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ABSTRACT OF THE DISSERTATION

Statistical Simulation and Analysis of Single-cell RNA-seq Data

by

Tianyi Sun

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Jingyi Li, Chair

The recent development of single-cell RNA sequencing (scRNA-seq) technologies has revolu-

tionized transcriptomic studies by revealing the genome-wide gene expression levels within

individual cells. In contrast to bulk RNA sequencing, scRNA-seq technology captures cell-

specific transcriptome landscapes, which can reveal crucial information about cell-to-cell

heterogeneity across different tissues, organs, and systems and enable the discovery of novel

cell types and new transient cell states. According to search results from PubMed, from

2009-2023, over 5,000 published studies have generated datasets using this technology. Such

large volumes of data call for high-quality statistical methods for their analysis. In the three

projects of this dissertation, I have explored and developed statistical methods to model the

marginal and joint gene expression distributions and determine the latent structure type for

scRNA-seq data. In all three projects, synthetic data simulation plays a crucial role.

My first project focuses on the exploration of the Beta-Poisson hierarchical model for

the marginal gene expression distribution of scRNA-seq data. This model is a simplified

mechanistic model with biological interpretations. Through data simulation, I demonstrate

three typical behaviors of this model under different parameter combinations, one of which

can be interpreted as one source of the sparsity and zero inflation that is often observed in

scRNA-seq datasets. Further, I discuss parameter estimation methods of this model and its

other applications in the analysis of scRNA-seq data.

My second project focuses on the development of a statistical simulator, scDesign2, to
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generate realistic synthetic scRNA-seq data. Although dozens of simulators have been de-

veloped before, they lack the capacity to simultaneously achieve the following three goals:

preserving genes, capturing gene correlations, and generating any number of cells with vary-

ing sequencing depths. To fill in this gap, scDesign2 is developed as a transparent simulator

that achieves all three goals and generates high-fidelity synthetic data for multiple scRNA-seq

protocols and other single-cell gene expression count-based technologies. Compared with ex-

isting simulators, scDesign2 is advantageous in its transparent use of probabilistic models and

is unique in its ability to capture gene correlations via copula. We verify that scDesign2 gen-

erates more realistic synthetic data for four scRNA-seq protocols (10x Genomics, CEL-Seq2,

Fluidigm C1, and Smart-Seq2) and two single-cell spatial transcriptomics protocols (MER-

FISH and pciSeq) than existing simulators do. Under two typical computational tasks, cell

clustering and rare cell type detection, we demonstrate that scDesign2 provides informative

guidance on deciding the optimal sequencing depth and cell number in single-cell RNA-seq

experimental design, and that scDesign2 can effectively benchmark computational meth-

ods under varying sequencing depths and cell numbers. With these advantages, scDesign2

is a powerful tool for single-cell researchers to design experiments, develop computational

methods, and choose appropriate methods for specific data analysis needs.

My third project focuses on deciding latent structure types for scRNA-seq datasets. Clus-

tering and trajectory inference are two important data analysis tasks that can be performed

for scRNA-seq datasets and will lead to different interpretations. However, as of now, there

is no principled way to tell which one of these two types of analysis results is more suitable

to describe a given dataset. In this project, we propose two computational approaches that

aim to distinguish cluster-type vs. trajectory-type scRNA-seq datasets. The first approach

is based on building a classifier using eigenvalue features of the gene expression covariance

matrix, drawing inspiration from random matrix theory (RMT). The second approach is

based on comparing the similarity of real data and simulated data generated by assuming

the cell latent structure as clusters or a trajectory. While both approaches have limitations,

we show that the second approach gives more promising results and has room for further

improvements.
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CHAPTER 1

Introduction

Single-cell RNA sequencing (scRNA-seq) stands at the forefront of genomic research, offering

a revolutionary approach to scrutinize gene expression at a cellular level [1, 2]. Unlike con-

ventional bulk RNA sequencing, scRNA-seq allows scientists to delve into the transcriptomic

profiles of individual cells within a heterogeneous population. This technology enables the

comprehensive examination of gene expression patterns across diverse cell types, revealing

invaluable insights into cellular heterogeneity, developmental processes, disease mechanisms,

and complex biological systems [3–8]. Due to its importance, numerous biological datasets

have been generated [9–13], which calls for high-quality statistical analysis.

The raw data of a scRNA-seq experiment are short DNA sequences called “reads,” which

are sequenced fragments of amplified RNA molecules with cellular barcodes attached [14,

15]. After these reads are mapped to the reference genome and sorted to individual cells,

a gene-by-cell matrix of expression count values can be obtained, which can be used for

downstream statistical analysis. As shown in Table 1.1, a typical analysis procedure may

involve the following tasks [16]: (1) cell/gene filtering and data normalization [17, 18], (2)

visualization and dimensionality reduction [19–24], (3) cell-level analysis, e.g., clustering [25–

27] or trajectory inference [28, 29], (4) gene-level analysis, e.g., differentially-expressed (DE)

gene detection [30–33].

For each of the statistical tasks described above, many different computational methods

have been developed [34, 35]. Therefore, method benchmarking naturally becomes necessary

to illustrate different methods’ strengths, weaknesses, and best application scenarios [36–40].

For this purpose, simulated data can be extremely helpful due to its ease of generation (little

to no financial cost) and presence of ground truth information. Chapter 3 of this dissertation
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describes scDesign2, a high-quality statistical simulator that generates realistic synthetic

datasets [41]. From a methodological standpoint, the main innovation and advantage of

scDesign2 is in its modeling of not only the gene marginal distributions but also the gene

correlation structure. Due to this property, compared with existing simulators, scDesign2

can generate more realistic synthetic scRNA-seq datasets. We also demonstrate its use in

(1) the benchmarking of two typical computational tasks, cell clustering and rare cell type

detection, and (2) the design of scRNA-seq experiments in choosing the optimal cell number

and total sequencing depth.

Task category Task type Example task(s)
Projects in this
dissertation

Data preprocessing

Quality control
Cell filtering
Doublet detection

Data normalization
Data correction Batch effect correction
Feature selection Gene filtering
Visualization

Chapter 3
scDesign2

Dimesionality reduction

Cell-level analysis

Cluster analysis
Clustering

Chapter 4
scStructure

Compositional Analysis
Cluster Annotation

Trajectory analysis
Trajectory inference
RNA velocity analysis
Cell potential analysis

Gene-level analysis

Differentially-expressed (DE)
gene identification

Chapter 3
scDesign2

Chapter 2
Beta-Poisson
model

Gene set enrichment analysis
Gene regulatory network analysis

Table 1.1: Typical computational tasks in scRNA-seq data analysis (adapted from Figures 1 and 5 of [16]) and their relationship
to projects in this dissertation.

For cell-level analysis, two different types of tasks can be performed, which are cell cluster-

ing and trajectory inference. With clustering methods, cells can be partitioned into different

cell types, representing discrete cellular heterogeneity [25–27]. In contrast, trajectory infer-

ence methods will order cells into single-branch or multiple-branch trajectories, representing

continuous heterogeneity [28, 29]. These are two different interpretations of a given dataset.

However, as of now, there is no principled way of choosing which type of method is more

suitable to describe a given dataset. Chapter 4 of this dissertation describes two computa-
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tional approaches designed to solve this problem. We demonstrate that Approach 2 based

on data simulation gives more promising results compared to Approach 1.

Finally, for gene-level analysis tasks such as DE gene identification, statistical modeling

of the gene expression distribution of a single gene is often needed. However, most existing

statistical models used for gene-level analysis do not give insights into the underlying biolog-

ical processes [30–33]. Chapter 2 of this dissertation examines the Beta-Poisson distribution,

which is based on a two-state Markovian model of gene expression [42]. Data simulation

results of this model based on three different parameter combinations show that it can be

interpreted as one of the sources that contribute to the sparsity and zero inflation that is

observed in real scRNA-seq datasets.

To summarize, during my doctoral studies, I have led the above three projects of statis-

tical method development and applications. One common component in all three projects is

data simulation. In Chapters 2-4, I will describe the details of these three projects. Unlike

the organization of this chapter, the order of Chapters 2-4 is chosen as the chronological

order of project completion, which is the same as my personal journey of research curiosity.
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CHAPTER 2

Application of the Beta-Poisson model in single-cell

gene expression data analysis

2.1 Introduction

The technology of single-cell RNA sequencing (scRNA-seq) has developed rapidly in recent

years. From its first appearance in 2009 [43], the number of cells that can be profiled

has increased to hundreds and thousands in a single biological sample [44, 45]. However,

the analysis of scRNA-seq data remains difficult due to high technical and biological noise.

Technical noise is prevalent because of limited RNA capture efficiency, PCR bias, sequencing

noise (Poisson noise), limited sequencing depth, etc. Biological noise refers to the randomness

in the underlying biological process that generates the mRNA. Both of these two sources of

noise or variability are hard to model. For modeling technical noise, the difficulty is due to

the complexity and certain limitations of the experiment. For modeling biological noise, the

difficulty is due to the limited knowledge we have about the true biological process.

Empirically, in contrast to bulk RNA-seq data, a typical feature of scRNA-seq data is

the zero mode in the distribution of the expression of a large proportion of genes. The

zeros in the dataset could be due to technical noise, i.e., failure of detection, or due to true

biological variability, i.e., truly no expression. A common approach of modeling would be

to use a two-component mixture model, where one of the components accounts for the false

zeros due to failure of detection, and the other component accounts for the part with true

biological signals [32, 46–48]. However, for the second component of the model, choices like

Poisson, negative binomial, or Gaussian after log-transformation lack biological justification

and may not explain the true zeros in gene expression. In particular, the use of Poisson
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and negative binomial distribution in the analysis of bulk RNA-seq data does not justify

their correctness in the analysis of scRNA-seq data. The reason is that each measurement

in a bulk RNA-seq experiment represents the average expression level of one gene among a

group of cells, in contrast to the case of a scRNA-seq experiment, where each measurement

represents the expression level of one gene in one individual cell.

Here, we discuss the Beta-Poisson hierarchical model, which is derived from a simplified

mathematical model of gene expression. Compared to the Poisson model and the negative

binomial model, it reflects some properties of the underlying gene expression process and

can be interpreted biologically. We discuss some of its properties and some of its existing

and further potential applications in the analysis of scRNA-seq data.

2.2 The Beta-Poisson hierarchical model

2.2.1 A two-state gene expression model

Many experiments have shown that gene expression among a homogeneous population of

genetically identical cells is highly heterogeneous [49, 50]. Imaging technologies reveal that

the transcription of a gene is a discontinuous process [51], where the gene switches between a

state where it actively transcribes mRNA and another state where no transcription happens.

The interval that the gene stays in the two states is irregular and can be described by a

probabilistic model. In 1995, Peccoud and Ycart modeled the above process as a birth-and-

death process in a Markovian environment and derived some mathematical results [42].

The set of reactions in gene expression is summarized in Figure 2.1. The time evolution

of the gene expression process can be modeled as a continuous-time Markov chain. The state

space [42] for this process is

S “ tpi, nq : i P t0, 1u, n P Nu.

As can be seen, the state variable for this Markov process consists of two coordinates. The

first coordinate i indicates the state of the gene. i “ 0 when the gene is inactive and 1 when
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Figure 2.1: A two-state gene expression model.

active. The second coordinate n indicates the number of mRNA molecules.

We further assume that the time that the gene remains in the active state is exponentially

distributed with parameter ki (1{ki time units on average). Then it switches to the inactive

state, and remains in the inactive state for a period of time exponentially distributed with

parameter ka. Only in the active state, the gene is transcribed to mRNA with rate sm, and

mRNA can be degraded in both states with rate δ for each molecule. In other words, the

lifetime of each mRNA molecule is independent and identically distributed as an exponential

random variable with rate parameter δ. The unit of these rate parameters is the number of

chemical reactions per time unit (e.g. second or minute).

With the above assumptions, the Kolmogorov system of differential equations can be

obtained, as summarized in equations (5) of [42]. In principle, by solving the set of equations

with some initial condition, we can get pi,nptq for any t ą 0, which can further tell us the

probability distribution of the number of mRNA molecules at any time t. In [42], Peccoud

and Ycart introduced a set of moment-generating functions to achieve this goal:

G0pz, tq “

8
ÿ

n“0

znp0,nptq; G1pz, tq “

8
ÿ

n“0

znp1,nptq.

Further, define

Gpz, tq “ G0pz, tq ` G1pz, tq,
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which is the moment-generating function of the number of mRNA molecules at time t. They

showed that the cases of δ “ 0 and δ ą 0 need to be considered separately. The complete

solution is only possible for the first case and in the latter and more biologically realistic

case, only the result for the stationary distribution can be obtained.

In the last section of the paper, they proposed a moment-matching approach to estimate

the parameters of the model when only data from the stationary distribution is available.

However, in this case, as the model is time-homogeneous, multiplying the parameters by the

same constant will give the same stationary distribution. Therefore, only three of the four

parameters can be estimated. The time scale can be adjusted so that one of the parameters,

for example, δ is set to 1. In this case, we can express the other three parameters as a

function of the exponential moments e1, e2, and e3, where

en “ ErXpX ´ 1q ¨ ¨ ¨ pX ´ n ` 1qs,

and

pka, ki, smq “ ϕpe1, e2, e3q,

where ϕ denotes the functional relationship for the two sets of parameters (the exact form

of ϕ is shown in the last two pages of [42]). To estimate the parameters, we can estimate

the exponential moments by the sample exponential moments and plug in the values to ϕ

to get the estimates for ka, ki, and sm. By the law of large numbers, these estimators are

consistent.

This result is very useful in the analysis of single-cell gene expression data, especially for

experiments where only the measurement at one time point is possible, which is the case for

scRNA-seq and also for experiments based on single molecule fluorescence in situ hybridiza-

tion (smFISH). The data can be assumed to be generated from the steady state distribution

as the Markov process converges to the steady state distribution at an exponential rate re-

lated to the parameter values [42]. The development time of a biological tissue or the culture
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time of a cell line has a much longer time scale.

2.2.2 The analytic form of the stationary distribution

For the asymptotic behavior of the model when δ ą 0, Peccoud and Ycart only derived

the closed-form solution of the moment-generating functions. In 2006, Raj et al derived the

analytic form of the stationary distribution [52],

ρpnq “
Γpka

δ
q

Γpn ` 1qΓpka
δ

`
ki
δ

` nq

Γpka
δ

`
ki
δ

q

Γpka
δ

q

´sm
δ

¯n

1F1

ˆ

ka
δ

` n,
ka
δ

`
ki
δ

` n,´
sm
δ

˙

, (2.1)

where n is a non negative integer and 1F1pa, b, cq is a confluent hypergeometric function of

the first kind. They computed the MLE of the parameters using a numerical method without

further showing the details. As can be seen, the closed-form solution is quite complicated

and even the evaluation of its value given the parameters is not easy, because of the difficulty

of the computation of the confluent hypergeometric function.

2.2.3 The Beta-Poisson hierarchical model

In 2013, Kim and Marioni pointed out that the steady-state distribution can be generated

by a Beta-Poisson mixture model in the following way [53],

p|ka, ki „ Betapka, kiq

N |p, sm „ Poissonppsmq

where p is a hidden variable that follows a Beta distribution. The marginal distribution

ppN |sm, ka, kiq takes the same form as equation (2.1). They further introduced priors to the

model parameters and used Gibbs sampling to estimate the model parameters. Note that

in this case, as mentioned before, the value of the parameter δ is set to be equal to 1, which

makes the model identifiable.
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Figure 2.2: Three typical behaviors of the model, assuming δ “ 1.

2.3 Simulation and fitting to real data

To illustrate three typical behaviors of the model, a sample path and the steady state distri-

bution are shown in Figure 2.2 for each of the three typical parameter ranges. Here the main

focus is on the effect of the relative magnitude of ka and ki. In the first column, when ka and

ki are both small, the gene has slow switching rates between the two states, and the mRNA

number in a cell will oscillate between zero and around sm{δ. For a group of homogeneous

cells, the steady-state distribution of the number of mRNA of the gene becomes bimodal,

due to the slow switching. In the second column, ka is much larger than ki, meaning that the

gene stays in the active state most of the time and the oscillation of the number of mRNA

is much less compared to the first scenario. The steady-state distribution peaks at around

sm{δ, which is the average number of mRNA if the gene is always active and is left skewed

due to the smaller magnitude of ki. In the last column, ka is much smaller than ki, meaning

that the gene only activates occasionally and the expression process appears to be a sequence

of infrequent pulses. The steady-state distribution peaks around zero and is right skewed.

As can be seen here, the model is capable of describing different types of transcriptional

behaviors as compared to the classical Poisson or negative binomial model.
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Figure 2.3: Comparison of the distribution of the real data and the fitted distribution.

To investigate how well the model can potentially fit real data, we look at a scRNA-seq

dataset from the 10x genomics website. The dataset contains 1045 cells, 498 of which are

from a human cell line (HEK293T) and 547 from a mouse cell line (NIH3T3). We filter for

genes with mean count values greater than 10 and less than 500 and inspect how well the

model can fit the data. We use the moment matching method described in section 2.2.1 to

estimate the parameters. Some typical cases are shown in Figure 2.3. For some genes, the

model can fit the data very well, as shown in the case of the first panel. However, for most

genes, the model does not capture the bimodal shape of the real data very well. One of the

reasons is that technical noise is not accounted for here. A simple modification would be to

introduce an extra parameter for the proportion of false zeros. Also, normalized count should

be a better choice for model fitting instead of the raw count that we are using here, because

we need to adjust for factors like cell size and sequencing depth. With these modifications,

we can expect that the Beta-Poisson model can be used as a base model for the marginal

gene expression distribution of scRNA-seq data.
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2.4 Existing applications and further improvements

The Beta-Poisson model was first introduced in the analysis of scRNA-seq data in 2013.

Kim and Marioni applied this model to analyze a scRNA-seq dataset that contains the gene

expression level in 12 mouse embryonic stem cells [53]. They estimated the parameters using

the aforementioned Gibbs sampling method and found that the inferred parameters are

consistent with RNA polymerase II binding and chromatin modifications. Their parameter

inference procedure is very well specified. However, in their model, they didn’t account for

the technical noise that is prevalent in scRNA-seq datasets. Also, as the development of the

scRNA-seq technology was just beginning at that time, their sample only contains 12 cells,

which is a lot less compared to the throughput of the current technology [44, 45]. To develop

a good parameter estimation method that is both accurate and fast when dealing with a

large number of samples is a problem that needs to be solved.

In 2016, Vu et al used this model to analyze two datasets that were sequenced by the

Fluidigm technology [54]. In their analysis, they included a parameter for the proportion

of false zeros and also made some adjustments for normalized data. They also proposed a

differential gene expression (DE) analysis method based on this model using the generalized

linear model (GLM) type of formulation. Specifically, denote Y as the expression level of

one gene, and x as the associated covariates. Define η “ xTβ, where β is the corresponding

parameter vector for the covariates. Then the relationship between Y and x can be expressed

in the following way,

gpEY q “ η

Y |EY „ Beta - Poissonpka, ki, smq

EY “ fpka, ki, smq

where fp.q is a function that specifies the relationship between EY and the model parameters.

By calculating the variance function and specifying the link function gp.q, we can estimate

the parameters in this model and test if β or some components of it equals zero. Notice
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that in this formulation, we are testing for whether there is an effect in the difference of the

mean. However, as illustrated in Figure 2.2, the mean may not be a representative sample

statistic if the expression of a gene is bimodal. Therefore, we might also consider testing for

the effect on the difference in the parameter sm, which is the synthesis rate of mRNA when

the gene is in the active state. We can also test for the effect on the difference in ka and ki,

which is the information that is uniquely provided by the Beta-Poisson model compared to

models like Poisson or negative binomial. Based on the difference in the parameter values,

we might be able to classify genes based on their transcriptional regulatory behavior and

investigate if it is related to the functions of genes.

In the same year, Delmans and Hemberg used this model as the base model for one of the

three methods to test for DE [55]. Their method is called D3E, which is short for discrete

distributional differential expression. They focused on evaluating whether there is an effect

on the difference in the distribution rather than the mean. They used three different types

of tests, the Cramer von Mises test, the Kolmogorov-Smirnov (KS) test, and the likelihood

ratio test. They used the Beta-Poisson model as the base model for the likelihood ratio test

for the overall effect. Their method can test for the difference in distribution, which reveals

more information than testing for the difference in mean. However, they didn’t develop a

formal statistical test for the difference in the three individual parameters.

Aside from improving the computational efficiency of the estimation procedure and test-

ing for DE, this model can also be used to solve many other problems. One important

example is that as this model can describe bimodal expression, the proportion of false zeros

produced from the experimental procedure can be estimated more accurately compared to

using the Poisson or negative binomial model. This can give us a more accurate evaluation

of the technical noise. Lastly, this model can also be used as the base model for dimension-

ality reduction and clustering. The zero-inflation feature of scRNA-seq datasets is one of the

reasons that classical methods like PCA and k-means do not perform well on them. Current

methods that take this feature into account cannot distinguish between true zeros and false

zeros [23, 27].
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2.5 Discussion

The Beta-Poisson hierarchical model is a good base model for the marginal distribution of

single-cell gene expression, as it is derived from a mechanistic model of the gene expression

process. Compared to classical models like Poisson and negative binomial, it has the capacity

to model the bimodal expression of a gene and the model parameters can provide biological

insights about the transcriptional behavior of a gene. It has already been applied in the

analysis of scRNA-seq data, and it can certainly be used to answer other interesting questions.

Gene expression is a complicated process and this model certainly has its limitations.

Although some experiments have shown that the three rate parameters of the model are

independent of the development time of the cell and other extrinsic factors [51, 52], whether

this is true for any cell populations is hard to determine. As Kærn et al pointed out, this

model “is simple in comparison with the true complexity of gene expression. However, it

has provided a good theoretical framework for understanding the effects of stochasticity on

prokaryotic and eukaryotic gene expression” [56].
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CHAPTER 3

scDesign2: a transparent simulator that generates

high-fidelity single-cell gene expression count data with

gene correlations captured

3.1 Introduction

The recent development of the single-cell RNA-seq (scRNA-seq) technologies has revolu-

tionized transcriptomic studies by revealing the genome-wide gene expression levels within

individual cells [57, 58]. In contrast to bulk RNA sequencing, scRNA-seq technology captures

cell-specific transcriptome landscapes, which can reveal crucial information about cell-to-cell

heterogeneity across different tissues, organs, and systems and enable the discovery of novel

cell types and new transient cell states [9, 59–63]. Already, scRNA-seq technologies have led

to breakthroughs in understanding biological processes such as stem cell differentiation and

embryogenesis [64, 65], neurological disorders [66, 67], and tumorigenesis [68, 69].

Since the first scRNA-seq study was published in 2009 [70], many experimental proto-

cols have been developed [71–73]. Broadly speaking, the existing protocols fall into two

categories: tag-based and full-length [74]. Tag-based protocols (e.g., 10x Genomics [15],

CEL-Seq2 [75], Drop-seq [76], and Seq-Well [77]) only capture and sequence one end of RNA

transcripts, while full-length protocols (e.g., Smart-Seq2 [14], Fluidigm C1 [78], and MATQ-

seq [79]) sequence fragments from full-length RNA transcripts [73, 80]. Typically, compared

to full-length protocols (given the sequencing depth), tag-based protocols sequence more cells

but with fewer transcripts captured per cell [81]. In addition to this cell-number vs. per-

cell-depth trade-off, tag-based protocols use unique molecular identifiers (UMIs) to remove
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polymerase chain reaction (PCR) amplification biases [82], while full-length protocols do not

have this advantage and can only output reads without UMIs. Therefore, these protocols

have different advantages in throughput (number of cells and number of genes captured)

and accuracy (number of non-biological zeros and PCR biases) [73, 83, 84]. Moreover, when

designing experiments, researchers often face the practical issue of having a limited budget.

In this case, they need guidance to choose either sequencing more cells with fewer reads (or

UMIs) in each cell, or sequencing fewer cells with more reads (or UMIs) in each cell [85–87].

In addition to selecting experimental protocols before conducting scRNA-seq experi-

ments, a common challenge after collecting scRNA-seq data is to choose among the many

available data analysis methods in an unbiased manner. For example, many algorithms have

been developed for missing gene expression imputation [88, 89], dimensionality reduction [24,

90, 91], cell clustering [26, 27, 92, 93], rare cell type detection [94–96], differentially expressed

gene identification [97–99], and trajectory inference [28, 29, 100–102]. Even though several

benchmark and comparative studies have been carried out for common analysis tasks [36,

38, 103–105], most of them have only evaluated a subset of available computational methods

using data from limited experimental protocols. Hence, they cannot meet the diverse needs

of ongoing and future analyses of scRNA-seq data. In short, single-cell researchers lack a sys-

tematic and flexible approach to select appropriate computational methods for their specific

data analysis needs.

One solution to the above two issues is to use in silico synthetic datasets, which carry

ground truths (cell types, cell trajectories, differentially expressed genes, etc.) and do not

induce extra experimental costs. Below we summarize six properties that an ideal simulator

should achieve.

1. The simulator can be trained by real data so that it is adaptive to various experimental

protocols and biological conditions.

2. The simulator can preserve genes so that its synthetic cells contain expression levels of

real genes. The simulator should retain every gene’s distribution of expression levels

in its synthetic data without deleting genes in real data. This property is essential for
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benchmarking differential gene expression analysis.

3. The simulator can capture gene correlations so that its synthetic data maintain a sim-

ilar gene correlation structure to that in real data. This property relies on the last

property and is essential for benchmarking multi-gene analyses such as cell dimen-

sionality reduction (e.g., principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE) [20, 106], and uniform manifold approximation and pro-

jection (UMAP) [21, 22]), cell clustering, rare cell type detection, and cell trajectory

inference.

4. The simulator can generate synthetic data with both varying cell number and sequenc-

ing depth, under the same biological condition of training data. This property is es-

sential for guiding experimental design and benchmarking robustness of computational

methods.

5. The simulator is transparent so that its model parameters can be easily understood

and adjusted. For example, key statistical properties, such as every gene’ expression

mean, variance, zero proportions, and every gene pair’s expression correlation, can be

easily accessed from the model. This property is essential for model diagnostics and

customized simulation. Specifically, with a transparent model, whenever the synthetic

data do not resemble the real data, computational researchers can easily access how

well the model fits to each gene’s marginal distribution and what genes’ correlations

are well captured or missed. Moreover, a transparent model offers users an opportunity

to generate data from their specified parameter values, e.g., gene expression means.

6. The simulator is computationally and sample efficient so that its training does not

require expensive hardware, take excessive computational time, or rely on an enormous

number of real cells to achieve good training. This property is essential for the simulator

to be user-friendly and adaptive to full-length protocols that generate hundreds to

thousands of cells, e.g., Fluidigm C1 and Smart-Seq2.

Although many simulators have been developed for scRNA-seq data and various method-
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ological advances have been made [24, 87, 107–115], to the best of our knowledge, none of

them achieves all the six properties. We summarize 14 representative simulators in Table 3.1.

Except scGAN [111], these simulators all use probabilistic models or differential equations

that are transparent and easy to fit, thus satisfying properties 5 and 6. However, scDesign

[87], three simulators in the splatter package (splat simple, splat, and kersplat) [108], and

SymSim [109] do not preserve genes, failing properties 2 and 3; ZINB-WaVE1 [24, 108] and

SPARSim [110] cannot vary cell number or sequencing depth, failing property 4; SERGIO

[115] requires a user-specified gene regulatory network as input and does not estimate gene

correlations from real data2, thus not achieving property 3. Although scGAN preserves genes

and uses a deep neural network to capture gene correlations, it cannot vary sequencing depth

(not satisfying property 4), and its black-box nature, requirement for GPU, and long com-

putational time make it fail properties 5 and 6. Hence, a simulator that achieves all the six

properties is in demand.

Here we propose scDesign2 as the first simulator that achieves all the six properties and

generates realistic synthetic data for multiple single-cell gene expression count-based tech-

nologies. Inheriting its name from our previous simulator scDesign, scDesign2 has achieved

a significant methodological advance and become the first transparent simulator that reli-

ably captures gene correlations. This advance is enabled by probabilistic modeling of not

only marginal distributions of individual genes but also the joint distribution of thousands of

genes. Thanks to its achievement of the six properties, scDesign2 will serve as a powerful tool

for guiding experimental design and benchmarking computational methods in the single-cell

transcriptomics field.

1ZINB-WaVE was not proposed as a simulator in its original publication [24] but was later implemented
as a simulator in the splatter package [108].

2A quote from the SERGIO paper [115]: “It is worth noting here that several existing single-cell expression
simulators employ a probabilistic model whose parameters are directly estimated from a real dataset and
then sample synthetic data from the model. This approach is not feasible in SERGIO since the true GRN
underlying the real dataset is unknown and notoriously hard to reconstruct, and the explicit use of a GRN
is a crucial distinguishing feature of SERGIO. As such, SERGIO uses a randomly generated GRN to first
synthesize clean expression data and uses the real dataset only in the second phase, to determine the extent
of technical noise to add to the clean data.”
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3.2 Results

3.2.1 An overview of scDesign2

The statistical framework of scDesign2 consists of two steps: (1) model-fitting and (2) syn-

thetic data generation (Fig. 3.1). In the model-fitting step, scDesign2 fits a multivariate

generative model to a real scRNA-seq dataset. If the dataset contains more than one cell

type (defined by marker genes or cell clustering; see Methods), then scDesign2 divides the

dataset into subsets, one per cell type, and fits a cell-type-specific model to each subset.

In the data-generation step, scDesign2 generates synthetic scRNA-seq data from the fitted

model for each cell type.

The model-fitting step is composed of the following two sub-steps. First, scDesign2

fits a univariate count distribution to each gene’s counts in cells of the same type. Four

count distributions are considered: Poisson, zero-inflated Poisson (ZIP), negative binomial

(NB), and zero-inflated negative binomial (ZINB), with the former three as special cases

of the ZINB. All the four distributions have been widely used to model a gene’s read or

UMI counts in a homogeneous group of cells [24, 116–118]. From these four distributions,

scDesign2 chooses one distribution for every gene in every cell type in a data-driven way.

Second, scDesign2 captures the correlations of thousands of genes (all the moderately to

highly expressed genes) by fitting a Gaussian copula in each cell type. We choose the

Gaussian copula for its easiness to fit and good transparency, and we find it capturing gene

correlations well (Fig. 3.2 and Supplementary Figs. 3.13–3.17).

As the first simulator that explicitly captures gene correlations, scDesign2 leverages a

unique advantage of the copula framework: the separate modeling of each gene’s marginal

distribution and the correlation structure of thousands of genes together. This separation

and its resulting flexibility are critical for scDesign2 to model single-cell gene expression count

data generated by various experimental protocols. Thanks to this flexibility, scDesign2 can

choose a count distribution from Poisson, ZIP, NB, and ZINB to fit each gene’s expression

counts and reveal biological insights of that gene’s expression pattern.
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3.2.2 Synthetic data generated by scDesign2 most resemble real scRNA-seq

data in benchmarking against existing simulators

We benchmark scDesign2 against eight existing simulators—ZINB-WaVE, SPARSim, sc-

GAN, scDesign, three variants of splat in the splatter package (splat simple, splat, and

kersplat), and SymSim. We also compare scDesign2 with its own variant that only uses gene

marginal distributions and no copula (w/o copula). Among these ten simulators, only scDe-

sign2, its w/o copula variant, ZINB-WaVE, SPARSim, and scGAN preserve genes. We apply

these ten simulators to four scRNA-seq datasets (in which cells are labelled with curated cell

types) generated by different experimental protocols (10x Genomics [119], CEL-Seq2 [120],

Fluidigm C1 [121], and Smart-Seq2 [122]). For each dataset, we randomly split its cells into

two halves, with one half (“training data”) to be used for training every simulator on each

cell type individually and the other half (“test data”) to serve as the benchmark standard

to be compared with the synthetic data generated by each simulator.

We use three sets of benchmark analyses to compare synthetic data with the correspond-

ing test data. Here is an overview. First, we select three cell types from each dataset

(measured by each experimental protocol), obtaining a total of 12 cell-type–protocol combi-

nations. For each combination, we evaluate eight key statistics: four gene-wise (expression

mean, variance, coefficient of variation (cv), and zero proportion); two cell-wise (zero pro-

portion and library size); two gene-pair-wise (Pearson correlation and Kendall’s tau). (Note

that we include Kendall’s tau instead of Spearman rank correlation as a rank-based corre-

lation statistic because Kendall’s tau can account for ties.) For each statistic, we compare

its empirical distribution—across genes (for gene-wise statistics), across cells (for cell-wise

statistics), or across gene-pairs (for gene-pair-wise statistics)—in the test data with that

in the synthetic data generated by each simulator. For the four gene-wise and two gene-

pair-wise statistics, we also directly compare their values in the test data with those in the

synthetic data generated by scDesign2, ZINB-WaVE, SPARSim, and scGAN—the four sim-

ulators that preserve genes. We cannot do this for the other simulators, because the values

of these gene-related statistics are not comparable if the genes are not preserved. The re-
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sults are summarized in Fig. 3.3 and Supplementary Figs. 3.18–3.40. Second, for each of the

12 cell-type–protocol combinations, we compare the gene correlation matrix estimated from

the test data with that from the synthetic data generated by each simulator that preserves

genes. We exclude the simulators that do not preserve genes because the gene expression

matrices estimated from their synthetic data do not align with those from real data (i.e., the

genes of the synthetic data matrix cannot be matched one-to-one to the genes of the training

data matrix). The results are summarized in Fig. 3.2 and Supplementary Figs. 3.13–3.17.

Third, for each of the four protocols, we use 2D visualization—t-SNE and PCA—to compare

cells of multiple types in the test data and the synthetic data generated by each simulator

that preserves genes. Again, we exclude the simulators that do not preserve genes because

their synthetic cells cannot be combined with real cells for joint visualization (dimesionality

reduction requires all cells to have the same original dimensions, i.e., genes). The results are

summarized in Fig. 3.4 and Supplementary Figs. 3.41–3.43.

Overall, we find that the synthetic data generated by scDesign2 most resemble the test

data for all four protocols. In our first set of analyses, we categorize the eight existing

simulators into two types: simulators that preserve genes (ZINB-WaVE, SPARSim, and

scGAN) and others. First, by comparing the distributions of eight key statistics between

test data and synthetic data, we find that the simulators capable of preserving genes have

overall better performance than other simulators, across cell types and protocols (Fig. 3.3a

and Supplementary Figs. 3.18a–3.28a).

Second, we further benchmark the gene-preserving simulators by directly comparing their

synthetic data and test data in terms of the gene-wise and gene-pair-wise statistics’ values.

Note that we cannot compare these statistics’ values for simulators that do not preserve

genes because the “genes” in those simulators’ synthetic data cannot be matched to any

genes in real data. In detail, we calculate the mean-squared errors (MSEs) of the four gene-

wise statistics and the two gene-pair-wise statistics between test data and synthetic data

generated by scDesign2, ZINB-WaVE, SPARSim, and scGAN. Fig. 3.3b shows that scGAN,

a deep-learning-based method, consistently has the worst MSEs for all the six statistics. Due
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to its long computational time3, difficult implementation, and unsatisfactory performance,

we exclude it from the following comparisons.

Out of 48 comparisons of gene-wise statistics (4 statistics times 12 cell-type–protocol

combinations), scDesign2 achieves the best MSEs in 37 comparisons and demonstrates a

clear advantage over ZINB-WaVE and SPARSim (Fig. 3.3b and Supplementary Figs. 3.18b–

3.28b). Out of 24 comparisons of gene-pair-wise statistics (2 correlation statistics times 12

cell-type–protocol combinations) based on the 500 most highly expressed genes (in terms of

their mean expression levels across cells) in each cell-type–protocol combination, scDesign2

achieves the best MSEs in 15 comparisons (Fig. 3.3b and Supplementary Figs. 3.18b–3.28b).

We highlight the highly expressed genes because their Pearson correlations and Kendall’s

tau values are more biologically meaningful; in all cell-type–protocol combinations, the top

500 highly expressed genes, ranked by either mean expression levels or non-zero proportions

across cells, explain at least 50% of reads or UMIs (Supplementary Figs. 3.29c–3.40c), con-

firming that these genes play dominant roles in transcriptional programs in cells. In addition,

we include the comparison results based on more genes in Supplementary Figs. 3.29d&e–

3.40d&e, which show that, as more lowly expressed genes are included, the MSEs of all these

simulators decrease and become less distinguishable (because lowly expressed gene pairs have

correlations close to zero in test data and all synthetic data), making the comparison less

meaningful.

Third, we examine correlations of individual gene pairs and observe that scDesign2 can

preserve strong negative gene correlations missed by ZINB-WaVE and SPARSim, which

wrongly capture these correlations as weak or even positive (Fig. 3.3c-d and Supplementary

Figs. 3.18c-d–3.28c-d). This observation is further confirmed by our second set of analyses

below. Furthermore, we compare the relationships of three pairs of gene-wise statistics

(zero proportion vs. mean, variance vs. mean, and cv vs. mean) between test data and

synthetic data generated by each simulator, and we find that scDesign2 better captures

the relationships than existing simulators do across cell types and experimental protocols

3The training of scGAN takes 1-2 days (with NVIDIA GeFore GTX 2080 Ti GPU) on 255 cells and 15926
genes, in contrast to the other simulators that take at most minutes to train with CPU.
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(Fig. 3.3e and Supplementary Figs. 3.18e–3.28e).

In our second set of analyses, we compare gene correlation matrices in terms of both

Pearson correlation and Kendall’s tau between test data and synthetic data generated by

scDesign2, ZINB-WaVE, and SPARSim. Heatmap visualization shows that scDesign2 cap-

tures gene correlations most accurately and consistently across cell types and experimen-

tal protocols (Fig. 3.2 and Supplementary Figs. 3.13–3.17). Notably, for highly expressed

genes in Smart-Seq2 data, ZINB-WaVE and SPARSim miss almost all the gene correlations,

while scDesign2 well preserves positive and negative gene correlations in its synthetic data

(Fig. 3.2b & d and Fig. 3.17b & d).

In our third set of analyses, we use 2D visualization to compare cells in test data and those

in synthetic data generated by scDesign2, ZINB-WaVE, and SPARSim. Both t-SNE and

PCA 2D plots show that cells in synthetic data generated by scDesign2 most resemble cells

in test data (Fig. 3.4 and Supplementary Figs. 3.41–3.43). In particular, by overlaying real

and synthetic cells in the same 2D plot, we find synthetic cells generated by scDesign2 least

distinguishable from real cells. On the contrary, synthetic cells generated by ZINB-WaVE

and SPARSim exhibit spurious patterns unseen in real cells.

To quantify the similarity between synthetic cells and real test cells, we use the median

integration local inverse Simpson’s index (miLISI) [123], whose value is between 1 and 2,

with a larger value indicating a greater similarity. Specifically, we compute an integration

local inverse Simpson’s index (iLISI) to represent the effective number of cell labels (with

1 meaning synthetic or real cells only, and 2 meaning equal numbers of synthetic and real

cells) in the local neighborhood of each (synthetic or real) cell; the closer iLISI is to 2, the

more equal presence synthetic and real cells have in the local neighborhood. Taking the

median of the iLISIs of all cells, we obtain the miLISI, which quantifies the overall mixing

of synthetic cells with real cells. Using the R package LISI [123], we calculate the miLISI

value for each of the overlaying 2D plots containing real and synthetic cells (Fig. 3.4 and

Supplementary Figs. 3.41–3.43), and we find that scDesign2 consistently leads to the highest

miLISI value, with greater advantages in 2D tSNE plots than 2D PCA plots. Since 2D

t-SNE projection preserves cell clusters better than 2D PCA does and is more widely used
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for visualizing single-cell gene expression data, our results suggest that the synthetic data

by scDesign2 best capture the cluster structure in real cells. Together, the miLISI values

confirm the superb performance and the realistic nature of scDesign2.

These three sets of analyses also verify the advantage of using copula in scDesign2. Com-

pared with scDesign2, its w/o copula variant, as expected, cannot capture gene correlations

at all (Fig. 3.3a, Fig. 3.2, Supplementary Figs. 3.18a–3.28a, and Supplementary Figs. 3.13–

3.17). As a result, the synthetic data generated by the w/o copula variant do not resemble

the corresponding real data in 2D visualization (Fig. 3.4 and Supplementary Figs. 3.41–3.43).

In addition to its realistic nature, scDesign2 also has two more unique advantages over

ZINB-WaVE and SPARSim. Unlike the other two simulators, scDesign2 only considers

genes as features and models their joint distribution, and it regards cells as observations

instead of features. This formulation is aligned with the statistical thinking that genes are

fixed quantities but cells are randomly sampled from a population of cells. Thanks to this

principled formulation, scDesign2 can generate synthetic cells of any number, in contrast to

ZINB-WaVE and SPARSim that can only generate the same number of synthetic cells as

real cells. It is also worth noting that, although scDesign2 does not explicitly model the

distribution of cell library sizes, it recovers that distribution rather faithfully (see the cell

library size distributions in Fig. 3.3a and Supplementary Figs. 3.18a–3.28a). This is achieved

by modeling joint gene distributions and accounting for gene correlations through the use of

copula. Compared to scGAN, the training of scDesign2 is fast and does not rely on a large

number of input real cells for good training quality.

3.2.3 Refinement of scDesign2 training: calibration of cell types by ROGUE

scores

For a dataset containing multiple cell types, scDesign2 needs to fit a model to each cell

type before generating synthetic data. To ensure the quality of its synthetic data, scDesign2

must have one of its count models (ZINB model and its three simplified variants) fit well

to each gene’s real expression levels in each cell type; otherwise, the synthetic data may
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not well mimic real data due to the poorness of model fitting. We observe this issue in

the 10x Genomics dataset (Fig. 3.4a), where some cell types such as transit-amplifying

early (TA.Early) cells and goblet cells are composed of discrete sub-clusters in 2D tSNE

illustration. As a result, some genes’ expression levels within one of such cell types cannot

be fit well by scDesign2’s count models, leading to a discrepancy between synthetic data and

real data (synthetic TA.Early and goblet cells do not appear to have cell sub-clusters in 2D

tSNE illustration).

To address this issue, we calibrate each cell type using the ROGUE score [124], which

measures the homogeneity of that cell type, before training scDesign2. Concretely, we first

partition the cell type into sub-clusters using the Louvain clustering algorithm [25] in the

Seurat R package [26]. Employing varying resolution parameters in the Louvain algorithm,

we partition the cell type into a varying number of sub-clusters. Second, we calculate the

ROGUE score of every sub-cluster, and then we compute the average ROUGE score across

sub-clusters for each number of sub-clusters, ranging from 1 to 6. Third, we examine how the

average ROGUE score increases as the number of sub-clusters increases (Fig. 3.5a), together

with 2D t-SNE visualization (Fig. 3.5b), to determine an appropriate number of sub-clusters,

which is usually the “elbow point” where the average ROGUE score saturates.

Applying this strategy to refining the six cell types in the 10x Genomics dataset, we ob-

serve that, after being trained with the refined cell types, scDesign2 generates more realistic

synthetic data (Fig. 3.5c; the miLISI value increases from 1.596 to 1.779).

3.2.4 Application 1: scDesign2 generates realistic synthetic data for other single-

cell expression count-based technologies

Beyond scRNA-seq data, we demonstrate that scDesign2 can also generate realistic synthetic

data for other single-cell count-based technologies that do not necessarily use next-generation

sequencing, as long as individual genes’ count distributions can be well approximated by

Poisson, ZIP, NB or ZINB. For instance, single-cell spatial transcriptomics technologies,

usually based on fluorescence in situ hybridization (FISH), are known to yield Poisson or
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NB distributed counts [125, 126]. The versatility of scDesign2 is endowed by its data-driven

way of selecting marginal distributions for individual genes, regardless of each distribution

being Poisson or NB, zero-inflated or not.

We demonstrate the accuracy of scDesign2 based on two single-cell spatial transcrip-

tome datasets: one dataset of cells in the mouse hypothalamic preoptic region measured by

multiplexed error robust fluorescence in situ hybridization (MERFISH) [127] and another

dataset of cells in the mouse hippocampal area CA1 measured by probabilistic cell typing

by in situ sequencing (pciSeq) [128], a newly developed spatial transcriptome profiling tech-

nology. Both datasets contain labeled cell types. Due to the lack of simulators specifically

designed for single-cell spatial transcriptome data, we still benchmark scDesign2 against its

w/o copula variant, as well as ZINB-WaVE and SPARSim, the two simulators that pre-

serve genes. Note that for all the simulators considered, they only generate gene counts,

not spatial coordinates, for synthetic cells. Similar to our previous analysis, for each cell

type in each dataset, we randomly split the cells into two halves, with one half (“training

data”) to be used for training every simulator and the other half (“test data”) to serve as the

benchmark standard to be compared with the synthetic data generated by each simulator.

Fig. 3.6 and Supplementary Fig. 3.44 demonstrate the 2D visualization of each real dataset,

the corresponding synthetic data generated by each simulator, as well as the combination

of test data and each synthetic dataset. For both technologies and in both t-SNE and PCA

visualization, scDesign2 outperforms SPARSim and ZINB-WaVE by generating synthetic

data that most resemble the real data. In particular, scDesign2 consistently achieves the

highest miLISI values in the 2D visualization plots of combined data, indicating that the

synthetic cells generated by scDesign2 are least distinguishable from real cells. These results

confirm the versatility and robustness of scDesign2.
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3.2.5 Application 2: scDesign2 guides experimental design and computational

method benchmarking in cell clustering

Cell clustering is a ubiquitous computational task in single-cell research. Here we demon-

strate how scDesign2 can guide experimental design (i.e., deciding the optimal cell number

and sequencing depth) and benchmark computational methods for the cell clustering task.

After training scDesign2 on each of the four scRNA-seq datasets generated by differ-

ent experimental protocols (10x Genomics [119], CEL-Seq2 [120], and Fluidigm C1 [121],

Smart-Seq2 [122]), we apply the trained scDesign2 to generate synthetic data under three

experimental design scenarios: (1) varying sequencing depths, where the total number of

reads (or UMIs) varies but the cell number is fixed; (2) varying cell numbers, where the

number of sequenced cells varies but the sequencing depth is fixed; (3) fixing the per-cell

average sequencing depth, where the both the number of sequenced cells and the total se-

quencing depth vary, but the average number of reads (or UMIs) in each cell is fixed. For

each protocol, scDesign2 generates a synthetic dataset per sequencing depth and cell number.

To guide the choices of sequencing depth and cell number based on clustering accuracy,

we apply two popular scRNA-seq cell clustering methods—Seurat (the kNN-Jaccard-Louvain

algorithm) [25, 26] and SC3 [27]—to the synthetic datasets and use the adjusted mutual

information (AMI) [129] and the adjusted Rand index (ARI) [130] as two clustering accuracy

measures. Note that SC3 can be specified to output the same number of cell clusters as the

annotated cell types, while Seurat cannot due to the nature of the Louvain algorithm it uses

[25]. The results are summarized in Figs. 3.7–3.9 and Supplementary Figs. 3.45–3.53.

For the first, varying-sequencing-depth scenario, we expect the clustering accuracy to

improve as the sequencing depth increases, because a larger sequencing depth would better

reveal every cell’s transcriptome profile and thus lead to better clustering. Moreover, we also

expect there to be a saturation effect: the clustering accuracy no longer improves much after

the sequencing depth increases to a point, which we regard as the optimal sequencing depth

that balances clustering accuracy and budget. The results confirm our expectation. For

the two UMI-based protocols 10x Genomics and CEL-Seq2, we observe the improvement
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and the saturation effect in clustering accuracy, based on both Seurat and SC3, as the

sequencing depth increases. In detail, the saturation for 10x Genomics data occurs at 113.05

million UMIs for 3793 cells, while the real dataset has only 28.57 million UMIs (Fig. 3.7);

the saturation for CEL-Seq2 data occurs at 42.72 million UMIs for 2279 cells, while the

real dataset contains 172.14 million UMIs (Fig. 3.45). For the two non-UMI-based protocols

Fluidigm C1 and Smart-Seq2, we observe the saturation effect even at the lowest sequencing

depth we consider, likely due to the fact that these two protocols provide a deeper profiling

of every cell than the UMI-based protocols do. In detail, the saturation for Fluidigm C1

data occurs at 26.74 (based on Seurat) or 110.52 (based on SC3) million reads for 317 cells,

while the real dataset contains 869.24 million reads (Fig. 3.48); the saturation for Smart-Seq2

data occurs at 33.68 million reads for 1078 cells, based on both Seurat and SC3, while the

real dataset contains 1074.97 million reads (Fig. 3.51). The t-SNE visualization supports the

observed trends of clustering accuracy. In each t-SNE plot that corresponds to one sequencing

depth and one set of cell clusters/types (by Seurat, SC3, or annotated cell types), synthetic

cells are labelled by their cell clusters/types; contrasting a tSNE plot of cell clusters with that

showing cell types illustrates clustering accuracy (Fig. 3.7a and Supplementary Figs. 3.45a,

3.48a, and 3.51a). In conclusion, for clustering purpose, we would recommend increasing the

10x Genomics sequencing depth to 113.05 million UMIs, if budget allows, and using SC3 for

clustering; for CEL-Seq2, Fluidigm C1, and Smart-Seq2, we would recommend decreasing

the sequencing depths to 42.72 million UMIs, 110.52 million reads, and 33.68 million reads,

respectively, to save budget and using either Seurat or SC3 for clustering.

For the second, varying-cell-number scenario, we expect the clustering accuracy to first

increase and then decrease as the cell number increases. The reason is that good clustering

requires both a reasonable number of cells of each type and a clear-enough gene expression

profile (where enough genes are captured) of every cell, thus posing a tradeoff—given the se-

quencing depth, the larger the cell number, the less clear each cell’s profile would be. Hence,

as the cell number increases from low, while every cell’s profile is still clear, clustering accu-

racy increases; however, as the cell number reaches a point where every cell type has more

than enough cells, further increasing the cell number would obscure every cell’s profile and
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deteriorate clustering accuracy. For the two UMI-based protocols 10x Genomics and CEL-

Seq2, our expectation is confirmed: we observe an overall trend of clustering accuracy that

first increases and then decreases (Fig. 3.8b and Supplementary Fig. 3.46b). In detail, for

10x Genomics data, both Seurat and SC3 have their accuracy maximized at 948 cells. This

optimality is supported by the t-SNE visualization, which shows that the Seurat and SC3

cell clusters best agree with the annotated cell types at this optimal cell number (Fig. 3.8a).

Hence, the real data cell number 3,793 is not optimal for distinguishing the annotated cell

types by Seurat or SC3. For CEL-Seq2 data, Seurat and SC3 have optimal accuracy at

2,279 and 570 cells, respectively, also supported by the t-SNE visualization (Supplementary

Fig. 3.46a). This suggests that the real data cell number 2,279 can lead to optimal cell

clustering by Seurat. In contrast, for the two non-UMI-based protocols Fluidigm C1 and

Smart-Seq2, we only observe a first-increasing-and-then-saturated trend of clustering accu-

racy as the cell number increases, without seeing the trend decreasing (except for SC3 on

Smart-Seq2 data) (Supplementary Figs. 3.49b and 3.52b). A likely reason is that these two

protocols can provide a clear profile of every cell up to a large cell number around 10,000

given their deep sequencing depths in real data (869.24 million reads in the Fluidigm C1

data and 1074.95 million reads in the Smart-Seq2 data). For both Seurat and SC3, the cell

numbers at which their performance saturates are close to the cell numbers in real data: 317

cells in the Fluidigm C1 data and 1078 cells in the Smart-Seq2 data. In conclusion, we use

scDesign2 to find that the cell numbers are close to being optimal in the CEL-Seq2, Fluidigm

C1, and Smart-Seq2 datasets. For 10x Genomics, we would recommend decreasing the cell

number to 948 cells (while keeping the sequencing depth at 28.58 million UMIs) to optimize

the clustering accuracy by either Seurat or SC3.

For the third, fixing-average-sequencing-depth scenario, we expect the clustering accuracy

to improve as the cell number (and also the total sequencing depth) increases, because more

cells will make the identification of cell types easier. Moreover, we expect there to be a

saturation effect: the clustering accuracy no longer improves much after the cell number

increases to a point, which we regard as the optimal cell number that balances clustering

accuracy and budget. The results confirm our expectation. In all four protocols, we observe
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the expected trend of clustering accuracy for both Seurat and SC3, as well as the saturation

effect, which is more obvious for Seurat. In detail, the saturation for 10x Genomics data

occurs at 948 cells (based on Seurat), or 3793 cells (based on SC3), while the real dataset

has 3,793 cells (Fig. 3.9); the saturation for CEL-Seq2 data occurs at 1,140 cells, while

the real dataset has 2,279 cells (Fig. 3.47); the saturation for Fluidigm C1 data occurs at

317 cells (based on Seurat), which is the same cell number as the real dataset, while the

optimal clustering accuracy occurs at 1,268 cells based on SC3 (Fig. 3.50); the saturation

for Smart-Seq2 data occurs at 4,312 cells, while the real dataset has 1,078 cells (Fig. 3.53).

In conclusion, when the average read (or UMI) count per cell is kept as fixed, for clustering

purpose, we recommend keeping the cell number as in the original design for 10x Genomics

and using SC3 for clustering; for CEL-Seq2, we recommend decreasing the cell number to

1,140 to save budget and using Seurat for clustering; for Fluidigm C1, if budget allows, we

recommend increasing the cell number to 1,268 and using SC3 for clustering; for Smart-Seq2,

if budget allows, we recommend increasing the cell number to 4,312 and using either Seurat

or SC3 for clustering.

Beyond experimental design, scDesign2 also provides a comprehensive comparison of Seu-

rat and SC3 across sequencing depths and cell numbers. Overall, both methods demonstrate

superb accuracy in a wide range of sequencing depths and cell numbers for every protocol.

At close-to-optimal sequencing depths and cell numbers for each method, SC3 has better

accuracy than Seurat. However, Seurat and SC3 has different robustness: Seurat is a more

robust method for 10x genomics data when the sequencing depth is too low or the cell num-

ber is too large (Figs. 3.7b–3.9b), while SC3 is more robust when the cell number is small

for CEL-Seq2 (Supplementary Figs. 3.46b–3.47b), Fluidigm C1 (Supplementary Figs. 3.49b–

3.50b), and Smart-Seq2 (Supplementary Figs. 3.52b–3.53b). This finding is consistent with

the fact that SC3 is an ensemble method that is more robust against a small number of cells

but cannot be easily scaled up when the cell number is too large.
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3.2.6 Application 3: scDesign2 guides experimental design and computational

method benchmarking in rare cell type detection

Rare cell type detection is another important application of scRNA-seq, whose high-throughput

profiling of cells opens an unprecedented opportunity to identify unknown cell types that are

often rare but critical. Here we demonstrate how scDesign2 can guide experimental design

(i.e., deciding the optimal cell number and sequencing depth) and benchmark computational

methods for the rare cell type detection task.

From the 10x Genomics dataset of mouse intestine epithelial tissue [119], we select six

cell types—stem cells (Stem), goblet cells (Goblet), tuft cells (Tuft), early transit amplifying

cells (TA.Early), enterocyte progenitors (EP), and early enterocyte progenitors (EP.Early),

among which Tuft is the rare cell type [131] and has a proportion less than 5% among the six

cell types. After training scDesign2 on this dataset, we use scDesign2 to generate synthetic

data under three experimental design scenarios: (1) varying sequencing depths, where the

total number of UMIs varies but the cell number is fixed; (2) varying cell numbers, where

the number of sequenced cells varies but the sequencing depth is fixed; (3) fixing the per-

cell average sequencing depth, where the both the number of sequenced cells and the total

sequencing depth vary, but the average number of reads (or UMIs) in each cell is fixed. For

every sequencing depth and cell number, scDesign2 generates a synthetic dataset.

To guide the choices of sequencing depth and cell number based on rare-cell-type detection

accuracy, we apply two popular methods—FiRE [96] and GiniClust2 [95]—to the synthetic

datasets and evaluate four accuracy measures: precision (the percentage of truly rare cells

among the detected rare cells), recall (the percentage of detected rare cells among the truly

rare cells), F1-score (the harmonic mean of the precision and recall), and AUPRC (the area

under the precision-recall curve). Since GiniClust2 does not allow adjustment of its detection

threshold, we cannot calculate its AUPRC. However, as most users of FiRE would stick with

its default threshold, the AUPRC measure is not as informative as the other three measures

from a user’s perspective.

For the first, varying-sequencing-depth scenario, we expect that the detection accuracy
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would improve as the sequencing depth increases and there would be a saturation effect,

similar to our expectation for cell clustering. The detection accuracy of FiRE and Gini-

Clust2 roughly confirm our expectation. Across twelve sequencing depths ranging from 1.76

to 3612.4 million UMIs (with the cell number fixed as 3793, the number of cells in real data),

we observe an overall trend of increasing detection accuracy with few exceptions (Fig. 3.10).

For FiRE, its accuracy exhibits saturation after the sequencing depth reaches 457.23 million

UMIs (Fig. 3.10a & c), while for GiniClust2 the saturation occurs earlier at a sequencing

depth of 113.05 million UMIs (Fig. 3.10b & d). The t-SNE visualization supports the ob-

served trends of precision and recall. In each t-SNE plot that corresponds to one sequencing

depth and one detection method (FiRE or GiniClust2), synthetic cells are labelled as one

of four types: true positive (TP; the rare cells correctly detected), false positive (FP; the

unrare cells falsely detected), false negative (FN; the rare cells falsely undetected), and true

negative (TN; the unrare cells correctly undetected). The numbers of TP, FP, FN, and TN

cells determine the precision and recall: a large precision requires many TP cells and few FP

cells; a large recall requires many TP cells and few FN cells. Notably, the abnormal accuracy

of GiniClust2 at 457.23 million UMIs (Fig. 3.10d) is explained by the t-SNE visualization

(Fig. 3.10b), which shows that GiniClust2 misidentifies the second largest cell cluster as the

rare cell type, leads to many FP and FN cells, and results in close to zero precision and re-

call. Combining the FiRE and GiniClust2 results, we conclude that the real data sequencing

depth at 28.57 million UMIs for 3793 cells is not optimal for detecting the rare cell type Tuft

(Fig. 3.10c–d). If budget allows, we would recommend increasing the sequencing depth to

113.06 million UMIs and use GiniClust2 to detect tuft cells.

For the second, varying-cell-number scenario, we expect the detection accuracy to first

increase and then decrease as the cell number increases, similar to our expectation for cell

clustering. Again, the detection accuracy of FiRE and GiniClust2 confirm our expectation.

Across thirteen cell numbers ranging from 29 to 121,376 (with the sequencing depth fixed

as 28.57 million UMIs, the same as in real data), we observe an overall trend of detection

accuracy that first increases and then decreases (Fig. 3.11). For both FiRE and GiniClust2,

their F1-scores are optimal at 1,896 cells (Fig. 3.11c–d). This optimality is supported by the
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t-SNE visualization, which shows a plot of synthetic cells with TP, FP, FN, and TN labels

for every cell number and each detection method (Fig. 3.11a–b). Hence, the real data cell

number 3793 is not optimal for detecting tuft cells given the total sequencing depth of 28.57

million UMIs. If the detection of tuft cells is a primary goal and the sequencing depth cannot

be increased due to budget constraints, we would recommend decreasing the cell number of

1896 cells and use GiniClust2 to detect tuft cells.

For the third, fixing-average-sequencing-depth scenario, we expect the detection accuracy

to first increase and then saturate as the cell number increases, similar to our expectation

for cell clustering. The detection accuracy of FiRE roughly confirms our expectation, while

the detection accuracy of GiniClust2 deviates from this trend (Fig. 3.12). For FiRE, across

thirteen cell numbers ranging from 29 to 121,376 (with the average sequencing depth fixed as

7.53k UMIs per cell, the same as in real data), the F1-score reaches an early local maximum

at 474 cells, and then stays relatively stable. A similar trend can be seen for the other

three accuracy measures: precision, recall, and AUPRC. For GiniClust2, across nine cell

numbers ranging from 29 to 7,586, the F1-score reaches a global maximum at 237 cells, and

then it decreases as the cell number further increases. This is mainly due to the increasing

proportion of FPs in the discovered rare cells, as indicated by the plunging precision curve.

The recall, on the other hand, stays relatively stable after the optimal cell number. The

t-SNE visualization supports the observed trends of these accuracy measures. For example,

we can see that for GiniClust2, when the cell number reaches 1000, more cells are labelled

as FP, as shown in subpanels (4)-(6) of Fig. 3.12b. In summary, if the goal is to detect tuft

cells and the average sequencing depth is fixed as 7.53k UMIs per cell, we recommend using

GiniClust2 and decreasing the number of cells to 237.

In addition to assisting experimental design, scDesign2 also provides an objective com-

parison of FiRE and GiniClust2 across sequencing depths and cell numbers. Figs. 3.10–3.12

show that GiniClust2 has much better accuracy than FiRE at close-to-optimal sequencing

depths and cell numbers. However, FiRE is a more robust method that it can successfully

run at all sequencing depths and cell numbers, while GiniClust2 fails when the cell number

is too small or too large (GiniClust3 may have addressed this large-cell-number issue [132]).
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This finding is consistent with the methodological difference between the two methods: FiRE

detects rare cells via an outlier detection approach, while GiniClust2 first performs cell clus-

tering and then identifies the cells in small clusters as rare cells. The requirement of cell

clustering explains why GiniClust2 fails when the cells exhibit no clear clusters and why it

works well when rare cells form small clear clusters. In contrast, outlier detection has no

requirement on cluster patterns, and this explains why FiRE is robust.

3.3 Discussion

In this article, we propose scDesign2, a transparent simulator for single-cell gene expression

count data. Our development of scDesign2 is motivated by the pressing challenge to generate

realistic synthetic data for various scRNA-seq protocols and other single-cell gene expres-

sion count-based technologies. Unlike existing simulators including our previous simulator

scDesign, scDesign2 achieves six properties: protocol adaptiveness, gene preservation, gene

correlation capture, flexible cell number and sequencing depth choices, transparency, and

computational and sample efficiency. This achievement of scDesign2 is enabled by its unique

use of the copula statistical framework, which combines marginal distributions of individual

genes and the global correlation structure among genes. As a result, scDesign2 has the fol-

lowing methodological advantages that contribute to its high degree of transparency. First,

it selects a marginal distribution from four options (Poisson, ZIP, NB, and ZINB) for each

gene in a data-driven manner to best capture and summarize the expression characteristics

of that gene. Second, it uses a Gaussian copula to estimate gene correlations, which will

be used to generate synthetic single-cell gene expression counts that preserve the correla-

tion structures. Third, it can generate gene expression counts according to user-specified

sequencing depth and cell number.

We have performed a comprehensive set of benchmarking and real data studies to evaluate

scDesign2 in terms of its accuracy in generating synthetic data and its efficacy in guiding

experimental design and benchmarking computational methods. Based on four scRNA-

seq protocols and 12 cell types, our benchmarking results demonstrate that scDesign2 better
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captures gene expression characteristics in real data than eight existing scRNA-seq simulators

do. In particular, among the four simulators that aim to preserve gene correlations, scDesign2

achieves the best accuracy. Moreover, we demonstrate the capacity of scDesign2 in generating

synthetic data of other single-cell count-based technologies including MERFISH or pciSeq,

two single-cell spatial transcriptomics technologies. After validating the realistic nature of

synthetic data generated by scDesign2, we use real data applications to demonstrate how

scDesign2 can guide the selection of cell number and sequencing depth in experimental

design, as well as how scDesign2 can benchmark computational methods for cell clustering

and rare cell type identification.

Since scRNA-seq data typically contain tens of thousands of genes, the estimation of the

copula gene correlation matrix is a high dimensional problem. This problem can be partially

avoided by only estimating the copula correlation matrix of thousands of moderately to

highly expressed genes. We use a simulation study to demonstrate why this approach is

reasonable (Supplementary Figs. 3.54 and 3.55), and a more detailed discussion is in the

Methods section. To summarize, the simulation results suggest that, to reach an average

estimation accuracy of ˘0.3 of true correlation values among the top 1000 highly expressed

genes, at least 20 cells are needed. To reach an accuracy level of ˘0.2 for the top 1500 highly

expressed genes, at least 50 cells are needed. With 100 cells, an accuracy level of ˘0.1 can

be reached for the top 200 highly expressed genes, and a slightly worse accuracy level can

be reached for the top 2000 genes.

In the implementation of the scDesign2 R package, we control the number of genes

for which copula correlations need to be estimated by filtering out the genes whose zero

proportions exceed a user-specified cutoff. For all the results in this paper, the cutoff is set

as 0.8. In Supplementary Table S3.2, we summarize the number of cells (n), i.e., the sample

size, and the number of genes included for copula correlation estimation (p) in each of the 12

datasets used for benchmarking simulators. Based on Supplementary Figs. 3.54 and 3.55, we

see that p appears to be too large for the CEL-Seq2, Fluidigm C1, and Smart-Seq2 datasets.

This suggests that the results in this paper may be further improved by setting a more

stringent cutoff for gene selection.
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For future methodological improvement, there are other ways to address this high-

dimensional estimation problem. For example, we can consider implementing sparse estima-

tion (e.g., [133]) for the copula correlation matrix. Moreover, we can build a hierarchical

model to borrow information across cell types/clusters. This will be useful for improving the

model fitting for small cell types/clusters that may share similar gene correlation structures.

The current implementation of scDesign2 is restricted to single-cell datasets composed of

discrete cell types, because the generative model of scDesign2 assumes that cells of the same

type follow the same distribution of gene expression. However, many single-cell datasets

exhibit continuous cell trajectories instead of discrete cell types. A nice property of the

probabilistic model used in scDesign2 is that it is generalizable to account for continuous cell

trajectories. First, we can use the Generalized Additive Model (GAM) [134–136] to model

each gene’s marginal distribution of expression as a function of cell pseudotime, which can be

computationally inferred from real data [28, 29, 100]. Second, the copula framework can be

used to incorporate gene correlation structures along the cell pseudotime. Combining these

two steps into a generative model, this extension of scDesign2 has the potential to overcome

the current challenge in preserving gene correlations encountered by existing simulators for

single-cell trajectory data, such as Splatter Path [108], dyngen [137], and PROSSTT [107].

Another note is that scDesign2 does not generate synthetic cells based on outlier cells that do

not cluster well with any cells in well-formed clusters. This is not necessarily a disadvantage,

neither is it a unique feature to scDesign2. In fact, all model-based simulators that learn

a generative model from real data must ignore certain outlier cells that do not fit well to

their model. Some outlier cells could either represent an extremely rare cell type or are just

“doublets” [138–141], artifacts resulted from single-cell sequencing experiments. Hence, our

stance is that ignorance of outlier cells is a sacrifice that every simulator has to make; the

open question is the degree to which outlier cells should be ignored, and proper answers to

this question must resort to statistical model selection principles.

Regarding the use of scDesign2 to guide the design of scRNA-seq experiments, although

scDesign2 can model and simulate data from different scRNA-seq protocols and other single-

cell expression count-based technologies, the current scDesign2 implementation is not yet
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applicable to cross-protocol data generation (i.e., training scDesign2 on real data of one pro-

tocol and generating synthetic data for another protocol) because of complicated differences

in data characteristics among protocols. To demonstrate this issue, we use a multi-protocol

dataset of peripheral blood mononuclear cells (PBMCs) generated for benchmarking pur-

poses [74]. We select data of five cell types measured by three protocols, 10x Genomics,

Drop-Seq, and Smart-Seq2, and we train scDesign2 on the 10x Genomics data. Then we

adjust the fitted scDesign2 model for the Drop-Seq and Smart-Seq2 protocols by rescaling

the mean parameters in the fitted model to account for the total sequencing depth and cell

number, which are protocol-specific (see Methods for details). After the adjustment, we use

the model for each protocol to generate synthetic data. Supplementary Fig. 3.56 illustrates

the comparison of real data and synthetic data for each protocol. From the comparison, we

observe that the synthetic cells do not mix well with the real cells for the two cross-protocol

scenarios; only for 10x Genomics, the same-protocol scenario, do the synthetic cells mix well

with the real cells.

To further illustrate the different data characteristics of different protocols, we compare

individual genes’ mean expression levels in the aforementioned three protocols. We refer

to Drop-Seq and Smart-Seq2 as the target protocols, and 10x Genomics as the reference

protocol. First, we randomly partition the two target-protocol datasets and the reference-

protocol dataset into two halves each; we repeat the partitions for 100 times and collect

100 sets of partial datasets, with each set containing two target-protocol partial datasets

(one Drop-Seq and one Smart-Seq2) and two reference-protocol partial datasets (split from

the 10x-Genomics dataset)—one of the latter is randomly picked and referred to as the

“reference data.” Second, For every gene in each cell type, we take each set of partial datasets

and compute two cross-protocol ratios, defined as the gene’s mean expression levels in the

target-protocol partial datasets divided by its mean expression level in the reference data,

and a within-protocol ratio, defined as the ratio of the gene’s mean expression level in the

other reference-protocol partial dataset divided by that in the reference data; together, with

the 100 sets of partial dataset, every gene in each cell type has 100 ratios for each of the two

cross-protocol comparisons and 100 ratios for the within-protocol comparison. We apply this
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procedure to the top 50 and 2000 highly expressed genes in five cell types. Supplementary

Figs. 3.57 and 3.58 show that, with the within-protocol ratios as a baseline control for each

cell type and each target protocol, the cross-protocol ratios exhibit a strongly gene-specific

pattern; moreover, there is no monotone relationship between the cross-protocol ratios and

the mean expression levels of genes. This result confirms that there does not exist a single

scaling factor to convert all genes’ expression levels from one protocol to another. However,

an interesting phenomenon is that, for each target protocol, the cross-protocol ratios have

similar patterns across cell types. This phenomenon sheds light on a future research direction

of cross-protocol simulation for the cell types that exist in only one protocol, if the two

protocols have shared cell types. In this scenario, we may train a model for each cell type

in each protocol, learn a gene-specific but cell-type-invariant scaling factor from the shared

cell types, and simulate data for the cell types missing in one protocol.

We note that the above analysis is only conducted for the genes’ mean expression levels.

The difficulty of cross-protocol simulation is in fact even larger because realistic simulation

requires the rescaling of the other distributional parameter(s) in a two-parameter distribution

such as NB and ZIP or a three-parameter distribution such as ZINB. Existing work has

provided extensive empirical evidence on the vast differences between protocols in terms of

data characteristics [26, 123].

In applications 2 and 3, we have demonstrated how to use scDesign2 to guide experimen-

tal design and benchmark computational methods for the tasks of cell clustering and rare

cell type detection. Note that in these analyses, the optimized sequencing depths and cell

numbers are only applicable to the same experimental protocols and biological samples. Yet,

this limitation does not disqualify scDesign2 as a useful tool to guide experimental design.

For example, researchers usually perform a coarse-grained, low-budget experiment to obtain

a preliminary dataset, and then they may use scDesign2 to guide the optimal design of the

later, more refined experiment. As another example, if scRNA-seq data need to be collected

from many individuals, researchers usually first perform a pilot study on a small number

of individuals. Then they may train scDesign2 using the pilot data to guide the design of

the subsequent, large-scale experiments. Moreover, in addition to guiding the experimental
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design, scDesign2 is useful as a general benchmarking tool for various experimental proto-

cols and computational methods. For example, the analyses we performed in applications

2 and 3 are easily generalizable to other computational methods for a more comprehensive

benchmarking.

Although we only use cell clustering and rare cell type detection to demonstrate scDe-

sign2’s use in guiding experimental design and benchmarking computational methods, we

want to emphasize that scDesign2 has broad applications beyond these two tasks. Inheriting

the flexible and transparent modeling nature of our previous simulator scDesign, scDesign2

can also benchmark other computational analyses we have demonstrated in our scDesign

paper [87], including differential gene expression analysis and cell dimensionality reduction.

Moreover, beyond its role as a simulator, scDesign2 may benefit single-cell gene expression

data analysis by providing its estimated parameters about gene expression and gene corre-

lations. Here we discuss three potential directions. First, scDesign2 can assist differential

gene expression analysis. Its estimated marginal distributions of individual genes in different

cell types can be used to investigate more general patterns of differential expression (such as

different variances and different zero proportions), in addition to comparing gene expression

means between two groups of cells [142]. Second, its estimated gene correlation structures

can be used to construct cell-type-specific gene networks [143] and incorporated into gene

set enrichment analysis to enhance statistical power [144, 145]. Third, scDesign2 has the

potential to improve the alignment of cells from multiple single-cell datasets [146]. Its esti-

mated gene expression parameters can guide the calculation of cell type or cluster similarities

between batches, and its estimated gene correlation structures can be used to align cell types

or clusters across batches based on the similarity in gene correlation structures. [147].
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3.4 Methods

3.4.1 The statistical framework of scDesign2

3.4.1.1 Fitting a generative model of single-cell gene expression count data with

gene correlations

Given an scRNA-seq count matrix X P Npˆn with p genes and n cells, we assume that the n

cells belong to K cell types and that the cell memberships have been assigned by clustering,

labeled by marker genes, or known in advance. (For input data without pre-defined cell

types, our recommendation for cell clustering is in two subsections.) Our goal is to fit a

parametric count model to characterize the joint distribution of genes’ counts in each cell

type. For cell type k, We denote its number of cells by npkq, its count sub-matrix by Xpkq,

and its set of model parameters by Θpkq, k “ 1, . . . , K. For simplicity of notation, we drop

the superscript pkq in the following discussion about the generative model for one single cell

type.

We denote X¨j “ pX1j, . . . , Xpjq
T P Rp as a random p-dimensional gene count vector

in cell j, j “ 1, . . . , n. We denote its realization, i.e., the observed gene count vector

as the j-th column in X, by x¨j “ px1j, . . . , xpjq
T. Jointly for the p genes, we assume

that X¨j independently follows a p-dimensional distribution F , which we will specify by a

copula in the next paragraph. Marginally for each gene i, we assume that Xij independently

follows a univariate count distribution Fi. For example, if Fi is the ZINB distribution,

we write Xij
ind
„ ZINBppi, ψi, µiq, which can be interpreted as a hierarchical model: (1)

Zij
ind
„ Berppiq is a hidden latent variable indicating whether gene i drops out in cell j; (2)

Xij|Zij
ind
„ 10Zij ` NBpψi, µiqp1 ´ Zijq, where 10 indicates a point mass at 0. That is,

EpXij|Zij “ 0q “ µi , VarpXij|Zij “ 0q “ µi `
µ2
i

ψi

.

Note that the Zij’s are unobserved and introduced only to describe the zero-inflation com-

ponent. The Poisson, the zero-inflated Poisson (ZIP), and the negative binomial (NB) dis-

tributions are three special cases of the ZINB distribution, where pi “ 0 for Poisson and
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NB, and ψi “ 8 for Poisson and ZIP. From these four distributions, scDesign2 automat-

ically chooses the one that best fits to gene i’s observed counts. Specifically, for the i-th

row of X, xi¨ “ pxi1, . . . , xinqT, if its sample mean x̄i¨ “ n´1
řn

j“1 xij ě its sample variance

σ̂2
i “ pn ´ 1q´1

řn
j“1pxij ´ xi¨q

2, i.e., there is no over-dispersion, scDesign2 fits the Pois-

son and the ZIP distributions separately to xi¨ by maximum likelihood estimation (MLE),

and then performs a likelihood ratio test with χ2
1 as the null distribution to determine if

zero-inflation is significant, i.e., the ZIP distribution should be chosen over the Poisson dis-

tribution. Otherwise if there is over-dispersion, i.e., x̄i¨ ă σ̂2
i , scDesign2 fits the NB and

the ZINB distributions separately to xi¨ by MLE and then performs a likelihood ratio test

with χ2
1 as the null distribution to determine if zero-inflation is significant, i.e., the ZINB

distribution should be chosen over the NB distribution. The default significance level (i.e.,

p-value cutoff) for both tests is 0.05.

After estimating the marginal distributions of the p genes, i.e., F1, . . . , Fp, scDesign2 uses

a copula to model the joint p-dimensional distribution F . A copula is defined as a joint cumu-

lative distribution function (CDF), Cp¨q : r0, 1sp Ñ r0, 1s, which includes p uniform marginal

distributions on r0, 1s. That is, C is the CDF of a random vector U “ pU1, . . . , UpqT P r0, 1sp,

with Ui „ Uniformr0, 1s, i “ 1, . . . , p. For cell j’s gene count vector X¨j P Rp, although its

i-th component Xij may not follow the Uniformr0, 1s distribution, we can transform Xij by

applying the marginal CDF Fi so that FipXijq „ Uniformr0, 1s. This allows us to write the

joint CDF F as

F px1j, . . . , xpjq “ CpF1px1jq, . . . , Fppxpjqq ,

which is decomposable into the copula C and the marginal distributions F1, . . . , Fp. Sklar’s

theorem states that such a decomposition exists uniquely for any continuous distribution F

[148]. If F is discrete in any dimension, the copula C still exists but may not be unique,

i.e., not identifiable [149, 150]. To resolve this unidentifiability issue, scDesign2 uses the

technique of distributional transform [151]: first draw Vij „ Uniformr0, 1s independently for
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i “ 1, . . . , p and j “ 1, . . . , n; second define Uij as

Uij “ p1 ´ VijqFipXij ´ 1q ` VijFipXijq . (3.1)

The effect of this transform is illustrated in Supplementary Fig. 3.59. Essentially, for a

discrete random variableXij with CDF Fi, this transform distributes the non-zero probability

mass Xij has at every value x uniformly to the interval rx, x ` 1q, thus transforming the

discrete CDF Fi to a continuous CDF F̃i as

F̃ipyq “ Fiptyu ´ 1q ` py ´ tyuq pFiptyuq ´ Fiptyu ´ 1qq ,

where tyu denotes the largest integer no greater than y.

With Vij and Xij, if we define

X̃ij “ Xij ` Vij , (3.2)

then the probability density function of X̃ij is

f̃pyq “ PrpXij “ tyu, Vij “ y ´ tyuq “ PrpXij “ tyuq “ Fiptyuq ´ Fiptyu ´ 1q ,

and the CDF of X̃ij is

ż y

´8

f̃ptqdt “ Fiptyu ´ 1q ` py ´ tyuq pFiptyuq ´ Fiptyu ´ 1qq .

Hence, X̃ij „ F̃i; that is, the continuous random variable X̃ij constructed from Xij and Vij

follows F̃i. Defining Uij “ F̃ipX̃ijq, we have Uij „ Uniformr0, 1s and

Uij “ F̃ipXij ` Vijq “ FipXij ´ 1q ` Vij pFipXijq ´ FipXij ´ 1qq

“ p1 ´ VijqFipXij ´ 1q ` VijFipXijq ,

which is (3.1). This proves that Uij constructed by (3.1) follows Uniformr0, 1s and is thus

desirable.
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After this transform, the CDF F of X¨j is defined as the copula C of U¨j “ pU1j, . . . , Upjq
T:

F px1j, . . . , xpjq “ Cpu1j, . . . , upjq ,

where pu1j, . . . , upjq
T is a realization of pU1j, . . . , Upjq

T. In scDesign2, we choose C as the

Gaussian copula. Denoting by Φ the CDF of a standard Gaussian distribution, we define F

as

F px1j, . . . , xpjq “ ΦppΦ´1
pu1jq, . . . ,Φ

´1
pupjq;Rq

where Φpp¨;Rq is the CDF of a p-dimensional Gaussian distribution with a zero mean vector

and a covariance matrix that is equal to the correlation matrix R. If we denote Rhl as the

Gaussian copula correlation between genes h and l, i.e., the ph, lq-th entry of R, and τhl as

the Kendall’s tau between the same two genes on the original scale, i.e., τhl “ τpXhj, Xlhq,

then we have the following relationship [152, 153],

Rhl “ sin
´π

2
τhl

¯

.

This relationship links the copula correlation with the Kendall’s tau of the two original

variables, thus providing an interpretation of the copula correlation. It also suggests that R

can be estimated by plugging the sample tau matrix into the above formula; however, this

estimate of R may not always be positive semidefinite [154, 155]. Therefore, we use another

procedure to estimate R.

Denote by pp̂i, ψ̂i, µ̂iq the estimated parameters of Fi, which specify a fitted marginal

distribution pFi. We sample v˚
ij from Uniformr0, 1s independently for i “ 1, . . . , p and j “

1, . . . , n, and we calculate u˚
ij as

u˚
ij “ v˚

ij
pFipxij ´ 1q ` p1 ´ v˚

ijq
pFipxijq .

Then we estimate R by the sample covariance matrix pR of
`

Φ´1pu˚
1jq, . . . ,Φ

´1pu˚
pjq

˘T
, j “
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1, . . . , n.

As a side note, since this estimation procedure requires the random sampling of v˚
ij’s, it

introduces additional randomness into the estimation of R; that is, pR is not a deterministic

function of data. However, this additional randomness has a negligible effect on the synthetic

data. As demonstrated in Supplementary Fig. 3.60, the gene correlation matrices estimated

from synthetic data generated by scDesign2, with pR estimated under two different random

samples of v˚
ij’s, are very similar to each other.

To summarize, scDesign2 first estimate the marginal distributions F1, . . . , Fp as pF1, . . . , pFp,

each of which may be a fitted Poisson, ZIP, NB, or ZINB distribution. Then scDesign2 cal-

culates u˚
ij’s as described above and estimates a p ˆ p covariance matrix as pR. Finally,

scDesign2 estimates the p-dimensional joint distribution F as

pF px1j, . . . , xpjq “ ΦppΦ´1
pu˚

1jq, . . . ,Φ
´1

pu˚
pjq;

pRq ,

whose estimated model parameters are pΘ “ tp̂1, ψ̂1, µ̂1, . . . , p̂p, ψ̂p, µ̂p, pRu.

As a practical note, since the data matrix X typically contains tens of thousands of genes,

if the sample size, i.e., the number of cells is not large enough, the estimation of the copula

correlation matrix can be problematic [133]. Moreover, many genes are too lowly expressed

to be detected in scRNA-seq data, making their correlations uninteresting to estimate. For

these two reasons, we argue that the copula correlations should only be estimated for a

subset of moderately to highly expressed genes.

In Supplementary Figs. 3.54 and 3.55, we analyze how n (the sample size, i.e., the number

of cells) and p (the number of top expressed genes included) affect the estimation of the

copula correlation matrix. We use two example datasets: the stem cell data generated by

the 10x Genomics protocol and the dendrocyte (subtype 1) data generated by the Smart-Seq2

protocol. For each dataset, we extract the fitted Gaussian copula model for the top 2000

genes with the highest mean expression levels, and we use this model as the ground truth

model to generate 1000 samples with a varying n. Then we estimate the copula correlation

matrix of a varying p from each sample. For computational efficiency, we use the plug-in
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estimation method based on sample tau values: R̂hl “ sin pπ
2
τ̂hlq. Finally, we calculate the

mean squared error (MSE) between the estimated copula correlations and the true copula

correlations. That is, for each n and p, we have 1000 MSE values.

In Supplementary Figs. 3.54 and 3.55, from panel (a), we can see that MSEs decrease

as n increases. From panel (b), we can see that MSEs increase as p increases, i.e., more

lowly expressed genes are included. To ease the interpretation of the results, we mark three

horizontal lines at MSE “ 0.09, 0.04, and 0.01 to represent three levels of estimation quality.

On the scale of correlation values, these three levels indicate that on average the estimated

values are within ˘0.3, ˘0.2, and ˘0.1 of the true values. The results suggest that to reach

the ˘0.3 level of estimation quality, a reasonable choice of n is at least 20, and the top 1000

highly expressed genes can be included. To reach the ˘0.2 level, a reasonable choice of n is

at least 50, and the top 1500 highly expressed genes can be included. For n “ 100, the ˘0.1

level can be reached for the top 100-200 highly expressed genes, and even the error level for

the top 2000 is close to this level. The results confirm that sample size is not a concern for

single-cell data because most cell types contain at least a hundred cells that can be measured

by current protocols.

In the implementation of the scDesign2 R package, before fitting the above generative

model for each cell type, scDesign2 partitions the genes into three groups: the first group

containing genes with zero proportions less than a cutoff (default 0.8, but can be changed

according to the discussion above), the second group containing genes with zero proportions

between the cutoff and pn ´ 2q{n, where n is the number of cells, and the last group in-

cluding the remaining genes, i.e., genes expressed in fewer than three cells. For the first

group, scDesign2 fits the above generative model jointly for its genes. For the second group,

scDesign2 fits a marginal distribution for each individual gene. For the last group, scDesign2

only generates zero counts for all its genes.
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3.4.1.2 Generation of synthetic single-cell gene expression count data

To generate synthetic scRNA-seq data for K cell types, scDesign2 first estimates the pro-

portions of K cell types from the real scRNA-seq count matrix X, for which we denote the

number of reads mapped to the npkq cells of type k as N pkq, and the total number of reads

mapped to all the n cells as N “
řK

k“1N
pkq. Denoting the cell type proportions as π “

pπp1q, . . . , πpKqqT such that
řK

k“1 π
pkq “ 1, scDesign2 estimates them by π̂ “ pπ̂p1q, . . . , π̂pKqqT,

where

π̂pkq
“
npkq

n
, k “ 1, . . . , K.

We denote the synthetic scRNA-seq data to be generated as X1, which contains n1 cells

and N 1 expected number of reads, with n1 and N 1 as user-specified input parameters of

scDesign2. Denoting the number of synthetic cells of type k as npkq1, scDesign2 draws

the numbers of synthetic cells of all K cell types from a multinomial distribution, i.e.,

pnp1q1

, . . . , npKq1

qT „ Multinomialpn1, π̂q. Then given npkq1

, the expected number of reads

assigned to cell type k in X1 should be

N pkq0
“
N pkq

npkq
npkq1

, k “ 1, . . . , K .

However, given the constraint that the expected total number of reads in X1 is N 1, we need

to rescale N pkq0 to

N pkq1
“

N pkq0

řK
s“1N

psq0
N 1, k “ 1, . . . , K .

As a result, the scaling factor is

r “
N pkq1

N pkq0
“

N 1

řK
s“1N

psq0
,

which does not depend on the cell type, and scDesign2 uses this scaling factor to rescale the

mean parameter of every gene.
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Given the fitted generative model pF pkq for cell type k with parameters

pΘpkq
“ tp̂

pkq

1 , ψ̂
pkq

1 , µ̂
pkq

1 , . . . , p̂pkq
p , ψ̂pkq

p , µ̂pkq
p , pRpkq

u , k “ 1 . . . , K ,

and the scaling factor r, scDesign2 generates npkq1 synthetic cells from a rescaled model pF pkq1,

which is defined by parameters

pΘpkq1
“ tp̂

pkq

1 , ψ̂
pkq

1 , rµ̂
pkq

1 , . . . , p̂pkq
p , ψ̂pkq

p , rµ̂pkq
p , pRpkq

u , k “ 1 . . . , K ,

Concretely, how the data generation works is that scDesign2 first draws npkq1 vectors, denoted

as z
pkq

¨j
1 P Rp; j “ 1, . . . , npkq1, independently from Φpp¨; pRpkqq. Then scDesign2 converts z

pkq

ij
1

to x
pkq

ij
1 by setting x

pkq

ij
1 to be the Φpz

pkq

ij
1q-th quantile of pF

pkq

i
1, i.e., ZINBpp̂

pkq

i , ψ̂
pkq

i , rµ̂
pkq

i q

(including the Poisson, ZIP, and NB distributions as special cases), i “ 1, . . . , p. Finally,

scDesign2 outputs the synthetic count matrix X1 “ rXp1q1 ¨ ¨ ¨XpKq1s, where Xpkq1 “ px
pkq

ij
1q is

a p ˆ npkq1 matrix for cell type k.

Note that the synthetic count matrix X1 does not contain exactly N 1 reads; rather, N 1

is the expected total number of reads. We think this setting mimics a real sequencing

experiment, where the total number of sequenced reads would not be exactly the same as

the preset sequencing depth N 1 due to experimental randomness.

3.4.1.3 Recommendation for cell clustering when input data do not have la-

belled cell types

If users would like to train scDesign2 on a gene-by-cell count matrix without cell type labels,

a necessary preceding step is cell clustering. We recommend users to choose a state-of-the-art

cell clustering method such as Seurat and SC3. For the resulting clusters, we recommend

users to visualize them by t-SNE or UMAP and use a goodness-of-fit measure (e.g., Pearson’s

chi-square statistic and ROGUE score [124]) to check whether each gene approximately

follows a NB or ZINB distribution in a cell cluster. This check will guide users to decide on

an appropriate number of cell clusters in a data-driven way.
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3.4.2 The scDesign2 variant without copula

The only difference between this variant “w/o copula” and scDesign2 is that this variant

assumes the p genes to have independent marginal distributions F1, . . . , Fp. The fitting of

the p marginal distributions and the generation of synthetic data is the same as those in

scDesign2.

3.4.3 Existing simulators

‚ scDesign: The R package scDesign version 1.0.0 is used for the analysis.

‚ scGAN: This method is executed from this github repository https://github.com/

imsb-uke/scGAN, downloaded around March 29, 2020.

‚ splat, splat simple, kersplat: These methods are executed from the R packge

splatter version 1.10.1.

‚ SPARSim: The R package SPARSim version 0.9.5 is used for the analysis.

‚ SymSim: The R package SymSim version 0.0.0.9000 is used for the analysis.

‚ ZINB-WaVE: The ZINB-WaVE method is used from the wrapper functions in the

R package splatter version 1.10.1.

‚ scDesign: The R package scDesign version 1.0.0 is used for the analysis.

3.4.4 Dimensionality reduction methods

‚ t-SNE: The R package Rtsne version 0.15 is used for generating t-SNE plots. The

function Rtsne is used, with all parameters set to default, except check duplicate =

FALSE and perplexity is changed from the default value of 30 to one third of the

sample size when the sample size (total number of cells) is less than 90.

‚ PCA: The R function prcomp() is used for generating PCA plots, with parameters set

as default.
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3.4.5 Cell clustering methods

‚ Seurat: The Seurat clustering method is executed by the following instruction in this

tutorial https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html. R package

Seurat version 3.1.5 is used for the analysis.

‚ SC3: The SC3 clustering method is executed by the following instruction in this tuto-

rial https://www.bioconductor.org/packages/release/bioc/vignettes/SC3/inst/

doc/SC3.html. R package SC3 version 1.14.0 is used for the analysis.

3.4.6 Rare cell type detection methods

‚ FiRE: The FiRE method is executed by the following instruction in this tutorial

https://github.com/princethewinner/FiRE. R package FiRE version 1.0 is used

for the analysis.

‚ GiniClust2: This method is executed from this github repository https://github.

com/dtsoucas/GiniClust2 downloaded around March 4, 2020. It is executed based

on the reference manual in this repository, except no cells are filtered.

3.4.7 Datasets

‚ 10x Genomics: The 10x Genomics dataset measures the mouse intestinal epithelial

tissue [119]. The raw count dataset is downloaded from Gene Expression Omnibus

(GEO) with accession number GSE92332. Data for cell types Stem, Goblet, Tuft,

Transit Amplifying Early (TA Early), Enterocyte Progenitor and Enterocyte Progeni-

tor Early were selected for analysis. Spike-in RNA counts were filtered. The resulting

count matrix contains 15962 genes and 3793 cells.

‚ CEL-Seq2: The CEL-Seq2 dataset measures the human pancreas [120]. The raw

count dataset is downloaded from GEO with accession number GSE85241. Data for

cell types alpha, beta, acinar, delta, duct, endothelial, mesenchymal and pancreatic

polypeptide cell (pp) were selected for analysis. Spike-in RNA counts were filtered.
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The resulting count matrix contains 19049 genes and 2279 cells.

‚ Fluidigm C1: The Fluidigm C1 dataset measures human brain cells [121]. The raw

count dataset is downloaded from GEO with accession number GSE67835. Data for

cell types astrocytes, endothelial, fetal quiescent, hybrid neurons, oligodendrocytes and

oligodendrocyte precursor cell (OPC) were selected for analysis. The resulting count

matrix contains 22088 genes and 317 cells.

‚ Smart-Seq2: The Smart-Seq2 dataset measures human blood dendritic cells [122].

The raw count dataset is downloaded from GEO with accession number GSE94820.

Data for dendrocyte subtypes 1–6 and monocyte subtypes 1–4 were selected for anal-

ysis. Spike-in RNA counts were filtered. The resulting count matrix contains 26586

genes and 1078 cells.

‚ MERFISH: The MERFISH dataset measures the mouse hypothalamic preoptic region

[127]. The raw count dataset is downloaded from Dryad (https://datadryad.org/

stash/dataset/doi:10.5061/dryad.8t8s248). It contains 155 genes and 6412 cells.

Cell subtypes are combined into cell types, e.g., “Endothelial 1” and “Endothelial 2”

are combined as “Endothelial”, resulting in nine cell types in total.

‚ pciSeq: The pciSeq dataset measures the mouse hippocampal area CA1 [128]. The raw

data “cells left CA1 3-1” are downloaded from https://su.figshare.com/articles/

pciSeq_files_in_csv_format/10318610/1. Gene expression values are rounded as

integers, and cell subtypes are combined into cell types, e.g., “Astro.1” to “Astro.5” are

combined as “Astro”. The cell type “Zero” is removed as it contains cells with almost

no genes expressed, so seven cell types are retained. The processed data contain 84

genes and 2253 cells.

3.5 Software and code

The scDesign2 R package is available at https://github.com/JSB-UCLA/scDesign2. The

source code and data for reproducing the results are available at https://doi.org/10.
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3.7 Tables

Simulator
Property

1 2 3 4 5 6
protocol gene gene cor. cell num. trans- comp. &
adaptive preserved captured seq. dep. parent sample

flexible efficient

dyngen [137] ✓ – ✗ ✗ ✓ – ✓ ✓
Lun2 [156] ✓ – ✓ ✗ ✓ ✓ ✓
powsimR [114] ✓ ✓ ✗ ✓ ✓ ✓
PROSST [107] ✓ – ✓ ✗ ✓ – ✓ ✓
scDD [113] ✓ ✗ ✗ ✓ – ✓ ✓
scDesign [87] ✓ ✓ – ✗ ✓ ✓ ✓
scGAN [111] ✓ ✓ ✓ – ✓ – ✗ ✗

splat simple [108] ✓ ✗ ✗ ✗ ✓ ✓
splat [108] ✓ ✗ ✗ ✗ ✓ ✓
kersplat [108] ✓ ✗ ✓ – ✗ ✓ ✓
SPARSim [110] ✓ ✓ ✓ – ✗ ✓ ✓
SymSim [109] ✓ ✗ ✗ ✗ ✓ ✓
ZINB-WaVE [24] ✓ ✓ – ✓ – ✗ ✓ ✓
SERGIO [115] ✓ ✓ – ✗˚ ✓ ✓ ✓
scDesign2 ✓ ✓ ✓ ✓ ✓ ✓

Property 1: protocol adaptiveness;
Property 2: gene preservation;
Property 3: gene correlation capture;
Property 4: flexible cell number and sequencing depth choices;
Property 5: transparency;
Property 6: computational and sample efficiency.
For each simulator and each property, a checkmark, checkcross, or cross means that the simulator satisfies,
partially satisfies, or does not satisfy the property.
*: SERGIO requires a user-specified gene regulatory network, and it does not capture/estimate gene corre-
lations from a real dataset.

Table 3.1: Summary of 14 simulators (including our proposed scDesign2) in six properties.
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3.8 Figures
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Figure 3.1: An overview of scDesign2.

The input for scDesign2 is a gene-by-cell count matrix with cells labelled as cell types or clusters. For cells in each type or
cluster, scDesign2 uses the copula framework to fit a joint distribution of gene expression counts. Then given user-specified
sequencing depth and number of cells, scDesign2 generates synthetic data for each cell type or cluster. The synthetic data can
be used to guide experimental design and evaluate computational methods.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.2: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain goblet cells
measured by 10x Genomics [119]; In (b) and (d), training and test data contain cells of dendrocytes subtype 1 (DC1) measured
by Smart-Seq2 [122]. For each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100
genes with the highest mean expression values in the test data; the rows and columns (i.e., genes) of all the matrices are ordered
by the complete-linkage hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and Kendall’s tau
in (c)-(d)) in the test data. We find that the correlation matrices estimated from the synthetic data generated by scDesign2
most resemble those of training and test data.
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Figure 3.3: Benchmarking scDesign2 against its variant without copula and eight existing scRNA-seq simulators for generating
goblet cells measured by 10x Genomics.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scGAN, scDesign, three variants of the splatter package (splat simple, splat, and
kersplat), and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, SPARSim, and
scGAN, the only four methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics
(four gene-wise and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each
simulator. Note that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs
are the MSEs divided by the largest MSE of that statistic. scDesign is ranked the top for three out of the six statistics. For
the two gene-pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are
more meaningful, both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of
two example gene pairs—Xist vs. H2-Ab1 and Rpl7 vs. Xist—based on the real data and the synthetic data generated by
scDesign2, ZINB-WaVE, and SPARSim. The Kendall’s tau values in the synthetic data generated by scDesign2 resemble most
the values in the test data. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion vs. mean,
variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real data and the
synthetic data generated by scDesign2 and the eight existing simulators (others). Note that ZINB-WaVE and SymSim filter
out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between the genes whose
zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to the log10p1 ` xq

scale (where x represents a statistic’s value).
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Figure 3.4: Comparison of 10x Genomics data and synthetic data generated by scDesign2, its variant without copula, ZINB-
WaVE, and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. miLISI is short for median integration local inverse Simpson’s Index, a higher value of which indicates
that the simulated data mix better with the test data in the 2D visualization plot. By visually inspecting the patterns in these
plots as well as comparing the miLISI values, we find that the synthetic data generated by scDesign2 most resemble the test
data.
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Figure 3.5: Application of ROGUE scores combined with dimensionality reduction plots to refine cell types before training
scDesign2.

This refinement approach is demonstrated on the 10x Genomics dataset. (a) In each cell type, the relationship between the
average ROGUE score across sub-clusters and the number of sub-clusters. Before a ROGUE score is calculated for each sub-
cluster, the Louvain clustering algorithm is applied to each cell type with a varying resolution parameter so that a varying
number of sub-clusters is obtained. Based on how the average ROGUE score saturates, a number of sub-clusters is selected
and marked in red for each cell type. (b) The t-SNE plots of each cell type with the sub-clusters, whose number is marked
in (a), labelled with distinct colors. (c) The t-SNE plots of training data (top left), test data (bottom left), synthetic data of
scDesign2 trained with the refined sub-clusters (middle left) or the original cell types (middle bottom), and combination of test
data with each set of synthetic data. Gene expression counts are transformed as logp1` countq before dimensionality reduction.
We find that, after the cell-type refinement, the simulated data of scDesign2 resemble the real data better, as indicated by the
higher miLISI value.
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Figure 3.6: Comparison of MERFISH data and synthetic data generated by scDesign2, its variant without copula, ZINB-
WaVE, and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. miLISI is short for median integration local inverse Simpson’s Index, a higher value of which indicates
that the simulated data mix better with the test data in the 2D visualization plot. By visually inspecting the patterns in these
plots as well as comparing the miLISI values, we find that the synthetic data generated by scDesign2 most resemble the test
data.
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Figure 3.7: scDesign2 guides the choice of sequencing depth in cell clustering.

scDesign2 generates synthetic 10x Genomics data with fifteen sequencing depths. Two cell clustering methods—Seurat and
SC3—are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets,
where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering
accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the four sequencing
depths in (a) are marked as dots and in the top, and the sequencing depth of the real dataset [119] is marked as vertical dashed
lines.
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Figure 3.8: scDesign2 guides the choice of cell number in cell clustering, in the case where the total sequencing depth is kept
as fixed.

scDesign2 generates synthetic 10x Genomics data with twelve cell numbers. Two cell clustering methods—Seurat and SC3—
are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets,
where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering
accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the four cell numbers
in (a) are marked as dots and in the top, and the cell number of the real dataset [119] is marked as vertical dashed lines.
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Figure 3.9: scDesign2 guides the choice of cell number in cell clustering, in the case where the average sequencing depth is
kept as fixed.

scDesign2 generates synthetic 10x Genomics data with eleven cell numbers. Two cell clustering methods—Seurat and SC3—are
applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets, where
cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering accuracy
measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a) are
marked as dots and in the top, and the cell number of the real dataset [119] is marked as vertical dashed lines.
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Figure 3.10: scDesign2 guides the choice of sequencing depth in rare cell type detection.

scDesign2 generates synthetic 10x Genomics data with twelve sequencing depths. Two rare-cell-type detection methods—FiRE
and GiniClust2—are applied to each synthetic dataset to detect rare cell types. (a) t-SNE visualization of six synthetic datasets
and identification results—true positive (TP), false positive (FP), false negative (FN), and true negative (TN) cells—of FiRE
in each dataset. (b) t-SNE visualization of the same six synthetic datasets and identification results of GiniClust2 in each
dataset. (c) Four identification accuracy measures by FiRE (precision, recall, F1-score, and AUPRC) vs. sequencing depth.
(d) Three identification accuracy measures by GiniClust2 (precision, recall, and F1-score) vs. sequencing depth. In (c) and (d),
the results of the six sequencing depths in (a) and (b) are marked as dots and in the top, and the sequencing depth of the real
dataset [119] is marked as vertical dashed lines.
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Figure 3.11: scDesign2 guides the choice of cell number in rare cell type detection, in the case where the total sequencing
depth is kept as fixed.

scDesign2 generates synthetic 10x Genomics data with thirteen cell numbers. Two rare-cell-type detection methods—FiRE and
GiniClust2—are applied to each synthetic dataset to detect rare cell types. (a) t-SNE visualization of six synthetic datasets
and identification results—true positive (TP), false positive (FP), false negative (FN), and true negative (TN) cells—of FiRE
in each dataset. (b) t-SNE visualization of the same six synthetic datasets and identification results of GiniClust2 in each
dataset. (c) Four identification accuracy measures by FiRE (precision, recall, F1-score, and AUPRC) vs. cell number. (d)
Three identification accuracy measures by GiniClust2 (precision, recall, and F1-score) vs. cell number. In (c) and (d), the
results of the six cell numbers in (a) and (b) are marked as dots and in the top, and the cell number of the real dataset [119] is
marked as vertical dashed lines. Whenever there is no line for a cell number, FiRE or GiniClust2 does not detect any rare cells
or fails.
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Figure 3.12: scDesign2 guides the choice of cell number in rare cell type detection, in the case where the average sequencing
depth is kept as fixed.

scDesign2 generates synthetic 10x Genomics data with thirteen cell numbers. Two rare-cell-type detection methods—FiRE and
GiniClust2—are applied to each synthetic dataset to detect rare cell types. (a) t-SNE visualization of six synthetic datasets
and identification results—true positive (TP), false positive (FP), false negative (FN), and true negative (TN) cells—of FiRE
in each dataset. (b) t-SNE visualization of the same six synthetic datasets and identification results of GiniClust2 in each
dataset. (c) Four identification accuracy measures by FiRE (precision, recall, F1-score, and AUPRC) vs. cell number. (d)
Three identification accuracy measures by GiniClust2 (precision, recall, and F1-score) vs. cell number. In (c) and (d), the
results of the six cell numbers in (a) and (b) are marked as dots and in the top, and the cell number of the real dataset [119] is
marked as vertical dashed lines. Whenever there is no line for a cell number, FiRE or GiniClust2 does not detect any rare cells
or fails.
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S3.9 Supplementary Tables

protocol cell type
number of cells used
for model fitting (n)

number of genes included for
copula correlation estimation (p)

10x Genomics goblet 255 3022

10x Genomics stem 634 2465

10x Genomics tuft 83 2981

CEL-Seq2 alpha 426 8285

CEL-Seq2 beta 233 8498

CEL-Seq2 acinar 134 9612

Fluidigm C1 astrocytes 25 7574

Fluidigm C1 neurons 61 9440

Fluidigm C1 oligodendrodytes 19 7232

Smart-Seq2 dendrocyte 1 83 8880

Smart-Seq2 dendrocyte 2 47 8483

Smart-Seq2 monocyte 2 61 8459

Table S3.2: Summary of the sample size (n) and the number of genes included for copula correlation estimation (p), for each
of the 12 datasets used for the benchmarking of simulators.
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S3.10 Supplementary Figures

Pearson correlation matrices Kendall’s tau matrices

Figure 3.13: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain stem cells
measured by 10x Genomics [119]; In (b) and (d), training and test data contain tuft cells measured by 10x Genomics [119]. For
each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100 genes with the highest mean
expression values in the test data; the rows and columns (i.e., genes) of all the matrices are ordered by the complete-linkage
hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and Kendall’s tau in (c)-(d)) in the test
data. We find that the correlation matrices estimated from the synthetic data generated by scDesign2 most resemble those of
training and test data.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.14: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain alpha cells
measured by CEL-Seq2 [120]; In (b) and (d), training and test data contain beta cells measured by CEL-Seq2 [120]. For each
cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100 genes with the highest mean
expression values in the test data; the rows and columns (i.e., genes) of all the matrices are ordered by the complete-linkage
hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and Kendall’s tau in (c)-(d)) in the test
data. We find that the correlation matrices estimated from the synthetic data generated by scDesign2 most resemble those of
training and test data.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.15: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain acinar cells
measured by CEL-Seq2 [120]; In (b) and (d), training and test data contain astrocytes measured by Fluidigm C1 [121]. For
each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100 genes with the highest mean
expression values in the test data; the rows and columns (i.e., genes) of all the matrices are ordered by the complete-linkage
hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and Kendall’s tau in (c)-(d)) in the test
data. We find that the correlation matrices estimated from the synthetic data generated by scDesign2 most resemble those of
training and test data.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.16: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain neurons
measured by Fluidigm C1 [121]; In (b) and (d), training and test data contain oligodendrocytes measured by Fluidigm C1
[121]. For each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100 genes with the
highest mean expression values in the test data; the rows and columns (i.e., genes) of all the matrices are ordered by the
complete-linkage hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and Kendall’s tau in
(c)-(d)) in the test data. We find that the correlation matrices estimated from the synthetic data generated by scDesign2 most
resemble those of training and test data.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.17: Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by scDesign2, its
variant without copula, ZINB-WaVE, and SPARSim.

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), training and test data contain cells of
dendrocytes subtype 2 (DC2) measured by Smart-Seq2 [122]; In (b) and (d), training and test data contain cells of monocytes
subtype 2 (Mono2) measured by Smart-Seq2 [122]. For each cell type, the Pearson correlation matrices and Kendall’s tau
matrices are shown for the 100 genes with the highest mean expression values in the test data; the rows and columns (i.e.,
genes) of all the matrices are ordered by the complete-linkage hierarchical clustering of genes (using Pearson correlation as the
similarity in (a)-(b) and Kendall’s tau in (c)-(d)) in the test data. We find that the correlation matrices estimated from the
synthetic data generated by scDesign2 most resemble those of training and test data.
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Figure 3.18: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating stem cells measured by 10x Genomics.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign2 is ranked the top for six out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—Xist vs. CD74 and Rpl7 vs. Xist—based on the real data and the synthetic data generated by scDesign2, ZINB-WaVE,
and SPARSim. Only scDesign2 captures the negative gene correlations in the real data. (e) Smoothed relationships between
three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across all genes (curves
plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2 and the seven existing
simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new data; Pearson correlation
and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%; gene-wise mean and variance
and cell-wise library size are transformed to the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.19: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating tuft cells measured by 10x Genomics.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for four out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—Ly6g6f vs. Pigr and Hck vs. Pigr—based on the real data and the synthetic data generated by scDesign2, ZINB-WaVE,
and SPARSim. Only scDesign2 captures the negative gene correlations in the real data. (e) Smoothed relationships between
three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across all genes (curves
plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2 and the seven existing
simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new data; Pearson correlation
and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%; gene-wise mean and variance
and cell-wise library size are transformed to the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.20: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating acinar cells measured by CEL-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for four out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—SERPINI2 vs. S100A10 and MT1G vs. ITGA2—based on the real data and the synthetic data generated by scDesign2,
ZINB-WaVE, and SPARSim. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion vs. mean,
variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real data and the
synthetic data generated by scDesign2 and the seven existing simulators (others). Note that ZINB-WaVE and SymSim filter
out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between the genes whose
zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to the log10p1 ` xq

scale (where x represents a statistic’s value).
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Figure 3.21: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating alpha cells measured by CEL-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for five out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—PPY vs. COL1A1 and REG3A vs. PPY—based on the real data and the synthetic data generated by scDesign2, ZINB-
WaVE, and SPARSim. Only scDesign2 captures the negative gene correlations in the real data. (e) Smoothed relationships
between three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across all genes
(curves plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2 and the seven
existing simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new data; Pearson
correlation and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%; gene-wise mean
and variance and cell-wise library size are transformed to the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.22: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating beta cells measured by CEL-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only three
methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise and
two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note that
the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs divided
by the largest MSE of that statistic. scDesign is ranked the top for four out of the six statistics. For the two gene-pair-wise
statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful, both
biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene pairs—
DDX3Y vs. COL1A1 and RPS4Y1 vs. COL1A1—based on the real data and the synthetic data generated by scDesign2,
ZINB-WaVE, and SPARSim. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion vs. mean,
variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real data and the
synthetic data generated by scDesign2 and the seven existing simulators (others). Note that ZINB-WaVE and SymSim filter
out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between the genes whose
zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to the log10p1 ` xq

scale (where x represents a statistic’s value).
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Figure 3.23: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating astrocytes measured by Fluidigm C1 (SMARTer).

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only three
methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise and
two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note that
the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs divided
by the largest MSE of that statistic. scDesign is ranked the top for four out of the six statistics. For the two gene-pair-wise
statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful, both
biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene pairs
based on the real data and the synthetic data generated by scDesign2, ZINB-WaVE, and SPARSim. (e) Smoothed relationships
between three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across all genes
(curves plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2 and the seven
existing simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new data; Pearson
correlation and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%; gene-wise mean
and variance and cell-wise library size are transformed to the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.24: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating neurons measured by Fluidigm C1 (SMARTer).

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only three
methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise and
two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note that
the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs divided
by the largest MSE of that statistic. scDesign is ranked the top for five out of the six statistics. For the two gene-pair-wise
statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful, both
biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene pairs
based on the real data and the synthetic data generated by scDesign2, ZINB-WaVE, and SPARSim. (e) Smoothed relationships
between three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across all genes
(curves plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2 and the seven
existing simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new data; Pearson
correlation and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%; gene-wise mean
and variance and cell-wise library size are transformed to the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.25: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating oligodendrocytes measured by Fluidigm C1 (SMARTer).

The input data is an oligodendrocytes dataset. (a) Distributions of eight summary statistics (gene-wise expression mean,
variance, coefficient of variation (cv), and zero proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson
correlation and Kendall’s tau) are plotted based on the real data (test data unused for training simulators) and the synthetic
data generated by scDesign2, scDesign2 without copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the
splatter package (splat simple, splat, and kersplat), and SymSim. (b) Ranking (with 1 being the best-performing method) of
scDesign2, ZINB-WaVE, and SPARSim, the only three methods that preserve genes, in terms of the mean-squared error (MSE)
of each of six summary statistics (four gene-wise and two gene-pair-wise) between the statistic values in the real data and the
synthetic data generated by each simulator. Note that the color scale shows the normalized MSE: for each statistic (column
in the table), the normalized MSEs are the MSEs divided by the largest MSE of that statistic. scDesign is ranked the top for
two out of the six statistics. For the two gene-pair-wise statistics, we focus on the top 500 highly expressed genes, because as
analyzed in the text, they are more meaningful, both biologically and statistically, than the correlations of the lowly expressed
genes. (c)-(d) Scatterplots of two example gene pairs based on the real data and the synthetic data generated by scDesign2,
ZINB-WaVE, and SPARSim. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion vs. mean,
variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real data and the
synthetic data generated by scDesign2 and the seven existing simulators (others). Note that ZINB-WaVE and SymSim filter
out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between the genes whose
zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to the log10p1 ` xq

scale (where x represents a statistic’s value).
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Figure 3.26: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating dendrocytes (subtype 1) measured by Smart-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for six out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example
gene pairs—RPS3 vs. B2M and RPS28 vs. ACTB—based on the real data and the synthetic data generated by scDesign2,
ZINB-WaVE, and SPARSim. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion vs. mean,
variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real data and the
synthetic data generated by scDesign2 and the seven existing simulators (others). Note that ZINB-WaVE and SymSim filter
out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between the genes whose
zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to the log10p1 ` xq

scale (where x represents a statistic’s value).
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Figure 3.27: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating dendrocytes (subtype 2) measured by Smart-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for five out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—PPIA vs. MALAT1 and RPL13 vs. CYTOCHROME B—based on the real data and the synthetic data generated by
scDesign2, ZINB-WaVE, and SPARSim. Only scDesign2 captures the negative gene correlations in the real data. (e) Smoothed
relationships between three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) across
all genes (curves plotted by the R function geom smooth()) in the real data and the synthetic data generated by scDesign2
and the seven existing simulators (others). Note that ZINB-WaVE and SymSim filter out certain genes when simulating new
data; Pearson correlation and Kendall’s tau are only calculated between the genes whose zero proportions are less than 50%;
gene-wise mean and variance and cell-wise library size are transformed to the log10p1`xq scale (where x represents a statistic’s
value).
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Figure 3.28: Benchmarking scDesign2 against its variant without copula and seven existing scRNA-seq simulators for gener-
ating monocytes (subtype 2) measured by Smart-Seq2.

(a) Distributions of eight summary statistics (gene-wise expression mean, variance, coefficient of variation (cv), and zero
proportion; cell-wise zero proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based
on the real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2 without
copula (w/o copula), ZINB-WaVE, SPARSim, scDesign, three variants of the splatter package (splat simple, splat, and kersplat),
and SymSim. (b) Ranking (with 1 being the best-performing method) of scDesign2, ZINB-WaVE, and SPARSim, the only
three methods that preserve genes, in terms of the mean-squared error (MSE) of each of six summary statistics (four gene-wise
and two gene-pair-wise) between the statistic values in the real data and the synthetic data generated by each simulator. Note
that the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are the MSEs
divided by the largest MSE of that statistic. scDesign is ranked the top for four out of the six statistics. For the two gene-
pair-wise statistics, we focus on the top 500 highly expressed genes, because as analyzed in the text, they are more meaningful,
both biologically and statistically, than the correlations of the lowly expressed genes. (c)-(d) Scatterplots of two example gene
pairs—BABAM1 vs. AK095633 and SNTB2 vs. PECAM1—based on the real data and the synthetic data generated by
scDesign2, ZINB-WaVE, and SPARSim. (e) Smoothed relationships between three pairs of gene-wise statistics (zero proportion
vs. mean, variance vs. mean, and cv vs. mean) across all genes (curves plotted by the R function geom smooth()) in the real
data and the synthetic data generated by scDesign2 and the seven existing simulators (others). Note that ZINB-WaVE and
SymSim filter out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only calculated between
the genes whose zero proportions are less than 50%; gene-wise mean and variance and cell-wise library size are transformed to
the log10p1 ` xq scale (where x represents a statistic’s value).
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Figure 3.29: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by four simulators trained on
the 10x Genomics goblet cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.30: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the 10x Genomics stem cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.31: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the 10x Genomics tuft cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.32: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the CEL-Seq2 acinar cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.33: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the CEL-Seq2 alpha cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.

85



Figure 3.34: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the CEL-Seq2 beta cell data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.35: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Fluidigm C1 astrocytes data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.36: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Fluidigm C1 oligodendrocytes data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.37: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Fluidigm C1 neurons data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.38: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Smart-Seq2 dendrocyte (subtype 1) data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.39: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Smart-Seq2 dendrocyte (subtype 2) data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.40: Relationships of the mean squared error (MSE) vs. the dimension (i.e., number of genes) of the (Pearson or
Kendall’s tau) gene correlation matrices, which are estimated from the synthetic data generated by three simulators trained on
the Smart-Seq2 monocyte (subtype 2) data.

The genes are ordered in two ways, by their mean expression from high to low (left) or by their zero proportion from low to
high (right). The plots are shown for the top 100, 200, 500, 1000, 1500, and 2000 genes ordered in either way. (a) The zero
proportion of each top gene. (b) The mean expression of each top gene. (c) The relationship of the cumulative proportion
of the top genes’ UMIs among all UMIs vs. the number of top genes. (d)–(e) The MSE is defined as the average per-entry
squared difference between the correlation matrices estimated from each synthetic dataset and the test data. Each plot shows
the relationship of the MSE of (d) the Pearson correlation matrix or (e) the Kendall’s tau matrix for the top genes estimated
from each simulator’s synthetic data vs. the number of top genes.
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Figure 3.41: Comparison of CEL-Seq2 data and synthetic data generated by scDesign2, its variant without copula, ZINB-
WaVE, and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. We find that the synthetic data generated by scDesign2 most resemble the test data.
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Figure 3.42: Comparison of Fluidigm C1 (SMARTer) data and synthetic data generated by scDesign2, its variant without
copula, ZINB-WaVE, and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. We find that the synthetic data generated by scDesign2 most resemble the test data.
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Figure 3.43: Comparison of Smart-Seq2 data and synthetic data generated by scDesign2, its variant without copula, ZINB-
WaVE, and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. We find that the synthetic data generated by scDesign2 most resemble the test data.
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Figure 3.44: Comparison of pciSeq data and synthetic data generated by scDesign2, its variant without copula, ZINB-WaVE,
and SPARSim in 2D visualization.

(a) t-SNE plots and (b) principal component (PC) plots of training data, test data, synthetic data generated by each simulator,
and combinations of test data and each synthetic dataset. Gene expression counts are transformed as logp1 ` countq before
dimensionality reduction. miLISI is short for median integration local inverse Simpson’s Index, a higher value of which indicates
that the simulated data mix better with the test data in the 2D visualization plot. By visually inspecting the patterns in these
plots as well as comparing the miLISI values, we find that the synthetic data generated by scDesign2 most resemble the test
data.

96



Figure 3.45: scDesign2 guides the choice of sequencing depth in cell clustering.

scDesign2 generates synthetic CEL-Seq2 data with fifteen sequencing depths. Two cell clustering methods—Seurat and SC3—
are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets,
where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering
accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the four sequencing
depths in (a) are marked as dots and in the top, and the sequencing depth of the real dataset [120] is marked as vertical dashed
lines.
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Figure 3.46: scDesign2 guides the choice of cell number in cell clustering, in the case where the total sequencing depth is kept
as fixed.

scDesign2 generates synthetic CEL-Seq2 data with thirteen cell numbers. Two cell clustering methods—Seurat and SC3—are
applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets, where
cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering accuracy
measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a) are marked
as dots and in the top, and the cell number of the real dataset [120] is marked as vertical dashed lines.

98



(1) cell number
 = 142

(2) cell number
 = 570

(3) cell number
 = 2279

(4) cell number
 = 9116

S
eurat

S
C

3
True

−25 0 25 −25 0 25 −25 0 25 −25 0 25

−50

−25

0

25

−50

−25

0

25

−50

−25

0

25

t−SNE 1

t−
S

N
E

 2

Seurat SC3
(1) (2) (3) (4) (1) (2) (3) (4)

100 1000 10000 100 1000 10000
0.00

0.25

0.50

0.75

1.00

cell number

cluster 1 /
alpha
cluster 2 /
beta
cluster 3 /
acinar
cluster 4 /
delta
cluster 5 /
duct
cluster 6 /
endothelial
cluster 7 /
mesenchymal
cluster 8 /
pp

AMI

ARI

real data
cell num.

a

b

Figure 3.47: scDesign2 guides the choice of cell number in cell clustering, in the case where the average sequencing depth is
kept as fixed.

scDesign2 generates synthetic CEL-Seq2 data with ten cell numbers. Two cell clustering methods—Seurat and SC3—are applied
to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets, where cells are
labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering accuracy
measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a) are marked
as dots and in the top, and the cell number of the real dataset [120] is marked as vertical dashed lines.
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Figure 3.48: scDesign2 guides the choice of sequencing depth in cell clustering.

scDesign2 generates synthetic Fluidigm C1 (SMARTer) data with fifteen sequencing depths. Two cell clustering methods—
Seurat and SC3—are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four
synthetic datasets, where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom).
(b) Two clustering accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the
four sequencing depths in (a) are marked as dots and in the top, and the sequencing depth of the real dataset [121] is marked
as vertical dashed lines.
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Figure 3.49: scDesign2 guides the choice of cell number in cell clustering, in the case where the total sequencing depth is kept
as fixed.

scDesign2 generates synthetic Fluidigm C1 (SMARTer) data with ten cell numbers. Two cell clustering methods—Seurat and
SC3—are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets,
where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering
accuracy measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a)
are marked as dots and in the top, and the cell number of the real dataset [121] is marked as vertical dashed lines.
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Figure 3.50: scDesign2 guides the choice of cell number in cell clustering, in the case where the average sequencing depth is
kept as fixed.

scDesign2 generates synthetic Fluidigm C1 (SMARTer) data with twelve cell numbers. Two cell clustering methods—Seurat
and SC3—are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic
datasets, where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two
clustering accuracy measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell
numbers in (a) are marked as dots and in the top, and the cell number of the real dataset [121] is marked as vertical dashed
lines.
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Figure 3.51: scDesign2 guides the choice of sequencing depth in cell clustering.

scDesign2 generates synthetic Smart-Seq2 data with fifteen sequencing depths. Two cell clustering methods—Seurat and SC3—
are applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets,
where cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering
accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In (b), the results of the four sequencing
depths in (a) are marked as dots and in the top, and the sequencing depth of the real dataset [122] is marked as vertical dashed
lines.
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Figure 3.52: scDesign2 guides the choice of cell number in cell clustering, in the case where the total sequencing depth is kept
as fixed.

scDesign2 generates synthetic Smart-Seq2 data with twelve cell numbers. Two cell clustering methods—Seurat and SC3—are
applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets, where
cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering accuracy
measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a) are marked
as dots and in the top, and the cell number of the real dataset [122] is marked as vertical dashed lines.
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Figure 3.53: scDesign2 guides the choice of cell number in cell clustering, in the case where the average sequencing depth is
kept as fixed.

scDesign2 generates synthetic Smart-Seq2 data with eleven cell numbers. Two cell clustering methods—Seurat and SC3—are
applied to each synthetic dataset to partition cells into cell clusters. (a) t-SNE visualization of four synthetic datasets, where
cells are labelled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types (bottom). (b) Two clustering accuracy
measures (AMI and ARI) vs. cell number; left: Seurat; right: SC3. In (b), the results of the four cell numbers in (a) are marked
as dots and in the top, and the cell number of the real dataset [122] is marked as vertical dashed lines.
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Figure 3.54: The effects of n (the sample size, i.e., the number of cells) and p (the number of top highly expressed genes) on
the estimation of the copula correlation matrix in the context of 10x Genomics stem cell data.

The mean squared error (MSE) between the estimated copula correlations and the true copula correlations are calculated.
For each sample size n, 1000 random samples are simulated from a known Gaussian copula model, which is fitted to the 10x
Genomics stem cell data, and each sample is then used to estimate the copula correlation matrix. For computational efficiency,
we estimate copula correlations using the formula ρz “ sin pπ

2
τq by plugging in the sample tau values. (a) The relationship

between MSE and n, for each p varying from 100 to 2000. (b) The relationship between MSE and p, for each n varying from 5
to 100. The vertical axes are on the square-root scale.
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Figure 3.55: The effects of n (the sample size, i.e., the number of cells) and p (the number of top highly expressed genes) on
the estimation of the copula correlation matrix in the context of Smart-Seq2 dendrocytes (subtype 1) data.

The mean squared error (MSE) between the estimated copula correlations and the true copula correlations are calculated. For
each sample size n, 1000 random samples are simulated from a known Gaussian copula model, which is fitted to the Smart-Seq2
dendrocytes (subtype 1) data, and each sample is then used to estimate the copula correlation matrix. For computational
efficiency, we estimate copula correlations using the formula ρz “ sin pπ

2
τq by plugging in the sample tau values. (a) The

relationship between MSE and n, for each p varying from 100 to 2000. (b) The relationship between MSE and p, for each n
varying from 5 to 100. The vertical axes are on the square-root scale.
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Figure 3.56: 2D t-SNE visualization of the results of a cross-platform simulation experiment.

We use a multi-protocol dataset of peripheral blood mononuclear cells (PBMCs) generated for benchmarking purposes [74]. We
select data of five cell types measured by three protocols, 10x Genomics, Drop-Seq, and Smart-Seq2, and we train scDesign2
on the 10x Genomics data. Then we adjust the fitted scDesign2 model for the Drop-Seq and Smart-Seq2 protocols by rescaling
the mean parameters in the fitted model (see Methods for details). After the adjustment, we use the model for each protocol to
generate synthetic data. The 2D t-SNE visualization plot is generated for the real data, the synthetic data, and the combination
of the real data and the synthetic data, for each of the three protocols. From the combination plot, we can see that the synthetic
cells do not mix well with the real cells for the two cross-protocol scenarios; only for 10x Genomics, the same-protocol scenario,
the synthetic cells mix well with the real cells. As a quantitative comparison, the median integration local inverse Simpson’s
Index (miLISI) for the three combination plots are 1.756, 1.000, and 1.000, from left to right, with the largest value indicating
the best mixing for the same-protocol scenario, confirming our conclusion.
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Figure 3.57: The cross-protocol and within-protocol ratios of genes’ mean expression levels between a target protocol (Drop-
Seq or Smart-Seq2) and the reference protocol (10x Genomics) in five cell types.

The results are shown for the top 50 highly expressed genes across the five cell types in the reference protocol, ordered by mean
expression from high to low. In each cell type (row) and each target protocol (column), a gene has 100 cross-protocol ratios
and 100 within-protocol ratios as a result of random partitioning. To illustrate the trends of the ratios, smoothed curves are
added by the R function geom smooth(). The calculation detail is as follows. For each cell type, suppose the target protocol

has m cells, and the reference protocol has n cells. In each random partition, we first randomly select min pm,nq

2
cells from the

target protocol and the reference protocol each, and compute a gene’s two means respectively. Second, for the remaining cells
in the reference protocol, we randomly select n

2
cells and compute the same gene’s mean as a reference. Third, we calculate the

cross-protocol ratio and the within-protocol ratio by dividing the first two means by the reference mean. We repeat the above
three steps for 100 times for every gene in each cell type and each target protocol. From the plot, we can see that, unlike the
within-protocol ratios, which center around the constant value of 1, the cross-protocol ratios fluctuate between genes, and do
not center around a constant value. This shows that there does not exist a single scaling factor to convert all genes’ expression
levels from one protocol to another.
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Figure 3.58: The cross-protocol and within-protocol ratios of genes’ mean expression levels between a target protocol (Drop-
Seq or Smart-Seq2) and the reference protocol (10x Genomics) in five cell types.

The results are computed for the top 2000 highly expressed genes in each cell type in the reference protocol, ordered by mean
expression from high to low. In each cell type (row) and each target protocol (column), a gene has 100 cross-protocol ratios and
100 within-protocol ratios as a result of random partitioning. For clarity of illustration, only the trends of the ratios are shown,
which are smoothed curves, added by the R function geom smooth(). The calculation detail is as follows. For each cell type,
suppose the target protocol has m cells, and the reference protocol has n cells. In each random partition, we first randomly

select min pm,nq

2
cells from the target protocol and the reference protocol each, and compute a gene’s two means respectively.

Second, for the remaining cells in the reference protocol, we randomly select n
2

cells and compute the same gene’s mean as
a reference. Third, we calculate the cross-protocol ratio and the within-protocol ratio by dividing the first two means by the
reference mean. We repeat the above three steps for 100 times for every gene in each cell type and each target protocol. From
the plot, we can see that, unlike the within-protocol ratios, which center around the constant value of 1, the cross-protocol
ratios fluctuate between genes, and do not center around a constant value. This shows that there does not exist a single scaling
factor to convert all genes’ expression levels from one protocol to another.
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Figure 3.59: A toy example showing the effect of the distributional transform.

For a discrete random variable X, the distributional transform maps its probability mass at each value x, which has a non-zero
probability mass, uniformly to the interval rx, x`1q, thus converting X to a continuous random variable. The top left and right
panels show the probability mass function (PMF) before the transform and the probability density function (PDF) after the
transform; the bottom left and right panels show the cumulative distribution functions (CDFs) before and after the transform.
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Pearson correlation matrices Kendall’s tau matrices

Figure 3.60: Heatmaps of gene correlation matrices estimated from synthetic data generated by scDesign2, with pR estimated
under two different random samples of v˚

ij .

(a)-(b) Pearson correlation matrices; (c)-(d) Kendall’s tau matrices. In (a) and (c), the scDesign2 model is fitted with goblet
cells measured by 10x Genomics [119]; In (b) and (d), the scDesign2 model is fitted with cells of dendrocytes subtype 1 (DC1)
measured by Smart-Seq2 [122]. For each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for
the 100 genes with the highest mean expression values in the test data; the rows and columns (i.e., genes) of all the matrices
are ordered by the complete-linkage hierarchical clustering of genes (using Pearson correlation as the similarity in (a)-(b) and
Kendall’s tau in (c)-(d)) in the test data. We find that the effect of the sampling of v˚

ij on the estimated gene correlation
matrices of the synthetic data is negligible, since the two matrices in each panel are very similar.
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CHAPTER 4

scStructure: latent structure type selection for

single-cell RNA-seq datasets

4.1 Introduction

In recent years, single-cell RNA-sequencing (scRNA-seq) has become an important technol-

ogy in biology research [57, 58], with numerous protocols developed [14, 15, 76, 78] and

new knowledge gained [9–13]. Compared to bulk RNA-seq, scRNA-seq has the advantage

of profiling the transcriptome of individual cells, thus revealing cell-to-cell heterogeneity in

a biological system of interest. In particular, two different types of computational tasks,

clustering and trajectory inference, can be performed to illustrate two different types of cel-

lular heterogeneity. With clustering, the cells will be partitioned into cell types, representing

discrete cell states [25–27]. With trajectory inference, the cells will be connected as single-

branch or multiple-branch trajectories, representing cell states that change on a continuum

[28, 29, 157, 158]. These two different tasks will give different interpretations of the data.

However, as of now, there is no principled way to tell which of these two interpretations is

more reasonable for a given scRNA-seq dataset.

In this manuscript, we show two different approaches that aim to solve the cluster-type

vs. trajectory-type latent structure selection problem for scRNA-seq datasets. The first

approach is based on the eigenvalue properties of the covariance matrix of a scRNA-seq

dataset, drawing inspiration from random matrix theory (RMT). In particular, we train

classifiers based on real data of cluster type and trajectory type and then make predictions

on new data. The second approach is based on comparing the similarity of real data and

simulated data generated by assuming the cell latent structure as clusters or a trajectory.
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While both approaches have limitations, we show that the second approach gives more

promising results and has room for further improvements.

4.2 Eigenvalue-classification-based approach (Approach 1)

4.2.1 Existing applications of random matrix theory in single-cell RNA-seq data

analysis

A random matrix is simply a matrix whose elements are random variables. When these

random variables follow certain types of distributions, probabilistic conclusions can be made

about the (asymptotic) distributions of the eigenvalues, spacing between eigenvalues and

eigenvectors of the original matrix [159–161]. Random matrix theory (RMT) refers to the

collection of such mathematical results. The application of RMT was mainly in the field

of nuclear physics [159], which later expanded to other fields [162, 163]. Since the data of

scRNA-seq can be represented by a gene-by-cell matrix, the application of RMT is possible,

and a number of papers have used random matrix theory to analyze single-cell RNA-seq

data.

In [164], the authors consider a simple model for single-cell lineage progression. The

model describes a bifurcating process of cell differentiation, where the expression profile of

p genes is approximated as a binary vector, with entries taking values of “ON” or “OFF”.

The bifurcating process takes a total of b rounds, within each of which an m-step process

of a randomly chosen gene switching its state (from ON to OFF or vice versa) occurs,

before the whole vector duplicates itself. Under this model, for the terminal cells, the

eigenvalue distribution of the covariance matrix of its gene expression matrix “has a power

law structure, λ „ r´ logp2αq{ logp2q, for each eigenvalue λ, in which α “ expp´4m{pq and r ą 1

is the eigenvalue rank” [164, 165]. The authors then demonstrate using simulated data and

real data, that only in datasets of developmental or differentiation processes, the power law

structure would occur.

Although this paper has shown some interesting results, it has some limitations. For
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example, in most real scRNA-seq data matrices, the gene expression entries are not binary

values, but rather numerical values. Moreover, the power law structure only applies to

terminal cells. Therefore, the approach developed in [164] could not be used in datasets

where researchers perform trajectory and pseudotime inference, as the cells on trajectories

would naturally represent a continuous change of cell states, not just terminal cells.

In [166] and [167], the authors have developed a data denoising method and a clusterabil-

ity measure respectively, based on a set of different and more well-known results from the

random matrix theory. In particular, they consider a type of random matrix whose elements

are independent and identically distributed (i.i.d.) with zero mean and finite variance. Then,

when the number of rows and the number of columns are large, the eigenvalue distribution

of its covariance matrix can be approximated by the Marchenko–Pastur (MP) distribution

[168]. Moreover, the norm of each of its eigenvectors is approximately equally distributed

across the entries, a property called “delocalization” [166].

To apply these interesting results to analyze scRNA-seq data, we can assume that the gene

expression matrix can be decomposed into the sum of a noise matrix and a low-rank signal

matrix (Fig. 4.1). Then we can analyze the eigenvalues and eigenvectors of its covariance

matrix. Finally, deviation from the MP distribution, or equivalently the presence of large

eigenvalues, indicates the presence of biological signals, e.g., the presence of cell clusters.

Alternatively, the biological signal can be detected from the delocalization to localization

transition of eigenvectors.

In [166], the authors further consider another source of signal that comes from the typical

sparsity present in a scRNA-seq data matrix. Therefore, their data-denoising approach

would decompose the information from a scRNA-seq data matrix into three sources — noise,

sparsity, and true biological signal. After the data is denoised, only the true biological signal

will be left and analyzed. In [167], the authors construct a numerical measure ϕclust that

quantifies how well the observed data matrix aligns with the underlying signal matrix. A

higher ϕclust value indicates a stronger biological signal, or as the authors of [167] conclude,

a more confident conclusion on the presence of clusters.
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However, this immediately leads to a limitation of their study, because the presence of a

low-rank signal matrix could indicate not only the presence of clusters, but also the presence

of trajectories. In Fig. 4.1, we construct two simulated data examples to demonstrate this,

where the top row represents the case of a cluster-type dataset, while the bottom a trajectory-

type dataset. In both cases, the measured gene expression matrix could be decomposed into

the sum of a low-rank signal matrix and a noise matrix. Further, if we analyze the eigenvalue

distributions, both follow the pattern where the small eigenvalues can be approximated by

the MP distribution, while a few large eigenvalues indicate the presence of biological signals.

However, in the top row, the cluster structure appears because cells form three groups, each

having its own set of marker genes. Or equivalently, it appears because genes’ expression

changes discretely across cells. In the bottom row, the trajectory structure appears because

genes’ expression changes continuously across cells.

The above artificially constructed example is simple, but it motivates us to explore

whether there are distinguishable differences in the eigenvalue distributions of the gene ex-

pression covariance matrix for cluster-type and trajectory-type datasets. Due to the pop-

ularity of the scRNA-seq field, numerous datasets of cluster type and trajectory type have

been generated. Therefore, they serve as valuable empirical resources and machine learning

approaches can be naturally used to study this problem.

4.2.2 Approach 1 results

For our proposed Approach 1, we aim to distinguish cluster-type vs. trajectory-type scRNA-

seq datasets using the eigenvalue properties from the covariance matrices. In particular,

we first collect a number of trustworthy cluster-type datasets and trajectory-type datasets

(summarized in Table 4.1 and Table 4.2). Then, for each collected dataset, we compute the

eigenvalues of its gene covariance matrix and extract different types of features from the

eigenvalues. Finally, we train a number of SVM classification models with linear kernels

based on the extracted features. We evaluate the model performances using the average

classification accuracy (mean ACC) of a 10-fold cross-validation.
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Dataset Group
# Single
Datasets

Description Ref.

DuoClustering 4
Datasets selected from a clustering methods benchmark pa-
per.

[36]

Hemberg 13
Datasets selected from a clustering parameters benchmark
paper.

[37]

TabulaSapiens 56

From the Tabula Sapiens consortium, which profiles the sin-
gle cell transcriptome of multiple tissues in individual hu-
mans. Cells from a single tissue type of one individual form
a single dataset.

[169]

ZebrafishClust1 37

Datasets from a study of zebrafish heart regeneration. Cells
from one zebrafish sample form a single dataset. All
cell types are selected based on Figure 2 of the original
manuscript [170].

[170]

Hppu 6
Datasets from a study of adult human kidney. Cells from
one human sample form a single dataset.

[171]

Cbec 6
Datasets from a study of breast epithelial cells. Cells from
one human sample form a single dataset.

[172]

Hkch 5
Datasets from a study of normal adult human prostate and
prostatic urethra. Cells from one human sample form a
single dataset.

[173]

Table 4.1: A summary of the cluster-type datasets that were used for training the classifier. The total number of single
datasets is 127.

Dataset Group
# Single
Datasets

Description Ref.

BenchRealGold 27

Datasets selected from a trajectory inference methods
benchmark paper. These are real datasets whose reference
trajectories were ”not extracted from the expression data
itself, such as via cellular sorting or cell mixing” [38].

[38]

BenchRealSilver 83

Datasets selected from a trajectory inference methods
benchmark paper. These are real datasets whose reference
trajectories were ”extracted from the expression data itself”
[38].

[38]

ZebrafishTraj1 37

Datasets from a study of zebrafish heart regeneration. Cells
from one zebrafish sample form a single dataset. Cell types
are selected based on Figure 4 of the original manuscript
[170].

[170]

ZebrafishTraj2 37

Datasets from a study of zebrafish heart regeneration. Cells
from one zebrafish sample form a single dataset. Cell types
are selected based on Figure 5 of the original manuscript
[170].

[170]

Table 4.2: A summary of the trajectory-type datasets that were used for training the classifier. The total number of single
datasets is 184.
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Figure 4.1: Two simulated dataset examples demonstrating how the signal-noise decomposition could occur for both cluster-
type data and trajectory-type data.

(a) The measured gene expression matrix could be decomposed as the sum of a low-rank signal matrix and a noise matrix.
(b) The first two PCs of the measured gene expression matrix. (c) The eigenvalue distribution of the covariance matrix of the
measured gene expression matrix. The blue lines represent the lower and upper bounds (values a and b) of the MP distribution.
The red line represents the MP distribution density. The large eigenvalues outside the MP distribution are marked separately.

4.2.2.1 Eigenvalue universality theorems

Here, we briefly summarize the key eigenvalue universality results that are used in this study.

The following two theorems are directly quoted from the supplementary material of [167].

Theorem 1. (Marchenko-Pastur) Let Y be aMˆN matrix with entries that are independent

identically distributed (i.i.d.), mean 0 and variance ν2 ă 8. The corresponding Wishart

matrix is defined as W “ 1
M
Y TY . For N Ñ 8, M Ñ 8 and 0 ă c ă 1, where c is defined

as M
N
, the distribution of the eigenvalues λ of W is given by

µpλq “

a

pb ´ λqpλ ´ aq

2πcλν2
dλ if a ď λ ď b.

For c ą 1 the distribution has an additional number of 0 eigenvalues:

µpλq “

a

pb ´ λqpλ ´ aq

2πcλν2
1ra,bs ` p1 ´

1

c
δ0pλqq
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with

a, b “ ν2r1 ˘
?
cs2.

δ0pλq is the Dirac delta function, which is 1 if λ “ 0 and 0 otherwise.

Theorem 2. (Tracy-Widom) For empirical correlation matrices of size N ˆ N of i.i.d.

random variables with a finite fourth moment, the distance between the upper edge of the

spectrum of the MP distribution b and the largest eigenvalue λmax converges towards the

Tracy-Widom distribution

Probpλmax ď b ` γN´2{3uq “ F1puq,

where γ in this case is given by γ “
?
cb2{3 and F1puq is the TW distribution. We denote

b ` γN´2{3u as ulim TW.

4.2.2.2 Data preprocessing

In order to apply Theorem 1 and Theorem 2 to our study, we need to preprocess the input

gene expression matrix. We assume it is organized such that rows represent genes and

columns cells. Then we perform the following procedure:

1. For each cell, we perform library normalization to the original count values rescaled by

the median library size of all cells.

2. Perform logp1 ` ¨q transform to the matrix values.

3. Retain as many as 2000 genes with the highest mean expression.

4. Perform gene-wise standardization.

5. Perform cell-wise standardization.

The gene filtering step simplifies the analysis to focus on more informative genes. The

gene-wise and cell-wise standardization steps are performed to approximate the equal vari-
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ance condition for the comparison of the empirical eigenvalue distribution and the theoretical

MP distribution.

4.2.2.3 Features based on the eigenvalue distribution directly

After the preprocessing steps, we denote the resulting gene expression matrix as X with N

rows of genes and M columns of cells. To apply Theorem 1 and Theorem 2, we can let

Y “ XT and compute the key quantities of a, b, µpλq, and ulim TW. We also compute

the eigenvalues of X. Based on these calculations, we can construct features for the SVM

classification models.

The first set of features is constructed based on the comparison of the empirical eigenvalue

distribution and the theoretical MP distribution. We first consider the distribution of small

eigenvalues. In particular, for eigenvalues in a certain range (e.g., pa, ulim TWq), we create a

histogram with 30 bins and compute the difference between µpλq and the empirical eigenvalue

distribution at the center of each of the 30 bins. In this way, we obtain a feature vector of

length 30, which we denote as curve diff. Under these input features, the mean ACC’s of the

trained SVM models are summarized in Table 4.3. As can be seen, under different choices

of the lower and upper limits of the range of eigenvalues, the mean ACC fluctuates between

0.843 to 0.904.

Since the mean ACC is the highest when eigenvalues are in the range pa, ulim TWq, we

compute a single-value predictor in the case. In particular, we compute the mean squared

summary of curve diff (mse). As can be seen, using this single predictor, we can achieve a

mean ACC as high as 0.859.

Features ev llim ev ulim mean ACC

curve diff

0 2.5 ˆ ulim TW 0.849
0 ulim TW 0.868
a 2.5 ˆ ulim TW 0.843
a ulim TW 0.904

mse a ulim TW 0.859

Table 4.3: The classification performances when using the difference between the empirical eigenvalue distribution and the
theoretical MP distribution as input features, focusing on the small eigenvalues.
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Next, we consider the distribution of large eigenvalues, i.e., eigenvalues that exceed

ulim TW. We construct three different types of features: (1) n above: the number of large

eigenvalues, (2) dist ev above: the distribution of large eigenvalues constructed from a 30-bin

histogram, and (3) curve diff + dist ev above: combining the curve diff features constructed

for eigenvalues in the range pa, ulim TWq and dist ev above. The results are summarized in

Table 4.4. We can see that n above as a single predictor has good performance, while com-

bining curve diff and dist ev above gives worse performance than only using curve diff. The

latter could be due to model overfitting from the relatively high combined feature dimensions

of 30 ` 30 “ 60.

Features mean ACC
n above 0.782

dist ev above 0.727
curve diff + dist ev above 0.881

Table 4.4: The classification performances when considering the distribution of large eigenvalues.

4.2.2.4 Features based on other summary statistics of the eigenvalue distribu-

tion

In this part, we construct other summary statistics of the eigenvalue distribution. In par-

ticular, we compute the entropy (ent), standard deviation (sd), skewness (sk), and kurtosis

(kur). We compute these statistics for all the eigenvalues as well as only the large eigenvalues.

The results are summarized in Table 4.5. We can see that the entropy of all the eigenvalues,

as well as the skewness and kurtosis for the large eigenvalues are the better ones.

Finally, we select the single predictors mse, n above, ent ev all, sk ev large, and kur ev large,

since they have good marginal classification performances, and train an SVM model combin-

ing all five of them. This classification model achieves a mean ACC of 0.875, which is higher

than each of the single predictors by itself and is comparable to the performance using the

higher-dimensional features of curve diff.
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Features ev range mean ACC

ent
all 0.800

large 0.595

sd
all 0.592

large 0.592

sk
all 0.684

large 0.762

kur
all 0.665

large 0.765
mse + n above + ent ev all +
sk ev large + kur ev large

— 0.875

Table 4.5: The classification performances using single-value predictors as input features. The last row shows the performance
combining selected good single-value predictors.

4.2.3 Approach 1 problems

In the previous section, we can see that using certain features of the eigenvalue distribu-

tion as input, we can build classification models and achieve relatively good cross-validation

performance (mean ACC ą 0.85) on classifying whether an input dataset is cluster-type or

trajectory-type. However, it turns out that there are some crucial issues with these con-

structed models, which can be seen by testing their performances on the following simulated

data examples.

In Fig. 4.2, we construct a set of simulated datasets whose structures change from

trajectory-type to cluster-type. These simulated datasets are generated using the scRNA-

seq data simulator scDesign3 [174] as follows: We first obtain a real pancreas dataset whose

selected cell types form a trajectory [63, 175]. Then we use the computational tool Slingshot

[28] to infer pseudotime values for the real cells, which are further normalized into the

interval [0, 1]. We then apply scDesign3 to fit one multivariate probabilistic model for all

the cells using the normalized pseudotime values as the cell covariates. Finally, we generate

the simulated datasets using the scDesign3 fitted model with cell pseudotime values sampled

from beta distributions with different parameters, where we keep α “ β and gradually

decrease their value from 1 to 0.002. This will make the pseudotime distribution change

from uniform to being more concentrated on two modes and thus make the simulated cells

change from forming a trajectory to forming two clusters.
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For the simulated datasets in Fig. 4.2, a well-functioned classification model should out-

put cluster-type probabilities that gradually increase from close to 0 to close to 1. However,

as shown in Table 4.6, when we take some of the good-performing classification models from

Tables 4.3 - 4.5, all of them outputs consistently high or low probabilities, not reflecting

the change in structure that is present in Fig. 4.2. Table 4.6 also shows that if we apply

the selected classification models to the two toy examples in Fig. 4.1, they will even output

identical or almost identical cluster-type probabilities. This is in contrast to the obvious

patterns of cluster-type vs. trajectory-type data in Fig. 4.1.

Figure 4.2: A real trajectory-type dataset (Reference) and a set of simulated datasets whose structure changes from trajectory-
type to cluster-type.

The simulated datasets are generated using the scRNA-seq data simulator scDesign3. (a) The pseudotime values inferred for
the Reference datasets and sampled for the simulated datasets. (b) The UMAP visualization plots of the Reference dataset
and the simulated datasets.

4.2.3.1 Testing classifiers with permuted dataset partitions

To investigate the reason why the trained classifiers fail on the simulated data examples in

Fig. 4.1 and Fig.4.2, we obtain the mean ACC for some different partitions of the datasets.

In particular, we construct two sets of permuted datasets (Permuted1 and Permuted2) and 1

set of mixed datasets (Mixed). For the permuted datasets, we select three groups of datasets
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Data
Features

curve diff
curve diff +
dist ev above

mse n above ent all
mse + n above +

ent ev all + sk ev large
+ ku ev large

Reference 1.000 1.000 1.000 0.062 0.059 1.000
scDesign3(1) 1.000 1.000 1.000 0.053 0.045 1.000
scDesign3(0.2) 1.000 1.000 1.000 0.053 0.144 1.000
scDesign3(0.04) 1.000 1.000 1.000 0.045 0.170 1.000
scDesign3(0.008) 1.000 1.000 1.000 0.039 0.212 1.000
scDesign3(0.002) 1.000 1.000 1.000 0.039 0.200 1.000
toy ex cluster 0.055 0.085 0.16 0.033 0.741 0.239
toy ex trajectory 0.116 0.087 0.16 0.033 0.741 0.240

Table 4.6: SVM model prediction probabilities that the input dataset is cluster-type, under different input features.

from the original seven cluster-type dataset groups and two groups from the original four

trajectory-type dataset groups to form a pseudo-class 1, leaving the rest of the datasets

to form the other pseudo-class 2. For the mixed datasets, each of the two pseudo-classes

contains half of all the cluster-type datasets and half of the trajectory-type datasets. We

then train SVM models using the top-performing features from Tables 4.3 - 4.5 and obtain

the average 10-fold cross-validation accuracies. The results are summarized in Table 4.7.

We can see that although the mean ACC’s of the permuted partitions are not as high as

the original partitions, they are also not as low as the mixed partitions (close to 0.5). The

gain in mean ACC between the two permuted dataset groups and the mixed dataset groups

suggests the presence of intrinsic “batch effects” due to the grouping of the datasets. This

“batch effect” will inflate the true classification accuracies. Therefore, the trained classifiers

may not have reliable prediction results on new datasets.

mean ACC
Feature(s) Original Permuted1 Permuted2 Mixed
curve diff 0.904 0.629 0.682 0.565

curve diff +
dist ev above

0.881 0.677 0.675 0.502

mse 0.859 0.649 0.669 0.476
n above 0.782 0.552 0.604 0.469
ent all 0.800 0.668 0.678 0.511

mse + n above + ent ev all +
skewness ev large + kurtosis ev large

0.875 0.652 0.694 0.544

Table 4.7: The comparison of classification performances for permuted and mixed datasets vs. datasets from the original
partition.
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There are some other issues with Approach 1. For example, even if we take the classifier

with the highest possible mean ACC of 0.904, and treat this value as is, still about 10% of

the time, the classifier will not work. And it is difficult to tell when that will happen.

Due to these limitations of Approach 1, we will try another approach to distinguish

cluster-type and trajectory-type datasets.

4.3 Data-simulation-based approach (Approach 2)

4.3.1 Methods

Fig. 4.3 shows the diagram of the new approach, which is based on synthetic data simulation.

To be more specific, for an input query dataset for which we would like to distinguish

whether its underlying structure is cluster-type or trajectory-type, we split half of it as a

training dataset and the other half as a test dataset. Next, the training dataset goes through

two branches. On one branch, we apply Seurat clustering [25, 26] and obtain cell cluster

labels. On the other branch, we apply Slingshot trajectory inference [28] and obtain cell

pseudotime and branch values. Then, given the same training dataset and different fitted cell

covariates (cluster labels vs. pseudotime and branch values), we fit two different probabilistic

generative models and simulate two different datasets of different latent structures, using the

all-in-one single-cell data simulation tool scDesign3 [174]. Finally, we compare each of the

two simulated datasets with the test dataset. The final output of the selected underlying

structure of the input query dataset will be from the simulated dataset that is more similar

to the test dataset.

One thing to note about this approach is that for the trajectory inference branch, scDe-

sign3 does not directly use the fitted cell pseudotime values after obtaining them from Sling-

shot trajectory inference. Rather, we apply kernel density estimation to the fitted pseudotime

values and then sample a new set of pseudotime values based on the smoothed pseudotime

density. This is because as cell covariates, pseudotime values intrinsically carry more infor-

mation than cluster labels. Without the smoothing step, the simulated data based on the
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Figure 4.3: The diagram of the data-simulation-based approach.

more complicated cell covariates will always be more similar to the test data compared to

the alternative.

Finally, in order to compare the two simulated datasets to the test dataset, we need a

measure of similarity. For the results in this section, we tried three different summary statis-

tics based on the Local Inverse Simpson’s Index (LISI) [123] of cells in the 2D visualization

plots (PCA and UMAP [21]) where we project the simulated cells to the space of the test

cells. For a given cell, its LISI value varies from 1 to 2, with a higher value indicating a bet-

ter mixing of cells from two categories (simulated vs. test) in its neighborhood. Therefore,

meaningful summary statistics of this value can reflect the overall quality of the mixing of

simulated data and test data and thus their similarity.

The three statistics we choose are (1) qLISI difference: the difference between the lower

10% quantiles of the LISI values between the cluster-simulated dataset and the trajectory-

simulated dataset, (2) ECDF area difference: the signed area difference of the two LISI empir-

ical cumulative distribution functions (ECDF) between the cluster-simulated dataset and the

trajectory-simulated dataset, and (3) AUROC: the area under the ROC curve when choos-
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ing different LISI thresholds to classify cluster-simulated dataset and trajectory-simulated

dataset. The benefit of qLISI is its ease of computing, while the benefit of the latter two is

that they make use of all the LISI values.

4.3.2 Approach 2 results

We first test the performance of Approach 2 on a typical trajectory-type dataset and an-

other typical cluster-type dataset. The trajectory-type dataset is the single trajectory

real/reference dataset from Fig. 4.2 [175] and the cluster-type dataset is constructed with

four selected cell types from the data generated in [3]. As shown in Fig. 4.4, by comparing

the mixing patterns of the simulated data and the test data in the 2D test data PC space,

the correct underlying structure can be selected. Quantitatively, this can be seen from the

higher qLISI values.

Next, we test the performance of this approach on the reference and the simulated

datasets in Fig. 4.2. The results are summarized in Fig. 4.5. We first compute the qLISI

values and use their difference between the cluster-simulated dataset and the trajectory-

simulated dataset to select the underlying latent structure. As shown in Fig. 4.5a, this

difference works correctly for the reference dataset as well as the first and last two simulated

datasets. However, for the simulated dataset in the middle that represents the intermediate

state between the trajectory type and cluster type transition, the difference in qLISI is not

close to zero, but rather a value indicating the cluster type. Moreover, the change of qLISI

differences across the simulated datasets of different parameters is not monotonic, which is

a major limitation.

To see if we can overcome this limitation and obtain quantitatively correct results, we

compute the ECDF area difference and the AUROC from all the LISI values. The results are

shown in Fig. 4.5bc. We can see that similar to the qLISI difference, these two statistics can

give qualitatively correct results for the reference dataset and the two simulated datasets on

the two ends of the trajectory to cluster transition spectrum. However, they do not produce

close to 0 (for ECDF area difference) or 0.5 (for AUROC) values for the intermediate dataset
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and the changes of these two values are also not monotonic across the transition spectrum.

In addition to PCA 2D plots, we also obtained results from UMAP 2D plots. The results

are summarized in Supplementary Fig. 4.6 with the same conclusions.

4.4 Discussion

In this project, we have explored two computational approaches to decide latent structure

types for scRNA-seq datasets. Compared with Approach 1, Approach 2 has a more inter-

pretable procedure and gives better results for the trajectory-type transition to cluster-type

simulated datasets example. Approach 2’s LISI based summary statistics can give quali-

tatively correct results for typical trajectory-type and cluster-type datasets, but do not do

well for intermediate datasets nor are they quantitatively meaningful. To obtain better re-

sults, other types of similarity measures can be considered. For example, we can mix the

simulated dataset with the test dataset and train a classification model to separate them.

Then a worse classification accuracy would represent better similarity. Alternatively, we can

compute the Wasserstein distance between the simulated dataset and the test dataset using

optimal transport [176]. Compared to the LISI values in the 2D space, these two measures

have the advantage of being computed in the original dimensions of the datasets, losing less

information.

In addition to challenges with improving the statistical techniques of Approach 2, we

also face the challenge of the complication of real biological datasets. Supplementary Fig.

4.7 shows the PCA visualizations of some of the datasets used in the trajectory inference

methods benchmark paper [38]. These datasets are trajectory datasets with “gold standard”

labels, meaning that their “reference trajectory was not extracted from the expression data

itself, such as via cellular sorting or cell mixing” [38]. Here, we have shown the results of

the first four PCs. However, the “overall shape” of the datasets can be seen from just the

first two PCs. From visual inspection, although the two datasets in panels (a) and (b) show

trajectory-type patterns, it is hard to determine for datasets in panels (c) - (f). For the

dataset in panel (c), the pattern formed by the datasets from each time point appears more
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Figure 4.4: 2D principal component (PC) plots of the data-simulation-based approach for two datasets.

(a) Results for a typical trajectory-type dataset. (b) Results for a typical cluster-type dataset. Gene expression counts are
transformed as logp1`countq before dimensionality reduction. qLISI is the lower 10% quantile of the cell local inverse Simpson’s
Index, a higher value of which indicates that the simulated data mix better with the test data in the 2D visualization plot.
By visually inspecting the patterns in these plots as well as comparing the qLISI values, we find that the simulated dataset
generated under the correct latent structure type mixes better with the test dataset in these plots and has higher qLISI values.
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Figure 4.5: LISI-value-based results summary for the real and simulated datasets in Fig. 4.2.

The LISI values are computed for simulated and test cells in the 2D principal component (PC) space of the test cells. (a) Table
summary of the qLISI values. (b) Plot summary for the ECDF area differences. (c) Plot summary for the AUROC values. All
three panels show that these LISI-value-based summary statistics can give qualitatively correct conclusions, but do not do well
for the intermediate dataset or monotonically change across the trajectory-type to cluster-type transition.
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like clusters than a trajectory. The dataset in panel (d) appears like only one data cloud,

but not a trajectory. The dataset in panel (e) appears like two clusters weakly connected

with each other. In each of the three cases of (c) - (e), it is hard to justify a trajectory

direction that aligns with the true time values. The dataset in panel (f) again appears like

a few clusters weakly connected. Also, even if a trajectory can be created for it, it is not

possible to determine the start and ends of the trajectory based on data points alone. These

examples demonstrate the limitations of solving the latent structure type selection problem

based on the gene expression count matrix alone.
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S4.6 Supplementary Figures

Figure 4.6: LISI-value-based results summary for the real and simulated datasets in Fig. 4.2.

The LISI values are computed for simulated and test cells in the 2D UMAP space of the test cells. (a) Table summary of the
qLISI values. (b) Plot summary for the ECDF area differences. (c) Plot summary for the AUROC values. All three panels
show that these LISI-value-based summary statistics can give qualitatively correct conclusions, but does not do well for the
intermediate dataset or monotonically change across the trajectory-type to cluster-type transition.
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Figure 4.7: 2D principal component analysis (PCA) plots of selected real “gold standard” datasets used in the trajectory
inference methods benchmark paper [38].

Gene expression counts are transformed as logp1 ` countq before dimensionality reduction and results of the first four PCs
are shown. The cells are colored by their associated time values. Although the data patterns in (a) and (b) can be visually
determined as trajectory-type relatively easily, this is not the case for the datasets in (c) - (f).
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