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Abstract

A Review of Attractor Neural Networks and Their Use in Cognitive Science

by Makenzy Lee Gilbert for the partial satisfaction of the requirements for the degree of Masters
of Science in Cognitive and Information Sciences, University of California, Merced, 2024

Dr. Jeffrey Yoshimi, Chair

This literature review explores the role of attractor neural networks (ANNs) in modeling
psychological processes in artificial and biological systems. By synthesizing research from
dynamical systems theory, psychology, and computational neuroscience, the review provides an
overview of the current understanding of ANN function in memory formation, memory
reinforcement, retrieval, and forgetting. Key mathematical foundations of ANNs, including
dynamical systems theory and energy functions, are discussed to explain the behavior and
stability of these networks. The review also examines empirical applications of ANNs in
cognitive processes such as semantic memory and episodic recall, as well as highlighting the
hippocampus' role in pattern separation and completion. The review addresses challenges like
catastrophic forgetting and noise effects on memory retrieval. By identifying gaps between
theoretical models and empirical findings, it highlights the interdisciplinary nature of ANN
research and suggests future areas for exploration.
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Introduction
Attractor neural networks are used to study memory processes in both artificial and

biological systems. This literature review aims to synthesize the fragmented research on attractor
neural networks, specifically their role in memory-related processing. Integrating findings from
multiple domains, including dynamical systems theory, psychology, and computational
neuroscience, this review will provide a comprehensive view of the present understanding of
how attractor networks function and their relevance to memory formation, reinforcement,
retrieval, and forgetting. Understanding memory through attractor neural networks is important
for theoretical and applied sciences. In theoretical neuroscience, these models help describe the
core principles of neural dynamics and memory encoding. In applied contexts, insights from
attractor networks can inform the development of artificial systems and therapeutic strategies for
memory-related disorders. Reviewing where the literature currently stands is crucial,
highlighting the interdisciplinary nature of this research and detecting gaps between the
theoretical models and empirical findings to identify areas where further exploration is needed.

Neural networks are computational models that are inspired by the human brain.These
models contain layers of connected “neurons” or nodes that transmit information. These
networks are designed to process information; each connection between the nodes has a weight
that is updated as the network “learns”. This allows a model to iteratively improve performance
over time.

An attractor neural network is a specific type of neural network, In an ANN, certain
patterns of neural activity become stable states called “attractors.” When one of these networks
receives partial input of a previously stored pattern, such as a picture missing parts, the network
can complete the pattern by settling into one of these attractor states. This capacity to recall
entire patterns from fragmented input makes ANN models useful for studying memory processes
in cognitive science. By examining how these networks learn, retrieve, and forget memories,
researchers have gained insights into the fundamental principles of memory dynamics and its
neural realization.

1. History
Perhaps the best-known early study of recurrent attractor networks is the work of John

Hopfield in the 1980s. He developed simple recurrent networks and studied how they could be
used to model associative memory. These have since become known as “Hopfield Networks”.
The networks demonstrate how neural networks store and retrieve information through the
system-wide interactions of binary neurons.

Hopfield used mathematical tools from dynamical systems theory and physics (in
particular thermodynamics) to study these networks. He described memories as stable states or
attractors the system naturally evolves towards. The attractors are minima in an energy
landscape.

Interactive Activation and Competition (IAC) networks like attractor networks, use
recurrent connections to stabilize activation patterns, but they emphasize the competitive
interactions between units. Within the same layer, units can inhibit each other, which helps to
resolve ambiguities and select the most appropriate representation. This competitive dynamic is
not seen in standard attractor networks, which primarily focus on achieving stable states
(Rumelhart, McClelland, & PDP Research Group, 1986).
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Paul Smolensky and the PDP research group’s work in the PDP volumes lays out a
fundamental example of how attractor neural networks can be applied in cognitive tasks.
Smolensky’s room schema model describes how an ANN can recall layouts of specific rooms.
The model uses memory representations in the form of attractors, allowing for the filling-in of
missing information much like humans can visualize or remember an entire room from a few
details or in dim lighting (Rumelhart, Smolensky, McClelland, & Hinton, 1986).

Around the same time, Ackley, Hinton, and Sejnowski introduced Boltzmann machines,
a different class of networks similar to Hopfield networks, but with stochastic elements (Ackley
et al, 1985). Around this time Smolensky developed similar ideas, in particular what he called
the harmonium (Smolensky, 1986). This work laid the foundation for later developments, such as
Restricted Boltzmann Machines (RBMs) (Hinton & Salakhutdinov, 2006), which separate the
network into a visible and hidden layer. These networks were ultimately more popular because
they could be trained using fast learning algorithms (Hinton, 2006). In 1989, Daniel J. Amit built
on these ideas in a book-length manuscript (Amit, 1989), clarifying the mathematics and
unpacking the connection between recurrent networks and memory encoding and retrieval.
Subsequent researchers like McRae (McRae et. al, 1997), explored the application of these
networks to semantic memory and other cognitive functions. For instance, McRae's work
demonstrated how correlated features within concepts help the network settle on the correct
meaning faster, which is crucial for tasks like semantic priming and feature verification.

The Seidenberg “triangle model” is a framework that describes how a collection of layers
in a larger model cooperate to process information. It has three main layers that represent
orthography (spelling), phonology (sound), and semantics (meaning). The original model is
connectionist and emphasizes how these three types of representations interact through learned
connections (Seidenberg and McClelland, 1989). It was one of the first models to explain how
the brain processes written and spoken language using parallel distributed processing. The
multiple hidden layers connect orthography, phonology, and semantics. When certain limitations
arose in the original model, recurrent connections were added that produced attractor dynamics
in some layers (Plaut et. al, 1996; Monaghan, Chang, & Welbourne, 2017). These attractors work
within this architecture by ensuring that each representation (spelling, sound, meaning) can
activate the correct patterns in the other representations. See Figure 4 for a diagram of the model
and its interacting parts. For example, seeing the orthographic representation of a word can lead
to the correct phonological and semantic representations, due to the stabilizing influence of the
attractor networks.

Researchers in cognitive and computational neuroscience (CCN) have continued to
explore and validate these attractor models in the context of psychological phenomena. This
includes studies on the role of the hippocampus in pattern separation and completion, which are
essential for episodic memory and associative recall.

In applied contexts, attractor networks offer insight into disorders and mental health.
Often the stability of these attractor states provides an understanding of conditions such as
schizophrenia, a mental disorder that includes delusions, hallucinations, and disorganized
thinking. Studies indicate that shallow attractors cause disorganized thought. At the same time,
psychedelic research suggests that psychedelic intervention may improve mental health through
the adaptive influences of entropy that allow the brain to explore more attractors in a landscape
to reduce dysfunctional thinking patterns. These contrasting views call for further study on
attractor neural networks in memory and cognition (Musa et al., 2022; Hipólito et al., 2023).
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2. Mathematical and Computational Foundations
Examining the formal mathematical basis of ANNs including dynamical systems theory

(DST) is crucial for understanding how these networks can be used to model memory. DST is the
study of systems that evolve over time under deterministic rules. Continuous time systems are
represented by differential equations, whereas discrete time systems are represented by
difference equations. Both types of equations can be implemented on a computer. Differential
equations are numerically integrated and both types of systems involve repeatedly iterating an
update function. This means solutions are not exact, but approximated at discrete points.

DST involves studying the evolution of points within a state space over time. A state
space represents all possible states of a system, each point representing a potential state of the
system(Yoshimi et al., 2023). For an 𝑛-dimensional continuous system, the state space is .𝑅𝑛

Each dimension corresponds to one variable necessary to describe the state of the system. The
equations can be quite complicated and nonlinear which can lead to complex chaotic behaviors.
Given a dynamical system, we can take any initial state of the system and define trajectories
from that state. Using the system we can fill the state space with trajectories, resulting in a phase
portrait. The phase portrait gives us an immediate sense of the dynamics of a system. The nice
thing about them is they give us a visual way to understand dynamics that are otherwise
somewhat hidden in the abstract equations.

An important kind of behavior in a system is an attractor, a state or set of states that
trajectories tend to lead toward. An attractor represents a set of states that a system will naturally
progress towards. Attractors can be stable points, limit cycles, or chaotic strange attractors. The
key characteristic of an attractor is the ability to metaphorically draw and pull on nearby
trajectories. This is evident in Figure 1, where the fixed point attractors in red represent stable
states. Each attractor has its own basin of attraction. The two basins in this example are separated
by the green basin boundary. This means that on either side of the boundary, an initial condition
will follow a trajectory towards the corresponding attractor.
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Figure 1. Phase portrait of a two-node recurrent network. Two fixed-point attractors and their
respective basins of attraction. The attractors in red are stable states which the system moves
towards, given the dynamics. Each attractor has its own basin of attraction, depicted by the
surrounding trajectories that converge towards these fixed points. The green line is the basin
boundary and the triangular area above it is the basin for the attractor in the upper left and the
triangular area below it is the basin for the attractor on the lower right (Yoshimi et al., 2023).

In the context of neural networks, state variables usually correspond to activations of
nodes. The total patterns of activation across a set of nodes is the state of the system at a time.
This state can be thought of as a point in the state space, which is here an activation space, the set
of all possible activation patterns of the network. In certain attractor networks like a Hopfield
network, attractors are patterns of activation that the network will tend to settle into over time.
Parameters are another kind of variable in a dynamical system, that is fixed while the system
runs. In a recurrent neural network, weights are often treated as parameters, which stay fixed
while studying the attractors and orbits in a state space, but which are allowed to vary during
learning. When there is a change to a system's parameters, you can see changes in the total set of
trajectories within a state space. Changes that introduce new attractors are called bifurcations
(Yoshimi et al., 2023).

Daniel J. Amit’s work in 1992 studied how recurrent networks are easily interpreted as
dynamical systems where neural activity patterns progress towards stable states known as
attractors. As with Hinton and Sejnowski, Amit also introduced stochastic elements into these
network models, explaining how noise and random perturbations influence the dynamics of
memory storage and retrieval. This is crucial for understanding real-world neural behavior,
where noise is always present .

Applied to neural networks, each state is a pattern of neural activity and each attractor
corresponds with a stable pattern of activity within the network. These stable patterns can
represent memories or cognitive states. The overall network dynamics allow convergence to
these attractor states, which enables them to complete partial or noisy information. Because of
this, attractor networks are capable of recall and recognition. These concepts as they are
instantiated in attractor networks are discussed further below.

Often it is difficult to study a dynamical system and to find its attractors directly, and so
an indirect method is used. Functions are defined on the state space that can be used to find
stable attracting points. One example of such a function is the Lyapunov function. For a system
described by a set of differential equations, where x is a state variable that varies with time t, the
Lyapunov function must satisfy these conditions:𝑉(𝑥)

1. =0𝑉(𝑥) >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≠ 0 𝑎𝑛𝑑 𝑉(0)
2. The derivative of along the trajectories of the system denoted as must be less𝑉(𝑥) 𝑑𝑉

𝑑𝑡  

than or equal to zero, 0 (Perelson, Oster, & Katchalsky, 1976).𝑑𝑉
𝑑𝑡 ≤

Convergence properties for Hopfield networks have been proven, which show that under certain
conditions, the trajectory of a dynamical system will converge to an attractor. This means that
regardless of the initial state, the system will eventually reach a stable state. This reinforces the
use of Lyapunov functions in predicting the long-term behavior of these systems (Bruck, 1990).

One prominent type of Lyapunov function is an energy function. Lyapunov functions like
energy functions are valuable because they facilitate certain mathematical analyses but they also
have a nice visualization. They can be visualized as graphs above the state space of a dynamical
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system, what are often called energy surfaces or energy landscapes. The attractors can be thought
of as “low points” in these energy landscapes.

This kind of picture motivates a standard metaphor, the ball and landscape metaphor,
where we think of an initial state of a dynamical system (a pattern of activity in a neural
network) as a ball that is placed on the surface and allowed to roll to a minimum which
corresponds to an attractor. Figure 2 illustrates the ball and landscape metaphor, depicting the
concept of attractors and basins of attraction within a two-dimensional coordinate space. The
initial state of a dynamical system, represented as a ball, is placed on the surface and allowed to
roll towards a minimum, corresponding to an attractor. The energy landscape shown above the
state space helps us visualize how initial states progress towards attractor states. A standard
confusion is between the attractors and basins themselves in the actual state space (bottom of
figure) and the hills and valleys of the energy function V, which are “above” the state space and
help us study it.

Figure 2. Amit's work emphasizes that the basin of attraction for a specific attractor includes the
region in the state space where initial conditions lead to that attractor. The two crosses on the
grid represent attractors, the green line representing the basin boundary separating two basins,
and are distinct from the hills and valleys of the energy function, which is situated "above" the
state space to aid in our understanding (Amit, 1989 p.89, Figure 2.11).

Again, a basin of attraction for a specific attractor is the region in the state space from
which initial conditions will lead to that attractor, as in Figure 2. The efficiency of memory
retrieval depends on the dynamics of these basins. Amit’s work discusses how the structure of
these basins affects memory retrieval. A larger basin means that the network can withstand more
noise and still retrieve the correct memory. He describes how the volume of the solution space in
J-space (representing the strengths of connections in a network) is related to the basin of
attraction for each memory pattern. As this volume increases, the more robust the memory
retrieval process becomes. He further explains that spurious states, which are unintended stable
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attractors that occur due to the nonlinearity of the dynamics, can affect stability but are typically
less significant when the basins are large and the signal-to-noise ratio is favorable (Amit, 1989).

As a network attempts to store more patterns, it nears "memory saturation." At this point,
the network's ability to store and retrieve memories becomes strained. Amit describes that as the
number of stored patterns increases, the landscape of basins becomes more crowded.
Additionally, more spurious become entangled with the intended memory states’ basins and this
makes for unreliable retrieval (Amit, 1989).

In a two-node network, the basin of attraction will be a boundary within the state space,
this carves up where the boundary in the space for which initial conditions will evolve towards
that attractor. In an energy landscape, the basin of attraction is represented differently. It is a
mathematical visualization of the underlying dynamics, usually depicted as a surface where
valleys correspond to attractors. This visualization helps us understand how the system behaves,
showing where stable states are to be. However, it is important to note that this surface is just a
tool to help us see the patterns; it doesn't represent the exact states of the attractors themselves.
In continuous systems, evolution happens smoothly and basins are more complex than the
distinct boundaries seen in discrete systems. Both systems benefit from using tools such as
energy landscapes.

To gain a better understanding of these concepts, including attractors and energy
landscapes we turn to the Hopfield model and describe it in more detail. Hopfield networks are a
specific type of recurrent neural network (RNN). They have binary state neurons and
symmetrical weights. The network nodes can be in one of two states: +1, or -1. The network is
updated according to this equation:

𝑠
𝑖
(𝑡 + 1) =  𝑠𝑖𝑔𝑛 (Σ

𝑗
𝑤

𝑖𝑗
𝑠

𝑗
(𝑡))

where sign(x) is defined as:

+1 if x > 0
-1 if x < 0
0 if x = 0

The dynamics of the network are visualized by an energy function E that decreases over time,
which effectively describes the network’s evolution towards a stable state.

𝐸 =− 1
2

𝑖,𝑗
∑ 𝑤

𝑖𝑗
𝑠

𝑖
𝑠

𝑗
−

𝑖
∑ θ

𝑖
𝑠

𝑖

The Hopfield energy function E acts as a Lyapunov function because it either decreases
or stays the same as the network updates. This ensures the system is stable and evolving towards
a local minimum of the energy landscape. In a ball and landscape analogy, we can think of the
height of the ball at the lowest point in a valley being the Lyapunov function If the ball is𝑉(𝑥).  
at the bottom, the function is zero, which means this is a stable state. As the ball is pushed away
from the lowest point, the height increases, thus moving away from a stable state.

Additionally, Hopfield networks parallel the Ising model from statistical mechanics,
which describes ferromagnetism in materials. By viewing neural states as analogous to spin
states and synaptic weights as interaction strengths, this comparison helps understand a
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network’s energy landscape and the stability of multiple attractors (Amit, 1989). This analogy
offers valuable insights into their operation and stability. In an example system with three
elements, each particle (analogous to a neuron) has a spin that can be either up (+1+1+1) or
down (−1−1−1). The interaction between spins is described by the Hamiltonian (the energy
function for this system):

𝐻 = − ∑
⟨𝑖,𝑗⟩

 𝐽
𝑖𝑗

𝑠
𝑖
𝑠

𝑗
 

where represents the interaction strength between spins and𝐽
𝑖𝑗

𝑖 𝑗
Two concepts related to this model are entropy and free energy. Entropy measures the

level of randomness in a system. In the present context, higher entropy indicates a larger number
of possible neural configurations. Entropy is related to the probability distribution of network
states. For a given probability distribution of network states at time , entropy S is definedρ(𝑡) 𝑡
as:

ln𝑆 =  − ∑
𝐼
 ρ

𝐼
(𝑡) ρ

𝐼
(𝑡)

Entropy affects the stability of attractor states in memory. Higher entropy states tend to allow the
network to be more adaptable to new information, while lower entropy states tend to maintain
the stability of existing memory states (Hopfield, 1982; Amit, 1989).

Free energy is the combination of the entropy and the energy in the system at a time. Free
energy F is defined as:

𝐹 =  𝐸 −  𝑇𝑆

As the network learns, 𝐹 is reduced over time. This means that the system's energy
𝐸 decreases or the product of temperature 𝑇 and entropy 𝑆 is controlled and minimized. The
network gradually becomes more organized and efficient during learning. This is due to the
network's adjustments to the weights reducing free energy, which in turn lowers the entropy in a
controlled way (Amit, 1989).

Thus far the focus has been on attractors in a state space and energy functions used to
identify and study those attractors. Recall that these are the state variables of a dynamical
system. We now consider the parameters; the weights. They are updated using a learning
algorithm. In the case of Hopfield networks, this learning algorithm is usually some version of
the Hebb rule. Introduced by Donald Hebb in 1949, this principle proposes that the synaptic
connection between two neurons is strengthened when they are activated at the same time
(Yoshimi et al., 2023). The Hebbian learning rule can be expressed as:

Δ𝑤
𝑖𝑗

= η · 𝑥
𝑖

· 𝑦
𝑗

Where:

is the change in weight between one neuron i and another neuron j, is the learningΔ𝑤
𝑖𝑗

η
rate, or small constant parameter that determines how fast learning occurs, is the activation of𝑥

𝑖
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the presynaptic neuron i, and is the activation of the postsynaptic neuron j. The principle𝑦
𝑗

behind this rule is that repeated coactivation of neurons leads to stronger connections between
them. Intuitively if the weight between neuron I and J is initially small, and if I is consistently
active when neuron J is also active the weight between them will then increase. This means that
in the future, activation of neuron I is more likely to lead to activation of neuron J.

For RNNs, the application of the Hebb rule often results in the introduction of a new
fixed point attractor to the network. Whatever the activation pattern when the rule is applied will
tend to become a new attractor. In the ball and landscape metaphor, it is as if a new valley is
added wherever the ball happens to be. Thus, Hebbian learning can adjust weights to reinforce
certain patterns of activity, which effectively “burns in” attractors that correspond to learned
memories. Recall that in Hopfield networks weights are symmetric. What this does from a
dynamical systems standpoint is prevent cycles from occurring; the network only learns fixed
point attractors (Hopfield, 1982).

Concepts that would be especially useful when considering attractors as models of
memory would be the “strength” of an attractor, where intuitively a strong attractor (relative to a
set of attractors) is one with a larger basin of attraction than others in the set and where states are
pulled to the attractor more rapidly (the energy landscape is deeper). Then the idea would be that
with repeated learning of a pattern, it would get “stronger”, “larger”, and “deeper.” Surprisingly
there has been very little work on making these intuitive ideas precise, though the intuitive ideas
are sometimes invoked (Kaneko, 1998; Zemel & Mozer 2001; Graves, Wayne, & Danihelka
2014; Deng et al., 2020,). As noted in the conclusion this is something I would like to work on in
the future.

Understanding the emergence and implications of ‘spurious’ attractors is important for
the scope of attractor neural network models. The literature on neural networks and dynamical
systems is ambiguous regarding the definition of a spurious attractor. The term "spurious
attractor" lacks a consistent definition and is frequently used in a relative sense depending on the
context in which it is discussed. As described by Amit, they can be mistakenly identified as valid
due to the proximity of actual stored patterns (Amit, 1989). For others, they are merely nuisances
or byproducts of the training process that do not negatively impact the system's performance. In
certain contexts, spurious attractors are considered to be states that need to be explicitly removed
to ensure the proper functioning of the network (Frolov et. al., 2010; Robbins & McCallum,
2004).

Given this lack of consistency, the following definition can be proposed: When a
network is trained to have a specific attractor A, another attractor A′ that appears as part of the
training process is considered spurious. In this case, a spurious attractor A′ is defined in relation
to an intended attractor A. A spurious attractor is thus a relative concept, dependent on the
intended attractor as well as the specific goals of the network training. Its precise meaning and
implications vary across different studies and applications and are worth interpreting in further
study.

Simulated annealing is a probabilistic method used to find the best solution to a problem
by mirroring the process of heating and cooling metal. In metalwork, high temperatures are
applied. The high-energy state allows atoms to move more freely, and then it is slowly cooled to
make the metal stronger and remove defects. In simulated annealing, the 'temperature' parameter
starts high, allowing the system to escape local minima or spurious attractors. This process
allows the system to explore a wide range of possible states with high randomness. Just like
higher temperature in physical systems makes atoms move more freely, higher noise in neural



9

networks allows the system to explore a wider range of states. As the randomness, noise, or
‘temperature’ parameter in the system is slowly reduced, the exploration is slowly limited and
allows for the settling into an approximated global minimum energy configuration, this is close
to the best possible solution. This is similar to the metal achieving a low-energy, defect-free
configuration, actual annealing through physical heating and cooling, and simulated annealing
through the controlled introduction and reduction of noise (Branke et al., 2008; Du et al., 2019).

Noise plays a role in the dynamics of these unintended spurious attractors. As noted by
Amit the presence of noise can metaphorically “flatten” the attractor landscape and this makes
transitions between states easier. This leads to a higher probability of the system settling into a
spurious attractor. These unintended local minima can be dealt with in this context through
simulated annealing which allows the system to explore a wider range of states through the
introduction of noise. Simulated annealing helps understand how noise can control both the
stability and change of these attractors. The probability of transitioning from one state to another
is given by the equation:

Pr( )=∆𝑥 𝑒𝑥𝑝[−β∆𝐸(𝑥)]
𝑒𝑥𝑝[−β∆𝐸(𝑥)+𝑒𝑥𝑝[β∆𝐸(𝑥)]]

Where: Δx represents a proposed step in the space of 𝑥, ΔE(x) is the change in energy associated
with the step. β is a parameter that represents an inverse temperature, controlling the level of
noise introduced (Amit, 1989).

Another complementary approach to understanding attractors and dynamics in RNNs
(and their relevance to psychology) is in terms of what Smolensky (1986) called harmony
landscapes. Roughly speaking, a harmony landscape is an inverted Energy landscape, where the
dynamics lead towards peaks of maximum harmony rather than towards troughs of minimum
energy. In his famous room schema example (discussed in more detail shortly), a given partial
description of a room will “fill in” missing information by evolving towards the peak of such a
landscape. In neural networks, this harmony is a measure of the network's internal consistency or
stability. The network’s states evolve to maximize the harmony, in the same way that
energy-minimizing works in the Hopfield network (Smolensky, 1986).

In harmony landscapes, each potential state of a network is represented by a point within
a multidimensional space. Harmony then of a given state is the height at that point, the higher
harmony states correspond to the opposite in an energy landscape. By adding a negative sign to
the energy function you can transform the landscape from one seeking to minimize energy to one
where we aim to maximize harmony. The network's dynamics can be visualized as a movement
through the landscape towards points of maximum harmony, which correspond to stable
attractors. Learning, as described by Smolensky in “The Proper Treatment of Connectionism”
(1993), involves the gradual adjustment of connection strengths or parameters, which results in
the adaptation of old and creation of new concepts, categories, and schemata through shifting
these harmony landscapes.

Smolensky gives the example of a room schema attractor model to illustrate how ANN
models can be applied to cognitive tasks such as associative memory and spatial memory. The
model was designed to encode and recall layouts of specific rooms, by stabilizing the memory
representation in the form of attractors. This allows the model to fill in missing or degraded
information and recover entire representations from partial cues which mimics the way humans
can visualize entire rooms from just a few remembered details or a dimly lit room (Rumelhart,
Smolensky, McClelland, & Hinton, 1986).
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The room schema model works through a network of interconnected units that mirror the
associative aspects of different room layouts. Features like a bed or room size of specific rooms
are encoded in these connections, influencing how room information is processed and recalled.
Learning in this model follows Hebbian-like rules, strengthening connections between frequently
co-activated units, thus reinforcing common room patterns or schemas. The integration of
Smolensky's harmony landscapes and the room schema model into the broader framework of
attractor neural networks enhances the understanding of memory (Smolensky, 1986).

Figure 3. This diagram shows a recurrent attractor network integrated into a larger system. The
system consists of an input layer that feeds into a central recurrent network (RNN) and a readout
layer for processing outputs.

Recurrent attractor networks are frequently used as part of larger systems that contain
other neural networks feeding into the RNN and reading out from them. It is helpful to
differentiate these components. As shown in Figure 3: one simple layer of nodes serves as input
to the RNN, allowing us to study what kind of inputs the system can deal with. In the room
schema case, different room patterns are sent in. In an image classification network, raw pixel
patterns are inputs. This setup is sufficient when the interest is in how the RNN classifies inputs.
However, there are cases where the attractor states of the RNN are “read out” and used in other
networks, for example, to control a process or to be further classified as in a multi-layer
Restricted Boltzmann Machine or deep belief net.
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Figure 4: The triangle model for reading (Seidenberg & McClelland, 1989).

This modular approach aligns well with the components of the triangle model originally
proposed by Seidenberg and McClelland in 1989. In the triangle model, the orthographic,
phonological, and semantic representations can be seen as different types of inputs to the
recurrent attractor networks. For example, a simple layer of nodes representing orthographic
inputs (the written words) are inputs. The system then processes and classifies various word
forms. Similarly, phonological inputs (sound) and semantic inputs (meaning) are fed into their
respective attractor networks. This setup is analogous to how room patterns or raw pixel patterns
are fed into an RNN in other contexts, such as image classification networks. In Figure 4 the
attractor networks aid in stabilizing these representations as they are fed back into the semantics
or phonology modules. These attractor states within these networks can be read out and utilized
by other neural networks for further processing.

3. Attractor Network Models of Memory

Memory retrieval is a crucial cognitive function:the recall of stored information within
neural architectures. In psychology, memory encompasses the processes of encoding, storage,
and retrieval of information. Attractor neural networks, those with recurrent connections, are
essential for modeling these retrieval processes. In these networks, memory is modeled as stored
patterns of neural activation, encoded in the weights and retrieved through network dynamics.
The following sections explore specific applications of attractor neural networks in memory
retrieval and the mechanisms underlying these processes.

Attractor neural networks can recall entire memories from incomplete or noisy inputs.
When a fragment of a stored pattern is introduced to the network, Hebbian learning strengthens
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the connections necessary to activate the full attractor. This capability for pattern completion
stems directly from the synaptic reinforcement dictated by Hebbian learning.

Retrieval, in psychological terms, is the process of accessing and bringing information to
conscious awareness. From a modeling standpoint, this process is the reconstruction of a stored
pattern from partial inputs to an original memory pattern. It is not essential for retrieval to be
conscious. For example, implicit memory is an unconscious process, where past experiences
influence thoughts and perceptions without awareness. Retrieval manifests itself through better
performance on tasks or changes due to prior exposure, such as effortlessly retrieving your
favorite song lyrics from years ago. Retrieval should be understood as a broad term that
subsumes both recognition and recall, which will bebe differentiated below.

A cue, psychologically, is a piece of information that triggers the retrieval of a certain
memory. In neural networks, this is implemented as a fragment of a stored pattern which initiates
the retrieval process. During the retrieval phase, learning is typically turned off, and the network
relies on fixed weights to reconstruct the full memory. Once a cue is presented, activation
spreads through these connections, enabling the network to retrieve the complete stored pattern
without further modifications to the weights. This can be thought of as giving a hint or providing
parts of a memory to be retrieved such as the first couple words of a song to be remembered,
leading to retrieving whole lines of the song. Cues in Figure 5 are fragments of images, where
the full memory is the full image, that is, the entire memory to be retrieved, For example, a cue
here might be a dog ear and in that case the final attracting point to which the trajectory leads is
the full retrieval of the dog image.

Figure 5. Diagram of cues and the retrieval process in a neural network. Fragmented images
represent initial cues that initiate the retrieval process. As activation spreads the cues evolve to
complete images that correspond to the attracting fixed points of the network (Yoshimi et al.,
2023).

Priming, in psychology, is the phenomenon where exposure to one stimulus influences
the future response to subsequent stimuli. This describes the effect of previous experience on
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memory and perception. In neural networks, priming occurs when prior activation of nodes (or
partial activation of a trained pattern)leads to faster and more accurate pattern completion,
moving the initial condition closer to the basin of attraction, hence the network is “primed” to
retrieve a pattern.

Recognition is the process of identifying whether information has been encountered
before or determining if the current piece of information matches something stored in memory
when presented with it. Amit describes recognition as a process of identifying whether the
network's current state is within the basin of attraction of a known pattern. This involves less
dynamic transition compared to recall and is more resilient to noise (Amit, 1989). Recognition
operates when a stimulus directly places the network state near or in the basin of the attractor
allowing for immediate identification without an actual total network evolution. An example of
this could be asking someone “Is Jason at the event?”. This requires recognizing whether the
specific person is present or not, a single dimension question because it specifically asks about
Jason.

Interactive Activation and Competition (IAC) networks do well in recognition tasks due
to their ability to handle multiple dimensions effectively. In these networks, each dimension,
such as the features associated with "Jason" (appearance, actions, etc.), competes within the
network. The competition lets the network quickly converge to the suitable representation; these
dimensions in IAC networks have explicit representations, which leads to a straightforward
recognition process.

Free recall involves retrieving a memory without direct or specific cues. An example
would be asking someone “Who was at the event?” requiring a free recall, the question poses
initial conditions that are not strongly biased towards any particular basin of attraction, so the
network navigates multiple attractors associated with persons who attended the event in this
instance. Searching through your memory to bring back a piece of information purely from your
internal retrieval cues. The exact nature of this difference, especially in the context of RNNs, is
not entirely clear, differentiating recognition from recall involves an additional process of being
given abstract information and selecting the right attractor.

In the context of an attractor network, the network must navigate its energy landscape to
find the attractor that represents the desired memory. Free recall involves a more complex and
dynamic process of locating the correct attractor from a potentially vast and undifferentiated state
space. For example, if the network has learned several memory patterns, a free recall task would
require the network to converge on one of these patterns without additional input. In a Hopfield
network, free recall is modeled by starting the network in a random state and letting it evolve
towards an attractor. The depth and width of the basin of attraction determine the ease of
retrieving the memory state.

Cued recall is the retrieval of information from memory with a specific cue. The cue
could be stimuli such as words or phrases. This cue helps access the stored information faster. In
ANN terms cued recall can be thought of as placing the network weakly into the basin of an
attractor. As an example asking “Who was at the event that presented a talk and was wearing
blue?” In this way multiple dimensions of information each narrow the search space to recall
from memory. The network then uses this partial memory to navigate towards the associated
attractor. Amit touches on this idea in his work, but the definitions are unclear. By clearly
carving this boundary we can understand how these networks can be used to better model
retrieval mechanisms and how specific dynamics such as cues and priming affect these
processes.
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Behavioral experiments have shown that memories formed through repeated exposure are
strengthened and easily retrieved. For example, studies on the list length effect demonstrate that
longer or repeated presentation of items leads to deeper attractors, making those items easier to
recall. Ruppin and Yeshurun (1991) show that successful recall and recognition of an item
decreases as the length of a list of learned items increases. As the memory load increases, the
width of the specific memory’s basin of attraction is reduced. The simulations showed that as the
load for memory increased, a longer amount of iterations were needed. Additionally,
maintenance rehearsal is the process of repeatedly practicing items. This rehearsal improves
recall and recognition by deepening the basins of attraction. In the same paper, items presented
for longer periods or rehearsed at more intervals reduce the effects of memory load by effectively
lowering the network's 'temperature', which increases memory capacity and reduces recognition
failures (Ruppin & Yeshurun, 1991).

Empirical validation of attractor neural networks with human data is described in a study
conducted by McRae, de Sa, and Seidenberg (1997). They developed a Hopfield model to
explore word meaning and validated its predictions with human data. The model itself is made
up of input units for word forms and output units for binary features, trained with the Hebbian
learning rule for storing feature covariations. The binary features are characteristics of words that
can have one of two possible values, like "yes" or "no," "true" or "false," or "0" or "1." In the
context of the Hopfield model used in the study, these represented specific properties of words,
such as “Is it a living thing?” In simulations of one of their experiments, which involved priming,
the convergence time was dependent on how similar the initial and final states were. This
experiment highlighted the importance of individual features, basically showing how important
each individual feature of the words was for convergence. By showing that convergence time is
influenced by individual features, the study shows how each feature of a word contributes to the
overall process of word recognition and meaning (McRae et. al, 1997).

In another experiment they focused on feature verification, that is, convergence time
relative to the strength of correlated features. Both of these simulations aligned with the human
trials. The outcomes showed that though there are limitations in modeling tasks where extensive
reasoning and integration is needed, these attractor networks could account for patterns of
performance in speed-related memory phenomena such as priming (McRae et. al, 1997).

McRae's model can be linked to the structure in Figure 3. The input units correspond to
the features, the main network consists of interconnected units where each unit represents a
semantic feature, and the output units represent the final activation pattern after the network
settles. This setup mirrors the layered architecture seen in Seidenberg's model, where different
types of representations (orthographic, phonological, semantic) interact through learned
connections.

In a recent study, Pereira-Obilinovic, Aljadeff, and Brunel (2023) propose a new model
that overcomes key limitations of traditional attractor networks by incorporating forgetting and
by allowing weights to learn during retrieval (most traditional models clamp the weights during
retrieval) . Continuous learning allows the network to incorporate new information over time,
while continuous forgetting helps to remove less relevant information. This model shows the
balance needed for memory retention and retrieval in neural networks. The study reveals that
memory retrieval dynamics in neural networks are influenced by the age of the memory. Recent
memories are retrieved as fixed-point attractors, with stable neural activity. Older memories
become chaotic attractors, with heterogeneity and fluctuations. This allows the network to
balance the storage and retrieval of various memories and adapts to their age and relevance.
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Fixed-point attractors quickly converge to a consistent neural activity pattern when a related cue
is presented, representing recent memories. On the other hand, chaotic attractors exhibit high
variability and chaotic dynamics, which reflects the natural decay and increased interference
over time for older memories (Pereira-Obilinovic, Aljadeff, & Brunel, 2023).

A challenge in neural network models is catastrophic forgetting, where new memories
overwrite older ones. The study addresses this with continuous learning and forgetting. Online
Hebbian learning updates synaptic connections based on current neural activity, allowing
adaptation to new information. A forgetting mechanism, implemented through a decay term in
the synaptic weights, ensures older memories fade, creating space for new ones. Using dynamic
mean field theory (DMFT), the study shows that the optimal forgetting timescale maximizes the
number of retrievable memories, allowing efficient retention and recall over time.
Pereira-Obilinovic’s work gives insights into memory retrieval in attractor neural networks.
Their model addresses age-dependent dynamics and balances continuous learning with
forgetting. By integrating fixed-point and chaotic attractors, they provide a deeper understanding
of memory storage and retrieval, their model overcomes significant limitations of classical
approaches (Pereira-Obilinovic, Aljadeff, & Brunel, 2023).

4. Attractor Models in Computational Cognitive Neuroscience

Building on the memory applications discussed in the last section, I will discuss attractor
neural networks in the computational cognitive neuroscience (CCN) literature. The views of
connectionist models and CCN models differ slightly. Connectionist modeling usually refers to
how information is processed and distributed across networks of neurons through weighted
connections between simplified “nodes”, which are highly approximated model neurons.
Computational cognitive neuroscience takes a more biologically plausible positioning. Whereas
the principles of connectionism are integrated, so are the specific brain regions, their functional
roles, and their physiological interactions.

The hippocampus is the brain region involved in episodic memory. The process of
memory encoding begins with high-level sensory input being activated in the entorhinal cortex
(EC) region of the hippocampus. This propagates to the dentate gyrus (DG) and to the CA3
region where dense recurrent connections are considered the main ‘memory trace'. This is where
the most prominent attractor dynamics arise. See Figure 6. In parallel, the EC sends activation to
CA1 which can replay the same pattern back to the EC as an autoencoder would, reversing and
recreating the original pattern (O’Reilly et. al, 2012) .

These activity patterns trigger learning in CA3 and between CA3 and CA1, strengthening
the memory and when recall is initiated CA3 reactivates CA1 and EC, then the cortex and
effectively returns the original neural activity pattern and the memory.
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Figure 6. This diagram maps the flow of memory encoding and retrieval in the brain. The
hippocampus integrates information from the dorsal and ventral pathways through the entorhinal
cortex. The hippocampal formation, including the dentate gyrus (DG), CA3, and CA1 regions,
processes and stores episodic memories, which can later be recalled and reactivated through
these pathways. This is the essential feedback loop for stabilizing and reactivating memory
patterns in the brain (O’Reilly et. al, 2012, Figure 8.2) .

Within the CCN view, the “Complementary Learning Systems” (CLS) framework was
originally proposed by McClelland and O’Reilly (O'Reilly et al., 2014), describing how the
hippocampus and the neocortex are equally crucial for memory formation and retrieval. The
hippocampus is specifically involved in the formation and recall of episodic memories through
pattern separation. The neocortex is the largest portion of the cerebral cortex, involved in
high-level functions such as sensory perception. It plays a large role in processing sensory
information and higher cognitive functions. A visual of how these regions are integrated is
shown in Figure 7. The neocortex generalizes information slowly and forms semantic memory
through pattern completion in this CLS framework (O'Reilly et al., 2014). Attractor networks are
important for stabilizing memory states within these regions. In the prefrontal cortex, attractor
networks are involved not only in semantic memory but also in working memory and task
management. Within the CA3 region in the hippocampus; this area specifically aids in memory
retrieval from partial cues and is crucial for attractor dynamics due to having dense recurrent
connections in this region (Rennó-Costa, Lisman, & Verschure, 2014).

1 In the brain when there is recurrent processing it is often thought of as supporting attractor dynamics.
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Figure 7. A representation of the neocortex, medial temporal lobe cortex (MTLC), and
hippocampus. The MTLC acts as a bridge between the two important areas of the
complementary learning systems approach. This area is at the top of the cortical processing
hierarchy and is responsible for integrating refined outputs from the cortical modules and
relaying them to the hippocampus, as well as receiving feedback from the hippocampus, and
sending it back to the specialized modules (Norman & O'Reilly, 2003, Figure 1).

O’Reilly’s work also considers the issue of catastrophic forgetting. This phenomenon
occurs when new learning disrupts former knowledge. The CLS combats this by using each of
the primary regions' functional roles, the hippocampus encoding new information without any
interference with prior memory, and the neocortex slowly integrates the new information learned,
creating stable representations in long-term memory (O'Reilly et al., 2014).

5. Other Uses of Attractor Models in The Cognitive Sciences

In applied contexts, attractor neural networks can inform research into memory disorders
as well as mental health applications. The stability of attractor states influences how memories
are retrieved, stored, and processed. Cognitive maps are mental representations for organizing
and categorizing experiences. For example, cognitive maps are thought to aid humans and
animals in navigating through environments (Peer et al., 2021). In schizophrenia research,
hypotheses have been proposed linking the condition to changes in attractor landscapes and
cognitive maps. The hypothesis is that shallow attractors contribute to thought disorders,
specifically dysfunctional thoughts or speech. The shallow basin of attraction acts to decrease the
threshold for state switching, which leads to inappropriate associations between memories that
have no relation and disorganized thought patterns (Rolls, 2010; Musa et al., 2022).

As previously mentioned, the CA3 region of the hippocampus is important for the
formation of stable cognitive maps. In schizophrenic patients, disordered synaptic plasticity and
decreased inhibition may result in an unstable attractor landscape, therefore affecting pattern
separation and excess pattern completion (Musa et al., 2022). This disparity leads to abnormal
thoughts and behaviors in patients. Understanding thought disorders through the mechanics of
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shallow attractors gives insights into therapeutic applications such as target behavioral
intervention or pharmacological intervention aimed towards restoring stability for patients with
schizophrenia.Another proposal is that excessive noise flattens the attractor landscape, making
state switches easy and leading to the disorganized thought patterns characteristic of the disorder.

One particularly interesting thread that remains unresolved is the difference between
positive and negative disentrenchment. This refers to a landscape characterized by shallow
attractors, which allows for state transitions to occur frequently and with ease. In schizophrenia
studies, disentrenchment is considered negative as it leads to the disordered thoughts of
schizophrenics. Conversely, in the use of psychedelics, disentrenchment is positive because it
helps patients overcome entrenched thought patterns that mark rumination or cyclical behaviors.
Exploring this as well as implications across various domains of cognition is something I intend
to pursue in my future dissertation research.

Some have taken this to be a hint that could be used in a positive way. The idea is that in
the absence of this noise, entrenched attractors result in rumination and stuck states which are
alleviated by the destabilizing properties of psychedelics. These substances increase entropy and
promote better flexibility in thought patterns. This flexibility and increase in entropy allow the
system to explore more states in a state space, which can effectively push a system away from
rumination or maladaptive patterns of thinking. In this way, the brain can access a variety of
attractors or stable states, promoting resilient behaviors (Hipólito et al., 2023).This “entropic
brain hypothesis” proposes that mental health is marked by the brain's capacity to navigate
multiple stable states in a state space, while illness then is compared to a system's rigidity in
certain states (Hipólito et al., 2023). Psychedelics help to increase the formation of new attractor
states, promoting mental flexibility.

This contrasts with the shallow cognitive map theory, which suggests that shallow
attractors contribute to the disorganized thoughts of schizophrenics. In essence, while the
entropic brain hypothesis focuses on increasing the number of stable states to improve mental
health, the shallow cognitive map theory highlights the negative impact of having too few deep
attractors. This discrepancy shows room for further exploration of the balance between a
deepened attractor landscape and shallow ones and what implications this has for memory
formation and retrieval.

6. Conclusion
Deepening the understanding of attractor neural networks’ role in processes like memory

retrieval, pattern recognition, and learning will help connect theoretical models with real-world
findings. An interdisciplinary approach including dynamical systems theory, computational
cognitive neuroscience, and psychology can create more biologically realistic models of neural
functioning. Further evidence and interpretation are needed to showcase these models' utility as
tools for modeling aspects of memory.

Despite the extensive research on attractor networks since the 1980s, gaps remain.
Despite the many existing studies, there is still more to be done studying the psychological
relevance of attractor networks. In addition to further empirical work, some basic foundational
work is also needed. The concept of attractor strength, while intuitive, has not been precisely
formalized. “Strong” and “deep” attractors, or “large” basins make intuitive sense, but they have
not been precisely formulated. Similarly for how learning relates to “deepening” of attractors and
how this facilitates better retrieval. Though there has been some work (Heino et al., 2023), more
research is needed, and this is part of what I intend to pursue in my future work.
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Spurious attractors present an issue in ANN models. These often unintended states can
interfere with memory. However there is no consensus on the definition. I proposed one
definition above, but more work clarifying their definition, formation, and overall dynamics is
important for future study.

The distinction between recall and recognition processes in ANNs is inadequately
defined. Recall involves reconstructing a memory from partial cues, requiring complex
navigation of the attractor landscape. Recognition, on the other hand, is a simpler process,
identifying whether a presented stimulus matches a stored pattern. Future work should focus on
clarifying these mechanisms in the ANN context.

One unresolved area in applied contexts is the distinction between positive and negative
disentrenchment in the context of shallow map theory versus deep attractors. Shallow attractors
contribute to disordered thoughts seen in schizophrenia, while deep attractors can lead to
rumination and entrenched mental states. I plan to explore this distinction and its implications
across various cognitive domains in my future dissertation research.

To conclude, while attractor neural networks are an important tool for advancing
understanding of cognitive processes such as memory, further interdisciplinary research and
interpretation is needed to address the existing gaps and refine the terminology across
disciplines.



20

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, 9(1), 147–169.
https://doi.org/10.1207/s15516709cog0901_7

Amit, D. J., & Amit, D. J. (1989). Modeling brain function: The world of attractor neural
networks. Cambridge university press.

Branke, J., Meisel, S., & Schmidt, C. (2008). Simulated annealing in the presence of noise.
Journal of Heuristics, 14, 627-654.

Bruck, J. (1990). On the convergence properties of the Hopfield model. Proceedings of the IEEE,
78(10), 1579–1585. https://doi.org/10.1109/5.58341

Deng, H., Hua, Y., Song, T., Xue, Z., Ma, R., Robertson, N., & Guan, H. (2020, April).
Reinforcing Neural Network Stability with Attractor Dynamics. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3765-3772).

Du, K. L., Swamy, M. N. S., Du, K. L., & Swamy, M. N. S. (2019). Hopfield networks,
simulated annealing, and chaotic neural networks. In Neural Networks and Statistical
Learning (pp. 173-200).

Fehérvári, J. G., Balogh, Z., Török, T. N., & Halbritter, A. (2024). Noise tailoring, noise
annealing, and external perturbation injection strategies in memristive Hopfield neural
networks. APL Machine Learning, 2(1), 016107.

Frolov, A. A., Husek, D., Muraviev, I. P., & Polyakov, P. Y. (2010). Origin and elimination of
two global spurious attractors in Hopfield-like neural network performing Boolean factor
analysis. Neurocomputing, 73(7-9), 1394-1404.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

Heino, M. T., Proverbio, D., Marchand, G., Resnicow, K., & Hankonen, N. (2023). Attractor
landscapes: A unifying conceptual model for understanding behaviour change across
scales of observation. Health Psychology Review, 17(4), 655-672.

Hipólito, I., Mago, J., Rosas, F. E., & Carhart-Harris, R. (2023). Pattern breaking: A complex
systems approach to psychedelic medicine. Neuroscience of Consciousness, 2023(1),
niad017. https://doi.org/10.1093/nc/niad017

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8),
2554-2558.

Kaneko, K. (1998). On the strength of attractors in a high-dimensional system: Milnor attractor
network, robust global attraction, and noise-induced selection. Physica D: Nonlinear
Phenomena, 124(4), 322-344.

McRae, K., De Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural
representations of word meaning. Journal of Experimental Psychology: General, 126(2),
99.

Monaghan, P., Chang, Y. N., & Welbourne, S. R. (2017). Different processes for reading words
learned before and after onset of literacy. In CogSci.

Musa, A., Khan, S., Mujahid, M., et al. (2022). The shallow cognitive map hypothesis: A
hippocampal framework for thought disorder in schizophrenia. Schizophrenia, 8, 34.
https://doi.org/10.1038/s41537-022-00247-7



21

Norman, K. A., & O’Reilly, R. C. (n.d.). Modeling hippocampal and neocortical contributions to
recognition memory: A complementary-learning-systems approach. University of
Colorado at Boulder.

O'Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors. (2012). Computational
cognitive neuroscience. Wiki Book, 4th Edition (2020). https://CompCogNeuro.org

O'Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary learning
systems. Cognitive Science, 38(6), 1229-1248.
https://doi.org/10.1111/j.1551-6709.2011.01214.x

Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with
cognitive maps and cognitive graphs. Trends in cognitive sciences, 25(1), 37-54.

Pereira-Obilinovic, U., Aljadeff, J., & Brunel, N. (2023). Phys. Rev. X, 13, 011009. Published 27
January 2023.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal
and impaired word reading: Computational principles in quasi-regular domains. In
Connectionist Psychology (pp. 367-454). Psychology Press.

Rennó-Costa, C., Lisman, J. E., & Verschure, P. F. (2014). A signature of attractor dynamics in
the CA3 region of the hippocampus. PLoS computational biology, 10(5), e1003641.

Robins, A. V., & McCallum, S. J. (2004). A robust method for distinguishing between learned
and spurious attractors. Neural Networks, 17(3), 313-326.

Rolls, E. T. (2010). Attractor networks. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1),
119-134.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and
sequential thought processes in PDP models. In Parallel distributed processing:
Explorations in the microstructure of cognition: Psychological and biological models
(Vol. 2, pp. 7-57). MIT Press.

Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1986). Parallel distributed
processing, volume 1: Explorations in the microstructure of cognition: Foundations. The
MIT press.

Ruppin, E., & Yeshurun, Y. (1991). Recall and recognition in an attractor neural network model
of memory retrieval. Connection Science, 3(4), 381-400.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word
recognition and naming. Psychological review, 96(4), 523.

Smolensky, P. (1986). Chapter 6: Information processing in dynamical systems: Foundations of
harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed
processing: Explorations in the microstructure of cognition, Volume 1: Foundations (pp.
194–281). MIT Press. ISBN 0-262-68053-X

Smolensky, P. (1993). On the proper treatment of connectionism. In Readings in philosophy and
cognitive science. https://doi.org/10.7551/mitpress/5782.003.0044

Smolensky, P., & Legendre, G. (2006). The harmonic mind: From neural computation to
optimality-theoretic grammar (Cognitive architecture), Vol. 1. MIT press.

Yoshimi, J., Hotton, S., Tosi, Z., Gordon, C., & Noelle, D. C. (2023). Neural networks in
cognitive science.

Zemel, R. S., & Mozer, M. C. (2001). Localist attractor networks. Neural Computation, 13(5),
1045-1064.




