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ABSTRACT: Polyoxometalates (POMs) using {Mo72V30} as an example, dissolved
in water, can interact with amine-terminated polydimethylsiloxane (PDMS-NH2)
dissolved in toluene at the water/toluene interface to form POM-surfactants that
significantly lower the interfacial tension and can be used to stabilize liquids via
interfacial elasticity. The jamming of the POM-surfactants at the water/oil interface
with consequent wrinkling occurs with a decrease in the interfacial area. The packing
density of the POM-surfactants at the interface can be tuned by varying the strength
of screening with the addition of cations with differing hydrated radii.

KEYWORDS: POM-surfactant, liquid/liquid interfaces, structured liquids, self-assembly, wrinkling

Colloidal particles can assemble at oil−water interfaces,
screening energetically costly interfacial interactions

between immiscible liquids.1−5 Particles that are strongly
bound to the interface can impart mechanical integrity to the
assembly. These quasi-two-dimensional assemblies can support
anisotropic stresses, giving rise to a wealth of complex, non-
equilibrium, all liquid structures.3,6,7 The energy binding parti-
cles to the interface increases quadratically with particle radius,3

and so in the case of nanoparticles (NPs) the reduction in the
interfacial energy per NP is small. Therefore, compressive
forces exerted on the NPs as the interfacial area decreases
are sufficient to eject the NPs from the interface, causing the
liquid/liquid interface to ultimately relax to an equilibrium
spherical shape. As such, it is difficult to structure liquids into
nonequilibrium shapes with uniformly functionalized NPs.
Janus-type NPs can be prepared where the reduction in the
interfacial energy per NP is greater but, as of yet, they have
not been used to structure liquids into complex shapes.8,9

Janus-type polymeric particles, specifically Janus-star shaped
copolymers, as described by Müller and co-workers10,11 and by

Jiang et al.12 can be used to shape liquids; however, the polymer
chains can contract upon compression and the loading of the
star-shaped polymers at the interface must be exceptionally
high to effect tailored shaping of the liquids. Recently, a very
simple method was developed where NP-surfactants were
formed at liquid/liquid interfaces by dispersing functionalized
NPs in one fluid and polymers end-capped with a comple-
mentary functionality in an immiscible second fluid.13 The NPs
and polymers will interact at the interface, forming NP-surfactants
having hydrophilic NP heads anchored by hydrophobic poly-
mer tails. The NP-surfactants assemble spontaneously into a
monolayer at the interface and the assemblies self-regulate by
tuning the numbers of polymer chains interacting with the NPs.
This strategy not only circumvents the detailed chemistries
necessary to precisely functionalize the NPs but also affords a
simple pathway to structure the liquids into highly nonequilibrium
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shapes,13 including bicontinuous interfacially jammed emulsion
gels, called “bijels”.14 In situ NP-surfactant formation opens a
new concept for material design, and the ability to generate all-
liquid bijels with bicontinuous fluid channels enables the con-
tinuous cross-transport or cross-flow of fluids with potential
applications as multiphase microreactors, microfluidic devices,
all-liquid membranes, and multilength scale porous materials.15−18

Furthermore, the bonding between the NPs and end-function-
alized polymers that result in the formation of the NP-surfactants
is not covalent and the resultant assemblies are jammed; conse-
quently, the NP-surfactant assemblies are responsive to external
stimuli and the systems are reconfigurable.19

Polyoxometalates (POMs), well-defined molecular clusters
comprised of early transition metal ions and oxo ligands having
sizes ranging from 1 to 6 nm, provide an interesting candidate
for use as NPs in the formation of NP-surfactants.20−22 The
inorganic chemistries associated with POMs have been exten-
sively studied, including their synthesis, catalytic, and self-
assembly behavior in water.22−26 In comparison to classic NPs,
POMs are monodisperse, have well-defined structures, and have
tunable surface properties, such as charge density.22 Diverse
applications have emerged for POMs, for example as building
blocks in supramolecular chemistry and as physical models for
nanoconfinement effects and the polyelectrolytes.21,22,27−29

POM−organic hybrids have been used as emulsion catalysts to
bridge the reactions between immiscible phases.30−34 To mimic
the functions of cell membranes with POM materials, inorganic
chemical cells can be obtained at the diffusive layers between
aqueous solutions of POMs and large cations.35 Taking advan-
tage of supramolecular interactions between POMs and poly-
mers (for example, electrostatic attraction), POM-based nano-
composites with controllable morphology and order-structure
were prepared.36−38 However, little attention has been given to

the interfacial activity of POMs between two immiscible liquids
nor to their use to structure the liquids.
Here, we present a study on the formation and assembly of

the POM-surfactants at liquid/liquid interfaces and highlight
the tunable packing behavior of POM-surfactant assemblies.
{Mo72V30},

39,40 a typical 2.5 nm Keplerate molecular cluster,
comprised of 12 pentagonal {(MoVI)MoVI5 } units connected
by 30 VIV linkers with a hollow spherical structure, was used in
this study. Its crystalline molecular formula is Na8K14(VO)2-
[{(Mo)Mo5O21(H2O)3}10{(Mo)Mo5O21(H2O)3(SO4)}2{VO-
(H2O)}20{VO}10({KSO4}5)2]·150H2O (molecular weight =
19048 g mol−1), and the molecular formula after dissolving in
water usually represents as [Mo72V30O320S12]

31−. {Mo72V30} is
stable when dissolved in water and is a discrete macroanion
that carries 31 negative charges on the surface (balanced by
countercations). {Mo72V30} is not active at the toluene/water
interface (Figure S1), where the interfacial tension (γ) between
water and toluene is ∼34.5 mN m−1, very close to the textbook
values for γ between pure water and toluene of 36 mN m−1.
Amine-terminated polydimethylsiloxane, PDMS-NH2, dis-
solved in toluene on the other hand, does act as surfactant at
the toluene/water interface, reducing the γ to 26 mN m−1 at a
PDMS-NH2 concentration of 5 mg mL−1 (Figure S1). With the
addition of {Mo72V30} (0.01 mg mL

−1, ∼5.2 × 10−7 mmol ml−1)
to the aqueous phase (Figure 1a), γ further decreases to
22 mN m−1 during the same period (usually measured after 1 h),
demonstrating a significant reduction in interfacial energy
associated with POM-surfactant formation and assembly at the
interface. The negatively charged {Mo72V30} and protonated
PDMS-NH2, that is, PDMS-NH3

+, where the pH of {Mo72V30}
aqueous is ∼3.9 and the pKa of −NH2 is ∼919, give rise to
strong electrostatic interactions and binding of the two at the
interface. As a result, a POM-surfactant monolayer assembly

Figure 1. (a) Dynamic interfacial tension of 0.01 mg mL−1 {Mo72V30} aqueous solution in contact with a toluene solution of PDMS-NH2 at different
concentrations. (b) Dynamic interfacial tension for a fixed concentration of PDMS-NH2 (0.05 mg mL−1) with an increasing concentration of the
{Mo72V30} from 0.001 to 0.5 mg mL−1. (c) Droplet morphology and its buckling behavior when {Mo72V30} aqueous solution was withdrawn.
Droplet was formed by injecting 0.5 mg mL−1 {Mo72V30} aqueous solution into 0.05 mg mL−1 PDMS-NH2 toluene solution. (d) Sequence of
snapshots showing the process of contact, compression, and separation of two droplets. Droplets were formed by injecting 0.5 mg mL−1 {Mo72V30}
aqueous solution into 5 mg mL−1 PDMS-NH2 toluene solution and the bottom droplet was formed prior to the experiment and rested at the bottom
of the cuvette. Note that, after compression and expansion the droplet shape has changed due to the plastic deformation of the POM-surfactant
assembly.
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forms at the interface. In a typical POM-surfactant system, when
the concentrations of the PDMS-NH2 solutions are varied and
the aqueous solution of {Mo72V30} is fixed at 0.01 mg mL−1, γ is
found to decrease with increasing PDMS-NH2 concentration.
Above a concentration of 0.05 mg mL−1, γ did not decrease
further and remained constant at ∼22 mN m−1. Here, the rate
of reduction in γ increased with increasing PDMS-NH2 con-
centration. In all instances, after the initial reduction in γ, there
is a second slower process that leads to a continued slight
decrease in γ with time. We attribute this slow process to the rear-
rangement of the POM-surfactant monolayer at the interface.
On the other hand, if the concentration of PDMS-NH2 was

fixed at 0.05 mg mL−1 and the concentration of {Mo72V30} varied,
the results in Figure 1b were obtained. For lower concentration of
{Mo72V30} (<0.01 mg mL−1), the reduction in γ is gradual. This
is a result of the diffusion of POMs to the interface, the forma-
tion of POM-surfactants at the interface, and the reorganization
necessary for subsequent POMs to be anchored to the inter-
face. However, as the concentration of POMs is increased, the
reduction in γ is much more rapid, and the equilibrium in γ is
much lower ∼13 mN m−1. Consequently, upon decreasing the
volume of the droplet the POM-surfactant assemblies wrinkle,
which is characteristic of a jammed assembly (Figure 1c and
Movie S1). The droplets do not coalesce even when forced into
contact (Figure 1d and Movie S2). During the compression, as
the droplet’s interfacial area is reduced, the POM-surfactant
assemblies jam causing either a wrinkling of the assembly or a
permanent distortion of the droplet shape when the droplets
are separated.
The variation in the packing density of the POM-surfactants

was investigated by the addition of salt to the aqueous phase
to tune the surface properties of {Mo72V30}. When the volume
of the droplet coated with the POM-surfactants is decreased
to the point where wrinkling occurs, this onset-of-wrinkling
volume can be used as a measure of the initial packing
density of the POM-surfactants at the interface; Vw/Vi is
the amount that the initial assembly of the POM-surfactants

must be compressed to solidify the assemblies, wheres Vw is the
volume of the droplet when wrinkling is observed and Vi is the
initial volume of a droplet. Figure 2a shows the value of Vw/Vi
as a function of concentration of different salts after aging for
1 h. The snapshots were captured when the aqueous phase was
withdrawn from the droplets. For each of the snapshots, the
image was on the left-hand side (lhs) taken after 1 h aging,
whereas the image on the right-hand side (rhs) shows the initial
visible wrinkling state (Figure 2a and Movie S3−S6). It is
evident that Vw/Vi depends on the type of salt added to the
aqueous phase. Without the salt, Vw/Vi was ∼0.37, whereas it
gradually increased to ∼0.52 with increasing concentration of
NaCl. This saturates at a NaCl concentration of 20 mM. These
results show that NaCl promotes the assembly of POM-
surfactants at the interface. On the other hand, adding KCl or
RbCl to the aqueous phase leads to much higher initial packing
density of POM-surfactants. Vw/Vi rapidly increased to near
unity, especially for the RbCl, Vw/Vi increased to 0.98 with the
addition of only 2 mM salt, indicating a near complete coverage
of the interface with POM-surfactants initially. When the
concentration of RbCl is increased to 10 mM, the droplet self-
wrinkles after ∼55 s, as shown in the third to fourth images in
Figure 2b. The self-wrinkled droplet eventually fell from the
needle (Figure 2b and Movie S7). This self-wrinkling behavior
demonstrates the ability of the salt to promote the formation
and assembly of the POM-surfactants, the significant reduction
in the interfacial tension (Figure S4 and S5) that allows the
droplet shape to extend (significantly increasing the interfacial
area), and the budding-off of the droplet. Gravitational forces
underpin the extension of the droplet.
{Mo72V30} carries 31 negative charges on its surface, theoreti-

cally balanced by 8 Na+, 14 K+, 2 VO2+, and 5 H3O
+ counter-

cations. A very interesting and reasonable explanation for the
above results is that the affinity of cations to the {Mo72V30}
macroions relies on the size of hydrated cations. The smaller
the size of the hydrated cations, the stronger of the affinity.
Here, we chose the monovalent cations Na+, K+, and Rb+, thus

Figure 2. (a) Compression ratio of aged droplets of water with 0.2 mg mL−1 {Mo72V30} immersed in toluene with 0.05 mg mL−1 PDMS-NH2
measured by withdrawing the aqueous solution from pendent drop after 1 h of aging at different NaCl, KCl, and RbCl concentrations and snapshots
of the droplets during the withdrawal process at 0 and 20 mM NaCl, 20 mM KCl, and 5 mM RbCl, respectively. (b) A series of snapshots showing
the evolution of a droplet that was injected from 0.2 mg mL−1 {Mo72V30} aqueous solution with 10 mM RbCl into a 0.05 mg mL−1 PDMS-NH2
toluene solution.
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the ionic strength is the same at a fixed concentration. Rb+

has the smallest hydrated size such that it can replace the
original countercations with a stronger affinity to the {Mo72V30}
macroions.39 This stronger affinity reduces the repulsion between
the {Mo72V30} macroions, promoting the formation of POM-
surfactants and the generation of high areal density POM-
surfactant assemblies at the interface. This is essentially a
screening effect (Figure 3). Na+, however, is less likely to

exchange with the countercations, resulting in a smaller increase
in the packing density of POM-surfactants at the interface. The
observed self-wrinkling, extension and breaking off of the drop-
let (Figure 2b), can be attributed to the high packing density of
the POM-surfactants, including the counter Rb+ and the contin-
uous decrease in γ with time (Figure S4, even though the initial
γ is not that low, Figure S5). If more RbCl, for example, 20 mM,
was added to the aqueous phase, the {Mo72V30} precipitated
due to the excess screening effects (Figure S7), which is evi-
denced by the lack of wrinkling after aging 1 h.
We have demonstrated the interfacial activity of {Mo72V30}

to interact with PMDS-NH2 at a water/toluene interface to
form POM-surfactants that considerably reduce interfacial
tension. The jamming and wrinkling of the interfacial POM-
surfactant assemblies were observed when the interfacial area
was decreased. The packing density of {Mo72V30} at the water/
toluene interface was tuned by adding different salts where the
size of the hydrated cations appeared to be of importance, with
the screening of repulsive interaction between the POMs
promoted a denser packing of the POM-surfactants at the
interface.
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H.; Ruhland, T. M.; Schacher, F. H.; Müller, A. H. E. ACS Nano 2013,
7, 4030−4041.
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