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Transcriptomes are key to understanding the relationship
between genotype and phenotype. The ability to infer the expres-
sion state (active or inactive) of genes in the transcriptome offers
unique benefits for addressing this issue. For example, qualitative
changes in gene expression may underly the origin of novel phe-
notypes, and expression states are readily comparable between
tissues and species. However, inferring the expression state of
genes is a surprisingly difficult problem, owing to the complex
biological and technical processes that give rise to observed tran-
scriptomic datasets. Here, we develop a hierarchical Bayesian
mixture model that describes this complex process and allows
us to infer expression state of genes from replicate transcrip-
tomic libraries. We explore the statistical behavior of this method
with analyses of simulated datasets—where we demonstrate
its ability to correctly infer true (known) expression states—
and empirical-benchmark datasets, where we demonstrate that
the expression states inferred from RNA-sequencing (RNA-seq)
datasets using our method are consistent with those based on
independent evidence. The power of our method to correctly infer
expression states is generally high and remarkably, approaches
the maximum possible power for this inference problem. We
present an empirical analysis of primate-brain transcriptomes,
which identifies genes that have a unique expression state in
humans. Our method is implemented in the freely available R
package zigzag.

transcriptomics | gene expression | Bayesian mixture models

A central goal of biology is to understand the relationship
between genotype and phenotype: how is it that the cells of

a multicellular organism—each with an identical genome—give
rise to tissues and organs of astonishing structural and func-
tional diversity? Our current understanding of the connection
between genotype and phenotype is largely based on the tran-
scriptome, the set of genes that are expressed in a given tissue.
Tissue-specific transcriptomes can change in two fundamental
ways during development and evolution: quantitative changes in
expression level through up- or down-regulation of genes that
were already active in a given tissue and qualitative changes in
expression, where a gene is activated or inactivated in that tissue.

Our ability to explore the genomic basis of organismal phe-
notype has been greatly enhanced by the advent of RNA-
sequencing (RNA-seq) techniques. However, the utility of quan-
titative transcriptomic approaches (i.e., those based on relative
differences in the expression levels of cells and tissues) is lim-
ited by both biological and technical issues. First, the relationship
between the abundance of transcripts of a given gene and the cor-
responding abundance of the encoded protein can be obscured
by posttranscriptional regulation on both physiological and evo-
lutionary timescales (1–14). Second, the nature of RNA-seq
data complicates comparison of expression levels between tissues
and/or species. That is, gene-expression estimates from RNA-seq
data are in relative units; the number of transcripts sampled in an
RNA-seq library is not proportional to the total RNA content of
a sample. Consequently, a gene with a similar number of tran-
scripts in two different samples may have very different relative
expression levels (15).

Evaluating the qualitative expression state of genes (i.e., active
or inactive) in transcriptomes offers unique advantages for
exploring the genotype–phenotype connection. In both devel-
opment and evolution, a qualitative change in gene-expression
state may be more likely to induce a qualitative change in cellular
phenotype. Moreover, qualitative differences in expression state
are readily comparable (e.g., it is straightforward to interpret the
observation that a given gene is active in one tissue or species but
inactive in another). Genes that are expressed in tissue- or cell-
restricted patterns are candidates for the unique characteristics
of those tissues and cells.

The potential of qualitative transcriptomic approaches is hin-
dered by the difficulty of inferring the expression state of genes.
There are three primary factors that complicate our ability to
identify expression states. First, transcription is an inherently
noisy process (16–18); there is compelling evidence that nonfunc-
tional genes are often expressed at low levels (19, 20). Therefore,
detecting transcripts of a given gene in a given tissue does not
necessarily indicate that it is active. Second, we may fail to detect
transcripts of a given gene owing to biological and technical
factors, including its expression level, its length, and the sequenc-
ing depth of the library. Therefore, detecting zero transcripts
of a given gene in a given tissue does not necessarily indicate
that it is inactive. Third, even when we detect transcripts of a
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given gene, its measured expression level is likely to vary among
libraries owing to both biological factors (e.g., population-level
variation) and technical factors (i.e., the relative abundance of a
given transcript in a given library depends on the total transcript
number of that library). Therefore, the rank order in expres-
sion level of two genes in one library may differ from their rank
order in a second library, which complicates methods that infer
the expression state of genes based on fixed expression-level
thresholds (17, 21).

Here, we present a hierarchical Bayesian model that describes
the biological and technical processes that generate tran-
scriptomic data that—by explicitly accommodating the factors
described above—allow us to infer the expression state of each
gene from replicate RNA-seq libraries. We present analyses of
simulated datasets that validate the implementation and charac-
terize the statistical behavior of our hierarchical Bayesian model.
We also apply our method to several empirical datasets and
demonstrate that the expression states inferred using our method
are consistent with expectations based on independent infor-
mation, such as epigenetic marks and developmental genetic
studies. Finally, we demonstrate our method with an empiri-
cal analysis of primate-brain transcriptomes that identifies the
set of genes with unique expression states in regions of the
human brain.

Inferring Gene-Expression State from Transcriptomes
Here, we develop a hierarchical Bayesian mixture model that
describes the biological and technical processes that give rise
to transcriptomic datasets with the objective of inferring the
expression state of each gene. A given transcriptomic dataset is
composed of one or more replicate libraries, where each repli-
cate library consists of the relative number of transcripts for each
gene on the log scale (e.g., log transcripts per million; TPM). Our
model includes two levels: the upper level describes the distribu-
tion of the true (unobserved) expression level of each gene, and
the lower level describes the variation in the observed expres-
sion levels as a consequence of biological and technical factors.
To develop intuition for this model, we first describe how our
inference model can be used to simulate data. We then outline
the procedure for inferring the parameters of the mixture model
from empirical data and how to assess the fit of our model to
empirical datasets. We provide detailed descriptions of the sta-
tistical model, inference machinery, model comparison methods,
and implementation in SI Appendix, Figs. S1–S5.

A Generative Model. To introduce our model, it is helpful to imag-
ine using it to generate data. We begin in the upper level of the
hierarchical model, which reflects the true expression level of
genes in the transcriptome; this is a mixture distribution com-
posed of inactive (blue) and active (red) genes (Fig. 1A). For
each gene, we randomly draw the expression state from this
mixture distribution: specifically, a gene is inactive (active) with
probability proportional to the area under the blue (red) distri-
bution. If the selected expression state is inactive, it will either
have zero transcripts (with probability proportional to the blue
spike) or nonzero transcripts, in which case its expression level is
drawn from the inactive (blue) normal distribution. Conversely,
if the selected expression state is active, its expression level will
be drawn from the active (red) normal distribution.

Having simulated the true expression level for each gene,
we now simulate their observed expression levels (Fig. 1B).
For each gene, we first determine whether it is detected in
each transcriptomic library. The probability that a gene is
detected in a given library depends on its true expression
level, its length, and library-specific factors (e.g., sequencing
depth). For any library in which the gene is not detected, the
observed expression level will be zero (Fig. 1 B, Left). For all
libraries in which the gene is detected, we draw its observed
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Fig. 1. A hierarchical Bayesian mixture model for inferring the expression
state (active or inactive) of genes from replicate transcriptomic libraries.
We introduce our model by describing how it could be used to simulate
transcriptomic libraries. Panel A depicts the true expression state—inactive
(blue) or active (red)—and expression level of all genes in the transcrip-
tome. We simulate each gene by randomly sampling from this mixture
distribution. Our first four draws include two inactive genes—one with
zero expression (gene 1, in the “spike” at left) and one with nonzero
expression (gene 2)—and two active genes (3 and 4). Panel B depicts the
probability that a gene is not detected (Left) and—given detection—the
observed expression level of each gene across libraries (Right). For each sim-
ulated gene, we first determine whether it is detected in each library; if
a gene is not detected in a given library, it will have an observed expres-
sion level of zero (i.e., be assigned to the library-specific spikes at left).
If a gene is detected in a given library, its observed expression level will
be drawn from a normal distribution (the gene-specific distributions at
right) that describes its variation across all libraries in which it is detected.
These normal distributions have a mean equal to the true expression
level of each gene and a gene-specific variance. Panel C depicts the observed
expression level of all genes—with zero transcripts (Left) or nonzero tran-
scripts (Right)—in two replicate libraries. For example, gene 1 was not
detected in either library because its true expression is zero (panel A). The
observed expression levels of genes 2 to 4 were drawn from their corre-
sponding normal distributions (panel B), resulting in zero transcripts for
gene 2 in library b and nonzero transcripts for the remaining genes in
both libraries. To generate a complete library with n genes, we repeat
the above procedure n times. Like real datasets, transcriptomes simulated
under our model have bimodal expression levels, albeit the active and inac-
tive distributions are obscured by library-specific factors (e.g., sequencing
depth) and gene-specific factors (e.g., gene length, true expression level,
and gene-specific variance). When used as a generative model, we assume
the parameter values are known and the data are unknown; conversely,
when used as an inference model, we assume the data are known (observed)
and the parameter values are unknown (inferred).

expression level from a normal distribution, with a mean
equal to its true expression level and a gene-specific variance
(Fig. 1 B, Right).

Like empirical datasets, transcriptomic libraries simulated
under our model have a characteristic bimodal distribution,
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with a dominant right mode and a left shoulder (Fig. 1C). We
simulate a set of transcriptomic libraries by repeatedly draw-
ing from the gene-specific distributions described above. Bio-
logical and technical sources of variation (in the lower level
of our hierarchical model) largely obscure the distinct inac-
tive and active distributions of true expression levels (in the
upper level of our hierarchical model). Note that the num-
ber of genes with zero transcripts may differ among libraries
owing to differences in their sequencing depth. Additionally,
the rank order of the expression level of genes may vary
among libraries owing to variation in the observed expression
level of each gene; e.g., an inactive gene may have a higher
observed expression level than an active gene in a given libraries
(Fig. 1C, arrows).

Model Parameters and Inference. Our goal is to infer the expres-
sion state of each gene from replicate (observed) transcriptomic
libraries using our hierarchical Bayesian mixture model. When
used as a generative model (as above), we assume that the
parameter values are known and the data are unknown. To per-
form inference under our model, we treat the data as known
(observed) and treat the parameter values as unknown. Here,
we describe the parameters of the lower and upper levels of the
hierarchical model and adopt a Bayesian approach to estimate
those parameters from observed transcriptomic data.

Our hierarchical Bayesian model describes the processes that
give rise to our observed dataset, which we denote X, that is
composed of two or more replicate transcriptomic libraries. The
lower level of our model describes the observed expression levels
for each gene across all libraries. Specifically, we model the vari-
ation in observed expression levels for each gene across libraries
with a gene-specific variance parameter. We assume that the
variance parameter is inversely related to the (log) expression
level, where genes of similar expression levels have similar lev-
els of variation across replicate libraries. Additionally, the lower
level includes library-specific parameters that impact the proba-
bility that a gene is detected in each library. We represent all of
the parameters in the lower level of our model with the container
parameter θ1.

The upper level of our hierarchical Bayesian model describes
the distribution of true (unobserved) expression levels, which
we denote Y. We assume that the true expression levels of
genes can be divided into two components: those genes that
are actively expressed and those that are not actively expressed.
The assignment of each gene to these (in-)active expression-
state components is described by parameter z a

g , where z a
g =1

indicates that the gene is assigned to the active component and
z a
g =0 indicates that it is assigned to the inactive component. We

refer to the assignments of all genes to the (in-)active expres-
sion states as za . We further assume that inactive genes can
be subdivided into two subcomponents: one with zero expres-
sion and another with nonzero expression. Similarly, active genes
may be subdivided into one or more subcomponents with dis-
tinctly different expression levels (e.g., housekeeping genes may
collectively have higher true expression levels relative to other
genes). A given model assumes a specific number of active
subcomponents (e.g., the model in Fig. 1A has a single active
subcomponent); a model with two active subcomponents would
have two red distributions. We can specify a set of distinct mod-
els with different numbers of active subcomponents and compare
their fit to a given dataset (see below). We represent all of
the parameters in the upper level of our model—describing
true active and inactive distributions—with the container
parameter θ2.

We infer the joint posterior probability distribution of the
hierarchical model parameters—including the set of parame-
ters describing the expression state of all genes, za—given our
observed transcriptomic data, X, by applying Bayes’ theorem:

posterior distribution︷ ︸︸ ︷
P(za , θ1, θ2,Y |X)=

lower level︷ ︸︸ ︷
P(X |Y, θ1)P(θ1)

upper level︷ ︸︸ ︷
P(Y | za , θ2)P(za , θ2)
P(X)︸ ︷︷ ︸

marginal likelihood

,

where the first term in the numerator is the joint probability of
the lower level of the hierarchical model given the local model
parameters, θ1; the second term is the joint probability of the
upper level of the hierarchical model given the local model
parameters, θ2; and the denominator is the average probability
of the data under the model (the marginal likelihood).

The posterior probability distribution, P(za , θ1, θ2,Y |X), can-
not be calculated analytically because the marginal likelihood,
P(X), is impossible to evaluate. Accordingly, we use a numerical
algorithm—Markov chain Monte Carlo (MCMC) (22–25)—to
approximate the posterior probability distribution. The MCMC
algorithm samples parameter values in proportion to their pos-
terior probability. From these MCMC samples, we compute the
posterior probability that a given gene is active as the frac-
tion of MCMC samples where z a

g =1. We validated our MCMC
implementation by running it under the prior and by measuring
coverage probabilities using simulated data.

Model Checking. The Bayesian approach for assessing model
adequacy is called posterior-predictive assessment (26). This
approach is based on the following premise: if our inference
model provides an adequate description of the process that gave
rise to our observed data, then we should be able to use that
model to simulate datasets that resemble our original data. The
resemblance between the observed and simulated datasets is
quantified using a summary statistic. We use three summary
statistics: 1) the upper-level Wasserstein statistic (which mea-
sures the discrepancy between the expected and realized true
expression levels), 2) the lower-level Wasserstein statistic (which
measures the discrepancy between the expected and realized
observed expression levels), and 3) the Rumsfeld statistic (which
measures the discrepancy between the observed and expected
number of undetected genes).

Simulation Study
We explored the ability of our hierarchical Bayesian mixture
model to correctly infer the expression state (active or inac-
tive) of genes via simulation. We first characterize the power
to correctly identify the expression state of genes as a func-
tion of 1) the degree of overlap between the true inactive and
active distributions of expression levels and 2) the number of
replicate transcriptomic libraries used to estimate the model
parameters. We then characterize the robustness of expression-
state estimates when the number of active subcomponents in
the model is misspecified. We provide detailed descriptions of
the simulation analyses and results in SI Appendix, sections 2.1
and 2.2.

Replicate Libraries Improve Our Ability to Correctly Infer Expression
States. We expect that our ability to correctly infer expression
states will depend on the disparity between the true distributions
of active and inactive expression levels and the number of repli-
cate libraries. Specifically, we expect the power to increase as we
1) decrease the degree of overlap between the true (in-)active
distributions and 2) increase the number of replicate libraries
used to estimate the model parameters.

We simulated data with low, moderate, and high levels of
overlap between the true active and inactive distributions. For
each condition, we simulated datasets comprising two, four, and
six replicate libraries. For each unique combination of overlap
and library number, we simulated 100 datasets. We measured
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power by evaluating the posterior probability of the true expres-
sion state, averaged across all of the genes in the transcriptome.
Our results reveal that our method generally has good power (on
average, we inferred the correct expression state for≈ 90% of the
simulated datasets), which increases with the number of repli-
cate libraries and the disparity between true active and inactive
distributions (Fig. 2, Left).

Estimates of Expression State Are Robust to Model Misspecification.
We expect that our ability to correctly infer expression states of
genes will be adversely affected when the number of assumed
active subcomponents in the hierarchical mixture model dif-
fers from the true number of active subcomponents (i.e., when
the model is misspecified). The model may include either too
many active subcomponents (overspecified) or too few active
subcomponents (underspecified).

We simulated datasets with one or two active subcompo-
nents. In the latter scenario, we varied the degree of overlap
(low, moderate, and high) between the active subcomponents.
For each scenario, we simulated 100 datasets, each with four
replicate libraries. For each simulated dataset, we inferred
expression states under a model with one or two active sub-
components. When the model was overspecified (i.e., with one
true active subcomponent and two assumed active subcompo-
nents), the expression-state estimates were virtually identical to
those inferred under the correctly specified model. When the
model was underspecified (i.e., with two true active subcompo-
nents and one assumed active subcomponent), the accuracy of
expression-state estimates decreased as the disparity between the
two true active subcomponents increased. These results indicate
that expression-state estimates are robust to overspecification
and moderate underspecification but are sensitive to severe
underspecification (Fig. 2, Right).
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Fig. 2. Exploring the power and robustness of our hierarchical Bayesian
mixture model to correctly infer the expression state of genes from sim-
ulated data. (Left) We explored the power of our method by simulating
datasets with two, four, and six replicate libraries under varying degrees of
overlap (low, moderate, and high) between the true active (red) and inactive
(blue) distributions. The power to infer the true expression state is gener-
ally high and increases with the number of replicate libraries and/or the
degree of separation between the true (in-)active distributions. (Right) We
explored the robustness of our method to model misspecification by simu-
lating datasets with one or two active (red) subcomponents. For simulated
datasets with two active subcomponents, we varied their degree of over-
lap (low, moderate, and high). We analyzed each simulated dataset under
two models: a model with one active subcomponent and a model with two
active subcomponents. The power of the method to correctly infer expres-
sion states is robust to model overspecification: estimates from datasets with
one active subcomponent are virtually identical under the correct and over-
specified models (leftmost pair of box plots). Similarly, the power of the
method is robust to moderate model underspecification: estimates from
datasets with two active subcomponents are virtually identical under the
correct and underspecified models (two middle pairs of box plots), except
when the degree of disparity between the two active subcomponents is
extreme (rightmost pair of box plots).

Empirical Benchmarks
We augment our simulation study—where we assessed the abil-
ity of our method to recover true/known parameter values—with
analyses of two empirical datasets where the expression states
are “known” from external evidence. Specifically, we character-
ize the power to correctly identify the expression state of genes
in human-lung transcriptomes (where expression states are pre-
dicted by epigenetic marks) and Drosophila-testis transcriptomes
(where expression states are known from developmental genetic
studies). These special cases—where expression states have been
determined by independent means—provide a rare opportu-
nity to empirically benchmark the performance of our method.
We provide detailed descriptions of the empirical analyses and
results in SI Appendix, section 2.3.

Human-Lung Transcriptomes. Our first empirical benchmark is a
human-lung dataset comprising 427 libraries with 19,154 protein-
coding genes sourced from the Genotype-Tissue Expression
(GTEx) RNA-seq database (27, 28). We inferred the expres-
sion state of each gene using the extensive epigenomic dataset
for human-lung tissues from the Roadmap Epigenomics Con-
sortium (27, 29, 30); this dataset includes 15 epigenetic marks
that are strongly associated with expression state. Using this
epigenetic evidence, we were able to confidently classify the
expression state of 11,968 genes (SI Appendix has details); we
identified 7,261 active and 4,707 inactive genes (Fig. 3, Left).
These expression-state assignments (treated as known) provide
an empirical benchmark to assess the power of our method.

Next, we used our hierarchical Bayesian mixture model to infer
the expression state of all 19,154 protein-coding genes. We ana-
lyzed data subsets consisting of 2, 4, 8, and 16 randomly selected
replicate libraries. For each number of libraries, we sampled 10
independent datasets (e.g., 10 sets of two libraries, 10 sets of four
libraries, etc.). We measured power by evaluating the posterior
probability of the true expression state for each gene, averaged
across all of the genes in the transcriptome. The results of these
empirical analyses confirm the findings of our simulation study;
the power is generally high (> 90% in all cases), and the method
performs well with four libraries (Fig. 3, Right).

Drosophila -Testis Transcriptomes. Our second empirical bench-
mark is a Drosophila-testis transcriptomic dataset (with four
libraries) that we generated for this study. In this experiment, we
assessed the power of our method to correctly identify expres-
sion states in a challenging empirical setting (i.e., where genes
are known to be active in a small number of cells within a
tissue, with correspondingly low tissue-wide expression levels).
Germline stem cells and several types of somatic cells collectively
comprise the stem-cell niche at the tip of the testis (restricted to
20 to 30 cells per testis); we used developmental-genetic evidence
to identify 39 active genes in the stem-cell niche (SI Appendix,
Table S4 shows a list of studies). Conversely, we identified 119
genes that are known to encode odorant and gustatory receptors
that are unlikely to be active in the testis; we therefore classify
these genes as inactive.

We used our method to infer the expression state of all genes
in the Drosophila-testis dataset. We measured power by evalu-
ating the posterior probability of the true expression state for
each gene, averaged across all of the genes in the transcrip-
tome. As previously, the power of our method is generally high,
even for genes that are actively expressed in a tiny fraction of
cells in the tissue (SI Appendix, Fig. S11). Among genes that are
known to be actively expressed in the stem-cell niche, the median
inferred posterior probability of being in the active expression
state was 0.96, with 37 of the 39 genes inferred to be active
(P [active]> 0.5). Among olfactory- and gustatory-receptor
genes, which we assume are inactive in the testis, the median
inferred posterior probability of being in the active expression

19342 | www.pnas.org/cgi/doi/10.1073/pnas.1919748117 Thompson et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919748117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919748117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919748117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919748117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919748117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1919748117


EV
O

LU
TI

O
N

−5 0 5 10

1.0

0.5

0.0

observed expression level (log TPM) number of replicate libraries
2 4 8 16

91
92

po
w

er
90

−5 0 5

known expression states
inactive
active
unclassified

observed expression level (log TPM)

inferred expression states P(active)

Fig. 3. Exploring the power of our hierarchical Bayesian mixture model to accurately infer known expression states of genes in the human-lung transcrip-
tome. (Left) Average observed expression levels of genes in the human-lung transcriptome; active (red) and inactive (blue) genes are known from epigenetic
marks, providing an empirical benchmark to assess the performance of our method (genes that could not be classified using epigenetic marks are shown in
gray; here, genes with log 0 TPM are represented by the gray and blue bars on the left). Note that the expression levels of active (red) and inactive (blue)
genes fall into two distinct but overlapping distributions. (Center) We used our model to infer the expression state of all genes from datasets consisting of
2, 4, 8, and 16 randomly selected libraries: we depict estimates for three example genes, where active (red) or inactive (blue) expression states were inferred
from a dataset with 4 randomly selected replicate libraries (gray distributions; here, genes with log 0 TPM are not shown for clarity). (Right) We compared
our inferred expression states with the known expression states; the power of our method to correctly infer the known expression states is generally high.
The use of multiple replicate libraries improves power, and this benefit is realized with only a modest number (four) of replicate libraries. Box plots represent
variation in estimates of power across the 10 sets of randomly selected datasets for each number of libraries.

state was 0.005, with 111 of the 119 genes inferred to be inactive
(P [active]< 0.5).

Theoretical Power Analysis. Our analyses of simulated and
empirical-benchmark datasets demonstrate that our method
generally has high power to infer true/known expression states.
Here, we attempt to evaluate the absolute power of our method.
To this end, we first establish an upper bound on the power
to infer expression states (under a method that requires known
expression states) and then compare the power of our method
with this reference.

Specifically, we imagine a threshold-based method (i.e., where
a gene is inferred to be active if its relative expression level
exceeds a fixed threshold value). Unlike actual threshold-based
methods (28, 31, 32), this “omniscient” threshold-based method
knows the true expression state of each gene. Because this
method is aware of the true expression states, it can choose the
perfect threshold value that simultaneously maximizes the num-
ber of true active genes it infers to be active (the true-positive
rate) and minimizes the number of true inactive genes it infers to
be active (the false-positive rate).

We first characterize the power of the omniscient thresh-
old method by applying it to the empirical-benchmark datasets
(where the expression state of each gene is known). Specifically,
we characterize its power by plotting receiver operating char-
acteristic (ROC) curves: for each possible threshold value, we
compute the true- and false-positive rates and plot the true-
positive rate as a function of the false-positive rate (Fig. 4, orange
curves). Note that a method with perfect power would exhibit an
L-shaped ROC curve as it would simultaneously achieve a 100%
true-positive rate and a 0% false-positive rate. Conveniently,
we can compare the power of two methods by comparing their
ROC curves.

Next, we plot ROC curves for our method based on the
same empirical-benchmark datasets. Our method infers the pos-
terior probability that each gene is (in-)active. In principle,
we could adopt any posterior probability threshold to classify
the expression state of each gene. Accordingly, we plot ROC

curves by computing the true- and false-positive rates for all
posterior probability thresholds between zero and one (Fig. 4,
blue curves).

Remarkably, the power of our method is virtually identical
to that of the omniscient threshold-based method for both the
human-lung and the Drosophila-testis datasets (Fig. 4). These
results demonstrate that our method—under the typical infer-
ence scenario, where the true expression states of genes are

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

human  lung

false-positive rate

tru
e-

po
si

tiv
e 

r a
te

0.05
0.5
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Drosophila testis

false-positive rate

tru
e-

po
si

tiv
e 

ra
te

Fig. 4. The power of our method to infer expression states approaches the
practical limit for this inference problem. We used our method to infer
expression states of all genes in the two empirical-benchmark datasets,
human-lung (Left) and Drosophila-testis (Right) transcriptomes. A gene is
assigned to the active expression state if its posterior probability of being
active is greater than P. For all possible values of P, we plot the true-positive
rate (the fraction of active genes correctly assigned to the active expres-
sion state) against the false-positive rate (the fraction of inactive genes
incorrectly assigned to the active expression state; blue curves). The result-
ing ROC curves characterize the discriminatory power of a method (i.e., its
ability to distinguish between active and inactive genes). The power of our
method (which infers the unknown expression states) is equivalent to that
of an omniscient threshold-based method that requires knowledge of the
true expression states (orange curves; one for each library). Symbols indicate
conventional P thresholds.
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unknown—is able to correctly infer expression states as well as
a method that requires a priori knowledge of the true expression
states.

Empirical Application
Our analyses of simulated and empirical-benchmark datasets
demonstrate the ability of our hierarchical Bayesian mixture
model to reliably infer the expression state of genes in transcrip-
tomic libraries. Here, we provide an empirical demonstration
of our method with analyses of primate-brain transcriptomes.
Because the true expression state of these genes is not known
from external evidence, this represents a more typical inference
scenario.

We used our method to analyze a published primate-brain
transcriptomic dataset (33). We inferred the expression state
of all protein-coding genes in six brain regions—amygdala,
ventral frontal cortex, dorsal frontal cortex, superior temporal
cortex, striatum, and the area 1 visual cortex—sampled from
macaques, chimpanzees, and humans. We then identified the
subset of approximately 12,000 1:1:1 orthologous genes in the
three species. From these, we identified the subset of genes with
a unique expression state in humans (i.e., where a given gene
is inferred to be [in-]active in humans but not chimpanzees and
macaques). Across the six brain regions, we identified 9 to 20
genes that were uniquely active in humans and 16 to 23 genes
that were uniquely inactive in humans, with the greatest number
of unique expression states located in the striatum (Fig. 5A).

Genes that are uniquely active in the human brain represent
factors that may be involved in human cognitive evolution. For
example, we inferred that the Slc17a6 gene is actively expressed
in the human striatum but is inactive in the striatum of macaques
and chimpanzees (Fig. 5B). This gene is also believed to be
inactive in the mouse striatum (34), suggesting that the acti-
vation of Slc17a6 occurred in the human lineage. This gene
encodes the protein VGLUT2, which is involved in loading
glutamate—a major excitatory neurotransmitter—into synaptic
vesicles (34–36). These results raise the intriguing possibility that
the evolutionary gain of this glutamate transporter in the human
striatum may underly changes in the function of this brain region,
either through the gain of a cell type or a change in the activity
of an ancestral cell type.

Discussion
Inferring the expression state (active or inactive) of a given gene
from transcriptomic datasets is surprisingly difficult, owing to
the complexity of the underlying biological processes that give
rise to transcriptomes, as well as the vagaries of the techniques
that we use to generate RNA-seq libraries. Inferring the expres-
sion state of a gene based on its presence/absence in a library is
unreliable: nonfunctional genes are often expressed at low levels,
while functional genes may go undetected in a given library for
technical reasons. Moreover, variation in the relative expression
level of a given gene among libraries will cause its rank order to
vary among libraries. As a result, inferring the expression state
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Fig. 5. Identifying genes with unique expression states in human-brain transcriptomes. We used our method to infer the expression state of 12,000 1:1:1
orthologous genes in the transcriptomes of six brain regions of macaques, chimpanzees, and humans. We then identified the subset of these genes with
unique expression states in humans. (A) Across the six brain regions, we identified between 9 and 20 genes that were uniquely active in humans (red
histogram) and between 16 and 23 genes that were uniquely inactive in humans (blue histogram). (B) Here, we depict the expression state of the Slc17a6
gene in two brain regions, amygdala (AMY) and striatum (STR), for the three species inferred from replicate transcriptomic libraries (gray distributions; log
0 TPM not shown); active and inactive expression states are indicated with red and blue dots, respectively. In the AMY, Slc17a6 is active in all three species; in
the STR, Slc17a6 is uniquely active in humans. DFC, dorsal frontal cortex; STC, superior temporal cortex; V1C, area 1 visual cortex; VFC, ventral frontal cortex.
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of a given gene based on its relative expression level in single
libraries is unreliable: transcriptional noise may cause a nonfunc-
tional gene to have a higher observed expression level than some
functional genes that are expressed at low levels. Such consider-
ations complicate our ability to infer expression states, especially
from single libraries.

In this paper, we have developed a hierarchical mixture model
that captures both important biological features—including the
characteristic bimodal distribution of expression levels reflect-
ing active expression of functional genes and background
expression of nonfunctional genes (16–18, 20, 37–46)—and
relevant technical factors—including differences in the detection
probability of individual transcripts among replicate libraries
owing to differences in their sequencing depth—that give rise
to observed replicate transcriptomic libraries. We implemented
our model in a Bayesian inference framework, which confers
numerous benefits, including the ability to gauge uncertainty in
expression-state estimates, the ability to choose among alter-
native models, and the ability to assess the fit of a given
model to an empirical dataset. We have implemented all
of the methods described in this paper in the R package
zigzag.

Encouragingly, our analyses of simulated and empirical-
benchmark datasets demonstrate that our method has gener-
ally high power to recover true/known expression states, and
this power increases with the number of replicate libraries. In
fact, the power of our method approaches the upper bound
for this inference problem (Fig. 4). Additionally, our simula-
tions demonstrate that our method is relatively robust to model
misspecification (i.e., the assumed number of active subcompo-
nents). Interestingly, our use of posterior-predictive checking
indicates that our model adequately describes the processes that
gave rise to all of the empirical datasets evaluated in our study
(SI Appendix, Figs. S6, S9, and S12). These findings provide an
empirical validation of the biological and technical features that
we chose to incorporate in our model.

Our method provides a powerful means to infer expression
states; this ability will play a direct role in answering many
questions about the processes that give rise to transcriptomes.
For example, our analyses of human-lung transcriptomes reveal
that, although ≈ 98% of protein-coding genes are transcribed at
detectable levels, only 67% of those genes are actively expressed
in this tissue. Our method can also play a less direct—but key—
role in transcriptomic/developmental-genetic pipelines, where
identifying the expression states is integral to a given inference
problem. For example, many developmental studies focus on
actively expressed genes; our method provides a more princi-
pled alternative to conventional prefiltering steps in quantitative
RNA-seq analyses. Additionally, because expression states are
inherently comparable, they can be used to address questions
that involve comparisons between tissues within species. For

example, we can investigate how the expression state of a gene
(or set of genes) varies among a set of tissues at a given point
in development. Expression states inferred using our method
can also be compared across species. For example, our analysis
of the primate-brain transcriptome allowed us to identify genes
with unique expression states in humans, providing a narrow list
of candidates that may be associated with brain phenotypes in
humans.

The ability to identify the expression state of genes across
species also lays the foundation for formal phylotranscriptomic
models that describe how changes in expression state (activa-
tion and deactivation) have shaped transcriptomic diversity. Such
models could be used to explore many fundamental questions,
including: 1) For a given gene, what are the lineages in which
it has been (de-)activated?; 2) For a given lineage, which genes
have been (de-)activated?; and 3) For the entire transcriptome,
what are the relative rates of regulatory changes (activation and
deactivation) and structural changes (e.g., de novo origination,
duplication, and loss of genes)?

For many purposes, qualitative comparisons of gene expres-
sion states between tissues and species will provide a useful com-
plement to quantitative measures of expression level. Although
it remains an open question whether changes in expression
state play a particularly prominent role in phenotypic evolu-
tion, we emphasize that it is impossible to address this question
without an objective method for identifying expression states.
We are optimistic that—by providing a reliable and powerful
means to infer the expression state of genes—our method will
greatly enhance our ability to understand transcriptome evolu-
tion and thereby, illuminate the relationship between genotype
and phenotype.

Materials and Methods
We provide details of the methods and analyses in SI Appendix. A
detailed description of the model, implementation, and validation can
be found in SI Appendix, sections S1.1–S1.4. In SI Appendix, section S1.5,
we describe the methods for posterior-predictive simulation. SI Appendix,
section S2.1 contains a detailed description of the general analysis pro-
tocols and data used to benchmark zigzag. SI Appendix, sections S2.2
and S2.3 describe the analysis methods and results for the simulation and
empirical studies. Data, code, and associated protocols are available on
Dryad (https://doi.org/10.25338/B8XW4B) (47). Open-source code for zigzag
is freely available on GitHub (https://github.com/ammonthompson/zigzag).
RNA-seq reads for Drosophila testis are available in the National Cen-
ter for Biotechnology Information’s Short Read Archive (accession no.
PRJNA613134) (48).
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