
UC Berkeley
Research Reports

Title
Lower and Upper Bounds for a Symmetric Multiple Depot, Multiple Travelling Salesman
Problem

Permalink
https://escholarship.org/uc/item/4z68041r

Authors
Rathinam, Sivakumar
Sengupta, Raja

Publication Date
2006-03-21

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4z68041r
https://escholarship.org
http://www.cdlib.org/

Institute of Transportation Studies
University of California at Berkeley

March 2006
ISSN 0192 4095

RESEARCH REPORT
UCB-ITS-RR-2006-2

Lower and Upper Bounds for a Symmetric Multiple Depot, Multiple
Travelling Salesman Problem

Sivakumar Rathinam, Raja Sengupta

1

Lower and Upper Bounds for a Symmetric Multiple
Depot, Multiple Travelling Salesman Problem

Sivakumar Rathinam1, Raja Sengupta2

Abstract—This paper extends the well known Held-Karp’s
lower bound available for a single Travelling Salesman Prob-
lem to the multiple depot case. The LP-relaxation of a sym-
metric multiple vehicle, multiple depot problem is shown to
be lower bounded by an infinite family of bounds. Each
lower bound can be computed in a tractable way using a
matroid intersection algorithm. When the costs of travel-
ling between any two locations satisfy triangle inequality,
it is shown that there exists a 2-approximation algorithm
for solving the multiple depot, multiple TSP. These results
are useful in solving the following path planning problem
of UAVs: Given a set of UAVs, their starting locations, a
set of final UAV locations, a set of destinations to visit and
the cost of travelling between any two locations, find a path
for each UAV such that each destination is visited once by
any one UAV and the total cost travelled by all the UAVs
is minimum.

I. Introduction

Resource allocation problems concerning Unmanned
Aerial Vehicles (UAVs) have received significant atten-
tion in recent years. A collection of small autonomous
UAVs with the necessary sensors can potentially replace
a manned vehicle in dangerous environments and warfare.
A common mission that can be carried out by a group of
UAVs is a surveillance operation where a set of sites needs
to be monitored. If the number of sites to be visited are
higher than the number of UAVs available, then the fol-
lowing resource allocation questions naturally arises:
i. How to partition the set of sites into subsets such that
each UAV gets a subset of sites to monitor?
ii. Given a subset for each UAV, how to determine the
order in which the sites should be monitored?
iii. Can we answer questions 1 and 2 in an optimal way?
That is, can we find a partition and a order for each vehicle
such that total distance travelled by the UAVs is minimum
or the total risk encountered is minimum?

These are the questions addressed in this paper. For ex-
ample, if there are n sites and each site must be monitored
exactly once with the help of one vehicle, then the number
of ways in which the sites can be visited is n!. A naive algo-
rithm of choosing a particular order that would minimize
the total distance travelled would be to calculate the to-
tal distances travelled for all the possible n! ways and pick
the one that has minimum cost. Even for small numbers
of n, such naive algorithms are extremely time consuming
and inefficient in practice. This problem of finding the se-
quence of sites for a vehicle to visit that results in minimum

1. Graduate Student, Department of Civil Engineering, University
of California, Berkeley, CA 94703, corresponding author e-mail:
rsiva@berkeley.edu

2. Assistant Professor, Department of Civil Engineering, University
of California, Berkeley CA-94702

total distance is referred to as the classic Travelling Sales-
man Problem or TSP in the operations research literature.
TSP is well known to be NP-Hard [1],[2]. There are no
algorithms in the literature that can solve the TSP prob-
lem exactly in polynomial time1. There are many efficient
algorithms that exploits the structure of the problem and
produces a solution that is close to the optimal solution.
A approximation factor β(P, A) of using an algorithm A
to solve the problem P (objective is minimize some cost
function) is defined as

β(P, A) = sup
I

(
C(I,A)
Co(I)

), (1)

where I is a problem instance, C(I, A) is the cost of the
solution by applying algorithm A to the instance I and
Co(I) is the cost of the optimal solution of I. In simple
terms, the algorithm A produces an approximate solution
to every instance I of the problem P , whose cost is within
β(P, A) times the optimal solution of I. Constant factor
approximation algorithms are useful in the sense that they
give an upper bound to the cost of the resulting solution
that is independent of the size of the problem. Also, in the
context of UAVs where resource allocation algorithms are
for planning purposes and where problems have simplifying
assumptions on the dynamics of the vehicle, it is reasonable
to aim for fast algorithms that can provide solutions with
a guaranteed approximation factor.

Similarly, there are also algorithms that can provide tight
lower bounds to the TSP. An advantage of deriving lower
bounds is that they can be used in branch and bound
solvers used to solve the TSP and get faster results. Also,
if one can find lower bounds that are close to the opti-
mal solution in a efficient way, then the quality of using
an algorithm can be found out by comparing the solution
produced by the algorithm directly with the lower bound
than with the optimal solution that may require a large
computation time.

Travelling salesman problem has received extensive
treatment in the literature and one can refer to [1] for all the
possible heuristics, algorithms that have been used to solve
the problem. For a general cost function (i.e. the cost func-
tion determines the cost of travelling between two sites), it
has been proved that there exists no constant factor ap-
proximation algorithm unless P=NP. If the cost function

1An algorithm is said to run in polynomial time if the number of
steps required to run the algorithm is a polynomial function in the
input size of the problem

2

satisfies triangle inequality and is symmetric2, then the fol-
lowing are the two approximation algorithms available for
the single TSP:
• 2 approx algorithm [2].
• 1.5 approx algorithm by Christofides [3].

When the sites lie on a Euclidean plane, the cost func-
tion has additional properties that was exploited by Arora
in [4]. Given any ε > 0, Arora’s algorithm finds a solu-
tion with an approximation factor of 1 + ε in time nO(1

ε).
For the multiple vehicle case, where each vehicle starts and
ends at the same depot and where the cost function is sym-
metric and satisfies triangle inequality, Rathinam et al. has
proposed a 2-approx algorithm in [5].

As far as the lower bounds are concerned, Held and
Karp’s result is the best known result for the single TSP.
The experimental results in [1] show that even for large size
problems, Held-Karp’s lower bound gets within 1-2% of the
optimal solution. An important feature of Held-Karp’s al-
gorithm is that the results are very close to the optimal
solution for any general cost function (i.e. cost function
doesn’t have to satisfy triangle inequality). Hence, in the
context of UAVs, this might be ideal as the cost function
could be determined by the risk of travelling between any
two sites and hence, may not satisfy triangle inequality
constraints.

The contributions of this work is as follows:
• A 2-approx algorithm for a multiple depot, multiple
TSP3 when the cost function satisfies triangle inequality.
• Extension of the Held-Karp’s lower bound available for
the single TSP to the multiple vehicle, multiple depot case.

II. Formulation of the Multiple Depot,
Multiple TSP

Let V = {1, 2, 3...n} be the set of destinations to be
visited. There are k (k ≤ n) vehicles initially located at
vertices S = {s1, s2...sk}. Each vehicle is required to visit
at least 1 destination and reach a final location. There
are k final locations denoted by the set F = {f1, f2...fk}.
A feasible set of paths consists of k non-intersecting paths
that start at S and reach F such that all destinations are
visited exactly once and each vehicle visits at least one
destination. A example for a 3 vehicle scenario is shown in
figure 1. There exists no edges between any two vertices
in S, F or between S and F . All the remaining edges are
present and the edge joining vertex i to j has a cost Cij

associated with it. Costs are symmetric, i.e., Cij = Cji. To
formulate the problem, two additional vertices r and r′ are
added (refer to figure 2) such that ∀i ∈ S, Cri = 0 and ∀i ∈
F , Cr′i = 0 . Let x := {xij : ∀i, j ∈ {r, r′}

⋃
S

⋃
V

⋃
F, i <

2If i, j, k denote the sites to be visited and Cij , the distance to travel
from the ith site to the jth site, then satisfying triangle inequality
means that Cij ≤ Cik + Ckj . The cost function is symmetric if
Cij = Cji.

3The problem discussed in this paper is different from the multi-
vehicle, multi-depot TSP problem considered in [5]. In [5], each vehi-
cle starts and ends at the same depot location, whereas in this paper,
the starting and the final location of the vehicle are different. This
paper also differs in the aspect that each vehicle is allowed to reach
any one of the possible final locations.

Vehicle starting

locations

Destinations

Vehicle final

locations

s1

s2

s3

f1

f2

f3

Fig. 1. An example of a 3 vehicle, 3 Depot TSP.

Vehicle starting

locations

Destinations

Vehicle final
locations

Root nodes

Vertex r
Vertex r’

s1

s2

s3

f1

f2

f3

Fig. 2. Illustration of a Multiple Depot, Multiple TSP with root
vertices.

j if i, j ∈ V } denote the edge incidence matrix. xij = 1
implies that the edge between vertex i to j is chosen and
xij = 0 implies otherwise. The MVMDP is formulated as
follows:

Problem II.1: The objective is to find an incidence ma-
trix x such that the following cost given by

C(x) =
∑

i∈S,j∈V

Cijxij +
∑

i∈V,j∈V,i<j

Cijxij +
∑

i∈F,j∈V

Cijxij

(2)
is minimized subject to the following constraints.

i.
∑

j∈V
xij = 1, ∀i ∈ S

ii.
∑

j∈S
xij+

∑
j∈V,i<j

xij+
∑

j∈V,j<i
xji+

∑
j∈F

xij = 2,∀i ∈ V

3

iii.
∑

j∈V
xij = 1,∀i ∈ F

iv. xri = 1,∀i ∈ S

v.
∑

{i,j}∈U1
xij ≤ |U1|− 1, ∀U1 ⊆ {r}

⋃
S

⋃
V

⋃
F

vi. xr′i = 1,∀i ∈ F

vii.
∑

{i,j}∈U2
xij ≤ |U2|− 1, ∀U2 ∈ {{r′}

⋃
T : T ⊆ S

⋃
V

⋃
F}

viii. xij ∈ {0, 1}, ∀i, j ∈ {r, r′}
⋃

S
⋃

V
⋃

F, i < j if i, j ∈ V .

Constraints i,ii,iii enforce the degree constraints on each
vertex. Constraint v removes any possibility of a cycle in
the graph induced by the vertices {r}

⋃
S

⋃
V

⋃
F . Since

the edges connecting the root vertex r and each of the ver-
tices in S must be selected by constraint iv, constraints iv
and v state a requirement that there exists no path through
vertices only in V

⋃
F that connects any two, distinct ver-

tices in S. Constraints vi and vii also play a similar role as
iv and v. They state the requirement that there exists no
path through vertices only in S

⋃
V that connects any two,

distinct vertices in F . To facilitate further analysis, an ad-
ditional constraint is added to the above problem without
changing the set of feasible solutions. This is stated in the
following lemma.

Lemma II.1: The following additional constraint can be
added to problem II.1 without changing its set of feasible
solutions:

∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij +
∑

i∈F,j∈V

xij = n + k (3)

Proof: Summing the constraint i in problem II.1 for
all vertices in S, we get

∑
i∈S,j∈V xij = k. Similarly, sum-

ming constraint iii, we get
∑

i∈F,j∈V xij = k. Summing
constraint ii for all vertices in V and using the fact that∑

i∈V,j∈V,i<j xij =
∑

i∈V,j∈V,j<i xji, we get,
∑

i∈S,j∈V

xij + 2
∑

i∈V,j∈V,i<j

xij +
∑

i∈F,j∈V

xij = 2n

⇒
∑

i∈V,j∈V,i<j

xij = n− k.

Therefore,
∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij +
∑

i∈F,j∈V

xij = k + (n− k) + k

= n + k.

(4)

Therefore problem II.1 can be reformulated with the ad-
ditional constraint as follows:

Problem II.2: The objective is to find the incidence ma-
trix x such that the following cost given by

C(x) =
∑

i∈S,j∈V

Cijxij +
∑

i∈V,j∈V,i<j

Cijxij +
∑

i∈F,j∈V

Cijxij

(5)

is minimized subject to the following constraints.

i.
∑

j∈V
xij = 1, ∀i ∈ S

ii.
∑

j∈S
xij+

∑
j∈V,i<j

xij+
∑

j∈V,j<i
xji+

∑
j∈F

xij = 2,∀i ∈ V

iii.
∑

j∈V
xij = 1,∀i ∈ F

iv.
∑

i∈S,j∈V
xij +

∑
i∈V,j∈V,i<j

xij +
∑

i∈F,j∈V
xij = n + k

v. xri = 1,∀i ∈ S

vi.
∑

{i,j}∈U1
xij ≤ |U1|− 1, ∀U1 ⊆ {r}

⋃
S

⋃
V

⋃
F

vii. xr′i = 1,∀i ∈ F

viii.
∑

{i,j}∈U2
xij ≤ |U2|− 1, ∀U2 ∈ {{r′}

⋃
T : T ⊆ S

⋃
V

⋃
F}

ix. xij ∈ {0, 1},∀i, j ∈ {r, r′}
⋃

S
⋃

V
⋃

F, i < j if i, j ∈ V .

Let the constraints i,ii,iii be denoted by A1x = B1.
The constraints defined by iv,v,vi,vii,viii can be written as
A2x ≤ B2. Since the cycle elimination constraints ensure
that each xij can never exceed 1, the above minimization
problem can be restated as

Copt = minx {C(x) : A1x = B1, A2x ≤ B2,x ≥ 0,x is an integer}.
(6)

The LP relaxation of this problem is:

Clp = minx {C(x) : A1x = B1, A2x ≤ B2,x ≥ 0}. (7)

Before, we present the algorithms for calculating the
lower and the upper bounds, just as how the spanning tree
played an important role in the single vehicle problem [7],
a forest with k disjoint trees satisfying the following con-
straint plays an important role in MVMDP: Each tree in
the forest spans exactly one vertex from S, exactly one ver-
tex from F and a subset of vertices from V . An illustration
of such a forest with 3 components is shown in figure 3. The
problem of finding such a constrained forest of minimum
cost can be formulated as follows:

Problem II.3: The objective is to find an incidence ma-
trix x such that the cost given by

C(x) =
∑

i∈S,j∈V

Cijxij +
∑

i∈V,j∈V,i<j

Cijxij +
∑

i∈F,j∈V

Cijxij

(8)

is minimized subject to the following constraints.

i.
∑

i∈S,j∈V
xij +

∑
i∈V,j∈V,i<j

xij +
∑

i∈F,j∈V
xij = n + k

4

Vehicle starting

locations

Destinations

Vehicle final

locations

s1

s2

s3

f1

f2

f3

Fig. 3. An example of a constraint forest having 3 vehicles.

ii. xri = 1,∀i ∈ S

iii.
∑

{i,j}∈U1
xij ≤ |U1|− 1, ∀U1 ⊆ {r}

⋃
S

⋃
V

⋃
F

iv. xr′i = 1,∀i ∈ F

v.
∑

{i,j}∈U2
xij ≤ |U2|− 1, ∀U2 ∈ {{r′}

⋃
T : T ⊆ S

⋃
V

⋃
F}

vi. xij ∈ {0, 1},∀i, j ∈ {r, r′}S
⋃

V
⋃

F, i < j if i, j ∈ V .

The difference between the problem formulations in II.2
and II.3 is the presence of the degree constraints on each of
the vertices in problem II.2. Using the notation in equation
6, the constrained forest problem can be formulated as:

Cf = minx {C(x) : A2x ≤ B2,x ≥ 0,x is an integer}. (9)

A useful property of the set of feasible solutions denoted
by {A2x ≤ B2,x ≥ 0,x is an integer} is stated in the fol-
lowing theorem. Due to space constraints, this is proved in
the appendix.

Theorem II.1: The optimal solutions of minx{C(x) :
A2x ≤ B2,x ≥ 0} are integers. This implies that
minx{C(x) : A2x ≤ B2,x ≥ 0} = minx{C(x) : A2x ≤
B2,x ≥ 0,x is an integer}.

III. Upper bounds

As discussed in the introduction of the paper, a constant
factor approximation algorithm is not yet known for TSP
problems for any general cost function. However, approxi-
mation algorithms are possible if the costs satisfy triangle
inequality. For example, if the cost of travelling between
any two vertices is just based on the Euclidean distances,
then triangle inequality is easily satisfied. An approxima-
tion algorithm for the MVMDP is given below.

i. Find the optimal constrained forest (formulated in prob-
lem II.3) using the Edmond’s matroid intersection algo-
rithm (Refer to the appendix). The output of this algo-
rithm for an example with five vehicles is shown in figure
4.

ii. For each tree corresponding to a vehicle, double its edges
to construct its Eulerian graph (figure 5).

iii. Then construct a path for each vehicle based on its
Eulerian graph. A path for each vehicle visits each desti-
nation in its corresponding Eulerian tour exactly once and
reaches the final location (figure 6). This step is similar
to the Tarjan’s algorithm available for the single Travelling
Salesman problem [2].

The following theorem shows this algorithm has a ap-
proximation factor of 2.

Theorem III.1: The algorithm solves the MVMDP
with an approximation factor of 2 in O((n + 2k)6) steps
when the costs satisfy triangle inequality.

Proof: From lemma VI.3 in the appendix, computing
the minimum constrained forest takes O((n + 2k)6) steps.
Steps ii and iii essentially finds an Eulerian tour for each
vehicle and requires O((n+2k)2) steps. Therefore, the com-
plexity of the algorithm is dominated by the first step and
hence the algorithm runs in O((n + 2k)6) steps. To prove
the bound, note that a feasible solution for the MVMDP
is also a feasible solution for the constrained forest prob-
lem. Hence, Cf ≤ Copt (refer to equations 9 and 6). Also,
since each edge in doubled in step ii of the algorithm to
construct a Eulerian graph for each vehicle, the cost of the
solution Cs obtained by short cutting some of the edges
in step iii would be upper bounded by 2Cf (short cutting
does not increase the cost because of the assumption on
the triangle inequality). Hence, Cf ≤ Copt ≤ Cs ≤ 2Cf .
Therefore, the approximation factor is 2.

IV. Lower Bounds

In this section, we derive lower bounds for MVMDP
and show that its LP-relaxation is a tractable problem that
can be solved using a matroid intersection algorithm. Let
P denote the set of all feasible paths for the MVMDP as
defined in equation 6. That is, P := {A1x = B1, A2x ≤
B2,x ≥ 0,x is an integer}. Similarly, let F denote the set
of all feasible solutions for the constrained forest problem.
That is, F := {A2x ≤ B2,x ≥ 0,x is an integer}. Now, let
us perturb the costs Cij to Cij := Cij + πi + πj where πi

is a weight assigned to vertex i. The objective function of
MVMDP in problem II.2 gets modified to minx∈P C(x),
where,

C(x) = C(x) +
∑

i∈S

πi +
∑

i∈V

2πi +
∑

i∈F

πi. (10)

Similarly, the objective function for the constrained for-
est problem gets modified to minx∈P C̃(x), where,

C̃(x) = C(x) +
∑

i∈S

πi

∑

j∈V

xij +

5

Vehicle starting

locations

Destinations

Vehicle final

locations

Fig. 4. Step 1 of 2-approx algorithm: Find the optimal constrained
forest.

Vehicle starting

locations

Destinations

Vehicle final

locations

Fig. 5. Step 2 of 2-approx algorithm: Double the edges in each tree
to get a Eulerian graph for each vehicle.

∑

i∈V

πi(
∑

j∈S

xij +
∑

j∈V,i<j

xij +
∑

j∈V,j<i

xji +
∑

j∈F

xij)

+
∑

i∈F

πi

∑

j∈V

xij

(11)

Note that a feasible solution for the MVMDP is also a
feasible solution for the constrained forest problem. Hence
we must have, minx∈F C̃(x) ≤ minx∈P C(x). Substituting
for C(x) and C̃(x) using equations 10, 11 and rearranging
the terms we get the following lower bound for MVMDP.

Vehicle starting

locations

Destinations

Vehicle final

locations

Fig. 6. Step 3 of 2-approx algorithm: Construct a path out of each
Eulerian graph.

min
x∈F

C̃(x)−
∑

i∈S

πi −
∑

i∈V

2πi −
∑

i∈F

πi ≤ min
x∈P

C(x) (12)

Since the above equation is true for any π, we get the
following lemma:

Lemma IV.1:

max
π

w(π) ≤ minx C(x), (13)

where w(π) is defined as follows:

w(π) = min
x∈F

[C(x) +
∑

i=S

πi(
∑

j∈V

xij − 1) + (14)

∑

i∈V

πi(
∑

j∈S

xij +
∑

j∈V,i<j

xij +
∑

j∈V,j<i

xji +
∑

j∈F

xij − 2)

+
∑

i∈F

πi(
∑

j∈V

xij − 1)],

= min
x∈F

[C(x) + πT (A1x−B1)]. (15)

The left hand side of equation 13 provides a lower bound
to the MVMDP. Note that for any fixed π, the inner min-
imization problem in equation 14 is that of calculating an
optimal constrained forest. This can be solved using a ma-
troid intersection algorithm as shown in the appendix. For
the single vehicle problem, Held and Karp showed that the
LP-relaxation of the single vehicle TSP is actually equal to
maxπ w(π). This result was pivotel in realizing tight lower
bounds for the single vehicle TSP. We present a similar
result for the multiple vehicle case. We state this in the
following theorem.

6

Theorem IV.1: Let w(π) and Clp be given by equations
14 and 7 respectively. Then,

max
π

w(π) = Clp. (16)

Remark: This result hinges on theorem II.1. Once the
fact that minx{C(x) : A2x ≤ B2,x ≥ 0} = minx{C(x) :
A2x ≤ B2,x ≥ 0,x is an integer} is accepted, the remain-
ing part of the proof can be found in Held-Karp’s paper
[7]. Due to space constraints, the authors refer to a similar
proof in [7].

Now the fact that w(π) is a concave function of π can
be used to generate lower bounds using a ascent algo-
rithm. Essentially we are interested in finding π∗ such that
w(π∗) = maxπ w(π). We present here an ascent algorithm
similar to the one discussed in [8]. Let v := A1x − B1

(refer equation 15). Let πk denote the iterate of π at the
kth step of the ascent algorithm. Let vk denote the iterate
of v at the kth step of the ascent algorithm. Note that vk

is a function of πk also. To start with let π1 = 0. The
ascent method chooses a sequences of vectors πk such that
πk+1 = πk + tvk, where t is a appropriate constant. This
choice of sequence for πk would eventually yield an opti-
mal solution π∗ and the relevant convergence properties of
this method is shown in [8]. Each iterate πk gives a lower
bound w(πk) for the MVMDP.

V. Conclusions

This paper presents a 2-approximation algorithm and a
lower bounding algorithm for a symmetric multiple vehicle,
multiple depot problem. The well known Held-Karp’s lower
bound available for a single Travelling Salesman Problem is
extended to the multiple depot, multiple Travelling Sales-
man Problem. The algorithms essentially require calcu-
lating a constrained forest which can be computed using
Edmond’s matroid intersection algorithm. Currently, the
authors are testing the derived algorithms in this paper
with the standard instances available in the literature.

References
[1] The Travelling Salesman Problem and its Variations, Kluwer Aca-

demic Publishers, 2002.
[2] Papadimitriou, C.H., and Steiglitz, K., Combinatorial optimiza-

tion: algorithms and complexity, Prentice-Hall 1982, Dover pub-
lications 1998.

[3] Christofides, N., Worst-case analysis of a new heuristic for the
travelling salesman problem. In: J. F. Traub (Editor), Algorithms
and Complexity: New Directions and Recent Results, Academic
Press, pp.441, 1976.

[4] Arora, S., Polynomial-time Approximation Schemes for Euclidean
TSP and other Geometric Problems, Proceedings of the 37th An-
nual Symposium on the Foundations of Computer Science, pp:2-
11, 1996.

[5] Rathinam, S., Sengupta, R., and Swaroop, D., ”A Resource Allo-
cation Algorithm for Multi Vehicle Systems with Non-Holonomic
Constraints”, Accepted in IEEE Transactions on Automation Sci-
ence and Engineering, 2005.

[6] Lawler, E. L, Combinatorial optimization: networks and ma-
troids, 1976.

[7] Held, M., and Karp, R. M., “The Traveling-Salesman Problem
and Minimum Spanning Trees,” Operations Research, vol. 18,
pp.1138-1162, 1970.

[8] Held, M., and Karp, R. M., “The Travelling Salesman Problem
and Minimum Spanning Trees: Part II,” Mathematical Program-
ming, vol.18, pp.1138-1162, 1971.

VI. Appendix

A. Matroids and Matroid Polyhedra

This section presents some of the properties of matroids
and their intersections which will be used to prove theorem
II.1. The discussion in this paper primarily follows the
notations and presentation given in Lawler [6]. A matroid
M = (E, I) is a structure in which E has a finite set of
elements and I is a family of subsets of E such that the
following holds:
i. Φ ∈ I.
ii. If S1 ∈ I and S2 ⊂ S1, then S2 ∈ I.
iii. Let I1 ∈ I and I2 ∈ I. If | I2 |>| I1 |, then ∃e ∈ I2− I1

such that I1
⋃
{e} ∈ I.

Any subset I ∈ I is said to be an independent set of the
matroid M = (E, I). The rank of any subset S ⊆ E, de-
noted by r(S), is defined as the cardinality of the maximal
independent subset of S. The span of a set S ⊂ E, span(S),
is defined as the maximal superset of S having the same
rank as S. A set S is called a closed set if S = span(S).

An example of a matroid is M = (E, I) defined on a
graph G, where E contains the edges of G and I = {S :
S ⊆ E and S contains no cycles}. Note that any span-
ning tree of G is an element in I. Infact, a spanning tree
corresponds to a maximal element in I. A maximal inde-
pendent set of a matroid is called the base. Hence, com-
puting a maximum weighted spanning tree over a graph G
is equivalent to finding the base in the matroid that has
maximum weight. Assuming that the each edge in E has a
non-negative weight, finding the maximum weighted span-
ning tree problem can be posed as a problem of finding
an element in I that has maximum weight. Let the set
of edges in E be denoted as {e1, e2...em}. Let the matrix
A denote the incidence matrix of the closed sets. That
is, Aij = 1 if edge ei is present in the closet set j and 0
otherwise. Let the rank vector be r = {r1, r2...rp}, where
rj denotes the rank of the closed set j and p the number
of closed sets present in E. Let x be the incidence vec-
tor which determines whether an edge is picked or not(i.e.
xi = 1 if ei is chosen and xi = 0 otherwise). Let ci denote
the cost of an edge ei ∈ E. Then the maximum spanning
tree problem can be formulated as

max{cx : Ax ≤ r, x ≥ 0, xi an integer}. (17)

A theorem by Edmonds shows that the extremal points of
{x : Ax ≤ r, x ≥ 0} are integers. In fact, the vertices
of the convex polyhedron defined by {x : Ax ≤ r, x ≥ 0}
are in one-to-one correspondence to the elements in I. This
enables one to formulate the maximal weight spanning tree
problem as a linear programming problem. This step was
crucial in the results of the Held-Karp’s algorithm [7] for
the single TSP. In this paper we show that the constrained
forest as discussed in section II.3 also shares this property.
It turns out that this constrained forest is an element that
lies in the intersection of two matroids. Edmonds showed

7

that that the intersection of two matroid polyhedra has
integer solutions. This is stated in the following theorem.
Let M1 and M2 be any two matroids defined over the same
set of elements E. Let A and B be the closed set incidence
matrices of M1 and M2 respectively. Let r and s be the
rank vectors associated with these two matrices.

Theorem VI.1: (Edmonds) For any two matroids M1

and M2, all vertices of the convex polyhedron defined by
the system of linear equations {x : Ax ≤ r,Bx ≤ s, x ≥ 0}
have integer solutions. Moreover, the vertices and the in-
tersections of the two matroids are in one-to-one correspon-
dence.

B. Proof of Theorem II.1

It is first shown that solving the minimum cost constraint
forest problem formulated in section II is equivalent to find-
ing a related subgraph of maximum weight. The equivalent
subgraph problem is formulated as follows:

Problem VI.1: The objective is to find an incidence ma-
trix x such that the cost given by

W (x) =
∑

j∈S

Wrjxrj +
∑

i∈S,j∈V

Wijxij +
∑

i∈V,j∈V,i<j

Wijxij

+
∑

i∈F,j∈V

Wijxij +
∑

j∈F

Wr′jxr′j

is maximized subject to the following constraints.

i.
∑

{i,j}∈U1
xij ≤ |U1|− 1, for any U1 ⊆ {r}

⋃
S

⋃
V

⋃
F

ii.
∑

{i,j}∈U2
xij ≤ |U2| − 1, for any U2 ∈ {{r′}

⋃
T : T ⊆

S
⋃

V
⋃

F}

iii. xij ∈ {0, 1},∀i, j ∈ {r, r′}S
⋃

V
⋃

F, i < j if i, j ∈ V .

In this problem the weights Wij > 0 (defined later) for
all i, j ∈ {r, r′}

⋃
S

⋃
V

⋃
F . Also let the constraints in

the above subgraph problem be written as {Asx ≤ Bs,x ≥
0,x is an integer}. Therefore problem VI.1 can be con-
cisely formulated as

maxx {W (x) : Asx ≤ Bs,x ≥ 0,x is an integer} (18)

The equivalency is a result stated in the following theo-
rem.

Theorem VI.2: There exists a cost function W(x) such
that:

i. arg min
x

{C(x) : A2x ≤ B2,x ≥ 0,x is an integer} =

arg max
x

{W (x) : Asx ≤ Bs,x ≥ 0,x is an integer}

ii. Also, arg min
x

{C(x) : A2x ≤ B2,x ≥ 0} =

arg max
x

{W (x) : Asx ≤ Bs,x ≥ 0}.

Proof: The optimal solution for problem II.3 is given
by

xopt = arg min
x

{C(x) : A2x ≤ B2,x ≥ 0,x is an integer}

= arg max
x

{−C(x) : A2x ≤ B2,x ≥ 0,x is an integer}

= arg max
x

{−C(x) + α(n + k)

: α is some constant, A2x ≤ B2,x ≥ 0,x is an integer}.

= arg max
x

{−C(x) + α(
∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij

+
∑

i∈F,j∈V

xij) : A2x ≤ B2,x ≥ 0,x is an integer}.

= arg max
x

{W ′(x) : A2x ≤ B2,x ≥ 0,x is an integer}.

(19)

In the above equation, W ′(x) is defined as:

W ′(x) =
∑

i∈S,j∈V

Wijxij +
∑

i∈V,j∈V,i<j

Wijxij +
∑

i∈F,j∈V

Wijxij ,

(20)

where W ′
ij = −Cij + α with α being a constant = 1 +

maxi,j∈S
⋃

V
⋃

F Cij . This ensures that the weights W ′
ij

are ¿ 0. Continuing with the above argument, the optimal
solution for problem II.3 is given by:

xopt = arg max
x

{W ′(x) : A2x ≤ B2,x ≥ 0,x is an integer}

= arg max
x

{W ′(x) + 2kM : M a constant,

A2x ≤ B2,x ≥ 0,x is an integer}

= arg max
x

{W ′(x) + M(
∑

j∈S

xrj +
∑

j∈S

xr′j) :

M a constant, A2x ≤ B2,x ≥ 0,x is an integer}
= arg max

x
{W (x) : A2x ≤ B2,x ≥ 0,x is an integer},

(21)

where W (x) is defined such that Wij = W ′
ij for i, j ∈

S
⋃

V
⋃

F , Wrj = M for j ∈ S and Wr′j = M for
j ∈ F . M is chosen such that it is a large value com-
pared to the other weights in the graph, i.e. M = 1 +
maxi,j∈S

⋃
V

⋃
F W ′

ij .
Since, the problem is a maximization problem with posi-

tive weights, it is evident that the optimal solution in equa-
tion 21 will have xrj = 1 ∀j ∈ S and xr′j = 1 ∀j ∈ F .
Therefore the constraints xrj = 1 ∀j ∈ S and xr′j =
1 ∀j ∈ F in A2x ≤ B2 are redundant and can be removed.
Due to the same reason

∑
i∈S,j∈V xij +

∑
i∈V,j∈V,i<j xij +∑

i∈F,j∈V xij = n + k can be replaced by
∑

j∈S xrj +∑
i∈S,j∈V xij +

∑
i∈V,j∈V,i<j xij +

∑
i∈F,j∈V xij = n +

2k and
∑

i∈S,j∈V xij +
∑

i∈V,j∈V,i<j xij +
∑

i∈F,j∈V xij +∑
j∈F xr′j = n + 2k. These two constraints are just a re-

statement of the following two:

∑

{i,j}∈U1

xij = |U1|− 1, U1 = {r}
⋃

S
⋃

V
⋃

F,

8

∑

{i,j}∈U2

xij = |U2|− 1, U2 = {r′}
⋃

S
⋃

V
⋃

F.

(22)

Again, since the problem is a maximization problem with
positive weights, equations 22 can be replaced with

∑

{i,j}∈U1

xij ≤ |U1|− 1, U1 = {r}
⋃

S
⋃

V
⋃

F,

∑

{i,j}∈U2

xij ≤ |U2|− 1, U2 = {r′}
⋃

S
⋃

V
⋃

F.

(23)

But these two constraints are already part of the cy-
cle elimination constraints present in iii and v of the con-
strained forest problem II.3. They are redundant and can
be removed. Essentially we have removed constraints i,ii
and iii from the constrained forest problem (i.e. removed
from A2x ≤ B2). We are left with only two cycle elimi-
nation constraints which are essentially what is present in
the maximum subgraph problem. Therefore, part i of the
theorem has been proved. The same proof can be used to
prove part ii as removing the constraint {x is an integer}
doesn’t alter any step of the proof.

The claim now is that the maximum subgraph problem
can be formulated as a maximum weighted matroid inter-
section problem. To see this, we write the feasible set of
the maximum subgraph problem as the intersection of two
sets in the following lemma:

Lemma VI.1: The feasible set in the maximum subgraph
problem can be written as the intersection of sets S1 and
S2, where S1 and S2 are defined in the following way:

S1 = {x :
∑

{i,j}∈U1

xij ≤ |U1|− 1 ∀U1 ⊆ {r}
⋃

S
⋃

V
⋃

F,

xij ∈ {0, 1} ∀i, j ∈ {r, r′}S
⋃

V
⋃

F, i < j if i, j ∈ V }

S2 = {x :
∑

{i,j}∈U2

xij ≤ |U2|− 1 ∀U2 ⊆ {r′}
⋃

S
⋃

V
⋃

F,

xij ∈ {0, 1} ∀i, j ∈ {r, r′}S
⋃

V
⋃

F, i < j if i, j ∈ V }

As discussed in the previous section on matroids, note
that the structure defined by (E1,G1) with E1 = {erj :
j ∈ S}

⋃
{eij : i ∈ S, j ∈ V }

⋃
{eij : i ∈ S, j ∈ S, i <

j}
⋃
{eij : i ∈ V, j ∈ F} and G1 = {Y : Y ⊆ E1 and

Y contains no cycles} is a matroid. So is (E2,G2) with
E2 = {eij : i ∈ S, j ∈ V }

⋃
{eij : i ∈ S, j ∈ S, i < j}

⋃
{eij :

i ∈ V, j ∈ F}
⋃
{er′j : j ∈ F} and G2 = {Y : Y ⊆ E2

and Y contains no cycles}. Let R = {erj : j ∈ S} and
R′ = {er′j : j ∈ F}. Now define a structure M1 = (E, I1)

such that E = E1
⋃

R′ and I1 = {Y
⋃

Z : Y ⊆ E1

and Y contains no cycles, Z ⊆ R′}. It is easy to see that
each element in I1 contains a set of edges that corre-
sponds to a feasible solution in S1 and vice versa. Sim-
ilarly define M2 = (E, I2) on the same set of edges E with
I2 = {Y

⋃
Z : Y ⊆ E2 and Y contains no cycles, Z ⊆ R}.

Lemma VI.2: The structures M1 and M2 are matroids.

Proof: We prove that M1 is a matroid. A similar
proof carries over to M2 also. According to the definition
of a matroid in the previous section, the condition to check
is iii as conditions i and ii are trivially satisfied. Condition
iii says that if I1 ∈ I1 and I2 ∈ I1 and if | I2 |>| I1 |, then
there should exist an edge a ∈ I2 − I1 such that I1

⋃
{a} ∈

I1. If | I2 |>| I1 |, then there are two possibilities: either
|{e : e ∈ R′, e ∈ I2}| > |{e : e ∈ R′, e ∈ I1}| or |e : e ∈
E1, e ∈ I2| > |e : e ∈ E1, e ∈ I1|. If the first case is true,
then there exists an edge a ∈ {e : e ∈ R′, e ∈ I2 − I1}
such that {a}

⋃
I1 ∈ I1. If the second case is true, then

since both |e : e ∈ E1, e ∈ I2| and |e : e ∈ E1, e ∈ I1|
are independent sets of G1, there must exist an edge a in
{e : e ∈ E1, e ∈ I2 − I1} again such that {a}

⋃
I1 ∈ I1.

From the discussion on the intersection of matroid poly-
hedra, we get the following theorem:

Theorem VI.3:

The extreme points of {x : Asx ≤ Bs,x ≥ 0} are integers.
(24)

Proof: From the definition of the matroids M1 and
M2 preceding lemma VI.2, any element in S1 and S2 is in
one to one correspondence with an independent set in M1

and M2 respectively. Now, using Edmonds theorem VI.1,
we know that the extremal points in the intersection of two
matroid polyhedra are integers. Hence the theorem follows.

Theorem II.1 follows by combining theorems VI.2 and
VI.3.

Lemma VI.3: The constrained forest can be found in
O(|E|3) steps where |E| = (n + 2k)2.

Proof: The primal algorithm for the matroid in-
tersection problem as explained in [6] has a complexity
of O(|E|R3 + |E|R2C(|E|)) where R = min{R1, R2} and
C(|E|) = max{C1(|E|), C2(|E|)}. R1 and R2 are the ranks
of matroids M1 and M2 respectively. Similarly C1(|E|)
and C2(|E|) is the running time of the subroutine avail-
able for independence testing of matroids M1 and M2. For
the constrained forest problem with M1 and M2 as defined
in lemma VI.1, R = O(

√
(|E|)) and C(|E|) = |E| where

|E| = (n + 2k)2. Therefore the number of computations
required is O(|E|3).

