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The exponentiated Hencky strain energy in modelling tire derived material for
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2Department of Civil and Environmental Engineering,
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3Faculty of Mathematics, University of Duisburg-Essen, Essen, Germany
(Dated: September 23, 2015)

This work presents a hyper-viscoelastic model, based on the Hencky-logarithmic strain tensor to
model the response of a Tire Derived Material (TDM) undergoing moderately large deformations.
TDM is a composite made by cold forging a mix of rubber fibers and grains, obtained by grinding
scrap tires, and polyurethane binder. The mechanical properties are highly influenced by the pres-
ence of voids associated with the granular composition and low tensile strength due to the weak
connection at the grain-matrix interface. For these reasons, TDM use is restricted to applications
concerning a limited range of deformations. Experimental tests show that a central feature of the
response is connected to highly nonlinear behavior of the material under volumetric deformation
which conventional hyperelastic models fail in predicting. The strain energy function presented here
is a variant of the exponentiated Hencky strain energy proposed by Neff et al. [28], which for moder-
ate strains is as good as the quadratic Hencky model and in the large strain region improves several
important features from a mathematical point of view. The proposed form of the exponentiated
Hencky energy possesses a set of parameters uniquely determined in the infinitesimal strain regime
and an orthogonal set of parameters to determine the nonlinear response. The hyperelastic model is
additionally incorporated in a finite deformation viscoelasticity framework that accounts for the two
main dissipation mechanisms in TDMs, one at the microscale level and one at the macroscale level.
The new model is capable of predicting different deformation modes in a certain range of frequency
and amplitude with a unique set of parameters with most of them having a clear physical meaning.
This translates into an important advantage with respect to overcoming the difficulties related to
finding a unique set of optimal material parameters as are usually encountered fitting polynomial
forms of strain energies. Moreover, by comparing the predictions from the proposed constitutive
model with experimental data we conclude that the new constitutive model gives accurate predic-
tion.

I. INTRODUCTION

In spite of a rapid growth in technologies and development, scrap tire disposal is still an important and
unresolved environmental engineering issue today. One promising component, from the spectrum of proposed
solutions, is the recycling of tires into engineering materials. In this paper, the mechanical characterization of
a new Tire Derived Material (TDM) for structural applications is proposed. This TDM is obtained by grinding
scrap tires and rubber factory leftovers into grains and fibers, these together with a polyurethane binder are
first leveled by a roller and then pressed together to form TDM pads (Figure 1). The material, made of Styrene-
Butadiene Rubber (SBR), the most popular rubber in tire production, has a low cost and easy to implement
production cycle. TDMs can be made in various densities with different mechanical properties and have been
used mainly in railway applications for vibration reduction [21]. The usual composition of TDMs results in high
compressibility and allows for use only in a moderately large range of deformation.

Unfortunately, the common hyperelastic material models fail in describing their behavior in different defor-
mation modes with a unique set of parameters [22]. It is also noted that fitting experimental data of elastomeric
solids to polynomial-like strain energy functions is not an easy task and can lead to oscillating functions with
parameters that may not have physical meaning [33]. Here, a logarithmic measure is used to describe the
mechanical behavior of TDMs.

Logarithmic strain, typically referred as “true strain”, was first applied to elasticity theory by the geologist
G.F. Becker [3, 30], who was an instructor of mining and metallurgy at Berkeley from 1875 to 1879. However,
its introduction is often attributed to P. Ludwik [19], who defined (one-dimensional) logarithmic strain via the

integral
∫ l
l0
dl
l in order to measure the extension of a rod of length l. Today, the logarithmic strain tensor is

also named after H. Hencky [11, 12], who used it in his systematic deduction of an idealized elastic law [23].
The Hencky strain measure has many interesting properties, one of the most useful is that it allows for the
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(a)TDM pad

Rubber

Binder

(b)Close up view

Figure 1: Tire Derived Material.

full realization of an uncoupled additive split of volumetric and deviatoric deformations at finite strain. The
elastic law proposed by Hencky, which is in good agreement with experiments for a wide class of materials for
moderately large deformations, as Anand demonstrated [1], is induced by the so-called quadratic Hencky strain
energy:

WH(F ) := ŴH(U) := µ ‖dev3 logU‖2 +
κ

2
[tr(logU)]2. (1)

In a series of articles [26–29], a family of isotropic volumetric-isochoric decoupled strain energies

WeH(F ) := ŴeH(U) :=


µ

k
ek ‖ devn logU‖2 +

κ

2 k̂
ek̂ [tr(logU)]2 if det F > 0

+∞ if detF ≤ 0

(2)

based on the Hencky-logarithmic strain tensor logU were studied. Here µ > 0 is the infinitesimal shear

modulus, κ = 2µ+3λ
3 > 0 is the infinitesimal bulk modulus with λ the first Lamé constant, k, k̂ are dimensionless

parameters, F = ∇ϕ is the gradient of deformation, U =
√
FTF is the right stretch tensor and devn logU =

logU − 1
n tr(logU) ·1 is the deviatoric part of the logarithmic1 strain tensor logU . This family of exponentiated

Hencky strain energies improves upon the well-known properties of the original Hencky strain energy.
In particular, it was recently found that the Hencky energy (not the logarithmic strain itself) exhibits a

fundamental property: by purely differential geometric reasoning, it was shown [24, 25, 31] (see also [4, 6, 18])
that

dist2geod

(
(detF )1/n · 1,SO(n)

)
= dist2geod,R+·1

(
(detF )1/n · 1,1

)
=

1

n
[tr(logU)]2,

dist2geod

(
F

(detF )1/n
,SO(n)

)
= dist2geod,SL(n)

(
F

(detF )1/n
,SO(n)

)
= ‖ devn logU‖2, (3)

where distgeod is the canonical left invariant geodesic distance on the Lie group GL+(n) and distgeod,SL(n),
distgeod,R+·1 denote the corresponding geodesic distances on the Lie groups SL(n) and R+ · 1, respectively (see
[24, 31]). Thus WH and WeH have the attractive feature that the energies are based directly on a geometrically
intrinsic distance of the deformation gradient to the group of rigid rotations.

For small elastic strains, WeH approximates the classical quadratic Hencky strain energy WH, which is not
everywhere rank-one convex; moreover in [28], it is also pointed out that the quadratic Hencky energy has some
other serious shortcomings. These points being more or less well-known, it is clear that there cannot exist a
general mathematical well-posedness result for the quadratic Hencky model WH, although an existence proof
for small loads based on the implicit function theorem is, of course, possible. The use of (2) allows for the
retention of the fundamental geometric property (3) of the original Hencky strain energy, but at the same time
alleviates some of its mathematical drawbacks: up to moderate strains, for principal stretches λi ∈ (0.7, 1.4),
the exponentiated Hencky formulation (2) is de facto as good as the quadratic Hencky model WH, and in the
large strain region it improves several important features from a mathematical point of view. The main feature

1 Here and throughout, log denotes the natural logarithm.
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is that the exponentiated Hencky energy (2) satisfies the Legendre-Hadamard condition (rank-one convexity) in
planar elasto-statics [20, 28], i.e. for n = 2. In this case, the energy is even polyconvex, which, together with a
coercivity estimate, allows for the application of classical theorems for the existence of energy minimizers [8, 29].

Despite these advantages, some aspects of the three-dimensional description remain open, since the formula-
tion is not globally rank-one convex. However, in the three-dimensional case, a loss of ellipticity only occurs for
extreme distortional strains [7]. This suggests that the exponentiated Hencky energy (2) retains its full suit-
ability for materials that undergo additional (typically irreversible) phenomena based on distortional criteria
of the Huber-Hencky-von-Mises type, as the involved elasticity tensors can thereby be prevented from reaching
the non-elliptic domain. This is in sharp contrast to the loss of ellipticity of the quadratic Hencky energy WH,
which is not related to the distortional energy alone.

Beside the above mathematical advantages, the exponentiated Hencky energy satisfies a number of additional
desirable constitutive properties [28]: for example, planar pure Cauchy shear stress always induces biaxial pure
shear strain; the limit case κ→ +∞ or, equivalently, ν = 1

2 for the linear Poisson’s ratio ν, corresponds to exact

finite incompressibility; and there exists a certain three parameter subset (k = 2
3 k̂ ) such that uniaxial tension

leads to no lateral contraction if and only if ν = 0 (i.e. κ = 2
3µ), as in linear elasticity (see [24] for further

discussion). Like the quadratic Hencky energy, the exponentiated Hencky energy also satisfies a weakened
version of Truesdell’s empirical inequalities [6].

In this paper, a variation to the volumetric part of (2) is proposed to capture the high nonlinearity of TDMs
when subjected to volumetric deformation:

WeHm(F ) := ŴeHm(U) :=


µ

k
ek ‖ devn logU‖2 +

κ

2 k̂
ek̂ [tr(logU)]2 +

κ1

mk̃
ek̃ (|tr(logU)|m) if det F > 0,

+∞ if detF ≤ 0,

(4)

where κ1 is the value of the bulk modulus for large deformations and m and k̃ are dimensionless parameters.
The main advantage of using the modified exponentiated-Hencky energy comes from the fact that the shear
and bulk modulus are already uniquely determined in the infinitesimal strain regime, while κ1 determines the
nonlinear response, without interfering with µ and κ. For the modified exponentiated-Hencky strain energy
proposed in this work, the Kirchhoff stress tensor is given by:

τ = DlogUWeHm(logU) = 2µ ek ‖dev3 logU‖2 · dev3 logU

+

[
κ ek̂ [tr(logU)]2tr(logU) + κ1 e

k̃ |tr(logU)|m |tr(logU)|m

tr(logU)

]
· 1 , (5)

while the Cauchy stress tensor is:

σ = e−tr(logU)τ = 2µ ek ‖dev3 logU‖2−tr(logU) · dev3 logU

+

[
κ ek̂ [tr(logU)]2−tr(logU)tr(logU) + κ1 e

k̃ |tr(logU)|m−tr(logU) |tr(logU)|m

tr(logU)

]
· 1. (6)

II. RATE-INDEPENDENT RESPONSE

In this section we discuss the rate-independent response of the material, which we will refer to as the equi-
librium response. The physical properties of the TDMs are greatly influenced by the technologies used in
manufacturing them. Tests have shown that the density and the mixture composition of the material are the
parameters that most strongly affect its mechanical properties. In total we consider three types of TDMs with
the same composition but different densities (Table I) and three modes of deformation: shear, uniaxial com-
pression, and pseudo-hydrostatic compression. In the sections describing the tests, predictions of the model are
also shown, all using a fixed set of fitted parameters which are discussed in Section III.
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Table I: Tire Derived Material description.

Material
Density

Composition
(kg · m−3)

TDM 500 500 90% SBR fibers
TDM 600 600 +
TDM 800 800 10% SBR grains

A. Simple shear

Shear tests were carried out at Tun Abdul Razak Research Centre (TARRC) in Hertford (UK). The samples
were tested with the classical dual lap simple shear test configuration commonly used in the tire industry.
Samples of 90 mm in width, 50 mm in length and 20 mm in thickness, were sheared to a shear strain amplitude
of 100% of the initial rubber thickness at the (slow) strain rate of 0.0067 s−1. The procedure is explained in
detail in [22]. In simple shear the direction of applied displacements does not coincide with the direction of the
principal stretches; rather it involves a rotation of axes. The polar decomposition of F = R · U gives the right

Biot stretch tensor U =
√
FTF of the deformation and the orthogonal polar factor R:

U =
1√
γ2 + 4

 2 γ 0
γ γ2 + 2 0

0 0
√
γ2 + 4

 , R =
1√
γ2 + 4

 2 γ 0
−γ 2 0

0 0
√
γ2 + 4

 . (7)

U can be orthogonally diagonalized to show:

logU =
1√
γ2 + 4

 −γ log λ1 2 log λ1 0
2 log λ1 γ log λ1 0

0 0 0

 , (8)

where λ1 =
1

2

(√
γ2 + 4 + γ

)
is the first eigenvalue of U . Simple shear does not involve a change in volume;

for this reason detF = 1 and tr(logU) = 0. The non-zero Kirchhoff stress component τ12 from equation (5) is
given by:

τ12 = 4µ e
2 k log2

[
1

2

(√
γ2+4+γ

)]
·

log

[
1

2

(√
γ2 + 4 + γ

)]
√
γ2 + 4

. (9)
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Figure 2: Comparison between shear stress corresponding to exponentiated Hencky energy WeHm, equation (9), and
experimental tests for different densities.

Figure 2 shows the ability of the model to capture the shear behavior out to a shear strain of 100%. It is
to be noted that the TDM 800 sample, Figure 2(c), physically failed in the experiment due to cracking and
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crumbling. Thus the poor correlation in Figure 2(c) does not reflect poorly on the model. Unfortunately, an
intact test is not available for TDM 800 in this configuration. Notwithstanding, given the reasonable agreement
seen in Figures 2(a) and 2(b), we feel the model performs well in shear. This is in agreement with the findings
in [28] when WeH was applied to the rubber data of [16, 38].

B. Uniaxial Compression

Uniaxial compression tests were performed using a multi-step relaxation procedure. Thin Teflon sheets with
lubricant were placed between platens and specimen surfaces. Specimen were cylinders with diameter of ≈ 27
mm and length of ≈ 15 mm die-cut from a sheet stock. At each step of the loading process, the strain level is
increased by 5% at a strain rate of ε = 0.01 s−1 up to 70% strain. Between each loading step there is a 600 s
dwell to allow for relaxation of the material (Figure 3). We consider the value of the stress at the end of each
dwell-interval as the equilibrium stress; these are shown as the red curves in Figs. 3(b)-3(d). Note that we take
the 1-direction to be the axis of compression.
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Figure 3: Compression test procedure. First figure (a) shows strain history. Blue curve represent the true data. Red
curve represents the assumed equilibrium response from the data.

In order to compare the model to the compression data, one requires knowledge of the material’s three-
dimensional state of deformation. Since the TDMs are compressible we can not make the usual rubber elasticity
assumptions and require information on the materials transverse response. To evaluate the transverse behavior,
pictures were taken at the end of every relaxation period with a digital camera mounted on a tripod; see Figure
4. The digital images were processed using the image processing toolbox in MATLAB [13]. The white area A,
measured in pixels in Figure 4, is the region occupied by the TDM sample, and was determined for each image.
The height h of the sample is known at each step of the test from the experimental controller. TDMs due to
their composition are very difficult to cut and usually the samples do not have a straight edge. For this reason,
we compute an average width of the sample as:

w̃ =
A

h
(10)
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0%

35%

70%

Figure 4: Original image from the digital camera vs Image after processing for TDM 600.

and the average lateral strain as:

l̃og λ2 = l̃og λ3 = log
w̃n
w̃0

, (11)

where w̃n is the lateral dimension at step n and w̃0 is the lateral dimension at the undeformed state. In order
to appreciate the non-linear compressibility of TDMs, we define, among several possibilities [10, 17, 37], the
non-linear Poisson’s coefficient ν̂ as the negative ratio of the lateral extension and axial contraction measured
in the logarithmic strain:

ν̂ := − log λ2
log λ1

. (12)

The measured values of ν̂ are shown in Fig. 5 and display the material’s distinct nonlinearity.
From equation (6), if we consider s the value of the uniaxial Cauchy stress, by projection on the Lie-algebra

sl(n) of trace-free tensors, we have

2µ ek ‖ dev3 logU‖2−tr(logU) dev3 logU = dev3 σ =


2

3
s 0 0

0 −1

3
s 0

0 0 −1

3
s

 , (13)

which leads to the requirement that under uniaxial stress, U has the following form [39]:

U =

 ea+
1
3x 0 0

0 e−
1
2a+

1
3x 0

0 0 e−
1
2a+

1
3x

 = e
1
3x

 ea 0 0

0 e−
1
2a 0

0 0 e−
1
2a

 . (14)

This in turn leads to the stress expression

s = 3µ ek
3
2 a

2−xa , (15)

where a = 2
3 (log λ1− l̃og λ2) and x = log λ1+2l̃og λ2 are the experimentally known measures of the deformation.

Using the measured values of a and x we can compare the model’s predicted stress response from equation (15)
to the measured stresses. Note that one can also project onto the spherical part of equation (6), which gives

s = 3

[
κ ek̂x

2

x+ κ1e
k̃|x|m |x|m

x

]
e−x. (16)
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The comparison of equation (15) and (16) to the experimental data is shown in Fig. 6. The results indicate
good correlation. Note that the material parameter set is the same as used in the comparison of the shear data.
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Figure 5: Non-linear Poisson’s coefficient ν̂ evaluated during compression tests.
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Figure 6: Comparison between compression stress corresponding to modified exponentiated Hencky energy WeHm, equa-
tion (15) and (16), and experimental tests for different densities.

C. Pseudo-Hydrostatic compression

As a third mode of deformation we consider an experiment that for quasi-incompressible materials provides
an approximation to a hydrostatic compression test. Here we consider a lubricated cylindrical specimen that is
inserted into a rigid (steel) cavity of the same radius and then axially compressed. During the test a force was
applied on top of a steel piston at a volume ratio rate 0.0067 s−1. The procedure is explained in details in [22].
Considering the axis of compression to be the 1-direction, to good approximation this test follows the kinematic
path

logU =

 log λ1 0 0
0 0 0
0 0 0

 , (17)

where in the experiment log λ1 is measured. Likewise in the experiment σ11 = s11 + p is measured, where s11
is the axial deviatoric stress component and p is the pressure. The experiment is designed to test the pressure-
volume relation. The Jacobian of the deformation, detF = λ1, is readily available from the experiment. However
the pressure is approximated as p ≈ σ11, which is only valid for p � s11. For the present model, under the
given deformation state,

s11
p

=
2µ ek

2
3 (log λ1)

2−log λ1 log λ1

κ ek̂(log λ1)2−log λ1 log λ1 + κ1ek̃| log λ1|m−log λ1
| log λ1|m
log λ1

. (18)
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For TDMs in this experiment, this ratio is not small enough at initial levels of deformation to result in a valid
pressure-volume experiment. For example, for TDM 500, one must have detF 6∈ (0.85, 1.2) for the ratio to take
on values of less than 0.05. The plot of the data and the model prediction are shown in Figure 7 and show good
agreement. Note that the plotted pressure is approximated as σ11 in both the model and the experiment for
full consistency. It is to be noted that our exponentiated Hencky energy is crucial here. The quadratic Hencky
energy leads to a pressure-volume relation that is not even invertible for detF > e [39]. The exponentiated
form itself alleviates this problem. Our modified spherical term to the original exponentiated Hencky energy
allows for the sharp kink in the pressure-volume relation due to void collapse. As with the prior deformation
modes, the results shown are produced with the exact same set of parameters.
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Figure 7: Comparison between pseudo-volumetric response corresponding to equation (6) and experimental tests for
different densities with p ≈ σ11.

III. PARAMETER IDENTIFICATION EQUILIBRIUM RESPONSE

For the three states of deformation under consideration, we have utilized a single set of parameters per material
density. The parameter estimation itself was performed using the non-linear least square (NLS) optimization
method to minimize the residuals. The main difficulty in such a NLS problem is to find a unique set of optimal
parameters. Several numerical algorithms have been used in the literature to solve NLS problems [2, 5]; they
are usually a modification of the Newton method and require an initial guess for the solution. The iterative
technique furnishes an optimal solution when some stopping criteria are met. In this paper we modified the
function lsqcurvefit in the optimization Toolbox of MATLAB [14] to fit the different sets of data together [33].
The initial guess used was the physical estimate of the moduli obtained by previous experiments on the TDMs

(Table II); the remaining parameters were initialized to k = k̂ = k̃ = 0 and m = 2. We imposed positive
values as lower bounds on the parameters; moreover we respect the mathematical bounds on the parameters
[28]. Table III gives the resulting optimized values which were used for modelling the behavior displayed in the
prior sections. It is useful to note that the fit values for the shear, low strain bulk, and large strain bulk moduli
are all sensibly close to the original values derived directly from the tangents to the experimental response.
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Table II: Initial guess for parameter identification procedure from tangents to the experimental data∗.

Material
µ κ κ1

(MPa) (MPa) (MPa)
TDM 500 0.22 2.40 297
TDM 600 0.31 2.70 315
TDM 800 0.63 4.50 281

*Parameters obtained from [22].

Table III: Parameters - exponentiated-Hencky energy function.

ŴeHm(U) :=
µ

k
ek || dev3 logU||2 +

κ

2 k̂
ek̂ [tr(logU )]2 +

κ1

mk̃
ek̃ (tr|log U|m)

Material
µ k κ k̂ κ1 k̃ m

(MPa) (-) (MPa) (-) (MPa) (-) (-)
TDM 500 0.12 0.59 1.40 0.13 116 268 4
TDM 600 0.19 0.39 2.80 0.13 647 1989 6
TDM 800 0.50 0.27 4.40 0.13 404 1353 6

IV. NON-EQUILIBRIUM RESPONSE

In experimental investigations, filler-reinforced rubber like SBR, the main component of TDMs, shows many
nonlinear effects when subjected to dynamic loads. The main ones being the pronounced dependence of the
material behaviour on the dynamic strain amplitude together with rate dependent response. The first, often
termed the Payne-effect [34], can be described as a reversible softening with increasing dynamic strain ampli-
tude. To the authors’ knowledge there are still no well-accepted models that incorporate both the Payne-effect
and rate dependency. Thus our goal in modeling the non-equilibrium behavior will be limited to the rate de-
pendency of the material at fixed frequencies and amplitudes. To that modest end, a finite strain model of
viscoelasticity is constructed considering the multiplicative decomposition of the deformation gradient F into
elastic Fe and inelastic Fi parts as proposed by Sidoroff [36]. Here we assume the existence of two viscous
mechanisms associated to the material: intermolecular resistance at the microscale level and grain interactions
at the macroscale level. The first is associated with a Maxwell element including a non-linear spring (A) while
the second is associated to a Maxwell element in which a linear spring is included (B). The choice of modeling
the interaction between the rubber particle inside the TDM with a linear law is due to the presence of the
binder at the grain interface. The binder acts as an internal constraint allowing only normal contact interaction
between the grains. For this reason, both relative rotation and sliding, which are usually found in granular
materials [15, 32], are not allowed or are negligible between the grains and fibers. A one dimensional rheological
schematic is presented in Figure 8.

B

A

EQ

NEQ

Figure 8: One dimensional rheological model for rate-dependent behavior of TDM.
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If we consider for each viscous mechanism a set of internal variables F ki (k = A,B) that can be viewed as the
deformation gradient associated with each dashpot, then we can write the total free energy as:

W v
eHm = WEQ

eHm +WA
NEQ(bAe ) +WB

NEQ(bBe ) , (19)

where WEQ
eHm represents the strain energy in the equilibrium spring discussed in the previous part of this paper

and W k
NEQ the strain energy in each Maxwell element associated to the “elastic” left Cauchy deformation tensor

bke = F ke · [F ke ]T , also called the Finger tensor. For most polymer based materials, the volumetric deformation
is purely elastic and the viscous effects are restricted to the isochoric component of the deformation. Following
this assumption the strain energy for the Maxwell elements can be written as:

WA
NEQ(bAe ) =

µA
kA

ekA || dev3 log bAe ||
2

(20)

WB
NEQ(bBe ) = µB ||dev3 log bBe ||2 . (21)

The general theory of viscoelasticity at finite strains used in this work follows the developments of [9, 35]. Here
we recall only the essential equations. As a consequence of the Clausius-Duhem inequality, the Kirchhoff stress
is given as

τ = τEQ +
∑

τkNEQ , (22)

where τkNEQ = 2[
∂Wk

NEQ

∂bke
]bke . Consistent with the Clausius-Duhem inequality, the evolution of bke is given by:

1

2
Lv bke · [bke ]−1 = [Vk]−1 : τkNEQ , (23)

where Lv bke = F d
dt [C

k
i ]−1FT is the Lie derivative of bke along the velocity field of the material motion, Cki =

[F ki ]TF ki , and [Vk]−1 is an isotropic fourth order fluidity tensor defined as:

[Vk]−1 =
1

2 ηkD

(
14 − 1

3
1⊗ 1

)
. (24)

Here 14 is the fourth order symmetric identity tensor, while ηkD > 0 represents the deviatoric viscosities. In our
model ηAD = 12 s ·N ·mm−2 and ηBD = 1 s ·N ·mm−2 for all the different densities and for all the testing modes.
The model presented implicitly defines the total Kirchhoff stress τ . The actual use of the model requires the
solution of the nonlinear relation (23) which we perform using the predictor-corrector method advocated in [9]
and [35].

A. Dynamic Shear Test

Dynamic shear tests were performed at TARRC using the dual lap set up with samples of the same dimension
as used in the static tests. For each sample the displacement was driven up to 33% and 100% of the initial
thickness and the tests, for each amplitude, were carried out for 10 cycles. Further, each test was conducted at
two frequencies 0.1 Hz and 1 Hz.
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Figure 9: Comparison between cyclic shear tests (markers) and the viscoelastic model based on the modified exponenti-
ated Hencky energy W v

eHm (solid line), equation (19), for different frequencies at 100% amplitude.

−1 −0.5 0 0.5 1
−0.5

0

0.5

Strain �

S
tr

e
s
s
 

1
2

(M
P

a
)

100%

33%

(a)TDM 500

−1 −0.5 0 0.5 1
−0.5

0

0.5

Strain �

S
tr

e
s
s
 

1
2

(M
P

a
)

100%

33%

(b)TDM 600

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Strain �

S
tr

e
s
s
 

1
2

(M
P

a
)

100%

33%

(c)TDM 800

Figure 10: Comparison between cyclic shear tests (markers) and the viscoelastic model based on the modified exponen-
tiated Hencky energy W v

eHm (solid line), equation (19), for different amplitudes at 1 Hz.

Figure 9 shows the dynamic response at 100% strain amplitude for two frequencies. Over this range of
frequencies the material only weakly depends on the strain rate. Figure 10 considers 100% and 33% strain
amplitude at a loading frequency of 1 Hz. Here one observes a strong amplitude dependent response. Also
shown in Figs. 9 and 10 are the predictions from fitting the model to the data. The match is seen to be
quite acceptable but it should be emphasized that due to the Payne-effect the values of the non-equilibrium
parameters are frequency and amplitude dependent, as discussed more fully below.

B. Dynamic Compression Test

Uniaxial compression tests were carried out on a Bose Electroforce machine in a frequency range of 0.1 Hz
to 25 Hz with the same setup as the static tests. The strain history consists of a static pre-strain of 10% and
a superimposed sinusoidal excitation varying in amplitude in the range of 1% to 20%. Figures 11 and 12 show
a few tests (data are shown as markers) from the many performed as they are representative of the overall
abilities of the model. The model parameters used to generate the solid lines are discussed in the next section.
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Figure 11: Comparison between cyclic compression tests (markers) and the viscoelastic model based on the modified
exponentiated Hencky energy W v

eHm (solid line), equation (19), for different frequencies at 20% amplitude.

Figure 11 shows the steady-state hysteresis curves at frequencies 0.1 Hz, 1 Hz and 25 Hz at a constant strain
amplitude of 20%. It indicates that the stress increases with increasing frequencies and the material is stiffer
at higher frequency. The correlation between model and experiment is seen to be good.
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Figure 12: Comparison between cyclic compression tests (markers) and the viscoelastic model based on the modified
exponentiated Hencky energy W v

eHm (solid line), equation (19), for different amplitudes at 1 Hz.

Figure 12 shows the steady-state hysteresis curves with two different strain amplitudes, 10% and 20%, at 1 Hz
frequency. These graphs confirm that the material subjected to smaller compressive strain amplitudes is stiffer
than material subjected to larger compressive strain amplitudes, similar to what was seen in the shear tests and
the correlation between data and experiment is good. Other specimens showed a similar pattern even though
they were taken about different mean strains and frequencies. They are not shown in this paper for brevity. As
part of the compressive strain campaign, we also evaluated the energy dissipated per hysteresis cycle as:

D =

∮
σ11dλ1 . (25)



13

0 10 20 30

0

0.1

0.2

0

0.02

0.04

Frequency (Hz)
Amplitude

D
 (

J 
m

m
−

3 )

(a)TDM 500

0 10 20 30

0

0.1

0.2

0

0.05

0.1

Frequency (Hz)
Amplitude

D
 (

J 
m

m
−

3 )

(b)TDM 600

0 10 20 30

0

0.1

0.2

0

0.05

0.1

Frequency (Hz)
Amplitude

D
 (

J 
m

m
−

3 )

(c)TDM 800

Figure 13: Energy dissipation per hysteresis cycle in compression.

The results, which are shown in Figure 13, display the presence of two transition regions which validates our
use of two Maxwell elements in our model for TDMs in this range of amplitude and frequency. This in large
part contributes to the good ability of the model to capture the hysterisis curves shown in Figs. 9 - 12.

V. PARAMETER IDENTIFICATION VISCOUS MODEL

Since the response for large deformations is not a perfect sinusoid, the hysteresis cycles are not elliptical.
Therefore, the classical definition of storage and loss modulus is inapplicable. In this section we take a look
at the parameters for each dissipation mechanism and show how they vary with frequency and amplitude.
The parameters associated with mechanism A, which we term the microscale level, show both amplitude and
frequency dependence (Figure 14,15). The parameter µA decreases with amplitude then it stays constant both
in frequency and amplitude. It is mainly amplitude dependent reproducing the Payne-effect well known to be
present in filler-reinforced rubber. The parameter kA captures the frequency dependency of the material and it
is constant with amplitude. The single parameter associated with the mechanism B varies with the amplitude
and stays constant with frequency (Figure 16).

(a)TDM 500 (b)TDM 600 (c)TDM 800

Figure 14: Model parameter µA in the frequency and amplitude range.
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(a)TDM 500 (b)TDM 600 (c)TDM 800

Figure 15: Model parameter kA in the frequency and amplitude range.

(a)TDM 500 (b)TDM 600 (c)TDM 800

Figure 16: Model parameter µB in the frequency and amplitude range.

VI. CONCLUSION

In this study we presented a hyper-visco-elastic constitutive model for TDMs to characterize the response
of this class of materials under different deformation modes. The new model is based on an exponentiated
Hencky strain energy that as shown in previous work improves several mathematical properties with respect to
the classical quadratic Hencky energy function. There are two main advantages of the newly proposed model.
The first one is its ability to describe different deformation modes with a unique set of parameters in the
equilibrium range. The second advantage is that most of the parameters have a physical meaning simplifying
the parameter fitting procedure. An extensive experimental campaign on TDMs was conducted with both static
and dynamic tests. It was not the objective of this work to provide a model capable of describing dynamic
characteristics of TDMs that includes simultaneous frequency and amplitude dependent effects, but rather to
explore this new material and find the simplest model to characterize it for specific frequencies and amplitude.
The predicted results are in excellent agreement with the presented data and thus give a viable model for
engineering applications of TDMs.
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[8] I.D. Ghiba, P. Neff, and M. Šilhavý. The exponentiated Hencky-logarithmic strain energy. Improvement of planar

polyconvexity. International Journal of Non-Linear Mechanics, 71:48–51, 2015.
[9] S. Govindjee and S. Reese. A presentation and comparison of two large deformation viscoelasticity models. Journal

of Engineering Materials and Technology, 119(3):251–255, 1997.
[10] J. Helfenstein, M. Jabareen, E. Mazza, and S. Govindjee. On non-physical response in models for fiber-reinforced

hyperelastic materials. International Journal of Solids and Structures, 47(16):2056–2061, 2010.
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