A) is the natural rate of recovery of population i, uC is the level of

MDA treatment for children, and qC , with 0 < qC < 1, represents the fact that there

is an upper bound on the effectiveness of MDA controls [9; 10]. Note that because Ii

represents a proportion of the population i = C,A, then (1−Ii) represents the proportion
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of susceptible individuals since there is no immunity against schistosomiasis. See figure

A.1 for a flow diagram of the disease transmission.

Figure A.1: This figure shows a flow diagram of the disease transmission. Full lines
represent flows between state variables; dashed lines represents indirect infection between
susceptible humans and infected snails, and infected humans and susceptible snails.

A.1.2 Economic Model

Damages due to infection occur on human populations i = C,A. We assume that the

damage function is linear and additively separable such that for each population i the

damage function is given by:

ci(Ii) = ciIi (A.4)

where ci is the cost parameter associated with population i.

The cost of the policy is denoted by some function cP (uC , uW ;F), where F represents

a fixed transportation and management cost that is incurred each period during the

planning period. We model it as being additively separable functions, such that

cP (uC , uW ;F) = cPC(uC) + cPW (uW ) + F . (A.5)
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We assume that the cost of the policy for MDA treatment, cPC(uC), and the cost of

the EnvTre policy, cPW (uW ), are increasing in the level of control. The functional form

chosen for treatment of children is given by,

cPC(uC) = cPCuC

where cPC is the cost parameter associated with the MDA cost function of the treatment

of children; this parameter can be thought of as the cost of the drug multiplied by the

number of children in the population. We assume that costs associated with control of

intermediate hosts is given by the following function:

cPW (uW ) = cPWuW

where cPW denotes the cost parameter associated with the treatment of intermediate

hosts.

We model transportation and management costs, F , as a fixed cost in each period during

the planning period regardless of whether treatment is being undertaken. There are a

number of ways to consider the fixed cost. We could assume a separate and additive

fixed cost for each treatment. This implies, however, that the planning agency is sending

separate simultaneous shipments and teams to the village, which seems unrealistic. On

the other hand, there are likely potential economies of scale across the different treatment

options. For example, an agency could combine transportation of treatments to a remote

village. To account for this realistic possibility, we model a single fixed cost regardless

of whether children or environmental treatments are applied. We parameterize the fixed

cost from the literature (see, for example, [4; 5; 11; 12; 13; 14; 15]).

88



A.2 Parameterization

A.2.1 Epidemiological Model

In epidemiology, the basic reproduction ratio R0 is defined as being the expected number

of secondary infection, at a disease-free equilibrium, caused by a typical infected indi-

vidual over its entire infectious period [16]. In a basic model, the R0 is given by the

contact rate multiplied by the mean infectious period. In more complex heterogeneous

models however, one needs to use the next-generation matrix. The dominant eigenvalue

of the next-generation matrix is the basic reproduction ratio R0 [16], which turns out to

be a function of relative shedding rates of adult and children, natural recovery rates, and

contact rates with the environmental reservoir. The next-generation matrix is composed

of two matrices, denoted F and V , and it is equal to −FV −1. The ijth element in F

represents the rate at which infected individuals in population j produce new infections

in population i, and the ijth element in V represents the transition rate between (i 6= j),

or out of (i = j), infectious compartments [7]. Hence in our model,

F =


0 0 βC

0 0 βA

0 0 0

 and V =


−γC 0 0

0 −γA 0

αCλC αAλA −δ


where the three rows of F and V refer to the IC , IA, and W equations, respectively. Note

that both F and V are derived under the assumption of introducing a single infected

snail in an otherwise susceptible population.

Following the methodology of Diekmann et al. [16], the basic reproduction ratio is given

by,

R0 =
αCβCλC
δγC

+
αAβAλA
δγA

.
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There is little evidence on how and to what extent the biological parameters in the above

R0 may differ between children and adults.1 This evidence may be anecdotal or based on

beliefs [4], and also may be highly community and occupation dependent [18]. We thus

assume in our numerical simulation that all biological parameters are identical across the

child and adult populations.

There is little data available on the contact rate of humans with the pathogen, βi, and

we found no data available on the shedding rate λi. In our simulation the contact rate

is set such that there is 1 infection per 200 water contacts,2 and the shedding rate is set

such that there is approximately 1 intermediate host infection per 555 sheds. The chosen

values of βi and λi were calibrated to match a basic reproduction ratio, R0, of 3.5.3

The natural recovery rate in humans, γi, may be thought of as the life expectancy of the

disease in hosts (3.3 years) [20]. Since we do not take into consideration the intensity of

infection human hosts, we assume that humans, once infected, carry 70 worms [3]. The

maximum reproduction rate of intermediate hosts, f , is set according to estimates of the

literature [21], assuming a carrying capacity of 10,000 individuals in a water access point

of 200 square meters [3]. The natural mortality rate of intermediate hosts, δ, is based

on their life expectancy (2 months) [21; 22; 23], again assuming a carrying capacity of

10,000 individuals in water access point of 200 square meters [3].

A.2.2 Economic Model

The costs include damages (reduction in human health), treatment (MDA and EnvTre),

and a fixed transportation (from a central planning agency to an endemic remote village)

and management cost. All costs are discounted using a discount rate of r = 0.04 or 4%.

Damage related to infectious humans were calibrated such that, without intervention,

infection rates of 38% in a community of 5,000 people would yield losses of 550 disability-

adjusted life years (DALYs) [5]. The value of a life year was set to be approximately the

1See Colley et al. [17] for differences in intensities of infection with age for schistosomiasis; these
differences may be attributable to antiparasite immunity rather than reduced contact.

2This is consistent with findings of the literature [3; 19].
3According to Sokolow et al. [3], the expected R0 for schistosomiasis ranges from 1 to 7.
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median value of the GDP per capita of an African country (approximately $3,000 USD).

Although we assume that costs are identical for children and adults, cost parameters—

representing damages on the whole subpopulation and not just one individual—must

differ if proportions of children and adults are not the same.

For the MDA cost function, we calibrated the cost function using the cost of the drug

used to fight schistosomiasis [4; 5; 11; 13; 14]. The MDA cost parameters were calibrated

for a 5,000 people community. Effectiveness of MDA treatment was assumed to be 80%

[9; 10].

For the EnvTre cost function, we calibrated the linear term of the cost function using

estimates for variable costs of snail control (e.g., chemical, personnel compensation) [5;

12; 15]. Chemical applications of molluscicide niclosamide does not systematically kill

all snails; the meta-analysis of Yang et al. [8] finds that the death rate of snails 15 days

after the spraying is approximately 88%.

Finally, the fixed cost of transportation and management is based on estimates from the

literature [4; 5; 11; 12; 13; 14; 15].
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A.2.3 Parameter Levels

Table A.1 summarizes the parameter values we used in our numerical simulation.

Parameters Level Definition

βi 5.00× 10−3 Contact rate for i = C,A (year−1).4

λi 1.80× 10−3 Shedding rate for i = C,A (year−1).5

γi 4.30× 10−3 Natural recovery rate for i = C,A (year−1).6

δ 6.00× 10−4
Natural death rate of the disease in the
environment (year−1).7

f 1.168
Maximum reproduction rate of
intermediate hosts (year−1).8

α1 0.4 Proportion of children in total population.9

α2 0.6 Proportion of adults in total population.9

r 0.04 Annual discount rate.10

cC 208,268
Damages related to
infectious children (US Dollars).11

cA 312,402
Damages related to
infectious adults (US Dollars).11

cPC 210
Cost of drug for treating
children population (MDA) (US Dollars).12

cPW 370
Cost of chemical treatment
(EnvTre) (US Dollars).13

F 1,500
Fixed transportation and
management costs (US Dollars).14

qC 0.8 Effectiveness of MDA control.15

qW 0.88 Effectiveness of EnvTre control.16

Table A.1: Parameter levels used in the base case of the numerical simulation.
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A.3 Optimization

A.4 Boundary Conditions and Constraints

The initial and terminal conditions of the four state variables are such that:

W (0) is given, and W (T ) is free; (A.6a)

X(0) is given, and X(T ) is free; (A.6b)

Ii(0) are given, and Ii(T ) are free for i = C,A.17 (A.6c)

We present results from a numerical simulation where initially all state variables are

at their pre-treatment equilibria.18 The chosen parameter values imply that before any

treatment, the level of infection for both the children and adult populations has converged

4Calibrated to match a R0 of 3.5. Set such that there is 1 infection per 200 water contacts (consistent
with the literature) [3; 19]. See electronic supplementary material section A.5.1 for a sensitivity analysis
of the results when varying the contact rate relative to the shedding rate while keeping R0 constant.

5Calibrated to match a R0 of 3.5. This gives approximately 1 environmental infection per 555 shed-
ding. See electronic supplementary material section A.5.1 for a sensitivity analysis of the results when
varying the contact rate relative to the shedding rate while keeping R0 constant.

6Based on the life expectancy of the disease in hosts (3.3 years) [20], assuming humans carry 70 worms
once infected [3].

7Based on the life expectancy of infected intermediate hosts (2 months) [21; 22; 23], assuming a
carrying capacity of 10,000 individuals in a water access point of 200 square meters [3].

8Based on an instantaneous intrinsic fertility rate of snails of 0.16 per day per square meter, and
assuming a carrying capacity of 10,000 individuals in a water access point of 200 square meters [3]. See
electronic supplementary material section A.5.7 for a sensitivity analysis of the maximum reproduction
rate of intermediate hosts.

9Based on data from Senegal from ”The World Factbook” [24]. For a sensitivity analysis of the results
while varying the proportion of children in the total population, see electronic supplementary material
section A.5.2.

10See electronic supplementary material section A.5.4 for a sensitivity analysis of the results while
varying discount rate.

11Based on an estimate of the number of DALYs lost when no intervention takes place over a ten year
period [5]. See electronic supplementary material section A.5.5 for a sensitivity analysis of the value of
a DALY.

12Based on the literature [4; 5; 11; 13; 14].
13Based on the literature [5; 12; 15].
14Approximate value based on the literature [4; 5; 11; 12; 13; 14; 15].
15Based on the literature [9; 10]. See electronic supplementary material section A.5.6 for a sensitivity

analysis of the effectiveness of MDA control.
16Based on the literature [8]. See electronic supplementary material section A.5.6 for a sensitivity

analysis of the effectiveness of environmental control.
17For WHO’s guidelines on treatment and long-term control and eradication objectives for neglected

tropical diseases see [11] and [25]; for guidelines on vector management see [26].
18See electronic supplementary material section A.5.3 for sensitivity analyses of the results when vary-

ing initial level of infection.
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to approximately 38%.19 The steady-state level of the snail population will converge to

the carrying capacity (i.e. K = 1), while the number of infected snails will converge to

54%. These are the initial values of the state variables in our numerical simulation.

All terminal values on state variables are free. This means that the algorithm approx-

imating the optimal control problem will optimally choose the infection prevalence in

children, as well as the optimal number of infected snails at the end of the time horizon.

This requirement of choosing optimal levels is however conditional on the fact that these

optimal levels can be reached in the given time horizon.

State variables W , X, and Ii for i = C,A, are also subject to constraints that bound

them from above and below. Formally, the constraints are given by:

0 ≤ W ≤ N ≤ 1; (A.7a)

0 ≤ X ≤ N ≤ 1; (A.7b)

0 ≤ Ii ≤ 1 for i = C,A. (A.7c)

since the carrying capacity of the ecosystem where the intermediate host resides has been

normalized to one, and since Ii denotes the proportion of infected individuals.

Control variables uW and uC are modeled in a additive way. The former acts as an

increase in the death rate of the intermediate host, while the latter acts as an increase in

the rate of recovery of children. Control variables are subject to:

0 ≤ uW ≤ 1; (A.8a)

0 ≤ uC ≤ 0.9. (A.8b)

The upper-bound of 0.9 on the MDA control variable uC represent the fact that there is

systematic noncompliance to drug treatment [27; 28; 29].

19This is consistent with the findings of Lo et al. [5].
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A.4.1 Time Horizon and Objective Function

Since we do not impose conditions on state variables at the end of the planing period, i.e.,

since the terminal conditions are free, the minimization of the objective guarantees that

the terminal conditions are optimized conditional on being reachable in a finite number

of periods, T . We assume that

T is given, (A.9)

rather than being optimaly chosen. Following previous literature investigating the cost-

effectiveness of schistosomiasis [2; 5; 7; 30], the finite amount of time chosen for the

simulation is T = 10 years. We consider longer time horizon in section A.5.8 of the

electronic supplementary material.

We model the problem as a cost minimization. Given some non-negative discount rate r,

the objective of the planner is to minimize the present discounted costs of the disease—

which includes both damages and treatment costs—which is given by:

min
uC ,uW

∫ T

0

e−rt
{
cC(IC) + cA(IA) + cP (uC , uW ;F)

}
dt (A.10)

s.t. (A.1), (A.2), (A.3), (A.6), (A.7), (A.8) and (A.9).
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where ci(Ii) for i = C,A and cP (uC , uW ;F) are respectively given by (A.4) and (A.5).

Explicitly, the problem is

min
uC ,uW

∫ T

0

e−rt
{
cCIC + cAIA + cPCuC + cPWuW + F

}
dt (A.10)

s.t. Ẇ =
(
αCλCIC + αAλAIA

)
X −

(
δ + qWuW

)
W (A.1)

Ẋ = fX
(

1−N
)
− qWuWX −

(
αCλCIC + αAλAIA

)
X (A.2)

İC = βCW
(

1− IC
)
−
(
γC + qCuC

)
IC (A.3a)

İA = βAW
(

1− IA
)
− γAIA (A.3b)

W (0) is given and W (T ) is free; (A.6a)

X(0) is given and X(T ) is free; (A.6b)

Ii(0) are given and Ii(T ) are free for i = C,A; (A.6c)

0 ≤ W ≤ N ≤ 1; (A.7a)

0 ≤ X ≤ N ≤ 1; (A.7b)

0 ≤ Ii ≤ 1 for i = C,A; (A.7c)

0 ≤ uW ≤ 1; (A.8a∗)

0 ≤ uC ≤ 0.9; (A.8b∗)

T is given. (A.9)

where constraints (A.8) on control variables vary depending on the treatment scenario:

Scenario MDA Constraints EnvTre Constraints
No Controls 0 ≤ uC ≤ 0 0 ≤ uW ≤ 0
MDA 0 ≤ uC ≤ 0.9 0 ≤ uW ≤ 0
EnvTre 0 ≤ uC ≤ 0 0 ≤ uW ≤ 1
MDA & EnvTre 0 ≤ uC ≤ 0.9 0 ≤ uW ≤ 1

Table A.2: Constraints on control variables in the different treatment scenarios considered
in our analysis.
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A.4.2 Numerical Methods

We use pseudospectral collocation to solve for the optimal dynamics of treatment and

infection over time (see [31; 32; 33] for applications of this technique). Specifically, we

approximate the optimal control model with a non-linear programming (NLP) problem,

where we assume that our controls are approximated with an nth degree polynomial over a

period from 0 to T (the end of the planning horizon) [34]. The algorithm ensures that the

residual error of the constraints is minimized at the collocation points. The collocation

points and degree of polynomial are chosen to balance speed of convergence to a solution

and numerical error; we used 60 collocation points. One advantage of this approach

over more typical two-point boundary value methods, such as shooting, is that we can

directly incorporate in the problem the constraints on the state and control variables [35].

This feature enables us to find optimal solutions that might reside on the boundary of

the control set for a period of time. A second advantage is the ability to handle larger

scale dynamical systems, such as the one in this paper with four states variables and

two control variables. The solution method was implemented using TOMLAB (v. 8.4)

[36; 37] and the accompanying PROPT toolbox [38]. The approximate NLP is solved

using general-purpose nonlinear optimization packages KNITRO, SNOPT and NPSOL.

We have included the source code that utilizes the TOMLAB/PROPT software at the

end of the electronic supplementary material. Readers can download a trial version of

the software to rerun our analysis.
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A.5 Sensitivity Analyses

A.5.1 Basic Reproduction Ratio

According to Sokolow et al. [3], the expected range of the basic reproduction ratio R0 for

schistosomiasis ranges from 1 to 7. In the main results, the contact rates βi and shedding

rates λi were calibrated such that the basic reproduction ratio R0 would be equal to 3.5.

We investigate the range given in Sokolow et al. [3] by varying the contact rate from 1

infection per 700 water contacts (R0 = 1), to 1 infection per 100 water contacts (R0 = 7),

and by varying the shedding rate from 1 intermediate host infection per 1944.4 sheds

(R0 = 1), to 1 intermediate host infection per 277.8 sheds (R0 = 7). For the majority of

the range of R0 (at least between 2 and 7), our finding on the optimal substitution away

from MDA due to the environmental treatment holds qualitatively (figure A.2, top two

panels). For the environmental treatment, more time will be spent at the maximum level

with a higher R0, and more so if this higher R0 is due to higher contact rates (figure A.2,

bottom panel).
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Figure A.2: Proportion of total treatment time spent at the maximum level of control
(MDA or EnvTre) as a function of the basic reproduction ratio, R0—which varies either
with the contact rate (βi) or the shedding rate (λi). The top panel shows the effect of the
contact rate on children MDA, while the center panel shows the effect of the shedding
rate on children MDA. The bottom panel shows the effect of the contact and shedding
rate on the environmental treatment.
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The contact rates (1 infection per 200 water contacts) and shedding rates (1 intermediate

host infection per 555 sheds) in the main results are consistent with the literature [3; 19],

however, there are many combinations of contact and shedding rates that could yield a

R0 of 3.5, even if we keep the biological parameters identical across children and adults.

Our sensitivity analyses suggest that the substitution away from MDA due to EnvTre

remains the same regardless of how the contact rate is relative to the shedding rate (figure

A.3, top panel). Contact rates play a bigger role than shedding rates in determining the

amount of time spent at maximum treatment (figure A.3). As the contact rate (βi)

increase relative to the shedding rate (λi), and keeping R0 constant, more time will be

spent utilizing both MDA and EnvTre controls.

Figure A.3: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e., uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e., uW = 1, bottom panel) as a function of the contact rate relative to
the shedding rate, keeping R0 constant at 3.5. A value of 0.5 on the x-axis represents a
case where the contact rate is half of its base case value, while the shedding rate is twice
its value; a value of 2 on the x-axis is the converse.
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A.5.2 Proportion of Children in Total Population

In our simulation, the proportions of children versus adults are based on data from

Senegal where 40% of the population are children (0-14 years) and 60% are adults (15

years and over). As the proportion of children in total population increases, the damage

parameter associated with infectious children (cC) increases while the one associated with

infectious adults (cA) decreases because of the way they are constructed (i.e., a constant

times the respective proportion), however MDA cost parameter associated with children

(cPC) increases proportionally. As a result, there is no change in the amount of time

spent treating children (figure A.4, top panel). Furthermore, only when the proportion of

children becomes low enough, and in turn the expenditures associated with child MDA,

we find a discrete shift up in the amount of time spent treating the environment (figure

A.4, bottom panel).
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Figure A.4: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e., uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e., uW = 1, bottom panel) as a function of the proportion of children
in the total population.

102



A.5.3 Initial Conditions

In our analysis, all state variables are at their pre-treatment, long-term, levels. By

varying the initial conditions from 10% to 100% of these levels, we find that the optimal

substitution away from MDA to EnvTre remains approximately the same, except when

values drop below the 20% threshold (figure A.5, top panel). Since moving further away

from the long-term value implies a lower number of infected intermediate hosts in the

environment, the switch time of EnvTre will reduce the further we are from the steady-

state values (figure A.5, bottom panel).

Figure A.5: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the initial conditions. Initial
conditions range from 10% to 100% of the long-term values for state variables IC , IA,
and W ; the snail population size (X + W ) is assumed to be at its carrying capacity in
all simulations.
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A.5.4 Discount Rate

The higher the discount rate r the more weight is placed on damages, treatment, and

transportation and management costs incurred early in the program. By varying the

discount rate, we find that it does not vary the optimal substitution away from MDA due

to EnvTre in the r = [0, 0.2] range (base case, r = 0.04) (figure A.6, top panel) Conversely,

the level of EnvTre reduces as the discount rate increases indicating that EnvTre has long-

term benefits that are attenuated when the discount rate increases (figure A.6, bottom

panel). For a discussion about discount rates for health outcomes, see [39] and [40].

Figure A.6: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the discount rate.
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A.5.5 Value of a DALY

The value of a DALY was set to be approximately the median GDP per capita of an

African country. Intuitively, the switch time for both MDA (figure A.7, top panel) and

EnvTre (figure A.7, bottom panel) will increase as the value of a DALY increases. Be-

cause, everything else equal, damages are relatively more important than treatment costs

if the value of a DALY increases, more treatment will occur. The substitution from MDA

to EnvTre will decrease as the value of a DALY increases since the effect of EnvTre is

only indirect compared to MDA that directly, and immediately, reduces disease burden.

Figure A.7: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the value of DALYs.
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A.5.6 Effectiveness of Controls

MDA and EnvTre have a limited effectiveness. In these sensitivity analyses, we investigate

how our results would be affected by a worsened or improved effectiveness. We find that

if the effectiveness of MDA improves, the substitution away from MDA due to EnvTre

would increase (figure A.8, top panel) since a higher MDA effectiveness would reduce

the optimal amount of time needed to reduce disease burden in humans. Though one

could expect an improved effectiveness to have the same effect on both the MDA and

MDA & EnvTre cases, the effect is more pronounced in the latter because the reinfection

of humans is lower when EnvTre is utilized. Effectiveness of MDA has no impact on

the optimal amount of EnvTre (figure A.8, bottom panel). As for the effectiveness of

EnvTre, it has no effect on the substitution away from MDA due to EnvTre (figure A.9,

top panel), and an improved effectiveness in EnvTre control would reduce the optimal

amount of EnvTre treatment (figure A.9, bottom panel).
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Figure A.8: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the effectiveness of MDA
control.
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Figure A.9: This figure shows the proportion of total time spent at the maximum level of
MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the effectiveness of EnvTre.
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A.5.7 Growth Rate of Intermediate Hosts

We find that a variation of 50 percent around our base growth rate of intermediate hosts

does not change our results (figure A.10). The values considered in our sensitivity analysis

did not vary our results because the growth rate remains several orders of magnitude

higher than the natural death rate of snails. Only when the growth rate is of the same

order of magnitude as the death rate do we find measurable changes; when growth rate

drops below the death rate, it follows that treatment will reduce drastically.

Figure A.10: This figure shows the proportion of total time spent at the maximum level
of MDA (i.e. uC = 0.9, top panel) and the proportion of total time spent at the maximum
level of EnvTre (i.e. uW = 1, bottom panel) as a function of the growth rate of snails.
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A.5.8 Time Horizon

Figure A.11: This figure shows the change over time of the infection prevalence in the child
population (panel A), the infection prevalence in the intermediate host population (panel
B), the optimal path of drug treatment (panel C) and the optimal path of environmental
treatment (panel D) for when T = 15 years. Infection prevalence is expressed as a
proportion of its respective pre-treatment, long-term, value.
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Figure A.12: This figure shows the change over time of the infection prevalence in the child
population (panel A), the infection prevalence in the intermediate host population (panel
B), the optimal path of drug treatment (panel C) and the optimal path of environmental
treatment (panel D) for when T = 30 years. Infection prevalence is expressed as a
proportion of its respective pre-treatment, long-term, value.
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Figure A.13: This figure shows the change over time of the infection prevalence in the child
population (panel A), the infection prevalence in the intermediate host population (panel
B), the optimal path of drug treatment (panel C) and the optimal path of environmental
treatment (panel D) for when T = 50 years. Infection prevalence is expressed as a
proportion of its respective pre-treatment, long-term, value.
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B Chapter 2

B.1 Parameterization

B.1.1 Epidemiological Model

According to Diekmann et al. [16], the basic reproduction ratio R0 of any disease is

given by the expected number of secondary infection caused a by a typical infected indi-

vidual over its entire infectious period, at a disease-free equilibrium. In the most basic

epidemiological model, the R0 is simply given by the contact rate multiplied by the mean

infectious period. When considering more complex models—as the two-jurisdiction SEIR

model in this paper—one needs to use the next-generation matrix and find its dominant

eigenvalue to find the R0 [16]. Denote two matrices by F and V , and let the ijth element

in F represents the rate at which infected individuals in population j produce new infec-

tions in population i, and the ijth element in V represents the transition rate between

(i 6= j), or out of (i = j), infectious compartments [7]; the next-generation matrix is

equal to −FV −1. In the model presented in this paper,

F =



0 β11 0 β12

0 0 0 0

0 β21 0 β22

0 0 0 0


and V =



−σ 0 0 0

σ −(γ + ϕ1) 0 0

0 0 −σ 0

0 0 σ −(γ + ϕ2)


where the four rows of F and V refer to the E1, I1, E2 and I2 equations, respectively. Note

that both matrices F and V are derived under the assumption of introducing a single

exposed individuals in an otherwise susceptible population (for more details on how to

construct the next-generation matrix in a SEIR model, see [41]). Given we assume that

β11 = β22 = βii and β12 = β21 = βij, and when in our main analysis we let ϕ1 = ϕ2 = ϕ,

the basic reproduction ratio of our model simplifies to,

R0 =
βii + βij
γ + ϕ
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for i = 1, 2, j = 1, 2, and i 6= j. We set the basic reproduction ratio R0 = 1.43, according

to estimates of the R0 from Li et al. [42] and using estimates of the effect of nonphar-

maceutical interventions on the R0 from Tian et al. [43]. We assume a mean recovery

period ( 1
γ
) of 5 days [44], and a case-fatality ratio of 1.78% (adjusted for misreporting,

see [45]) to calibrate the rate of disease induced mortality, ϕ. Parameters βii and βij are

then calibrated assuming what Tian et al. [43] call a “medium effect of the [nonpharma-

ceutical] control” when there is compliance to travel restrictions, and a “lower effect of

the [nonpharmaceutical] control” when there is no compliance to travel restrictions (for

evidence of structural changes in mobility following the COVID-19 lockdown, see [46]);

this yields R0 ≈ 1.4 with compliance to travel restrictions, and R0 ≈ 2.1 when there is no

compliance to travel restrictions. The mean latency period ( 1
σ
), which one needs to know

to calculate matrix V even though it does not appear in the basic reproduction ratio, is

assumed to last 3 days [44].

B.1.2 Economic Model

To quantify damages, we use the value of statistical life recommended by the Environ-

mental Protection Agency.20 The disability weight21 associated with COVID-19 infection

is assumed to be equivalent to a lower respiratory tract infection, which is a disability

weight of w = 0.133 on a scale from zero (perfect health) to one (death).22 This disability

weight thus allows for a comparison between the individuals that are infected with the

disease but do not die, and the individuals that die from its complications.

Expenditures related to the pharmaceutical intervention are based off estimates of vac-

cine costs. Numerous governments around the world, including the U.S. federal govern-

ment, have contracted biotech companies producing COVID-19 vaccines; governments

pay money in exchange of a guaranteed number of doses of COVID-19 vaccines. These

estimates and the prices of current influenza vaccine turns out to be approximately 20

20See “What value of statistical life does EPA use?” from the U.S. Environmental Protection Agency
[47].

21According to the World Health Organization: “A disability weight is a weight factor that reflects
the severity of the disease on a scale from 0 (perfect health) to 1 (equivalent to death).” See: https:

//www.who.int/healthinfo/global_burden_disease/daly_disability_weight/en/.
22For more details on how COVID-19’s disability resembles lower respiratory tract infections, see [48].
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U.S. dollars per dose, with two doses per individual; this is the value we chose in our

analysis.23

The value of the workability cost24 is based on a certain proportion of the value of

statistical life; in the base case, we assume it to be 3 orders of magnitude smaller. All

costs in the model are assumed to be discounted at a 1.5% annual rate (see [40] for a

discussion about discounting health-related expenditures).

B.1.3 Parameter Levels

Table B.1 below summarizes the main set of parameter values we used in the numerical

simulation.

Parameters Level Definition

βii 8.86 Transmission rate within a given state (month−1).25

βij 4.36 Transmission rate across states (month−1).25

σ 10.14
Rate at which infected individuals become
infectious (month−1).26

γ 6.08 Rate of recovery (month−1).26

ω 0.17 Rate at which immunity is lost (month−1).27

ϕ 0.11 Rate of disease induced mortality (month−1).28

w 0.13 Disability weight associated with the disease (unitless).29

qV 0.65 Efficiency of vaccines (proportion).30

r 0.0013 Discount rate (month−1).31

cV 40 Cost of treating one individual via vaccine (US Dollars).32

cA 10× 103 Workability cost (US Dollars).33

c 10× 106 Value of statistical life (US Dollars).34

Table B.1: Parameter levels used in the numerical simulation.

23For COVID-19 vaccine prices, see: https://www.npr.org/sections/health-shots/2020/08/

06/899869278/prices-for-covid-19-vaccines-are-starting-to-come-into-focus. For a com-
parison with influenza vaccine prices, see https://www.cdc.gov/vaccines/programs/vfc/awardees/

vaccine-management/price-list/index.html.
24Inspired by the paper of Ryan et al. [49] where the authors show the implications of policy adjustment

costs for fisheries management
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B.2 Optimization

B.2.1 Boundary Conditions

To yield the initial conditions of the optimal control problem, we calibrated the model

using the above parameter values and simulated out a COVID-19 outbreak in two identical

jurisdictions, where we assumed there was one exposed individual in an otherwise entirely

susceptible population of 10 million individuals. We assumed that both jurisdictions

undertook nonpharmaceutical interventions that had a “medium effect” on the basic

reproduction ratio [43] (i.e. that there was perfect compliance to travel restrictions).

After simulating out the disease dynamics for a period of eight months and two weeks,

and eight months and three weeks for Jurisdiction 1 and Jurisdiction 2 respectively, the

initial conditions yield were:

25Calibrated using a R0 estimate from Li et al. [42] and estimates of effects of nonpharmaceutical
interventions from Tian et al. [43]; this yields a R0 of approximately 1.4 when there is compliance to
travel restrictions and to match a R0 of approximately 2.1 when there is no compliance to travel restric-
tions; these two values representing respectively a “medium” and “low” effect of the nonpharmaceutical
intervention.

26Using estimates from Davies et al. [44]; this represents a 3-day latency period and a 5-day recovery
period.

27Representing a 6-month immunity period in the scenarios where we assume immunity is not perma-
nent; based on [50].

28Calibrated by using a case-fatility rate of 1.78%. Adjusted for mis- and under-reporting; see [45].
29Representing the disability associated with severe lower respiratory tract infections because, to our

knowledge, there are no official disability estimates associated with COVID-19; see [48].
30Following Buckner et al. [51], we base this parameter value on the efficiency of the influenza vaccine

[52]. Note that the Department of Health and Human Services, Food and Drug Administration (FDA),
and Center for Biologics Evaluation and Research (CBER) [53] requires that a future COVID-19 vaccine
must have an effectiveness of at least 50%.

31Based on results from John et al. [40] that suggest a yearly discount rate between 0.3% and 1.5%
for health related expenditures; we chose a 1.5% annual discount rate in the main set of results. This
gives a monthly discount rate of r = 0.0013.

32Assuming an individual requires two doses; based on current agreements between the U.S. fed-
eral government and biotech companies; see https://www.npr.org/sections/health-shots/2020/

08/06/899869278/prices-for-covid-19-vaccines-are-starting-to-come-into-focus. For a list
of current vaccine prices, and particularly the price of the influenza vaccine, see https://www.cdc.gov/

vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html.
33Value based on a certain proportion of the value of statistical life, c; in the base case we assume it

is 2 orders of magnitude smaller.
34Represents a value of statistical life of 10M U.S. dollars. Based on the value of a statistical life

that the U.S. Environmental Protection Agency [47] uses: approximately $7.4 million ($2006) which is
equivalent to approximately $9.54 million ($2020).
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Jurisdiction Ni Si Ei Ii Ri

Jurisdiction 1 1 0.9074 0.0103 0.0143 0.0667
Jurisdiction 2 1 0.8662 0.0138 0.0196 0.0986

Table B.2: Initial conditions of the numerical simulation.

We assume that the terminal conditions (i.e. the conditions on state variables in t = T ,

the final time period) are free to be optimally determined. Formally, the initial and

terminal conditions of the ten state variables are such that:

Si(0), Ei(0), Ii(0), Ri(0), and Ni(0) are given for i = 1, 2; (B.1a)

Si(T ), Ei(T ), Ii(T ), Ri(T ), and Ni(T ) are free for i = 1, 2. (B.1b)

B.2.2 Nonnegativity and Upper-Bound Constraints

State variables Si, Ei, Ii, Ri, and Ni for i = 1, 2 are subject to nonnegativity and physical

constraints. Formally:

0 ≤ Si ≤ Ni ≤ 1 for i = 1, 2; (B.2a)

0 ≤ Ei ≤ Ni ≤ 1 for i = 1, 2; (B.2b)

0 ≤ Ii ≤ Ni ≤ 1 for i = 1, 2; (B.2c)

0 ≤ Ri ≤ Ni ≤ 1 for i = 1, 2; (B.2d)

Si + Ei + Ii +Ri = Ni ≤ 1 for i = 1, 2. (B.2e)

Control variables are modelled as direct controls (see examples in [54; 55; 56]) and can be

interpreted as a reduction in the number of susceptible individual in a given time period

(i.e. a month). Formally, the constraints on the control variables are given by:

0 ≤ uVi ≤ Si for i = 1, 2. (B.3)
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Because of a limited supply of vaccines (see details below), the physical upper-bound on

constraints (B.3) will only be binding when capacity constraint is nonbinding. When

this occurs, it means that there are fewer susceptible individuals than there are available

vaccines.

B.2.3 Capacity Constraints of the Pharmaceutical Interventions

For completeness, we also include the capacity constraints already mentioned in the main

paper. In addition to the physical constraints on the control variables, the aim of our

paper is to study how to allocate limited supplies of a newly licensed vaccine before the

supply has had a chance to ramp up. Hence, the control variables are also subject to

uV1 + uV2 ≤ ūV ; (B.4)

when the central planning agency decides to potentially deviate from the ad hoc allocation

of vaccine. Conversely, the ad hoc constraints are:

uVi ≤
(

Ni

N1 +N2

)
ūV for i = 1, 2. (B.5)

As mentioned in the main paper, the total available quantity of vaccine (ūV ) represents

a certain percentage (5%, 10%, or 15%) of the total population size.

B.2.4 Numerical Methods

Pseudospectral collocation approximates the continuous time optimal control model with

a constrained nonlinear programming problem (see [31; 32; 57; 58] for other applications

of this technique). The dynamic controls to our problem—i.e. the vaccine allocation—

are approximated by a polynomial of degree n (determined by the number of collocation

points) over a period from t = 0 (date at which the vaccine starts to be administered) to

t = T (assumed to be four months after the vaccine administration) [34]. The residual

error of the constraints is minimized by the algorithm at the n collocation points, where

n is chosen to have a reasonable speed of convergence to a solution and a low numerical
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error. Here, we chose 60 collocations points. In this sort of problem, the main advantage of

this approach over more usual methods to solve such two-point boundary problems, such

as shooting methods, is that nonnegativity constraints (e.g. on the number of infected

individuals) and upper-bound constraints (mimicking e.g. vaccine capacity constraints)

on state and control variables can be directly incorporated in the problem [35]. This

method thus allows us to find optimal solutions that may lay on the boundary of the

control set for a certain period of time. For COVID-19 vaccines, this is likely due to the

scarcity of the supply of vaccine in the short-term. Another advantage of this method is

the ability to deal with large-scale dynamical systems, such as the one presented here with

ten state variables and two control variables. The solution was found using TOMLAB

(v. 8.4) [36; 37] and the accompanying PROPT toolbox [38]. The approximate nonlinear

programming problem is solved using general-purpose nonlinear optimization packages

(e.g. KNITRO, SNOPT and NPSOL).
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B.3 Figures: Homogeneous Demographic Characteristics

B.3.1 Compliance and Noncompliance to the Travel Restrictions

Figure B.1: Permanent immunity with and without compliance to travel re-
strictions. Change over time in the optimal and ad hoc allocations (panels A and B)
and the corresponding infection levels (panels C and D) for State 1 (in blue, the initially
lowest-burdened state) and State 2 (in red, the initially highest-burdened state) depend-
ing on whether there is compliance to travel restrictions (panels A and C) or not (panels
B and D) for the case where the vaccine capacity constraint is 5% and immunity lasts
six months.
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B.3.2 Vaccine Capacity Constraints when Immunity is Permanent

Figure B.2: Permanent immunity and compliance to travel restrictions with
5%, 10%, and 15% vaccine capacity. Change over time in the optimal and ad hoc
allocations (panels A, B, and C) and the corresponding infection levels (panels D, E,
and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the
initially highest-burdened state) depending on whether capacity is 5% (panels A and
D), 10% (panels B and E), or 15% (panels C and F), for the case where immunity is
permanent and there is compliance to travel restrictions.
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B.3.3 Vaccine Capacity Constraints when Immunity is Temporary

Figure B.3: Temporary immunity and compliance to travel restrictions with
5%, 10%, and 15% vaccine capacity. Change over time in the optimal and ad hoc
allocations (panels A, B, and C) and the corresponding infection levels (panels D, E,
and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the
initially highest-burdened state) depending on whether capacity is 5% (panels A and D),
10% (panels B and E), or 15% (panels C and F), for the case where immunity lasts six
months and there is compliance to travel restrictions.
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Figure B.4: Temporary immunity and noncompliance to travel restrictions with
5%, 10%, and 15% vaccine capacity. Change over time in the optimal and ad hoc
allocations (panels A, B, and C) and the corresponding infection levels (panels D, E,
and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the
initially highest-burdened state) depending on whether capacity is 5% (panels A and D),
10% (panels B and E), 15% (panels C and F), for the case where immunity lasts six
months and there is no compliance to travel restrictions.
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B.3.4 Permanent vs Temporary Immunity

Figure B.5: Compliance to travel restrictions with permanent and temporary
immunity. Change over time in the optimal and ad hoc allocations (panels A and B)
and the corresponding infection levels (panels C and D) for State 1 (in blue, the initially
lowest-burdened state) and State 2 (in red, the initially highest-burdened state) depending
on whether immunity is permanent (panels A and C) or lasts six months (panels B and
D) for the case where the vaccine capacity constraint is 10% and there is compliance to
travel restrictions.
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Figure B.6: Noncompliance to travel restrictions with permanent and tempo-
rary immunity. Change over time in the optimal and ad hoc allocations (panels A
and B) and the corresponding infection levels (panels C and D) for State 1 (in blue, the
initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether immunity is permanent (panels A and C) or lasts six months (pan-
els B and D) for the case where the vaccine capacity constraint is 10% and there is no
compliance to travel restrictions.
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B.3.5 Cumulative Infection Levels

Figure B.7: Epidemiological outcomes under different scenarios with a low vac-
cine supply. Cumulative relative difference (panels A, B, C, and D) and cumulative
absolute difference per 1M people (panels E, F, G, and H) between the number of infec-
tions in different allocations rules and the no-vaccine case for different immunity–travel
restrictions scenarios and for when vaccine capacity is 5%.
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Figure B.8: Epidemiological outcomes under different scenarios with a high
vaccine supply. Cumulative relative difference (panels A, B, C, and D) and cumulative
absolute difference per 1M people (panels E, F, G, and H) between the number of infec-
tions in different allocations rules and the no-vaccine case for different immunity–travel
restrictions scenarios and for when vaccine capacity is 15%.
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B.4 Figures: Heterogeneous Demographic Characteristics

B.4.1 Heterogeneous Case-Fatality Ratio

Figure B.9: Vaccine allocation with and without compliance to travel restric-
tions. Change over time in the optimal and ad hoc allocations (panels A and B) and the
corresponding infection levels (panels C and D) for State 1 (in blue, the initially lowest-
burdened state) and State 2 (in red, the initially highest-burdened state) depending on
whether there is compliance to travel restrictions (panels A and C) or not (panels B and
D) for the case where the vaccine capacity constraint is 10%, immunity is permanent,
and where the heterogeneity in the system comes from a varying case-fatality ratio (State
1 has a case-fatality ratio 1% higher than State 2).
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Figure B.10: Vaccine allocation with and without compliance to travel restric-
tions. Change over time in the optimal and ad hoc allocations (panels A and B) and the
corresponding infection levels (panels C and D) for State 1 (in blue, the initially lowest-
burdened state) and State 2 (in red, the initially highest-burdened state) depending on
whether there is compliance to travel restrictions (panels A and C) or not (panels B and
D) for the case where the vaccine capacity constraint is 10%, immunity lasts six months,
and where the heterogeneity in the system comes from a varying case-fatality ratio (State
1 has a case-fatality ratio 1% higher than State 2).
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B.4.2 Heterogeneous Contact Rate

Figure B.11: Vaccine allocation with and without compliance to travel restric-
tions. Change over time in the optimal and ad hoc allocations (panels A and B) and the
corresponding infection levels (panels C and D) for State 1 (in blue, the initially lowest-
burdened state) and State 2 (in red, the initially highest-burdened state) depending on
whether there is compliance to travel restrictions (panels A and C) or not (panels B and
D) for the case where the vaccine capacity constraint is 10%, immunity is permanent,
and where the heterogeneity in the system comes from a varying contact rate (State 2
has a higher contact rate than State 1).
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Figure B.12: Vaccine allocation with and without compliance to travel restric-
tions. Change over time in the optimal and ad hoc allocations (panels A and B) and the
corresponding infection levels (panels C and D) for State 1 (in blue, the initially lowest-
burdened state) and State 2 (in red, the initially highest-burdened state) depending on
whether there is compliance to travel restrictions (panels A and C) or not (panels B and
D) for the case where the vaccine capacity constraint is 10%, immunity lasts six months,
and where the heterogeneity in the system comes from a varying contact rate (State 2
has a higher contact rate than State 1).
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B.5 Figures: Robustness of Spatial allocations

B.5.1 Base Case: Homogeneous Demographic Characteristics

Figure B.13: Robustness of epidemiological and economic outcomes under dif-
ferent scenarios. Percentage change in expenditures (y-axis) and percentage change
in cumulative cases (x-axis) from the optimal allocation for different immunity–travel
restrictions scenarios and for when vaccine capacity is 5%.

Figure B.14: Robustness of epidemiological and economic outcomes under dif-
ferent scenarios. Percentage change in expenditures (y-axis) and percentage change
in cumulative cases (x-axis) from the optimal allocation for different immunity–travel
restrictions scenarios and for when vaccine capacity is 15%.
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B.5.2 Heterogeneous Case-Fatality Ratio

Figure B.15: Robustness of epidemiological and economic outcomes under dif-
ferent scenarios when the source of heterogeneity is the case-fatality ratio.
Percentage change in expenditures (y-axis) and percentage change in cumulative cases
(x-axis) from the optimal allocation for different immunity–travel restrictions scenarios
and for when vaccine capacity is 10%.

Figure B.16: Robustness of epidemiological and economic outcomes under dif-
ferent scenarios when the source of heterogeneity is the case-fatality ratio.
Percentage change in expenditures (y-axis) and percentage change in cumulative damages
(x-axis) from the optimal allocation for different immunity–travel restrictions scenarios
and for when vaccine capacity is 10%. Note that compared to Figure B.15, the use of
cumulative damages in this figure gives a more accurate depiction of the situation because
cases across jurisdictions are not homogeneous when the case-fatality ratio is different.
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B.5.3 Heterogeneous Contact Rate

Figure B.17: Robustness of epidemiological and economic outcomes under dif-
ferent scenarios when the source of heterogeneity is the contact rate. Percent-
age change in expenditures (y-axis) and percentage change in cumulative cases (x-axis)
from the optimal allocation for different immunity–travel restrictions scenarios and for
when vaccine capacity is 10%.
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B.6 Figures: Sensitivity Analyses

B.6.1 Workability Cost

As mentioned above, imposing the ad hoc rule ex ante implicitly means that the central

planning agency is essentially assuming that the cost of deviating from the ad hoc alloca-

tion is infinite. In practice, the workability cost is hard to quantify, because it depends on

logistical, political, and cultural factors. It does however seem reasonable to assume, as

we did in the paper, that the cost is finite. We investigate the sensitivity of our results by

solving for the optimal vaccine allocation over time with levels lower and higher than the

base case parameter in the paper. We summarize these results by plotting the variance35

of the optimal deviation in each time period from the ad hoc vaccine allocation (in blue;

Figure B.18 panels A, B, C, and D), and the difference in cumulative cases between the

optimal and ad hoc allocation (in red; Figure B.18 panels A, B, C, and D) as we vary the

scale of the workability cost. Mathematically, as the workability cost approaches zero,

the optimal control problem becomes linear in the controls, which implies that there is

no adjustment cost associated with changing the allocation. Often times this can lead

to extreme solutions (allocation goes to one state for a time period and then the other

state, and so on).

Given the behavior and nature of the problem, therefore, we expect that at lower values

of the workability cost parameter we will find higher variance of the deviation. This, in

turn results in a higher performance of the optimal allocation relative to the ad hoc in

terms of reduction in cumulative cases. When we increase the workability cost parameter,

the cost parameter will eventually be on the same magnitude as the VSL (Figure B.18

black line represents the VSL). When we reach levels this high, the optimal allocation

converges towards the ad hoc and any differences in cumulative cases disappear.

We also show how amount of funds allocated to the workability cost over time compare to

expenditures on the total vaccine cost (Figure B.18 panels E, F, G, and H). If this ratio

35The variance is calculated as Var
(

Optimal Vaccine−Ad Hoc Vaccine
Ad Hoc Vaccine

)
. Note that the variance of the

optimal deviation from the ad hoc is identical in absolute and relative terms across jurisdictions.
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exceeds one, the planner is spending on aggregate more to deviate from the ad hoc than

on treatments. These panels show that at low levels of the workability cost parameter,

the total workability costs are small relative to the total vaccine costs. As the workability

cost parameter increases, however, the total workability costs become more and more

important relative to the total vaccine cost. Eventually, these costs begin to dominate

the planners objective and the deviation between the ad hoc and optimal goes to zero.

Figure B.18: Sensitivity of optimal allocations and epidemiological and eco-
nomic outcomes when varying the workability cost parameter. The variance
of the optimal deviation in percentage (in blue; panels A, B, C, and D) represents an
aggregate measure of the optimal deviation from the ad hoc allocation. The difference in
cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C, and
D) represents in percentage terms how well the optimal allocation outperforms the ad
hoc allocation. The total workability cost over the total vaccine cost (panels E, F, G, and
H) represents how many times more the total workability costs are relative to the total
vaccine costs. The dotted vertical line represents the base case value of the workability
cost parameter (1e4), while the full vertical line represents the value of statistical life
(1e7).
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B.6.2 Vaccine Effectiveness

The base case parameter for vaccine effectiveness we utilized in the paper is based on

estimates of the influenza vaccine [52]; see Appendix B.1 for more details. Recent evidence

from the COVID-19 vaccines suggest that effectiveness could be considerably higher. As

a result, we investigate how a more effective vaccine would affect the nature of our results.

We find that the more effective a vaccine is, the more a central planner would want to

deviate from the ad hoc allocation (in blue; Figure B.19 panels A, B, C, and D). As a result

of this greater deviation, we see a larger difference in terms of the reduction in cumulative

cases (in red; Figure B.19 panels A, B, C, and D). Because a higher effectiveness results in

a greater deviation, then, everything else equal, the total workability costs are increased

relative to the total vaccine costs (Figure B.19 panels E, F, G, and H). The differences are

more stark in a world where there is compliance to travel restrictions, as noncompliance

blurs the spatial heterogeneity across the jurisdictions leading in general to allocations

similar to the ad hoc.
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Figure B.19: Sensitivity of optimal allocations, and of epidemiological and eco-
nomic outcomes when varying the effectiveness of the vaccine. The variance
of the optimal deviation in percentage (in blue; panels A, B, C, and D) represents an
aggregate measure of the optimal deviation from the ad hoc allocation. The difference
in cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C,
and D) represents in percentage terms how well the optimal allocation outperforms the
ad hoc allocation. The total workability cost over the total vaccine cost (panels E, F, G,
and H) represents how many times more the total workability costs are relative to the
total vaccine costs. The dotted vertical line in the plots represents the base case value of
the vaccine effectiveness (0.65).
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C Chapter 3

C.1 Model & Parameterization

C.1.1 Predator Model

There are two equations of motion describing the dynamics of the prawns over time: (i)

the average length of prawns and (ii) the number of prawns. First, the length of prawns—

modeled as a somatic growth with the von Bertalanffy growth equation [59]— is given

by Equation (11) in the main paper. For the purpose of the Appendix:

L̇(t) = k∗
(
L∞ − L(t)

)
(C.1)

where L(t) is a state variable denoting the average length of prawns at time t, L∞ denotes

the asymptotic (i.e., maximum) length of prawns, and k∗ is given by:

k∗ =

(
max

{
k, αN(t)N(t)

}
+ αUU(t)

1 + gΩ(t)

)

where k is the intrinsic growth parameter, αi with i = N,U is the attack rate of prawns

on snails (i = N) and feed (i = U), N(t) is the freshwater snail population at time t,

U(t) denotes the amount of feeding given to prawns,36 g is a coefficient parameterized to

mimic observed reduction in somatic growth as biomass Ω(t) increases [2; 61]. Biomass

Ω(t) is defined as the average body size (i.e., the weight) of prawns, B(t), multiplied by

the number of prawns, P (t), i.e.,

Ω(t) = B(t)P (t)

where body size B(t) relates to length L(t) via the allometric function [62; 63]

B(t) = apL(t)bp , (C.2)

36See [60] for details on feeding of freshwater prawn for aquaculture purposes.
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where parameters ap and bp are derived by [63].

The number of prawns, P (t), grows according to

Ṗ (t) = −P (t)
(
µpB(t)−d + ωΩ(t)

)
(C.3)

where parameters µp, d, and ω are derived from the literature [61; 64; 65]. Equation (C.3)

has two components: (i) an exponentially decreasing function of body size (represented

by the first term of Equation C.3), and (ii) a linearly increasing function of biomass (rep-

resented by the second term of Equation C.3) [2]. The former represents the fact that

larger prawns have a lower mortality rate than smaller prawns [65], while the latter rep-

resents density–dependent competition for resources and cannibalism at high population

densities [61].

C.1.2 Predation Model

Experimental data [66] shows that prawn predation of snails changes with the ratio of

prawn body mass to snail body mass. This ratio is given by

r(t) =
B(t)

anLn
bn

where the numerator is the prawn body size (given by Equation C.2) and the denominator

is an allometric function that relates snail body mass to length (i.e., shell diameter,

assumed constant);37 parameters an and bn are estimated by [2] using data from [66].

Accordingly, the attack rate at time t is defined as [2; 66]:

αN(t) = αm log
(
r(t)

)

where αm is a coefficient estimated by [66]. The handling time, i.e., the amount of time

it takes the predator to eat the prey, is given by an inverse function of the biomass ratio,

37In this paper, we assume a snail length equal to 8mm. Hoover et al. [2] divide snail length in three
categories: small (4mm), medium (8mm), and large (12mm).
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that is,

Th =
(
Thmr(t)

)−1
where once again coefficient Thm is estimated by [66]. The per-capita attack rate of

prawns on infected snails is given:

ψW (t) =

(
αN(t)εW (t)n

1 + αN(t)ThN(t)N(t)n + αUThUU(t)n

)

where W is the number of infected snails, N is the total number of snails, n is the

exponent describing the type of functional response (n = 2 for a type III functional

response) and ε represents additional searching costs for prawns that are not present

in laboratory settings where parameters where estimated [2]. Similarly, the per-capita

attack rate of prawns on susceptible snails is given by

ψX(t) =

(
αN(t)εX(t)n

1 + αN(t)ThN(t)N(t)n + αUThUU(t)n

)

The predator and predation models are based on field and experimental data [20; 21; 22;

23; 61; 62; 63; 64; 65; 66; 67; 68; 69].

C.1.3 Prey Model

The population of intermediate hosts snails is assumed to grow according to a logistic-

type reproduction function [2; 5]. We normalize the carrying capacity of the ecosystem

to one such that the intermediate hosts’ growth equation is:

Ẋ(t) = fX(t)
(

1−N(t)
)
− λI(t)X(t)− ψX(t)P (t) (C.4)

where f is the maximal reproduction rate. Note that the nonlinear term of the logistic

reproduction function implicitly accounts for density dependent mortality (or fecundity)

of susceptible snails.
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The maximum reproduction rate of intermediate hosts, f , is set according to estimates

of the literature [21], assuming a carrying capacity of 50 individuals per square meter in

a water access point of 1,000 square meters [68].

C.1.4 Epidemiological Model

The growth of infected intermediate hosts is given by Equation (14) in the main paper.

Note that λ incorporates into a single parameter the rate of reproduction of propagules

released in the environment by humans, and the fraction of propagules that reach the

environment [7]. The growth of the fraction of infected humans is given by Equation (13)

in the main paper.

The basic reproduction number R0 is defined as the expected number of secondary infec-

tion caused by a typical infected individual over its entire infectious period, at a disease-fee

equilibrium [16]. Here, to find the R0 we need to use the next-generation matrix and find

its dominant eigenvalue to find the R0 [16], which in our case turn out to be a function of

the shedding rate, the contact rate, and the natural recovery rate. The next-generation

matrix is composed of two matrices, denoted F and V , and it is equal to −FV −1. The

ijth element in F represents the rate at which infected individuals in population j pro-

duce new infections in population i, and the ijth element in V represents the transition

rate between (i 6= j), or out of (i = j), infectious compartments [7]. Hence in our model,

F =

0 β

0 0

 and V =

−γ 0

λ −δ


where the two rows of F and V refer to the I(t) and W (t) equations, respectively. Note

that matrices are derived under the assumption of introducing a single infected snail in

an otherwise susceptible population. Following the methodology of Diekmann et al. [16],

the basic reproduction ratio is given by,

R0 =
βλ

δγ
.
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Following Castonguay et al. [57], the contact rate β is set such that there is 1 infection

per 200 water contacts (which is consistent with findings of the literature [19; 68]) and

the shedding rate λ is set such that there is approximately 1 intermediate host infection

per 555 sheds. Parameter values β and λ were calibrated to match R0 = 3.5; note that

according to Sokolow et al. [68], the expected R0 for schistosomiasis ranges from 1 to 7.

Parameter γ, the natural recovery rate in humans, is calibrated using the life expectancy

of the disease in hosts (3.3 years) [20], and assuming that humans, once infected, carry

70 worms [68]. The natural mortality rate of intermediate hosts, δ, is based on their life

expectancy (2 months) [21; 22; 23].

C.1.5 Economic Model

Damages due to infection occur on the human population; let cI(I) be the damage func-

tion. Because the health benefits greatly outweigh the aquaculture profits, if we were

to include the integral of costs, i.e. “
∫∞
0
cI(I) dt”, in the objective function, then the

solution would be to choose the rotation length to be as small as possible to minimize

infection costs. We would need to incorporate some form of scrap value associated with

infected humans, but programming complications would arise because some state vari-

ables (i.e. L and P ) would start anew each rotation, while other state variables (i.e. I, W ,

and X) have a memory process from one rotation to the other. As a reason, we opted to

minimize the avoided infection costs, which approximates very well what we were looking

for: minimizing the health impact. Hence, we assume that the damage function is:

cI(I) = cI

[
I(0)− e−rT I(T )

]

where cI is the cost parameter associated with infected humans. This parameter repre-

sents disability and reduced intellectual function [17] causing lower school participation

for children [70] and lower worker productivity for adults [71; 72; 73; 74].
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The other important economic component of the model is the feeding function, which we

model as a quadratic function in the amount of feed utilized:

cu
(
U(t)

)
= cuU(t)2

where cu is a cost parameter associated with the feeding cost function.

Benefits and costs are discounted using a discount rate of r = 0.07 or 7%, mimicking

relatively high discount rates in sub-Saharan Africa [2]. The damage parameter cI is

calibrated using estimates of Lo et al. [5]. They find that, without intervention, infection

rates of 38% (our steady-state initial conditions) in a community of 5,000 people would

yield losses of 550 disability-adjusted life years (DALYs). Following Castonguay et al.

[57], the value of a life year was set to be approximately the median value of the GDP

per capita of an African country (approximately $3,000 USD). The feeding cost function

is based on estimates of feed costs from the aquaculture literature [69] and estimates of

transportation cost estimates from the schistosomiasis literature [4; 5; 11; 12; 13; 14; 15].
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C.1.6 Summary of Parameter Levels

Parameters Level Interpretation

L∞ 213.63 Asymptotic length of prawns (in mm).38

k 3.796 Maximum growth rate of prawns (in mm/year).39

g 3.50× 10−6 Density-dependent growth reduction.40

aP 0.0733
Allometric parameters for prawns
length-weight relationship.41

bP 3.5502
Allometric parameters for prawns
length-weight relationship.42

µP 2.21 Natural prawn mortality rate.43

d −0.382 Size-dependent mortality scaling coefficient.44

ω 5.50× 10−9 Density dependent mortality factor.45

an 0.1872
Allometric parameters for snails
length-weight relationship.46

bn 2.5368
Allometric parameters for snail
length-weight relationship.47

αm 0.9050
Coefficient for relationship between
biomass ratio and attack rate.48

Thm 0.38561
Coefficient for relationship between
biomass ratio and handling time.49

n 2 Exponent of Holling’s type III functional response.50

ε 0.1 Prawn predation attack rate penalty.51

f 1.168 Maximum reproduction rate of intermediate hosts.52

δ 1.20× 10−4
Natural death rate of the
disease in the environment.53

β 5.20× 10−3 Contact rate of humans.54

λ 3.50× 10−4 Shedding rate of humans.55

γ 4.30× 10−3 Natural recovery rate of humans.56

p 12 Price of prawns (per kg).57

cP 0.1 Cost of juvenile prawns.58

cU 200 Cost parameter associated with prawn feeding.59

r 0.07 Discount rate.60

Table C.1: Parameter levels used in the numerical simulation.
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C.2 Optimization

C.2.1 Boundary Conditions

The initial and terminal conditions on the length and the number of prawns are respec-

tively given by:

L(0) is given, and L(T ) is free; (C.5a)

P (0) is given, and P (T ) is free; (C.5b)

W (0) is given, and W (T ) is free; (C.5c)

X(0) is given, and X(T ) is free; (C.5d)

I(0) is given, and I(T ) is free; (C.5e)

where it is assumed that L(0) and P (0) are the same values as the ones used in Hoover

et al. [2], and W (0), X(0) and I(0) are at their pre-treatment equilibria; L(T ), P (T ),

W (T ), X(T ), and I(T ) are optimally chosen, conditional on T > 0.

38Based on estimates from [64].
39Based on estimates from [62].
40Based on estimates from [2; 61].
41Based on estimates from [63].
42Ibid.
43Based on estimates from [64].
44Based on estimates from [65].
45Based on estimates from [2; 61].
46Based on experimental data of [66] and estimated by [2].
47Ibid.
48Ibid.
49Ibid.
50Based on [67].
51Meant to represent additional searching cost for prey in wildlife rather than laboratory conditions

where the data was collected [66]; based on [2].
52Based on an instantaneous intrinsic fertility rate of snails of 0.16 per day per square meter [68], and

assuming a carrying capacity of 50,000 individuals in a water access point of 1,000 square meters [2].
53Based on the life expectancy of infected intermediate hosts (2 months, 21; 22; 23), assuming a

carrying capacity of 50,000 individuals in a water access point of 1,000 square meters [2].
54Calibrated to match a R0 of 3.5 [68].
55Ibid.
56Based on the life expectancy of the disease in hosts, i.e., 3.3 years [20], assuming humans carry 70

worms once infected [68].
57Based on estimates from [69].
58Ibid.
59Ibid.
60Meant to mimic relatively high discount rates in sub-Saharan Africa [2].
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C.2.2 Nonnegativity and Upper-Bound Constraints

State variables L(t) and P (t) are also subject to constraints that bound them from above

and below. Formally, the constraints are given by:

0 ≤ L(t) ≤ L∞; (C.6a)

0 ≤ P (t) ≤ P (0) (C.6b)

0 ≤ W (t) ≤ 1 (C.6c)

0 ≤ X(t) ≤ 1 (C.6d)

0 ≤ I(t) ≤ 1 (C.6e)

where the upper bound in Equation (C.6a) follows since the prawns cannot grow more

than their asymptotic length, the upper bound in Equation and (C.6b) follows since the

number of prawns in the enclosure exhibits a negative density-dependent competition for

resources and cannibalism at high population densities, where the upper bounds in equa-

tions (C.6c) and (C.6d) follow since the carrying capacity of the ecosystem was normalize

to one, and finally, where the upper bound on (C.6e) follows since I(t) represents the

fraction of humans that are infected. The control variable representing the quantity of

supplemental feed provided to prawns is only bounded by a nonnegativity constraint:

0 ≤ U(t). (C.7)

C.2.3 Objective Functions

When the farmer only cares about the benefits and costs of one single rotation and it does

not feed prawns, the private objective function is given in the main paper by Equation

(15). In practice, it is likely that the decision-maker, whether its objective is health or

profit motivated, will care about several rotations given the relatively short time of the

rotation. When the farmer cares about the benefits and costs of an infinite number of

rotations and it has the opportunity to supplement prawns’ diet with feed, the private
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objective is:

max
T,U(t)

(
1

erT − 1

)(
pΩ(T )− cPP (0)−

∫ T

0

e−rtcU
(
U(t)

)
dt

)
(C.8)

− cPP (0)−
∫ T

0

e−rtcU
(
U(t)

)
dt.

The health-maximizing objective when the planner cares about the benefits and costs of

one single rotation is given by Equation (16) in the main paper. As with the private-

maximzing objective, the decision-maker is likely to care about the benefits and costs of

an infinite number of rotations. In such a case, the objective function is:

max
T,U(t)

(
1

erT − 1

)(
cI

[
I(0)− I(T )

]
− cPP (0)−

∫ T

0

e−rtcU
(
U(t)

)
dt

)
(C.9)

− cPP (0)−
∫ T

0

e−rtcU
(
U(t)

)
dt+ cII(0).

The above objective functions are subject to predators’ dynamics (equations 11 and C.3),

the preys’ dynamics (Equation C.4), the dynamics of disease transmission (equations 13

and 14), along with free endpoint conditions (equations C.5), non-negativity and physical

constraints on the predators and preys (equations C.6), and the non-negativity constraint

on feed (Equation C.7).

C.2.4 Numerical Methods

In this paper, we use pseudospectral collocation to approximate the continuous time

problem with a constrained nonlinear programming problem (see [31; 32; 57; 58; 75] for

other applications of this technique). The dynamic control to our problem—i.e. the

quantity of feed applied—are approximated by a polynomial of degree n (determined by

the number of collocation points) over the endogenously determined time horizon [34].

The residual error of the constraints (e.g. the nonnegativity constraints) is minimized by

the algorithm at the n collocation points, where we chose n to have a reasonable speed

of convergence to a solution and a low numerical error. Here, we chose 60 collocations
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points. In problem like the one studied in this paper, the main advantage of this approach

over more usual methods to solve such two-point boundary problems, such as shooting

methods, is that nonnegativity constraints (e.g. on the number of infected individuals) on

state and control variables can be directly incorporated in the optimal control problem

[35]. Pseudospectral collocation enables us to potentially obtain a solution that may

lay on the boundary of the control set. Because we are designing policies that have

dynamic controls (e.g. the limited feeding season), this is necessarily going to be the

case because feed will be ban for some part of the time horizon. Another advantage

of this method is the ability to deal with large-scale dynamical systems, such as the

one presented here with five state variables, one control variable, and one endogenously

determined time horizon. The solution was found using TOMLAB (v. 8.4) [36; 37] and the

accompanying PROPT toolbox [38]. We used the general-purpose nonlinear optimization

packages KNITRO, SNOPT and NPSOL to solve the different approximated nonlinear

programming problems.
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C.3 Figures: Varying Feed Conversion Efficiency

C.3.1 Aquaculture Profits by Policy

Figure C.1: Dynamics of the aquaculture profit functions under different poli-
cies and for different feed conversion efficiencies. The figure depicts the change
in harvesting profits when health outcomes are maximized (Panel A), when profit is
maximized and there is no policy (Panel B), when profit is maximized with a minimum
rotation length policy (Panel C), and when profit is maximized with a limited feeding
season policy (Panel D) for a lower feed conversion efficiency (i.e. 50% lower, in blue), the
base case feed conversion efficiency (in red), and for a higher feed conversion efficiency
(i.e. 50% higher, in yellow).
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C.3.2 Infected Snails by Policy

Figure C.2: Dynamics of the infected snail population under different policies
and for different feed conversion efficiencies. The figure depicts the change over
time in the number of infected snails when health outcomes are maximized (Panel A),
when profit is maximized and there is no policy (Panel B), when profit is maximized with
a minimum rotation length policy (Panel C), and when profit is maximized with a limited
feeding season policy (Panel D) for a lower feed conversion efficiency (i.e. 50% lower, in
blue), the base case feed conversion efficiency (in red), and for a higher feed conversion
efficiency (i.e. 50% higher, in yellow).
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C.3.3 Quantity of Feed by Policy

Figure C.3: Dynamics of the feeding paths under different policies and for
different feed conversion efficiencies. The figure depicts the change over time in
feed when health outcomes are maximized (Panel A), when profit is maximized and there
is no policy (Panel B), when profit is maximized with a minimum rotation length policy
(Panel C), and when profit is maximized with a limited feeding season policy (Panel
D) for a lower feed conversion efficiency (i.e. 50% lower, in blue), the base case feed
conversion efficiency (in red), and for a higher feed conversion efficiency (i.e. 50% higher,
in yellow).
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C.4 Figures: Varying The Holling Type III Functional Re-

sponse Exponent

C.4.1 Aquaculture Profits: Health- and Profit-Maximizing Outcomes

Figure C.4: Dynamics of the aquaculture profit functions under different policy
and for different Holling type III functional response exponent. The figure
depicts the change in harvesting profits when there is no policy (panels A, D, and G),
with a minimum rotation length policy (panels B, E, and H), and with a limited feeding
season policy (panels C, F, and I) for the health- (in blue) and profit-maximizing (in red)
objectives. Panels A, B, and C represent the case where prawns have a lower Holling
type III functional response exponent than in the base case (i.e. n = 1.75); panels D, E,
and F represent the base case Holling type III functional response exponent (i.e. n = 2);
panels G, H, and I represent a case where prawns have a higher Holling type III functional
response exponent than in the base case (i.e. n = 2.25).
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C.4.2 Infected Snails: Health- and Profit-Maximizing Outcomes

Figure C.5: Dynamics of the infected snail population under different policy and
for different Holling type III functional response exponent. The figure depicts
the change over time in the number of infected snails as a proportion of its steady-state
value when there is no policy (panels A, D, and G), with a minimum rotation length policy
(panels B, E, and H), and with a limited feeding season policy (panels C, F, and I) for the
health- (in blue) and profit-maximizing (in red) objectives. Panels A, B, and C represent
the case where prawns have a lower Holling type III functional response exponent than
in the base case (i.e. n = 1.75); panels D, E, and F represent the base case Holling type
III functional response exponent (i.e. n = 2); panels G, H, and I represent a case where
prawns have a higher Holling type III functional response exponent than in the base case
(i.e. n = 2.25).
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C.4.3 Feeding Paths: Health- and Profit-Maximizing Outcomes

Figure C.6: Dynamics of the feeding paths under different policy and for differ-
ent Holling type III functional response exponent. The figure depicts the change
over time in feed when there is no policy (panels A, D, and G), with a minimum rotation
length policy (panels B, E, and H), and with a limited feeding season policy (panels C,
F, and I) for the health- (in blue) and profit-maximizing (in red) objectives. Panels A, B,
and C represent the case where prawns have a lower Holling type III functional response
exponent than in the base case (i.e. n = 1.75); panels D, E, and F represent the base case
Holling type III functional response exponent (i.e. n = 2); panels G, H, and I represent
a case where prawns have a higher Holling type III functional response exponent than in
the base case (i.e. n = 2.25).
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C.4.4 Aquaculture Profits by Policy

Figure C.7: Dynamics of the aquaculture profit functions under different poli-
cies and for different Holling type III functional response exponent. The figure
depicts the change in harvesting profits when health outcomes are maximized (Panel A),
when profit is maximized and there is no policy (Panel B), when profit is maximized with
a minimum rotation length policy (Panel C), and when profit is maximized with a limited
feeding season policy (Panel D) for a lower feed conversion efficiency (i.e. 50% lower, in
blue), the base case feed conversion efficiency (in red), and for a higher feed conversion
efficiency (i.e. 50% higher, in yellow).
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C.4.5 Infected Snails by Policy

Figure C.8: Dynamics of the infected snail population under different policies
and for different Holling type III functional response exponent. The figure
depicts the change over time in the number of infected snails when health outcomes are
maximized (Panel A), when profit is maximized and there is no policy (Panel B), when
profit is maximized with a minimum rotation length policy (Panel C), and when profit
is maximized with a limited feeding season policy (Panel D) for a lower feed conversion
efficiency (i.e. 50% lower, in blue), the base case feed conversion efficiency (in red), and
for a higher feed conversion efficiency (i.e. 50% higher, in yellow).
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C.4.6 Quantity of Feed by Policy

Figure C.9: Dynamics of the feeding paths under different policies and for
different Holling type III functional response exponent. The figure depicts the
change over time in feed when health outcomes are maximized (Panel A), when profit is
maximized and there is no policy (Panel B), when profit is maximized with a minimum
rotation length policy (Panel C), and when profit is maximized with a limited feeding
season policy (Panel D) for a lower feed conversion efficiency (i.e. 50% lower, in blue), the
base case feed conversion efficiency (in red), and for a higher feed conversion efficiency
(i.e. 50% higher, in yellow).
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