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Abstract

Noise is the signal: uncovering the kinetic fingerprints of gene regulatory logic

by

Nicholas C. Lammers

Doctor of Philosophy in Biophysics

University of California, Berkeley

Assistant Professor Hernán G. Garcia, Chair

Predicting how interactions between transcription factors and regulatory DNA sequence
dictate rates of transcription and, ultimately, drive developmental outcomes remains an open
challenge in quantitative biology. Indeed, despite decades of biochemical and genetic studies
that have established a reasonably complete “parts list” of the molecular components driving
eukaryotic transcription, the field nonetheless lacks a satisfactory understanding of how
interactions between these molecular components unfold across space and time to give rise to
gene regulatory logic. Recently, technical advancements have begun to provide glimpses into
this molecular black box, dramatically improving our ability to trace how molecular pieces
move, interact, and assemble. However, if we are to fully realize the immense potential of
these exciting new technologies, then our ideas need to catch up with our experiments.

In this thesis, we argue that quantitative models have a central role to play in synthesizing
the ever-increasing array of cutting-edge experimental measurements into a coherent theory
for the molecular basis of transcriptional control. To this end, we seek to develop concep-
tual, theoretical and computational frameworks for dissecting how molecular reactions at
individual gene loci give rise to the formation of dynamic patterns of gene expression and
facilitate cellular decision-making. Chapters 2 and 3 describe previously published works
that combine live imaging, statistical inference, and simple quantitative models to probe
how transcription factor proteins regulate the dynamics of transcriptional bursting at target
gene loci to give rise to stripes of gene expression early on in fruit fly development. Chapter
4 describes a series of analyses following-up on various results from these works. We also use
this chapter to break new ground, however, examining how 2 spot experiments, which track
the output of two identical gene loci in each cell, can be used to estimate rates of information
transmission at individual gene loci from live imaging data.

In Chapters 5 and 6, we connect phenomenological models of transcriptional bursting em-
ployed in the preceding sections to truly molecular models that seek to understand how key
transcriptional behaviors emerge from molecular interactions at the gene locus. Chapter 5
examines a puzzling gap revealed by recent live imaging studies between the rapid timescale
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(seconds) of transcription factor binding and the slow timescale (minutes to hours) of tran-
scriptional bursts, and proposes two simple theoretical frameworks for bridging this gap.
Chapter 6 investigates how the presence of energy-dissipating processes within the eukary-
otic transcriptional cycle can open the door to new kinds of gene regulatory logic that increase
the rate at which gene loci transmit information. Finally, Chapter 7 describes ongoing work
to develop a novel Bayesian framework, burstMCMC, that uses efficient inference techniques
to examine how transcription factor proteins regulate transcriptional burst dynamics.
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Chapter 1

Introduction

Ever since the discovery of the double helix, Biology has been recognized as an information
science. And in few places is this connection between information and biological function
more concrete than in the study of gene regulation, where gene loci function, quite liter-
ally, as communication channels, transducing input concentrations of transcription factor
proteins into output levels of gene expression that then serve some further function within
the cell. Over the past two decades, researchers have begun to capitalize on this connection,
using concepts from information theory and statistical physics to interrogate both the the-
oretical limits of gene regulation [293, 294, 249, 35] and to search for hallmarks of optimal
performance in real transcriptional networks experimentally [74, 237].

Yet, despite its utility, information theory’s greatest strength—a complete agnosticism
to the physical nature of a system’s signaling components—holds it at a remove from the
molecular mechanisms by which gene regulation is ultimately realized. The same formulas
and bounds apply, regardless of whether the signal is being transmitted via protein patterns
or fiber optics. As a result, describing biological systems in the language of channel capac-
ities and bits can obscure as much as it reveals, masking the messy realities—the tangled
hierarchies of molecular interactions between genes, the profound complexity of the stochas-
tic molecular “hardware” [227], the as yet ill-explored horizons of gene regulation out of
equilibrium [314]—that lie at the heart of most contemporary inquiries into the physical
basis of gene regulatory function [166, 179].

Indeed, despite decades of biochemical and genetic studies that have established a rea-
sonably complete “parts list” of the molecular components driving eukaryotic transcription
[161], the field nonetheless lacks a predictive understanding of how transcriptional control
emerges from molecular interactions at the gene locus. In recent years, significant technical
advancements have lead to dramatic improvements in our ability to trace how molecular
pieces assemble in space [227] and in time [166, 59, 179]. Yet even in the most sophisticated
in vivo experiments to date (see, e.g., [213]), significant overlap between fluorescent protein
emission spectra limits our ability to multiplex colors beyond 3. As a result, researchers are
left—in many cases, quite literally [164]—to divine insights from isolated points of light set
against a vast sea of hidden molecular machinations.

There is no single solution to this challenge, but over the course of this dissertation we
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argue that quantitative models can and must play a central role in synthesizing the ever-
accruing array of cutting-edge experimental measurements into a coherent theory for the
molecular basis of transcriptional control. Along the way, we seek to illustrate that—far from
being an irrelevant abstraction—information can serve as a guiding principle for navigating
the complexity of biological systems, serving both to identify “useful” regulatory mechanisms
from live imaging data and to place quantitative constraints on the performance of molecular
models of transcription at and away from equilibrium. In the chapters that follow, we lay out
a series of works that combine cutting-edge live imaging experiments, statistical physics, and
computational modelling in an effort to bridge the gap the messy realities of transcriptional
systems on the one hand, and (our as yet nascent) theoretical understanding on the other.

In the remainder of this introduction, we outline key themes running through these
chapters, and summarize key findings from each work. Chapters 2 and 3 describe previously
published works that combine live imaging, statistical inference, and simple quantitative
models to probe how transcription factor proteins regulate the dynamics of transcriptional
bursting at target gene loci to give rise to stripes of gene expression early on in fruit fly
development. Chapter 4 describes a series of follow-up results to these works, and lays
out a new vision for how so-called “2 spot” experiments, which track the output of two
identical gene loci in each cell, can be used to estimate rates of information transmission
from live imaging data. Chapter 5 surveys results from recent live imaging studies that point
to a puzzling gap between rapid transcription factor binding and the slow timescales of the
transcriptional bursts regulated by these binding events, and proposes two simple theoretical
frameworks for bridging this gap. Chapter 6 describes ongoing work that examines how
the presence of energy-dissipating processes within the eukaryotic transcriptional cycle can
open the door to new kinds of gene regulatory logic and increase the rate at which gene
loci transmit information. Finally, Chapter 7 describes ongoing work to develop a novel
statistical framework, burstMCMC, for inferring how transcription factor proteins regulate
transcriptional burst dynamics.

1.1 The many facets of transcriptional “noise”

From the eon-spanning march of natural selection to the hours-long sprint of Drosophila
melanogaster (D. mel) development, random variation—noise—is a defining feature of bio-
logical systems [218], serving at once as the engine of life’s possibilities and the arbiter of
life’s constraints. It is fitting, then (although, admittedly, somewhat serendipitous), that
much of this dissertation revolves about different aspects of transcriptional noise: noise as
a measure of regulatory potential, noise as a barrier to regulatory control, and—most of
all—noise as a microscope, a window into the molecular origins of gene regulatory logic.

We can gain intuition for these three aspects of transcriptional noise by considering
two spot experiments, which dissect transcriptional noise by comparing the transcriptional
output of two identical copies of a gene expressed within the same cell [1, 81] (Figure 1.1A).
Imagine we measure the total amount of mRNA, m, produced by some gene, g, expressed
in a population of cells early on in fruit fly development and find that the total variance
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of produced mRNA across all observed gene loci is equal to σ2
tot. Two spot experiments

allow us to decompose the σtot into two components: the intrinsic variability (σ2
int), which

is the variation between gene copies that are from the same cell (and, thus, exposed to the
same regulatory inputs), and the extrinsic variability (σ2

ext), which is defined as the cell-
to-cell variability in m due to cell-specific differences, for instance, in input transcription
factor concentrations (Figure 1.1B). The extrinsic variability captures the amount “useful”
variation that conveys information about differences in regulatory inputs across different cells
(Figure 1.1A), such that the expression 1 + σ2

ext/σ
2
int can be used to estimate the capacity,

in bits, for some gene g to convey biological information downstream cellular processes
(Figure 1.1C(i)).

Yet, in all transcriptional system, the stochastic nature of the molecular interactions
driving gene regulatory processes means that there will inevitably be some remainder, σ2

int,
that, depending on its size relative to the average rate of transcription, ⟨m⟩, will place
limitations on the system’s performance (Figure 1.1C(ii)). In Chapter 6, we investigate
how σ2

int interacts with other features of the transcriptional response to dictate limits on
how rapidly gene loci can transmit information both at and away from thermodynamic
equilibrium.

However, σ2
int is more than merely an impediment to regulatory control: the structure

of the intrinsic noise bears signatures—the kinetic fingerprints—that can be leveraged to
learn about the nature of the molecular processes from which it arises (Figure 1.1C(iii)).
One relatively simple way to do this is through analysis of the Fano factor, σ2

int/⟨m⟩, which
we utilize in Chapter 4. However the concept of using noise to infer molecular structure
is much broader than this, and features prominently (in various guises) in Chapters 2, 3,
5, and 7. Indeed, it was through the careful analysis of noise signatures that, even before
the emergence of in vivo RNA fluorescence labeling technologies such as the MS2/MCP [14]
and PP7/PCP systems [36], researchers were able to use single-cell distributions of nascent
RNA and cytoplasmic mRNA molecules obtained with fluorescence in situ hybridization
(smFISH) [88, 246] to predict that gene expression occurred in a discontinuous, “bursty”
fashion [245, 316].

1.2 Using phenomenological models to capture the

transcription factor control of transcriptional

bursting

The inferences initially made based off of noise in fixed tissue distributions of nuclear mRNA
counts were subsequently confirmed with new live imaging techniques [14, 36], which have
directly revealed stochastic transcriptional bursts—periods of activity interspersed with pe-
riods of transcriptional silence—in cells in culture and within animals (Figure 1.2A-C) [111,
50, 170, 27, 290, 225, 217]. The simplest model that can capture these dynamics is the
widely used two-state model of promoter switching (Figure 1.2D) , which posits that a gene
promoter can exist in one of two states: a transcriptionally active ON state and a quiescent
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Figure 1.1: Different faces of transcriptional noise. (A) Cartoon illustrating two spot
experiments, which measure the transcriptional output of two copies of the same gene in each
cell. (B) Scatter plot showing hypothetical relationship total mRNA produced between sister
spots within the same cell. (C) Panels illustrating the different facets of transcriptional noise
discussed in the text.

OFF state. The promoter stochastically switches between these states with rates kon and
koff , and loads new RNA polymerase II (RNAP) molecules at a rate r when in the ON state
[307, 256, 21, 222]. The average burst duration, amplitude and separation are given by
1/koff , r and 1/kon, respectively (Figure 1.2E).

It is important here to point out that this two state model is, without a doubt, “wrong”: a
model with three parameters cannot possibly capture the full complexity of the mechanisms
by which regulatory factors interact with the gene locus to give rise to bursty transcription
[55, 332, 221]. And yet, I would argue, this model is useful nonetheless. Why? Because it
provides a quantitative framework for decomposing the regulatory impact of different factors
into distinct kinetic parameter. And while each bursting parameter does not necessarily map
directly to a single molecular step in the transcriptional cycle, identifying which parameter(s)
are subject to regulation can help narrow the set of possible molecular mechanisms. For
instance, variation in r could indicate that transcription factors play an active role in the
recruitment of RNAP to the promoter, or in the release of RNAP from promoter-proximal
pausing [269].

Thus, by analyzing how transcription factor proteins alter the statistics of burst-like fluc-
tuations at gene loci, we can move toward a truly molecular and mechanistic understanding
of how transcriptional control emerges from its constituent molecular components. Yet, de-
spite the potential utility of the two state formalism, few quantitative methods existed at
the beginning of my graduate career that could reliably estimate burst parameters from MS2
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Figure 1.2: Bursting is ubiquitous in eukaryotic transcription. (A-C) Transcrip-
tional bursting in (A) an embryo of the fruit fly Drosophila melanogaster, (B) the nematode
Caenorhabditis elegans, and (C) human cells. (D) A two-state model of transcriptional
bursting by a promoter switching between ON and OFF states. (E) Mapping the bursting
parameters kon, koff , and r to burst duration, separation, and amplitude, respectively. (A,
adapted from [165]; B, adapted from [177]; C, adapted from [251]).

and PP7 data in order to uncover how they were regulated by transcription factor proteins.
To address this need, we developed a novel statistical method that uses compound-state
Hidden-Markov models (cpHMM) to infer burst parameters from time traces of transcrip-
tional activity [165]. In Chapters 2 and 3, as described below, we apply this tool to probe
the kinetic fingerprints of transcription factor control of gene expression in early fruit fly
development.

1.3 Different transcription factors employ the same

kinetic mechanism to regulate transcriptional

burst dynamics

Chapter 2 describes work—published in PNAS [165]—that combines cpHMM with theoret-
ical modeling and live imaging to study the dynamic formation of stripe 2 of the widely
studied even-skipped (eve) gene in the developing fruit fly embryo [278, 6]. We applied our
cpHMM method to fit raw MS2 traces of eve stripe 2 activity (Figure 1.3A) and obtain the
most likely sequence of underlying promoter states (Figure 1.3B) for all transcriptionally
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engaged eve stripe 2 loci over time across the developing stripe (Figure 1.3C).
Previous works have established that the stripe is formed through the combined action of

two transcriptional activators and two repressors [278] (though additional factors may play a
role as well [302, 303]). Yet, despite this apparent regulatory complexity, our analysis reveals
an emergent simplicity in the kinetics of transcription factor control. All four factors act upon
the same kinetic parameter: the frequency of transcriptional bursts (Figure 1.3D and E).
Moreover, while previous works largely focused on the regulation of transcriptional bursting
across space, we find that the differential control of the amount of time for which eve stripe
2 loci engage in transcription plays a decisive role in driving stripe formation. Specifically,
we find that rising repressor concentrations on the anterior and posterior flanks of the stripe
induce gene loci to undergo an early transition into a long-lived period of transcriptional
quiescence (Figure 1.3F), thereby concentrating mRNA production in the stripe center.

Taken together, this work elucidates how key regulatory factors interact with the eve
stripe 2 enhancer over time to sculpt a sharp stripe of gene expression. It also raises several
key questions that animate much of the remainder of this dissertation. First: we show that
diverse regulatory factors interact with their target gene locus via the same kinetic step in the
burst cycle (kon), but what about different regulatory sequences? Does enhancer sequence,
more so than regulatory factor identity, dictate how burst dynamics are manipulated to
shape patterns of gene expression. We investigate this question next in Chapter 3. Second:
the onset of transcriptional silencing described above appears irreversible in our live imaging
data, but is it really? It is possible that quiescence is, in fact, reversible but simply not
observed because repressor levels tend to rise monotonically over time along the stripe flanks.
We address this question, in part, in Chapter 4. Lastly: what are the molecular mechanisms
by which transcription factor binding ultimately leads to transcriptional bursting? We turn
toward this mystery in Chapters 5 and 6.

1.4 A stripe is a stripe is a stripe: different enhancers

sculpt stripes via identical kinetic mechanisms

Chapter 3 describes follow-up work—published in the journal eLife [13]—done in collab-
oration with the Eisen Lab at the University of California, Berkeley, in which we employ
the same analytical methods to dissect the regulatory logic of the full even-skipped pattern,
which consists of seven stripes of expression (Figure 1.4A). The eve stripes are produced via
the largely independent activity of five discrete enhancer that drive individual stripes (the
stripes 1,2, and 5 enhancers) or pairs of stripes (the stripe 3/7 and stripe 4/6 enhancers) [112,
125, 279] (Figure 1.4B). This modularity makes eve-skipped an ideal system for examining
the connection between enhancer sequence and burst dynamics.

By conducting cpHMM inference on individual stripes, we found that, despite being cre-
ated by five different regulatory enhancers, all seven stripes were sculpted using the same ba-
sic regulatory logic: enhancers up-regulated burst frequency and (to a lesser extent) the burst
amplitude in the stripe centers and down-regulated them on the stripe flanks (Figure 1.4C-
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Figure 1.3: Multimodal transcriptional control of pattern formation.(A) Repre-
sentative experimental trace along with its best fit and (B) its most likely corresponding
promoter state trajectory. (C) Instantaneous visualization of promoter state in individual
cells throughout development through the false coloring of nuclei by promoter state (colors
as in B). (D) Our cpHMM reveals that the transition rate between the OFF and ON state
(equivalent to the burst frequency) is up-regulated in the stripe center, whereas koff remains
relatively constant. We also find r to be constant (data not shown; see Figure 2.5D). (E)
This indicates that that all four key regulatory inputs of even skipped stripe 2, Bicoid (Bcd),
Hunchback (Hb), Giant (Gt), and Krüppel (Kr) modulate burst dynamics via the same ki-
netic parameter: the burst frequency. We note that Bcd’s role was found to be minimal,
however (see Figure 2.7E-F). (F) Frame from a live imaging dataset, overlaid with patches
indicating the observed duration of transcriptional activity in each cell across the stripe pat-
tern. We find a clear spatial modulation in the duration of transcriptional engagement.
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E). This result indicated a surprising degree of commonality in how different transcription
factors and different enhancer sequences act to modulate gene expression. Consistent with
our earlier experiments with eve stripe 2 (Chapter 2), we also found that the wholesale si-
lencing of transcription in regions between stripes played a critical role in the emergence of
the even-skipped pattern. Analysis in this chapter also uncovered the important role played
by an additional regulatory “knob”: the initial, digital decision of whether or not to engage
in transcription at all. Our analysis revealed the presence of significant numbers of cells
between the eve stripes along the anterior-posterior (AP) axis that never turned on in the
first place, further amplifying the difference in mRNA levels between stripe and inter-stripe
regions. We probe the molecular nature of this regulatory strategy further in Chapter 4.

Beyond the specific conclusions described above, the live imaging data underpinning this
project serves as a beautiful illustration of the dynamism of developmental patterning. At one
level, eve loci spanning most of the AP axis dance through dynamic patterns of quiescence
and activity, darkness and light. Yet, even more strikingly, the eve stripes themselves split,
sharpen, move, change in profound ways over a brief window of developmental time. These
data thus serve as profound reminder of the fact that, in development, the spatial expression
of genes such as eve consists not in a single, static “pattern”, but rather in highly dynamic
trajectories through a stereotyped series of spatial patterns.

We are at the dawn of a new period in the study of transcription, as new experimental
techniques and advanced microscopy allow us to monitor transcriptional regulators, observe
their behavior at the single-molecule level, and track the transcriptional output of a gene
in living, developing animals. We have only barely begun to understand this new data and
what it can tell us about biology. While the focus in Chapters 2 and 3 was on a single gene
in a single species, we hope that these works will have a broader impact by beginning to
establish rigorous frameworks for quantifying, characterizing and visualizing the dynamics
of transcription at the single-cell level during development that will be required in the era
of live imaging of transcription in development.

1.5 2 spot experiments shed light on the molecular

basis of information transmission in eve-skipped

This chapter is intended both as a coda to the results put forward in the preceding two
chapters, and as a bridge to the works that follow, in which we move from focusing on the
control of bursting in and of itself towards thinking about its consequences for the molecular
mechanisms of gene regulation and, more broadly, about how molecular noise impacts the
capacity for gene circuits to transmit biologically useful information. Thought-provoking
work out of the Gregor Lab at Princeton has demonstrated that spatial patterns of the
regulatory inputs to even-skipped (the Gap Genes [141]) collectively encode approximately
4.1 bits of spatial information, on average [74]. More recently, a study from the same group
demonstrated that the molecular processes that interpret Gap Gene inputs and dictate the
spatial distribution of the eve stripes closely approximate predictions of an optimal statistical
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Figure 1.4: A unified strategy for sculpting the seven stripes of even-skipped.
(A) Still from live imaging movie showing all seven stripes of even skipped. (B) Schematic
depicting relative locations of the 5 stripe enhancers that regulate the eve stripes. Despite
being driven by five distinct regulatory elements, we find that the eve stripes all exhibit the
same burst parameter trends: (C) an up-regulation of kon in stripe centers, (D) constant
koff , and (E) and up-regulation of the burst amplitude in stripe centers. Thus, each of the
seven stripes is sculpted via the same set of kinetic mechanisms.
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decoder, which the authors interpret as a signature of optimality [238]. Yet these results
pertain to protein patterns in fixed tissue, and focus largely on the mature even-skipped
pattern. How much information can a single eve locus actually transmit per unit time? How
does this quantity change as a function of space and time? And what can this tell us about
the molecular mechanisms that dictate the course of developmental processes?

Motivated by these questions, it was my ambition early on in my graduate research career
to use multi-color live imaging experiments to track the regulatory inputs of (what else?)
eve-skipped simultaneously with its transcriptional output in order to quantify the rate of
information flow through individual transcriptional loci. Yet, technical hurdles made this
ambition difficult to realize in practice. The crux of the difficulty, as first observed in [74, 73],
lies in the fact that significant correlations between the cellular concentration of different gap
genes makes it impossible to accurately estimate information flows without observing all rel-
evant inputs simultaneously; a feat prohibited by the spectral overlap between fluorophores,
which limits the total number of channels to ∼ 3.

In Chapter 4, we argue that two spot experiments (Figure 1.1) provide a way around this
constraint. The key insight is that comparing the transcriptional output of two gene loci
from the same nucleus allows us to control for the set of regulatory inputs, no matter how
complex, even when they are not directly observed (indeed, even when we do not know what
the regulatory inputs are). Mathematically, this allows us to compare the prior uncertainty
in the transcriptional output, P (m), to the conditional uncertainty, given regulatory inputs,
P (m|c). We use this insight to assess the information content (regulatory potential) of
different molecular “knobs” discussed in Chapters 2 and 3 (e.g. the average transcription
rate, transcriptional silencing, and transcriptional engagement) and, more ambitiously, to
track the rate of information transmission along the even-skipped pattern as a function of
space and time. WE find that the timing of transcriptional silencing across the full eve
pattern is highly informative, encoding about 1 bit of information on average (Figure 1.5A).
We also find that the rate of information transmission by eve loci is highly variable, reaching
its a peak of about 1 bit per minute in the gaps between stripes relatively early on in the
process of pattern formation (20-35 minutes; see Figure 1.5B).

In addition, we show how the motion of the eve stripe pattern relative to underlying
nuclei can be used as a natural input-output experiment, leveraging this feature to uncover
evidence indicating that the repressor-induced silencing observed in Chapters 2 and 3 is, in
fact, rapidly reversible (Figure 1.5C). This is consistent with findings from a separate work
currently in preparation, undertaken in collaboration with Jiaxi Zhao, where we use optoge-
netic techniques to directly manipulate repressor concentrations, revealing rapid reversibility
of transcriptional silencing in gene loci driven by the even-skipped stripe 4+6 enhancer.
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Figure 1.5: Using two spot experiments to measure the information content of eve
expression. (A) Scatter plot comparing turn-off times between sister gene loci from the
same cell. Information was calculated using Equation 4.10 from Chapter 4. (B) Heatmap of
estimated rate of information transmission as a function of space and time. (C) Illustration
of reactivation trajectories. Heatmap shading indicates fraction of active loci. Each line
indicates AP position over time for an eve locus that was seen to undergo reactivation.
Green segments indicate frames where transcription was observed. Blue segments indicate
frames with no observed transcription. Note that reactivation events are clustered at the
anterior stripe boundaries. This is because the net posterior-to-anterior shift in the even-
skipped pattern is the primary driver of these events.

1.6 Using timescales as a lens to probe the molecular

basis of transcriptional bursting

Bursting and its regulation are intimately tied to the molecular mechanisms that underlie
transcriptional regulation as a whole. Yet, as discussed above, the models we and others have
used to model bursty transcription are largely phenomenological in nature: they make no
reference to the underlying molecular mechanisms that ultimately give rise to transcriptional
control. Chapter 5 describes work, previously published in Current Opinion in Biology
[167], where we argue that to make progress toward predicting transcriptional outcomes
from underlying molecular processes, it is fruitful to start with the narrower question of how
burst dynamics emerge from the kinetics of molecular transactions at the gene locus.

We review recent live imaging experiments that have revealed a significant temporal
disconnect between transcription factor binding events, which generally last for seconds
(see, e.g. Figure 1.6A), and the transcriptional bursts that these events control, which may
last from a few minutes to multiple hours (Figure 1.6B). To explain this gap, we present
two classes of molecular models for how slow bursting emerges from rapid transcription
factor binding. The first posits the presence of one or more additional slow, rate-limiting
molecular reactions (e.g. PIC assembly, mediator association, nucleosome removal) that



CHAPTER 1. INTRODUCTION 12

Figure 1.6: A temporal disconnect between transcription factor binding and burst-
ing. (A) Data adapted from [212] that shows single-molecule measurements of binding dy-
namics for the transcriptional activator, Bicoid, in vivo. Mir and colleagues find an average
residency time of approximately 1 second. (B) MS2 trace of transcription driven by the
hunchback P2 enhancer, which is regulated by Bicoid. We find bursts that last not seconds
but multiple minutes.

integrate activator binding while fluctuating on timescales in accordance with observed burst
dynamics. Second, we show that slow dynamics can emerge as the collective result of many
rapid binding events when cooperative binding interactions between regulatory factors are
present. We conclude that a tighter discourse between theory and experiment is needed
moving forward, if we are to synthesize the ever-growing deluge of in vivo measurements
into a coherent model for how gene regulatory control emerges from stochastic molecular
interactions at the gene locus.

1.7 Probing gene regulation away from equilibrium

Irrespective of its molecular origins, transcriptional bursting has implications for cellular
decision-making, contributing significant levels of intrinsic noise to the transcriptional out-
put of gene loci which, in turn, places strict constraints on how rapidly cells can harness
that output to make decisions. In Chapter 6, we seek to draw together many of the themes
discussed in earlier sections of this dissertation, using simple kinetic models of transcrip-
tion to investigate how the molecular architecture of gene loci—the number and identity
of biochemical steps in the transcriptional cycle, as well as the reaction rates that connect
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these steps—dictates the rate at which bursty genes can transmit information to downstream
cellular processes.

Thermodynamic models of transcription, which assume that gene circuits operate at
equilibrium, have previously been employed with considerable success in the context of bac-
terial systems [241]. However, the presence of ATP-dependent processes—such as chromatin
remodeling [329], PIC assembly [289], and Pol II initiation [321]—within the eukaryotic
transcriptional cycle suggests that equilibrium models may be insufficient to capture how
eukaryotic gene circuits sense and respond to input transcription factor concentrations. As a
result, there is an urgent need for theoretical frameworks that can probe how non-equilibrium
mechanisms reshape the transcriptional input-output function and, ultimately, redefine the
limits of transcriptional control.

Thus, a key focus in this work in on how energy dissipation within the transcriptional
cycle impacts the rate at which a gene locus transmit useful information and drive cellular
decisions. Yet, rather than use information as a means to circumvent the molecular “hard-
ware” that drives transcription, we instead seek to use the rate of information transmission
as a quantitative lens to examine how energy-dependent changes to microscopic reaction
rates at the gene locus lead to measurable changes in features of the transcriptional input-
output function; namely, sharpness, precision, and specificity (Figure 1.7A). We draw from
previous theoretical works [274, 69] to obtain quantitative estimates for how rapidly bursty
gene expression driven by simple molecular models (Figure 1.7B) can transmit information
and allow cells to distinguish between different input activator concentrations (c1 and c0; see
Figure 1.7C and D).

We find that biologically plausible rates of energy-dissipation can drive significant gains in
information transmission (Figure 1.7E), but that the molecular mechanisms underlying these
gains change depending on the level of interference from the off-target binding of non-cognate
factors at the gene locus. When interference is low, information is maximized by harnessing
energy to push transcriptional sharpness beyond its equilibrium limits. Conversely, once
non-cognate factor interference is high, information-maximization begins to instead demand
that genes harness energy to increase transcriptional specificity at the price of decreased
sharpness in order to buffer against non-cognate factor interference.

1.8 Fast, flexible burst parameter inference with

burstMCMC

In this chapter, we describe ongoing efforts to develop burstMCMC, a novel computational
framework that uses Markov Chain Monte Carlo (MCMC) methods [107] to uncover how
transcription factor proteins modulate the dynamics of transcriptional bursting at target
gene loci. Despite its utility, the cpHMM method developed in 2 has notable limitations.
Most significantly, the model’s computational complexity (and, hence, the time required
for inference) scales as Kw, where K is the number of activity states (typically 2 or 3)
and w = telong/∆τ is the number of time steps required for RNA Polymerase (RNAP)
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Figure 1.7: Probing gene regulation away from equilibrium. (A) Gene regulatory
input-output function illustrating the basic biological problem considered in this work. Here
a cell must distinguish between two activator concentrations, c0 and c1, based off of the
transcriptional output of a gene locus (purple curve). We examine how three aspects of
the transcriptional input-output function—sharpness, precision, and specificity—combine
to dictate the rate at which the transcriptional output can drive biological decisions. (B)
Four state MWC-like model of transcription used as the foundation of our investigations
throughout. Here a single activator (green square) may bind to a specific site at the gene
locus, and mRNA production occurs when the gene locus switches into its active (ON)
conformation. A hypothetical energy input is depicted along the rate from state 3 to state 0.
(C) Simulated burst dynamics for one realization of the model shown in (B). (D) Illustrative
simulation results for accumulated mRNA levels driven by c1 and c0. Solid lines show
trajectories for a single locus and shaded regions indicate the standard deviation in levels
taken across 100 simulated trajectories. (E) Rate of information transmission as a function
of energy dissipation rate for a parameter sweep exploring all possible model realizations.
Modest rates of energy dissipation can lead to a significant increase in the maximum amount
of information that can be transmitted per burst cycle.
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molecules to traverse the gene. In practice, this scaling means that access to powerful servers
or computing clusters is required to run the model for many systems biological systems.
In addition, cpHMM requires w as an input, which can be problematic since the RNAP
elongation time is gene-specific and typically unknown a priori for most systems. With
burstMCMC, we aim first and foremost to address these limitations of the cpHMM method.
Our ultimate aim is broader than this, however: we envision burstMCMC as an accessible,
comprehensive computational platform for extracting quantitative insights from MS2/PP7
measurements of transcriptional systems. The focus here lies on progress toward the former
task; however, we briefly outline next steps and eventual goals for model development both
here and in Chapter 7.

The crux of the exponential scaling issue noted above lies in the fact that, as a part of its
inference, cpHMM must keep track of the likelihood of all possible promoter states at each
time point along an MS2 trace, which scales as Kw (where K is the number of promoter
activity states). Recently, however, Bowles and colleagues [28] showed that the number of
models states that actually have a non-negligible likelihood at any given point in time can be
several orders of magnitude smaller than Kw. As a result, only a few hundreds or thousands
of states need to be tracked at any point in time to achieve accurate inference results. The
authors use this insight to develop burstInfer, an inference approach that reduces burst
inference times by truncating the space of possible model states at each experimental time
point [28]. Yet, whereas cpHMM yields accurate inference results for systems with up to 3
distinct activity states and continuous promoter transitions—i.e. switching can occur at any
point on or between experimental time steps—burstInfer only applies to systems with up to
two activity states and, further, makes the assumption that promoter switching is discrete
(i.e. happens only at experimental time points); an assumption that likely does not comport
the true nature of transcriptional systems.

With burstMCMC, we take an alternative approach. Rather than algorithmically trun-
cating state space to reduce model complexity, we use MCMCmethods—originally developed
to efficiently sample high-dimensional ensembles in Statistical Physics [210]—to efficiently
explore the high-dimensional state space of potential burst model states. As with all MCMC
methods, burst MCMC works by drawing repeated samples of each parameter in such a way
that these samples are guaranteed (in theory, at least) to converge to the true values implied
by the experimental data (Figure 1.8A). We show that burstMCMC approaches cpHMM
performance for both discrete and continuous three state systems, all while reducing compu-
tational complexity by orders of magnitude for biologically salient values of the elongation
parameter, w (Figure 1.8B). In addition, we demonstrate that burstMCMC can reliably in-
fer the elongation time, w, thus removing a significant barrier to the application of burst
inference to a wider array of genes and providing a new computational lens into a biological
parameter that is of interest in its own right (Figure 1.8C; see, e.g., [99, 190]).

We close by sketching out key next steps for model development. First, we lay out model
improvements (many of which are already under way) that are aimed at increasing the speed,
accuracy, and robustness of burstMCMC inference. Second, we discuss extensions to the
model that probe new facets of the regulation of bursting dynamics, including hierarchical
models for single cell burst inference and models with concentration-dependent parameters
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Figure 1.8: burstMCMC : a fast, flexible framework for burst parameter inference.
(A) Plot showing a series of 1000 MCMC samples. Each circle indicates an individual sam-
ple, dashed lines indicate true parameter values, and gray shaded regions indicate posterior
bivariate density inferred by burstMCMC. (B) Plot comparing the average time required for
burstMCMC to resample z (green circles) to the time needed for a single expectation step
in cpHMM inference (pink circles) as a function of the RNA polymerase dwell time on the
reporter gene (w). Dashed pink line extrapolates cpHMM performance to regimes that could
not be calculated directly given computational constraints. Whereas cpHMM computational
time scales exponentially with w, we see that the trend for burstMCMC is essentially flat.
(C) Inference results for systems with different RNAP elongation times. Solid lines indicate
results for different MCMC runs. Dashed lines of same color indicate the correct w values.
We see that the model consistently converges to the correct value for a wide range of elon-
gation times.

Finally, we draw upon concepts from Chapters 5 and 6 to speculate about how mean first
passage times could serve as a computationally tractable link between phenomenological
bursting models and bona fide molecular models that can shed direct light on the molecular
mechanisms underlying the transcription factor control of burst dynamics.
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Chapter 2

Multimodal transcriptional control of
pattern formation in embryonic
development

This chapter is a reproduction of reference [165]

Abstract

Predicting how interactions between transcription factors and regulatory DNA sequence dic-
tate rates of trancription and, ultimately, drive developmental outcomes remains an open
challenge in physical biology. Using stripe 2 of the even-skipped gene in Drosophila em-
bryos as a case study, we dissect the regulatory forces underpinning a key step along the
developmental decision-making cascade: the generation of cytoplasmic mRNA patterns via
the control of transcription in individual cells. Using live imaging and computational ap-
proaches, we found that the transcriptional burst frequency is modulated across the stripe
to control the mRNA production rate. However, we discovered that bursting alone cannot
quantitatively recapitulate the formation of the stripe, and that control of the window of
time over which each nucleus transcribes even-skipped plays a critical role in stripe forma-
tion. Theoretical modeling revealed that these regulatory strategies (bursting and the time
window) respond in different ways to input transcription factor concentrations, suggesting
that the stripe is shaped by the interplay of two distinct underlying molecular processes.

2.1 Introduction

During embryonic development, tightly choreographed patterns of gene expression—shallow
gradients, sharp steps, narrow stripes—specify cell fates. The correct positioning, sharp-
ness, and amplitude of these patterns of cytoplasmic mRNA and protein ensure the reliable
determination of animal body plans [236]. Yet, despite decades of work mapping the gene
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regulatory networks that drive development, and despite extensive efforts to dissect the regu-
latory logic of the enhancer elements that dictate the behavior of these networks, a predictive
understanding of how gene expression patterns and developmental outcomes are driven by
transcription factor concentrations remains a central challenge in the field [301].

Predicting developmental outcomes demands a quantitative understanding of the flow of
information along the central dogma: how input transcription factors dictate the output rate
of mRNA production, how this rate of mRNA production dictates cytoplasmic patterns of
mRNA, and how these mRNA patterns lead to protein patterns that feed back into the gene
regulatory network. While the connection between transcription factor concentration and
output mRNA production rate has been the subject of active research over the last three
decades [172, 72, 280, 285, 147, 115, 142, 263, 301, 259], the connection between this output
rate and the resulting cytoplasmic patterns of mRNA has remained largely unexplored.
For example, a graded stripe of cytoplasmic mRNA within an embryo could arise as a
result of radically different transcriptional dynamics at the single-nucleus level (Figure 2.1A).
Specifically, if individual nuclei along this stripe modulate their average RNA polymerase
(RNAP) loading rate, then graded control of the mean rate of transcription results: nuclei
in the middle of the stripe transcribe at a higher average rate than nuclei on the stripe
boundaries (Figure 2.1B). We identify this graded transcriptional control strategy with the
analog control of gene expression. Alternatively, transcription factors could exert control over
the length of time a nucleus is transcriptionally active (Figure 2.1C). In this binary control
scheme—akin to an on/off switch that dictates whether a nucleus is transcriptionally active
or quiescent—individual nuclei transcribe at the same average rate regardless of their position
along the stripe, but for different lengths of time. Finally, some nuclei might not engage in
transcription at all during the formation of the pattern (Figure 2.1D). Here, a larger fraction
of nuclei engage in mRNA production in the stripe center than in the boundaries. Any of
these scenarios, or some combination thereof, can explain the formation of a cytoplasmic
mRNA pattern.

In order to quantify the contribution of each regulatory strategy to pattern formation,
and thereby move towards a deeper understanding of the molecular processes at play, it is
necessary to measure the rate of RNAP loading in individual nuclei, in real time, in a living
embryo. However, to date, most studies have relied on fixed-tissue techniques such as mRNA
FISH and immunofluorescence in order to obtain snapshots of the cytoplasmic distributions
of mRNA and protein as development progresses [142, 84, 232, 62, 231]. Such techniques are
virtually silent regarding the regulation of single-cell gene expression over time, and are thus
ill-suited to the study of how spatiotemporal variations in transcriptional dynamics give rise
to patterns of cytoplasmic mRNA.

In this work, we investigated how single-cell transcriptional activity leads to the for-
mation of stripe 2 of the widely studied even-skipped (eve) gene in the developing fruit fly
embryo [278, 6]. Previous work has established that the stripe is formed through the in-
terplay of transcriptional activators and repressors [278]. In addition, recent studies have
indicated that the eve stripe mRNA profiles are graded and highly reproducible [27, 286,
195, 238], suggesting that the detailed cytoplasmic distribution of mRNA that makes these
stripes is key to the transmission of spatial information along the gene regulatory network
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Figure 2.1: Multiple modes of pattern formation by single-cell transcriptional
activity. (A) Cytoplasmic mRNA patterns could arise from transcription factors exerting
control over (B) the mean transcription rate, (C) the transcriptional time window dictating
when a nucleus is transcriptionally active or quiescent, (D) the fraction of active nuclei, or
some combination thereof.
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that drives Drosophila development and reinforcing the need to develop models of gene reg-
ulation capable of connecting quantitative variations in input transcription factor patterns
to graded output rates of transcription. To do this, we combined live imaging with theoret-
ical modeling in order to study transcription at the single-cell level in real time, seeking a
quantitative connection between the spatiotemporal variations in input transcription factor
concentrations, the control of eve transcription, and the formation of cytoplasmic patterns
of mRNA.

We found that all three regulatory strategies outlined in Figure 2.1 quantitatively con-
tribute to the formation of eve stripe 2. First, a smaller fraction of nuclei become active and
engage in transcription in the periphery of the stripe than in the center, though this regu-
lation of the fraction of active nuclei makes only a minor contribution to stripe formation.
Second, consistent with previous studies, we found that the rate of mRNA production is
significantly elevated in the center of the stripe [27]. Strikingly, however, we discovered that
this analog control of the transcription rate is insufficient to quantitatively recapitulate the
cytoplasmic mRNA stripe pattern. In addition to the control of the rate of mRNA produc-
tion among nuclei, we also observed a pronounced regulation of the window of time during
which eve loci were engaged in transcription across the stripe, with those in the stripe center
expressing for approximately three times longer than those in the flanks. While it is widely
appreciated that genes are transcriptionally competent for limited windows of time dur-
ing development, we found that—in the case of eve stripe 2—this binary transcriptionally
engaged/disengaged logic is not merely a necessary precondition for pattern formation—
it is the primary driver thereof. Thus, we conclude that the regulation of eve stripe 2
is multimodal in nature, with contributions from three distinct regulatory strategies (Fig-
ure 2.1B-D). Nonetheless, stripe formation can be quantitatively explained almost entirely
through the interplay between two distinct control strategies: binary control of the duration
of transcriptional engagement (Figure 2.1C) and control of the mean rate of transcription
(Figure 2.1B).

Building upon this result, we developed novel computational approaches to uncover the
mechanistic underpinning of each regulatory strategy. We employed a compound-state hid-
den Markov model (cpHMM) to uncover variations in transcriptional bursting dynamics
in individual nuclei across space and time [287, 217, 55]. We uncovered that, consistent
with previous results, transcription factors control the rate of transcription by altering the
frequency of transcriptional bursts [98, 330]. In addition, we utilized logistic regressions to
correlate eve stripe 2 transcriptional dynamics with changes in input transcription factor con-
centrations. This analysis revealed that the transcriptional time window adheres to different
regulatory logic than transcriptional bursting: while repressor levels alone were sufficient to
explain the early silencing of nuclei in the anterior and posterior stripe flanks, the control
of bursting among transcriptionally engaged nuclei depends upon the input concentrations
of both activators and repressors. Thus, our findings point to the presence of two distinct
regulatory mechanisms that control transcription and gene expression patterns in early de-
velopment, showcasing the potential for theoretical modelling and biological numeracy to
yield novel biological insights when coupled with precise and quantitative experimental ob-
servation.
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2.2 Results

2.2.1 Predicting cytoplasmic mRNA distributions from
transcriptional activity

To predict how the transcriptional activity of individual nuclei dictates the formation of
cytoplasmic patterns of mRNA, we began with a simple model that considers the balance
between the rate of mRNA synthesis and degradation

dmRNA

dt
(x, t) = pon(x)︸ ︷︷ ︸

fraction of
active nuclei

R(x, t)︸ ︷︷ ︸
synthesis

− γmRNA(x, t)︸ ︷︷ ︸
degradation

, (2.1)

where mRNA(x, t) indicates the mRNA concentration at position x along the embryo at
time t, R(x, t) corresponds to the mRNA synthesis rate averaged over multiple nuclei within
the same position x, pon(x) is the fraction of active nuclei (corresponding to the regulatory
strategy shown in Figure 2.1D) and γ is the degradation rate (see SI Appendix, section A.3.1
for details of this derivation).

In order to examine the quantitative consequences of the three potential regulatory strate-
gies (Figure 2.1B-D), we adopted widespread assumptions in the modeling of transcriptional
regulation. First, we assumed that the degradation rate γ is a constant and not under any
kind of spatiotemporal control. Comparisons between model predictions and empirically
measured levels of cytoplasmic mRNA suggest that this assumption is reasonable (see SI
Appendix, section A.3.2). Second, we posited that at each position throughout the embryo
the synthesis rate R(x, t) does not vary significantly in time such that it can be approximated
by its time average R(x) = ⟨R(x, t)⟩. This assumption will be revised later in the text in
order to account for the time-dependent regulation of the mean rate of transcription. Finally,
we assumed that nuclei along the axis of the embryo start transcribing at time ton(x), and
stop transcribing and enter a state of transcriptional quiescence at time toff(x). Under these
assumptions, Equation 2.1 can be solved analytically, resulting in

mRNA(x, t) =
R(x)

γ︸ ︷︷ ︸
mean transcription rate

× (2.2)

(
e−γ(t−min{toff(x),t}) − e−γ(t−ton(x))

)︸ ︷︷ ︸
transcriptional time window

× pon(x)︸ ︷︷ ︸
fraction active

.

This equation makes precise predictions about how each regulatory strategy contributes
to the formation of the cytoplasmic mRNA pattern. Thus, measuring how each quantity
is regulated across the stripe allows us to predict their relative contributions to pattern
formation.
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2.2.2 Binary control of the transcriptional time window is the
primary driver of stripe formation

In order to test the simple model of pattern formation put forward in Equation 2.2, we
quantified transcription of stripe 2 of eve in the fruit fly. We imaged the transcription of an
eve stripe 2 reporter using the MS2 system [104, 193, 27]. Transcripts of a reporter gene
driven by the eve stripe 2 enhancer and the eve promoter contain repeats of a DNA sequence
that, when transcribed, form stem loops [14]. These stem loops are recognized by maternally
provided MS2 coat protein fused to GFP (Figure 2.2A). As a result, sites of nascent transcript
formation appear as fluorescent puncta within individual nuclei (Figure 2.2B and Video
A.4). As described in SI Appendix Figure A.2, the intensity of these fluorescent puncta
is proportional to the number of RNAP molecules actively transcribing the gene. These
resulting fluorescence values could then be calibrated using single-molecule FISH in order
to estimate the number of RNAP molecules actively transcribing the gene (see Materials
and Methods and [104]). By aligning multiple embryos (see SI Appendix, Figure A.1), we
obtained the average number of actively transcribing RNAP molecules as a function of time
and position throughout the embryo (Figure 2.2C).

Using the MS2 system, we quantified each potential regulatory strategy and determined
its predicted contribution to pattern formation according to our model in Equation 2.2. We
first used the average fluorescence intensities of our MS2 traces to estimate the time-averaged
rate of RNAP loading, R(x) as described in SI Appendix, section A.3.2. We found that this
rate is modulated along the axis of the embryo (Figure 2.3A and B; see also Video A.4,
SI Appendix Figure A.3, and Materials and Methods): whereas in the center of the stripe
RNAP molecules are loaded at a rate of approximately 16 molecules/min, this loading rate
decreases to about 8 molecules/min at the boundaries.

We next used our MS2 data to examine spatial trends in the transcriptional time window.
Our data revealed that the transcriptional time window is modulated along the stripe (see SI
Appendix, Figure A.4A). Whereas the time at which each nucleus becomes transcriptionally
active, ton(x), was constant across the stripe, with all nuclei becoming active 8± 4 min after
the previous anaphase (SI Appendix, Figure A.4B), the time at which nuclei stop transcribing
and become quiescent, toff(x), showed a strong modulation along the embryo’s axis (SI
Appendix, Figure A.4C). As a result, the time window over which each transcriptional
locus is engaged in transcription, ∆t = toff − ton, is sharply modulated along the stripe
(Figure 2.3C and D and Video A.4), with nuclei in the stripe center transcribing for > 30 min
and nuclei on the boundaries only transcribing for approximately 10 min. We note that, in
order to derive these results, it was necessary to account for potential effects of the detection
limit in our experiments of approximately 4 RNAP molecules per locus on estimates of the
timing of the appearance and disappearance of fluorescent puncta. This procedure is outlined
in detail in the SI Appendix in section A.3.3, as well as in figures A.12 and A.13.

Finally, our analysis also revealed the magnitude of the modulation of the fraction of
active nuclei along the stripe. Most nuclei along the stripe were engaged in transcription.
In the stripe center, nearly 100% of nuclei transcribed at some point during the nuclei cycle.
This number reduced to about 80% at the boundaries (Figure 2.3E and F and Video A.4).
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Figure 2.2: Measuring transcriptional dynamics of eve stripe 2 formation using
the MS2 system. (A) MS2 stem loops introduced in an eve stripe 2 reporter gene are
bound by MS2 coat protein fused to GFP. (B) Sites of nascent transcript formation appear
as green fluorescent puncta whose intensity reports on the number of actively transcribing
RNAP molecules. Nuclei are visualized through a fusion of RFP to Histone. (C) Mean
number of RNAP molecules actively transcribing the gene as a function of space and time.
(C, data averaged over 11 embryos).
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Figure 2.3: Regulatory strategies for pattern formation in eve stripe 2. (A,B)
Time-averaged rate of mRNA production, (C,D) transcriptional time window, and (E,F)
fraction of active nuclei as a function of position along the embryo. (G) Amplitude of the
cytoplasmic mRNA distribution compared to the contributions to stripe formation of the
analog control of the mean transcription rate, the binary control of the transcriptional time
window, and the control of the fraction of active nuclei. The combined contribution from
the analog and binary strategies is also shown. See SI Appendix, Figure A.5 for details of
how depicted profiles were derived from raw data. (A,C,E, representative snapshots of an
individual embryo 40 min into nuclear cycle 14; B,D,F, average over 11 embryos, error bars
indicate bootstrap estimate of the standard error of the mean).

The analysis in Figure 2.3A-F reveals that each of the three regulatory strategies identified
in Figure 2.1 is at play in the embryo, and that they all have the potential to contribute to
pattern formation. However, these measurements alone cannot inform us on how much each
of these strategies contributes to the cytoplasmic mRNA pattern. To quantify the degree
to which each regulatory strategy contributes to the formation of eve stripe 2, we employed
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the model described in Equation 2.2.
Figure 2.3G indicates the quantitative contribution of each regulatory strategy (each

term on the right-hand side of Equation 2.2) to the formation of this cytoplasmic pat-
tern. The cytoplasmic pattern of accumulated mRNA, corresponding to the left-hand side
of Equation 2.2, was obtained by integrating from our live-imaging data (see SI Appendix,
section A.3.2 for details). Regulation of the fraction of active nuclei along the embryo (Fig-
ure 2.3G, yellow) contributes negligibly to this mRNA pattern. In contrast, both the analog
regulation of the mean rate (Figure 2.3G, green) and the binary control of the transcriptional
time window (Figure 2.3G, blue) make significant contributions to the overall pattern, with
binary control playing the dominant role. We thus concluded that the joint effect of these
two strategies (Figure 2.3G, brown) is sufficient to quantitatively recapitulate the stripe of
cytoplasmic mRNA from single-cell transcriptional activity.

2.2.3 Mean transcription rate is dictated by bursting through
modulation of the rate of promoter turn on

Are the binary and analog control strategies driven by distinct molecular mechanisms, or
are they different manifestations of the same underlying process? To uncover the molecular
mechanism behind the analog control of the mean rate of transcription, we analyzed the
transcriptional activity of individual nuclei. Previous work demonstrated that the rate of
gene expression at individual loci within the eve stripe 2 pattern is highly stochastic [27].
Indeed, as shown in Figure 2.4A, our data revealed punctuated peaks and troughs in the
number of active RNAP molecules. These features have been related to the rate of RNAP
initiation at the eve promoter by assuming that transcriptional activity is “burst-like”, with
the promoter rapidly loading mutliple RNAP molecules onto the gene at a constant rate
during discrete “bursts” of activity interspersed with periods of inactivity [27]. This and
other evidence from live imaging [27, 98, 68], as well as data from fixed-tissue approaches
[230, 187, 317, 330], support a minimal two-state model of promoter switching (Figure 2.4B):
promoters switch stochastically between ON and OFF states with rates kon and koff . In this
model, promoters in the ON state engage in the loading of RNAP (and, correspondingly,
mRNA production) at rate r. Thus we find that, in order to describe eve stripe 2 transcrip-
tional dynamics, we need to account for both the short, transient ON periods dictated by
transcriptional bursts, and a longer transcriptional time window that describes the period
of time over which loci engage in this transcriptional bursting.

In the bursting model, the mean rate of transcription is given by the product of the
fraction of time spent in the ON state with the transcription rate in this active state [233,
156, 258, 319]

R(x)︸ ︷︷ ︸
mean

transcription rate

= r(x)︸︷︷︸
RNAP loading

rate

× kon(x)

kon(x) + koff(x)︸ ︷︷ ︸
fraction of time
in ON state

, (2.3)
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Figure 2.4: Transcriptional bursting in eve stripe 2. (A) Single-nucleus measurements
reveal that nuclei transcribe in bursts. (B) Two-state model of bursting of a single promoter.
(C) The same hidden rate of RNAP loading (bottom) can correspond to different observable
numbers of RNAP molecules on the gene (top), such that standard Hidden Markov model
approaches cannot be used to infer the hidden promoter state. (D) Fluorescent puncta
are composed of two distinct transcriptional loci within a diffraction-limited spot, each cor-
responding to a sister chromatid. (E) Three-state model of promoter switching within a
fluorescent punctum that accounts for the combined action of both sister chromatids. (F)
Effective two-state model of transcriptional bursting. (A, error bars obtained from estima-
tion background fluorescent fluctuations; Materials and Methods and [104].)

where all parameters are allowed to vary as a function of position along the embryo, x (see
SI Appendix, section A.3.1 for details of this derivation). Thus, within this framework,
the observed modulation of the mean rate of transcription across the stripe (Figure 2.3G,
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green) implies that one or more of these bursting parameters is subject to spatially controlled
regulation. However, the mean rate trend alone is not sufficient to identify which of the three
bursting parameters (kon, koff , and r) is being regulated by the input transcription factors
in order to control the average transcription rate. While each bursting parameter does not
necessarily map directly to a single molecular step in the transcriptional cycle, identifying
which parameter(s) are subject to regulation can help narrow the set of possible molecular
mechanisms. For instance, variation in r could indicate that transcription factors play an
active role in the recruitment of RNAP to the promoter, or in the release of RNAP from
promoter-proximal pausing [269].

Typically, the in vivo molecular mechanism of transcription factor action is inferred
from measurements of transcriptional noise obtained through snapshots of dead and fixed
embryos or cells using theoretical models [22, 230, 327, 281, 187, 149, 265, 317, 229, 277,
7, 330, 128]. In contrast, MS2-based live imaging can directly inform on the dynamics
of transcriptional bursting in real time. The MS2 approach, however, reports on the total
number of actively transcribing RNAP molecules and not on the instantaneous rate of RNAP
loading at the promoter, which is the relevant quantity for estimating kon, koff , and r. To date,
approaches for extracting bursting parameters from such data in multicellular organisms
have mainly relied on the manual analysis of single-nucleus transcriptional dynamics [27,
98] or autocorrelation-based methods that infer mean bursting parameters across ensembles
of traces [170, 57, 68]. A computational method for inferring the rates of RNAP loading
(Figure 2.4C, bottom) from the total number of actively transcribing RNAP molecules in
single cells (Figure 2.4C, top) is thus needed to obtain the bursting parameters.

Hidden Markov models (HMMs) are widely used to uncover the dynamics of a system as
it transitions through states that are not directly accessible to the observer [18]. However,
our observable (the MS2 signal) does not correspond to the hidden variable of interest (the
promoter state) in a one-to-one fashion (compare Figure 2.4C top and bottom). Instead, the
observable MS2 signal reflects the net effect of promoter switching over a period equal to
the time that an RNAP molecule takes to transcribe the whole gene. Thus, instantaneous
fluorescence does not just depend on the current promoter state; it exhibits a dependence
on how active the promoter has been over a preceding window of time, which effectively
constitutes a memory for recent promoter states [46, 319, 55, 45]. Classic HMM approaches
cannot account for this kind of system memory.

In order to model the process of transcription and extract the kinetic parameters of
promoter switching, we augmented classic HMMs to account for memory (details about
implementation of the method are given in SI Appendix, section A.3.4). Similar approaches
were recently introduced to study transcriptional dynamics in cell culture and tissue samples
[287, 217, 325, 332, 132, 31, 55, 87]. We used simulated data to establish that cpHMM
reliably extracts the kinetic parameters of transcriptional bursting from live-imaging data
(SI Appendix, section A.3.5), providing an ideal tool for dissecting the contributions from
individual bursting parameters to observed patterns of transcriptional activity across space
and time.

Before applying our model to real-time transcriptional data, we had to account for the
rapid replication of the D. melanogaster genome at the beginning of each nuclear cycle [273],
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which leads to the presence of two distinct eve loci within each fluorescent spot (Figure 2.4D
and Video A.4). The first evidence of resolved chromatids appears as early as 8 minutes into
nuclear cycle 14 (SI Appendix, Figure A.26)—coincident with the average onset time of tran-
scription (SI Appendix, Figure A.4B). Moreover, our analysis indicates that replication of
the relevant portion of the genome likely occurs in all eve-expressing nuclei by no later than
10 minutes following mitosis (SI Appendix, Figure A.26). Thus, we conclude that the vast
majority of our data feature two distinct eve loci within each diffraction-limited transcription
spot. Moreover, while the distance between sister loci varies over time (see, e.g. Figure 2.4D),
they nonetheless stay in relatively close proximity to ensure their proper segregation from
each other at the next mitosis [264] such that the fluorescent intensity signals extracted from
our data reflect the integral over both loci (SI Appendix, Figure A.2). As a result, if we
assume that each locus can be well-represented by a two-state model (OFF/ON) of tran-
scriptional bursting, then an effective three-state model (OFF+OFF/ON+OFF/ON+ON)
is needed to capture eve dynamics (Figure 2.4E). Thus, we elected to employ such a three-
state model in our analysis. Due to conflicting evidence from previous studies [208, 187, 330],
we made no prior assumptions about the nature or degree of cooperativity between sister
chromatids either in transitions between activity states or in the rates of initiation in each
state (see SI Appendix E for details). While these assumptions increased the complexity of
our model, we believed that a conservative approach that left the model free to infer the
presence or absence of sister interactions was warranted, given our ignorance regarding the
nature and strength of interactions between adjacent gene loci. For ease of exposition, we
present our main results in the context of an effective two-state model, in which, as detailed
in SI Appendix, section A.3.1, the system is considered to be in the ON state so long as either
chromatid is bursting (Figure 2.4F). Note that none of our conclusions below are affected by
this choice of an effective model as shown in SI Appendix, section A.3.7, where we present
full results for the three-state model.

A typical experimental trace for a nucleus in the core of the stripe is shown in Fig-
ure 2.5A, along with its best fit, which corresponds to the cpHMM-inferred promoter tra-
jectory in Figure 2.5B. Our ability to infer the instantaneous promoter state in individual
nuclei throughout development is further illustrated in Figure 2.5C and Video A.4. These
data revealed that, as development progresses and the stripe sharpens, the eve promoter
continuously fluctuates between the ON and OFF states on a time scale of approximately
1-2 minutes.

In order to infer time-averaged bursting parameter values, we grouped traces by position
along the anterior-posterior axis. The rate of RNAP loading, r, remained constant through-
out the stripe (Figure 2.5D), suggesting that none of the transcription factors regulating
eve stripe 2 act directly on the rapid series of molecular steps involved in the initiation of
transcription by RNAP. Similarly, we noted no significant spatial modulation of the rate of
switching out of the ON state, koff (Figure 2.5E). In contrast, the rate of switching into the
ON state (also known as burst frequency), kon, was strongly up-regulated in the stripe center
(Figure 2.5E). These observations suggested that, control the mean transcription rate, tran-
scription factors act primarily on the rate of promoter turning on, consistent with previous
results both in embryos [317, 68, 98] and in single cells [281, 265, 229, 7]. This regulatory



CHAPTER 2. MULTIMODAL TRANSCRIPTIONAL CONTROL OF PATTERN
FORMATION IN EMBRYONIC DEVELOPMENT 29

ON

A C

B

E
time (min)

in
fe

rre
d 

pr
om

ot
er

st
at

e

10 20 30 40

inference
data

15 min

20 min

36 min4 µm

0
20
40
60
80

tra
ns

iti
on

 ra
te

 (1
/m

in
)

0R
N

AP
 lo

ad
in

g 
ra

te
 (1

/m
in

)

-4 -2 0 2 40

10

20

30

distance from stripe center (% embryo length)

ON

OFF

-4 -2 0 2 4

0.4

0.8

1.2

1.6

nu
m

be
r o

f
R

N
AP

 m
ol

ec
ul

es

D

OFF

ON

OFF

ON OFF

Figure 2.5: Inferring bursting dynamics using a memory-adjusted Hidden Markov
model. (A) Representative experimental trace along with its best fit and (B) its most
likely corresponding promoter state trajectory. (C) Instantaneous visualization of promoter
state in individual cells throughout development through the false coloring of nuclei by
promoter state (colors as in B). (D) The rate of initiation for each transcriptional state is
not significantly modulated along the embryo. (E) Our cpHMM reveals that the transition
rate between the OFF and ON state (equivalent to the burst frequency) is up-regulated
in the stripe center. (A, error bars obtained from estimation of background fluorescent
fluctuations, as described in Materials and Methods and [104]; D,E, error bars indicate the
magnitude of the difference between the first and third quartiles of cpHMM inference results
for bootstrap samples of experimental data taken across 11 embryos. See Materials and
Methods for details.)
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modality increases the fraction of time that loci near the stripe center spend in the ON state
(SI Appendix, Figure A.7 and [330]).

2.2.4 Binary control of the transcriptional time window is
independent of transcriptional bursting

Having determined that the analog control of the mean transcriptional rate is realized by
the modulation of the burst frequency, kon, we next sought to uncover the molecular mech-
anism by which the binary regulation of the transcriptional time window is implemented.
In one possible scenario, the onset of transcriptional quiescence at the end of the transcrip-
tional time window would reflect a fundamental change to the molecular character of the
transcriptional locus such that the bursting framework no longer applies. For instance, re-
pressing transcription factors could alter in the local chromatin landscape by repositioning
promoter or enhancer nucleosomes [4]; changes that could block the binding of activators at
the stripe 2 enhancer or of general transcription factors at the promoter, and thus abolish
further activator-mediated bursting (Figure 2.6A, top). Alternatively, if the rates of pro-
moter switching vary in time, then the time window could be explained without invoking an
extra silenced state that is mechanistically distinct from the processes driving transcriptional
bursting. Specifically, transcriptional quiescence could be achieved by progressively reduc-
ing the frequency (kon), intensity (r), and/or duration (1/koff) of transcriptional bursts. For
example, it is possible that increasing repressor levels in the stripe flanks could disrupt the
capacity for activators to initiate transcription bursts via short-range quenching interactions
[60]; a mechanism that would manifest as a decrease in kon over time.

In order to determine whether quiescence can be explained within the bursting frame-
work, we divided the stripe into the five regions shown in Figure 2.6B. For each region, we
sought to determine whether the bursting dynamics varied over time in a manner that could
explain the dynamics of entry into quiescence of individual nuclei (Figure 2.6C). To probe
for this time-dependence in transcriptional bursting, we extended our cpHMM method to
obtain promoter-bursting parameters over discrete periods of time by performing inference
on our live-imaging data using a sliding window (see SI Appendix, section A.3.4 for details).
Our inference revealed that the rate of promoter turn on, kon, varied significantly in time
(Figure 2.6D). Specifically, kon decreased in both the anterior and posterior stripe boundaries
(black and red curves) as development progressed and the fraction of active nuclei decreased
(grey shaded region), while loci in the stripe center (green and yellow curves) exhibited a
significant increase in kon. Further, while relatively constant at most positions along the
stripe, both the rate of RNAP loading when in the ON state, r, and the rate of promoter
turn off, koff , decreased slightly in (Figure 2.6E and F).

These findings confirmed our time-averaged inference results (Figure 2.5D and E) indicat-
ing that kon was the primary kinetic pathway through which transcription factors influence
eve stripe 2 transcription dynamics. Moreover, the coincidence of the decrease in kon in
flank nuclei with the onset of transcriptional quiescence (grey shaded region in Figure 2.6D)
seemed to suggest that, at least in part, quiescence in the stripe flanks could be driven by the
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temporal modulation of bursting parameters (Figure 2.6A, bottom). However, other trends
in our data were not consistent with the view that a decrease in kon drives transcriptional
quiescence.

Although 70% and 50% of nuclei in the regions directly anterior and posterior of the stripe
center were quiescent by 40 min into the nuclear cycle (blue and yellow curves in Figure 2.6C),
we detected no corresponding decrease in kon. In fact, kon actually increased in some in-
ner regions of the stripe (Figure 2.6D)—a trend that would increase overall transcriptional
activity and would therefore go against the establishment of transcriptional quiescence.

The divergent outcomes observed in the central stripe regions, with the rate of transcrip-
tional bursting remaining constant or increasing at eve loci within the engaged population
of nuclei even as loci in neighboring nuclei turn off for good, runs counter to the hypothesis
that quiescence is driven by the temporal modulation of the promoter switching parameters.
It is conceivable that temporal changes in bursting parameters associated with the onset of
quiescence occur too rapidly to be captured by our model. However, as discussed in SI Ap-
pendix, section A.3.9 , these changes would need to occur on the same time scale as bursting
itself (1 to 3 min). Given that both the other temporal trends detected by our inference
(Figure 2.6) and the shifts in the input transcription factors themselves (SI Appendix, sec-
tion A.3.8) unfold on significantly slower timescales (5-15 min), we concluded that while
possible, a scenario where bursting dynamics are changing too quickly to detect is unlikely.

The contradictory trends observed in the stripe center and flanks indicated that entry into
transcriptional quiescence might involve processes not captured within the bursting model
(Figure 2.6A, top), thus suggesting that binary control of the transcriptional time window
and the transcriptional bursting driving the analog control of the mean transcription rate
may arise from distinct molecular processes.

2.2.5 Input-output analysis reveals distinct regulatory logic for
bursting and the transcriptional time window

eve stripe 2 is mainly established by the combined action of two activators, Bicoid and
Hunchback, and two repressors, Giant and Krüppel [93, 278, 6]. If transcriptional bursting
and the transcriptional time window are controlled by distinct molecular processes, then
distinct forms of regulatory logic may be at play. For example, the Bicoid and Hunchback
activators could control transcriptional bursting, while the Giant and Krüppel repressors
could dictate the entry into the quiescent state. In order to reveal the molecular logic
controlling each regulatory strategy, we sought to correlate the fraction of nuclei that have
entered the quiescent state (Figure 2.7A) and the fraction of nuclei in the bursting ON state
(Figure 2.7B) with the corresponding spatiotemporal patterns in the input concentrations
of these four transcription factors.

We measured Bicoid concentration profiles using a a well-established Bicoid-GFP fusion
[116] and obtained spatiotemporal concentration profiles for Krüppel, Giant, and Hunchback
from published immunofluorescence data [74]. We combined these data with our live-imaging
data of eve stripe 2 transcriptional activity to generate an “average embryo” in which the
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concentration of all relevant inputs and the output transcriptional activity at each point
in time and space were known (Figure 2.7C and Video A.4). Building upon previous work
[139], we utilized logistic regressions to probe the regulatory role played by each of these
four factors in the spatiotemporal control of transcriptional bursting and the transcriptional
time window. The logistic regression is a widely used method of inferring predictive models
in processes with binary outcomes. For example, in order to query the regulatory logic
behind the control of the transcriptional time window, the model probes the impact of each
transcription factor on the relative likelihood of a locus entering the quiescent state versus
the likelihood of remaining transcriptionally engaged such that

log

(
Pquiescent

Pengaged

)
= β0 + β1 [Bcd] + β2 [Hb] + β3 [Gt] + β4 [Kr] , (2.4)

where the coefficients βn indicate the magnitude and nature (activating or repressing) of
the transcription factor’s regulatory function. In estimating these coefficients, we used prior
knowledge about the function of each transcription factor, requiring Bicoid and Hunchback
to play activating roles, and Krüppel and Giant to play repressing roles [280, 278]. We used
an analogous model to investigate the regulatory logic controlling transcriptional bursting
by inferring the factors that determine the relative likelihood that nuclei are in the bursting
ON versus the OFF state, PON/POFF .

Our analysis of the fraction of nuclei in the quiescent state revealed that no single tran-
scription factor can explain quiescence dynamics (Figure 2.7D and E). However, a simple
model in which increasing levels of the repressors Giant and Krüppel drive the onset of tran-
scriptional quiescence in the anterior and posterior stripe flanks, respectively, recapitulated
experimentally observed trends. The further addition of Hunchback and/or Bicoid had no
impact on the model’s predictive power, suggesting that activator concentrations have no
influence over the molecular processes responsible for silencing. Relaxing constraints on the
functional role of each transcription factor–for instance, allowing the presumed activators to
function as repressors–also provided no significant improvement over models presented here
as shown in SI Appendix, section A.3.8.

We next turned our attention to the relationship between transcription factor levels and
the fraction of nuclei in the ON state (Figure 2.7B). Unlike the transcriptional time window,
repressor levels alone could not recapitulate the observed bursting profile; Hunchback levels
were also necessary in order to fully capture the spatiotemporal bursting dynamics (Fig-
ure 2.7E and G). Specifically, we linked a rise in Hunchback concentration to an observed
rise in the fraction of nuclei in the ON state in the stripe center between 30 and 35 min into
the nuclear cycle (Figure 2.7B and F).

Our input-output analysis thus revealed that bursting and the transcriptional time win-
dow exhibit significantly different forms of regulator logic: whereas repressor levels alone
are sufficient to explain the transcriptional time window, the joint action of activators and
repressors appears necessary to explain the observed patterns of transcriptional bursting.
These results are consistent with the hypothesis that regulation of bursting and of the tran-
scriptional time window occur via distinct molecular processes, therefore supporting a model



CHAPTER 2. MULTIMODAL TRANSCRIPTIONAL CONTROL OF PATTERN
FORMATION IN EMBRYONIC DEVELOPMENT 34

tim
e 

(m
in

)

distance from stripe center (% embryo length) distance from stripe center (% embryo length)

distance from stripe center (% embryo length)

tim
e 

(m
in

)

fraction of  quiescent nuclei

-5 0 5 -5 0 5 
distance from stripe center (% embryo length)

-5 0 5 

20

30

40

20

30

40

tim
e 

(m
in

)

20

30

40

20

30

40

fraction of nuclei in O
N

 state

tim
e 

(m
in

)

Gt

Kr Hb

Bcd

Kr

Gt

Kr Hb

Bcd

Gt

Kr

Kr

A B

D F

E G

Gt

Kr

Gt

Kr

Hb

-5 0 5 

10

15

20

25

30

35

40 0

0.2

0.4

0.6

0.8

1

10

-5 0 5 

10

15

20

25

30

35

40
0.1

0.3

0.5

0.7

Gt

Kr

Hb

10

1 2 3 4
number of transcription factors

0

40

80

120

160

re
la

tiv
e 

lo
g-

lik
el

ih
oo

d 
(1

0-3
)

1 2 3 4
number of transcription factors

0

5

10

15

re
la

tiv
e 

lo
g-

lik
el

ih
oo

d 
(1

0-3
)

 20  40  60  80
position (% embryo length)

 0

 0.2

 0.4

 0.6

 0.8

 1
no

rm
al

iz
ed

 s
ig

na
l

Gt

KrHb

Bcd

eve

 0

 0.2

 0.4

 0.6

 0.8

 1

no
rm

al
iz

ed
 s

ig
na

l

10 min

 0

 0.2

 0.4

 0.6

 0.8

 1

no
rm

al
iz

ed
 s

ig
na

l

25 min

40 min

C

Figure 2.7: Probing the regulatory logic of bursting and the transcriptional time
window. (A) Fraction of nuclei in the transcriptionally quiescent state and (B) fraction
of nuclei in the bursting ON state as a function of time and position along the embryo.
(C) Snapshots of input transcription factor levels and predicted eve mRNA levels of our
“average” embryo at 10, 25, and 40 minutes into nuclear cycle 14. (D) Predicted fraction
of quiescent nuclei for progressively more complex regression models. The simplest model
with the highest likelihood is outlined in purple. (E) Model likelihood indicating that
Krüppel and Giant levels are sufficient to recapitulate the fraction of quiescent nuclei in
(D). (F) Predicted fraction of nuclei in the ON state. The simplest and most likely model
is highlighted in purple. (G) Model scores reveal that Giant, Krüppel, and Hunchback
recapitulate the bursting behavior in (F).



CHAPTER 2. MULTIMODAL TRANSCRIPTIONAL CONTROL OF PATTERN
FORMATION IN EMBRYONIC DEVELOPMENT 35

in which the long-lived trancriptionally silent state observed in flank nuclei constitutes a dis-
tinct molecular state outside of the bursting model.

Discussion

In Drosophila development, information encoded in a handful of maternally deposited protein
gradients propagates through increasingly complex layers of interacting genes, culminating
in the specification of the adult body plan. The prediction of this cascade of developmental
outcomes requires a quantitative understanding of the mechanisms that facilitate the flow
of information along the central dogma. Here, we utilized live imaging in conjunction with
theoretical modelling to shed light on a critical link in this cascade: how the regulation of
transcriptional activity at the single-nucleus level gives rise to a spatiotemporal pattern of
cytoplasmic mRNA.

A priori, there are several distinct regulatory strategies at the single-cell level capable
of generating spatially differentiated patterns of cytoplasmic mRNA (Figure 2.1), each with
distinct implications for the nature of the underlying molecular processes at play. Several
recent studies have revealed that the average rate of transcription is mainly modulated across
the embryo by tuning the frequency of transcriptional bursting [186, 27, 317, 68, 98, 330].
Yet it has remained unclear whether this modulation of the rate of transcription (and thereby
mRNA production) is the dominant modality by which input concentrations of transcription
factors drive the formation of patterns of gene expression, or if, instead, it is simply the most
readily apparent mechanism among multiple distinct control strategies.

In this work, we derived a simple theoretical model that predicts how the interplay be-
tween regulatory strategies at the single-cell level dictates the formation of a cytoplasmic
gene expression pattern (2.2). We applied this model to single-cell live-imaging measure-
ments of an MS2 reporter driven by the eve stripe 2 enhancer; an approach that allowed us to
dissect the regulatory logic of a well-characterized regulatory element free from the confound-
ing influences of other enhancers located in the endogenous eve locus. We demonstrated–
quantitatively–that the modulation of the mean rate of transcription is alone insufficient
to account for the formation of a sharp stripe of gene expression (Figure 2.3F, green). We
discovered that the window of time over which promoters engage in transcription is sharply
controlled along the axis of the embryo (Figure 2.3C and D) and that the joint action of
the analog control of the rate of transcription and the binary control of the duration of
transcription is necessary and sufficient to quantitatively recapitulate most of the full stripe
profile (Figure 2.3F, brown). While this work focused on dissecting the regulatory logic of
the eve stripe 2 enhancer in the context of a minimal construct, it is important to note that
our conclusions are not limited to this reporter construct and also apply to the endogenous
regulation of eve. As shown in SI Appendix Figure A.11, an analogous analysis performed
on a the expression dynamics of a reporter BAC containing the full endogenous eve locus
[11] indicated that stripe formation in this endogenous context is also dominated by the
interplay between the regulation of the mean rate of transcription and of the transcriptional
time window.
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Here, we contribute to a growing body of work that illustrates the utility of using simple
quantitative models to extract insights into the workings of complex biological phenomena
[139, 202, 317]. Our discovery of the key role of the differential duration of the transcrip-
tional time window in pattern formation was only made possible by biological numeracy;
that is, by going beyond the qualitative description of pattern formation and demanding a
quantitative agreement between our theoretical predictions and the experimental data [239].
While it is widely appreciated that genes are expressed for discrete windows of time over the
course of development [104, 193, 192], we have demonstrated that—in the case of this eve
stripe 2 reporter—this binary transcriptionally engaged/quiescent logic is actively regulated
by transcription factors to drive pattern formation. Thus the differential duration of tran-
scriptional activity comprises a necessary element of any quantitative description of pattern
formation.

Our work contributes to an increasingly diverse and exciting discourse in quantitative de-
velopmental biology regarding the importance of the temporal component of transcriptional
regulation in specifying developmental outcomes. For example, one recent study has demon-
strated that the limited readout time imposed by short nuclear cycles in early Drosophila
development places strict constraints on the kinds of regulatory architecture that could be
responsible for driving observed patterns of hunchback gene expression [296]. Other recent
work has indicated that the pioneer factor Zelda plays a key role in regulating both the
timing and probability of transcriptional activation following mitosis [320, 75]. Our work
complements these previous observations by exploring yet another aspect of the interplay
between timing and transcriptional regulation. We have shown that, in the case of eve
stripe 2, transcription factors regulate the onset of transcriptional quiescence, toff , across the
stripe, thus demonstrating that the embryo actively leverages the differential duration of
transcriptional engagement as a strategy to generate patterns of gene expression. Together,
these recent findings suggest that, if the field is make progress toward a predictive picture of
pattern formation in development, it will be necessary to go beyond the widespread steady-
state, static picture of pattern formation in development put forward by previous single-cell
transcriptional activity studies that focused on the study of snapshots of fixed embryos [230,
187, 317, 330] and embrace a dynamical description that acknowledges that development is
a process that occurs outside of steady state [11].

To determine whether this binary control of the transcriptional time window and the ana-
log control of the mean transcription rate share a common molecular mechanisms, we utilized
a variety of theoretical and computational tools in conjunction with our live-imaging data.
Specifically, to uncover how the mean rate of transcription is regulated across the stripe, we
developed a cpHMM that is capable of inferring the instantaneous activity state of individ-
ual gene loci from MS2 traces. We used this cpHMM to infer average promoter-switching
parameters across the stripe (Figure 2.5). In agreement with previous measurements of vari-
ous gene expression patterns [317, 68, 98, 330], our results revealed that the burst frequency
(kon) is the main bursting parameter regulated by the input transcription factors across eve
stripe 2. This increase in kon in the stripe center functions to increase the fraction of time
that nuclei spend in the active transcriptional state.

Importantly, our cpHMM algorithm is not limited to the eve stripe 2 system and should
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prove useful to infer the underlying regulatory kinetics of any gene that is tagged using
approaches such as the MS2 or PP7 systems in any organism [170, 98]. Further, the method
could be used to infer the state of the ribosome as mRNA is being translated into protein in
novel single-molecule in vivo translation assays [219, 306, 322, 315]. Thus, we envision that
our method will be useful for the broader biophysical analysis of in vivo cellular processes
at the single-molecule level.

Having identified kon as the primary kinetic mode by which transcription factors modulate
the mean rate of expression across eve stripe 2, we next sought to probe the relationship be-
tween bursting and the transcriptional time window (Figure 2.6A). We adapted our cpHMM
to go beyond time-independent models of promoter switching to infer the regulation of these
rates across both space and time. We observed striking temporal trends indicating that the
burst frequency responds dynamically to time-varying transcription factor inputs. However,
we noted a significant disconnect between temporal trends in the burst frequency and the
onset of transcriptional quiescence. In particular, kon either increased or remained constant
near the stripe center even as a significant fraction of eve nuclei transitioned into quiescence
(Figure 2.6C and D). We reasoned that the onset of transcriptional quiescence is likely not
the result of a progressive reduction in burst frequency, amplitude, or duration, and is in-
stead driven by molecular processes that are distinct from those that regulate transcriptional
bursting, such as a repressor-induced shift in nucleosome position that prevents activating
transcription factors from binding to the stripe 2 enhancer.

To test this hypothesis, we utilized a logistic regression framework and time-resolved
data for the primary regulators of eve stripe 2 to query the regulatory logic exhibited by
the time window and bursting, respectively (SI Appendix, section A.3.8). In this context,
the logistic regressions served as a robust statistical tool for drawing inferences from ex-
isting data that were not obvious (or verifiable) by simple visual inspection. Consistent
with our time-resolved cpHMM results, the two regulatory strategies responded to tran-
scription factor concentrations in different ways. On the one hand, increasing levels of Giant
and Krüppel were sufficient to explain the onset of transcriptional quiescence in the stripe
flanks (Figure 2.7A and D). This observation points to a model in which repressor levels
act unilaterally—without respect to coincident levels of activator proteins—to shut off tran-
scription at loci in an (at least effectively) irreversible fashion. Conversely, the joint action
of Giant, Krüppel, and Hunchback was necessary to recapitulate the observed pattern of
transcriptional bursting (Figure 2.7B and F).

This difference in the regulatory logic observed for the two strategies dissected in this
work suggests that control of the transcriptional time window and the modulation of the
average transcription rate arise from two distinct, orthogonal molecular mechanisms. It is
also notable that our model finds that Hunchback activation is necessary in order to fully
explain the observed pattern of transcriptional bursting in eve stripe 2. A recent study has
suggested that Hunchback actually functions as a repressor of eve stripe 2, and that indirect
activation occurs via counter-repression of Hunchback by the maternal factor Caudal [303].
While we cannot rule out the possibility that Hunchback acts indirectly, the strong link
between rising Hunchback levels and the increase in eve 2 activity in the stripe center is
most consistent with Hunchback playing a traditional activating role. Additional work will
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be necessary to determine whether this correlation between rising Hunchback levels and
increased stripe activity can be reconciled with the counter-repression hypothesis proposed
in [303]. Lastly, we note that the striking absence of a direct functional role for Bicoid in the
regulation of either phenomenon suggests that, while Bicoid is almost certainly necessary for
the expression of eve stripe 2 [278], it does not play a direct role in dictating the magnitude
or duration of eve stripe 2 transcription. In this interpretation, Bicoid functions like a
general transcription factor, facilitating the transcription of eve 2 without directly conferring
spatiotemporal information.

In addition to gleaning valuable insights into the mechanisms driving the regulation of
transcription of the eve stripe 2 enhancer, our logistic regression framework makes quantita-
tive and falsifiable predictions about the regulation of this stripe for combinations of input
transcription factors concentrations that the embryo does not encounter in the wild-type
setting. For instance, our finding that repressors alone drive the onset of transcriptional qui-
escence predicts that this onset should be unaltered in mutated eve stripe 2 enhancers where
some or all Hunchback binding sites have been disrupted. In this scenario, transcriptional
activity, initially arising due to permissive levels of Bicoid, would shut off in precisely the
same manner as observed for the full enhancer (compare upper right panel in Figure 2.7D to
lower left panel). In the absence of Hunchback activation, the model also predicts reduced
levels of transcriptional bursting, particularly late in nuclear cycle 14 (compare upper right
panel of Figure 2.7F to lower left panel). Similarly, our model could be used to predict the
expected stripe profile in mutant embryos, where the expression of one or more gap genes
has been altered or abolished. We note, however, that the interconnected nature of the
gap gene network [142] means that it would be necessary to re-image all three gap genes
that regulate eve stripe 2 in order to generate data such as shown in Figure 2.7C, since
any change to one will affect the expression patterns of all. Thus, additional binding site
mutation studies similar to the one described above likely represent the most direct path to
testing our model’s predictions. Taken together, we anticipate that the approaches outlined
in this work will serve as a tool both for extracting additional insights from experimental
data and for motivating additional experiments aimed at answering meaningful questions
about the mechanistic underpinnings of gene regulation.

We also observe that certain aspects of the system remain beyond the scope of our
model. Most notably, while loci engaged in transcriptional bursting appear to continuously
sense changes in transcription factor concentrations, it remains an open question whether loci
continue to read out transcription factor concentrations following the onset of transcriptional
quiescence. While the transition appears irreversible in our data, it is possible that quiescence
is, in fact, reversible but simply not observed because repressor levels increase over time in
our region of interest. The temporally resolved manipulation of repressor concentration
through, for example, optogenetics [137], could make it possible to deplete repressors from
the nucleus after transcriptional quiescence in order to determine whether this quiescent
state is reversible.

In order to further test these and other hypotheses, it will be critical to move beyond
spatiotemporal averages for transcription factor inputs (Figure 2.7C) and, instead, use live
single-nucleus measurements to directly correlate input transcription factor concentration
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dynamics with the corresponding transcriptional activity at the single-cell level [135]. Ex-
perimentally, we recently demonstrated the simultaneous measurement of inputs and out-
puts in single nuclei of a living fly embryo using novel genetically encoded LlamaTags [24].
We believe that utilizing this novel technique, in conjunction with the theoretical methods
presented here, to query the effects of targeted disruptions to transcription factor binding
domains on regulatory enhancers will constitute a powerful assay for querying transcription
factor function at the molecular level. Thus, there are clear experimental and theoretical
paths to uncovering the detailed quantitative mechanisms behind the molecular control of
transcriptional bursting and quiescence in development. Such a quantitative description is
a necessary step toward a predictive understanding of developmental decision-making that
makes it possible to calculate developmental outcomes from knowledge of the nature of the
transcription factor interactions within gene regulatory networks.

2.3 Materials and methods

2.3.1 Reporter construct

This work employed the same eve stripe 2 reporter construct developed by [27]. This con-
struct contains the even-skipped (eve) stripe 2 enhancer and promoter region (spanning
-1.7 kbp to +50 bp) upstream of the yellow reporter gene. 24 repeats of the MS2 stem loop
sequence were incorporated into the 5’ end of the reporter gene.

2.3.2 Sample preparation and data collection

Sample preparation followed procedures described in [27]. In short, female virgins of yw;His-
RFP;MCP-GFP (MCP, MS2 coat protein) were crossed to males bearing the reporter gene.
Embryos were collected and mounted in halocarbon oil 27 between a semipermeable mem-
brane (Lumox film, Starstedt) and a coverslip. Data collection was performed using a Leica
SP8 Laser Scanning Confocal Microscope. Average laser power on the specimen (measured
at the output of a 10x objective) was 35 µW. Image resolution was 256 × 512 pixels, with
a pixel size of 212 nm and a pixel dwell time of 1.2 µs. The signal from each frame was
accumulated over three repetitions. At each time point, a stack of 21 images separated by
500 nm were collected. Image stacks were collected at a time resolution of 21 seconds. The
MCP-GFP and Histone-RFP were excited with a laser wavelength of 488 and 556 nm us-
ing a White Light Laser, respectively. Fluorescence was detected with two separate Hybrid
Detectors (HyD) using the 498-546 nm and 566-669 nm spectral windows. Specimens were
imaged for a minimum of 40 minutes into nuclear cleavage cycle 14.

2.3.3 Image analysis

Image analysis of live embryo movies was performed based on the protocol found in [104]
with modifications to the identification of transcriptional spots, which were segmented using
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the Trainable Weka Segmentation plugin for FIJI using the FastRandomForest algorithm
[5]. In comparison with a previous algorithm based on Difference of Gaussians [187, 104, 27],
this alternative spot segmentation approach was found to be superior for the detection of
dim transcription spots—a feature critical to establishing the precise timing of the cessation
of activity at transcriptional loci.

2.3.4 cpHMM inference code

All scripts relating to the cpHMM inference methodology developed in this work are available
at the GarciaLab/cpHMM GitHub repository. See the extended SI Materials and Methods
section, as well as SI Appendix, section A.3.4 for additional details.
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Chapter 3

Kinetic sculpting of the seven stripes
of the Drosophila even-skipped gene

This chapter is a reproduction of reference [13]

3.1 Abstract

We used live imaging to visualize the expression dynamics of the Drosophila melanogaster
even-skipped gene at single-cell and high temporal resolution as its seven stripe expression
pattern forms, and developed tools to characterize and visualize how transcriptional bursting
varies over time and space. We find that despite being created by the independent activity of
five enhancers, even-skipped stripes are sculpted by the same kinetic phenomena: a coupled
increase of burst frequency and amplitude. By tracking the position and activity of individual
nuclei, we show that stripe movement is driven by the exchange of bursting nuclei from
the posterior to anterior stripe flanks. Our work provides a conceptual, theoretical and
computational framework for dissecting pattern formation in space and time, and reveals how
the coordinated transcriptional activity of individual nuclei shape complex developmental
patterns.

3.2 Introduction

The patterns of gene expression that choreograph animal development are formed dynam-
ically by an interplay between processes - transcription, mRNA decay and degradation,
diffusion, directional transport and the migration of cells and tissues - that vary in both
space and time. However the spatial aspects of transcription have dominated the study of
developmental gene expression, with the role of temporal processes in shaping patterns re-
ceiving comparably little attention [25, 104]. Gene expression patterns are dynamic on many
levels. They form, change and disappear over time, often as cells, tissues and organs are
forming and moving in the developing embryo [173]. Furthermore the transcriptional process
that creates these patterns is itself highly dynamic. The classical view of transcription as
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a switch or a tunable rheostat has been replaced in recent years by the recognition that
mRNA synthesis occurs in bursts, with promoters switching stochastically between an ON
state where polymerases are loaded and begin elongating, and an OFF state where few or
no new transcripts are initiated (Figure 3.1A) [327, 111, 19, 144, 50, 324, 247, 186, 223, 187,
317, 180, 98, 68, 128, 165].

A slew of studies, from theoretical models [160, 233, 255, 257, 319, 46, 47, 268, 156, 258]
to imaging-based analyses [317, 98, 265, 149, 111, 217, 287, 281, 229, 7, 128, 330] , have
shown that overall rates of mRNA synthesis can be adjusted by controlling the bursting
process. Changing the duration or bursts, the separation between bursts, or the rate at
which polymerases are loaded during a burst (Figure 3.1B) will affect mRNA production, and
modulating any or all of these parameters over space and time could, in principle, produce
arbitrarily complex output patterns. However, it remains unclear how diverse the kinetic
strategies employed by different regulatory sequences actually are, and what, if anything,
constrains how these different kinetic parameters are used by evolution to shape patterns of
expression.

In this paper we set out to compare the ways in which different enhancers that drive
similar types of spatiotemporal patterns during animal development deploy transcriptional
bursting to produce their outputs by examining transcription at the single-cell level in living
embryos. We use as our model the Drosophila melanogaster even-skipped (eve) gene whose
seven stripes ring the embryo in the cellularizing blastoderm (nuclear cycle 14; nc14) in the
hour preceding gastrulation [286, 92, 148, 195, 198, 93] .

The eve stripes are produced through the largely independent activity of five discrete
enhancers (Figure 3.1C) that drive individual stripes (the stripe 1, stripe 2, and stripe 5
enhancers) or pairs of stripes (the stripe 3/7 and stripe 4/6 enhancers) [125, 112, 279] .
These enhancers respond in different ways to canonical maternal factors Bicoid (Bcd) and
Caudal (Cad), and gap genes Hunchback (Hb), Giant (Gt), Krüppel (Kr), Knirps (Kni)
and Sloppy Paired 1 (Slp1), among others, balancing activating and repressive inputs to
generate novel output patterns [201] . For example, the eve stripe 2 enhancer is activated in
the anterior by Bcd and Hb, and repressed by Gt and Kr, ultimately expressing in a stripe
of nuclei that fall between the domains occupied by these two repressors [93, 278] .

Transcriptional bursting is widespread during D. melanogaster development [187, 317,
27, 98, 22, 135, 330, 230, 165] . For example, [27] utilized the MS2 system, which exploits
the interaction between the phage MS2 coat protein (MCP) and a short RNA stem loop
to fluorescently label nascent transcripts as they are being synthesized [14, 104, 91] , to
directly visualize and quantify transcription from an eve stripe 2 transgene at single nucleus
resolution. They showed that the stripe is generated by bursts of transcriptional activity
in the nuclei that form it, and that the aggregate pattern is highly dynamic, forming and
dissipating rapidly during nc14.

Our objective in carrying out this work was twofold: first, to characterize the detailed dy-
namics of this classical and well-studied pattern as a means to reveal how multiple enhancers
dictate potentially distinct bursting dynamics to shape a gene expression in the embryo, and
second, to establish a rigorous systematic framework for analyzing such data, and conceptual
paradigms for characterizing what we observe from this new type of experiment. Indeed,
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Figure 3.1: Visualizing live transcription from the seven stripes of D. melanogaster
even-skipped. (A) Simple model of transcriptional bursting by promoter switching between
ON and OFF states. (B) The promoter switching parameters define the burst duration, the
duration between bursts, and amplitude. (C) Wild-type eve locus showing the five stripe
enhancers (1,2,3+7,4+6,5) and the late enhancer element. Colors for individual stripes are
used throughout figures. (D) Layout of the engineered eve BAC showing the locations of
the MS2 stem loop array and yellow gene.
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the advent of live imaging in the context of development calls for the establishment of a new
language and new metrics for characterizing the formation of gene expression patterns in
space and time.

We use a variety of new analyses to generate a kinetic fingerprint of eve transcription
during stripe formation - a record of temporal and spatial variation in the bursting state of
the promoters of 3,000 nuclei covering all seven stripes throughout nc14 - and to visualize
different aspects of eve regulation. We find that all seven eve stripes are sculpted by the
same regulatory strategies: the elimination of new bursts between stripes; the enhancement
of bursting across stripes through a coupled increase in kon and r; and the refinement and
movement of stripe positions by the addition of bursting nuclei along the anterior edge of the
stripes and the loss of bursting along their posterior edge. Thus, in this experiment and with
our new set of analytical tools, we capture not only how single cell transcriptional activity
encodes the formation of the stripes, but also how this activity is modulated in space and
time in order to create and displace a complex pattern of gene activity across the embryo.

3.3 Results

3.3.1 Live imaging of eve expression

We used recombineering [308] to modify a bacterial artificial chromosome (BAC) [299] con-
taining the D. melanogaster eve gene and all of its enhancers and regulatory elements [300] ,
replacing the coding region with an array of MS2 stem loops followed by the D. melanogaster
yellow (y) gene (Figure 3.1D; [27]). The 4,329 base pair y gene, which is longer than the
endogenous eve transcript, is phenotypically neutral and provides a means to increase the
number of RNA Polymerase II (Pol II) molecules loaded onto the gene in order to amplify
the signal (see Methods for a discussion of how the structure of the reporter genes affects the
fluorescence signal, analyses and inferences performed throughout this work). We inserted
the engineered BAC into a targeted site on chromosome 3L using ΦC31 integrase-mediated
recombination [89] , and homozygosed the line, which showed no signs of adverse effects of
the transgene.

We crossed males from this line with females carrying transgenes that express in embryos
an RFP-labeled histone to visualize nuclei, and an MCP-GFP fusion that binds the MS2 RNA
stem loops. The result is the direct visualization and quantification of nascent transcripts
at the transgene locus as fluorescent puncta [104]. The temporal and spatial pattern of
eve transgene transcription recapitulates the well-characterized dynamics of eve expression,
most notably formation of the characteristic seven stripes in the late blastoderm (Figure 3.2;
[286, 148, 195]. Further, as recently demonstrated in [165] this BAC reporter construct
quantitatively recapitulates the cytoplasmic eve mRNA pattern as measured by FISH [165,
196, 184].

We used laser-scanning confocal microscopy to record, with high temporal resolution
and high magnification, two color (MCP-GFP and histone RFP) movies of embryos from
before nc14 through gastrulation. We optimized our data collection strategy to sample
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Figure 3.2: Live expression of even-skipped. Stills from maximum projection renderings
of image stacks of an embryo spanning all seven stripes. This movie was collected with a
40x objective for illustration purposes only. Movies used for data analysis were collected at
higher resolution as described in the text.
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multiple stripes (three to five) in each movie, to obtain high temporal resolution (one Z-
stack, corresponding to each time point of our movies, every 16.8 seconds) and to have
optimal signal to noise with minimal bleaching. In total, we collected 11 movies , with every
stripe imaged at least five times (see Table 1).

We used a custom image processing pipeline [104, 165] to identify nuclei, track fluorescent
puncta and extract fluorescence intensities in each nucleus over time. The resulting data
(File S1) contains fluorescence traces from 2,961 nuclei at an interpolated time interval of
20s, representative examples of which are shown in Figure 3.3A.

We first sought to reexamine the previously characterized temporal dynamics of stripe
formation [286, 92, 148, 195] using the increased temporal resolution (relative to earlier
analyses of fixed embryos and of slowly maturing fluorescent protein reporters) of these
data (Figure 3.3B). Early imaging studies described eve as being expressed broadly in nc13
and early nc14 embryos before refining sequentially into four, then seven stripes [93, 198] .
Subsequent work with improved labeling and imaging techniques [286, 92] revealed an initial
phase with broad domains in the anterior and posterior, followed by the formation of stripes
from within these broad domains and, eventually, amplification of the stripe pattern.

During nc14, we first observe eve transcription beginning approximately five minutes after
the onset of anaphase. The initial transcription covers a broad swath of the embryo, from
around 25% to 75% egg-length, with the highest activity in two domains roughly centered
in the anterior and posterior halves of the embryo respectively. The greatest fluorescence
signal during the first 25 minutes of nc14, when stripes are not yet fully formed, is in the
most anterior region of eve transcription, in an area in which stripe 1 will eventually form.

Although the full seven stripe pattern is not fully formed until around 25 minutes, the
three anterior-most stripes are already apparent as locally high areas of fluorescence intensity
as early as 10 minutes. By 20 minutes stripes 1, 2 and 3 have clearly separated from
background, stripes 4 and 6 appear to split off from a large posterior domain, and stripe 7
forms de novo in the posterior. Stripe 5 appears as a distinct stripe last, emerging in an
area of low transcriptional activity left behind following the splitting of stripes 4 and 6. The
stripes persist for the remainder of nc14, gradually increasing in fluorescence intensity until
they reach a peak at around 35 minutes into nc14.

The positions of stripes 1-3 along the anterior-posterior (AP) axis are largely stable after
they form, while stripes 4-6 show small anterior shifts. Stripe 7 makes a more dramatic
movement towards the anterior, moving approximately 8% of egg-length, or around 40 µm
from its initial location. The quantitative characterization of this stripe movement, the
decoupling between stripes and nuclei, and the quantification of transcriptional bursting
dynamics in each nucleus necessitated the development of a method, described below, to
dynamically define the position of stripes throughout each movie.

3.3.2 Modeling and inference of promoter state

As expected, the fluorescence traces from individual nuclei show clear hallmarks of tran-
scriptional bursting, with apparent stochastic fluctuations between states with low and high
fluorescence output (Figure 3.3A). Following previous work in the field [111, 50, 327, 186,
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Figure 3.3: Spatiotemporal dynamics of even-skipped expression. (A) Fluorescence
traces from two representative nuclei (particle ID = 1.0163 and 11.0448). (B) Average
fluorescence over space and time showing stripe formation, modulation and movement. The
time resolution along the y-axis is 20s. The positions of nuclei along the x-axis were registered
across movies based on the inferred position of stripe centers, and placed into bins of one
percent embryo length, with the average fluorescence of all nuclei in each bin plotted. (A,
shading corresponds to the error estimated based on the background fluorescence fluctuations
as described in [104])
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223, 187, 317, 180, 98, 68, 128, 330, 27, 230, 184] , we model bursting as a simple Markovian
process in which a promoter switches stochastically between an OFF and an ON state with
rates kon and koff . When the promoter is in the ON state, we assume it loads polymerases
continuously with a constant rate r (Figure 3.1A).

In our implementation of the MS2 system, once a polymerase molecule transcribes the
stem loops located at the 5’ end of the gene, the MCP-GFP molecules bound to the stem
loops produce a constant fluorescent signal at the locus that persists until this polymerase
completes its traversal of the gene. Building off of the method presented in [165], we esti-
mated this polymerase transit time as the displacement that gives the minimum value in the
autocorrelation of the single frame differences in the fluorescent signal (see Methods). The
rationale for this approach was that every increase in signal due to polymerase loading at
time t should be accompanied by a corresponding decrease in signal at time t+telong due
to the completion of a transcriptional elongation cycle with a delay equal to the elongation
time [56, 68]. We arrived at an estimate of 140s (Figure 3.4A), consistent with a direct
measurement of the rate of polymerase elongation of 2,700 bp/min from [99] and the length
of the construct (6,563bp).

We model the bursting process at each promoter in discrete time steps of ∆t = 20s, set
by the time resolution of our imaging. Under our model, in each time window a promoter
is either OFF and not loading polymerases, or ON and loading polymerases at a fixed rate.
A promoter that is in the ON state loads ∆t × r polymerases, producing a single pulse
of fluorescence proportional to ∆t × r (with the proportionality factor determined by the
fluorescence of GFP and the fraction of MS2 loops bound by MCP-GFP). This pulse lasts
at the locus for 140s, at which point all polymerase molecules loaded during the original
time window have terminated transcribing (Figure 3.4B). Since we do not calibrate the
fluorescence signal to the number of polymerase molecules for this construct, in practice we
fold the proportionality factor into r altering its units from polymerases loaded per unit time
to fluorescence signal produced per unit time. Since many transcriptional bursts last for
longer than 20s, the fluorescence output of a single burst is a sum of the pulses generated
during each time window.

In the embryos we imaged here, the MS2 BAC is heterozygous, contributed only by the
father, while the mother contributes the MCP-GFP. However DNA replication occurs within
an average of 10 mins for loci in nc14 [207, 243, 273], meaning that there are actually two
sister chromatids with the MS2 containing transgene in every nucleus. Because of sister
chromatid cohesion, we can not, in general, discriminate both copies [100, 312, 187]. As it
is still unclear how the sister chromatids influence each other’s transcription [207, 165, 330],
we model the locus as having two independent promoters that operate independently but
governed by the same bursting parameters. Thus the system can be in one of three states:
OFF, one promoter ON, and two promoters ON (Figure 3.4B).

If we know the state of the promoter over time, we can reconstruct its expected fluores-
cence output by summing 140s pulses beginning at each point where the promoter is ON and
having height r if one promoter is ON or height 2 x r if two promoters are ON (Figure 3.4C).
Traces modeled from hypothetical promoter state sequences (Figure 3.4C) have the features
of the observed fluorescence signal: linear increases in intensity (corresponding to periods
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Figure 3.4: Modeling bursting in individual nuclei. (A) A key parameter in relating
fluorescence output to the bursting state of a promoter is the time it takes for a polymerase
to transit the gene, which we determined as approximately 140s by examining the autocorre-
lation (red line) of the change in fluorescence. Gray lines show 100 bootstraps over randomly
selected sets of 80% of nuclei; note they almost perfectly overlap the red line. (B) Three
state model accounting for post-replication presence of sister chromatids. When either pro-
moter is ON for a short time period ∆t, loads polymerases at a constant rate contributing
a pulse of polymerase that persists for 140s. (C) Simplified example of the expected ob-
served fluorescence (red line) produced from a hypothetical promoter state sequence. The
fluorescence is the sum of the fluorescence pulses produced when one or both promoters
are ON (given by the height of the green bars). (D-F) Representative fluorescence traces
from individual nuclei (blue lines), inferred bursting pattern (green bars) and fluorescence
imputed by cpHMM (red line) for particles 1.0163 (D), 11.0448 (E) and 5.0231 (F).
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when the promoter is ON); plateaus (corresponding to periods when transcriptional initia-
tion is matched with previously initiated polymerases completing their transit of the gene);
and linear signal decays (corresponding to periods when the promoter is OFF but previously
initiated polymerases are still transiting the gene) [27, 104].

However, when given a fluorescence trace, it is not trivial to infer the promoter state
sequence that generated it, owing to the time convolution between promoter state and flu-
orescence output. To solve this problem, we developed a compound state hidden Markov
model (cpHMM, described in [165]) that estimates global parameters kon, koff , and r for a set
of traces, and allows us to identify the maximum-likelihood promoter state sequence under
these parameters for every trace via the Viterbi algorithm.

The cpHMM thus accomplishes two aims central to treating these data in a more rigorous
and biologically meaningful manner. First, it allows us to describe the bursting behavior of
any set of nuclei in quantitative terms. Across all seven stripes, the model infers approximate
kon koff values of 0.60 events per minute and an r of 67 AU per minute. And second, by
providing a means to fit a sequence of ON and OFF states to the data from each nucleus, the
cpHMM allows us to shift the focus in the analysis of individual traces from fluorescence,
which only indirectly reflects the temporal behavior of a promoter, to the instantaneous
promoter state (Figure 3.4D-F).

3.3.3 Dynamic determination of stripe positions

Before analyzing the data further we had to solve two practical problems. To compare the
kinetic behavior of individual stripes, we had to determine which nuclei were in each stripe
at every time point, a process complicated by the movement of stripes relative to both the
embryo and nuclei. Further, to analyze the data in toto, we also had to register the 11
movies relative to each other and to the embryo.

To address these challenges, we used a Gaussian mixture model to cluster bursting nuclei
in each movie in a series of overlapping six-minute time windows based on their x and y
positions in the image (Figure 3.5A). This clustering reliably separates nuclei into individual
stripes. We next determined the orientation of each stripe to the AP and imaging axes by
fitting a line to coordinates of all nuclei assigned to that stripe in each movie (Figure 3.5B).
We fit a line with this slope to bursting nuclei from each time window (Figures 5C and 5D),
and use these fits to generate a linear model of the position of each stripe in each image
over time, which we use to reorient the stripe so that it is perpendicular to the image x-axis
(Figure 3.5E).

We next use the known coordinates of the anterior and posterior poles of the embryo
to convert the image x-axis to AP position, and register the examples of each stripe from
different movies by setting the AP position of the center of each stripe at 35 min in nc14
to the mean AP position of all examples of that stripe at 35 min, adjusting the position of
the stripe at other time points by the same correction (Figure 3.5F). As the stripes are not
all present until after 25 min in nc14, we assign and register nuclei before that point based
on the stripe position at 25 min. The stripe assignment is invariant over bootstrapping of
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Figure 3.5: Stripe assignment and alignment. (A) We preliminarily assign bursting
nuclei to stripes by applying a Gaussian mixture model to each movie independently in
overlapping six-minute time windows with the number of Gaussians equal to the number of
stripes captured in that movie. (B-D) We next determine the orientation of each stripe to
the imaging axes by fitting a line to coordinates of all nuclei from t ¿ 25 min assigned to that
stripe in each movie and time window. (E) We next determine the orientation of each stripe
to the imaging axes by fitting a line to coordinates of all nuclei from t ¿ 25 min assigned
to that stripe in each movie and time window. (F) The known coordinates of the anterior
and posterior poles of the embryo are used to convert the image x-axis to AP position and
register the stripes from different movies to each other, as shown here for nuclei from Movie
2 colored by stripe and nuclei corresponding to all other movies drawn in grey.
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movies, and the standard deviation of the AP displacement over bootstrapping of movies is
0.0016.

Collectively these data represent an easy to visualize and interpret kinetic fingerprint of
stripe formation: a record of every transcriptional burst that occurred during the formation
of eve stripes in these embryos (Figure 3.6A).

3.3.4 Bursting dynamics of individual nuclei

We used the output of the cpHMM and registration process to examine the locations of
transcriptional bursts along the AP axis and over time (Figure 3.6). The most striking
feature is the almost complete lack of observable transcriptional bursts in the regions between
stripes from 25 minutes into nc14, with the exception of the 5-6 interstripe which is discussed
below (note that this is not an artifact of the movie alignment and orientation process, as
this effect is seen clearly in individual movies). We took advantage of the fact that we were
tracking bursts in individual nuclei in order to analyze the relationship between this absence
of bursting in interstripe regions and the single-nucleus bursting behavior within stripes.

Stripes are defined by sharp spatial boundaries, with the transition between the low
bursting (quiescent) state and the frequently bursting (active) state occurring from one
column of nuclei to the next (Figure 3.6), consistent with the classical descriptions of eve
stripe patterns [279, 93, 96, 278, 309, 52]. They also have sharp temporal boundaries: all of
the interstripe regions, save that between stripes 6 and 7, form in regions where there was
appreciable bursting early in nc14 that disappears at around 25 minutes into the nuclear
cycle (Figure 3.6).

To better understand how the low-bursting state in interstripes is established, we looked
at the bursting history of the nuclei in these regions (Figure 3.7). The first feature we
noticed was that most of the nuclei that ultimately form the interstripe were never detected
to burst at any point in nc14 (Figure 3.7A,B). With the exception of the 5-6 interstripe,
these never-ON nuclei effectively form the boundaries between stripes, as essentially every
nucleus within each stripe bursts at some point during nc14 (Figure 3.7A,B).
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Figure 3.6: The kinetic fingerprint of even-skipped stripe formation. (A) Inferred
location of every transcriptional burst in all 11 movies as a function of time and where along
the anterior-posterior axis (plotted as fraction of embryo length) each burst occurred. The
size of the dot represents the duration of the burst. Collectively the data create a kinetic
fingerprint of eve stripe formation. (B) Instantaneous fraction of nuclei in the transcription-
ally active ON state as a function of time and position along the embryo.
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Figure 3.7: Stripe formation and movement. (A) Fraction of nuclei bursting before
time t as a function of position along the embryo. (B) Locations of new bursts (black
dots) in space and time along with spatiotemporal traces of nuclei that are in the OFF
state throughout nc14 (red lines). (C) Traces of nuclei positions over time (gray lines) from
stripe 7 region of movie EVED6 with timepoints where new bursts initiated colored red to
illustrate stripe movement relative to nuclei. (D) Difference in transcriptional activity as
defined as the difference between the fraction of the time each nucleus is in the ON state
in the subsequent 10 min minus the fraction of time the nucleus is in the ON state in the
preceding 10 min. Positive values represent a nucleus turning on or increasing activity, while
blue values indicate a nucleus turning off or decreasing activity.

The contrast in bursting history between stripes and interstripes is less pronounced in the
posterior, where there are fewer such never-ON nuclei in the interstripe region (Figure 3.7B,
notice the lower density of red single-nuclei tracks corresponding to never-ON nuclei). In
order to reveal the source of this reduced number of never-ON nuclei in posterior interstripes,
we analyzed their bursting history. Figure 3.7C shows the AP positions of the nuclei in one
movie covering stripe 7 as a function of time, with the period in which they are part of the
stripe highlighted. Although the stripe is clearly present throughout this period, no nuclei
remain a part of the stripe for the entirety of this 25 minute period. As time progresses,
nuclei at the posterior edge of stripe 7 shift from an active state, in which the promoter
stochastically alternates between the ON and OFF transcriptional states, to a quiescent
state in which we observe no subsequent bursting. In contrast, nuclei just off the anterior
edge of the stripe switch from a quiescent to an active state at roughly the same rate. This
leads to a net overall anterior movement of the stripe, akin to treadmilling, at a velocity of
approximately one percent of embryo length every three minutes.

Consistent with (Lim et al. 2018), the other stripes exhibit smaller and varied anterior
shifts (Figure 3.7-S1), but in every case the shift is associated with a similar coupled gain of
active nuclei along the anterior edge and loss along the posterior edge. This effect is most
clearly seen in Figure 3.7D, which shows, for each time point where a nucleus initiates a new
burst, the difference in activity (defined as the difference between the fraction of the time
the nucleus is in the ON state in the subsequent 10 min minus the fraction of the time the
nucleus is in the ON state in the preceding 10 min). For all seven stripes there is a clear
spatial pattern, with nuclei along the anterior edge of the stripe entering a bursting state and
blue nuclei along the posterior edge becoming quiescent, indicating a movement of stripes
relative to nuclei. Hence, stripe movement is associated with the dynamic switch of nuclei
between active and quiescent states and not just with the movement of nuclei themselves.

3.3.5 All seven eve stripes are created by the same regulation of
bursting kinetics

We next turned to the questions of how the spatial pattern of nuclear transcriptional activity
described above is produced by regulating bursting kinetics, and whether this regulation dif-
fers among the seven eve stripes. In principle, any pattern of transcriptional activity could
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be achieved by modulating the duration, separation and/or amplitude of bursts across space
and time. For example, a stripe could be created by varying burst separation along the
anterior-posterior axis, with nuclei in the stripe center having lower burst separation, and
those outside the stripe having long periods without bursts, or no burst at all. Alternatively,
the same stripe could be created with uniform burst separation across nuclei, but elevated
burst duration or amplitude within the stripe, or by modulating multiple parameters simul-
taneously.

Ideally, we would like to have a measure of the bursting parameters governing the be-
havior of every nucleus. However, individual MS2 traces have too few time points to allow
for accurate cpHMM inference of burst parameters at the single trace level. We therefore
used the cpHMM to infer kon, koff , and r for groups of nuclei binned on their mean flu-
orescence output and stripe. The logic of the fluorescence binning was that, given that
⟨fluorescence⟩ ∝ r kon

kon+koff
[165], nuclei that have similar kon, koff , and r will have similar

fluorescence outputs. Our inference shows that kon is very strongly regulated as a function
of average fluorescence in a consistent manner across stripes (Figure 3.8A). In contrast, only
a weak drop in koff is observed (Figure 3.8B). Finally, r also featured a strong upregulation
as a function of average fluorescence across stripes (Figure 3.8C).

As shown in Figure 3.8D, each stripe contains nuclei with a relatively wide range of
average fluorescence values. In order to reveal the bursting parameters across the AP axis
for each stripe, we averaged the single-cell bursting parameters determined in each stripe
(Figure 3.8A-C) weighted by the relative number of nuclei in each fluorescence bin present
at each position along the AP axis (Figure 3.8D). We find that the variation in bursting
parameters observed as a function of average fluorescence largely echoes the modulation of
fluorescence in space (Figure 3.8E). Specifically, while there is a subtle downregulation of
koff within stripes, kon and r are significantly upregulated in the center of each stripe.

Thus, not only do the five eve enhancers employ a common regulatory strategy for mod-
ulating the fluorescence output of nuclei to create a stripe, decreasing burst separation and
increasing burst amplitude with a constant burst duration, the precise quantitative relation-
ship among these bursting parameters is maintained across a wide range of molecular inputs
and fluorescence outputs.

3.4 Discussion

The most remarkable aspect of eve regulation is that what appears to be a regular, re-
peating pattern of nearly identical stripes is created by the largely independent activity of
five separate enhancers responding to different combinations of activators and repressors
[Fujioka1995 , 96, 279, 6, 278]. We have now shown that the connection between the stripe
enhancers is more than just that they produce the same kind of pattern: they realize these
patterns through the same control of transcriptional bursting.

Although, in principle, complex patterns of transcription could be generated by the
independent regulation of kon, koff or r, many of the key features of eve stripe regulation
we observe here involve the modulation of kon and r in concert. The most straightforward
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Figure 3.8: A common bursting control mechanism across all even-skipped stripes.
(A-C) cpHMM inference was carried over nuclei binned according to their average fluores-
cence value indicating that while (A) kon and (C) r are subject to the same regulation along
all stripes, (B) koff remains unchanged. Error bars are calculated by taking the standard
deviation across cpHMM inference results for multiple bootstrapped samples of experimental
data. (D) Distribution of average nuclear fluorescence values along the AP axis. (E) Mean
nuclear fluorescence values for each AP position together with the corresponding averaged
and weighted bursting parameters.
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explanation for this shared mode of bursting control is that there is a single molecular
pathway via which eve transcriptional bursting is regulated, with enhancers essentially having
access to only a single tunable parameter. Whether this parameter is determined by the
gene through, for example, the promoter sequence, or whether this single molecular pathway
reflects some broad common property of gene regulation, such as constraints on the general
transcriptional machinery, remains an open question. The limited data on bursting control
available for other genes in the fly [85, 98, 330] suggests that control mechanisms are not
ubiquitously the same and that they might be unique to different classes of genes.

An alternative explanation for the observed commonalities in the control of bursting is
that there is a functional reason to use this strategy. Namely, that this is not the result
of a common molecular mechanism, but rather of common selective pressures acting on
the five enhancers independently. The particular bursting control strategy uncovered here
might, for example, be more robust to fluctuations in transcription factor concentrations or
temperature, or provide more precise spatiotemporal gene expression control [271, 114]. New
experiments and theoretical work will be necessary in order to uncover the specific molecular
pathways by which bursting is controlled and to understand the functional consequences of
different bursting strategies that create the same mRNA levels.

In addition to this modulation of bursting, the fraction of nuclei that engage in tran-
scription at any point in the nuclear cycle is higher in stripe centers than in interstripes.
This regulation of the fraction of active nuclei, also seen in other genes [104], seems to reside
outside of the bursting framework. Such regulation, as well as the spatial modulation of the
window of time over which bursting ensues, suggests the presence of multiple and overlap-
ping modes of regulation that go beyond the control of bursting parameters and that can be
as relevant for pattern formation [165].

3.4.1 Stripe movement is driven primarily by expression flow

Just as gene expression patterns are dynamic in time [27], they are dynamic in space, re-
sulting in the movement of expression domains throughout the embryo during development
[142, 157]. The anterior movement of eve stripes during nc14 has been previously described
[157, 184] , and proposed to arise from a combination of nuclear movement (nuclear flow)
and movement in the pattern of regulators (expression flow), especially repressors, which
are known to shift anteriorly during nc14 as well [142, 143]. While Keränen et al. [157]
concluded that the relative contributions of these two forces were roughly equal, our data
suggest that, especially in the posterior, expression flow dominates the anterior shift of the
eve stripes.

A typical nucleus in stripe 7 moves around one percent of embryo length in the final 25
min of nc14. The stripe, however, moves around five percent of embryo length during that
time (see Figure 3.7C). Because we are tracking both the position and activity of individual
nuclei, we can visualize expression flow in action. We see nuclei transition from low activity
in the anterior interstripe to high activity in the stripe, from high activity in the stripe to
low activity off the posterior flank of eve expression, and in some cases both.
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This effect is most pronounced for the posterior stripes, but is observed for the more
anterior stripes as well, although the magnitude of the shift decreases for more anterior
stripes (Figure 3.7-S1). The difference in the amount of the effect we and Keränen et al.
attribute to expression flow is likely an effect of differences in the data used. Because we
are looking at instantaneous transcription rates while they looked at accumulated mRNA,
there is a considerable temporal lag and integration of the transcriptional activity over the
life time of eve mRNA in their data, which has the effect of underestimating the extent to
which the stripes actually move.

We also note that the extent to which nuclear flow by itself would be expected to shift
output patterns measured as a function of position in the embryo is unclear, as it would
depend on the extent to which the repositioning of regulators drives movement of nuclei
(which it is believed to do [20], and the corresponding effect that nuclear movement has on
the positioning of regulators, which remains largely unknown. One open question relates to
the temporal relationship between changes in the position of the repressor array that drives
stripe position and the transcriptional output of the stripes. For example, the anterior shift
of the stripes of eve as well as fushi tarazu has been proposed to originate, in part, from cross-
repression between these two genes [184]. Recent advances in the simultaneous monitoring
of protein concentration and transcriptional output in living embryos should help answer
this question in the near future [24, 165].

3.4.2 Characterizing dynamics patterns demands dynamics
measurements

That gene expression is a fundamentally dynamic process is not new information. However,
the tools we have had at our disposal to study gene expression so far have tended to emphasize
its static features, down to the language we use to describe the transcriptional output of a
gene. In textbooks and the scientific literature, eve has a gene expression pattern consisting
of seven stripes. But, as some earlier work emphasized [145], and we have directly visualized
here, the transcriptional output of eve, rather than a single “pattern” is a rapidly changing as
a function of time and space: it is dynamic at many time scales and across space and nuclear
positions. Indeed, at no point does eve approach anything even remotely like a steady state.

We are at the dawn of a new period in the study of transcription, as new experimental
techniques and advanced microscopy allow us to monitor transcriptional regulators, observe
their behavior at the single-molecule level, and track the transcriptional output of a gene
in living, developing animals. We have only barely begun to understand this new data and
what it can tell us about biology. While the focus in this paper was on a single gene in
a single species, we hope that this and our accompanying work [165] will have a broader
impact by beginning to establish rigorous frameworks for quantifying, characterizing and
visualizing the dynamics of transcription at the single-cell level during development that will
be required in the era of live imaging of transcription in development.
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3.5 Methods

3.5.1 Generation of MS2 tagged eve BAC

We used bacterial recombineering [308] to modify a bacterial artificial chromosome (BAC)
[299] containing the D. melanogaster eve gene and all of its enhancers and regulatory ele-
ments (BAC CH322-103K22) [300]. We replaced the coding region with an array of 24 MS2
stem loops fused to the D. melanogaster yellow gene (Figure 3.1B; [27] as described below.
We inserted our eve::MS2::yellow BAC-based construct in the D. melanogaster genome at
chromosome 3L through C31 integrase-mediated recombination (see Generation of fly lines),
and generated a viable homozygous fly line (w-; +; eve::MS2::yellow) as detailed below.

3.5.2 Reporter design

In principle the length of the reporter should not limit our ability to estimate burst parame-
ters. However, in practice a reporter construct that is too short will have insufficient signal.
Further, one that is too long will increase the dwell time of each RNA polymerase molecule
on the gene and, as a result, our cpHMM inference will require too many computational
resources. Our choice of reporter construct structure strikes a balance between these two
limitations and is ideally suited for inferring bursting parameters in the time range where
eve resides, as well as for boosting the signal-to-noise ratio. See [165] for a more detailed
discussion of reporter length-related tradeoffs.

3.5.3 Specifics of recombineering

We modified a CHORI BAC CH322-103K22 derived from [300], which contained the entire
eve locus and a GFP reporter instead of the eve coding sequence (CH322-103K22-GFP).
We replaced the GFP reporter with MS2::yellow (6665 bp) through a two step, scarless,
galK cassette-mediated bacterial recombineering [308]. Briefly, we transformed our starting
CH322-103K22-GFP BAC into E.coli recombineering strain SW102. We then electroporated
the strain with a galK cassette flanked by 50bp-long DNA homology arms homologous to
the MS2::yellow (6665 bp) reporter. Upon electroporation, we selected transformants on
M63 minimal media plates with galactose as a single carbon source. We achieved a correct
replacement of GFP sequence by galK cassette in the BAC context (CH322-103K22-galK),
validated by observing the digestion patterns produced by ApaLI restriction enzyme.

We next purified the CH322-103K22-galK BAC and transformed it into fresh E. coli
SW102 cells. We electroporated these cells with the purified MS2::yellow insert and used
M63 minimal media plates with 2-deoxy-galactose to select against bacteria with a functional
galK gene. We used colony PCR to screen for colonies with a correct MS2::yellow insertion
(CH322-103K22-MS2) replacing the galK cassette. We validated this insertion by observing
ApaLI, XhoI, SmaI, and EcoRI restriction digestion patterns and through PCR and Sanger
sequencing of the insertion junctions. We transformed our CH322-103K22-MS2 BAC in
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E.coli EPI300 cells to induce high copy numbers and purified it with a Qiagen plasmid
Midiprep kit.

3.5.4 Generation of fly lines

We sent a sample of our purified CH322-103K22-MS2 BAC to Rainbow Transgenic Flies, Inc.
for injection in D. melanogaster embryos bearing a C31 AttP insertion site in chromosome 3L
(Bloomington stock 24871; landing site VK00033; cytological location 65B2). We received
the flies that resulted from that injection and used a balancer fly line (w- ; + ; +/TM3sb) to
obtain a viable MS2 homozygous line (w- ; + ; MS2::yellow). We used line (yw; His::RFP;
MCP::GFP) as the maternal source of Histone-RFP and MCP-GFP [104].

3.5.5 Embryo Collection and Mounting

Embryo collection and mounting was done as specified in [103]. In short, we set fly crosses
between 30 males (w-; +; eve::MS2::yellow) and 80 females (yw; His::RFP; MCP::GFP) in
a plastic cage capped with a grape juice agar plate. We collected embryos from cages two
to ten days old by adding a fresh plate for 30 minutes and aging for 60 minutes to target
embryos 90 min or younger.

Embryos were mounted on a gas-permeable Lumox Film (Sarstedt - Catalog 94.6077.317)
embedded on a microscope slide hollowed on the center. Then, we coated the hydrophobic
side of the Lumox film with heptane glue and let it dry. The film allows oxygenation of
embryos during the 2-3h long imaging sessions while heptane immobilizes them.

We soaked an agar plate with Halocarbon 27 oil, picked embryos with forceps, and laid
them down on a 3 x 3 cm piece of paper tissue. We dechorionated embryos by adding 2
drops of bleach diluted in water (5.25%) on the paper tissue and incubating for 1.5 minute.
We removed bleach with a clean tissue and rinsed with 4 drops of distilled water. We then
placed the tissue paper with dechorionated embryos in water, and picked buoyant embryos
with a brush.

We lined 30 apparently healthy embryos on the Lumox film slide and added 2-3 drops of
Halocarbon 27 oil to avoid desiccation, and covered the embryos with a cover slip (Corning®
Cover Glass, No.1, 18 x 18mm) for live imaging.

3.5.6 Imaging and Optimization of Data Collection

Movies of embryonic development were recorded on a Zeiss-800 confocal laser scanning mi-
croscope in two channels, (EGFP: 488 nm; TagRFP: 561 nm). We imaged embryos on
a wide field of view, along their anterior-posterior axis, of 1024 x 256 pixels (202.8µm x
50.7µm), encompassing 3-5 stripes per movie. We tuned laser power, scanning parameters,
master gain, pinhole size and laser power to optimize signal to noise ratio without significant
photobleaching and phototoxicity.

For imaging, the following microscope settings were used: 63x oil-objective, scan mode
‘frame’, pixel size of 0.2µm, 16 bits per pixel, bidirectional scanning at a speed of 7, line step
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of 1, laser scanner dwelling per pixel of 1.03µs, laser scanner averaging of 2, averaging method
Mean, averaging mode Line, 488 nm laser power of 30µW (EGFP), 561 nm laser power of
7.5µW (TagRFP) (both powers were measured with a 10x air-objective), Master Gain in
EGFP detector of 550V, Master Gain in TagRFP detector of 650V, Digital Offset in both
detectors of 0, Digital Gain in both detectors of 1.0, and a pinhole size of 1 airy unit under
the imaging conditions mentioned above (44µm, 0.7µm/section), laser filters EGFP:SP545
and TagRFP:LBF640. This resulted in an imaging time of 633 ms per frame and a full Z-
stack of 21 frames in intervals of 0.5µm every 16.8s. Following [27, 23, 24, 165] , the imaging
conditions were determined not to affect normal development as reported by the timing of
the nuclear cycles in early development. We stopped imaging after 50 min into nuclear cycle
14, and took mid-sagittal and surface pictures of the whole embryo for localization of the
recorded field of view along the embryo’s AP axis.

3.5.7 Image processing

We used a Matlab computational pipeline based on [104, 165] to segment and extract numeric
data from our raw movies. Briefly, this software segments and processes the images from
the two channels (channel 1: MCP::GFP, channel 2: Histone::RFP) on which we collected
our data. For segmentation of channel 1, we used Fiji-Weka Segmentation 3D software; this
machine-learning-based method relies on the manual segmentation of a variety of MCP::GFP
labeled transcriptional foci in a given 21 frame Z-stack from a single dataset (EV ED11) to
produce a model for the segmentation of all datasets recorded under the same imaging con-
ditions. Next, we segmented and tracked the Histone::RFP labeled nuclei on channel 2.
Subsequently, we assigned MCP::GFP labeled transcriptional foci to their corresponding Hi-
stone::RFP labeled nuclei. Since we collected whole embryo pictures of each of our datasets,
we were able to match and locate the recorded fields of view to their right position along
the body of their corresponding embryos. Finally, we extracted position and fluorescence
values over time of all transcriptional foci to generate data structures ready to use in further
analyses.

3.5.8 Estimation of polymerase transit time

To estimate the transit time of the polymerase along the construct (which is used to deter-
mine the persistence of the fluorescence signal from a single transcript at the locus) we first
calculated, for each nucleus, the difference in fluorescence signal between adjacent timepoints
Dn,t = Fn,t+1 - Fn,t where Fn,t is the fluorescence signal for nucleus n at time point t and
then calculated the Pearson correlation coefficient of the vectors [..., Dn,t , Dn,t+1, Dn,t+2,
... ] and [..., Dn,t+d , Dn,t+d+1, Dn,t+d+2, ... ] over values of d from 1 to 20 representing
time displacements of 20 to 400 seconds. The minimum correlation occurred at 140 seconds.
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3.5.9 Compound-state Hidden Markov Model

For this work we employed a statistical method that utilizes a compound-state Hidden
Markov Model to infer bursting parameters from experimental fluorescence traces. The
theory and implementation of this method are described in detail in [165]. Briefly, param-
eters were inferred using a standard version of the Expectation Maximization Algorithm
implemented using custom-written scripts in Matlab. Our inference is carried over the full
duration of activity of each active nucleus during nuclear cycle 14. Bootstrap sampling was
used to estimate the standard error in our parameter estimates. Subsets of 3,000 data points
were used to generate time-averaged parameter estimates. Inference was not conducted for
groups for which fewer than 1,000 time points were available.

3.5.10 Data Analysis and Figures

All data were analyzed in Python using a Jupyter notebook with custom code to process raw
data and generate figures. The Jupyter notebook and all data required to run it is available
in at https://github.com/mbeisen/Berrocal_2020.

3.5.11 Data filtering

We first filtered the raw data to remove data with observations spanning less than 2,000 sec-
onds, as well as nuclei that were poorly tracked over time (defined as nuclei that moved across
the movies at an average rate of over 4.5 pixels per minute. This left 430,073 observations
from 2,959 nuclei.

3.5.12 Stripe assignment and registration

We used the Gaussian mixture model module of the Python library scikit-learn [234] to
cluster all nuclei time points in each movie in each of a series of overlapping 428 second
time windows beginning at 25 min in nc14, specifying the number of components equal to
the number of stripes captured in the movie and using the setting covariancetype = ’tied’.
We preliminarily assigned nuclei time points to a stripe if they were consistently clustered
in that stripe in the relevant time windows. We then pooled all nuclei time points assigned
to the same stripe and fit a line to the median x and y positions in the bottom (y < 128)
and top (y > 128) halves of the image. We considered the slope of this line to represent the
orientation of the stripe to the image x axis. We then went back to each time window and fit
the nuclei assigned to the stripe with a line with the previously computed slope fixed. This
produced an association of time with stripe position, from which we derived a linear model
that describes the position of each stripe in each movie at every time point.

We assigned all nuclei time points (not just bursting ones) to stripes by identifying the
stripe whose predicted position at the relevant time was closest (along the x axis) to the
nucleus being analyzed, and assigned a nucleus to the most common stripe assignment for its
individual time points. We then corrected the reorientation of the stripe at each time point

https://github.com/mbeisen/Berrocal_2020
https://github.com/mbeisen/Berrocal_2020
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to be perpendicular to the image x-axis (to enable projection along the AP axis) by setting
its new image x-axis position to be the x position of the stripe in the middle of the y-axis
(y = 128) plus the offset of the nucleus to the unoriented stripe along the x-axis. Finally,
we used the positions of the anterior and posterior poles of the embryo to map image x
coordinates to AP position. We then adjusted the AP position of each stripe in each movie
such that the center of the stripe at 35 min in nc14 had the same AP position.
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Chapter 4

Probing the limits of information
transmission in even-skipped with 2
spot experiments

Abstract

The emergence of robust developmental programs from noisy molecular processes is one of
the enduring mysteries of developmental biology. Here, we use 2 spot experiments, which
track the transcriptional output of two identical gene loci in each cell, to dissect observed
variability in even-skipped (eve) transcription in early fruit fly development. We demonstrate
that having two replicate loci from each nucleus allows us to obtain estimates for the rate
of information transmission at eve loci, in bits, by comparing the relative magnitudes of
the total (σ2

tot) and intrinsic (σ2
int) noise components. We use this insight to quantify the

information content of different regulatory “knobs,” finding for instance, that the turn-
off times of eve loci convey 1 bit of information, on average. We also track the rate of
information transmission across space and time as the even-skipped pattern forms, finding
that information transmission peaks midway through nuclear cycle 14, and is concentrated
along stripe boundaries, which achieve rates of up to approximately 1 bit per minute.

4.1 Introduction

This chapter is intended both as a coda to the results put forward in the preceding two
chapters, and as a bridge to the works that follow, in which we move from focusing on the
control of bursting in and of itself towards thinking about its consequences for the molecular
mechanisms of gene regulation and to how molecular noise impacts the capacity for gene cir-
cuits to transmit biologically useful information. Here, I lay out a series results and vignettes
arising from my analysis of (as yet) unpublished live imaging datasets taken and processed
by Augusto Berrocal, my coathor in the work from Chapter 3. These datasets feature the
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even-skipped BAC reporter used in Chapter 3 (see Figure 3.1D) expressed homozygously,
such that there can be up to two active eve loci per nucleus.

We begin by tying up a few loose ends from Chapters 2 and 3, using two spot data to
probe the molecular logic of two single-cell regulatory events found to play a role in the
formation of the even-skipped pattern: the initial decision to engage in transcription (at all,
ever; see Figure 2.1E and F), and the early onset of long-lived transcriptional quiescence in
the regions between eve stripes (Figures Figure 2.1C and D). We find that the two eve loci
within each nucleus make initial decision to enter into transcription (or not) independently;
that is, there is no nucleus-specific variable that leads to coordination in transcriptional
engagement between loci within the same nucleus.We also show that eve loci that have been
transcriptionally silenced by high repressor concentrations in the regions between stripes can,
likewise, re-engage in transcriptional activity if they enter regions that favor transcriptional
activation, suggesting that the molecular mechanisms responsible for long-lived repression
at this stage in development are reversible on rapid timescales.

Next, we use different facets transcriptional noise to probe the nature and limits of
the regulatory control of even-skipped by spatiotemporal patterns of transcription factor
proteins. Building off of previous works [46, 317, 331], we show that the level of intrinsic
noise in transcription can be used to infer how transcription factors control different burst
parameters to modulate the rate of transcription. Our results are consistent with findings in
Chapter 3, which indicated a model in which transcription factors increase eve transcription
by up-regulating the burst frequency (kon) and the burst amplitude (r).

To close, we propose that two spot experiments can serve as more than just a microscope
into the kinetic levers of gene regulation: they can be harnessed to probe the fundamental
limits of transcriptional control. We demonstrate how the unique nature of these data—
two gene “replicates” exposed to the same set of transcriptional inputs—can be used to
marginalize over the (partly or wholly unobservable) set of transcriptional inputs (c) to
estimate the “regulatory potential” of the eve locus, defined as

Preg =
σ2
tot

σ2
int

= 1 +
σ2
ext

σ2
int

, (4.1)

where σ2
tot is the total variability in transcriptional output, σ2

int is the intrinsic variability
between loci from the same nucleus, and σ2

ext = σ2
tot − σ2

int is the extrinsic component of
variability that indicates the degree to which sister loci from the same locus are correlated
(or anticorrelated) with one another. We show that Equation 4.1 can be related to the
information content, in bits, of a transcriptional signal, and use this insight to dissect the
information content of different regulatory strategies uncovered in previous chapters. Fur-
thermore, we use cpHMM decoding to estimate the rate of information transmission by eve
loci as a function of space an time. We find that eve loci transmit information at a maxi-
mum rate about 1.2 bits per minute, and that, allowing for mRNA accumulation, the total
predicted information content of the eve pattern reaches a maximum of about 4.2 bits for
the even-skipped pattern (allowing for accumulation of mRNA over time). This is strikingly
similar to the 4.1 bits found by [74] to be encoded collectively by the Gap Genes that regulate
eve.
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4.2 Probing the molecular nature of transcriptional

engagement and transcriptional silencing

4.2.1 eve loci within each nucleus decide to engage in
transcription independently

In Chapter 3, we found that a significant (but variable) fraction of eve loci located in regions
between stripes never engage in transcription across the full duration of nuclear cycle 14
(see Figure 3.7B). Thus the initial decision of whether or not to engage in transcription
constitutes a significant regulatory event that is subject to spatial control, presumably by
patterns of transcription factor proteins. Consistent with this past work, we also see a
spatial modulation in the probability, p, that eve loci engage in transcription (dashed line in
Figure 4.1B), with fewer loci located between stripes ever engaging while nearly all eve loci
in stripe centers enter into a transcriptionally active state.

A simple first question to ask about transcriptional engagement is whether, as illustrated
in Figure 4.1A, the decision to engage in transcription unfolds in a nucleus-wide fashion,
such that both loci within the same nucleus tend to engage (or not) together, or if, instead,
each locus decides independently. Following unpublished work by Albert Lin and colleagues,
we observe that we can use the spatial modulation of the engagement probability, p(x), to
formulate testable predictions for the case when each locus engages in transcription inde-
pendently. This model predicts that the fraction of nuclei with two actively transcribing loci
will be given by

p2(x) = (p(x))2 . (4.2)

Similarly, the fraction of nuclei with only one engaged locus will correspond to

p1(x) = 2p(x) (1− p(x)) , (4.3)

and the fraction of nuclei with no engaged loci will be

p0(x) = (1− p(x))2 . (4.4)

Figure 4.1B compares our measurements for each of the three quantities above (colored
circles) with the predictions of the “independent engagement” model. We find excellent
agreement between predicted and measured frequencies of zero, one, and two loci being en-
gaged across the full expanse of the even-skipped pattern. This indicates that the regulatory
processes that dictate whether or not a locus engages in transcription are intrinsic to each
eve locus. We note that conclusion is consistent with the findigs of Lin et. al. in the context
of transcription driven by hunchback P2, another widely studied regulatory element in early
fly development.
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4.2.2 Long-lived transcriptional silencing in inter-stripe regions
is reversible

A striking feature of the even-skipped pattern that we an others have noted is its dynamism
[13, 184]. For instance, in Chapter 3, we find that eve stripe seven moves towards the
anterior at a rate of about one percent of embryo length every three minutes. Importantly,
this movement largely occurs independent of the motion of nuclei within the embryo, which
means that the same nucleus may (for instance) be part of an active stripe region for one
period, and part of an inactive interstripe region for another.

This pattern motion relative to the nuclei provides a unique opportunity to probe the
dynamic nature of transcriptional activation and transcriptional silencing. Specifically, in
Chapter 2, we found that repressor-induced silencing of transcription on the flanks of eve
stripe 2 constituted a major regulatory driver of stripe formation. In the context of the
stripe 2 reporter used in those experiments, however, it was impossible to ascertain whether
the mechanism inducing this long-lived silencing was truly irreversible, or whether it merely
appeared irreversible because eve loci on the stripe flanks were only ever exposed to repressor
concentrations that increased over time. However, in the context of the full even-skipped
pattern relative to individual nuclei means that, if silencing is reversible, we should see
cases where silenced eve loci reactivate upon being overtaken by a dynamic domain of stripe
expression.

To test this hypothesis, we searched for unambiguous events in our data where individual
eve loci initially engage in transcription, undergo transcriptional silencing, and then re-
engage at some later time (Engaged → Silent → Engaged). We found that such events
are quite commonplace. Out of 6,142 qualifying loci that were detected to have engaged
in transcription, we see 575 that were silent for at least 10 minutes, and then re-engaged
subsequently. Indeed, even if we are stricter, and demand that loci be silent for a full 20
minutes to qualify, we still find 151 that meet this standard.

Figure 4.1C shows the trajectory of these 151 loci in space and time, overlaid on top of
a heat map indicating the fraction of transcriptionally active eve loci. Green line segments
indicate active periods and blue segments indicate inactive periods. This heat map shows
where each of the seven stripes are located over time. In these regions, the relative con-
centrations of activators and repressors favors active eve transcription. In most cases, we
see that the reactivated loci begin on the posterior flank of one stripe, end up in an inter-
stripe region (where they are silenced), and, finally, are overtaken by the anterior edge of
the neighboring stripe, which leads to reactivation. It is conceivable that, in these cases, the
original enhancer driving activity (e.g. the stripe 2 enhancer) remains permanently silenced
while the second enhancer (e.g. stripe 3) takes over; however, reactivation trajectories in the
stripe 1 and stripe 4+6 region suggest that the same enhancer can be reactivated. Thus, we
interpret these data as providing strong evidence that transcriptional quiescence is transient
and readily reversible.
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Figure 4.1: Probing the molecular nature of transcriptional engagement and tran-
scriptional silencing. (A) Two distinct scenarios of transcriptional engagement where the
decision to engage in transcription is nucleus-wide or independent for each locus within a
given nucleus. (B) Plot comparing observed frequencies of nuclei with 0, 1, and 2 engaged
eve transcriptional loci to predictions assuming that loci decide to engage independently.
(C) Illustration of reactivation trajectories. Heatmap shading indicates fraction of active
loci. Each line indicates AP position over time for an eve locus that was seen to undergo
reactivation. Green segments indicate frames where transcription was observed. Blue seg-
ments indicate frames with no observed transcription.

4.3 Intrinsic noise trends are consistent with

hypothesis that eve is regulated via burst

amplitude and burst frequency

A central finding in Chapter 3 is that the five enhancers regulating the seven stripes of
the even skipped pattern modulate eve activity in the same way: by controlling kon and r.
These results were obtained using cpHMM inference. At the time, we had no complementary
method to independently confirm this finding; however, it has previously been established
that the intrinsic noise in transcriptional output can be used to shed light on the regulation
of transcriptional bursting [317, 330, 46]. To do this, we calculated the intrinsic variance in
the accumulated fluorescence, defined as

σ2
intf =

1

2
⟨(f1 − f2)

2⟩, (4.5)

where f1 and f2 are the total accumulated fluorescence produced by spots 1 and 2 from the
same nucleus. We performed this calculation for all nuclei featuring two active spots that
were concurrently active for at least 25 minutes (a total of 894 unique nuclei).

As in Chapter 3, we then grouped spot pairs according to their mean fluorescence, and
calculated the average intrinsic noise for each group. As illustrated in Figure 4.2A, we found
that the intrinsic noise increases approximately linearly with average spot fluorescence. To
determine whether this trend is consistent with our previous findings using cpHMM burst
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inference, we made use of formulas from [46] that relate the mean activity and intrinsic noise
for a gene with elongation time T to underlying burst parameters. Specifically, we have that

⟨f⟩ = rTkon
kon + koff

(4.6)

for the mean and

σ2
intf = ⟨m⟩

[
1 +

2rkoff
(kon + koff )2

+
2rkoff

(kon + koff )3

(
e−T (kon+koff ) − 1

T

)]
(4.7)

for the intrinsic variance. These expression allow us predict how the intrinsic variance scales
with the mean for a known set of burst parameters. Plugging in cpHMM inference results
from Chapter 3 predicts the thrend shown as a solid black line in Figure 4.2A. We see
that the prediction captures the monotonic increase of σ2f with ⟨f⟩; however, the predicted
magnitudes do not agree. One likely explanation for this is that equations 4.6 and 4.7 pertain
to a true two state system, whereas those presented in Chapter 3 are for an effective two
state model, derived from three state model (see Figure 2.4).

In fact, as shown in the Appendix for Chapter 2 (Figure A.31), fits to a true 2 state model
tend to return koff and r that are approximately four and two times larger than effective
2 state parameters derived from 3 state model fits. If we apply these correction factors,
we find that our predictions approach the observed intrinsic noise trend (see dashed line
in Figure 4.2). Overall, we conclude that the intrinsic noise vs. mean fluorescence trend
is consistent with the model put forward in Chapter 3; however, more work is needed to
establish whether noise-based and cpHMM-based inference results are truly in quantitative
agreement with one another.

There are two routes to achieving this: first, true two state inference could be conducted
on the eve data used in the previous chapter to permit a direct comparison to the two state
noise-based model presented by [46]. Alternatively, expressions for the intrinsic noise for
systems with 3+ states that are developed in Chapter 6 (and taken originally from [311])
could be adapted to incorporate the effects of the RNAP elongation time, T , on the noise
signatures. We favor the second route, since the three state model is generally a more defen-
sible framework for conducting burst inference in the fruit fly embryo. In addition, future
work should seek to compare intrinsic noise trends across individual stripes to assess whether
these are consistent with the claim that all stripes exhibit the same regulatory signatures.
Data limitations may prohibit this with the current set, but the question certainly bears
further investigation. smFISH would also provide a powerful complementary experimental
lens on this question.

4.4 Using 2 spot experiments to probe the

information capacity of gene loci

In this section I sketch out some thoughts on connections between two spot experiments,
the different regulatory knobs we’ve explored in Chapters 2 and 3, information transfer in
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Figure 4.2: Comparing intrinsic noise signatures to cpHMM inference predictions.
(A) Plot comparing observed intrinsic noise vs. mean fluorescent trends to predictions based
off of cpHMM inference in Chapter 3. Green circles indicate noise signatures extracted from
2 spot data. Solid line indicates predictions using parameters for the effective 2 state model
inferred in Chapter 3. Dashed line indicates approximate prediction when parameters are
adjusted to simulate true 2 state model inference results.

gene circuits. Imagine a “perfect” experiment in which we can track protein concentrations
for all four Gap Genes (and whatever additional factors are deemed relevant) over time in
developing embryos while also tracking the transcriptional output of the eve stripes. Forget
MS2 for a moment and imagine instead that we can measure the instantaneous rate of
transcription, r, at individual gene loci directly. What could we do with data from such an
experiment?

One obvious question that we could answer is how accurately the transcription rate r
at gene i encodes information from the vector of transcription factor inputs experienced
by that gene, ci. An intuitive way to approach this question would be to ask how much
larger the initial variance in transcription rates is than the variance given a fixed set of the
transcription factor inputs:

Preg =
V ar(r)

V ar(r|c)
, (4.8)

where we have defined this ratio as the regulatory potential of the gene locus. Note that,
if the correspondence between r and c is perfectly precise, V ar(r|c) → 0 and (assuming
V ar(r) ̸= 0), Preg becomes infinitely large. Conversely, if the regulatory factors in c have no
impact on transcription, we will simply have that Preg = 1. Thus, Equation 4.8 provides an
intuitive measure of the strength of the regulatory relationship.

Of course, in practice, it is (for the moment) impossible to measure all relevant inputs to
a gene like eve simultaneously. Yet it turns out that Preg is still within our reach. Indeed, as
we’ve already given away in the intro, the intrinsic noise, which captures variability between
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sister gene loci from the same nucleus, is precisely V ar(r|c), such that

Preg =
σ2
tot

σ2
int

. (4.9)

In fact, if we take p(r) and p(r|c) to be approximately Gaussian, then we have that the
mutual information between r and c is simply:

I(r; c) = log2

(σ2
tot

σ2
int

)
log2(e) = log2

(
Preg

)
log2(e), (4.10)

where e is the base of the natural logarithm.
Thus, we start to see the power of two spot experiments: the fact that we have access to

two gene loci exposed to the same (potentially complex) set of transcription factor inputs
allows us to sidestep the challenge of measuring regulatory inputs entirely and probe the
information content of transcriptional outputs directly. We note that an analogous procedure
could be performed with nuclei binned by relevant biological parameters; space and time,
for instance. However, this procedure would inexorably underestimate I(r; c), since it would
factor in nucleus-to-nucleus variability in c. Thus, two spot experiments provide a unique
window into how much information can be transmitted by different regulatory outputs. We
note that, for the purposes of the exploratory analyses that follow, we assume that relevant
variables are Gaussian distributed for convenience. Testing this assumption and correcting
for deviations will represent an important step in follow-up analyses.

4.4.1 Quantifying the information content of different regulatory
strategies

In Chapter 2, we found that both the average rate of transcription and the duration of
transcriptional engagement played a significant role in driving the formation of even-skipped
stripe 2, but how much capacity does each of these regulatory strategies actually hold to
transmit biologically salient information? Here, as illustrated in Figure 4.3A, we use our
2 spot data to calculate the amount of extrinsic and intrinsic variation in the average spot
intensity (a proxy for the average transcription rate), and two components of the transcrip-
tional time window: locus turn-on times and locus turn-off times. For this simple exercise,
we look at these noise metrics taken across the full even-skipped pattern; however, we note
that it would be informative to also take a more granular approach and look at how the
regulatory impact of each knob varies as a function of position along the AP axis.

We visualize σext and σint for each regulatory parameter by generating scatter plots where
each point captures the relative parameter value for spot 1 (x axis) and spot 2 (y axis) for
a single nucleus. Figure 4.3B shows this plot for the average spot fluorescence. By eye, it
is clear that we see a non-trivial amount of correlation between sister spots, indicating that
(unsurprisingly) the mean transcription rate is subject to some degree of transcription factor
control. Our calculations confirm this, indicating that the total variation in spot intensity is
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composed of roughly equivalent intrinsic and extrinsic components, such that σ2
totf ≈ 2σ2

intf .
Plugging this in to Equation 4.10, we find that this equates to approximately 2/3 of a bit.

Moving on to the locus turn-on time, Figure 4.3C indicates a markedly lower degree of
correlation between sister spots. Indeed, we find that the ON time conveys only about 1/5
of a bit’s worth of information on average across the eve expression pattern, suggesting that
the timing of the initial onset of transcription at gene loci contains little useful regulatory
information. The on time scatters in Figure 4.3C also reveal interesting structures: we see a
sparse central component of highly correlated late turn-on times, as well as two corresponding
vertical and horizontal components (indicated by dashed ovals). We attribute to late turn-on
events previously noted in Chapter 3 (Figure 3.7C), which occur as a result of the dynamic
drifting of the even-skipped pattern over time.

Lastly, we find that a large degree of the total variability we observe in the transcriptional
turn-off time is attributable to “useful” extrinsic variability (Figure 4.3D). Indeed, we find
that intrinsic variability between sister spots comprises only about one fourth of the total
variability in off times that we observe across the eve pattern. As a result, the transcriptional
off time is highly informative, conveying precisely 1 bit of information on average across the
even-skipped profile. Here especially it would be interesting to look at the information
content of transcriptional OFF times as a function of AP position. Our expectation is that
this regulatory event could convey significantly more than 1 bit of information at stripe
boundaries, and significantly less at stripe centers.

Thus, we have used 2 spot experiments to build off of analyses presented in Chapters 2
and 3, moving beyond average spatial and temporal trends to use the relative magnitudes of
σ2
tot and σ2

int to calculate the actual information content of key regulatory strategies shaping
gene expression and pattern formation early on in fruit fly development. Yet, so far, we’ve
focused on static measures of transcriptional control. Next we will apply this same framework
to assess the rate of information transmission by eve across space and time as the 7 stripe
pattern takes form over the course of nuclear cycle 14.

4.4.2 Active eve loci transmit information at up to 1 bit per
minute

We can apply the same approach presented in the previous section to measure how much
information actively transcribing eve loci transmit per unit time. The first step in this
analysis was to apply the cpHMM method to obtain an estimate of the instantaneous rate
of transcription, r, over time for individual eve loci (Figure 4.4A). Figure 4.4B shows the
average instantaneous rate of transcription calculated from these decoded traces as a function
of AP position and time. Note that the positions of the stripes are clearly visible in these
plots as regions of elevated transcription. In similar fashion, we can likewise calculate the
intrinsic and extrinsic noise components.

We can plug these two noise components into Equation 4.10 to calculate the information
content of eve transcription. Our ultimate aim, however, is to calculate an Information rate,
with units of bits per unit time. And here we encounter a subtlety that must be reckoned
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Figure 4.3: Quantifying the information content of different regulatory strategies.
(A) We can use 2 spot experiments to measure the information content of three key parame-
ters in eve transcription: the transcriptional turn-on time, the turn-off time, and the average
rate of expression while active. (B) Scatter plot showing relationship between average spot
intensities for sister spots within the same nucleus. (C) Scatter plot comparing turn-on
times between sister spots. Dashed ovals indicate regions corresponding to instances where
one or both eve loci turn on late in nuclear cycle 14, likely due to the movements of the
even-skipped pattern over time. (D) Scatter plot depicting relative turn-off times for sister
spots.
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with: the question of averaging. On the one hand, using a single frame to calculate dI/dt
yields noisy, uninformative estimates. The natural solution is to calculate the average value
of this quantity across multiple time points; however, we find that the information content
of the transcriptional signal saturates as the size of the averaging window, ∆t, grows larger
(Figure 4.4C), such that a naive rate estimate of dI/dt = I(∆t)/∆t will yield a quantity
that decreases as ∆t increases.

We solve this problem by noting that the function I(∆t) is well fit by the CDF of an
exponential distribution times some constant, such that:

I(∆t) ≈ I0(1− e−∆t/τI ). (4.11)

Differentiating this expression with respect to time and solving for the instantaneous limit
(∆t = 0) gives us a robust estimate for the rate of information transmission:

I(∆t)

dt
=

I0
τI
. (4.12)

The red line in Figure 4.4D indicates the fit of this function to the empirical estimates of
I(∆t) for the entire dataset, which yields a characteristic time constant of τI = 3.4 minutes.
We estimate the maximum information content, I0, separately for each time-AP group, but
assume that this time constant holds for the full dataset.

Using these parameter estimates, we can now estimate the rate of information transmis-
sion by eve loci as a function of space and time. Figure 4.4D shows these estimates, where
we see that the information rate varies substantially for different parts of the eve pattern.
Comparing Figure 4.4D to the stripe positions reveals that stripe boundaries tend to be
information rich, while stripe centers tend to be information poor. For instance, we see that
eve loci in the regions between stripes 2 and 3, 4 and 5, and 5 and 6 all approach information
rates of 1 bit per minute. On the other hand, the stripe centers can reliably be picked out as
vertical stripes of blue and green, which corresponds to information rates of between 0 and
0.3 bits per minute. We also see that the information rate is not constant in time, with the
highest rates of transmission occurring between 20 and 35 minutes into nuclear cycle 14.

Do these rates make sense? A previous study has established that the Gap Gene network,
which constitutes the primary set of regulatory inputs for even-skipped, encodes about 4.1 bits
of information on average [74]. Thus, we reasoned that I0, which indicates the asymptotic
value that I approaches as we average the transcriptional signal for longer and longer, should
not significantly exceed this value. From Equation 4.12, we see that I0 can be calculated by
multiplying the information rate by τi (so, 3.4 minutes in this case). In agreement with the
above reasoning, we find that the upper limit of the information that can be gleaned from
eve transcription (I0) is approximately 4 bits, with the maximum value observed equal to
4.21 bits. It is notable, however, that many regions fall far below this upper limit, with I0
values typically falling between 0 and 2 bits in stripe centers. We also note that, although
I0 technically represents an asymptotic value, our calculations indicate that these values
can be achieved with as little as 10 minutes of averaging (or accumulation), a timescale in
agreement with the 7 minute half-life measured for a different pair rule gene, fushi tarazu,
during nuclear cycle 14 [79].
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Thus, our results appear largely to be consistent with previous works, although it is
notable that we find maximum rates of transcriptional information to occur during a period
of time (20-35 minutes) that significantly precedes the window of time (37-50 minutes) for
which these works have found the information content of eve’s Gap Gene inputs to be highest
[74, 73, 238]. A potential explanation for this is that we have limited ourselves here to looking
at gene loci that have (i) already turned on and (b) not yet been silenced. Thus, it is possible
that the high information content in the stripe flank regions persists, and even increases once
transcriptionally silenced gene loci are factored in.
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Figure 4.4: Quantifying the rate of eve information transmission over time. (A)
Plot showing a raw MS2 trace (black) overlaid with the cpHMM inference of the instanta-
neous transcription rate (green). We use these decoded traces to generate estimates of (B)
the mean rate pf transcription as a function of AP position and time into nuclear cycle 14.
(C) Plot indicating the estimated information content of the eve transcriptional output as a
function of the length of the averaging window used (in black) alongside the best-fit function
(red). (D) shows the estimated rate of information transmission across the eve pattern at
different points in time.
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Chapter 5

A matter of time: Using dynamics
and theory to uncover mechanisms of
transcriptional bursting

This chapter is a reproduction of reference [166]

Abstract

Eukaryotic transcription generally occurs in bursts of activity lasting minutes to hours;
however, state-of-the-art measurements have revealed that many of the molecular processes
that underlie bursting, such as transcription factor binding to DNA, unfold on timescales of
seconds. This temporal disconnect lies at the heart of a broader challenge in physical biology
of predicting transcriptional outcomes and cellular decision-making from the dynamics of
underlying molecular processes. Here, we review how new dynamical information about the
processes underlying transcriptional control can be combined with theoretical models that
predict not only averaged transcriptional dynamics, but also their variability, to formulate
testable hypotheses about the molecular mechanisms underlying transcriptional bursting and
control.

5.1 A disconnect between transcriptional bursting

and its underlying molecular processes

Over the past two decades, new technologies have revealed that transcription is a funda-
mentally discontinuous process characterized by transient bursts of transcriptional activity
interspersed with periods of quiescence. Although electron microscopy provided early hints
of bursty transcription [208], the advent of single-molecule fluorescence in situ hybridization
(smFISH) [88, 246], was key to establishing its central role in transcription. The single-
cell distributions of nascent RNA and cytoplasmic mRNA molecules obtained using this
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technology provided compelling, if indirect, evidence for the existence and ubiquity of gene
expression bursts, and indicated that their dynamics were subject to regulation by transcrip-
tion factors [245, 316]. These fixed-tissue inferences have been confirmed with new in vivo
RNA fluorescence labeling technologies such as the MS2/MCP [14] and PP7/PCP systems
[36], which directly reveal stochastic bursts of transcriptional activity in living cells in culture
and within animals (Figure 5.1A-C) [111, 50, 170, 27].

What is the role of transcriptional bursting in cellular decision-making? One possibility
is that bursty gene expression is intrinsically beneficial, helping (for instance) to coordinate
gene expression or to facilitate cell-fate decision-making [80]. Alternatively, bursting may
not itself be functional, but might instead be a consequence of key underlying transcriptional
processes, such as proofreading transcription factor identity [114, 271].

Bursting and its regulation are intimately tied to the molecular mechanisms that underlie
transcriptional regulation as a whole. In this Review we argue that, to make progress
toward predicting transcriptional outcomes from underlying molecular processes, we can
start with the narrower question of how the burst dynamics emerge from the kinetics of
molecular transactions at the gene locus. To illustrate the importance and challenge of
taking kinetics into account, we highlight two interrelated molecular puzzles that arise from
new measurements of the dynamics of key transcriptional processes in vivo.

First, as illustrated in Figure 5.1D and reviewed in detail in Appendix Table B.1, despite
qualitatively similar bursty traces from different organisms, bursts unfold across markedly
distinct timescales ranging from several minutes [12, 165], to tens of minutes [177, 251], all
the way to multiple hours [287]. Is this wide range of bursting timescales across organisms
reflective of distinct molecular mechanisms or is it the result of a common set of highly
malleable molecular processes?

Second, recent live imaging experiments have revealed a significant temporal discon-
nect between transcription factor binding events, which generally last for seconds, and the
transcriptional bursts that these events control, which may last from a few minutes to mul-
tiple hours. The majority of the molecular processes underlying transcriptional control are
highly transient (Figure 5.1E), with timescales ranging from milliseconds to seconds (see
Appendix Table B.2 for a detailed tabulation and discussion of these findings).

In this Review, we seek to address this second puzzle by surveying key theoretical and
experimental advances that, together, should shed light on the molecular origins of transcrip-
tional bursting and transcriptional regulation. We leverage this framework to examine two
kinds of molecular-level models that explain how slow burst dynamics could arise from fast
molecular processes. Finally, we present concrete experimental strategies based on measur-
ing variability in the timing of bursts that can be used to discern between molecular models
of transcriptional bursting.

Overall, we seek to illustrate how iterative discourse between theory and experiment
sharpens our molecular understanding of transcriptional bursting by reformulating cartoon
models as concrete mathematical statements. Throughout this Review, we focus on illus-
trative recent experimental and theoretical efforts; we therefore do not attempt to provide a
comprehensive review of the current literature (see [58, 181, 307, 250, 313, 242] for excellent
reviews).
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Figure 5.1: Separation of timescales between transcriptional bursting and its un-
derlying molecular processes. (A,B,C) Transcriptional bursting in (A) an embryo of
the fruit fly Drosophila melanogaster, (B) the nematode Caenorhabditis elegans, and (C) hu-
man cells. (D) In these and other organisms, bursting dynamics (average period of ON and
OFF) span a wide range of timescales from a few minutes to tens of hours. (E) Timescales
of the molecular processes behind transcription range from fast seconds-long transcription
factor binding to slower histone modifications, which may unfold across multiple hours or
days. A detailed summary of measurements leading to these numbers, including references,
is provided in Appendix Table B.1 and Appendix Table B.2. (A, adapted from [165]; B,
adapted from [177]; C, adapted from [251]).
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Figure 5.2: The two-state model of transcriptional bursting. (A) A two-state model
of transcriptional bursting by a promoter switching between ON and OFF states. (B) Map-
ping the bursting parameters kon, koff , and r to burst duration, separation, and amplitude,
respectively. (C) The action of an activator results in an increase in the average rate of
transcription initiation. (D) In the two-state model, this upregulation can be realized by
decreasing burst separation, increasing burst duration, increasing burst amplitude, or any
combination thereof.

5.2 The two-state model: a simple quantitative

framework for bursting dynamics

To elucidate the disconnect between molecular timescales and transcriptional bursting, we
invoke a simple and widely used model of bursting dynamics: the two-state model of promoter
switching. While the molecular reality of bursting is likely more complex than the two-state
model suggests [55, 332, 221], there is value in examining where this simple model breaks
down. This model posits that the promoter can exist in two states: a transcriptionally
active ON state and a quiescent OFF state (Figure 5.2A). The promoter stochastically
switches between these states with rates kon and koff , and loads new RNA polymerase II
(RNAP) molecules at a rate r when in the ON state [307, 256, 21, 222]. Figure 5.2B
shows a hypothetical activity trace for a gene undergoing bursty expression, where a burst
corresponds to a period of time during which the promoter is in the ON state. The average
burst duration, amplitude and separation are given by 1/koff , r and 1/kon, respectively.

Because the instantaneous transcription initiation rate during a burst is r and zero other-
wise, the average initiation rate is equal to r times the fraction of time the promoter spends
in this ON state pon, 〈

initiation rate
〉
= r pon, (5.1)
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where brackets indicate time-averaging. As shown in B.2, in steady state, pon can be ex-
pressed as a function of the transition rates kon and koff :

pon =
kon

kon + koff
. (5.2)

Plugging this solution into Equation 5.1 results in the average rate of mRNA production as
a function of the bursting parameters given by〈

initiation rate
〉
= r︸︷︷︸

transcription rate
in ON state

kon
kon + koff︸ ︷︷ ︸

probability of
ON state

. (5.3)

Equation 5.3 shows that, within the two-state model, transcription factors can influ-
ence the mean transcription rate by modulating any one of the three burst parameters (or
a combination thereof). For example, consider an activator that can increase the mean
transcription rate (Figure 5.2C) by decreasing koff , increasing kon or r, or any combination
thereof (Figure 5.2D). Both live-imaging measurements and smFISH have revealed that the
vast majority of transcription factors predominantly modulate burst separation by tuning
kon [97, 165, 12, 27, 330, 70, 316, 186]. There are also examples of the control of burst
amplitude and duration [330, 85, 177].

Yet although experiments have identified which bursting parameters are under regulatory
control, the question of how this regulation is realized at the molecular level remains open
(with one notable exception in bacteria [44]). This is because the two-state model is a
phenomenological model: we can use it to quantify burst dynamics without making any
statements about the molecular identity of the burst parameters. Nonetheless, by putting
hard numbers to bursting and identifying which parameter(s) are subject to regulation, this
framework constitutes a useful quantitative tool to formulate and test hypotheses about the
molecular mechanisms underlying transcriptional control.

For instance, consider the observation that many activators modulate burst separation.
This observation can be explained if transitions between the ON and OFF states reflect the
binding and unbinding of individual factors to regulatory DNA. Here, koff would be the
activator DNA-unbinding rate and kon would be a function of activator concentration [A],

kon([A]) = [A]kb
0, (5.4)

where kb
0 is the rate constant for activator binding.

The two-state model highlights the absurdity of this proposition: if koff were an activator
unbinding rate, then it would be on the order of 1 s−1 (Figure 5.1D and E, box 7). How-
ever, measurements of burst duration reveal that koff must be orders of magnitude smaller
(≲ 0.01 s−1, Figure 5.1D). Thus, the two-state model lends a quantitative edge to the dis-
connect in Figure 5.1, confirming that transcriptional bursting cannot be solely determined
by the binding kinetics of the transcription factors that regulate it. We must therefore ex-
tend our simple two-state framework to incorporate molecular mechanisms that allow rapid
transcription factor binding and transcriptional bursts that are orders of magnitude slower.
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5.3 Bridging the timescale gap: kinetic traps and

rate-limiting steps

Recent works have considered kinetic models of transcription that describe transition dynam-
ics between distinct microscopic transcription factor binding configurations. These models
make it possible to investigate how molecular interactions facilitate important behaviors
such as combinatorial regulatory logic, sensitivity to changes in transcription factor concen-
trations, the specificity of interactions between transcription factors and their targets, and
transcriptional noise reduction [271, 114, 296, 182, 262, 82].

We illustrate how these kinetic models can shed light on the disconnect between the
timescales of transcription factor binding and bursting using the activation of the hunchback
minimal enhancer by Bicoid in the early fruit fly embryo as a case study [116, 82, 231, 296,
76, 70]. Recent in vivo single-molecule studies have revealed that Bicoid specifically binds
DNA in a highly transient fashion (∼ 1 − 2 s) [212, 214], suggesting that Bicoid binding
cannot dictate the initiation and termination of hunchback transcriptional bursts, which
happen over minutes [70]. We seek molecular models that recapitulate two key aspects of
bursting: (1) the emergence of effective ON and OFF transcriptional states, and (2) “slow”
(>1 min) fluctuations between these states. We sketch out the mathematical basis of these
efforts and review key results below; more detailed calculations can be found in B.3.

Following [296], we consider a simple activation model featuring an enhancer with iden-
tical activator binding sites. While the full model for the hunchback minimal enhancer
consists of six binding sites, we first use a simpler version with three binding sites to intro-
duce key features of our binding model before transitioning to the more realistic six binding
sites version when discussing our results. We capture the dynamics of activator binding and
unbinding at the enhancer by accounting for the transitions between all possible binding con-
figurations (Figure 5.3A). Our assumption of identical activator binding sites leads to two
simplifications: (1) the same rate, ki,j governs the switching from any configuration with i
activators bound to any configuration with j bound and, (2) all binding configurations with
the same number n of activators bound have the same rate of transcription, rn = r0 n, which
we posit to be proportional to the number of bound activators. As a result we need not
track specific binding configurations and may condense the full molecular representation in
Figure 5.3A into a simpler four-state chain-like model with one state for each possible value
of n (Figure 5.3B).
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Figure 5.3: Using theoretical models to understand the origin of ON/OFF bursting
dynamic. (A) Model with three activator binding sites. The transition rates between
states with i and j activators are given by ki,j. (B) The model in (A) can be simplified to
an effective four-state chain model in which each state corresponds to a certain number of
bound molecules and the transcription rate is proportional to the number of bound activators.
(C) Independent activator binding model with effective binding and unbinding rates plotted
above and below, respectively. Shading indicates the fraction of time that the system spends
in each state. (D) Stochastic simulations indicate that rapid activator binding alone drives
fast fluctuations about a single transcription rate. (E) Cooperative binding model in which
already-bound activators enhance the binding rate of further molecules. (F) Simulation
reveals that cooperativity can cause the system to exhibit bimodal rates of transcription
and slow fluctuations between effective ON and OFF states. (G) Rate-limiting step model
in which several molecular steps can connect a regime where binding is favored (ON) and
a realization where binding is disfavored (OFF). (H) Simulations demonstrate that rate-
limiting steps can lead to bimodal transcriptional activity reminiscent of transcriptional
bursting. Simulation results were down-sampled to a resolution of 0.5 s to ensure plot clarity
in D, F, and G. (Parameters: C, D, kb = ku = 0.5s−1; E, F, kb = 0.004 s−1, ku = 0.5 s−1;
and ω = 6.7; G,H, ku

on = ku
off = 0.5 s−1, kb

off = 0.01 s−1, kb
on = 21 s−1, Moff = 1, Mon = 2,

k1
off = 0.0023, k1

on = k2
on = 0.0046 s−1.)

Transitions up and down the chain in Figure 5.3B are governed by the effective binding
and unbinding rates k+(n) and k−(n). To calculate these rates from the microscopic transi-
tion rates ki,j, consider, for example, that there are three possible ways of transitioning from
the 0 state to the 1 state, each with rate k0,1. Thus, the effective transition rate between
states 0 and 1 is given by 3k0,1. More generally, in the effective model, activator binding
rates are

k+(n) = (N − n)kn,n+1, (5.5)

where n indicates the current number of bound activators and N is the total number of
binding sites. Similarly, activator unbinding rates are given by

k−(n) = nkn,n−1. (5.6)

These transition rates allow us to generalize to the more realistic enhancer with six binding
sites.

We first examine a system in which activator molecules bind and unbind independently
from each other (Figure 5.3C). There are only two unique microscopic rates in this system:
activator molecules bind at a rate ki,i+1 = kb = kb

0[A], with [A] being the activator con-
centration and kb

0 the binding rate constant, and unbind at a rate ki,i−1 = ku. We fix the
unbinding rate ku = 0.5 s−1 to ensure consistency with recent experimental measurements
of Bicoid in [212, 214]. For simplicity, we also set kb = 0.5 s−1 (see B.3.2.3 for details).

To gain insight into the model’s transcriptional dynamics, we employ stochastic simula-
tions based on the Gillespie Algorithm [110]; however a variety of alternative analytic and
numerical approaches exist [82, 76, 262]. Our simulations reveal that independent binding
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leads to a unimodal output behavior in which the transcription rate fluctuates rapidly about
a single average (Figure 5.3D). This result is robust to our choices of kb or ku, as well as
the number of binding sites in the enhancer (B.3.2.2). The observed lack of slow, bimodal
fluctuations leads us to conclude that the independent binding model fails to recapitulate
transcriptional bursting.

A thought-provoking study recently suggested that protein-protein interactions between
transcription factors near gene loci could generate burst-like behavior [134]. Inspired by
this work, we extend the independent binding model to consider cooperative protein-protein
interactions between activator molecules [298] that catalyze the binding of additional acti-
vators. Here, the activator binding rate is increased by a factor ω for every activator already
bound, leading to

ki,i+1 = kbωi. (5.7)

Because we assume that activator unbinding still occurs independently, the effective unbind-
ing rates remain unchanged (Equation 5.6).

Stochastic simulations of the cooperative binding model in Figure 5.3F reveal that the
output transcription rate now takes on an all-or-nothing character, fluctuating between high
and low values that act as effective ON and OFF states. Further, our simulation indicates
that these emergent fluctuations are quite slow (0.13 transitions/min for the system shown),
despite fast activator binding kinetics. Both of these phenomena result from large imbalances
between k+(n) and k−(n) that act as “kinetic traps”.

Consider the case with five bound activators. If k+(5) ≫ k−(5), then the enhancer is
much more likely to bind one more activator molecule and move to state six than to lose an
activator and drop to state four. For instance, if k+(5)/k−(5) = 23 (Figure 5.3F), then the
system will on average oscillate back and forth between states five and six 23 times before
it finally passes to state four. While it is possible to generate this kind of trap without
cooperativity at one end of the chain or the other by tuning kb, cooperative interactions are
needed to simultaneously achieve traps at both ends. Finally, it is important to note that
phenomenon is not limited to activator binding: cooperative interactions in fast molecular
reactions elsewhere in the transcriptional cycle, such as in the dynamics of pre-initiation
complex assembly, could, in principle, also induce slow fluctuations.

Inspired by the MWC model of protein allostery [76, 204], a second way to bridge the
timescale gap between activator binding and transcriptional bursting is to posit two distinct
system configurations: an ON configuration where binding is favored (kb ≫ ku) and an OFF
configuration that is less conducive to binding (kb ≪ ku). From any of the seven binding
states, this system can transition from OFF to ON by traversing Mon slow steps, each with
rate ki

on ≪ ku, where i is the step number (Figure 5.3G). Similarly, transitions from ON to
OFF are mediated by Moff steps with rates given by ki

off . Stochastic simulations indicate
that this system yields bimodal transcription that fluctuates between high and low activity
regimes on timescales set by the rate-limiting molecular steps (Figure 5.3H). Thus, as long
as these steps induce a sufficiently large shift in activator binding (kb), the rate-limiting step
model reconciles rapid activator binding with transcriptional bursting.



CHAPTER 5. A MATTER OF TIME: USING DYNAMICS AND THEORY TO
UNCOVER MECHANISMS OF TRANSCRIPTIONAL BURSTING 87

Figure 5.1B suggests candidates for these slow molecular steps. For example, the ON state
in Figure 5.3G could correspond to an open chromatin state that favors binding while the
OFF state could indicate that a nucleosome attenuates binding such that Mon = Moff = 1.
Our model also allows multiple distinct rate-limiting steps. For instance, chromatin opening
could require multiple histone modifications (Mon ≥ 2, Moff = 1), or chromatin opening
may need to be followed by enhancer-promoter co-localization to achieve a high rate of
transcription (Mon = 2, Moff = 1).

Although they are not the only possible models, the cooperativity and rate-limiting step
scenarios discussed above represent two distinct frameworks for thinking about how slow
processes like bursting can coincide with, and even arise from, rapid processes like activator
binding. The next challenge in identifying the molecular processes that drive transcriptional
bursting is to establish whether these models make experimentally distinguishable predic-
tions.

5.4 Using bursting dynamics to probe different

models of transcription

While we cannot yet directly observe the microscopic reactions responsible for bursting in
real time, these processes leave signatures in transcriptional dynamics that may distinguish
molecular realizations of bursting such as those of our cooperative binding (Figure 5.3E) and
rate-limiting step (Figure 5.3G) models. Inspired by [323, 288, 332, 75], we examine whether
the distribution of observed burst separation times (Figure 5.4A) distinguishes between these
two models. In keeping with literature convention, we refer to these separation times as first-
passage times from OFF to ON.

The variability in reactivation times provides clues into the number of hidden steps in
a molecular pathway. For instance, suppose that bursts are separated by an average time
τoff = 1/kon, as defined in the two-state model in Figure 5.2A and B. If there is only a
single rate-limiting molecular step in the reactivation pathway (Mon = 1 in Figure 5.3G),
then the first-passage times will follow an exponential distribution (Figure 5.4B) such that
the variability, defined as the standard deviation (σoff ), will simply be equal to the mean
(τoff ). Now, consider the case where two distinct molecular steps, each taking an average
τoff/2, connect the OFF and ON states (Mon = 2). To calculate the variability in the time to
complete both steps and reactivate, we need to add the variability of each step in quadrature:

σoff =

√(τoff
2

)2
+
(τoff

2

)2
=

τoff√
2
. (5.8)

More generally, in the simple case in which each step has the same rate, given an average
first-passage time of τoff , the variability in the distribution of measured first-passage times
will decrease as the number of rate-limiting steps, Mon, increases following

σoff (Mon) =
τoff√
Mon

. (5.9)
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As predicted by Equation 5.9, increasing the rate-limiting step number reduces the width
of the distribution for the rate-limiting step model obtained from stochastic simulations,
shifting passage times from an exponential distribution when Mon = 1 to increasingly peaked
gamma distributions when Mon > 1 (Figure 5.4B).

Based on these results, since the fluctuations between high- and low-activity regimes
reflect transitions through many individual binding states in the cooperative binding model
(Figure 5.3E), we might also expect this model to exhibit non-exponential first passage
times. Instead, the first-passage times are exponentially distributed (Figure 5.4C). This
result is consistent with earlier theoretical work that examined a chain model similar to
ours and found that sufficiently large reverse rates (ku in our case) cause first-passage time
distributions to exhibit approximately exponential behavior [9].

The coefficient of variation (CV = σoff/τoff ) provides a succinct way to summarize the
shape of passage time distributions for a wide range of parameter values. Figure 5.4D plots
σoff against τoff for each of the model architectures considered in Figure 5.4B and C for a
range of different τoff values. Points representing distributions with CV = 1 will fall on the
line with slope one and points for distributions with CV < 1 will fall below it. We see that
both the cooperative binding model and the single rate-limiting step model have CV values
of approximately one for a wide range of τoff values, consistent with exponential behavior.
Conversely, all models with multiple rate-limiting steps have slopes that are significantly less
than one.

Thus, by moving beyond experimentally measuring average first-passage time for a given
gene and examining its distribution, it is possible to rule out certain molecular mechanisms.
For example, a non-exponential distribution would be evidence against the cooperative bind-
ing and single rate-limiting step models (see B.3.1 and B.3.4 for details about stochastic
simulations and first-passage time calculations). While these conclusions are specific to the
models considered here, the general approach of invoking the distributions rather than means
and using stochastic simulations to derive expectations for different models can be employed
to discriminate between molecular hypotheses in a wide variety of contexts. Indeed, the
examination of distributions has been revolutionary throughout biology by making it possi-
ble to, for example, reveal the nature of mutations [197], uncover mechanisms of control of
transcriptional initiation [257] and elongation [266, 3], measure translational dynamics [33],
and even count molecules [252].

Note that, while appropriate for qualitatively estimating the order of magnitude of burst-
ing timescales, raw fluorescence measurements from MS2 and PP7 experiments such as those
in Figure 5.1A-C do not directly report on the promoter state. Rather, the signal from these
experiments is a convolution of the promoter state and the dwell time of each nascent RNA
molecule on the gene body [165]. As a result, inference techniques like those developed in
[165, 55] are often required to infer underlying burst parameters and promoter states that
can be used to estimate first-passage time distributions. Other techniques, such as measur-
ing the short-lived luminescent signal from reporters [332], have also successfully estimated
first-passage times.

The first-passage time analyses discussed here are just one of an expansive set of ap-
proaches to determining the best model to describe experimental data. For instance, direct
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Figure 5.4: Using first-passage time distributions to discriminate between models
of transcriptional bursting. (A) The outcome of stochastic simulations like those in
Figure 5.3D, F, and G (purple) is fit to a two-state model (black) and the first-passage
times out of the OFF state are measured. (B) First-passage times for the rate-limiting
step model as a function of the number of rate-limiting steps Mon calculated using stochastic
simulations. A single step results in an exponential distribution, but distributions break from
this behavior when more steps are added, yielding increasingly peaked gamma distributions.
(C) In contrast, first-passage times for the cooperative binding model follow an exponential
distribution. (D) Standard deviation as a function of mean first-passage time for various
parameters choices of the cooperative binding (blue) and the rate-limiting step models (red,
with color shading indicating the Mon values considered in (B)). Distributions with CV = 1,
such as the exponential distribution, fall on the line of slope one while gamma distributions,
with CV < 1, fall in the region below this line. (Parameters: B, ku

on = ku
off = 0.5 s−1,

kb
off = 0.01 s−1, kb

on = 21 s−1, Moff = 1, k1
off = 0.0023 s−1, ki

on = Mon0.0023 s−1; C,

kb = 0.004s−1, ku = koff , and ω = 6.7; D, see simulation scripts on GitHub for exact
parameter values.)

https://github.com/nlammers371/transcription_timescales_review.git
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fits of models to experimental time traces could be used to identify the most appropriate
model (see, e.g. [55, 275]). A discussion of this and other approaches falls beyond the scope
of this work, but we direct the reader to several excellent introductions to elements of this
field [275, 276, 209, 71].

5.5 Conclusions

The rapid development of live-imaging technologies has opened unprecedented windows into
in vivo transcriptional dynamics and the kinetics of the underlying molecular processes. We
increasingly see that transcription is complex, emergent, and—above all—highly dynamic,
but experiments alone still fail to reveal how individual molecular players come together to
realize processes that span a wide range of temporal scales, such as transcriptional bursting.

Here we have argued that theoretical models can help bridge this crucial disconnect be-
tween single-molecule dynamics and emergent transcriptional dynamics. By committing to
mathematical formulations rather than qualitative cartoon models, theoretical models make
concrete quantitative predictions that can be used to generate and test hypotheses about
the molecular underpinnings of transcriptional control. We have also shown how, although
different models of biological phenomena might be indistinguishable in their averaged be-
havior, these same models often make discernible predictions at the level of the distribution
of such behaviors.

Moving forward, it will be critical to continue developing models that are explicit about
the kinetics of their constituent molecular pieces, as well as statistical methods for con-
necting these models to in vivo measurements in an iterative dialogue between theory and
experiment. In particular, robust model selection frameworks are needed to navigate the
enormous space of possible molecular models for transcriptional control. Such theoretical
advancements will be key if we are to synthesize the remarkable experimental findings from
recent years into a truly mechanistic understanding of how transcriptional control emerges
from the joint action of its molecular components.
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Chapter 6

Competing constraints shape the
limits of gene regulation out of
thermodynamic equilibrium

6.1 Abstract

Gene regulation is central to cellular function. Yet, despite decades of work, we nonetheless
lack quantitative models that can predict how transcriptional control emerges from molec-
ular interactions at the gene locus. Thermodynamic models of transcription, which assume
that gene circuits operate at equilibrium, have previously been employed with considerable
success in the context of bacterial systems. However, the presence of ATP-dependent pro-
cesses within the eukaryotic transcriptional cycle suggests that equilibrium models may be
insufficient to capture how eukaryotic gene circuits sense and respond to input transcription
factor concentrations. Here, we employ simple kinetic models of transcription to investigate
how energy dissipation within the transcriptional cycle impacts the rate at which genes can
transmit information and drive cellular decisions. We find that biologically plausible levels
of energy input can lead to significant gains in how rapidly gene loci transmit information,
but discover that the regulatory mechanisms underlying these gains change depending on
the level of interference from off-target activator binding. When interference is low, in-
formation is maximized by harnessing energy to push the sharpness of the transcriptional
response to input transcription factors beyond its equilibrium limits. Conversely, when inter-
ference is high, conditions instead favor genes that harness energy to increase transcriptional
specificity. Our analysis further reveals that equilibrium gene regulatory mechanisms break
down as transcriptional interference increases, suggesting that energy dissipation may be
indispensable in systems where non-cognate factor interference is sufficiently large.
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6.2 Introduction

Throughout biology, systems must make accurate decisions under time constraints using
noisy molecular machinery. Eukaryotic gene regulation exemplifies this challenge: here genes
must read input concentrations of transcription factor proteins and respond by producing
appropriate levels of gene product (mRNA and eventually protein) in order to drive down-
stream cellular decisions. Interestingly, the gene activity underlying cellular decision-making
is often subject to large amounts of noise. Indeed, experiments across a wide range of organ-
isms have revealed that eukaryotic transcription is highly stochastic, occurring in episodic
bursts [26, 290, 225, 185]—periods of activity interspersed with periods of transcriptional
silence—that unfold over timescales ranging from a few minutes to multiple hours [166]. This
stochasticity means that the rate of transcription is, invariably, a noisy reflection of tran-
scription factor concentration. Given enough time, the accumulation of gene product will
tend to average out this noise, but biological processes, by their very nature, must operate
under time constraints: cells in developing fruit fly embryos have only minutes to determine
their developmental fates [2, 69], antigen recognition in T-cells unfolds over the span of a
single day [228], and even cells in adult tissues are constrained by mRNA half lives that
range from minutes to days [235].

A key question, therefore, is how the molecular architecture of gene loci—the number and
identity of biochemical steps in the transcriptional cycle, as well as the reaction rates that
connect these steps—dictates the amount of time needed for bursty gene expression to drive
accurate cellular decisions. In particular, while it is widely accepted that processes within the
eukaryotic transcriptional cycle consume biochemical energy [59, 314], we do not yet know
what non-equilibrium should “look like” in the context of transcriptional systems. Indeed,
it remains challenging not only to predict unambiguous signatures of energy expenditure
that can be detected experimentally [123, 231, 76], but also whether energy consumption
is actually harnessed to improve gene regulatory performance and, thereby, improve the
accuracy of cellular decision-making.

Here, we use concepts from information theory and statistical physics as a lens to inves-
tigate how energy dissipation impacts the timescale on which gene circuits can drive cellular
decisions. We consider a simple binary choice scenario wherein a cell must decide, as rapidly
as possible, whether it is subjected to a high or low concentration of a transcriptional ac-
tivator (c1 or c0?) based on the transcriptional output of a gene locus. The basis for this
decision is the gene’s input-output function (Figure 6.1A), which emerges from microscopic
interactions between input activator molecules and the basal transcriptional machinery at
the gene locus (Figure 6.1B) that induce differences in the output dynamics of transcriptional
bursting (Figure 6.1C) for high (c1) and low (c0) activator concentrations. These differences
in the burst dynamics, in turn, drive different rates of mRNA accumulation (Figure 6.1D).
Since each ON/OFF fluctuation is stochastic, the resulting levels of gene expression are noisy,
and the cell must wait some time T before it is possible to accurately distinguish between
c1 and c0. Our central question in this work is whether energy dissipation allows gene loci
to decrease the decision time, T , and, if so, how this performance gain manifests in terms of
measurable features of the transcriptional input-output function.
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There are multiple distinct ways in which energy dissipation could alter the input-output
behavior of a gene locus to improve cellular decision-making. As illustrated in Figure 6.1A,
non-equilibrium processes could function to increase sensitivity to differences in input tran-
scription factor concentration (“sharpness”) or to suppress transcriptional noise (“preci-
sion”). Since our model assumes that, in addition to the concentration of the cognate acti-
vator, C, the gene locus is subject to some level of non-cognate factors, W , energy dissipation
could also serve to buffer against interference from off-target activation (“specificity”).

Recent works have begun to uncover a complex space of trade-offs between these three
aspects of transcriptional performance both at and away from thermodynamic equilibrium.
A recent work found that systems operating at thermodynamic equilibrium suffer from
strict trade-offs between transcriptional specificity and transcriptional precision, but that
this trade-off could be overcome by gene circuits that spend energy to enhance specificity
through a scheme reminiscent of classical kinetic proofreading [272, 226, 136]. A separate
study demonstrated that energy dissipation could likewise function to enhance transcrip-
tional sharpness [82]. Yet, interestingly, while energy can increase sharpness and specificity
separately, another recent study has indicated that non-equilibrium levels of specificity come
at the cost of sub-optimal sharpness [113]. The same work found that energy dissipation
tends to decrease transcriptional precision, though this conclusion likely hinges on specific
modelling assumptions made by the authors [113]. Thus, the field has begun to uncover
tantalizing insights into the interplay between energy dissipation and different aspects of
transcriptional performance. However, it remains unclear how these non-equilibrium gains
and trade-offs ultimately fit together to impact how effectively gene circuits can harness
transcription factor concentrations to drive cellular decisions.

In this work, we identify a key quantity, the rate of information transmission (IR) from
input transcription factor concentrations to the output rates of transcription, as the quan-
titative link between energy-dependent changes to different aspects of the transcriptional
input-output function (Figure 6.1A) and the amount of time required for gene loci to drive
accurate biological decisions [274, 69]. As a starting point, we focus on the case where
interference from non-cognate factor binding is negligible. We demonstrate that energy dis-
sipation increases IR, both for the simple model with one binding site (NB = 1) and two
locus conformations (NLC = 2) in Figure 6.1B, and for more complex architectures that
feature multiple binding sites or multiple locus conformations. We uncover a novel tradeoff
between transcriptional sharpness and transcriptional precision that dictates the upper IR
limit in non-equilibrium gene circuits and show that, while both sharpness and precision can
be improved by energy dissipation, increasing sharpness is the key to maximizing the rate
of information transmission away from equilibrium. In addition, we find that, in gene loci
operating out of equilibrium, activator binding at a single site can drive increased sharpness
by regulating multiple successive steps in the assembly of the transcriptional machinery.
This non-equilibrium “kinetic” cooperativity matches the sharpness achieved by “classical”
cooperative interactions between activators bound at multiple sites in gene loci operating at
equilibrium.

Next, we extend our model to consider the effects of interference due to the binding of
non-cognate transcriptional activators. In contrast to recent modeling efforts [272, 113], we
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Figure 6.1: Three factors shaping transcriptional information transmission. (A)
Gene regulatory input-output function illustrating the basic biological problem considered
in this work. Here, a cell must distinguish between two activator concentrations, c0 and c1,
based off of the transcriptional output of a gene locus (purple curve). We examine how three
aspects of the transcriptional input-output function—sharpness, precision, and specificity—
combine to dictate the rate at which the transcriptional output can drive biological decisions.
(B) Four state MWC-like model of transcription used as the foundation of our investigations
throughout. Here a single activator (green square) may bind to a specific site at the gene
locus, and mRNA production occurs when the gene locus switches into its active (ON)
conformation. A hypothetical energy input is depicted along the rate from state 3 to state
0. In practice, our framework permits non-equilibrium driving to occur along any of the 8
transition rates in the model. (C) Simulated burst dynamics for one realization of the model
shown in (B). Activator binding drives different burst dynamics at loci exposed to high and
low activator concentrations. The burst cycle time is defined as the average time required
to complete one ON → OFF → ON, and sets the timescale over which biological decision
unfold. (D) Illustrative simulation results for accumulated mRNA levels driven by c1 and
c0. Solid lines show trajectories for a single locus and shaded regions indicate the standard
deviation in levels taken across 100 simulated trajectories.

build off of [35] to consider a model in which cognate and non-cognate factors must compete
with one another to activate a single gene locus. We find that the relative concentration
of wrong-to-right activator species, w/c, defines a shifting tradeoff between transcriptional
sharpness and transcriptional specificity. When w/c is small, (e.g. in the fruit fly embryo),
non-equilibrium gene circuits that maximize sharpness drive the fastest decisions. On the
other hand, when w/c is large (e.g. in cells in mammalian tissues), we find that gene circuits
must instead prioritize transcriptional specificity.

In closing, we identify hallmarks of non-equilibrium gene regulation that may be amenable
to experimental detection. We use our model to illustrate how simple experiments involving
point mutations to activator binding sites could lead to robust signatures of non-equilibrium
regulatory processes. In addition, we discuss findings that emphasize the importance of
using theoretical models that account from non-cognate factor binding when interpreting
experimental measurements of gene expression.
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6.3 Results

6.3.1 A simple model for probing the connection between energy
and information in transcription

To examine the interplay between energy and information transmission, we sought to estab-
lish models of gene circuits that capture two essential characteristics of eukaryotic transcrip-
tion: the interplay between specific and general transcription factors, and the widespread
presence of transcriptional bursting. Gene regulation hinges upon interactions between spe-
cific and general transcription factors. Even though salient regulatory information tends to
reside exclusively in the concentration a handful of specific transcription factors targeted
to binding sites within enhancers [302], these proteins are not alone sufficient to give rise
to transcription. Instead, transcription and transcriptional control depend on the interplay
between specific regulatory factors and general transcription factors, such as mediator [113,
200, 254, 153], RNA polymerase [290], nucleosomes [272, 215], and the various sub-units
of the pre-initiation complex [227]. While these factors do not themselves carry biological
information, they nonetheless constitute key molecular steps within the transcriptional cy-
cle. Moreover, some of these processes entail the dissipation of biochemical energy, opening
the door to non-equilibrium behaviors. This multiplicity of molecular players implies that
gene loci may exist in multiple (and perhaps many) distinct molecular states corresponding
different binding configurations of specific and general molecules (see, e.g., [15]).

Additionally, in recent years it has become apparent that transcriptional dynamics is
characterized by stochastic, episodic bursts of activity interspersed with periods of tran-
scriptional silence [26, 98, 188, 331, 290, 168] that unfold over timescales ranging from a
few minutes to multiple hours [166]. Since the concentration of specific transcription factors
has been shown to regulate burst dynamics [168, 331, 318], a simple model would suggest
that transcriptional bursts originate from the binding and unbinding of specific transcription
factors. However, recent in vivo measurements have revealed that activators and repressors
typically bind DNA for seconds, rather than minutes or hours [168, 185]. This temporal
disconnect between bursting and transcription factor binding suggests a model in which
transcriptional burst cycles—corresponding to OFF → ON → OFF fluctuations at the locus
(Figure 6.1C)—are determined not by transcription factor binding but, instead, by molecular
reactions involving one or more general transcription factors.

Together, these observations—the interplay between specific and general regulatory fac-
tors and the disconnect between timescales of binding and bursting—support an MWC-like
framework [240, 113, 272, 215] for modelling transcription wherein specific transcription fac-
tors act as effector molecules, conditioning the frequency with which the gene locus fluctuates
between active and inactive transcriptional conformations. The simplest model that meets
this description is one where a transcriptional activator binds to single a binding site at the
gene locus and where the locus can exist in one of two conformations: and inactive (OFF)
state where no mRNA is produced, and a transcriptionally active (ON) state where mRNA
is produced at rate r0.

If we neglect (for now) the binding of non-cognate transcription factors, this leads to



CHAPTER 6. COMPETING CONSTRAINTS SHAPE THE LIMITS OF GENE
REGULATION OUT OF THERMODYNAMIC EQUILIBRIUM 96

the four state model shown in Figure 6.1B. This model contains four basal reaction rates:
the transcription factor binding and unbinding rates (k+ and k− respectively), and the
locus activation and deactivation rates (ka and ki). We leave the molecular identity of
the activation step unspecified, but note that it may in principle be any of the elements of
the general transcriptional machinery mentioned above. In addition to these basal rates,
the η terms in Figure 6.1B capture interactions between the transcription factor and the
activation step. For instance, ηab encodes the degree to which having an activator bound
alters the rate of locus activation (ηab > 1 corresponds to activating activity). Without
these interaction terms, activator binding would have no impact on locus activation, and,
thus, no information transfer would be possible. Lastly, we note that the average rate of
mRNA production in this model is simply equal to r0(π2 + π3), where πi is the steady-state
probability of finding the system in state i.

6.3.2 Calculating energy dissipation rates and decision times

At equilibrium, all state transitions in our model must obey the law of microscopic re-
versibility. The dissipation of energy along one or more of the microscopic transitions shown
in Figure 6.1B lifts this strict equilibrium constraint and opens the door to novel forms of
non-equilibrium gene regulatory logic. For the model shown in Figure 6.1B, the amount of
energy dissipated per unit time (Φ) can be expressed as

Φ = J ln
ηabηua
ηibηba

, (6.1)

where the η terms are defined in Figure 6.1B and the net cycle flux, J , encodes the expected
number of extra clockwise (J > 0) or counterclockwise (J < 0) cycles the system will
complete per unit time; i.e. the degree to which the microscopic transitions in the system
are biased in a particular direction [133]. Φ, is a strictly positive quantity with units of kBT
per unit time that indicates how “near” or “far” a system is from thermodynamic equilibrium
[133, 169]. For ease of comparison across different realizations of our model gene circuit, we
express Φ in units of kBT per burst cycle (“energy per burst”).

Our central aim in this text is to understand how energy dissipation impacts rate at
which gene loci transmit information and drive cellular decisions. For simplicity, we assume
that c0 and c1 are constant in time. We also stipulate that the difference between these two
concentrations (δc) is relatively small, such that δc = c1−c0 = 0.1c∗, where c∗ is the midpoint
concentration c∗ = (c1 + c0)/2. This value of δc is equivalent, for example, to concentration
differences for the activator Bicoid between adjacent nuclei in early fruit fly development
[117]. Figure 6.1D shows trends indicating the predicted transcriptional output of a gene
locus when it is exposed to a high concentration of activator (c1) and a low concentration
(c0). Intuitively, it should be easier to distinguish between these two scenarios when (i) the
difference between average rates of transcript production (slope of the lines in Figure 6.1D)
is large or (ii) the noise (shaded regions) in the accumulated output is small.

The information rate, IR, codifies this intuition, providing a quantitative measure of a
gene’s ability to read out and respond to different input activator concentrations. Formally,
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IR is defined as the rate of change in the Kullback-Leibler divergence between our two
hypotheses (C = c0 and C = c1) given the expected transcriptional output of our model
gene circuit (see [61] for a formal definition of the Kullback-Leibler divergence). If we take
the noise in the transcriptional output to be approximately Gaussian (see Appendix C.2.1),
then the information rate can be expressed as

IR =
1

2

(δc
c∗

)2
︸ ︷︷ ︸
input

× s2p2︸ ︷︷ ︸
output

, (6.2)

where IR is strictly positive and has units of information per unit time, and where s and
p are the sharpness and precision of the transcriptional response, respectively, as defined in
Figure 6.1A. See Appendix C.2.2 for a full derivation of this expression. We note that the
native units of Equation 6.2 are natural log units (“nats”), but that, for ease of exposition, all
we will give all informational quantities throughout the text in the more familiar “bits”, such
that IR has units of buts per burst cycles (“bits per burst”). Note also that the precision
term, p, pertains solely to noise from intrinsic fluctuations between microscopic states at
the gene locus and does not account for Poisson noise resulting from mRNA synthesis. In
general, this shot noise is expected to be small relative to the noise from locus fluctuations
for the parameter regimes considered (see Appendix C.2.3 for details).

Equation 6.2 is composed of two terms: an input component that encodes the size of the
activator concentration gradient, and an output component that depends on two measurable
features of the transcriptional input-output function: the sharpness and the precision (Fig-
ure 6.1A). This expression provides quantitative support for intuitions outlined above: IR
can be increased both by increasing the difference between the transcription rates driven by
c1 and c0 (by increasing the sharpness) and by decreasing the amount of noise (by increasing
precision). Moreover, since both s and p can be calculated analytically from the microscopic
reaction rates in model our gene circuit (see Appendix C.2.4), Equation 6.2 makes it possi-
ble to calculate and compare information rates for gene circuits with different microscopic
reaction rates.

The information rate, in turn, dictates how rapidly cells can distinguish between the two
activator concentrations, c0 and c1, based off of the accumulated transcriptional output of a
gene circuit. Previous works have established that the theoretical lower limit for the time
required to distinguish between c0 and c1 is given by

⟨T ⟩ = ln
(1− ϵ

ϵ

)1− 2ϵ

IR
, (6.3)

where ϵ is an additional parameter that sets the error tolerance in the decision-making
process representing the probability of deciding incorrectly—i.e. choosing c1 when the true
value is c0 (or vice versa) (see Appendix C.2.5 and [69] for further details). We note the
error-tolerance ϵ in Equation 6.3 is extrinsic to the gene circuit model, and depends on
the nature of the cellular processes that are responding to the accumulated transcriptional
output. Unless otherwise noted we will follow [69] and set ϵ = 0.32, which is equivalent to
an error level of “1 sigma.”
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6.3.3 Energy dissipation increases the rate of information
transmission

With our framework in place, we sought to determine whether increasing Φ could improve
the rate at which our model gene circuit drives cellular decisions between c0 and c1. To
examine this question, we built off of methods employed in [82, 76] to develop a numerical
algorithm capable of searching the space of permissible values for the transition rates that
connect the four molecular states in our model (Figure 6.1B) to identify boundaries in bivari-
ate parameter space. The method employs an evolutionary approach, iteratively updating
microscopic transition rates until model realizations are found that that lie near the bound-
ary of achievable information rates (IR from Equation 6.2) and energy dissipation rates (Φ
from Equation 6.1). This approach will play an important role throughout in helping to un-
ravel complex relationships between key transcriptional parameters. See Appendices C.2.6
& C.2.7 for further details regarding its implementation. For this analysis (and all following)
we placed minimal constraints on the systems’ production rate, excluding only gene circuits
that were near saturating (r > 0.98r0) or basal (r < 0.02r0) activity levels.

Figure 6.2A shows the relation between IR and Φ resulting from our numerical analysis.
Here, each circle represents the IR and Φ values for a single realization of our model gene
circuit (Figure 6.1B), as defined by its compliment of transition rate values. Near equilibrium,
our analysis reveals that gene circuits can transmit information no faster than 0.035 bits per
burst (far left-hand-side of Figure 6.2A). According to Equation 6.3, this means that the
best equilibrium gene circuits require at least 110 burst cycles to drive a decision between
the c1 and c0 with an error probability of 32% (Figure 6.2B). In the developing fruit fly
embryo (D. melanogaster), where the burst timescale (τb) is approximately 2 minutes [166],
this translates to a decision time of 3.7 hours; far too slow to meet the time constraints
imposed by the duration of early nuclear cleavage cycles (between 8 and 60 minutes [2]).
Our equilibrium gene circuit would need even longer in adult nematode (C. elegans) and
mouse (M. musculus) cells, where τb is much slower, with measurements ranging from 61 to
105 minutes (T ≥ 112 hours) and 30 minutes to multiple hours (T ≥ 55 hours) for worms
[178] and mice [168], respectively. In each case, these timescales likely exceed decision time
limits imposed by cell cycle times and mRNA half decay timescales (horizontal lines in
Figure 6.2B; see Appendix C.2.8 for further details).

Can gene circuits that dissipate energy do better? Our analysis indicates that energy
dissipation does indeed open the door to improved information transmission, leading to a
fourfold increase in the upper IR limit from 0.0035 to 0.014 bits per burst cycle (Figure 6.2A).
Moreover, we find that this performance gain is realized at biologically plausible levels of en-
ergy consumption: IR reaches its maximum non-equilibrium value at Φ ≈ 20 kBT per cycle,
which is approximately equivalent to the hydrolysis of one to two ATP molecules [211]. This
corresponds to an energy-dependent decrease in decision time from 110 to just 29 burst
cycles (red shaded region in Figure 6.2B). This is enough to meet the upper decision limit
for mouse cells (Figure 6.2B). Yet there remains an absolute speed limit that no amount of
energy dissipation can overcome, as shown by the empty space below the red non-equilibrium
boundary in Figure 6.2B.
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How can gene circuits do better? Real transcriptional systems are typically far more
complex than the simple four state model from Figure 6.1B: gene enhancers typically feature
multiple transcription factor binding sites [302] and, just as importantly, transcriptional
activation depends on the combined action of multiple distinct general transcription factors
[166]. These considerations suggests that, to overcome this speed limit, we must examine the
impact of tuning two molecular “knobs”: the number of specific activator binding sites in our
model (NB), and the number molecular conformations available to the gene locus (NLC). For
simplicity, we focus on systems in which all binding sites are identical, and likewise assume
the kinetics of all molecular transitions between locus conformations to be identical. While
restrictive, we will see that this simple approach is sufficient to give rise to rich, biologically
salient behaviors. We note also that, while in the main text we explore the effects of varying
NLC and NB separately, these two mechanisms are mutually compatible and, indeed, may
act jointly in real biological systems. See Appendix C.2.9 for further details regarding the
implementation of these higher-order models.

Adding binding sites improves information-energy tradeoffs

We first examined the performance of gene circuit models with multiple binding sites. In
these models (as with the four state model described above), activator binding does not
directly dictate transitions into and out of transcriptionally active molecular states, but,
instead, functions increase to or decrease the likelihood of these transitions. Concretely, this
means that each bound activator contributes an extra factor of ηab and ηib to impact locus
activation dynamics. Models with multiple binding sites also permit cooperative interactions
between activator molecules (see Appendix C.2.9 for details). With these assumptions in
place, we employed our parameter sweep algorithm to explore tradeoffs between the rate of
energy dissipation (Φ) and the rate of information transmission (IR) for systems with 1 to 5
activator binding sites. In all cases, we held the number of locus conformations constant at
NLC = 1 (as in Figure 6.1B).

As illustrated in Figure 6.2C, we find that adding activator binding sites has the effect of
shifting the IR vs. Φ tradeoff boundary from Figure 6.2A upwards, which allows for higher
rates of information transmission for the same rate of energy dissipation. This leads to
significant IR gains, even in gene circuits operating near the equilibrium limit (as indicated
by the vertical dashed line in Figure 6.2C), with the upper equilibrium limit increasing
by a factor of twenty five from 0.0035 bits per burst cycle for NB = 1 to 0.088 bits per
cycle for NB = 5. This means that equilibrium gene circuits with 5 binding sites need as
little as 5 burst cycles to distinguish between c1 and c0; easily satisfying the decision time
constraints of the biological systems shown in Figure 6.2B. More generally, we find that
the lower decision time limit scales as the inverse of the number of binding sites squared
(T ∼ N−2

B , see Figure C.1A).
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Figure 6.2: Energy dissipation increases the rate of information transmission in
gene circuits. (A) Information rate (IR from Equation 6.2) as a function of energy dis-
sipation rate (Φ from Equation 6.1) for a parameter sweep exploring all possible model
realizations. Modest rates of energy dissipation can lead to a significant increase in the
maximum amount of information that can be transmitted per burst cycle. (B) The amount
of time needed to distinguish between c0 and c1 as a function of the probability of deciding
incorrectly for equilibrium and non-equilibrium gene circuits. The decision time is given in
terms of the number of transcriptional burst cycles required for a decision to be made. Note
that the x-axis is arranged in order of decreasing error probability (i.e. increasing accuracy)
from left to right. Horizontal lines indicate approximate decision times (in burst cycles) for
different biological systems. (C) Parameter sweep results for achievable IR and Φ values for
gene circuits with one to five activator binding sites. Achievable regimes for each molecu-
lar architecture are indicated as color-coded shaded regions. (D) Sweep results illustrating
achievable IR vs. Φ regimes for gene circuits featuring two to five locus conformations.
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Adding locus conformations allows gene circuits to harness higher rates of
energy dissipation

What about multiple locus conformations? To pursue this question, we once again built
off of the four state model shown in Figure 6.1B, this time changing the number of con-
formations (2 ≤ NLC ≤ 5) while holding the number of binding sites fixed at NB = 1 (top
panel of Figure 6.2D). In all cases, we assume that only one locus conformation is tran-
scriptionally active (ON) and that the remaining NLC−1 are inactive (OFF) conformations,
reflecting a scenario in which the assembly of multiple distinct regulatory factors is required
for productive transcription.

We conducted parameter sweeps to examine the interplay between energy dissipation and
information transmission for these systems. As with adding binding sites, we find that the
addition of locus conformations leads to increased rates of information. Unlike increasing
NB, however, these IR gains do not come for free. Instead, the addition of locus conforma-
tions extends the Φ-IR boundary into higher-energy regimes, allowing non-equilibrium gene
circuits to achieve larger gains in IR at the expense of increased rates of energy dissipation
(Figure 6.2D).

This increased IR gain means that systems with multiple locus conformations can drive
decisions between c1 and c0 more rapidly than the simple four state gene circuit shown
in Figure 6.1B. For example, we find that non-equilibrium gene circuits with five locus
conformations can drive decisions nearly four times as rapidly as systems with a single step
(8 burst cycles vs. 29 burst cycles; see Figure 6.2B). This 8 burst cycle limit approaches
what can be achieved by an equilibrium gene circuit with five activator binding sites (5
burst cycles; see Figure 6.2E), underlining the similarity between adding binding sites at
equilibrium and adding conformational states out of equilibrium. However, this parity has
an energetic cost: to approach the performance of the five binding site model, the one binding
site system with five conformations must dissipate at least 180kBT per burst.

6.3.4 Non-equilibrium sharpness increase drives improved
information transmission

According to Equation 6.2, the energy-dependent increases in IR uncovered in Figure 6.2
must result from increased sharpness, increased precision, or some combination thereof.
Thus, to uncover how energy reshapes the transcriptional input-output function to increase
IR, we used our numerical sweep algorithm to examine the space of achievable sharpness
and precision values for our baseline four state model (Figure 6.1B) both at and away from
thermodynamic equilibrium. One challenge in comparing sharpness and precision levels
across different gene circuits is that the upper bounds on both s and p on the fraction of
time, a, the system spends in the transcriptionally active conformation, which we allow to
vary between different realizations of our model gene circuit. Thus, for ease of comparison
across different model realizations, we give all results in terms of normalized sharpness and
precision measures: S = s/b and P = pb, where b = a(1 − a). See Appendix C.2.10 further
details.
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Figure 6.3A shows the results of our analysis, with each circle representing the S and P
values for a single gene circuit realization. For systems operating at equilibrium (blue dots
in Figure 6.3A), we find that both S and P are bounded by “Hopfield barriers” (dashed
lines) [136, 82] with values of 1 and 1/

√
2, respectively. These bounds place strict limits

on information transmission at equilibrium, and have a straightforward interpretation: they
are precisely equal to the sharpness and precision of a simple two state gene circuit with
a single activator binding site, where the ON rate is concentration-dependent (kon ∝ [c]).
Indeed, a detailed examination of the microscopic rates defining IR-optimized equilibrium
systems—the maximally sharp and precise equilibrium gene circuits in the upper right-hand
corner of the blue equilibrium region in Figure 6.3A—reveals that this apparent equivalence
is literally true. Optimal equilibrium gene circuits behave as effective two state systems at
the microscopic level, spending the vast majority of their time in one of two states: OFF with
activator unbound (state 0 in Figure 6.1B) and ON with activator bound (state 2). Thus,
at equilibrium, the added molecular complexity introduced by the conformational shift that
characterizes our four-state gene circuit is more curse than blessing: the very best that the
four-state network can do at equilibrium is to match the performance of a simpler two-state
system (see Appendix C.2.11 for further details).

Energy dissipation permits gene circuits to overcome equilibrium performance bounds,
increasing S by up to a factor of 2 and P by up to a factor of

√
2 with respect to their

equilibrium limits (Figure 6.3A and B). Previous works have found that energy dissipa-
tion can increase sharpness [82]; however, to our knowledge, this is the first time that a
non-equilibrium improvement in transcriptional precision has been uncovered at biologically
plausible levels of energy dissipation. Yet, while energy can improve sharpness and pre-
cision individually, the absence of realizable gene circuits in the upper right hand corner
of Figure 6.3A indicates that genes cannot maximize both simultaneously. This tradeoff
places inexorable limits on the degree to which energy can boost IR, and stems from the fact
that maximally sharp and maximally precise gene circuits require distinct and incompatible
underlying molecular architectures (see Appendix C.2.12 for details).

By examining the microscopic transition rates of high-performing gene circuits returned
by the parameter sweep algorithm, we can identify molecular motifs that correspond to
different performance characteristics. In maximally precise gene circuits, we find that all
states are (nearly) equiprobable, all clockwise rates are nearly identical in magnitude, and
all counter-clockwise rates are negligible. This leads to a clock-like system with four equal
steps per cycle, a design which renders the microscopic transitions as deterministic as possi-
ble and, as a result, minimizes noise from microscopic fluctuations (Figure 6.3B). In contrast,
maximally sharp non-equilibrium gene circuits exhibit an all or nothing architecture similar
to that observed in IR-maximized equilibrium systems. This time, however, non-equilibrium
driving activator binding to regulate both the locus activation step and the locus inactiva-
tion step; thereby doubling transcriptional sharpness (Figure 6.3B; see Appendix C.2.13 for
details).

Because sharpness and precision cannot be maximized simultaneously, gene circuits that
dissipate energy must “choose” which aspect of transcriptional performance to maximize.
And from the perspective of IR maximization the choice is clear: Figure 6.3A shows the
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location 100 gene circuits within 1% of the maximum of 0.014 bits per cycle maximum
(Figure 6.2A) in S − P phase space (gray circles). This reveals that the most informative
gene circuits maximize transcriptional sharpness (S = 2) at the cost of retaining equilibrium
levels of precision (P = 1/

√
2); a result that makes sense, given that non-equilibrium systems

can boost S by up to a factor of 2, while P is limited to a maximum gain of
√
2. As with

the equilibrium case, these S and P values have an intuitive interpretation: they are simply
equal to the expected sharpness and precision of a two state system, this time one in which
both the ON and OFF rates are concentration-dependent. Thus, even though spending
energy to overcome the constraints of detailed balance opens up a vast new space of possible
regulatory schemes, we find that maximally informative non-equilibrium gene circuits exhibit
an emergent simplicity, converging upon architectures in which their many molecular degrees
of freedom collapse into a few effective parameters that define system behavior.

Non-equilibrium gains in sharpness drive IR increases in more complex
regulatory architectures

To assess the generality of our results, we used our parameter sweep algorithm to examine
equilibrium and non-equilibrium tradeoffs between sharpness and precision for more complex
gene circuits with 2-5 activator binding sites and 3-5 locus conformations . In all cases, we
found that energy dissipation increases the upper limits of S and P, and that—as with
our simple the state model—these non-equilibrium performance gains cannot be realized
simultaneously (Figure C.15A and B). For all models considered, we likewise found that
the gains in information rate uncovered in Figure 6.2 are maximized by spending energy
to increase sharpness, rather than precision (see Appendix C.2.14 for further details). For
the case of multiple activator binding sites (NB > 1), the NB-dependent increases in the
information rate shown in Figure 6.2C are a straightforward consequence of the fact that
increasing the number of binding sites increases the upper sharpness limit both at and away
from equilibrium (Appendix C.2.14; [113, 82]).

More surprisingly, we find that increasing the number of molecular conformations (NLC)
while holding the number of activator binding sites constant can, likewise, increase tran-
scriptional sharpness in systems operating out of equilibrium. Figure 6.3C shows the range
of achievable S values for non-equilibrium systems as a function of NLC. We see that the
upper S limit scales linearly with NLC, such that Sneq ≤ NLC. Remarkably, this scaling is
identical to the effect of adding activator binding sites at equilibrium, where Seq ≤ NB (Fig-
ure C.15C). This equivalence provides an intuitive explanation for our finding that systems
with multiple molecular steps can drive faster decisions between c1 and c0 (Figure 6.2D and
Figure C.1B), underscoring the fact that, when away from equilibrium, it becomes possible
for activator binding at a single site to regulate multiple distinct steps of the transcriptional
cycle in a way that matches the effect of multiple activator binding sites in equilibrium
systems (Figure 6.3D).
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Figure 6.3: Increased transcriptional sharpness drives increased information trans-
mission away from equilibrium. (A) Scatter plot of parameter sweep results showing
the normalized sharpness and precision of 3,000 simulated gene circuits with and without
equilibrium constraints. (B) Illustrative input-output functions for a maximally informa-
tive equilibrium gene circuit (blue) from the parameter sweeps shown in (A), as well as
maximally sharp and precise non-equilibrium gene circuits (green and red, respectively).
Shaded region indicates predicted noise levels in the gene expression patterns after 25 tran-
scriptional cycles. Cartoons illustrate the molecular motifs for maximally precise and sharp
non-equilibrium gene circuits. (C) Plot of achievable non-equilibrium sharpness levels for
with 2-5 locus conformations and one activator binding site. Each circle represents a single
gene circuit model. We find that normalized sharpness is bounded by the number of locus
conformations. (D) Cartoon illustrating functional equivalence between three binding sites
at equilibrium and three molecular conformations out of equilibrium. Plot shows predicted
input-output functions for each case, demonstrating the equivalent levels of sharpness driven
by the two strategies.
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6.3.5 Energy dissipation is required for rapid cellular decisions
at high non-cognate factor concentrations

So far, we have focused on the determinants of information transmission for the case when
non-cognate factor binding is negligible. Yet, in any real biological setting, cells will not con-
tain a single species of transcription factor, but many. To drive timely biological decisions,
therefore, a gene circuit must not only sense and respond to its cognate transcription fac-
tor, but also efficiently filter out “irrelevant” signals from non-cognate factors. This process
is inherently challenging in eukaryotes, where short DNA binding footprints lead to mod-
est energetic differences between specific (correct) and nonspecific (incorrect) transcription
factor binding events on the order of 4.6kBT [199], which means that non-cognate tran-
scription factors unbind from gene loci approximately 100 times faster than cognate factors
(α = kw

−/k− ≈ 100).
Is this hundredfold difference in binding kinetics enough to drive decisions in real biolog-

ical systems? We can gain intuition for this question by examining a stripped down scenario
in which a cognate and non-cognate activators must compete to bind a single binding site
(Figure 6.4A). We can quantify the severity of non-cognate factor interference by dividing
the fraction of time the site is bound by a cognate factor (nc) by total fraction of time it
spends bound by either the cognate or the non-cognate species (nc+nw). If we assume equal
basal binding rates (k+) for cognate and non-cognate species, then this fraction given by

pc =
nc

nc + nw

=
f

f + w
c

, (6.4)

where in the second ratio on the right hand side we have introduced a new quantity, the
transcriptional specificity (f), which is defined as the ratio of the (average) number of cognate
and non-cognate factors bound, normalized by concentration:

f =
w

c

nc

nw

. (6.5)

We note that Equation 6.5, which considers competition between two activator species to
bind and activate a single gene, is distinct from (and, in some sense, the complement of)
specificity definitions employed in previous works, which examine the problem from the
perspective of a single activator species that regulates two genes: a cognate and a non-
cognate locus [272, 113] (see Appendix C.2.15 for details).

From Equation 6.4 we see that f sets the scale the severity of non-cognate factor interfer-
ence. At equilibrium, f is simply equal to the affinity factor α (which we will set to 100 for
concreteness), such that cognate factor binding dominates when w/c < α and non-cognate
factors dominate when w/c exceeds α. Where do actual biological systems fall? A recent
study pursuing synthetic enhancer design in the early fly embryo cited a list of 47 pertinent
regulatory factors that it controlled for in order to avoid off target binding [302, 83], leading
to an estimate of w/c = 47. Plugging this into Equation 6.4, we find that the cognate
factor is predicted to be bound about 2/3 of the time in the fly embryo. At the other end
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of the spectrum, we can use the genomic abundance of transcription factor proteins to es-
timate upper bounds on w/c values for adult nematode and mouse cells, yielding estimates
of w/c ≤ 698 and w/c ≤ 1, 426, respectively [37]. This time, Equation 6.4 predicts that
cognate binding accounts for only a small fraction of total binding interactions—as little as
1/8 in worms and 1/15 in mice—suggesting that equilibrium affinity difference alone may be
insufficient to cope in these cases. To examine how these high levels of interference impact
the timescale of biological decisions, and to determine whether energy dissipation can im-
prove upon this equilibrium baseline, we must extend our gene circuit model to incorporate
interference from non-cognate activator binding.

To do this, we draw inspiration from [35], adding a second “wrong” activation cycle to
our original four state model (Figure 6.1A) wherein the binding of a non-cognate factor to
the gene locus can also induce transitions into the active conformation. This leads to the six
state model shown in Figure 6.4B, where, for simplicity, we have grouped all non-cognate
activators into a single concentration term: W . Here, states 4 and 5 are identical to states
1 and 2, save for the fact that a non-cognate activator species (blue circle) is bound, rather
than the cognate activator (green square). For notational convenience, the unbinding rates
of the non-cognate activator kw

− are written as the specific unbinding rate k− multiplied by
an affinity factor α = kw

−/k−. As stipulated above, we take α = 100 throughout the main
text; however, we note that our results are robust to the choice of α.

With our model defined, we employed parameter sweeps to examine the upper limits on
information transmission as a function of the ratio of wrong-to-right activator concentrations
(w/c). Throughout this process, the cognate factor concentration was held fixed at C = c∗,
such that w was the only variable concentration parameter. Figure 6.4C illustrates the results
of our analysis, plotting the range of achievable information rates as a function of the relative
wrong factor concentration. In keeping with our calculations above, our results reveal that
the rate of information transmission at equilibrium drops precipitously once w/c exceeds α,
with an upper limit equal to the maximum rate of information transmission when w = 0
times the cognate fraction squared: IR ≤ IReq

0 p2c (dashed blue line in Figure 6.4C). Away
from equilibrium, the picture is more complex. When w/c < α, the upper IR scales as p2c
(dashed red line); however, the scaling becomes less severe once w/c exceeds α, approaching
a linear relationship. At a practical level, this shift to linear scaling has the effect of making
non-equilibrium gene circuits more robust to high non-cognate factor concentrations, with
the relative IR from energy dissipation increasing from a factor of 4 when w ≈ 0 all the way
to a factor of 1000 when w/c = 105 (Figure 6.4C, inset). More fundamentally, it suggests
that a qualitative change occurs in the way that energy is used once w/c > α; an observation
that we will return to in Section 6.3.6.

We next used Equation 6.3 to calculate the amount of time required for a cell to decide
between concentrations c0 and c1 of the cognate activator species for different values of
w/c, starting with gene circuits constrained to operate at equilibrium. As in Figure 6.2B, we
compared our model’s performance to the decision time limits for different biological systems,
this time placing each system in its appropriate place along the w/c axis. In all systems
considered, gene circuits generally have a few tens of burst cycles over which to transmit
information, with no system exceeding 100 bursts (black error bars in Figure 6.4D). This is
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significantly faster than can be achieved by our simple six state model with one binding site
and two locus conformations at equilibrium, even when w = 0 (see purple shaded region in
Figure 6.4D).

Next, we sought to determine if equilibrium gene circuits with multiple sites could do
better. As illustrated in Figure 6.4D, these results indicated that equilibrium gene circuits
with 3 or more activator binding sites (red, blue, and gray regions) are sufficient to drive
timely decisions in “low intereference” systems such as the early fruit fly embryo. However,
as with the one binding site case, we once again observe a precipitous decline in performance
once w/c > α. Indeed, the best equilibrium model (NB = 5) can drive decisions in no fewer
than 1,060 burst cycles—the equivalent of at least 530 hours (3 weeks) for mouse cells—when
w/c ≈ 1400 (the upper limit for mice). This is over an order of magnitude too slow for the
mouse system’s decision time limit of 86 bursts (Figure 6.4D). Moreover, meeting this time
limit is not merely a matter of adding a handful of additional sites: our analysis suggests
that at least 17 activator binding sites are needed at equilibrium (see FigureC.2C). Such
a number is conceivable for eukaryotic enhancers, but this analysis nonetheless emphasizes
that equilibrium systems—even those with biologically salient numbers of binding sites—
struggle to achieve realistic decision times in the presence of significant non-cognate factor
interference.

How do non-equilibrium gene circuits fare? Already for the simple model shown in
Figure 6.4B, we found a marked non-equilibrium improvement, decreasing the decision time
from 24,000 burst cycles at equilibrium (Figure 6.4D) down to 1,500 (Figure 6.4E) for w/c ≈
1, 400. We next used our parameter sweep algorithm to examine the impact of increasing
the number of molecular conformations (NLC > 2) while holding the number of binding sites
fixed at one. This revealed further non-equilibrium improvements, particularly at high w/c:
whereas the two conformation system could go no faster than 1,500 cycles when w/c = 1, 400,
we find that gene circuits with three locus conformations can drive decisions between c0 and
c1 in as little as 104 bursts (Figure 6.4E); a full order of magnitude better than equilibrium
genes with five binding sites (Figure 6.4D). Adding a fourth conformation improves this
bound further to 83 burst cycles; just good enough to dip below the 86 burst limit for
the Mouse system. Moreover, this NLC = 3 system exhibits remarkable robustness to non-
cognate factor interference, sustaining this same level of performance all the way up to
w/c ≈ 104 (Figure 6.4E).

These results suggest that, in biological contexts where the ratio of wrong-to-right activa-
tor concentrations exceeds the intrinsic binding affinity difference between them (α), energy
dissipation effectively shifts from being a biochemical shortcut for transmitting information
faster to, increasingly, becoming a necessary precondition for driving cellular decisions within
biologically salient timescales. Yet Figure 6.4E also reveals one binding-site systems have a
performance ceiling: to further improve, non-equilibrium gene circuits likely require multiple
molecular steps (NLC ≥ 2) and multiple activator binding sites (NB ≥ 2).
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Figure 6.4: Energy dissipation is key to driving cellular decisions in the presence
of non-cognate factor interference. (A) Plot of cognate factor occupancy at a single
binding site as a function of relative non-cognate factor concentration. (B) Incorporating
non-cognate activator binding leads to a six state model that features both a right and a
wrong activation pathway. (C) Numerical results for the maximum achievable information
rate for equilibrium (blue circles) and non-equilibrium (red circles) gene circuits with one
activator binding site and two locus conformations (illustrated in (B)) as function of the
relative concentration of non-cognate activators w/c. Blue dashed line indicates upper IR
bound at equilibrium. Red lines indicate non-equilibrium IR bounds (see main text). Vertical
dashed line indicates point where non-cognate factor concentration (w) equals the the cognate
factor concentration multiplied by the affinity factor (αc). (D) Parameter sweep results
showing decision times for equilibrium gene circuits with 1-5 activator binding sites as a
function of w/c. (E) Decision times for non-equilibrium gene circuits with variable 2-5 locus
conformations. (All results assume α = kw

−/k− = 100. All decision time quantities assume
ϵ = 0.32.)
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6.3.6 Information limit is defined by non-equilibrium tradeoffs
between specificity and intrinsic sharpness

To uncover the mechanism driving the large non-equilibrium increases in IR uncovered in
Figure 6.4, we broke the IR gain depicted in the panel inset of Figure 6.4C into its con-
stituent components. Figure 6.5A plots the relative non-equilibrium gains in S and P (S/Seq

and P/Peq) as a function of w/c for information-maximizing realizations of the six state
gene circuit model shown in Figure 6.4B. The plot reveals that IR-maximizing gene circuits
consistently utilize energy to drive sharpness above its equilibrium limit (S/Seq¿1), while
precision is maintained at or below its equilibrium limit (P/Peq ≲ 1). More to the point, we
see that the degree to which non-equilibrium gene circuits amplify S increases dramatically
as w/c grows larger, from a factor of 2 when w/c ≈ 1 to a factor of 100 when w/c ≈ 104

(Figure 6.5A). Thus, they key to understanding how energy increases IR at large w/c lies,
once again, in understanding transcriptional sharpness.

We find that the upper non-equilibrium limit on S can be expressed as a function of the
specificity (f), such that

S ≤ f
w
c
+ f︸ ︷︷ ︸

specificity
factor (pc)

× S0︸︷︷︸
intrinsic
sharpness

, (6.6)

where we see that the S bound breaks naturally into two pieces, the specific bound fraction,
pc (defined in Equation 6.4), and a quantity that we will term the intrinsic sharpness (S0),
which is defined as a gene circuit’s normalized sharpness absent non-cognate factor binding;
that is, when w = 0.

To probe the interplay between intrinsic sharpness and specificity, we employed parameter
sweeps for the six state system in Figure 6.4A at and away from equilibrium (Figure 6.5B). At
equilibrium, this analysis indicated that S0 ≤ 1 (consistent with Figure 6.3A) and confirmed
that f eq = α, just as for the case of the equilibrium binding scenario considered at the start
of Section 6.3.5. Indeed, we find that this equality applies for all gene circuits operating at
equilibrium irrespective of the number of binding sites , placing strict limits on information
transmission at equilibrium when w/c is large.

Away from equilibrium, systems can overcome these constraints, achieving up to a two-
fold increase in S0 and increasing specificity by up to an additional factor of α to reach an
upper limit of α2 (Figure 6.5B). This hundredfold increase in f is consistent with the gain
in S observed in Figure 6.5A, suggesting that the sharpness gain at high w/c arises from
non-equilibrium increases in specificity. But why not spend energy to increase sharpness as
well and achieve S/Seq

0 = 2 × α = 200? The simple answer is that non-equilibrium gains in
intrinsic sharpness and specificity cannot be realized simultaneously. Instead, our analysis
reveals a steep tradeoff between specificity and intrinsic sharpness away from equilibrium,
with the maximum value of S0 = 2 only realizable when specificity is at its equilibrium level
(f = α) and vice versa (Figure 6.5B). We find that the bound describing this tradeoff (red
dashed line in Figure 6.5B) a simple analytic form, which allows us to express S as a function
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of the specificity, f :

S ≤ f
w
c
+ f︸ ︷︷ ︸

specificity
factor (pc)

×
(α2 + αf − 2f

αf − f

)
︸ ︷︷ ︸

intrinsic
sharpness (S0)

, (6.7)

where we assume that α ≤ f ≤ α2. See Appendix C.2.16 for a derivation of Equation 6.7.
As with the non-equilibrium trade-offs between sharpness and precision, this incompatibility
stems from the fact that sharpness and specificity require distinct and incompatible un-
derlying molecular architectures. And although we’ve focused on the simple model shown
Figure 6.4B, we find similar non-equilibrium tradeoffs between that f and S0 for more com-
plex molecular architectures (Figure C.3B). Thus, we conclude that these specificity gains
come at the cost of diminished intrinsic sharpness.

The inexorable tradeoff between S0 and f illustrated in Figure 6.5B means that gene
loci must “choose” between allocating energy to maximize intrinsic sharpness and allocating
energy to maximize specificity. To examine how this the concentration of non-cognate factors
shapes this tradeoff, we took IR-maximizing non-equilibrium gene circuits spanning the
relevant range of w/c values for systems with 2-5 locus conformations and calculated S0

and f for each. Figure 6.5C shows the results of this analysis, illustrating the relative non-
equilibrium gains in intrinsic sharpness and specificity, respectively, for IR-maximizing gene
circuits as a function of w/c.

We find that the relative non-cognate factor concentration, w/c, defines a shifting op-
timality landscape. At low non-cognate factor concentrations, maximally informative gene
circuits spend energy exclusively to maximize sharpness (S0 > NB for all systems on the
left-hand side of Figure 6.5C) at the cost of equilibrium levels of specificity (f/α = 1). Thus
our model predicts that at low levels of non-cognate factor interference—as would be expe-
rienced, for instance, in developing fruit fly embryos—non-equilibrium mechanisms are not
required to buffer against non-cognate factor interference, and allocating energy to maximize
intrinsic sharpness constitutes the optimal regulatory strategy. However, once w/c surpasses
the affinity factor α, IR maximization starts to disfavor sharpness (see decreasing S0 near
w/c = 102 in Figure 6.5C) and, instead, increasingly depends on enhancing specificity to
non-equilibrium levels (Figure 6.5C). Taken together, these results indicate that the optimal
molecular strategy for transmitting information is not fixed, but will change according to a
scale that is set by the relative magnitudes of level of non-cognate factor interference, w/c,
and the kinetic binding differences between cognate and non-cognate factors, α.

6.3.7 Experimental signatures of non-equilibrium processes in
transcriptional regulation

So far, we have demonstrated that energy dissipation can, in principle, increase the rate
of information transmission in gene circuits. However, determining whether gene circuits
actually leverage energy dissipation to do so constitutes a different challenge. In this section,
we examine how simple experiments can serve to identify signatures of non-equilibrium
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Figure 6.5: A shifting optimality landscape for information transmission. (A) Plot
showing non-equilibrium gains in sharpness and precision as a function of w/c for six state
(NB = 1,NLC = 2) gene circuits found to drive maximum information rates. IR−maximizing
gene circuits are drawn from optimal systems uncovered in the parameter sweeps from Fig-
ure 6.4E. Values above 1 indicate that the system is dissipating energy to enhance perfor-
mance. Black line indicates “break even” point where non-equilibrium value is equal to
the equilibrium maximum. See Figure C.3A for results for systems with NLC > 2. (B)
Plot of numerical results for tradeoffs between intrinsic sharpness (S0) and specificity (f)
for equilibrium and non-equilibrium networks (blue and red circles, respectively). Note that
equilibrium gene circuits have no horizontal dispersion because all are constrained to have
f = α. Black dashed line indicates bound predicted by Equation 6.7. (C) Plot of non-
equilibrium gains in intrinsic sharpness and specificity for IR-maximizing gene circuits as a
function of w/c. Values above 1 indicate that the system is dissipating energy to enhance
sharpness or specificity. Note that left and right axes have different scales. (α was set to 100
for all plots shown.)

performance in real biological systems. For clarity of exposition, we focus on the six state
gene circuit shown in Figure 6.4B. Yet while the quantitative details will vary for gene circuits
with different molecular architectures, this simple case study nevertheless serves to illustrate
a broadly applicable set of experimental and analytical approaches that can be used to test
whether energy is being harnessed to enhance transcriptional performance in real biological
systems.

Recent works have shown that strict equilibrium limits on transcriptional sharpness can
be calculated if the number of activator binding sites is known, suggesting that sharpness
might serve as an accessible signature of non-equilibrium regulatory mechanisms [82, 231].
Does this conclusion hold when we consider the impact of non-cognate factor binding? Equa-
tion 6.7 predicts that the upper S limit should decrease as w/c increases (dashed lines in
Figure 6.6A) and numerical parameter sweeps of S vs. w/c confirm this fact, (Figure 6.6A).
This w-dependence must be accounted for in order to correctly interpret experimental mea-
surements.

For instance, consider the case when w/c = 103 (dashed vertical line in Figure 6.6A);
a plausible value for, e.g., mammalian systems [94, 35, 37]. Our model predicts that the
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Figure 6.6: Experimental signatures of non-equilibrium processes in transcrip-
tional regulation. (A) Observed sharpness as a function of w/c for equilibrium (blue cir-
cles) and non-equilibrium (red) gene circuits. Dashed line indicates point where w/c = 103.
(B) Illustration of proposed binding site perturbation experiments. Reducing site specificity
is predicted to reduce both observed sharpness, S, and the mRNA production rate, r. (C)
Phase space plot of predicted sharpness shift versus rate shift for equilibrium (squares) and
non-equilibrium (circles) gene circuits at three different perturbation strengths. Shading
indicates w/c value (darker shades correspond to higher values). Additionally, circle size in-
dicates w/c magnitude for non-equilibrium circuits. We see that, regardless of non-cognate
concentration and perturbation strength, non-equilibrium systems do not cross the equilib-
rium boundary (dashed line).

maximum achievable S value for non-equilibrium gene circuits is 0.91, far exceeding the true
equilibrium sharpness limit of 0.09 when w/c = 103 (blue dashed line in Figure 6.6A), but
it falls below the the “naive” bound of S = 1 that one would calculate if not accounting for
w (see also Figure C.4A). Thus, failing to account for non-cognate factor interference could
mask strong non-equilibrium signatures in the data, highlighting the importance of incor-
porating regulatory cross-talk into models of transcription. However, accurately measuring
w/c may be challenging (if not impossible) in many experimental settings, since w comprises
the aggregate activity of all non-cognate activator species.

In light of this challenge, we propose a complementary experimental approach to search
for signatures of non-equilibrium gene regulation that is more robust to the experimental
uncertainty regarding w/c. As illustrated in Figure 6.6B, this method involves measuring
changes to gene expression at C = c∗ that result from point mutations to the activator
binding site (see, e.g., [248, 231]), and which thereby lead to a faster unbinding rate, k∗

−, for
cognate activators (k∗

−/k− > 1). Whereas w/c may be difficult to estimate in many biological
contexts, robust algorithms exist to predict binding energies from DNA binding footprints
[174], allowing for accurate predictions of how much a particular mutation will perturb the
relative binding kinetics of the specific activator species. We employ two metrics to quantify
the resulting change in gene expression: the fold change in the mRNA production rate (r∗/r)
and in the normalized sharpness (S∗/S), with each defined as the quantity corresponding to
the mutated binding site divided by its corresponding wild-type value (Figure 6.6B).
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Overall, we find that IR-optimized non-equilibrium gene circuits are highly sensitive to
changes in cognate activator specificity, and that this sensitivity can be used to probe for
non-equilibrium behavior. At low w/c levels (w/c ≲ 103), mutated non-equilibrium cir-
cuits exhibit larger shifts in their rate of transcription than can be achieved at equilibrium
(Figure C.4B). Meanwhile, IR-optimized non-equilibrium systems experience a substantially
larger drop in sharpness when w/c > 103 than even maximally sensitive equilibrium cir-
cuits (Figure C.4C). as a result, when combined, S∗/S and r∗/r define a perturbation re-
sponse space in which non-equilibrium gene circuits that transmit information at optimal
(or near optimal) levels are completely disjoint from equilibrium systems. This is illus-
trated in Figure 6.6C, which plots our model’s predictions for the sharpness fold change
(k−S

∗/Sk∗
−) vs. r∗/r under three different binding site perturbation strengths for equilib-

rium and non-equilibrium gene circuits (squares and circles, respectively). Results are shown
for non-equilibrium systems subjected to w/c ranging from 1 to 105 (increasing circle size
and shading indicate larger w/c). Despite the wide range of perturbation strengths and non-
cognate factor concentrations examined, we see that non-equilibrium systems never cross
the equilibrium boundary (dashed line). Thus, by measuring S∗/S and r∗/r, researchers
can obtain clear-cut signatures on non-equilibrium regulation, even if the parameter w/c is
unknown.

6.4 Discussion

Gene regulation is central to cellular function. Yet, despite decades of biochemical and
genetic studies that have established a reasonably complete “parts list” of the molecular
components driving eukaryotic transcription [161], and despite recent advances in our ability
to track how the these pieces assemble in space [227] and in time [166, 59, 179], we nonetheless
lack quantitative models that can predict how transcriptional control emerges from molec-
ular interactions at the gene locus. Thermodynamic models of transcription, which assume
that gene circuits operate at equilibrium, have previously been employed with considerable
success in the context of bacterial systems [241]. However, the presence of ATP-dependent
processes—such as chromatin remodeling [329], PIC assembly [289], and Pol II initiation
[321]—within the eukaryotic transcriptional cycle suggests that equilibrium models may be
insufficient to capture how eukaryotic gene circuits sense and respond to input transcription
factor concentrations. Thus, there is an urgent need for theoretical frameworks that can
probe how non-equilibrium mechanisms reshape the transcriptional input-output function
and, ultimately, redefine the limits of transcriptional control.

Here, we have employed simple kinetic models of transcription to investigate how en-
ergy dissipation within the transcriptional cycle impacts the rate at which a gene circuit
can drive cellular decisions. We used the rate of information transmission as a quantitative
lens to examine how energy-dependent changes to measurable features of the transcriptional
input-output function (Figure 6.1A) impact the timescale of cellular decision-making (Fig-
ure 6.1C and D). We found that biologically plausible rates of energy-dissipation can drive
significant gains in IR, but that the regulatory mechanisms underlying these gains change
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depending on the level of interference from non-cognate factor binding (w/c).
When w/c is below the intrinsic affinity difference between cognate and non-cognate fac-

tors (α), IR is maximized by harnessing energy to push transcriptional sharpness beyond
its equilibrium limits (Figure 6.5C). Conversely, once w/c > α, IR-maximization begins to
instead demand that genes harness energy to increase transcriptional specificity in order to
buffer against non-cognate factor interference (Figure 6.5C). And, whereas equilibrium gene
circuits with sufficiently many binding sites (3 or more in our model) can drive biologically
plausible decision times when w/c < α (Figure 6.4D), equilibrium gene regulatory mecha-
nisms break down when w/c exceeds this limit, suggesting that energy dissipation may be
indispensable in systems where non-cognate factor interference is sufficiently large (compare
Figure 6.4D and E).

Performance tradeoffs dictate limits of information transmission away from
equilibrium

A central result of this work is that, although energy dissipation can increase transcriptional
sharpness, precision, and specificity individually, these gains cannot be realized simulta-
neously. Gene circuits cannot “have it all,” even when operating away from equilibrium,
and this places inherent limits on how rapidly genes can transmit information. When non-
cognate factor binding is negligible, we showed that IR is dictated by a tradeoff between
sharpness (S) and precision (P). And although previous works have established that energy
expenditure can boost sharpness [82, 231] and, to a lesser extent, that it can suppress tran-
scriptional noise [249], to our knowledge, we are the first to report a tradeoff between these
two features of the transcriptional input-output function. As a result of this tradeoff, gene
circuits must “choose” whether to spend energy to enhance sharpness or precision and, for all
models considered, we discovered that the information rate was maximized by systems that
boosted transcriptional sharpness (not precision) above its equilibrium limit (Figure 6.3A,
Figure C.15A and B).

In a similar fashion, our analysis revealed that non-equilibrium gains in specificity and
sharpness cannot be realized simultaneously (Figure 6.5B and Figure C.3B). Intuitively, this
incompatibility arises from the fact that intrinsically sharp systems are tuned to amplify the
concentration-dependent activator binding rates, whereas specific systems amplify differences
in unbinding rates between cognate and non-cognate activator species. As noted above, our
model predicts that w/c defines a shifting optimality landscape, wherein non-equilibrium
gene circuits that maximize intrinsic sharpness drive the fastest decisions when w/c ≤ α,
but where the optimal strategy begins to shift from increasing sharpness to, instead, engaging
in activator proofreading when w/c > α (Figure 6.5C). The potential for this kind of context-
dependent shift from sharp to specific gene circuits was recently noted in [113], although in
this case sharpness was only investigated at its equilibrium limit. Here, we provide quan-
titative predictions for IR-maximizing how gene circuits navigate this sharpness-specificity
tradeoff.
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Conformational flexibility amplifies non-equilibrium performance gains

Another key finding of this work is that the presence of multiple locus conformations can
amplify non-equilibrium gains in transcriptional sharpness (Figure 6.3C). This has the some-
what surprising implication that, away from equilibrium, the number of activator binding
sites does not dictate an absolute upper limit on sharpness and, therefore, on the rate of
information transmission. To achieve this sharpness gain, multi-conformation gene circuits
mimic equilibrium genes with multiple binding sites, leveraging multiple successive regula-
tory interactions distributed across time to achieve the same effect as multiple binding sites
distributed in space (Figure 6.3D). Our result is evocative of a recent study by Biddle and
colleagues [16], in which the authors examined equilibrium gene circuits and demonstrated
that systems with multiple conformational degrees of freedom could achieve sharper, more
flexible, transcriptional input-output functions; although these systems still adhered to the
fundamental equilibrium bound of S ≤ NB. Thus, our findings serve to further emphasize
potential benefits of the conformational complexity of the eukaryotic gene cycle.

We also found that gene circuits with multiple locus conformations can realize dramatic
increases in transcriptional specificity, such that f ≤ αNLC . This finding is in accordance
with previous results in the kinetic proofreading literature showing that multiple molecular
steps can function to enhance the specificity of molecular processes [224], and extends the
findings of a recent work that examined transcriptional specificity in systems with up to three
locus conformations [272]. Yet there exists an important asymmetry between sharpness and
specificity: whereas the addition of activator binding sites can increase S at equilibrium,
energy dissipation constitutes the only route to increasing f above the intrinsic affinity factor
α. Thus, the decisive role that energy dissipation plays in facilitating timely decisions when
w/c follows from the fact that functions to overcome a fundamental limitation of eukaryotic
gene circuits—the lack of binding specificity—that no equilibrium mechanism can address.

Equilibrium regulatory schemes may be sufficient in many real biological
systems

Yet, while activator proofreading may be critical when w/c is large, our analysis suggests
that it is unlikely to constitute a universal constraint on gene regulatory architectures. In-
deed, we find that even relatively simple equilibrium architectures with 3-5 binding sites
should suffice to drive timely cellular decisions in “low interference” systems such as the
fruit fly embryo (Figure 6.4D). Moreover, while simple estimates based on genomic tran-
scription factor abundances suggest that many eukaryotic systems have the potential (at
last in principle) to fall above the w/c = α interference limit, these estimates likely represent
upper bounds on w/c, since it is well established that different cell types selectively express
distinct subsets transcription factors [48, 176, 131]. In addition, we note that the relative
size of the concentration difference between c1 and c0 (δc/c) plays a key role in dictating
the rate of information transmission (Equation 6.2), and will vary across different biological
contexts. It would thus be interesting to use the quantitative tools presented in this work
to enumerate the space of viable equilibrium and non-equilibrium gene circuit architectures
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for specific biological systems in which the relative magnitudes of w/c and δc/c are well
established.

On a more conceptual note, it is thought-provoking to regard of the δc/c term in Equa-
tion 6.2 as measuring the size of an input chemical potential driven by some upstream
signaling source: if the external environment does enough work to drive c1 and c0 far apart,
then equilibrium regulatory architectures may suffice to distinguish them. Correspondingly,
energy dissipation in gene circuits could compensate for weak input gradients. This framing
points to the importance of modelling information transmission along relays of genes, rather
than single gene loci (see, e.g. [292, 253]). For instance, the problem of non-cognate factor
interference considered here becomes substantially more pressing if it impacts multiple steps
of a signalling cascade.

Different frameworks for examining the impact of non-cognate factor binding

In considering the impact of non-cognate factor binding, we drew inspiration from a previous
study by by Cepeda-Humerez and colleagues that examined competition between cognate
and non-cognate transcription factors to bind and activate a single gene locus [35]. This
formulation of the problem is distinct from the approach taken in two recent works, which
addressed the problem of specificity from the perspective of a single activator species that
interacts with two different gene loci: a cognate (with specific binding sites) and a non-
cognate locus (without) [272, 113]. While both have proven fruitful, we favor the “single
locus” approach pursued here, since it captures the effects of competitive binding between
different species, which are an unavoidable reality of the crowded cellular environments.

Moreover, we find that this shift in perspectives has meaningful consequences for our
understanding of how off-target binding impacts gene regulation. A previous study found
that the equilibrium limit of f = α could only be achieved at the cost of high levels of tran-
scriptional noise [272]. Yet, we find that this tradeoff evaporates once competitive binding
between cognate and non-cognate factors is considered, since, in this case f is fixed at α
(Figure 6.5B). We also find that the upper limits of transcriptional sharpness decrease as
w/c increases (Equation 6.7 and Figure 6.6A). Previous studies have pointed transcriptional
sharpness as a key potential indicator of non-equilibrium optimization [82, 231]. Our anal-
ysis reaffirms this idea, but, crucially, reveals that the relative concentration of non-cognate
factors (w/c) must be accounted for in order to accurately assess whether a particular system
is performing above the equilibrium limit (Figure 6.6A and B). For instance, an sharpness
of 0.9 falls below the equilibrium limit for the six state gene circuit shown in Figure 6.4B
when w/c ≈ 1, but is an order of magnitude above the limit when w/c ≈ 103 (Figure 6.6A).

Future directions

In this work, we have considered tradeoffs between sharpness, precision, and specificity.
Yet, beyond these “real time” performance characteristics, our work also has implications
for how gene regulatory architectures evolve. Specifically, the efficacy of the mutagene-
sis studies discussed in Section 6.3.7 depends on our somewhat unexpected finding that
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IR-maximizing non-equilibrium gene circuits are significantly more sensitive to mutation-
induced reductions to binding site affinity than their equilibrium counterparts (Figure 6.6C
and Figure C.4B and C). This sensitivity points to an intriguing tension between the extant
system’s performance on the one hand (as quantified by IR), and its robustness random
mutations in regulatory sequence on the other.

This work also represents a natural starting point for examining the regulatory impact
of neutral DNA sequences. While we have considered gene loci with varying numbers of
specific activator binding sites, real enhancers also contain significant stretches of “neutral”
DNA that contains no binding sites, as well as weak activator sites that fall below typical
thresholds used to identify specific sites [302, 267]. This focus on specific sites is widespread
in theoretical studies of transcription [82, 231, 35, 166], despite the fact that experimental
studies have established the importance of weak binding sites in the context of certain genes
[267, 64, 86]. Moreover, recent efforts at synthetic enhancer reconstitution have pointed
to the importance of supposedly neutral stretches or regulatory DNA [302], and it seems
plausible from a theoretical perspective that these stretches, where cognate and non-cognate
activator species bind with equal affinity, could have important effects on the input-output
function in systems where w/c > α. As a starting point, we propose that the kinetic models
utilized here could readily be extended to feature some combination of specific and neutral
sites. More ambitiously, the field would benefit from the introduction of continuous, rather
than discrete, theoretical models that admit non-equilibrium phenomena while accounting
for the reality that transcription factors interact with a continuum of sites along enhancer
DNA.

Ultimately, however, the key to unraveling the molecular mechanisms by which gene loci
sense and respond to transcription factor concentrations lies in the coupling of theoretical
models with careful experimental measurements. To this end, we advocate for the expanded
use of theoretically tractable synthetic enhancer systems where the number and identity of
binding sites are well established, and where intervening DNA sequence is carefully engi-
neered to minimize binding specificity (e.g. using SiteOut [83]). Several recent studies con-
stitute promising initial steps in this direction [248, 231, 302, 158]. Additionally, synthetic
transcription factor systems, which can be engineered to act orthogonally to endogenous
regulatory networks, represent an intriguing experimental platform for investigating ques-
tions relating to transcriptional specificity [152, 63]. Lastly, statistical methods that infer
how transcription factor concentrations impact the kinetics of the transcriptional cycle (e.g.
[331, 168, 54, 28]) have shown promise as a way to connect macroscopic experimental mea-
surements to theoretical models of the microscopic processes driving transcription. Looking
ahead, holistic research efforts that integrate cutting-edge experiments, statistical methods,
and theory will be key to bridging the as yet yawning gap between enhancer sequence and
gene regulatory function.



118

Chapter 7

Fast, flexible inference of
transcriptional dynamics with
burstMCMC

Abstract

Transcriptional bursting is a ubiquitous feature of eukaryotic transcription. Yet, while the
field is seeing increasingly widespread adoption of live imaging tools such as the MS2 and
PP7 systems that permit real-time measurements of transcription in vivo, there continues
to be a dearth of analytical tools that can link these measurement to quantitative models of
gene regulation. Here we seek to provide such a tool, presenting burstMCMC, an efficient and
flexible Bayesian framework for inferring burst parameters from live imaging measurements.
We benchmark our model’s performance using simulated data, and demonstrate its efficiency
gains relative to our previously published method, cpHMM. We also show that burstMCMC
can be used to accurately infer RNA Polymerase (RNAP) elongation times from single-
color live imaging data, a key biological parameter for which no general inference method
previously existed.

7.1 Introduction

The past decade has seen the widespread adoption of in vivo RNA fluorescence labeling
technologies, such as the MS2/MCP [14] and PP7/PCP systems [36] as a means to directly
visualize nascent mRNA molecules at individual gene loci. Yet, while these live imaging
methods now represent a standard tool in the arsenal of many researchers in the study
of gene regulatory processes, the field is only just beginning to harness the potential of
these systems to serve as a quantitative foundation for investigating the molecular basis of
transcriptional control. Here we seek to further this goal by presenting burstMCMC, a novel
computational framework that uses Markov Chain Monte Carlo (MCMC) methods [107] to
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uncover how transcription factor proteins modulate the dynamics of transcriptional bursting
at target gene loci.

In a previous work, we developed the cpHMM inference method and applied it to dissect
how transcription factors modulate transcriptional burst dynamics to give rise to the even-
skipped stripe 2 pattern of gene expression in the developing fly embryo (Chapter 2 and
[168]). A key innovation in this modeling approach was the introduction of a compound
state formalism that could account for the presence of memory in MS2 and PP7 signals due
to the finite amount of time (telong) required for Pol II molecules to transcribe the reporter
gene (see Appendix A.3.4 for details). Yet, despite its utility, cpHMM has notable limitations,
the most significant of which is the fact that the model’s computational complexity (and,
hence, the time required for inference) scales exponentially with the number of experimental
time steps (w = telong/∆τ) required for Pol II molecules to traverse the gene. In addition,
cpHMM requires the user to input the elongation time w, a gene-specific parameter that is
unknown a priori for most systems.

In what follows, we describe ongoing efforts to develop burstMCMC, with the aim both
of addressing these limitations and other limitations of the original model and of developing
novel inference capabilities. The crux of the exponential scaling issue noted above lies in
the fact that, as a part of its inference, cpHMM must keep track of the likelihood of all
possible promoter states at each time point along an MS2 trace, which scales as Kw (where
K is the number of promoter activity states). Recently, however, Bowles and colleagues [28]
showed that the number of models states that actually have a non-negligible likelihood at
any given point in time can be several orders of magnitude smaller than Kw. As a result,
only a few hundreds or thousands of states need to be tracked at any point in time to achieve
accurate inference results. The authors use this insight to develop burstInfer, an inference
approach that reduces burst inference times by truncating the space of possible model states
at each experimental time point [28]. Yet, whereas cpHMM yields accurate inference results
for systems with up to 3 distinct activity states and continuous promoter transitions—i.e.
switching can occur at any point on or between experimental time steps—burstInfer only
applies to systems with up to two activity states and, further, makes the assumption that
promoter switching is discrete (i.e. happens only at experimental time points); an assumption
that likely does not comport the true nature of transcriptional systems.

With burstMCMC, we take an alternative approach. Rather than algorithmically trun-
cating state space to reduce model complexity, we use MCMC methods—originally devel-
oped to efficiently sample high-dimensional ensembles in Statistical Physics [210]—to instead
sample the high-dimensional space of potential burst model states. We show that burstM-
CMC approaches cpHMM accuracy for three state transcriptional systems with both discrete
and continuous promoter switching, while reducing computational complexity by orders of
magnitude for biologically salient values of the elongation parameter, w. In addition, we
demonstrate that burstMCMC can reliably infer the elongation time, w, thus removing a
significant barrier to the application of burst inference to a wider array of genes and provid-
ing a new computational lens into a biological parameter that is of interest in its own right
(see, e.g., [99, 190]).

Since this very much remains a work in progress, we close this chapter by sketching
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out key next steps for model development. First, we lay out model improvements (many
of which are already under way) that are aimed at increasing the speed, accuracy, and
robustness of burstMCMC inference. Second, we discuss extensions to the model that probe
new facets of the regulation of bursting dynamics, including hierarchical models for single cell
burst inference and models with concentration-dependent parameters Finally, we draw upon
concepts from Chapters 5 and 6 to speculate about how mean first passage times could serve
as a computationally tractable link between phenomenological bursting models and bona
fide molecular models that can shed direct light on the molecular mechanisms underlying
the transcription factor control of burst dynamics.

7.2 Results

7.2.1 Introducing the model

In this section, we use a single fluorescent trace (Figure 7.1A) produced by a simple system
with two promoter states (OFF and ON) to introduce the model’s architecture, provide
intuition for how burstMCMC infers hidden promoter states (Figure 7.1B), and to show how
the resulting promoter state vector, ẑ, is used to sample the posterior distributions of key
model parameters: p(θ|z,y). See Appendix D for further details. We note that, although
this discussion focuses on inference for a single fluorescence trace, all concepts and procedures
presented along the way extend trivially to the case of multiple traces.

Consider the MS2 trace in Figure 7.1A, which depicts the total integrated intensity of
the transcriptional locus over time. Our central aim is to use the observed fluorescent series,
y = {y1, y2, ..., yT}, where T is the number of data points in the trace, to infer the unobserved
time series of hidden (unobserved) promoter activity states, z = {z1, z2, ..., zT}. Figure 7.1C
illustrates the basic architecture of our model. We assume a discrete model in which the
promoter fluctuates between K different activity states, such that zt ∈ {1, ...K}(K=2 for the
illustration in Figure 7.1C). Transitions between the effective promoter states are assumed
to be Markovian, meaning that the hidden promoter state zt at time step t is conditionally
dependent only on the state in the previous time step. This dependency is modeled through
a K × K transition probability matrix A = p(zt|zt−1), where Akl is the probability of
transitioning from the lth state into the kth state in the time interval ∆τ .

We assign a characteristic RNAP initiation rate, r(k), with units of RNAP per minute, to
each effective promoter state, z(k). Thus, the number of RNAP molecules initiated between
time steps t − 1 and t will be r(zt)∆τ , 1 ≤ k ≤ K. We define a fluorescence emission per
time step for each state as v(k) = FRNAPr(k)∆τ , where FRNAP is the fluorescence calibration
factor that gives the fluorescence produced by each nascent RNAP molecule. FRNAP can
be experimentally determined using smFISH experiments (see Materials and Methods of
Chapter 2), but this is not required for burst parameter inference. Since a new calibration
must be determined separately on a microscope by microscope basis, it is often simplest to
work with v(k) in arbitrary fluorescence units.

Together, the K×K transition probability matrix A and K-element emission rate vector
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v fully determine the dynamics of RNAP initiation at the gene promoter. For a particular
activity trace, the sequence of hidden promoter states, z, defines a corresponding sequence of
emission rates, e, where et = v(zt) (second row in Figure 7.1C). If e was directly observable,
then it would be possible to infer A and v directly. Instead, we are faced with the problem
of interconverting between instantaneous emission states, e, and the observed fluorescence,
y. In the original cpHMM model (as well as [28]), this is accomplished by switching from a
simple model with K promoter states to compound model model with Kw compound states
(see Appendix A.3.4 for further details). Here we take a different approach, by noting that
we can then express the predicted fluorescence time series, ŷ, as a convolution of e (bottom
tier of Figure 7.1C), such that

ŷ = κ ∗ e. (7.1)

Here, κ is a kernel of length ⌈w⌉ (ceiling of w), that encodes the fluorescence contribution of
RNAP molecules at different positions along the gene body. We will take w as given for now,
and will revisit this assumption in Section 7.2.4. Note that, unlike cpHMM, the burstMCMC
formalism allows for the RNAP dwell time τMS2 to be a fractional number of experimental
time steps, such that w need not be an integer quantity.

Equation 7.1 provides an analytic mapping from hidden promoter states to experimental
observable fluorescence values. However, the reverse problem of moving from fluorescent
values to their underlying promoter states is nontrivial due to the presence of noise in the
observed fluorescence signal:

y = κ ∗ e+ ϵ, (7.2)

where ϵ is a Gaussian noise vector with zero mean and a standard deviation given by the
parameter σ, which is estimated as a part of burstMCMC inference. Estimating the sequence
of hidden promoter activity states, z, given the noisy signal y constitutes the central chal-
lenge of our inference problem. burstMCMC solves this problem efficiently by using Gibbs
sampling to estimate hidden promoter states using the observed fluorescence trace y and
parameter estimates θ̂ = {Â, v̂, σ̂}.

7.2.1.1 A Bayesian approach to burst parameter inference

In Bayesian parameter inference, our ultimate aim is to obtain an estimate of the joint
posterior distribution of model parameters that reflects our prior modeling assumptions and
our experimental data: p(A,v, σ|y, z). Estimating this joint distribution directly, however,
is typically impractical in all but the simplest inference problems. The core insight behind
Gibbs Sampling is that we can approximate this joint distribution by repeatedly sampling
the marginal distributions of each parameter (e.g. p(v|A, σ,y, z)), which tend to be much
more tractable than the full joint distribution [34].

The process of sampling the marginal posterior distributions for each of our model param-
eters is greatly simplified by the judicious selection of special prior distributions—conjugate
priors—that lead to well-defined posterior distributions with closed-form analytical expres-
sions [244]. We thus adopt well established conjugate prior distributions for the transition
probability matrix (A), the emission rate vector (v), and the fluorescent noise parameter (σ).
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We emphasize, however, that in most use cases, these priors will be “weak”, such that our
prior guesses about the value of each parameter have little impact on the final estimates for
each. The priors outlined below should thus be interpreted as statistical conveniences first
and foremost, that provide an efficient, analytically tractable means of using the distribution
of experimental observations, p(y), to obtain estimates for the mean and uncertainty in our
model parameters.

We assume that each column of A follows the Dirichlet distribution, which is a commonly
used prior for discrete probability distributions, such that

p(ai) ∼ Dirichlet(α0), (7.3)

where α0 is a vector of positive real values of length K that, in the context of our model,
can be thought of as pseudo-observations that encode prior guesses about the frequency of
different state transitions.

As in the original formulation of cpHMM, estimation of the emission vector v given the
vector of hidden states z can be formulated as a simple least squares linear regression prob-
lem. As such, we follow previous works that have employed Gibbs sampling in the context
of linear regression models [203] and assume that v follows a K-dimensional multivariate
normal distribution:

p(v) ∼ N (v0,Σ0), (7.4)

where the vector v0 encodes prior guesses for each emission rate and the covariance matrix
Σ0 encodes our prior confidence in each guess.

Finally, we take σ to be inverse-gamma distributed (again, a standard assumption), such
that

p(σ2) ∼ Inverse-Gamma(k, θ), (7.5)

where 1/θ can be interpreted as encoding our prior guess about the scale of the Gaussian
noise and k is a pseudocount variable that encodes our confidence in that guess.

At the outset of burstMCMC inference, we draw an initial set of parameter values, θ0,
from these priors that are then used to draw an initial sample of the latent state vector z.
We outline this process next, and then examine how the above priors shape our approach to
sampling the marginal posterior distributions of A, v, and σ.

7.2.1.2 Sampling hidden promoter states

For a given set of model parameters, θk, we wish to obtain an estimate for the sequence of
promoter states, z, that corresponds to the observed MS2 trace, y. Unlike the algorithm
employed in Chapter 2, which estimated the probability of all possible promoter states at
each time step, burstMCMC works by sampling discrete state values at each time step, such
that the final outcome is a single sequence of promoter states, zk, drawn from the distribution
p(z|θk,y). Intuitively, we can think of this sampling procedure as a stochastic simulation.

Figure 7.1C illustrates the process. We proceed by randomly selecting time points one
by one from the set t ∈ {1, 2, ...T} without replacement. For each time point t, we randomly
draw a new promoter state zt from zt ∈ {1, 2, ...K} based off of the marginal likelihood of
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each state, conditioned on the system parameters (θk), the observed fluorescent values (y),
and the remainder of the hidden promoter state sequence (z∅t): p(zt|z∅t,v,A,y). We can
express this as the product of two terms, such that

p(zt = i|z∅t,v,A,y) = p(zt = i|z∅t,A)p(zt = i|z∅t,v, σ,y), (7.6)

where the first term on the right-hand side captures the component of the probability derived
from promoter state transitions and the second term captures the component relating to the
fluorescent emission probabilities.

If zt−1 = j and zt+1 = l, then we can express this up to a proportionality constant in
terms of model parameters as

p(zt = i|z∅t,A) ∝ aijali

t+⌊w⌋∏
n=t

e−
(ŷn−yn)2

2σ2 , (7.7)

where amn denotes the probability of switching from state n to state m, and where ŷn reflects
the predicted fluorescence at time n given that zt = i. Note that the fluorescence component
extends into the “future”, reflecting the fact that the promoter state at time t impacts the
predicted fluorescence, ŷ, for time points up to and including t+ ⌊w⌋.

Although this approach leads to only a single estimate for z per MCMC iteration, samples
taken across many model iterations provide an effective reflection of the space of possible
promoter sequences that could correspond to the observed fluorescence trace y. Next, we will
briefly sketch how our promoter state vector, zk can be used to sample from the posterior
distributions of our key model parameters θ̂ = {A,v, σ}.

7.2.1.3 Using Gibbs sampling to estimate posterior parameter distributions

In this section, we outline how z can be used to obtain an updated sample of the transition
probability matrix A. See Appendix D.3 for a full discussion of the update procedures for
A, v, and σ.

We draw updated samples separately for each column of A. Conveniently, A is condi-
tionally independent of y, v, and σ given the latent state vector zk. As a result, the update
expression for each column of A, ai, is Dirichlet-distributed, such that

p(ai
k+1|zk) ∝ Dirichlet(ni

k +αi
0), (7.8)

where αi
0 is a vector of length K where the jth element contains prior pseudo-counts

that encode our prior expectation for the frequency of transitions from state i to state j,
and where ni

k is a vector of length K, where the jth element indicates the actual number of
transitions “observed” in zk from i to j.

From Equation 7.8 it is easy to see how our prior influences the posterior estimate: if the
number of elements in αi is much less than the number of transitions out of state i, then
our prior will have little impact, and the information gleaned from the data will dominate.
Conversely, if the elements of αi

0 are of order with (or larger than) elements of ni, then our
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prior assumptions regarding the relative magnitudes of the transition probabilities out of
state i will strongly influence our final posterior estimate of ai.

Figure 7.1D shows the results from repeated updates using Equation 7.8 over the course of
1,000 MCMC iterations. We see that, after an initial “burn-in” period, the model converges
to the correct values for a21, the probability switching into the ON state, and a12, the
probability of switching into the OFF state. Analogous update functions for v and σ are given
in Appendix D.3. Figure 7.1E and F show the sampling results for these parameters, which,
we see, also fluctuate about their true values. Figure 7.1F shows the univariate and bivariate
distributions obtained for each parameter for the final 750 steps of the inference run. Overall,
we see that the model obtains posterior distributions that accurately reflect the underlying
burst parameters used to simulate the fluorescent trace for this simple scenario. Next, we turn
to benchmarking burstMCMC ’s performance in a more realistic (and challenging) inference
scenario.
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Figure 7.1: A Bayesian framework for inferring burst parameters. (A) Example
of a fluorescent trace generated via stochastic simulation. Black trend indicates simulated
experimental data, y, (including noise). Green trend indicates model prediction, ŷ, and
shaded region indicates model uncertainty, as calculated across 750 MCMC samples. (B)
Black trend gives true underlying sequence of promoter states, z, and green shaded regions
indicate model predictions. (C) Schematic illustrating burstMCMC model architecture, as
well as the procedure for sampling the latent promoter state vector. The top row depicts a
stochastic series of promoter states (z), which, in turn, dictate a series of promoter emission
rates, e (yellow circles). The key modeling difficulty comes from the fact that a single
emission state impacts ⌈w⌉ time steps of the fluorescence time series, ŷ (green squares).
Thus, to sample the latent promoter state zt, we must assess how different latent state
values impact all relevant time steps of the fluorescence trace. (D) Time series of state
transition probability values returned by Gibbs sampling in accordance with Equation 7.8.
(E) and (F) Time series of Gibbs sampling results for the elements of the emission vector, v,
and the fluorescent noise parameter, σ. (G) Univariate and bivariate histograms depicting
distribution of burst parameter values, as determined from the final 750 steps of burstMCMC
inference. In univariate histograms, solid lines indicate true values and dashed lines indicate
model predictions. We see good agreement in all cases, and also note minimal covariance in
the bivariate parameter distributions.

7.2.2 Benchmarking burstMCMC performance using simulated
data

In Appendix A.3.5, we use simulated fluorescent traces generated using a known, biologically
relevant set of model parameters to validate the accuracy of the cpHMM inference. Here, we
undertake a similar statistical validation for burstMCMC using comparable model parame-
ters to those employed in Appendix A.3.5. As in Chapter 2, we focus on a 3 state bursting
model (Figure 7.2A) that accounts for the presence of two distinct gene promoters within
each diffraction-limited fluorescent spot (see Appendix A.3.6 for details). Before discussing
the results, it is worth spilling a little ink to discuss an important distinction between discrete
and continuous promoter switching dynamics.

7.2.2.1 Aside about continuous versus discrete promoter switching dynamics

Like cpHMM, burstMCMC is a fundamentally discrete model: it breaks promoter activity
into discrete blocks of time equal to the experimental time resolution (∆τ). The statistics of
transitions between promoter states are given by the transition probability matrix A, and
may only occur at (not between) experimentally observed time points. In contrast, it seems
reasonable to expect that real biological systems adhere to continuous, rather than discrete,
dynamics described by a transition rate matrix, R.

The presence of transitions between time points violates a key assumption of burstM-
CMC, and thus might be expected to lead to degraded performance. Thus, in assessing
model performance, we will examine its accuracy both in the context of fluorescent traces
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simulated using discrete switching dynamics and for fluorescent traces generated using the
Gillespie Algorithm [110] that assume continuous switching dynamics. The former will in-
dicate whether the model is performing as designed, and the latter will indicate how it fairs
on data that more closely resemble what we expect from real experimental data.

7.2.2.2 Validation results

We generated ten independent data sets for the continuous and discrete switching cases,
each containing 3,000 total data points (25 fluorescent traces 120 time steps long). We used
identical model transition rates to those employed in the original validation of cpHMM.
Emission rate and noise parameters were also selected to be comparable to those used for
cpHMM validation. See Table 7.1 for a full description of system parameters. For each
dataset, we ran 125 independent MCMC inference chains in parallel for 5,000 iterations, and
report results only for the best fitting (most likely) run out of those 125. This procedure is
analogous to our approach for cpHMM, which took the most likely of 25 independent runs in
order to overcome the presence of multiple local minima and increase the odds of obtaining
accurate parameter estimates. We note that both the number of chains and the number of
MCMC steps used is conservative, and that accurate results can generally be achieved with
significantly less computational input.

Figure 7.2B shows burstMCMC inference results for the emission rates of the three activ-
ity states in our model. We see that, for fluorescence data generated using discrete promoter
switching (blue diamonds), burstMCMC recovers precisely the correct values of each of the
three rates (indicated as yellow circles). The model also generally yields accurate results for
traces generated assuming continuous promoter switching (red squares), although we note a
slight underestimate for state 3 (10.8± 0.51 vs. 12 AU/min).

What about transition rates? Consistent with our approach in Chapters 2 and 3, we
report transition rates, rather than transition probabilities. These were obtained by taking
the matrix logarithm of the A matrices returned by burstMCMC inference:

R =
1

∆τ
log(A), (7.9)

where ∆τ is the experimental time resolution. Figure 7.2C shows our inference for the six
transition rates connecting the 3 activity states in our model. For both continuous and
discrete data, we find that burstMCMC accurately recovers all transition rate values, with
the exception of the (very fast) transition rate from state 3 to state 2 (far right side of
Figure 7.2C). In this case, the model infers values that are significantly too low (3.2 vs. 4.2
events per minute). Although cpHMM was found to successfully recover this rate, we found
in the corresponding work that transition rates that imply more than one transition per
time step generally present an inference challenge. Thus, it is not a surprise that this rate
was inferred the least accurately. We note that burstMCMC successfully recovers this rate
for discrete data with lower noise levels. Thus, a key next step will be to improve inference
procedures to permit accurate inference of fast (but biologically salient) transition rates for
data with realistic levels of fluorescence noise.
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Parameter Value

Promoter switching rates (k01, k10, k12, k21) (1.2, 1.26, 0.72, 4.2) min−1

RNAP initiation rates (r0, r1, r2) (0, 6, 12 AU/min
Measurement noise (σ) 1.5 AU
RNAP elongation time (τelong) 140 sec
Data sampling resolution (∆τ) 20 sec
Memory window (w = τelong/∆τ) 7
MS2 loop transcription time (τMS2) 28 sec
Duration of each trace 40 min
Number of time points per dataset 3,000
Number of MCMC iterations 5,000
Number of MCMC chains 125
Number of traces per dataset 25
Number of independent datasets 10

Table 7.1: Parameter values used for generating synthetic datasets in the statistical validation
of the burstMCMC.

How much does our underestimation of r12 impact our overall interpretation of the model?
To answer this question, we reframed the inference results from Figure 7.2B and C in terms
of the effective two state framework employed in Chapters 2 and 3, where the system is
assumed to be on if either gene promoter is active. This leads to a simple effective two state
model (right side of Figure 7.2A) with two transition rates and two emission rates. This
model is simpler to interpret, and so represents the predominant means of reporting burst
parameter results in publication. Happily, we find that burstMCMC accurately recovers
all transition and emission rates for this effective two state system for both discrete and
continuous (Figure 7.2D and E).

7.2.3 burstMCMC significantly reduces computational
complexity

A key motivation for this work was the high computational cost imposed by cpHMM inference
for systems where the memory parameter w is large. In the cpHMM model, the majority
of this cost comes from the Expectation step, wherein the model updates the probability of
each of the Kw states for each time point in the data set. Figure 7.3A shows the average
amount of time required for a single expectation step as a function of w, demonstrating that
the computation time for this procedure scales exponentially. From a practical standpoint,
this means that, to be feasible, inference must be conducted on large computing clusters
for w ≥ 7, and cannot practicably be carried out once w ≳ 9. On the other hand, we find
that the time required for burstMCMC to update its estimate of the hidden promoter state
vector z—the analogous step in its inference cycle—is essentially decoupled from w.
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Figure 7.2: Benchmarking burstMCMC performance using simulated data. (A)
We sought to validate model performance by simulating data for a gene locus with burst
dynamics comparable to those inferred for the even-skipped stripe 2 gene in Chapter 2. We
use a three state model there to capture the presence of two distinct gene loci—each of
which can be ON or OFF—within each diffraction-limited spot. This three state model
can be condensed into an effective two state model (right-hand side) where we consider
the locus on if either promoter is active. (B) Inference results for emission rates of each
promoter state. Circles indicate true parameter values used to generate the data, diamonds
indicate inference results obtained using idealized experimental traces that assume discrete
promoter switching, and squares indicate results for more realistic traces generated with
continuous promoter switching. The model yields accurate results in all cases, save for a
slight underestimate of the high initiation rate for continuous data. (C) Inference results for
model transition rates. burstMCMC infers all rates accurately, save for the large transition
rate from 2 → 1. (D) and (E) Inference results for emission and transition rates for effective
two state model illustrated on right-hand side of (A). Model accurately recovers all effective
parameters.
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Figure 7.3: burstMCMC significantly reduces computational cost of burst param-
eter inference. (A) Green trend compares the average time required for burstMCMC to
resample z (green circles) to the time needed for a single expectation step in cpHMM infer-
ence (pink circles) as a function of w. Dashed pink line extrapolates cpHMM performance
to regimes that could not be calculated directly given computational constraints. Whereas
cpHMM computational time scales exponentially with w, we see that the trend for burstM-
CMC is essentially flat.

Thus, we see that burstMCMC has the potential to solve a core limitation of the cpHMM
method. We note, however, that more work is required to establish how other elements of
burstMCMC inference scale with w. For instance, it is likely that the number of independent
MCMC chains or the number of MCMC steps per chain needs to be increased for large w
to account for the increased complexity of the inference problem. Future work will seek to
establish how this scaling plays out in practice.

Beyond its improved computational efficiency, another great strength of burstMCMC is
its malleability: the flexibility of MCMC methods means that it is straightforward to add
parameters to the baseline model outlined in previous sections. In the next section, we
demonstrate how this can be done for a crucial system parameter: the number of elongation
steps w.

7.2.4 Inferring RNAP elongation times

Beyond its computational complexity, another factor limiting the application of the cpHMM
method to a wider array of genes and biological systems is the need to specify w,

w =
τelong
∆τ

, (7.10)

where ∆τ is set by the temporal resolution of data acquisition and τelong is the elongation
time, which is unknown a priori. In Chapter 2, we presented a method that uses derivatives
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of the autocorrelation of fluorescence traces to estimate w (see Appendix A.3.10). However,
this method is sensitive to noise due to its dependence on taking derivatives of experimental
data, and can be difficult to interpret by non-experts since no methods exist for estimating w
and its uncertainty aside from direct inspection of the autocorrelation derivatives themselves.
Thus, there is a need for a robust, interpretable method for estimating w to complement the
core functionalities of cpHMM and burstMCMC.

Here, we demonstrate how burstMCMC can be extended to permit the accurate inference
of w. To do this, we add a standard Metropolis Hastings step to each MCMC iteration, in
which a new length, w′ (again, permitted to be a non-integer quantity), is proposed, which
leads to a new MS2 kernel, κ′ of length w′. We then use κ′ to generate a new prediction for
the fluorescent trace using

ŷ′ = κ′ ∗ z. (7.11)

Since the hidden promoter state vector is unchanged, the only difference in the total likeli-
hood of the model lies in the error between predicted and actual fluorescence traces:

p(w′|z,θ,y) ∝
T∏
t=1

e−
(ŷt−yt)

2

2σ2 . (7.12)

Equation 7.12 is then used accept or reject w′ using the standard Metropolis Hastings
procedure.

Figure 7.4A shows the result of incorporating this procedure to standard burstMCMC
inference for systems with a wide range of different w values:

w ∈ {4.1, 5.7, 7.3, 8.9, 10.4} (7.13)

In general, we find that MH sampling is ineffective at estimating the true w in most cases.
Instead, individual burstMCMC chains (solid colored lines in Figure 7.4A) tend to remain
“stuck” near the initial guess that was used to initialize them, irrespective of the correspond-
ing true w value (dashed lines of the same color). For instance, note how two of the 3 MCMC
chains for w = 8.9 (blue) remain stuck near their initiation point at w ≈ 5. This problem
reflects a wider challenge with burst parameter inference, namely the presence of multiple
local minima that can trap the system and lead to sub-optimal performance.

In this case, we find that it is possible to overcome this issue by using a simple imple-
mentation of simulated annealing, a method in which an artificial temperature parameter,
Ta, is modulated over time to control how models explore complex, non-convex optimization
landscapes [119]. In our case, we find that it is sufficient to apply Ta to σ, while leaving
other model parameters unchanged. Specifically, take σa = Taσ̂k, where σ̂k is the initial
estimate returned by Gibbs sampling. We take Ta to be a decreasing exponential function
of the MCMC step, k (Figure 7.4B), such that

Ta = 2e−k/100 + 1. (7.14)

This has the effect of artificially elevating σ early on in burstMCMC inference, which, in
turn, “loosens” the likelihood expression given in Equation 7.12 and makes it easier for the
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system to escape local minima. σ is then “cooled” back off to normal levels (Ta = 1) to
obtain accurate parameter estimates.

Figure 7.4C shows the results of memory inference runs that incorporate simulated an-
nealing. The impact of applying Ta is clear from the large fluctuations in wk early on in the
inference runs of each MCMC chain. This time, we find that the model robustly recovers the
true w value across all elongation times tested, indicating that these early fluctuations help
the model to overcome local minima for w and find the best-fitting value for each system.

Figure 7.4: Inferring RNAP elongation times with burstMCMC. (A) Inference re-
sults for different w values. Solid lines indicate results for different MCMC chains. Dashed
lines of same color indicate the correct w values. We find that the model frequently fails to
infer the correct value for w. (B) Red curve illustrates effective temperature parameter that
is used to elevate σ early on in burstMCMC inference. (C) Inference results for runs that
incorporate simulated annealing. In this case, we find that the model robustly recovers the
true elongation time for every system tested.

7.3 Future directions: a statistical bridge between

live imaging data and quantitative models of

transcription

7.3.1 Improving model accuracy

The first priority moving forward will be to augment the current inference framework to
resolve the minor accuracy issues noted in Figure 7.2B and C. To realize this goal, we are
actively pursuing multiple directions, all of which amount to efforts to improve the accuracy
with which the model decodes the fluorescent vector y to achieve a representation of the
hidden sequence of promoter states, z. The first of these is adjusting the inference such that
sampling is conducted using an ensemble of latent state chain replicates, rather than a single
state vector, with the hope that multiple replicates will provide a more robust representation
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of the distribution of possible promoter states at each time point. This may be particularly
important for the accurate inference of rare states, such as state 2 in the model used for val-
idation, which is visited less than 10% of the time. Most simply, this could be implemented
by duplicating the current approach for sampling z to run simultaneously across multiple
replicates. In such approach, each z representation would be updated independently, and
then the replicate chains would be pooled in order to update θ. Alternatively, we could im-
plement an approach more akin to Sequential Monte Carlo (particle filtering) [191], wherein
multiple particles are tracked and collectively (rather than independently) resampled. Care-
ful thought would need to be given to how to implement this approach in the context of a
system with memory (i.e. κ of length greater than 1), like the one considered here.

A related approach that has shown some initial promise is parallel tempering [120]. There
are many variations on this approach, but the basic idea is to have a standard MCMC chain
estimating z connected to a “resevoir” of higher-temperature chains with Ta > 1. The
higher temperature chains are situated in a “flatter” likelihood space, and thus can explore
parameter space more efficiently than the Ta = 1 chain. The key is to allow for “leaks”
between chains, most simply via a series of horizontal Metropolis Hastings transfer moves,
that permit the sharing of information between high temperature chains and the Ta = 1
chain. In addition to increased accuracy, this approach can also increase the rate of model
convergence [120]. More testing is needed to determine whether this approach improves
the performance of burstMCMC. A third, closely related option is to extend the simulated
annealing approach outlined in Section 7.2.4 to the broader problem of inferring A, v, and
σ.

7.3.2 Model extensions: input-output functions and single-cell
burst parameters

Thanks to recent innovations in live imaging techniques (see, e.g., [24]) it is increasingly
feasible to measure input concentrations of transcription factor (“TF”) proteins alongside the
output transcriptional activity for a wide range of factors and target genes. With cpHMM,
it is already possible to examine burst parameter trends as a function of transcription factor
concentration by conducting inference on multiple sets of traces, each grouped by average
TF concentration. There are two key challenges to this approach, however. First, each group
must be sufficiently large (typically N ≳ 20 cells) to permit robust inference, which places
limits on the granularity with which the transcriptional input-output function can be probed.
Second, in contexts such as developmental systems, transcription factor concentrations are
typically dynamic in time, a dynamism which current inference approaches fail to capture
and, as a result, simply average over in one way or another. Yet, as we saw in Chapters 2 and
3, temporal control of transcription can play an important role in driving pattern formation.

To overcome these limitations, I propose extending burstInfer to permit one or more
burst parameters to be explicit functions of input transcription factor concentration. For
instance, for the two state model we could imagine a model in which the on rate kon has the
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form of a simple Hill function, such that

kon = k0
on

[TF ]H

KH
d + [TF ]H

, (7.15)

where [TF ] is the concentration of the regulatory factor, k0
on is the maximum on rate value,

and H and Kd control the function sharpness and sensitivity, respectively. Such an approach
would remove the need to break transcription traces into groups for inference, allowing
for inference to be conducted over full groups, increasing statistical power, as well as the
granularity of the inferred input-output relationship. In addition, it would automatically
account for changes in burst parameter values within individual traces over time.

From a technical perspective, incorporating these kinds of input dependencies into the
burstMCMC framework is straight-forward; however it remains an open question whether
accurate recovery of the additional parameters is possible. In addition, it is conceptually
difficult to conceive of how we would apply this kind of framework to a 3+ state systems,
with 6+ rate parameters and 3+ emission parameters. It would likely prove necessary to
coarse-grain the system in some way in these cases, such as those sketched in the next section.

A separate but related direction involves extending burstMCMC to explicitly capture
the hierarchical nature of transcriptional systems: while spatial-temporal distributions of
regulatory inputs lead to similar mean behaviors between gene loci within neighboring cells,
a wealth of literature has also the presence of extensive cell-to-cell variability (see, e.g., [81]
and also Chapter 4). To capture this reality, the structure of burstMCMC could be updated
to be explicitly hierarchical, assuming that transcriptional burst parameters in cells from the
same spatial or temporal group are “drawn” from the same distributions, but allowing for
each cell, i to have a unique set of parameter values, θi. For instance, we could stipulate
that the emission rate for state 2, v2 for each cell is drawn from a normal distribution that
has a mean value, v2 that is equivalent the v2 estimate returned by standard burstMCMC,
but which also has a finite spread, σv2, that indicates how tightly constrained this emission
value is within different populations of cells.

Two potential applications of this hierarchical approach would be (i) achieving supe-
rior single-trace estimates of z and (ii) allowing for practitioners to query not only which
parameters are regulated on average but, also, the degree to which different aspects of tran-
scriptional systems vary within cells that experience similar transcriptional inputs. In other
words, how tightly controlled (or not) is each burst parameter? It would be intriguing, for
instance, to ask this question of sister gene loci in two spot experiments that are derived
from same cell (see Chapter 4). Indeed, the very concept of doing this problematicizes the
concept of intrinsic noise as defined in Chapter 4 (and originally in [81]), which assumes that
burst parameters themselves are fixed values within each population gene loci considered.

7.3.2.1 Using first passage times to connect burst parameters to molecular
models

In principle, the same approaches that burstMCMC uses to estimate burst parameter values
could be extended to estimate full molecular models like those examined in Chapters 5 and
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6. However, in practice, it would likely be impractical to sample every molecular reaction
explicitly. There may yet be a way to incorporate molecular models into burst parameter
inference, however. In Chapters 5 and 6 we developed analytical methods to calculate
effective bursting timescales from more detailed molecular models. Appendix C.2.4.4 in
particular provides a generic method for calculating effective two state off and on rates (k∗

off

and k∗
on) for arbitrarily complex molecular models. These effective parameters could be

used to sample a set of molecular parameters, m conditional on current burst parameter
estimates: p(m|A,v, σ, z). Likewise, updated estimates for for z could be made to reflect
m.

Of course, information is lost in looking only at the mean values of these effective param-
eters, since the distribution of waiting times to exit different activity states need not always
be exponential, depending on the molecular model m (see, e.g. Section 5.4 in Chapter 5).
One possible way around this would be to estimate passage times empirically from z and
use this to constrain the molecular model parameters m. A second would be to increase
the number of activity states, K, until observed first passage times for each state are ap-
proximately exponential. This would indicate that the model size matches the number of
rate-limiting steps present in the underlying transcriptional cycle.

Altogether, we believe that the improvements to burstMCMC sketched above will lead
to a flexible and robust framework for inferring kinetic models from live imaging data.
Ultimately, we hope that the method can serve as a statistical bridge between raw fluorescent
traces, transcriptional bursting, and truly molecular models of transcriptional control.
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Appendix A

SI for Multimodal transcriptional
control of pattern formation in
embryonic development

A.1 Supplementary Figures
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Figure A.1: Aligning stripes from multiple embryos. In order to minimize alignment
errors when combining data from across multiple Drosophila embryos, an automated routine
was employed to define a new experimental axis for each data set based upon the spatial
distribution of transcriptional activity in the mature eve stripe 2 pattern. (A) Example
of the spatiotemporal distribution of observed fluorescence for an individual embryo. Each
circle corresponds to the fluorescence from a single locus at a single point in time. Only
observations after 30 min into nuclear cycle 14 were used. Circle size indicates fluorescence
intensity. Color indicates temporal ordering: 30 min (blue) to 47 min (red). (B) A Gaussian
filter was convolved with the raw data points in (A). This filtering ameliorated stripe fitting
artifacts that arose due to the relative sparsity of the raw data. The fitting procedure
considered both a range of possible stripe orientations (θstripe) and, within each orientation,
a range of possible positions of the stripe along the anterior-posterior axis (xstripe) that,
together constituted a set of possibilities for the new stripe center position and orientation.
Here, the shaded red region indicates the range of values for θstripe that were considered.
The red line indicates the best stripe axis inferred by the algorithm and the green line
indicates the corresponding optimal stripe center. No constraints were placed on xstripe, save
for the limits of the experimental field of view. (C) For each proposed stripe orientation
(θstripe), a projected stripe profile was generated by taking the average pixel intensity for
each position, xi, along the proposed stripe axis. To determine the optimal center location
for each orientation, a sliding window with a width equal to 4% of the embryo length was
used to determine the fraction of the total profile fluorescence that fell within 2% embryo
length of the stripe center. For example, the gray shaded region in (B) illustrates what this
range would be for the green stripe center line (B). This fraction of the total profile was used
as a baseline for the comparison of potential stripe center positions. The θstripe and xstripe

that maximized this metric (green profile in (C)) were taken to define a new, empirically
determined stripe center. (D) This inferred stripe position defined an experimental axis
for each embryo that was used to aggregate observations from across embryos. Gray circles
indicate experimental observations (size corresponds to intensity as in (A)) and shading
indicates distance from inferred stripe center.
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Figure A.2: Integrating MS2 Spots. (A) Sites of nascent transcription are identified
in 3D using the Weka segmentation plugin for FIJI. Once identified, as described in [104],
the Z-plane corresponding to the maximum fluorescence intensity is determined. On this
Z-plane, fluorescence of a site is measured by integrating raw pixel intensities in a circular
region around the fluorescent MS2 spot of a predefined area (indicated by the red circle) and
then subtracting off the background intensity obtained by fitting a 2D Gaussian profile as
outlined in (B). (B) X-Z projection of 2D Gaussian function fitted to MS2 spot shown in (A).
Background intensity is estimated using the offset value fo this Gaussian fit. The per-pixel
offset is then multiplied by the area of the integration region. This background value is then
subtracted from the fluorescence integrated across the area shown in (A). (C) The radius
was chosen to be large enough to integrate the intensities from both sister chromatids, even
when they are spatially separated and distinguishable .
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Figure A.3: Mean transcriptional activity. Mean transcriptional activity as a function
of time for different positions along the stripe. (Average over 11 embryos, error bars indicate
bootstrap estimate of the standard error of the mean. See Materials and Methods).
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Figure A.4: Regulation of the transcriptional time window. (A) Single-nucleus mea-
surements reveal that the duration of transcription is modulated along the stripe and that
nuclei transcribe in a burst-like fashion. (B) Time for nuclei to activate transcription after
mitosis, ton, as a function of position along the stripe. (C) Time for nuclei to enter the quies-
cent transcriptional state, toff . (B,C, average over 11 embryos, error bars indicate bootstrap
estimate of the standard error of the mean. See Materials and Methods).
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Figure A.5: Definition of stripe amplitude. (A) The normalized mRNA profile for
the stripe can be separated into an offset and an amplitude. (B) Normalized mRNA
profiles and (C) stripe amplitude for the cytoplasmic pattern of mRNA as well as for the
contributions from the various regulatory strategies.
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Figure A.6: Joint effect of mean rate, binary control, and fraction of active nuclei.
Including of the predicted effect of anterior-posterior-dependent modulation of the fraction
of active nuclei has little effect on the predicted cytoplasmic mRNA profile (compare brown
profile in Figure 2.1G, gray profile above). The remaining difference between the full profile
(red) and the gray profile can be attributed the effects of temporal variations in the mean
rate of transcription.
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Figure A.7: Fraction of time spent in each transcriptional state. Fraction of time
spent in the ON and OFF states as a function of the position along the stripe. (Error bars
indicate the magnitude of the difference between the first and third quartiles of cpHMM
inference results for bootstrap samples of experimental data. See Materials and Methods for
details.)

A.2 Extended Materials and Methods

A.2.1 Data processing

Processed live-imaging movies were compiled from across 11 experiments (embryos) to form
one master analysis set. While the position of eve stripe 2 along the anterior-posterior
axis of the embryo was found to be consistent to within 1-2% of egg length, we sought
to further reduce this embryo-to-embryo variation by defining new, “registered” AP axes
for each experiment using the observed position and orientation of the mature stripe. To
this end, an automated routine was developed to consistently establish the position and
orientation of the eve stripe 2 center for each data set.

This routine, described graphically in Figure A.1, used observed spatial patterns of flu-
orescence measured from 30 minutes into nuclear cycle 14—the approximate time at which
the mature stripe is first established [27]— to the time of last observation (≥40 min) to find
the natural position and orientation of the mature stripe. Generally, the eve stripes run
roughly perpendicular to the anterior-posterior (AP) axis of the embryo; however, the ap-
proach allowed for the possibility that the true orientation of the eve 2 stripe deviated from
the orientation implied by manual estimates of the anterior posterior axis. Thus, a variety of
orientations for the natural stripe axis were considered, ranging between ± 15 degrees from
the line perpendicular to the stripe with the manually specified anterior posterior axis. For
each orientation, a sliding window of 4% embryo length in width was used to find the position
along the proposed orientation that captured the largest fraction of the total fluorescence
emitted by the mature stripe. The orientation and position that maximized the amount of
fluorescence captured within this window defined a line through the field of view that was
taken as the stripe center. All anterior-posterior positions used for subsequent analyses were
defined relative to this center line.
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Once the stripe centers for each set were established, fluorescence traces were interpolated
to 20s resolution, with all times shifted to lie upon a common reference time grid. Traces
near the edge of the field of view or that exhibited uncharacteristically large changes in
fluorescence over a time step were flagged through a variety of automated and manual filtering
steps. When necessary, these traces were removed from subsequent analyses to guard against
the influence of non-biological artifacts.

A.2.2 cpHMM inference

To account for finite RNA polymerase (RNAP)elongation times, a compound state Markov
formalism was developed in which the underlying two-promoter system—assumed to have
three states (see Figure 2.4E,F)—was transformed into a system with 3w compound gene
states, where w indicates the number of time steps needed for an RNAP molecule to traverse
the full transcript (see Figure A.36). These compound gene states played the role of the “hid-
den” states within the traditional HMM formalism. See Appendix A.3.4 for details regarding
the model’s architecture. Following this transformation from promoter states to compound
gene states, it was possible to employ a standard version of the expectation-maximization
(EM) algorithm, implemented using custom-written scripts in Matlab, to estimate bursting
parameters from subsets of experimental traces (Appendix A.3.4). The scripts are available
at the GarciaLab/cpHMM GitHub repository. Bootstrap sampling was used to estimate the
standard error in our parameter estimates. Subsets of 8,000 data points were used to gen-
erate time-averaged parameter estimates. In order to accurately capture the time-averaged
dynamics across the entirety of nuclear cycle 14, the full length of each experimental trace
was used for time averaged inference. Sample sizes for windowed inference varied due to
data set limitations. When possible, samples of 4,000 points were used. Only data points
falling within a 15 minute window centered about the time point of interest were included in
windowed inference runs. Inference was not conducted for spatiotemporal regions for which
fewer than 1,250 time points were available. A minimum of 10 bootstrap samples were
used to estimate each parameter value reported in this work. Reported values represent the
median taken across bootstrap samples.

A.2.3 Input-output logistic regressions

The input-output analysis presented in Figure 2.7 utilized input transcription factor data
from immunostaining experiments presented in [74], as well as live measurements of a Bicoid-
GFP fusion courtesy of Jonathan Liu and Elizabeth Eck. Logistic regression parameters were
estimated in Matlab using the fmincon function. See Appendix A.3.8 for further details.

A.2.4 Bootstrap error calculation

Bootstrap resampling was used frequently throughout this work to estimate the standard
error in a variety of reported quantities, from trends estimated directly from raw experimental
data in Figure 2.1 to cpHMM inference results presented in Figure 2.5 and Figure 2.6. In this

https://github.com/GarciaLab/cpHMM
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procedure, multiple bootstrap replicates, yiboot are generated by sampling with replacement
from the pool of available experimental data, Y (see, e.g. [Efron2016]). The parameter of
interest (say, ton(x)) is then calculated for each replicate and the mean of these estimates is
taken as the bootstrap estimate of the parameter value, t̂on(x), while the standard deviation
across the pool of bootstrap parameter estimates is used to approximate the standard error
in our estimate of ton(x). In our case, simply performing this procedure across the available
pool of nuclei failed to account for biological variability that exists from embryo to embryo.
To account for this, we introduced a hierarchical bootstrapping procedure. The first step in
this procedure was to draw bootstrap samples from across the 11 embryos used in this study.
Because these samples were taken with replacement, most bootstrap samples excluded some
embryos out of the original set of 11 and included duplicates (or triplicates, etc.) of others.
Each embryo-level bootstrap defined a subset of nuclei. The final set of nuclei used for
parameter estimation was generated by performing another round of bootstrap sampling on
this pool. Bootstrap averages and standard errors were then calculated as described above.
This two-step procedure thus accounts for both embryo-to-embryo and nucleus-to-nucleus
variability.

We note that the limited number of data points available for many spatiotemporal regions
prevented us from performing this two-tiered bootstrap procedure in the case of our time-
dependent cpHMM inference (Figure 2.6D-F and Appendix A.3.7–Figure A.30D-E). In these
cases, we used all available sets (essentially skipping the first bootstrap resampling step)
and took bootstrap samples from amongst available nuclei as in step two of the procedure
described above.

A.2.5 Absolute calibration of MS2 signal

A major strength of the modelling techniques presented in this paper (e.g. cytoplasmic
mRNA prediction, csHMM, logistic regressions) is that they can be applied directly to MS2
data, without a need to convert the signal into absolute counts of RNAP molecules. Because
of this, none of the conclusions presented in this work depend upon an absolute AU to RNAP
calibration. Still, it can be informative to view quantities in terms of biologically meaningful
units.

Thus, in order to frame our results with respect to units with a clear physical inter-
pretation, we calibrated our fluorescence measurements in terms of absolute numbers of
mRNA molecules. This calibration was also used to inform our Poisson loading sensitivi-
ties (Appendix A.3.4). To calculate this calibration for our eve stripe 2 data, we relied on
measurements reported by a previous study that utilized MS2 in conjunction with single
molecule FISH to establish a calibration factor, α, between the integrated MS2 signal, FMS2,
and the number of mRNA molecules produced at a single transcriptional locus, NFISH, [104]
given by

α =
NFISH

FMS2

. (A.1)

This calibration factor can be used to estimate the average contribution of a single mRNA
molecule to the observed (instantaneous) fluorescent signal. While the values for the parame-
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ters in A.1 reported here pertain to the transcriptional output driven by the Bicoid activated
P2 enhancer and promoter during nuclear cycle 13, the calibration should generalize to all
measurements taken using the same microscope.

First, consider the total integrated fluorescence emitted by a single nascent mRNA while
it is on the reporter gene,

F1 = fmax

1
2
LI + LII

velong
, (A.2)

where fmax denotes the instantaneous fluorescence emitted by a nascent mRNA that has
transcribed the full complement of MS2 loops, LI indicates the length of the MS2 loops, LII

indicates the distance between the end of the MS2 loop cassette and the 3’ end of the gene,
and velong indicates the elongation rate of RNAP molecules along the gene. We can solve for
fmax using α, namely,

F1 =
1

α
= fmax

1
2
LI + LII

velong
, (A.3)

such that

fmax =
velong
α

1
1
2
LI + LII

. (A.4)

Here, we recognize that the cumulative fluorescence per RNAP molecule is simply the inverse
of the number of molecules per unit fluorescence (α). Now we have the pieces necessary to
derive an expression for the instantaneous fluorescence of a single RNAP molecule, that is,

FRNAP =
1

τelong
fmax

1
2
LI + LII

velong

=
velong

(LI + LII)
fmax

1
2
LI + LII

velong

= fmax

1
2
LI + LII

(LI + LII)

=
velong
α

1

(LI + LII)
, (A.5)

resulting in

FRNAP =
velongFMS2

NFISH

1

(LI + LII)
. (A.6)

Measurements performed in [104] give NFISH to be 220 (± 30) mRNA per nucleus and
velong to be 1.5 (± 0.14) kb/min. Experimental measurements on the P2 enhancer (courtesy
of Elizabeth Eck, Maryam Kazemzadeh-Atoufi and Jonathan Liu) indicate that the total
fluorescence per nucleus, FMS2, is 9,600 (±320) AU minutes. For the reporter gene used to
take these measurements, LI and LII are 1.275 kb and 4.021 kb, respectively. Thus, we
obtain

FRNAP =
1.5× 9610

220

1

(1.275 + 4.021)
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= 13± 1.7 AU/RNAP. (A.7)

Though the error in our calibration is significant (¿13%), the conversion from arbitrary units
to numbers of nascent mRNA nonetheless provides useful intuition for the implications of
our inference results, and none of our core results depend upon having access to a precise
calibration of the observed signal in terms of absolute numbers of RNAP molecules.
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A.3 Appendices

A.3.1 Theoretical model to predict cytoplasmic mRNA levels
given from in vivo measurements of transcriptional
activity

Derivation details

Here we provide a more detailed treatment of the mathematical framework for connecting
transcriptional activity in individual nuclei to levels of accumulated cytoplasmic mRNA. We
begin with general expressions for the rate of mRNA production during the transcription-
ally active and quiescent periods that dictate the transcriptional time window. When the
promoter is actively transcribing (ton ≤ t ≤ toff), the net rate of mRNA production is

dmRNA

dt
(x, t) = R(x, t)︸ ︷︷ ︸

transcription rate

− γmRNA(x, t)︸ ︷︷ ︸
degradation rate

, (A.8)

where γ is the mRNA degradation rate constant. For a promoter that has entered a tran-
scriptionally quiescent state (t > toff), we have

dmRNA

dt
(x, t) = −γmRNA(x, t), (A.9)

such that degradation is now the only contribution to the change of mRNA concentration in
time. Note that, in these two equations, we have ignored the contribution of mRNA diffusion.
Previous measurements have estimated a diffusion coefficient of mRNA of 0.09 µm2/s [122]
and a typical mRNA degradation rate of 0.14 min−1 [78]. Given these numbers, we expect
an eve mRNA molecule to diffuse approximately 6 µm, which corresponds to one nuclear
diameter or 1% of the embryo length, before being degraded. Thus, given the overall width of
the stripe mRNA profile of about 8% of the embryo length (Figure 2.3G), we expect diffusion
to play a minimal role in stripe formation. Finally, note that we are also ignoring the delay
between transcriptional initiation and the delivery of an mRNA molecule to the cytoplasm as
a result of nuclear export. This delay would affect the timing of pattern formation, but would
leave our conclusions about the relative role of transcriptional bursting and the regulation
of the duration of the transcriptional time window unaffected.

To make progress, as in the main text, we make the simplifying assumption that the
instantaneous rate of transcription can be well approximated by the time average at each
position given by

R(x) ≈ ⟨R(x, t)⟩t. (A.10)

We now consider the role of ton(x) in dictating pattern formation by envisioning a scenario
where transcription begins at time ton(x), but does not cease. In this scenario, the accumu-
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lated mRNA is given by

mRNAactive(x, t) = R(x)︸ ︷︷ ︸
transcription rate

× 1

γ

(
1− e−γ(t−ton(x))

)
︸ ︷︷ ︸

time window

. (A.11)

Note that if the system evolves for a long amount of time, the second term in the parenthetical
in Equation A.11 becomes vanishingly small (γ(t−ton(x)) ≫ 1) such that all time dependence
drops out of the expression and we recover the familiar expression for mRNA levels in steady
state

mRNAactive(x, t) =
R(x)

γ
, (A.12)

where mRNA production and degradation are balanced.
Next, consider the impact of regulating the timing with which nuclei cease transcriptional

activity and become quiescent, toff . Here, when t > toff(x), the amount of mRNA produced
during the period of activity is subsumed within a decaying exponential envelope such that

mRNAquiescent(x, t) = e−γ(t−toff(x))︸ ︷︷ ︸
quiescent decay

[
R(x)︸ ︷︷ ︸

transcription rate

× 1

γ

(
1− e−γ(toff(x)−ton(x))

)
︸ ︷︷ ︸

time window

]
.

(A.13)

Equation A.13 represents a scenario in which the accumulation of cytoplasmic mRNA
results from the interplay between two distinct regulatory strategies: the modulation of when
the transcription starts and stops (binary control of the transcription time window) and the
average rate with which transcription occurs within this time window (analog control of
transcriptional bursting). We refactor Equation A.13 to reflect this distinction and consider
the case when t > ton, giving

mRNAfull(x, t) =
R(x)

γ︸ ︷︷ ︸
analog control

× e−γ(t−min(toff(x),t))
(
1− e−γ(min(toff(x),t)−ton(x))

)︸ ︷︷ ︸
binary control

, (A.14)

which can be simplified slightly to yield

mRNA(x, t) =
R(x)

γ︸ ︷︷ ︸
analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x))

)︸ ︷︷ ︸
binary control

. (A.15)

Finally, we account for the fact that only some pactive(x) fraction of nuclei within each region
ever engage in transcription leading to

mRNA(x, t) = pactive(x)×
R(x)

γ︸ ︷︷ ︸
analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x))

)︸ ︷︷ ︸
binary control

. (A.16)

This equation constitutes the basis of our theoretical dissection of pattern formation by
transcriptional bursting and the control of the transcriptional time window.
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Accounting for multiple transcriptional states

In the main text, Equation 2.3 expresses the mean rate of mRNA production, R(x), as a
function of the bursting parameters kon, koff , and r. We can combine this equation with
Equation A.16 to obtain an expression for the predicted amount of cytoplasmic mRNA that
includes the burst parameters inferred by our cpHMM

mRNA(x, t) = pactive(x)×
r(x)

γ

kon(x)

kon(x) + koff(x)︸ ︷︷ ︸
analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x))

)︸ ︷︷ ︸
binary control

. (A.17)

While we present our results in terms of an effective two-state model in the main text, the
presence of two transcriptional loci within each observed fluorescent spot suggests that the
system is more naturally described using a three-state kinetic model. Here, we extend the
framework presented in Equation A.17 to a scenario in which there are three distinct system
states: 0 promoters on (0), 1 promoter on (1), and both promoters on (2) (see Figure 2.4).
We begin with a general expression for this scenario that takes the contribution from the
analog control term shown in Equation A.16 to be a sum over the output of each of the 3
activity states, namely,

mRNA(x, t) = pactive(x)×
1

γ

( 2∑
i=0

ri(x)πi(x)
)

︸ ︷︷ ︸
analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x))

)︸ ︷︷ ︸
binary control

, (A.18)

where ri(x) is the rate of RNAP loading for state i, and πi(x) indicates the fraction of
time spent in state i. Note that the independent effect of the duration of the transcription
time window and of mRNA decay on cytoplasmic mRNA levels remain unchanged in the
multi-state case.

The fractional occupancies of the activity states (πi(x) terms in Equation A.18) are a
function of the rates with which the promoter switches between activity states. In general,
the fractional occupancy of each activity state, πi, may vary as a function of time; however
we focus on their steady state values here, such that:

0 = R(x)π(x), (A.19)

where R(x) is the transition rate matrix. Consistent with our inference results, we assume
that no transitions are permitted between the high and low states (0 & 2). Thus, the
transition rate matrix takes the following form:

R(x) =

−k01(x) k10(x) 0
k01(x) −k10(x)− k12(x) k21(x)

0 k12(x) −k21(x)

 . (A.20)

Together, Equation A.19 and Equation A.20 allow us to solve for the fractional occupancy
of each activity state as a function of the transition rates that describe the system.
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For the remainder of this derivation, we will drop the explicit x and t dependencies
for ease of notation. Intuitively, the steady state (or stationary) distribution represents a
limiting behavior of the system such that, upon reaching π, no further shifts occur in the
mean fraction of time spent in each activity state. Equation A.19 leads to a system of three
equations:

0 = −π0k01 + π1k10 (A.21)

0 = π0k01 − π1

(
k10 + k12

)
+ π2k21 (A.22)

0 = π1k12 − π2k21. (A.23)

Before proceeding, we note that, since π is a probability distribution, we can eliminate one
of our unknowns by enforcing normalization, that is,

1 = π0 + π1 + π2. (A.24)

With this in mind, we can solve Equation A.21 for π1 to find

π1k10 = π0k01 (A.25)

π1 = π0
k01
k10

. (A.26)

Next, we use the normalization condition to eliminate π2 from Equation A.23:

π1k12 = π2k21

= (1− π0 − π1)k21. (A.27)

By combining this result with Equation A.26, we obtain

π0
k01
k10

k12 = (1− π0 − π0
k01
k10

)k21 (A.28)

π0
k01k12
k10k21

= 1− π0
k10 + k01

k10
(A.29)

π0 =
k10k21

k10k21 + k01k21 + k01k12
. (A.30)

With Equation A.30 in hand, it is then straightforward to solve for the remaining πi terms.
First we obtain π1 by substituting Equation A.30 into Equation A.26:

π1 = π0
k01
k10

=
k01k21

k10k21 + k01k21 + k01k12
. (A.31)

And finally π2:

π2 = 1− π0 − π1
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=
k01k12

k10k21 + k01k21 + k01k12
. (A.32)

Thus, we arrived at the full expression for cytoplasmic mRNA levels in the 3-state case:

mRNA(x, t) = pactive(x)
1

γ

(
r1(x)

k01(x)k21(x)

κ(x)
+ r2(x)

k01(x)k12(x)

κ(x)

)
︸ ︷︷ ︸

analog control

×

(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x))

)︸ ︷︷ ︸
binary control

, (A.33)

where, consistent with the 2-state case, we have taken r0(x) to be equal to zero and where
κ(x) denotes the denominator in Equation A.30, Equation A.31 and Equation A.32, namely,

κ = k10k21 + k01k21 + k01k12. (A.34)

Thus, from Equation A.33 we see that, while there are more terms comprising the ana-
log control expression, the expression nonetheless takes on the same essential form as in
Equation A.16.

Mapping the three-state model into an effective two-state model

Here we provide expressions relating the effective two-state parameters presented in the main
text to parameters from the full three-state model. As we have done throughout this work,
we take the transition rates between states (0) and (2) of the 3-state model to be negligible
(consistent with inference results, see Appendix A.3.7). First, the on rate, keff

on is directly
equivalent to the transition rate between states (0) and (1), that is,

keff
on = k01. (A.35)

Similarly, since we do not observe from state (2) to state (0), keff
off is equal to the transition

rate from (1) to (0), weighted by the relative fraction of time the system spends in state (1)
when it is in the effective ON state (1 or 2). Thus, we have:

keff
off =

π1k10
π1 + π2

(A.36)

=
k01k21k10

k01k21 + k01k12
(A.37)

=
k21k10

k21 + k12
. (A.38)

Finally, reff is the occupancy-weighted average of the initiation rates for states (1) and (2),
namely,

reff =
π1r1 + π2r2
π1 + π2

(A.39)
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=
r1k01k21 + r2k01k12
k01k21 + k01k12

(A.40)

=
r1k21 + r2k12
k21 + k12

. (A.41)

A.3.2 Measuring the amount of produced mRNA

Here, we outline our methodology for estimating rates of mRNA production depicted in
Figure 2.3A and B, as well as the total cytoplasmic mRNA levels per nucleus shown in
Figure 2.3G.

Calculating rates of mRNA production

The observed fluorescence signal at transcriptional loci as a function of time, F (t), is linearly
related to the number of actively transcribing RNAP molecules. Thus, after a period equal to
the amount of time needed for an RNAP molecule to transcribe the gene, τelong, the number
of new mRNAs added to the cytoplasm will be proportional to F (t) [27], that is,

F (t) ∝ M(t+ τelong)−M(t), (A.42)

where M(t) indicates the total number of mRNA molecules that have been produced up to
time t. We can relate this fluorescence signal to absolute numbers of RNAP molecules using
the calibration procedure described in the Extended Materials and Methods. Drawing from
the derivation provided in the SI Methods of [27], we take the rate of mRNA production at
time t to be approximately equal to the observed fluorescence at time t− τelong

2
,

F
(
t− τelong

2

)
∝ dM(t)

dt
. (A.43)

Here, the
τelong

2
term accounts for the time lag between the number of transcribing nascent

mRNA molecules and their release into the cytoplasm. An alternative way to think about
this is that Equation A.42 is essentially an expression for the time derivative ofM(t), centered
at time

τelong
2

. For ease of notation, we will ignore this offset factor for the remainder of this
section. We will also treat the relationship in Equation A.43 as one of equality.

Figure 2.3A depicts the time-averaged rate of mRNA production for each nucleus within
the experimental field of view for one of our 11 live imaging movies. For each nucleus, this
quantity was obtained by averaging the fluorescence across all observed time points, from
when the nucleus first turned on (ton) through to the final time point where expression was
detected (toff), which is taken to be either the time at which the nucleus transitioned into
a quiescent state or the time depicted in the figure (40 minutes into nuclear cycle 14)—
whichever came first. Thus the average rate of mRNA production for nucleus i is obtained
from

Ri =
α
∑toff

t=ton
Fi(t)∑toff

t=ton
1

, (A.44)
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where the denominator is the total number of time points over which the averaging is per-
formed and α indicates a conversion factor with units of RNAP molecules per AU per unit
time that accounts for two factors: (1) the conversion from fluorescence to absolute numbers
of RNAP molecules and (2) the dwell time of RNAP molecules on the gene. From Equa-
tion A.7, we know that we have one RNAP molecule for every 13 AU. The second factor
is analogous to the velong/(LI + LII) component of Equation A.5, but with the appropriate
lengths and elongation rates for the eve stripe 2 reporter. See SI Appendix, section A.3.10
for details about how we estimate the elongation time for our experimental system. Here,
we will simply quote the results that α = 0.037 RNAP molecules per AU per minute. Thus,
the mean rate of mRNA production of a single nucleus is given by

Ri =
0.037

∑toff
t=ton

Fi(t)∑toff
t=ton

1
. (A.45)

A similar procedure was performed to estimate the average rate of mRNA production for
each region along the anterior-posterior that is depicted in Figure 2.3B. This time, however,
we summed over observed fluorescence values for all nuclei within the relevant region and
time period and divided by the total number of time points such that

Rx =
0.037

∑N
i=1

∑toff
t=ton

Fi(t)∑N
i=1

∑toff
t=ton

1
, (A.46)

where N indicates the total number of nuclei falling within anterior-posterior region x.

Calculating full mRNA profiles

In contrast to the production rates calculated above, determining the relative contributions
to stripe formation from each regulatory strategy depicted in Figure 2.3G did not require
an AU to RNAP calibration. Thus, we capture the calibration factor, along with all other
proportionality constants, with a generic term β, with the expectation that β will drop out
from all consequential stripe contribution calculations. For a given region along the axis
of the embryo, the average observed fluorescence across all N nuclei (active, quiescent, and
those that never engaged in transcription) within the region of interest was used as a proxy
for the instantaneous rate of mRNA production per nucleus, given by

dM(x, t)

dt
=

β

N

N∑
i=1

Fi(x, t)

= β⟨F (t)⟩x. (A.47)

Here, Fi(x, t) is the fluorescence of nucleus i at time t and position x. The x subscript in
Equation A.47 indicates that the average is taken over all nuclei falling within the same
anterior-posterior region within the eve stripe 2 pattern.

Having obtained an expression for the rate of mRNA production as a function of space
and time, we next sought to account for the degradation of mRNA over time. As indicated
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in the main text, we assumed a constant rate of mRNA decay, γ, over space and time. The
next section in this appendix provides evidence for the validity of this assumption. For a
constant mRNA decay rate, calculating the average concentration of mRNA amounts to
taking a weighted sum over all preceding production rates for a position of interest, where
the weight terms account for the effects of mRNA decay and are of the form e−γt. Thus,
we summed over all time points for each region of interest to estimate the total amount
of cytoplasmic mRNA present on average, yielding the quantity on the left-hand side of
Equation 2.2, namely,

mRNA(x, t) = β
T∑

n=1

e−γ(t−n∆τ)
〈
F (t− n∆τ)

〉
. (A.48)

Here ∆τ is the experimental time resolution, and T = t
∆τ

denotes the number of measure-
ments taken through time t. The exponential term within the summand on the right-hand
side captures the effects of mRNA decay (see Appendix A.3.1). Finally, to calculate the nor-
malized mRNA profile shown in Figure 2.3G (red), the estimates for the total accumulated
mRNA per nucleus found using Equation A.48 must be divided by the sum across all spatial
regions considered, namely

mRNAnorm(xj, t) =

∑T
n=1 e

−γ(t−n∆τ)
〈
F (t− n∆τ)

〉
xj∑

xi∈X
∑T

n=1 e
−γ(t−n∆τ)

〈
F (t− n∆τ)

〉
xi

, (A.49)

where X denotes the set of all regions along the anterior-posterior axis that were considered
for the profile analysis and the subscripts i and j outside the angled brackets denote the
spatial region over which the sum is taken. Note that the proportionality constant β cancels
in the final expression for mRNAnorm. As a final step, we subtract the minimum across the
anterior-posterior region considered to remove any basal offset such that

mRNAfull(xj, t) = mRNAnorm(xi, t)−min
x

(
mRNAnorm(xj, t)

)
. (A.50)

Validating the fluorescence model

We employed a stochastic simulation to test the validity of the relation proposed in Equa-
tion A.47 and, more generally, of the approximate equality between time-lagged fluorescence
and mRNA production asserted in Equation A.42. Simulated traces were generated using
the Gillespie Algorithm [109], adjusted to allow system parameters to vary in time. We as-
sumed an effective off rate of 0.667 transitions per minute and an initiation rate of 16 RNAP
molecules per minute. To generate a temporal trend, we varied the effective on rate from an
initial value of 1.6 transitions per minute (0 to 12 minutes of our simulation) to a basal value
of 0.5 transitions per minute (27.5 to 35 minutes of our simulation). Figure A.8 compares the
rate of mRNA production predicted using the time-lagged average of simulated fluorescence
traces, to the true rate of mRNA production.
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Figure A.8: Comparison of actual and estimated mRNA production rates. The
black trend indicates the true rate of mRNA production as a function of time used for the
simulation of transcription. The blue trend indicates the rate estimated from these simulated
fluorescence traces. Error bars indicate standard deviation across 10 replicates containing
100 simulated traces each.

As expected, the approach faithfully recapitulates the true trend. Indicating that using
spot fluorescence as a proxy for mRNA production should yield reliable results.

Calculating mRNA profiles due to the binary control of the transcriptional
time window

The predicted profile due to binary control of the transcriptional time window alone (Fig-
ure 2.3G, blue) was calculated following the same procedure as for the full mRNA profile
described above, save for the fact that, in this case, instantaneous fluorescence values for
individual nuclei were converted to binary indicator variables (fi(t)) that were set equal to
1 if t < tioff and 0 otherwise. Additionally, only nuclei that were active at some point during
nuclear cycle 14 were included in order to distinguish the effects of the transcriptional time
window (Figure 2.1C) from the control of the fraction of active nuclei (Figure 2.1D). Thus, in
this scenario, the “average rate” of mRNA production is equivalent to the fraction of nuclei
engaged in transcriptional activity at a given point in time such that the rate of mRNA
production is given by

d mRNAbinary(x, t)

dt
=

1

N(x)

N(x,t)∑
i=1

fi(t)

= ⟨f(x, t)⟩
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=
Nc(x, t)

N(x)
, (A.51)

where Nc(x, t) indicates the number of transcriptionally engaged nuclei at time t and posi-
tion x, N(x) indicates the total number of nuclei at position x that were transcriptionally
competent at some point during nuclear cycle 14, and ⟨f(x, t)⟩ indicates the fraction of com-
petent nuclei at position x and time t. The binary equivalent to Equation A.48 takes the
form of a time-weighted sum of the fraction of active nuclei within a region

mRNAbinary(x, t) =
T∑

n=1

e−γ(t−n∆t)Nc(x, n∆t)

N(x)
. (A.52)

The steps for calculating the the normalized binary mRNA levels comprising the blue profile
in Figure 2.3G from Equation A.52 are identical to those shown for the full mRNA profile
in Equation A.49 and Equation A.50 and are therefore not repeated here.

Comparison between predicted and measured cytoplasmic mRNA profiles

As a check for the validity of our approach to predicting levels of cytoplasmic mRNA from
live imaging data (Equation A.49 and Equation A.50), we sought to compare our model’s
predictions to existing mRNA FISH data for the endogenous eve stripe 2 [92]. For this
comparison, we elected to use live imaging data for eve stripe 2 activity that was driven by a
BAC containing the full eve locus (see [11] for details). This was done to minimize potential
differences with the activity of the endogenous gene. Most notably, unlike the BAC reporter
construct, the minimal reporter construct used for the majority of this work does not contain
an enhancer sequence that is responsible for driving eve expression late in nuclear cycle 14
[146].

The researchers who generated the mRNA FISH data used the percent invagination of
cellular membranes through cellularization as a means to break individual fixed embryos
into rough temporal cohorts [196]. We cross-referenced the invagination ranges for each
temporal group in the FISH data from [196] with data provided by precise measurements
of invagination for different time points in [74] to obtain estimates for the range of times
encapsulated by each of these cohorts.

We elected to use the cohort comprised of embryos with ages ranging between 38 to 48
minutes into nuclear cycle 14 because this range was much narrower than the preceding cohort
and because the stripe appeared to be relatively stable during this time period. We note
that the authors of [196] measured invagination on the ventral surface of the embryo, while
the authors in [74] used the dorsal surface. This difference could lead to inconsistencies,
since invagination is known to proceed more rapidly on the ventral side of the embryo
[196]. However, the authors in [196] reported that this discrepancy is minimal up to the
point where cell membrane extension has progressed to approximately 40% of its eventual
full extent. The lower and upper bounds on the percent membrane invagination for the
chosen cohort are 26% and 50% respectively. Thus, we expect the time estimate derived for
the beginning of the period to be reasonably accurate, since dorsal and ventral membrane
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progression was reported to be comparable during this period. Moreover, to the degree that
ventral invagination outpaces dorsal invagination at the end of our period of interest, this
would result in an over-estimation of ending time. Thus, if anything, the true temporal
window encompassed by the selected cohort may actually be tighter than 10 minutes, since
the ending time might in fact be earlier than 48 minutes into nuclear cycle 14. Given the
relative stability of the stripe profile during this period of development, we do not expect
this potential discrepancy to have a material impact on our conclusions.

Appendix A.3.2 Figure A.9 summarizes the results of this comparison. To account for
uncertainty regarding the precise dorsal-ventral (DV) orientation of embryos within our live-
imaging set, we compared our model’s predictions to mRNA measurements for a range of DV
positions, encompassed by the green-shaded profile. We found a high degree of agreement
between model predictions and reported levels of cytoplasmic mRNA. This conclusion is
relatively insensitive to our assumptions regarding the average lifetime of eve mRNA as
shown by the blue and red lines in the figure (predictions assuming mRNA lifetimes of
7 and 15 minutes, respectively). We thus concluded that the assumptions underlying our
model for predicting cytoplasmic mRNA levels from in vivo single-cell transcriptional activity
measurements are valid.

mRNA FISH measurement
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Figure A.9: Comparison of predicted cytoplasmic mRNA by live-imaging mea-
surements to direct measurements by FISH. In an effort to check the validity of our
modelling assumptions, we compared the predicted cytoplasmic mRNA profile stemming
from live-imaging measurements of stripe 2 of an eve reporter from a BAC containing the
full eve locus [11] to direct measurements of eve cytoplasmic mRNA levels using FISH [196].
Here, the blue and red lines indicate our model’s predictions under two different assump-
tions for the rate of mRNA degradation, and the shaded green profile indicates the range of
reported mRNA levels for different ranges of dorsal-ventral positions. Comparisons indicate
a high degree of agreement between prediction and measurement, indicating that our mod-
elling assumptions are justified.
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Sensitivity of results to mRNA lifetime assumption

In the main text we assume a degradation rate for eve of 0.14 min−1 (corresponding to a
lifetime of roughly τ = 7 min). Since, to our knowledge, the decay rate of eve mRNA has
not been measured directly, we follow [27] and base this estimate off of measurements for
another of the pair rule genes, fushi tazu (ftz ) [79]. In this section, we examine the degree
to which the apparent contributions of each regulatory strategy (Figure 2.1) change under
different assumptions for eve mRNA lifetime. Rather than conducting an exhaustive survey,
we instead focus primarily on two limiting cases: rapid mRNA decay (τ = 1 min) and no
mRNA decay (τ = ∞).
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Figure A.10: Sensitivity of regulatory strategy contribution to assumed mRNA
lifetime. The average lifetime of eve mRNA is a significant assumed parameter in our
model. This figure compares the predicted contributions of each regulatory strategy for the
mRNA lifetime assumed in the main text (τ = 7 min) to limiting cases in which mRNA
is assumed to decay almost instantaneously (τ = 1 min) on the one hand, and infinitely
slowly on the other (τ = ∞). Even at these extremes, the central conclusion that the stripe
is formed via the join action of mean rate modulation (green profile) and the time window
(blue profile) remains intact. As expected, the relative contribution of the time window is
sensitive to the assumed τ , yet even in the limit of no significant mRNA decay, its impact is
still of order with the effect of mean rate modulation.

Figure A.10 summarizes the results of our analysis. We find that, regardless of the
assumed mRNA lifetime, our model predicts that eve stripe 2 is formed almost entirely via
the interplay between the binary control of the transcriptional time window and the analog
modulation of the mean rate of transcription (compare brown and red profiles in Figure A.10).
However, we find that the relative importance of each factor depends, somewhat, on the
assumed decay rate. In the case of rapid mRNA decay, as well as for the decay rate assumed
in the main text, the time window (blue profile) is clearly the dominant factor in driving
pattern formation (Figure A.10A and B). If we assume the true mRNA lifetime is 15 minutes,
slightly more than double our best guess of 7 minutes, we find that the time window is still
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predicted to contribute slightly more to stripe formation, but that the two contributions are
now of order with one another (Figure A.10C). Finally, in the limit where there is effectively
no mRNA decay, the effects of the mean rate and time window are roughly equivalent
(Figure A.10D). This result can be explained by the fact that the mean rate strategy is
insensitive to the decay rate, whereas the effect of the time window is enhanced by the
action of mRNA decay.

Thus, overall, we found that our model’s prediction that the control of the transcriptional
time window plays a primary role in stripe formation holds for mRNA lifetimes less than or
equal to 15 minutes, which is more than double the measured life time of ftz mRNA [78].
Perhaps more importantly, both factors are found to play a significant role, irrespective of
mRNA decay rate, indicating that our central finding is robust to our assumption regarding
mRNA decay dynamics.

Control strategy contributions for eve BAC

A key question regarding the results in the main text is whether and to what degree the
relative contributions of the regulatory control strategies we identified in Figure 2.1 and
Figure 2.3 for the reporter containing only the eve stripe 2 enhancer hold true for the
formation of the stripe in the endogenous context. While we cannot directly query activity
at the endogenous eve locus, we were able to examine the dynamics of stripe formation for
an eve BAC used in the companion paper to this manuscript [11]. Since this BAC contains
the full eve regulatory locus, it likely provides a better proxy for stripe formation in the
endogenous context than the isolated eve 2 reporter. Figure A.11 shows the results of this
analysis. As with the reporter construct used in the main text (Figure A.11A), we find that in
the endogenous context (Figure A.11B) the stripe is formed primarily through the interplay
between two regulatory strategies: the modulation of the average rate of production (green)
and of the duration of transcriptional activity (blue). As with the reporter, the binary control
of the transcriptional time window is the dominant driver of stripe formation (compare with
Figure 2.1G). Interestingly, unlike the reporter construct, the full predicted profile (red
profile) that accounts for the interplay between mRNA decay temporal fluctuations in the
mean rate of mRNA production differs substantially from the simpler model (brown profile)
that approximates mRNA production as constant over time. We speculate that this difference
is attributable to the influence of the “late enhancer”—which is present in the eve BAC but
not in the reporter—that takes over control of eve activity late in nuclear cycle 14. Further
work will be necessary to fully elucidate the regulatory impact of this late element on the
formation of the mature eve stripe pattern.
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Figure A.11: Regulatory strategy contributions to eve stripe 2 formation in en-
dogenous context. (A) Control strategy contributions for the reportereve stripe 2 reporter
construct (reproduced from Figure 2.3G), (B) Predicted contributions for eve BAC. As with
the reporter construct, the formation of eve stripe 2 in the context of the full eve regulatory
locus is dominated by the interplay between mean rate modulation (green) and control of
the time window of transcriptional activity (blue).

A.3.3 Accounting for effects of experimental detection threshold

A number of analyses in this work rely (directly or indirectly) on the estimation of when
gene loci first enter into a transcriptionally engaged state (ton) as well as when they stop
transcribing (toff). These quantities are estimated using our live imaging data. Because
live imaging experiments are subject to a detection limit (below which dim loci will not
register as being active), there is a potential for bias in our estimates of ton and toff, as
well as other metrics that derive in part from these quantities (duration of transcriptional
activity, for instance). Similarly, there is a potential for bias in the measurements of the
fraction of active nuclei as well as the transcriptional time window (Figure 2.3C-F) and the
contributions of these regulatory strategies to pattern formation depicted in Figure 2.3G.
These quantities were calculated assuming that undetected loci produced no mRNA when,
in fact, it is possible that they produce at low levels periodically or even throughout the
whole nuclear cycle. To estimate the nature and severity of these potential biases, we first
estimated the detection limit for our live imaging experiments. Where appropriate, we used
this limit to determine its potential effect on our conclusions.

Estimating the detection limit

We followed a methodology that was laid out in a previous work that employed the MS2
system in the fly to estimate the detection limit of our live imaging experiments [104].
Specifically, we calculated the minimum observed fluorescence value for each gene locus in
our dataset. We then fit a Gaussian distribution to this set of minimum values to estimate
the detection limit for our dataset. As shown in Figure A.12, this procedure returned an
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estimated detection limit of 54 AU ± 1 which, according to our estimate of the absolute
calibration, corresponds to approximately 4 RNAP molecules.
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Figure A.12: Estimating the fluorescence detection limit. Distribution of minimum
observed fluorescence values for each fluorescence trace in our data set (N=1484). The solid
black line indicates the Gaussian probability density function that best fits the empirical
data. The vertical dashed line indicates the inferred detection limit of 54 AU± 1.

Estimating detection threshold artifacts for ton and toff

As illustrated in Figure A.13A, the presence of a detection threshold will generally lead to
estimated on-times that are too late and estimated off-times that are too early. To gain
quantitative estimates for these biases, we used the results of our burst parameter inference
shown in Figure 2.5 to simulate 50 activity trajectories for each region along the anterior-
posterior axis that accurately recapitulated observed position-specific burst dynamics. For
each simulated trace, we imposed a detection threshold of 54 AU and examined how far
the resulting threshold-impacted estimates for ton and toff diverged from the true on and off
times. Averaging these effects across 50 traces for each anterior-posterior region indicated
that the detection limit did lead to biases. Specifically, we found that it would result in a 30-
60 second overestimate (too late) of ton (Figure A.13B) and a 20-50 second underestimation
(too early) of toff (Figure A.13C). These errors compound for our estimate of the duration of
the transcriptional time window, leading to underestimates of between 50 and 100 seconds
(Figure A.13D). As shown in the figure, while statistically significant, comparisons between
raw and threshold-adjusted estimates for these three quantities reveal that these biases are
small compared to the quantities of interest, and thus have a minimal effect on the observed
trends.

In addition to the estimation of average on and off times as a function of AP position,
analyses presented in Figure 2.6C (fraction of quiescent nuclei over time) and Figure 2.7A,D,
and E (input/output inference for the transcriptional time window time window) of the main
text, as well as Figure A.34 in this SI, required us to distinguish between transcriptionally
engaged and quiescent nuclei. In these cases we employed a simpler definition of toff , taking
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it to be equal to the last time at which fluorescence was observed for a given locus. According
to the results for our toff analysis in Figure A.13B, we would expect the impact of this simpler
(but more empirical) approach to be minimal, leading to a slight overestimation of toff (1-2
minutes).
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Figure A.13: Accounting for effects of detection limit on off and on time calcu-
lations. (A) Example of a simulated fluorescence trace. Red dashed line indicates the
estimated detection limit of 54 AU. Blue lines indicate the true on and off times and gray
lines indicate the apparent on and off times due to the effects of the detection threshold.
(B-D) Plots of raw and adjusted anterior-posterior trends for (B) ton, (C) toff, and (D) the
duration of the time window (toff − ton).

Possibility of basal expression does not impact conclusions about regulatory
strategy contributions

This work invokes two regulatory strategies, the control of the transcriptional time window
and of the fraction of active nuclei (Figure 2.1C,D), that assume that undetected loci are
transcriptionally silent; that is, that they do not produce any mRNA. Yet, due to the
detection limit of our experiment, we cannot completely rule out the possibility that some
undetected loci are actually expressing at a basal level. We thus examined what effects, if
any, the existence of such basal expression would have on the conclusions presented in this
work.

First, we examined how the predicted contributions of each regulatory control strategy in
Figure 2.3G would change in the presence of basal expression. We first examined what would
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happen to our predictions if all nuclei that we classified as never having turned on during the
whole nuclear cycle actually expressed at a basal level equal to our detection limit of 54 AU for
the duration of the nuclear cycle. Figure A.14A and B compare the predicted contributions
to stripe formation in the absence and presence of this basal transcriptional activity amongst
this population. For the analysis in Figure A.14B, we maintained the distinction between
active and inactive loci, but assumed that all transcriptionally inactive loci (those for which
transcription was never detected) were actually expressing at a rate equal to the detection
limit throughout nuclear cycle 14. Thus, instead of emitting no fluorescence (or, equivalently,
producing no mRNA), they were assumed to emit at a constant fluorescence of 54 AU. As a
result, the influence of the control of the fraction of active nuclei in pattern formation was
reduced, but not eliminated. The size of the effect depends on the relative magnitudes of the
detection threshold and the average expression level amongst active gene loci. For our data,
the detection limit is approximately 10% of the average expression level. As shown in the
figure, this is small enough that the effects of this potential basal expression are predicted
to be minuscule. Indeed, it is difficult to distinguish between Figure A.14A and B by eye.
This is because (1) the fraction of active nuclei contributes negligibly to stripe formation
in the first place, and (2) the detection threshold is quite small compared to the average
transcription rate amongst transcriptionally engaged loci.

We next examined an even more extreme case wherein all undetected loci—both those
that were never detected as transcriptionally active and those that shut off early as a part of
the control of the transcriptional time window—expressed at the basal rate throughout the
nuclear cycle (Figure A.14C). As expected, incorporating basal activity at all undetected loci
has the effect of decreasing the overall prominence of the stripe pattern, since the expression
floor is effectively raised from 0 to 54 AU. However, despite this change, the core conclusion
that the analog control of the mean rate and binary control of the transcriptional time
window jointly drive pattern formation (Figure 2.3) remains valid. Thus, we conclude that
these results are robust to the possible existence of basal activity amongst quiescent nuclei.
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Figure A.14: Impact of possible basal expression on control strategy contributions
to stripe formation. Predicted contributions of the regulation of the mean rate (green),
time window (blue), and fraction of active nuclei (yellow) to pattern formation. (A) Pre-
dicted contributions assuming no basal activity. (B) Predicted contributions with all nuclei
that never turn on assumed to express at detection limit of 54 AU. (C) Predicted contribu-
tions with both all nuclei that never turn on and all nuclei that become quiescent at some
point during nuclear cycle 14 assumed to express at detection limit.

Any undetected basal expression would have radically different burst dynamics

To remain undetected a reporter gene must never have more than four nascent RNAP
molecules actively transcribing along its length. In the main text, we invoke the two-state
model of bursting to describe the highly stochastic expression patterns exhibited by eve gene
loci. A fundamental feature of this model is that gene loci transition between an active and
an inactive state (see Figure 2.4). If basally expressing loci also adhered to this model, the
burst parameters (kon, koff , and r) would need to be such that the bursts were either small
enough or rare enough such that basal loci never contain more than four actively transcribing
RNAP molecules at any time point. With this in mind, let us consider the consequences of
tuning each burst parameter (see Figure 2.6A) to satisfy this requirement.

Figure A.16A features a simulated fluorescence trace generated using the bursting pa-
rameters inferred at the anterior flank of the stripe (anterior-posterior position −4 in Fig-
ure 2.5D and E). How would these bursting dynamics have to change in order to seemingly
silent nuclei to be transcribing at a low, basal rate?

First, if the difference between basally expressing and detectable loci stems from a reduc-
tion in kon, it would still be the case that bursts, when they occurred, would last about 90 s
(1/koff in Figure 2.5E) and load RNAP molecules at a rate of about 1/3 s−1 (Figure 2.5D),
resulting in the loading of approximately 32 RNAP molecules over the duration of the burst.
This number of RNAP molecules on the gene could not escape detection, as it is significantly
over our detection limit of four RNAP molecules. Thus, as illustrated in Figure A.16B, the
only way for loci to avoid detection in this scenario is for kon to be so low that it is unlikely
for a single burst to occur within the approximately 40 minute time window of our observa-
tion. If we require that the odds of observing a single burst during the 40 minute window of
observation be at most 90%, then we have

pburst ≤ 0.10 (A.53)

1− e−40kon ≤ 0.10 (A.54)

−kon ≥ ln 0.9

40
(A.55)

kon ≤ 0.003 min−1, (A.56)

Where pburst is the probability of a burst occuring. We see that this requirement results in
a kon value that is two orders of magnitude lower than what is observed in detected loci
(Figure A.15, low kon). Such a locus would be active a mere 0.4% of the time (compared to
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around 50% among observed loci). As a result, even if these loci did transcribe with bursting
dynamics, these dynamics would be so different from those considered in this work that
basally expressing loci would constitute a qualitatively distinct population from detected,
high-expressing loci, and not a mere population of active loci that happened to present
slightly lower fluorescence values.

Second, if basal expression is realized by increasing koff (decreasing burst duration),
the decrease must be sufficiently large that the probability of loading more than 4 RNAP
molecules in a burst is low. At a loading rate of 20.5 RNAP per minute, this means that it
must be rare for bursts to last for more 4 RNAP/(20.5RNAP/min ≈ 0.2 min. If we demand
that the probability of observing such a burst is no greater than 10%, this yields

plong ≤ 0.10 (A.57)

e−0.2koff ≤ 0.10 (A.58)

koff ≥ − ln 0.1

0.2
(A.59)

koff ≥ 11.5 min−1. (A.60)

Here, plong denotes the likelihood of a burst longer than 0.2 minutes. The koff value consistent
with these constraints is already an order of magnitude larger the koff inferred for transcrip-
tionally engaged loci. However we have not yet accounted for the fact that are typically
multiple bursts over the course of the nuclear cycle and we require that it be unlikely for
any single burst to crest the detection limit. This means that the basal koff would need to
be larger still. If we assume (conservatively) that there will be approximately 10 bursts per
40 minute time period, then we have

(1− plong)
10 ≥ 0.9 (A.61)

e−0.2koff ≤ 1− 0.90.1 (A.62)

koff ≥ − ln(0.011)

0.2
(A.63)

koff ≥ 23 min−1. (A.64)

Thus we see that this additional requirement implies a koff of at least 23min−1, ∼ 30-times
higher than the values observed for this magnitude throughout this work. As illustrated
in Figure A.16C, this would lead to a dramatically different kind of activity (compare to
Figure A.16A). In such a scenario, bursts would only last 3 seconds on average, with only a
single RNAP loaded per burst. Thus, as with kon, we conclude that the dramatic modulation
of koff necessary to explain the presence of basally expressing loci would demand that these
loci behave qualitatively different from active ones.

Finally, if we assume that basal expression is realized by decreasing the rate of RNAP
loading during transcriptional bursts, similar arguments to those considered above for koff
indicate that an undetected gene locus must load RNAP molecules at a rate no faster than
0.5/min to remain undetected (Figure A.15); a rate that is 40 times higher than that of
active loci.
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All of the above scenarios strain the bursting model to the breaking point. If kon is
modulated in basally expressing loci, then this would imply that basal gene loci are active
a mere 0.4% of the time (Figure A.16A). If koff or r are modulated, then “bursts” would
consist, on average, of a single polymerase loading event (Figure A.16C and D). Further
studies employing single-molecule techniques will be needed to establish the presence or
absence of low-level expression. In the meantime, we conclude that while we cannot rule
out the existence of basal expression, we can confidently state that, if it exists, such activity
must be radically different in character from the burst dynamics observed amongst the
“transcriptionally engaged” loci we identify in the main text.

Figure A.15: table
Comparing burst characteristics of three possible basal expression schemes to “normal” loci

expressing above the detection limit.

normal low kon high koff low r

burst frequency 0.5 min−1 0.003 min−1 0.5 min−1 0.5 min−1

burst duration 1.5 min 1.5 min 0.05 min 1.5 min
initiation rate 20.5 RNAP min−1 20.5 RNAP min−1 20.5 RNAP min−1 0.5 RNAP min−1

burst size 31.5 RNAP 31.5 RNAP 0.9 RNAP 0.9 RNAP
% of time bursting 41.1 % 0.4% 1.8 % 41.1 %
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Figure A.16: Possible basal burst dynamics scenarios. Simulated activity traces illus-
trating bursting dynamics for basally expressing gene loci. Vertical red lines indicate RNAP
initiation events. Dashed blue line indicates detection limit. (A) illustrative trace generated
using burst parameters from anterior stripe flank. (B-D) hypothetical basal traces with
(B) reduced kon (0.003 min−1), (C) elevated koff (23.7 min−1), and (D) reduced RNAP
loading rate (0.5 RNAP min−1). Gray region in (B) indicates the time period coming after
40 minutes of observation.

A.3.4 The compound-state hidden Markov model

Model introduction

To model the dynamics of an observed fluorescence series, y = {y1, y2, ..., yT}, where T is the
number of data points in a trace, we assume that, at each time step, the sister promoters can
be in one ofK effective states. In the analysis of eve stripe 2 data, we use a simple model with
the number of effective states equal to three (K = 3). The method, however, allows for more
complex transcription architectures with higher numbers of states. Transitions between the
effective promoter states are assumed to be Markovian, meaning that the hidden promoter
state zt at time step t is conditionally dependent only on the state in the previous time step.
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This dependency is modeled through a K ×K transition probability matrix A = p(zt|zt−1),
where Akl is the probability of transitioning from the lth state into the kth state in the time
interval ∆τ , where ∆τ is the data sampling resolution. We assign a characteristic RNAP
initiation rate, r(k), with units of RNAP per minute, to each effective promoter state, z(k),
1 ≤ k ≤ K. Thus, the number of polymerases initiated between time steps t−1 and t will be
r(zt)∆τ . Because the fluorescence intensity contributed by each polymerase depends on the
number of transcribed MS2 stem loops, the contribution will vary with the position of the
polymerase on the gene. In our transcription model we assume that polymerase elongation
takes place at a constant rate. Therefore, if τMS2 is the time it takes to transcribe the
MS2 loops, the fluorescence contribution of an RNAP molecule will initially grow linearly
(τ ≤ τMS2) and will then stay constant for the remainder of transcription (τMS2 ≤ τ ≤ τelong).
Given this time dependence, we define a maximum fluorescence emission per time step for
each state as v(k) = FRNAPr(k)∆τ , 1 ≤ k ≤ K, where FRNAP is the fluorescence calibration
factor determined using smFISH experiments (see Materials and Methods).
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Figure A.17: Schematic overview of the cpHMM architecture. The sister promoters
are modeled as undergoing a series of Markovian transitions between effective transcriptional
states (zt). Each promoter state uniquely determines the number of polymerases initiated
in a single time step (r(zt)∆τ). Fluorescence emissions from polymerases initiated in the
most recent w steps combine to produce the observed fluorescence intensity (yt). The color
bar indicates the mean fraction of MS2 loops that have been transcribed and contribute
fluorescence at the moment of observation. The color corresponding to the more recently
initiated polymerases is therefore lighter (fewer loops transcribed) than that corresponding
to polymerases initiated at earlier times (more loops transcribed).

The instantaneous fluorescence intensity is the cumulative contribution from polymerases
initiated in the previous w time steps, where w = τelong/∆τ is the system-dependent integer
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memory. Here ∆τ indicates the observational time resolution, a quantity set by experimental
conditions. The time required for an RNAPmolecule to transcribe our reporter gene (τelong) is
a priori unknown. We developed an autocorrelation-based method to estimate τelong directly
from our experimental data (see Appendix A.3.10 and [56]). The observation yt at time step
t conditionally depends not only on the hidden promoter state zt, but also on the hidden
states in the previous w time steps, {zt, zt−1, ..., zt−w+1}. To be able to describe the observed
system dynamics through a hidden Markov model, the observation at time step t needs to
be conditionally independent from the states at earlier time steps. We therefore introduce
the concept of a compound state, st = {zt, zt−1, ..., zt−w+1}, which, together with the set of
model parameters, θ, is sufficient to define the probability distribution of the observation
yt, thereby satisfying the Markov condition. Since zt ∈ {1, ..., K}, each compound state can
take one of Kw different values, st ∈ {1, ..., Kw}. While the number of possible compound
states is Kw, only K different transitions are allowed between them, since the most recent
w−1 promoter states are deterministically passed from one compound state to the next, i.e.
the last w−1 elements in st+1 = {zt+1, zt, ..., zt−w+2} are present in st as well. The schematic
overview of the cpHMM architecture is shown in Figure A.17.

We model the fluorescence emission probabilities corresponding to each hidden compound
state as Gaussian distributions with a standard deviation σ, which we learn during inference.
The joint probability distribution p(y, s|θ) of the series of hidden compound states, s =
{s1, s2, ..., sT}, and fluorescence values, y = {y1, y2, ..., yT}, is given by

p(y, s|θ) = p(s1|π)
T∏
t=1

p(yt|st,v, σ)
T∏
t=2

p(st|st−1,A). (A.65)

Here π is a K-element vector, with πk being the probability that the trace starts at the
kth effective promoter state, and v is a K-element vector of fluorescence emission values per
time step.

Our goal is to find an estimate of the model parameters, θ̂ = {π̂, v̂, Â, σ̂}, which maxi-
mizes the likelihood p(y|θ) of observing the fluorescence data, namely,

θ̂ = argmax
θ

p(y|θ). (A.66)

The likelihood can be obtained by marginalizing the joint probability distribution,
p(y, s|θ), over the hidden compound states, that is,

p(y|θ) =
∑

s={s1,s2,...,sT }

p(y, s|θ). (A.67)

Note that the summation is performed over all possible choices of s— a vector of T elements,
each of which can take Kw possible values. The total number of terms in the sum is thus
equal to KwT , which grows exponentially with the number of time points. To make the
estimation of the model parameters tractable, we use an approximate inference method, the
expectation-maximization (EM) algorithm.
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We note that the notion of a compound state was also introduced in an earlier work [55]
to account for the memory effect in hidden Markov modeling of actin transcription and then
an EM methodology was applied to learn the kinetic parameters from MS2-based transcrip-
tion data. Unlike their approach, however, we do not explicitly model the recruitment of
individual RNAP molecules, but instead, assign a continuous RNAP initiation rate to each
promoter state. Additionally, our model estimates the magnitude of the background noise
present in the experimentally measured fluorescence signal, whereas the model presented in
[55] takes this quantity as an input, requiring that it be estimated separately. We believe
that these differences serve to make our model more flexible. Moreover, by eliminating the
need for absolute calibration and noise estimation, we hoped to facilitate the use of our
model in a wide variety of experimental contexts, for which one or the other quantity may
not be readily obtainable. In the ”Continuous vs. Poisson promoter loading” section of Ap-
pendix A.3.5 we demonstrate that relaxing the continuous RNAP loading assumption when
generating synthetic data does not significantly affect the accuracy of the cpHMM inference.

Expectation-maximization (EM) algorithm

Consistent with standard EM approaches (cf. Bishop [18], Chapter 13), at each iteration we
maximize the lower bound of the logarithm of the likelihood using the current estimate of
the model parameters, namely,

θ̂k+1 = argmax
θ

L(θ |y, θ̂k), (A.68)

L(θ |y, θ̂k) =
∑

s={s1,s2,...,sT }

p(s|y, θ̂k) log p(y, s|θ) ≤ log p(y|θ). (A.69)

Here L(θ |y, θ̂k) is the objective function, θ̂k is the estimate of the model parameters in
the kth expectation step of the EM algorithm. Since we model the transitions between the
effective sister promoter states as a Markov process, the logarithm of the joint probability
distribution, log p(y, s|θ), can be written as

log p(y, s|θ) = log p(s1|π) +
T∑
t=1

log p(yt|st,v, σ) +
T∑
t=2

log p(st|st−1,A). (A.70)

Now, we introduce several notations: sit := 1 if and only if st = i; ∆(st, d) := the dth

digit of the promoter state sequence st = {zt, zt−1, ..., zt−(w−1)}, starting from the left end;
Czs = 1 if and only if ∆(s, 1) = z; Bs′,s = 1 if and only if the transition s → s′ between the
compound states s and s′ is allowed, which happens when the latest (w− 1) promoter states
in the compound state s match the earliest (w − 1) promoter states of the compound state
s′. With these notations in hand, the terms in Equation A.70 can be rewritten as

log p(s1|π) =
Kw∑
i=1

K∑
k=1

si1Cki log πk, (A.71)
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log p(yt|st,v, σ) =
1

2

Kw∑
i=1

sit
(
log λ− log(2π)− λ(yt − Vi(v))

2
)
, (A.72)

log p(st|st−1,A) =
Kw∑
i,j=1

K∑
k,l=1

Bijs
i
ts

j
t−1CkiClj logAkl. (A.73)

Here λ = 1/σ2 is the Gaussian precision parameter, and Vi(v) is the aggregate fluorescence
produced in the w consecutive promoter states of the ith compound state.

Because of the finite time τMS2 it takes a single polymerase to transcribe the MS2 se-
quence, the fluorescence contribution of polymerases is weighted at different positions in the
window of w time steps. If we define nMS2 = τMS2/∆τ as the number of time steps (not
necessarily an integer) necessary for transcribing the MS2 sequence, the mean fraction of
the full MS2 sequence transcribed by a polymerase at the dth time step of the elongation
window will be given by

κ(d) =


1, if ⌈nMS2⌉ < d ≤ w

d− nMS2 +
n2
MS2−(d−1)2

2nMS2
, if ⌊nMS2⌋ < d ≤ ⌈nMS2⌉

d−1/2
nMS2

, if 1 ≤ d ≤ ⌊nMS2⌋

where ⌈nMS2⌉ and ⌊nMS2⌋ are the ceiling and the floor of nMS2, respectively. The dependence
of the weighting function κ(d) on the position for a specific choice of parameters is illustrated
in Figure A.18.

MS2 sequence

1 2 3 4 5

1

0

3’5’

d

κ(d)

Figure A.18: The weighting function κ(d) evaluated at different positions along
the genome. The dashed line represents the fraction of the MS2 loops transcribed at a
given position. Parameters used for plotting: τelong = 100 sec, τMS2 = 50 sec, ∆τ = 20 sec,
w = τelong/∆τ = 5, nMS2 = τMS2/∆τ = 2.5.

Accounting for the weighted fluorescence contribution of polymerases, the aggregate flu-
orescence Vi(v) becomes

Vi(v) = Fi,:v, (A.74)
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where the ith row of the Kw × K matrix F is the number of times each promoter state is
present in the ith compound state, weighted by the position-dependent function κ(d). For
example, if we consider a promoter with K = 3 states and memory w = 5, then the row of F
corresponding to the compound state s = {1, 1, 3, 2, 3} will be [κ(1)+κ(2), κ(4), κ(3)+κ(5)].

Having all the pieces of the logarithm of the joint probability distribution, log p(y, s|θ),
we obtain a final expression for the objective function, namely,

L(θ |y, θ̂k) =
Kw∑
i=1

K∑
k=1

⟨si1⟩Cki log πk

+
1

2

T∑
t=1

Kw∑
i=1

⟨sit⟩
(
log λ− log(2π)− λ(yt − Fi,:v)

2
)

+
T∑
t=1

Kw∑
i,j=1

K∑
k,l=1

Bij⟨sits
j
t−1⟩CkiClj logAkl. (A.75)

Here ⟨sit⟩ and ⟨sits
j
t−1⟩ are the expectation coefficients at the kth step of the EM algorithm

defined as

⟨sit⟩ =
∑

s={s1,s2,...,sT }

sit p(s|y, θ̂k), (A.76)

⟨sits
j
t−1⟩ =

∑
s={s1,s2,...,sT }

sits
j
t−1 p(s|y, θ̂k). (A.77)

Using the current estimate of the model parameters, θ̂k, the expectation coefficients ⟨sit⟩
and ⟨sits

j
t−1⟩ are calculated using the forward-backward algorithm. From the definitions in

Equation A.76 and Equation A.77, we obtain

⟨sit⟩ =
∑

s1,s2,...,sT

sit p(s1, s2, ..., sT |y, θ̂k) =
∑
st

sit p(st|y, θ̂k), (A.78)

⟨sits
j
t−1⟩ =

∑
s1,s2,...,sT

sits
j
t−1 p(s1, s2, ..., sT |y, θ̂k) =

∑
st,st−1

sits
j
t−1 p(st, st−1|y, θ̂k). (A.79)

Following the conventional implementation of the forward-backward algorithm (cf.[18],
Chapter 13), we use the Markov property of the promoter state dynamics, together with the
sum and products rules of probability, to write

p(st|y, θ̂k) =
αt(st)βt(st)

p(y| θ̂k)
, (A.80)

p(st−1, st|y, θ̂k) =
αt−1(st−1) p(yt|st, θ̂k) p(st|st−1, θ̂k)βt(st)

p(y| θ̂k)
, (A.81)

αt(i) = p(y1, ..., yt, st = i| θ̂k), (A.82)
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βt(i) = p(yt+1, ..., yT |st = i, θ̂k). (A.83)

Here αt(i) is the joint probability of observing the fluorescence emission values in the first t
steps and being at the ith compound state at step t; while βt(i) is the conditional probability
of observing fluorescence values from the time point (t + 1) till the end of the series, given
that the compound state at time t is i. Note that α and β can be treated as Kw×T matrices,
where each column is a vector of length Kw, accounting for the Kw possible values of i in
Equation A.82 and Equation A.83. We evaluate the elements of α and β matrices recursively
as

αt(i) = p(yt|st = i, θ̂k)
Kw∑
j=1

αt−1(j) p(st = i|st−1 = j, θ̂k), (A.84)

βt(i) =
Kw∑
j=1

βt+1(j) p(yt+1|st+1 = j, θ̂k) p(st+1 = j|st = i, θ̂k). (A.85)

The boundary values for α1(i) and βT (i) at the first and last columns of α and β matrices,
respectively, are given by

α1(i) = p(y1|s1 = i, θ̂k) p(s1 = i| θ̂k), (A.86)

βT (i) = 1, (A.87)

where the first follows from the definition of αt(i), and the second is obtained from Equa-
tion A.80 by setting t = T . Having evaluated the α and β matrices, the likelihood p(y| θ̂k)
that appears in the denominator of Equation A.80 and Equation A.81 can be found by
setting t = T in Equation A.80 and summing over sT , namely,(

Kw∑
sT=1

p(sT |y, θ̂k)

)
p(y| θ̂k) ≡ p(y| θ̂k) =

Kw∑
sT=1

αT (sT ). (A.88)

With the probabilities p(st|y, θ̂k) and p(st−1, st|y, θ̂k) known, the expectation coefficients
follow directly from Equation A.78 and Equation A.79.

The optimal model parameters in the (k+1)th step of the EM algorithm are obtained by
maximizing the objective function L(θ |y, θ̂k) in Equation A.75 with respect to {π,v, λ,A},
subject to the probability constraints

∑K
k=1 πk = 1 and

∑K
k=1Akl = 1, 1 ≤ l ≤ K. The

update equations for the model parameters are found as

initial state probabilities: π̂m =

∑Kw

i=1⟨si1⟩Cmi∑K
k=1

∑Kw

i=1⟨si1⟩Cki

, (A.89)

fluorescence emission rates: v̂ = M−1b, where (A.90)

Mmn =
T∑
t=1

Kw∑
i=1

⟨sit⟩FinFim, (A.91)
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bm =
T∑
t=1

Kw∑
i=1

⟨sit⟩ytFim, (A.92)

noise:
1

λ̂
= σ̂2 =

∑T
t=1

∑Kw

i=1⟨sit⟩(yt − Fi,:v̂)
2∑T

t=1

∑Kw

i=1⟨sit⟩
, (A.93)

transition probabilities: Âmn =

∑T
t=1

∑Kw

i,j=1Bij⟨sits
j
t−1⟩CmiCnj∑K

k=1

∑T
t=1

∑Kw

i,j=1 Bij⟨sits
j
t−1⟩CkiCnj

. (A.94)

We note that in the update steps we impose no constraints on the inferred emission rates for
the generality of treatment and therefore, expect the effective OFF state to have a nonzero
but small inferred emission rate compared with that of the ON states.

Pooled inference on multiple traces

Since the information available in a single MS2 fluorescence trace is not sufficient for the
accurate inference of underlying model parameters, we perform a pooled EM inference as-
suming that the traces are statistically independent and governed by the same parameters.
If y1:N are N different fluorescence traces with corresponding trace lengths T1:N , and s1:N
are the hidden compound state sequences corresponding to each trace, we obtain

p(y1:N , s1:N |θ) =
N∏

n=1

p(yn, sn|θ), (A.95)

p(sn|y1:N , θ̂k) = p(sn|yn, θ̂k), 1 ≤ n ≤ N. (A.96)

Therefore, the objective function L(θ |y1:N , θ̂k) maximized at each EM iterations takes
the form

L(θ |y1:N , θ̂k) =
∑

s1,s2,...,sN

p(s1:N |y1:N , θ̂k) log p(y1:N , s1:N |θ)

=
N∑

n=1

∑
sn

p(sn|y1:N , θ̂k) log p(yn, sn|θ)

=
N∑

n=1

∑
sn

p(sn|yn, θ̂k) log p(yn, sn|θ)

=
N∑

n=1

Ln(θ |yn, θ̂k). (A.97)

From the above equation, we recognize that the objective function for the pooled inference
is the sum of objective functions written for each individual trace. Using the expression for
the single-trace objective function obtained earlier (Equation A.75), we find

L(θ |y1:N , θ̂k) =
N∑

n=1

Kw∑
i=1

K∑
k=1

⟨si1(n)⟩Cki log πk
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+
1

2

N∑
n=1

Tn∑
t=1

Kw∑
i=1

⟨sit(n)⟩
(
log λ− log(2π)− λ(yt(n)− Fi,:v)

2
)

+
N∑

n=1

Tn∑
t=1

Kw∑
i,j=1

K∑
k,l=1

Bij⟨sit(n)s
j
t−1(n)⟩CkiClj logAkl, (A.98)

where ⟨sit(n)⟩ and ⟨sit(n)s
j
t−1(n)⟩ are now the expectation coefficients obtained for the nth

fluorescence trace via the forward-backward algorithm, and yt(n) is the fluorescence at time
step t in the nth trace. The update equations are then derived analogous to the single-trace
case, with an additional summation performed over all traces, namely,

initial state probabilities: π̂m =

∑N
h=1

∑Kw

i=1⟨si1(h)⟩Cmi∑K
k=1

∑N
h=1

∑Kw

i=1⟨si1(h)⟩Cki

, (A.99)

fluorescence emission rates: v̂ = M−1b, where (A.100)

Mmn =
N∑

h=1

Th∑
t=1

Kw∑
i=1

⟨sit(h)⟩FinFim, (A.101)

bm =
N∑

h=1

Th∑
t=1

Kw∑
i=1

⟨sit(h)⟩yt(h)Fim, (A.102)

noise:
1

λ̂
= σ̂2 =

∑N
h=1

∑Th

t=1

∑Kw

i=1⟨sit(h)⟩(yt(h)− Fi,:v̂)
2∑N

h=1

∑Th

t=1

∑Kw

i=1⟨sit(h)⟩
, (A.103)

transition probabilities: Âmn =

∑N
h=1

∑Th

t=1

∑Kw

i,j=1Bij⟨sit(h)s
j
t−1(h)⟩CmiCnj∑K

k=1

∑N
h=1

∑Th

t=1

∑Kw

i,j=1Bij⟨sit(h)s
j
t−1(h)⟩CkiCnj

.

(A.104)

Execution of the cpHMM method

Execution of the cpHMM method starts by initializing the model parameters. π and each
column of A, both of which are vectors of size K, are initialized by randomly sampling from
a Dirichlet distribution given by

f(x) ∼
Γ
(∑K

k=1 uk

)
∏K

k=1 Γ(uk)

K∏
k=1

xuk−1
k . (A.105)

The Dirichlet distribution parameters uk are all set equal to one, which makes each initial
promoter state equally likely to be occupied, and equally likely to be transitioned into.

To initialize the fluorescence emission rates, r, and the Gaussian precision parameter,
λ = 1/σ2, we first treat the fluorescence data y1:N as identical and independently distributed
(i.i.d.) and use a simplified time-independent EM algorithm to find their optimal values (cf.
Bishop [18], Chapter 13). We initialize the highest emission rate by randomly choosing a



APPENDIX A. SI FOR MULTIMODAL TRANSCRIPTIONAL CONTROL OF
PATTERN FORMATION IN EMBRYONIC DEVELOPMENT 206

value between 70% and 130% of the highest emission rate inferred by the i.i.d. approach.
The lowest emission rate is initialized to 0 because of the apparent silent periods in the
activity traces. The remaining (K − 2) emission rates are initialized by choosing random
values between 0 and the highest emission rate. Finally, we initialize the Gaussian noise
σ by randomly choosing a value between 50% and 200% of the noise inferred by the i.i.d.
approach.

After initializing the model parameters, we iterate between the expectation and maxi-
mization steps of the EM algorithm until the relative changes in the Euclidean norms of the
model parameters after consecutive iterations become smaller than ε = 10−4 or the number
of iterations exceeds 500. Because EM approaches typically infer locally optimal parameter
values, the algorithm is run on the same dataset using multiple randomly chosen initial pa-
rameters (10-20 in our implementations), and the globally optimal set of values is chosen in
the end. In the Matlab implementation of the EM algorithm, the variables are all stored in
logarithmic forms to avoid overflow and underflow issues, which could occur when recursively
evaluating the elements of the α and β matrices. Also, special care is taken when accounting
for time points less than the elongation time, i.e. t < w, in which case the compound state
is a collection of not w, but t promoter states, i.e. st = {zt, zt−1, ..., z1}.

Because of the exponential scaling of the model complexity with the integer memory
window (w = 7 for the eve construct with ∆τ = 20 sec data sampling resolution), significant
computational resources were used when conducting inference on simulated and experimen-
tal data. It took approximately 2 hours to conduct 25 cpHMM inferences with different
initialization conditions on a machine with 24 CPU cores. Users of the cpHMM method are
advised to have this metric as a reference when estimating the computational cost of their
inference.

Windowed cpHMM

To investigate temporal trends in bursting parameters, we extended the cpHMM method to
allow for a sliding window inference approach. From a technical perspective, this required a
revision of the inference formalism to be compatible with fragments of fluorescent traces in
which the beginning of the trace (initial rise in yt from t = 1) was not included.

To that end, we modified the first term in Equation A.70 to allow for all possible promoter
state sequences that could lead to the observation of the first fluorescence measurement in
the chosen time window ([T1, T2]), namely,

log p(yT1:T2
, sT1:T2|θ) = log p(sT1|π(T1−w+1),A) +

T2∑
t=T1

log p(yt|st, r, σ)+

T2∑
t=T1

log p(st|st−1,A), (A.106)

log p(sT1|π(T1−w+1),A) = log

(
p(zT1−w+1|π(T1−w+1))

T1∏
t=T1−w+2

p(zt|zt−1,A)

)
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=
Kw∑
i=1

K∑
n=1

siT1
Dw

ni log π
(T1−w+1)
n +

Kw∑
i=1

w∑
d=2

K∑
k,l=1

siT1
Dd−1

ki Dd
li logAkl.

(A.107)

Here π(T1−w+1) is the probability distribution of the earliest promoter state that still has an
impact on the observation of the first measurement in the sliding window, and Dd

ni is an
indicator variable which takes the value 1 only if the promoter state in the dth position of
the ith compound state is n.

The modified expression for the joint probability distribution does not change the func-
tional form of the equations used for calculating the expectation coefficients. Maximization
equations for the emission rates and the noise also remain intact. Only the maximization
equation for the transition probabilities is revised from Equation A.94 into

Âmn =

∑T2

t=T1

∑Kw

i,j=1Bij⟨sits
j
t−1⟩CmiCnj +

∑Kw

i=1

∑w
d=2⟨siT1

⟩Dd−1
mi Dd

ni logAmn∑K
k=1

∑T2

t=T1

∑Kw

i,j=1Bij⟨sits
j
t−1⟩CkiCnj +

∑K
k=1

∑Kw

i=1

∑w
d=2⟨siT1

⟩Dd−1
ki Dd

ni logAkn

.

(A.108)

We make a steady-state assumption within the sliding window and choose π(T1−w+1) to be
the stationary distribution of the current transition probability matrix, i.e. Aπ(T1−w+1) =
π(T1−w+1). We therefore use the current estimate of A to evaluate π(T1−w+1) at each EM
iteration, instead of performing a maximization step.

A.3.5 Statistical validation of cpHMM

We validated cpHMM for the three-state (K = 3) architecture schematically illustrated
in Figure A.19A by generating synthetic trajectories of effective promoter states using the
Gillespie algorithm [109] and adding Gaussian noise to the resulting activity traces. Pa-
rameters in Figure A.20 were used for data generation. Pooled inferences were conducted
on 20 independent datasets, each containing 9,000 data points, representative of the num-
ber of experimental data points in a central stripe region. The top panel of Figure A.19B
shows the kinetic architecture used to simulate the promoter trajectory in Figure A.19C
(yellow) as it switches through the multiple possible states. This promoter trajectory leads
to the simulated trace of Figure A.19D (red). Using cpHMM, we found the best fitted path
for our observable (Figure A.19D, black) and the corresponding most likely promoter state
trajectory (Figure A.19C, blue).
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Figure A.19: Statistical validation of cpHMM. (A) Three-state cpHMM architecture
where ON and OFF promoter states on each sister chromatid result in an effective three-
state model. The trajectory of effective promoter states over the memory time window
given by the elongation time dictates the number of RNAP molecules loaded onto the gene.
(B) Flow diagrams of promoter states and transition rates for the true parameters used
to simulate trajectories (top) and corresponding average inference results obtained from 20
independent datasets (bottom). The area of each state circle is proportional to the relative
state occupancy, and the thickness of the arrows is proportional to the transition rates.
Dashed lines correspond to inferred transitions with very slow rates that were absent in
the simulation. Rates are in min−1 and dwell times are in min. Error bars for the mean
inferred parameters are shown in Figure A.21. (C) Sample simulated promoter activity
trace (yellow) generated using the parameters in (B), overlaid with the best fitted trace
(blue) obtained using the Viterbi algorithm [Viterbi1967]. (D) Simulated and best fitted
observable number of RNAP molecules corresponding to the promoter trajectory shown in
(C).

Figure A.20: table
Parameter values used for generating synthetic datasets in the statistical validation of the
model. In order to perform this validation, we chose parameters that approximated those

obtained through the cpHMM inference on experimental data shown in Figure 2.5.



APPENDIX A. SI FOR MULTIMODAL TRANSCRIPTIONAL CONTROL OF
PATTERN FORMATION IN EMBRYONIC DEVELOPMENT 209

Parameter Value

Promoter switching rates (k01, k10, k12, k21) (1.2, 1.26, 0.72, 4.2) min−1

RNAP initiation rates (r0, r1, r2) (0, 18.5, 46) RNAP/min
Measurement noise (σ) 4.5 RNAP
RNAP elongation time (τelong) 140 sec
Data sampling resolution (∆τ) 20 sec
Memory window (w = τelong/∆τ) 7
MS2 loop transcription time (τMS2) 30 sec
Duration of each trace 30 min
Number of time points per dataset 9,000
Number of traces per dataset 100
Number of independent datasets 20

As shown in Figure A.19B and Figure A.21, comparison of the simulated and inferred
parameters indicates that we reliably recovered the parameters used to generate our simu-
lated data with high precision. We accurately inferred transition rates, dwell times, fraction
of time spent in each state, and the rates of RNAP loading over 20 independent datasets of
simulated traces.
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Figure A.21: Inference statistics for the cpHMM validation. The true and inferred
values of (A) transition rates, (B) dwell times in states, (C) state occupancies, and (D)
RNAP loading rates are compared. Statistics on the inferred values are obtained from 20
independently generated datasets. (Error bars indicate one standard deviation calculated
across these 20 independent replicates).

Validation details

We used the relation between the transition rate matrix, R, and the inferred transition
probability matrix, A, defined in Appendix A.3.4 to obtain estimates of the transition rates,
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namely,

A = eR∆τ , (A.109)

Rij =

(
1

∆τ
logA

)
ij

. (A.110)

Here, the exponential and logarithm operations act on matrices R∆τ and A, respectively.
Occasionally, taking the matrix logarithm of the transition probability matrix A yielded
small negative values for transition rates between states (0) and (2), which were originally
zero during data generation. In those cases, we assigned them a 0 value to keep them
physically admissible.

Continuous vs. Poisson promoter loading

To demonstrate the validity of our choice to use continuous RNAP initiation rates in the
transcription model (Appendix A.3.4), we repurposed our simulation to, instead of con-
sidering a constant rate of RNAP loading, explicitly account for individual RNAP loading
events when generating the traces. We assumed that individual polymerase molecules tra-
verse at a constant elongation rate (velong = 46 bp/sec, Appendix A.3.10) and that their
arrival to the promoter region has a Poisson waiting time distribution, provided that the
promoter is cleared from the previous polymerase molecule which has a finite footprint size
of lRNAP = 50 bp [Rice1992]. This led to a two-step model for the process of RNAP ini-
tiation, with Poisson-distributed wait times for the recruitment of RNAP to the promoter
followed by a finite wait period as the RNAP cleared the promoter—a process taken to be
approximately deterministic. With this information in hand, we expressed the mean loading
time of RNAP at a single promoter (r−1

1 ) as the sum of the mean time of polymerase arrival
at an empty promoter, ⟨τarrival⟩, and the time required to clear it after arrival, lRNAP

velong
, that is,

1

r1
= ⟨τarrival⟩+

lRNAP

velong
. (A.111)

Having the values of r1, lRNAP, and velong, we found ⟨τarrival⟩ and used it in simulating the
arrival events of individual polymerases.

We performed inference on these simulated traces using cpHMM with the objective of
determining whether a Poisson loading rate had an effect on the obtained parameters. As
shown in Figure A.22, when the data is generated using Poisson RNAP loading, cpHMM
slightly overestimates the high transition rate, but otherwise manages to accurately recover
the model parameters. This therefore justifies our modeling approach of assigning continuous
RNAP initiation rates to each promoter state, instead of explicitly modeling the recruitment
of individual polymerases.
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Figure A.22: Validation of cpHMM on Poisson RNAP loading data. (A) Transition
rates, (B) state occupancies and (C) RNAP loading rates inferred from 15 independently
generated datasets assuming Poisson loading of RNAP. (Error bars represent one standard
deviation calculated across these 15 independent replicates.)

Sensitivity of cpHMM to data sampling resolution

In our cpHMM framework, we modeled the stochastic transitions between effective promoter
states using a discrete time Markov chain model which assumes that the state of the promoter
remains constant during the experimental time step (∆τ), and that transitions to the next
promoter state can occur only at the end of each step. This means that, if the fastest
promoter switching rate is greater than the data sampling rate (1/∆τ), our model might
be unable to capture all those transitions. To study this possible limitation of cpHMM,
we conducted inference on synthetic activity traces generated with varying sampling rates.
Since the system memory (w = τelong/∆τ) needs to be an integer, we varied w in the [3, 7]
range, correspondingly changing the sampling resolution from low (τelong/3 ≈ 46s) to high
(τelong/7 = 20s). We used the values in Figure A.20 for the remaining model parameters.

Figure A.23 summarizes the findings of this study. As expected, the accuracy of inference
improves with increasing data sampling rate, and inference results get very close to the
ground truth values when the highest sampling rate (1/20 sec = 0.05s−1) becomes comparable
to the fastest transition rate (0.07s−1). Except for the fastest transition rate, all other
rates are inferred accurately for the whole spectrum of sampling resolutions (Figure A.23A).
The accuracy of inferred state occupancies is also remarkably high, making it robust to
variations in the data sampling rate (Figure A.23B). The high RNAP loading rate tends
to be underestimated for slower sampling resolutions, which is reasonable since the chances
of promoter leaving state (2) during a single time step become greater, effectively reducing
the net rate of loaded RNAP molecules per time step (Figure A.23C). Generally, we find
the inference of model parameters to be reasonably accurate for the entire spectrum of
experimentally realizable data sampling rates, and highly accurate when the timescale of the
fastest transition and data sampling are comparable.
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Figure A.23: Sensitivity of cpHMM to data sampling resolution. (A) Transition
rates, (B) state occupancies and (C) RNAP loading rates inferred from datasets generated
with varying time resolutions. Transparent circles represent averages over 20 independently
generated samples. The increasing size of the blue circles corresponds to higher data sampling
resolutions (largest: 20s, smallest: 46s).

Performance of cpHMM in different kinetic regimes

Thus far, the validation of cpHMM was performed on datasets that were generated using
parameters similar to those inferred for the eve promoter. These parameters have character-
istic low ON rates (k01, k12) and a high OFF rate (k21), where “low” and “high” are relative
to the data sampling frequency, which for our experimental setup is 3/min. To assess the
utility of our inference method for a generic choice of model parameters, we performed ad-
ditional inference studies in three different parameter regimes: low ON rates and low OFF
rates (A.3.5–Figure A.24A-C), high ON rates and low OFF rates (Figure A.24D-F), and
high ON rates and high OFF rates (Figure A.24G-I).

As expected, the inference is the most accurate when the data sampling frequency is
greater than the transition rates (Figure A.24A-C), in which case multiple transitions within
a single time frame occur only rarely, making our discrete Markovian representation of
the state dynamics a valid approximation. The largest deviations of the inferred model
parameters from their ground truth values occur when the ON rates are high and the OFF
rates are low (Figure A.24D-F). Since the promoter rarely remains in the lower initiation
states (0 or 1) for the entire duration of a frame and tends to rapidly transfer into a higher
initiation state (1 or 2, respectively), the rates of RNAP loading for states 0 and 1 are
significantly overestimated (Figure A.24F). Despite the inaccuracies in estimating the RNAP
loading rates, all transition rates, with the exception of k10, are inferred with a high accuracy
(Figure A.24D). Remarkably, the deviations caused by the high ON rates get substantially
suppressed when the OFF rates are also made comparably high (Figure A.24G-I). This can
be thought of as a consequence of an effective counterbalancing between unwanted ON and
OFF transitions within a single time frame.

Overall, these additional studies, together with the statistical validation studies discussed
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earlier (Figure A.21), elucidate the domain of applicability of cpHMM: the method performs
accurate inference when the ON/OFF transition rates are respectively slow/slow, slow/high,
or high/high; and is not successful in accurately inferring some of the model parameters
when the ON rates are high, but the OFF rates are low. We hope that these characteristics
of the method will be useful in informing the design of promoter architectures and new
experiments.
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Figure A.24: Study of cpHMM performance for different choices of the ON/OFF
transition rates Comparison of inference performance for different ON/OFF rates using a
data sampling frequency of 3/min. (A-C) low/low, (D-F) high/low, (G-I) high/high. The
statistics of inferred model parameter values is obtained from 20 independent datasets. (Er-
ror bars indicate one standard deviation calculated across these 20 independent replicates.)

Windowed cpHMM

To check that our windowed cpHMM was capable of fitting time-varying data, we conducted
statistical validation using simulated traces exhibiting various time-dependent trends in the
bursting parameters. We studied three scenarios that mimicked ways in which bursting
parameters could, in principle, be modulated to drive the onset of transcriptional quiescence:
a decrease in kon over time, an increase in koff and a decrease in r. We also studied the case of
increasing kon, as this was the strongest temporal trend observed in our experimental data.
Figure A.25 summarizes the results for these validation tests.

For each test, 100 simulated traces, 40 minutes in length, were generated (∆τ =20 s) that
exhibited the desired parameter trends. Consistent with our approach to the experimental
data, a sliding window of 15 minutes was used for inference, meaning that for each inference
time, τinf , all data points within 7.5 minutes of τinf were included in the inference. This led
to inference groups consisting of 4500 data points, with the exception of the first and last
time points, each of which had 3700 data points (first and last w + 1 points were excluded
from inference). Transition and initiation rates shown in Figure A.25 are associated with
state (1) of the three-state model (kon = k01/2, koff = k10 and r = r1 in Figure A.27A), as
these were found to provide the most faithful indication of underlying system trends.
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Figure A.25: Validation of windowed cpHMM inference. The method’s accuracy
was tested for four distinct sets of parameter time trends. Results for each scenario are
organized by column. In each plot, the black dashed line indicates the true parameter value
as a function of time. Connected points (outlined in black) indicate the median inferred
parameter value at each time point across 10 distinct replicates. Translucent points indicate
inference values from individual replicates. Thus, the dispersion of these replicates at a given
time point indicates the precision of the inference.

For each scenario, we assessed whether and to what degree the windowed cpHMMmethod
could accurately recover the temporal profiles. In general, the method was found to per-
form quite well within the parameter regimes that were tested. For both the increasing and
decreasing kon scenarios (Figure A.25A-C,D-E), windowed cpHMM inference accurately cap-
tured the modulation in kon with no significant variation evident in the r and koff trends. In
the case of increasing koff (Figure A.25G-I), we observed deviations in kon and r from their
true values at the inflection point of the koff curve (around 30 min). However, the deviation
in r is relatively mild and the “blip” in kon, while of larger magnitude, is comprised of only
two time points and so would likely not be mistaken for a legitimate indication of underlying
system behavior. In the case of a decrease in the initiation rate (Figure A.25J-L) we observe
a ∼ 5 min delay in the model response. We attribute this delay to the finite dwell time
of RNAP molecules on the gene (in this case τelong =140 sec, although further studies will
be needed to determine why the observed lag appears larger than the elongation time). In
addition, we note a degradation in the precision of the inference of kon and koff at low r
(RHS of Figure A.25J, K).

Overall, we conclude that the windowed cpHMMmethod is capable of accurately inferring
time-resolved parameter values. An important caveat to these results is that the size of the
sliding window (15 min in this case) places an inherent limit on the time scales of the
parameter trends the model is capable of inferring. Changes that occur on shorter time
scales will be registered, but the temporal averaging introduced by the sliding window will
lead to underestimates of the rate of the parameter changes in the underlying system.
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A.3.6 Sister chromatids
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Figure A.26: Live imaging data indicate timing of sister chromatid appearance.
(A) Distribution of observation times for frames in which chromatids were resolveable (red)
and diffraction-limited (blue). Bars indicate empirical probability distribution function.
Lines indicate cumulative density function. Data indicate the presence of chromatids by
no later than 7-8 minutes into nuclear cycle 14. (B) Fraction of frames featuring resolved
chromatids as a function of time. Trend suggests replication of relevant portion of genome
across all observed nuclei is completed by approximately 10 minutes into nuclear cycle 14.
Initial lag is likely attributable—at least in part—to stochastic turn-on times between sister
eve loci and lower fluorescence levels early on in the nuclear cycle.

Detection of sister chromatid appearance

Previous studies have indicated that the D. melanogaster genome is quickly replicated at
the beginning of each nuclear cycle in early development [243, 273] , suggesting that each
diffraction-limited spot in our imaging data likely contains two distinct eve loci. We sought



APPENDIX A. SI FOR MULTIMODAL TRANSCRIPTIONAL CONTROL OF
PATTERN FORMATION IN EMBRYONIC DEVELOPMENT 217

use our live imaging data to verify whether genome replication occurred early enough in the
nuclear cycle such that the presence of the replicated promoters would have to be taken into
account. While the two eve loci are located within a diffraction-limited spot for the majority
of frames in our data, there are a subset of frames in which two distinct puncta can be clearly
observed due to fluctuations in the separation between chromatids (see Figure 2.4D). We
reasoned that, by tracking the frequency of frames with resolved puncta over time, we could
ascertain how the timing of genome replication compares to the onset of transcription. If
replication precedes the onset of transcription, then the fraction of resolved frames should
be relatively stable over for the duration of eve expression in nuclear cycle 14. If, on the
other hand, replication happens after the onset of transcription, we should see a significant
increase in the frequency of resolved sister chromatids over time as development progresses.

To pursue this question, we randomly selected snapshots of transcriptional loci in 100
different nuclei for each of the 11 embryos used in this study. We then determined the
fraction of these sampled snapshots in which two distinct puncta were clearly visible by
eye and observed how these instances of resolved chromatids were distributed in time. As
indicated in -Figure A.26A, we see evidence for resolved puncta by around 7 minutes into
nuclear cycle 14. This is well within the average range for turn-on times observed throughout
the stripe (see Figure A.4B). Our results indicate that, at the very least, the genomic region
containing our eve stripe 2 reporter is replicated within some nuclei by 6-8 minutes into
nuclear cycle 14. Figure A.26B tracks the share of total observations for which we detected
resolved puncta as a function of time. A systematic delay in DNA replication would be
expected to result in a progressive increase in this metric over time. However, such a trend
is not evident. While we see no resolved sister loci between 4 and 8 minutes (first point in
the plot in Figure A.26B), this absence could be attributed to other factors at play early
on in nuclear cycle 14. For example, part of this apparent lag could be attributable to the
fact that loci are, on average, dimmer early on in the nuclear cycle, which could mask the
presence of two eve loci by reducing the probability of both producing observable amounts
of fluorescence at the same time. It is also possible that the precise timing of locus turn-
on varies for each sister locus, as it does for loci in different nuclei. Regardless, even if
the initial rise between 6 and 10 minutes in Figure A.26B is reflective of the replication of
the locus during this period of time, the relative stability of the frequency of resolved loci
from 10 minutes onward indicates that this process is restricted to the first few minutes of
transcription. Additional experiments are needed to further elucidate the interplay between
DNA replication and the onset of transcription. Regardless, the examination of our live
imaging data supports the conclusion that the majority of our data consist of diffraction
limited spots containing two distinct eve loci.
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Probing for interactions between sister chromatids
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Figure A.27: Probing combined transcription of sister chromatids. (A) Revised
three-state model of promoter switching within a fluorescent punctum that accounts for the
combined action of both sister chromatids. (B) Summary of bursting parameter ratios. All
three bursting parameter ratios deviate from their expected values under the independence
assumption given by the horizontal dashed line. (Error bars indicate magnitude of differ-
ence between first and third quartiles of cpHMM inference results for bootstrap samples of
experimental data over multiple embryos. See Materials and Methods for details )

If each fluorescent punctum contains two promoters (Figure 2.4D), then it is necessary
to revisit the widely used two-state model of transcriptional bursting. In this revised sce-
nario, each promoter on one of the sister chromatids undergoes fast ON/OFF switching.
Therefore, each spot (encompassing two identical loci) can be in one of three states: (0)
both promoters OFF, (1) one promoter ON and the other OFF, and (2) both promoters ON
(Figure A.27B). States (1) and (2) are expected to exhibit different rates of RNAP loading,
r1 and r2, respectively. See Appendix A.3.1 and Appendix A.3.4 and for details regarding
the implementation of this three-state model.

The presence of two transcriptional loci within each fluorescent punctum suggests three
constraints on the relationship between bursting parameters in the model shown in Fig-
ure A.27A. First, if these two promoters transcribe independently, then state (2) will have
double the loading rate of state (1) such that r2 = 2r1. Second, the probability of both pro-
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moters transitioning simultaneously should be negligible; we expect no transitions between
states (0) and (2) such that k02 = k20 = 0. Finally, if the promoters switch between their
states in an independent manner, then there will be an extra constraint on their transitions
rates. For example, there are two paths to transition from (0) to (1) as either promoter can
turn on in this case. However, there is only one possible trajectory from (1) to (2) because
only one promoter has to turn on. This condition sets the constraint k01 = 2k12. Similarly,
k10 = k21/2.

While the independence of sister chromatids is supported by recent single-molecule FISH
experiments [189, 330], classic electron microscopy work suggests a scenario in which sis-
ter chromatids are tightly correlated in their transcriptional activity [207, 208]. Given this
uncertainty regarding chromatid independence, we elected to employ a general three-state
model that makes no assumptions about the nature and strength of sister chromatid inter-
actions. In addition to permitting greater flexibility, this agnostic approach also meant that
the structure of the kinetic model returned by cpHMM inference provided clues regarding
the nature of the coupling between sister loci. Specifically, we examined the ratios between
the high and low on rates (k01 and k12), off rates (k21 and k10), and initiation rates (r2 and
r1). A deviation from these expectations would indicate either that the two sister loci do
not initiate RNAP independently (first constraint), or that they do not transition between
activity states independently (second and third constraint).

Overall, our results suggest that the two loci are coupled to a nontrivial degree. We
observe that the rate of initiation for the high state, r2(x), (corresponding to two active
promoters) is consistently greater than twice the middle state, r1(x) (Figure A.27B, bliue).
This trend suggests some sort of synergy in the RNAP initiation dynamics of the sister
promoters. Even more strikingly, we observe that the rate of switching from (2) to (1),
k21, is much higher than twice the rate of switching from (1) to (0), k10, (Figure A.27C,
red). This indicates that each promoter is more likely to switch off when its sister locus is
also active. This anti-correlation is consistent with some form of competition between the
loci, a scenario that could arise, for instance, if local concentrations of activating TFs are
limiting. In addition, we observe substantial variation in the relationship between the high
and low on rates (k01 and k12, respectively), ranging from one of near equality in the anterior
flank to nearly the 2-to-1 ratio that would be expected of independent loci in the stripe
center and posterior (Figure A.27C, green). Finally, as shown in Figure A.28, we observe no
transitions between the (0) and (2) states, lending support to the hypothesis that, despite
their correlation, our spots do contain two promoters.

Further experiments in which the sister chromatids are labeled in an orthogonal manner
are needed to confirm and elaborate upon these results. One important consideration to
address is the fact that the spatial proximity of the two loci appears to fluctuate significantly
over time. Thus, if (as seems plausible) the strength of the coupling between loci depends in
some way upon the radial separation of the loci, then the results reported here are effectively
an average of time-varying system behavior. Valuable information may be obscured as a
result of this averaging.
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A.3.7 cpHMM inference sensitivities

Full three-state inference results

For the sake of simplicity, we presented our inference results in the main text using an
effective two-state model in which two distinct active transcriptional states were combined
into a single effective ON state (see Figure 2.4E and F). Here, for completeness, we include
time-averaged and time-resolved inference results for the full three-state model where, as
shown in Figure A.27, (0) corresponds to the state where both promoters are in the OFF
state, (1) indicates the state where either promoter is in the ON state, and (2) represents
the states where both promoters are in the ON state.

As indicated in the main text, the full three-state results (Figure A.28) exhibited the same
trends as were evident in the effective two-state plots (Figure 2.5). In agreement with the
effective two-state model, the rate of transcript initiation is not modulated to a significant
degree across the stripe (Figure A.28D). Moreover, we once again see that activation rates,
and specifically the rate of switching from OFF to the middle ON rate (states 0 and 1 in
Figure A.28E) are strongly elevated in the stripe center.

Like the time-averaged results, time-resolved inference trends for the full three-state
model agree closely with effective two-state results shown in main text (compare Figure A.29
to Figure 2.6D-F). Due to a lack of statistics for state (2), we show only transition rates into
and out of the first active state (middle state in Figure 2.4E).

Two-state inference results

Although the presence of sister chromatids indicated that the three-state model was most
appropriate for the eve stripe 2 system, we wanted to check that our conclusions were
robust to this assumption. To do this, we conducted time-averaged and windowed inference
assuming a simpler, two-state model (see, e.g. Figure 2.4B). Note that this approach is
distinct from the effective two-state results presented in the main text. There, as outlined
in Figure 2.4D-F, a three-state model was specified for inference and the results for the two
active (ON) states were aggregated after the fact to simplify the presentation of the results.
Conversely, here, we explicitly conducted inference using a two-state model.

Most of our findings remained unchanged in the context of the two-state model. Consis-
tent with the three-state case, the two-state time-averaged cpHMM inference indicated that
the fraction of time spent in an active state, rather than the rate of RNAP initiation, drives
the difference in mRNA production rates across the stripe (Figure A.30A-C). Moreover, as
with the three-state case, two-state results indicated that the bulk of this variation stem
from modulation in kon (Figure A.30C, green). Interestingly, whereas we did see a degree of
spatial dependence in koff for 3-states, we observed no such trend for 2-states (Figure A.30C,
red). In general, this is not surprising, as our use of a simpler model likely means that
multiple switching rates are being projected onto the koff parameter. Specifically, if the eve
stripe 2 system is indeed a true three-state system, then we would expect the two-state koff
estimate to reflect the joint action of the k10, k21, and k12 rates from the three-state model.
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As a result, the spatial dependence of each one of these rates would get averaged out when
combined onto koff .
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Figure A.28: Full three-state results for time-averaged cpHMM inference. (A)
Representative experimental trace along with its best fit and (B) its most likely corre-
sponding promoter state trajectory. (C) Instantaneous visualization of promoter state in
individual cells throughout development through the false coloring of nuclei by promoter
state (colors as in B). (D) The rate of initiation for each transcriptional state is not signif-
icantly modulated along the embryo. (E) Our cpHMM revealed that the transition rate
between the OFF (0) and middle ON state (1) is up-regulated in the stripe center. In con-
trast, the rates of switching out of the middle and high ON states show little to no significant
AP-dependent modulation. ( F) The modulation of the rate of switching from 0 to 1 acts
to increase the fraction of time the promoter spends in the active states in the stripe center.
(A, error bars obtained from estimation of background fluorescent fluctuations, as described
in Materials and Methods and [104]; D, E, and F, error bars indicate the magnitude of the
difference between the first and third quartiles of cpHMM inference results for bootstrap
samples of experimental data taken across 11 embryos. See Materials and Methods for de-
tails.)
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Figure A.29: Full three-state results for time-dependent cpHMM inference. (A)
Transition rate from transcriptionally inactive state (0) to the first active state (1). Same
trends evident as for effective 2 state model. (B) Transition rate from first on state (1) to
OFF state (0). (C) Rate of transcript initiation in first on state (1) as a function of time.
(Error bars indicate the magnitude of the difference between the first and third quartiles
of cpHMM inference results for bootstrap samples of experimental data taken across 11
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Figure A.30: Two-state cpHMM inference. (A-C) Time-averaged 2-state inference
results. (A) Consistent with three-state inference results, we observed no significant mod-
ulation in the rate of initiation along the axis of the embryo. Moreover, we found that kon
(green plot in (B)) was modulated along the anterior-posterior axis to vary the amount of
time the promoter spent in the ON state (green curve (C)). In a departure from the three-
state case, we observed no significant spatial trend in koff , though we noted a spike in koff
at 3% of the stripe center. (D-F) Time-resolved (windowed) two-state cpHMM results. (D)
Consistent with the 3-state inference, we saw little to no modulation in the rate of RNAP
loading r over time, although we noted a mild downward trend across all AP bins that was
most pronounced in the posterior flank (red curve). (E) Two-state inference indicated no
significant temporal trends in koff . (F) kon time trends largely agreed with the three-state
case, although we noted that the decrease in kon in the posterior flank that was apparent
in the three-state results was not observable in this two-state context (Figure 2.6E, red).
(Error bars indicate the magnitude of the difference between the first and third quartiles of
cpHMM inference results for bootstrapped samples of experimental data. See Materials and
Methods for details.)

As with the time-averaged case, we found that results for two-state windowed cpHMM
were generally consistent with three-state trends. A notable exception to this rule was the
absence of any significant decrease in kon in the posterior stripe flank (Figure A.30F, red).
This is not entirely surprising, as the trend returned by the three-state inference was relatively
mild (Figure 2.6E, red), encompassing only the final two time points for which there was
sufficient data to conduct inference. It is possible that the added complexity of the three-
state model allowed it to register a subtle shift in the activation rate that was convolved with
countervailing features in the two-state case. Future work will seek to elucidate the source of
this discrepancy and further test the validity of the trend uncovered in the three-state case.

Comparing true and effective two-state inference results

Here, for completeness, we provide direct comparisons between the time-averaged inference
for the effective two-state results presented in the main text and the true two-state results
presented in the previous section.
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Figure A.31: Comparing two- and three-state cpHMM inference results. Three-
state inference results can be presented in terms of a two-state model in which states (1) and
(2) are aggregated into a single ON state (see Figure 2.4E and F). Here, color schemes are
consistent with those employed in Figure A.30A-C. Squares indicate true two-state results
(presented in the previous section) and circles indicate effective two-state trends derived from
the three-state results presented in Figure 2.5. (A) Anterior-posterior-dependent trends in
the rate of RNAP initiation are nearly identical between the true and effective initiation
rates, however the initiation rate returned by two-state cpHMM inference (green squares)
is roughly twice as large as that implied by the three state results (green circles). (B) As
with the initiation rates, we observe similar trends between the true and effective cases, but
substantial differences in magnitude. The effective two-state model recovers an ON state
occupancy that is roughly double that returned by two state cpHMM inference. (C) While
the ON rate trends and magnitudes are nearly identical, the OFF rate returned by two-state
cpHMM inference is roughly triple that implied by three-state inference. Thus it is clear that
this difference in OFF rate underlies the observed departures in both state occupancies (B)
and state initiation rates (A). (Error bars indicate magnitude of the difference between the
first and third quartiles of cpHMM inference results for bootstrap samples of experimental
data. See Materials and Methods for details.)

As Figure A.31 makes clear, while anterior-posterior-dependent parameter trends are
by and large consistent between the true and effective two state models, we do observe
substantial differences in the absolute magnitudes of parameter values. These differences
originate (directly or indirectly) from the three-fold difference in the value of koff between
the true and effective models (Figure A.31C, red squares and circles, respectively). The koff
value for the effective two-state model is defined as

koff =
k10k21

k21 + k12
. (A.112)

See Appendix A.3.1 for expressions for all three effective two-state bursting parameters (kon,
koff , and r) in terms of these three-state transition rates. This value represents the inverse
of the mean amount of time the system, upon switching out of state (0), spends in one of
the active states before returning to (0), and we can see that it is necessarily less than or
equal to k10.

Thus, the two- and three-state results imply that the systems switch out of the active
state(s) on substantially different timescales. On the other hand, the ON rates are strikingly
similar across the two models. As a result, the effective two-state model implies that the
system is in one of the active states for between 40 and 70% of time, whereas two-state
cpHMM inference implies significantly lower shares falling between 20 to and 40%. Since
both models must reproduce the same mean production rate—this is an inherent feature of
the experimental traces—we see that the two-state cpHMM inference returns an estimated
initiation rate that is consistently twice as large as the initiation rate implied by the effective
two-state model.

Thus, while most of the conclusions featured in this paper are robust to our choice of
model architecture, this decision does, nonetheless hold important implications for how we
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understand the underlying system. Further work is needed elucidate the root cause of this
discrepancy and move towards a more concrete understanding of the correspondence between
the structure of the model and that of the physical system.

A.3.8 Input-Output analysis details

In this appendix, we provide additional information about data sources, inference method-
ology, and inference sensitivies related to the input-output analysis presented in the main
text.

Data sources

The input-output analysis presented in the main text made use of previously published data
sets for the spatiotemporal concentration profiles of the gap genes Hunchback, Krüppel, and
Giant (Figure A.32A, C and D). These data derive from elegant experiments in which in-
dividual embryos were co-immunostained for transcription factors of interest and precisely
staged by measuring progressive cellularization over the course of nuclear cycle 14 to generate
a time series of protein concentration profiles spanning the course of this period of develop-
ment [74]. The Bicoid concentration data used for this analysis derives from live imaging
experiments using a Bicoid-GFP fusion established by [116]. These data come courtesy of
Jonathan Liu and Elizabeth Eck (Figure A.32B).
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Figure A.32: Spatiotemporal transcription factor concentration maps. Heatmaps
indicate normalized concentration profiles for the eve stripe 2 regulators (A) Hunchback,
(B) Bicoid, (C) Giant, and (D) Krüppel as a function of space and time. In each case, levels
were normalized relative to the maximum concentration observed within the spatiotemporal
window of interest.

Data processing

To prepare the Krüppel, Giant, and Hunchback profiles for use in our logistic regression
analysis, we adopted an approach similar to that described in [74]. Dorso-ventral orientation
of embryos was found to have negligible effect on calculated intensity profiles and was ignored
(i.e. all embryos were included, regardless of orientation). For each time point in nuclear
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cycle 14, a weighted temporal average was calculated using a sliding Gaussian kernel with
σt = 5 min. For each time point, the minimum observed value across all anterior-posterior
positions was then calculated and subtracted in order to remove background fluorescence.
Normalized profiles were then calculated using the formula

Inorm =
Iraw

max(Iraw)−min(Iraw)

(A.113)

An identical procedure was followed for processing the Bicoid-GFP data, with the addi-
tion of a spatial averaging step using a sliding Gaussian window of σAP = .5 % embryo length.
This step was necessitated by the fact that, because individual embryos were imaged for the
duration of nuclear cycle 14, multiple experiments contributed concentration data along the
anterior-posterior axis for each time point. Thus averages in both space and time were needed
in order to effectively aggregate these data into a single average spatiotemporal profile.

Finally, we discovered that the anterior-posterior axes in our live imaging data (both for
eve stripe 2 and Bicoid-GFP) were inconsistent with the axes employed by the fixed data
reported by the authors in [74]. We addressed this issue by using eve stripe 2 as a fiduciary
mark to register the positions of the fixed and live data sets. Specifically, we aligned the
mRNA peak predicted by our model at 40 minutes into nuclear cycle 14 with the peak in
second stripe of the eve protein profile at 40 minutes, as reported in [238].

Logistic regression framework

The binomial logistic regression is a widely used statistical method for assessing the re-
lationship between a set of predictor variables and a response variable of interest that is
constrained to take on one of only two possible outcomes. In the context of our analysis,
the predictor variables were the normalized transcription factor concentration profiles and
the response variables were (i) the overall transcriptional state given by the transcriptional
time window (active or silent?) and (ii) the bursting state amongst trancriptionally active
loci (ON or OFF?). Inference was conducted at the level of individual gene loci. fmincon, a
standard matlab function for constrained optimization, was used to fit all models discussed
both in the main text and in this appendix.

To prevent overfitting at the stripe centers, the selection of data sets for input-output
inference were weighted to ensure equal representation of data points from across all regions
of space and time included in the analysis. The data were divided into cells of size 1% of
the embryo length in width and 1 minute in duration for the purpose of calculating and
assigning these weights. The number of data points in adjacent regions were factored into
each region’s weight score using a 2D Gaussian averaging kernel. Regions with fewer than
25 total data points were not included in the inference.

Inference details: transcriptional time window

For the time window input-output analysis, we considered only loci that were transcrip-
tionally active for one or more time steps in nuclear cycle 14. Loci were classified as tran-
scriptionally active for all time points between the first and last time points for which they
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exhibited detectable levels of transcriptional activity and silent for all time points following
their final shut-off for which their nuclei were still present in the experimental field of view.
Time points preceding the onset of activity were discarded. Figure A.33A illustrates how
this quantity varies over space and time in our experimental data. We considered a class
of logistic regression models in which each transcription factor was permitted to appear at
most once, thus requiring that each factor act on eve2 in a uniform manner through space
and time; i.e., the same protein could not activate expression on one stripe flank and repress
on the other.

Inference details: transcriptional bursting

The bursting input-output analysis focused exclusively on transcriptionally engaged loci.
The Viterbi algorithm was used to infer the instantaneous activity state (ON vs. OFF) for
all loci. This activity state was taken as the response variable in our regression analysis.
In all other respects, the inference procedure was identical to that conducted for the time
window.

Results of unconstrained inference: time window

For the input-output inference results presented in the main text (Figure 2.7), we used prior
knowledge about the regulatory function of each input transcription factor to constrain
its range of permissible values in our inference. Specifically, we constrained the activators
Bicoid and Hunchback to play activating roles in our model and, likewise, required that
the repressors Krüppel and Giant played repressing roles. In several cases, this constrained
inference led to models in which one or more transcription factors played no significant
regulatory role (Bicoid and Hunchback for the time window and Bicoid for transcriptional
bursting). In this section, we tested the sensitivity of the conclusions presented in the main
text to our use of functional constraints by conducting unconstrained input-output inference
runs.

The results of our unconstrained input-output inference for the transcriptional time win-
dow are identical to those presented in the main text. Despite the fact that no limitations
were imposed on the regulatory function of each factor, we nonetheless recovered a model
in which the two repressors, Giant and Krüppel, are necessary and sufficient to explain the
onset of transcriptional quiescence in the stripe flanks. In agreement with the constrained
case, we found that the addition of Hunchback and Bicoid to this two-repressor model had
no qualitative effect on the output profile predicted by the model (Figure A.33B). A quanti-
tative comparison of model fit scores confirmed that the addition of Hunchback and Bicoid
did nothing to improve model fit (Figure A.33C). Thus, we conclude that our finding that
the transcriptional time window can be explained entirely by the joint repressive action of
Krüppel and Giant is insensitive to our choice to impose functional constraints.
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Figure A.33: Unconstrained inference results for the transcriptional time window.
(A) Observed fraction of quiescent nuclei as a function of space and time. Identical data
to that presented in Figure 2.7A. (B) Relaxing constraints on the functional nature of each
transcription factor had no appreciable effect on the inference results. Profiles shown here
are indistinguishable from those shown in Figure 2.7D. Once again, we find that the joint
action of the repressors Giant and Krüppel is sufficient to explain the progressive onset of
transcriptional quiescence in the stripe flanks. (C) A quantitative comparison of model fits
reinforces the qualitative conclusions drawn from (B). Models including 3 and 4 transcription
factors cannot improve on the fit achieved by the simpler double repressor model. Here blue
dots indicate models for which only Giant and Krüppel make significant contributions to
the model fit. This indicates that, while the 3 and 4 transcription factor models include
additional parameters, these do not contribute appreciably to overall model fit, emphasizing
the fact that these models behave, effectively, as double repressor models.

Results of unconstrained inference: transcriptional bursting

In the context of the transcriptional bursting input-output analysis, the removal of func-
tional constraints led to a significantly more complex landscape of inferred regulatory models.
While the functional roles of Krüppel, Giant, and Hunchback were consistent with the con-
strained case (repressing, repressing, and activating, respectively), Bicoid was consistently
inferred to play a repressing role. Despite this complication, the three-factor Krüppel-Giant-
Hunchback model favored by the constrained inference remained the best-fitting three-factor
model (Figure A.34C, red circle). While the addition of Bicoid as a repressor to create a
model dependent on all four input transcription factors led to a small improvement in model
fit (Figure A.34C), comparison of this four-factor model’s predicted activity profile with that
of the Krüppel-Giant-Hunchback model revealed no material improvement in the model’s
agreement with the experimental data (Figure A.34B, bottom left vs. bottom right). More-
over, there is (to our knowledge) no experimental evidence for Bicoid playing a repressive role
in the regulation of eve stripe 2. Indeed, there is strong evidence that Bicoid is necessary for
eve stripe 2 activity [278]. We thus conclude the Krüppel-Giant-Hunchback model remains
the most plausible option in the unconstrained case.
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Figure A.34: Unconstrained inference results for transcriptional bursting. (A)
Observed fraction of transcriptionally active nuclei in the ON (bursting) state. Identical data
to that presented in Figure 2.7B. (B) As with time window, relaxing the constraints on the
functional nature of each transcription factor did little to alter the inference results presented
in the main text (compare to Figure 2.7E). As with the constrained results, the joint action
of Giant, Krüppel, and Hunchback appears sufficient to explain the spatiotemporal activity
pattern revealed by cpHMM inference. (C) A quantitative comparison of model fits.

A.3.9 Inherent limits of burst parameter inference

By definition, the onset of transcriptional quiescence coincides with the cessation of observ-
able bursting activity. If this cessation is driven by changes in the bursting parameters as in
scenario (ii) in Figure 2.6A, there is an inherent limit to the timescale of such changes that
could be detected: changes that unfold over time scales of the same order or faster than the
characteristic timescale of the process of transcriptional bursting itself (1-3 min) cannot be
detected. Notably, this is not a limit of the cpHMM method, but, rather is inherent to the
system—in order to infer bursting parameters, we must observe bursts and, in order to infer
a change in parameters, we must have access to bursting activity that reflects this change.
Thus, the characteristic frequency of bursts sets an insurmountable resolution limit for any
kind of bursting parameter inference. To illustrate this limitation, we simulated three sce-
narios in which kon decreases to 0 over periods 15, 5, and 1 min in length. We then sought
to recover the trend in kon. To emphasize that the limitations are not specific to cpHMM,
but rather, are an inevitable consequence of the structure of the system, we used the true
promoter trajectories (those used to generate the simulated data) to estimate kon. These
estimates thus represent the absolute best-case scenario for parameter inference, in which
we recover the underlying behavior of the system exactly.

Figure A.35G-H indicate that, even with perfect knowledge of the bursting state at each
gene locus, it is not possible to recover a change in the on rate that happens within the span
of one minute. These results show that—even under ideal circumstances—there exists a time
scale below which time-dependent burst parameter inference will fail to detect shifts in burst
parameter values. The absence of bursts following the transition means that, not only are
we unable to accurately recover the true trend, but we are also unable even to determine
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whether any decrease in kon occurred (on any time scale). Thus, in this scenario, it would
be impossible to determine that a modulation in the bursting parameters—as opposed to a
transition into some alternative, silent state—drives the onset of quiescence.
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Figure A.35: Limitations of burst parameter inference. (A-C) 15-min transition. (A)
Black curve indicates true kon value as a function of time and blue curve indicates inferred
value. Because the change unfolds on a time scale that is much slower than the bursting
timescale, it is possible to accurately recover the underlying kon trend from the fluorescent
traces. (B) The temporal trend in the average fluorescence across simulated traces (blue
curve) reflects this gradual decrease in kon. Note that variation in simulated traces (gray)
unfolds on a significantly faster timescale than the change in the mean. (C) Visualization of
promoter switching. Light blue indicates ON periods and dark blue indicates OFF periods.
The observation that bursts of activity are interspersed throughout the kon transition makes
it possible to recover the temporal trend. (D-F) 5 min transition. (D) We are able to recover
first half of kon trend, but due to the speed of transition, insufficient active traces remain
to permit the accurate recovery of the full profile. (E, F) The onset of quiescence is much
starker than in the 15 min case. Because the transition happens faster than in (A-C), there
are fewer bursts that unfold during the transition and, hence, we have fewer reference points
with which to infer the underlying trend. (G-I) 1 min transition. Here the kon transition
occurs on the timescale of a single burst. As a result, we are unable to recover the temporal
trend. (H-I) The period of observation is divided in a nearly binary fashion. (A,D,G, error
bars indicate 95 % confidence interval of exponential fits used to estimate kon).



APPENDIX A. SI FOR MULTIMODAL TRANSCRIPTIONAL CONTROL OF
PATTERN FORMATION IN EMBRYONIC DEVELOPMENT 232

A.3.10 Determining the RNAP dwell time using autocorrelation

In order to conduct cpHMM inference, it is necessary to specify the number of time steps w
required for an RNAP molecule to traverse the reporter gene,

w =
τelong
∆τ

, (A.114)

where ∆τ is set by the temporal resolution of our data acquisition and τelong is the elongation
time which is unknown a priori. Past studies have estimated elongation rates for other
systems involved in early patterning in the Drosophila embryo, but there is substantial
disparity between the reported values. A live imaging study of transcriptional activity driven
by the hunchback P2 enhancer reported an elongation rate of 1.4 − 1.7 kb.min−1 [104].
However, a recent study of the same regulatory element reported elongation rates of 2.4 −
3.0 kb.min−1—nearly twice as fast [99]. These results suggested that RNAP elongation
rates measured for other systems might not apply to our eve stripe 2 reporter. Thus, in
order to ensure the validity of our inference, we developed an approach that uses the mean
autocorrelation function of experimental fluorescence traces to estimate the elongation time
directly from our data.

The autocorrelation function RF (τ) quantifies the degree to which a signal, F (t), is
correlated with a lagged version of itself, F (t − τ), and is given as a function of the time
delay, τ , between the two signal copies being compared such that

RF (τ) =
E[(F (t)− µf )(F (t− τ)− µf )]

σ2
f

, (A.115)

where µf is the average observed fluorescence, σf is the standard deviation of the fluorescence
and E denotes the expectation value operator. As illustrated in Figure A.36A, the fact that
it takes RNAP molecules some finite amount of time to traverse the gene implies that the
observed fluorescence at a transcriptional locus at some time t, F (t), will be correlated with
preceding fluorescence values F (t − τ) so long as τ < τelong because the two time points
will share a subset of the same elongating RNAP molecules. As τ increases, the correlation
between F (t) and F (t−τ) due to these shared RNAP molecules will decay in a linear fashion
until it reaches zero when τ = τelong (Figure A.36B, blue curve).

The dramatic change in the slope of the autocorrelation function that occurs at τ = τelong
can be used to estimate the elongation time of the system; however, it is not the only
feature present in Equation A.115. Because the time series of promoter states constitutes
a Markov chain, the instantaneous promoter state and, therefore, the instantaneous rate of
RNAP loading, exhibits a nontrivial, positive autocorrelation due to the promoter switching
dynamics of the system. For instance, if it takes the promoter an average of 1 minute to
switch states, then it is clear that promoter activity for τ < 1 min will be strongly correlated
with itself. Thus, we see that the rates of promoter switching dictate the speed with which
this “dynamic” autocorrelation decreases with increasing τ . More precisely, the dynamics
autocorrelation will take the form of a decaying exponential in τ , with the time scale set,
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Figure A.36: Using the autocorrelation of the fluorescence signal to estimate
RNAP dwell time. (A) It takes a finite amount of time for RNAP molecules to tran-
scribe the full length of the reporter gene. As a result, successive fluorescence measurements
will contain some of the same GFP-tagged RNAP molecules. Dark blue-shaded regions
indicate the subset of RNAP molecules that are present on the gene for successive measure-
ments. (B) This overlap causes successive measurements to be correlated, and the degree
of correlation due to the overlap decays linearly, reaching zero when the separation between
measurements is equal to the elongation time, τelong (blue curve). However, the trace au-
tocorrelation function contains other signatures that can obscure the inflection induced by
RNAP elongation dynamics. For instance, successive time points also exhibit correlation
due to the promoter switching dynamics (red curve). (C) Theoretical analysis of the au-
tocorrelation function and (D) stochastic simulations indicate that the second derivative
of the mean autocorrelation function (dark blue curves) can be used to find the structural
break in the function (black curves) that corresponds to τelong. Here, a peak at 6 time steps
of delay indicates an elongation time of 7 times steps (140 s). (E) Simulated traces with
elongation time of 7 time steps (green curve) exhibit a peak in the second derivative that co-
incides with the maximum of the experimental curve. Inset plots show corresponding mean
autocorrelation curves for experimental data and simulations. (F) Stochastic simulations in
which we allow for variation in elongation times distributed around a mean of 7 time steps
qualitatively recapitulates the observed curve. (C-F, second derivative profiles depicted here
are normalized relative to their maximum value for ease of depiction.)
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approximately, by the second largest eigenvalue of the Markov chain’s transition rate matrix
(Figure A.36B, red curve)

RP (τ) ∼ e−λ2τ . (A.116)

Thus, the observed autocorrelation function contains, at a minimum, signatures of both the
finite RNAP dwell time (τelong) and of promoter switching dynamics. As a result, inferring
elongation times from the change in slope in the mean autocorrelation is often relatively
subtle in practice.

A theoretical analysis of RF (τ) indicated that the second derivative of the mean auto-
correlation function reliably exhibits a peak that can be use to read out the value of τelong.
Figure A.36C shows the analytic prediction for the autocorrelation and second derivative
when τelong is equal to 7 time steps (w = 7). We confirmed that the same second derivative
approach works in the context of stochastic simulations using realistic parameters for the
eve stripe 2 system (Figure A.36D). Having confirmed the efficacy of the autocorrelation
method for simulated data, we next applied the same technique to uncover τelong for our
experimental traces.

The black profile in Figure A.36E indicates the form of the autocorrelation second deriva-
tive for the set of traces used for cpHMM inference. We observed that, while there is a
definite inflection point, the peak for the experimental data is much broader than for simu-
lated traces. The most likely cause of this feature is the existence of variability in τelong (see
below). From comparisons of the position of the second derivative peak for experimental
traces with simulated profiles, we concluded that an elongation time of w = 7 (τelong = 140 s)
best characterized our data (Figure A.36E, green curve). This implies that

velong =
6444 bp

140 s
= 46 bp · s−1

= 2.8 kb ·min−1, (A.117)

where the length used represents the distance from the start of the MS2 step loop sequence
to the end of the 3’ end of the construct. Interestingly, this elongation rate falls within the
2.4− 3.0 kb ·min−1 range reported in [99].

Figure A.36F shows how a simple adjustment to our simulation approach, wherein the
elongation time steps w for individual RNAP molecules were drawn from a Gaussian dis-
tribution with mean µw = 7 and standard deviation σw = 2.5 time steps can qualitatively
reproduce the wider profile observed in experimental data, indicating that our observations
are indeed consistent with the presence of variability in RNAP elongation times. Additional
experimental and theoretical work will be necessary to uncover the biological source of this
variability.

In light of the ambiguity introduced by the broad second derivative peak exhibited by
our experimental data, we also verified that our inference was robust to the choice of τelong,
testing cases where τelong = 120 s and τelong = 160 s (see below).
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cpHMM inference is insensitive to small changes in RNAP dwell time

Due to the uncertainty in our estimate of τelong, we conducted sensitivity estimates to en-
sure that our inference results were robust to our input assumption for w. As shown in
Figure A.37, we conducted cpHMM inference on our experimental data assuming different
values of w. Based upon our autocorrelation analysis, w values of 6, 7 and 8 seemed the
most plausible candidates for the average system elongation time (see Figure A.36E). While
small quantitative difference are apparent across these three cases (with a median coefficient
of variation of 11%), the results for different values of w showed a constant offset throughout
the embryo , such that qualitative trends were largely robust to the assumed w value.
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Figure A.37: Elongation time sensitivities. Square, circle, and diamond symbols denote
inference results for memory time window values w of 6, 7, and 8, respectively. w = 7 plots
are bolded. Bootstrap errors are shown for w = 7 case. (A) Initiation rates are robust to
w assumption. (B) Transition rates also exhibit high degree of robustness to the w used for
inference. (Error bars indicate magnitude of difference between first and third quartiles of
cpHMM inference results for bootstrap samples of experimental data.

A.4 Movies

Video 1. Transcriptional activity of eve stripe 2 reported by MS2. Raw MS2 signal
where fluorescent puncta report on the number of actively transcribing RNAP molecules.
Video 2. Mean rate of transcription of eve stripe 2 reported by MS2. Nuclei false
colored by their time-averaged transcriptional activity (up to the depicted time point).
Video 3. Transcriptional time window. Nuclei along the stripe false colored after the
duration of their transcriptional time window.
Video 4. Fraction of active nuclei. Nuclei along the stripe false colored according to
whether they engaged in transcription at any time point during the nuclear cycle.
Video 5. Fluorescent puncta contain sister chromatids. Fluorescent puncta tran-
siently separate to reveal the presence of sister chromatids as shown by the white circles
throughout the movie.

https://www.dropbox.com/s/dc9saftyth3msck/Video1-MS2.avi?dl=0
https://www.dropbox.com/s/1cee0elysg79f8b/Video2-MeanRate.avi?dl=0
https://www.dropbox.com/s/7gtqrg57oyi1oil/Video3-TimeWindow.avi?dl=0
https://www.dropbox.com/s/4qkf9uzl6yc316m/Video4-FractionActiveNuclei.avi?dl=0
https://www.dropbox.com/s/vbw1zoaxm9z89ru/Video5-SisterChromatids.avi?dl=0
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Video 6. Real-time inferred promoter states. Real-time inference of effective promoter
ON (green) and OFF (red) state in individual nuclei.
Video 7. Average embryo containing all inputs and the output. Average concen-
trations of Bicoid (blue), Hunchback (red), Kr̈uppel (green) and Giant (yellow) combined
with the average transcriptional activity of the eve reporter (purple). (Hunchback, Kr̈uppel
and Giant data obtained from [74]).

https://www.dropbox.com/s/yfab8i7qct8sxy9/Video6-TwoStateInference.avi?dl=0
https://www.dropbox.com/s/j3hc8eblqd1d6ag/Video7-TF%2BeveDynamics.avi?dl=0
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B.1 Literature summary of timescales of

transcriptional bursting and associated

molecular processes

In this section, we present a survey of timescales observed for transcriptional bursting
across a broad swath of organisms (Appendix Table B.1). Further, we review in vivo and
in vitro measurements that have revealed the timescales of the molecular transactions
underlying transcription and its control.

Recent technological advances such as single-molecule tracking, live-cell imaging, and
a variety of high-throughput sequencing methods, have revealed how eukaryotic tran-
scription is driven by a dizzying array of molecular processes that span a wide range of
timescales. The overview of these timescales presented in Figure 5.1E show how many of
these processes are significantly faster than transcriptional bursting.

Chromatin accessibility is a central control point for regulating transcription in eukary-
otes [76, 29]. DNA wrapped around nucleosome restricts transcription factor access [162,
29]. Multiple studies have determined the timescales of spontaneous DNA unwrapping
and rewrapping to be around 0.01-5 s [154, 183, 295]. While unwrapping and rewrapping
are probably too fast to directly lead to long transcriptional bursts, DNA unwrapping
might represent a “foothold” by which factors transiently bind DNA and enact larger-
scale, sustained chromatin modifications [29].

Interestingly, nucleosome turnover occurs over a longer timescale compatible with
bursting, with multiple studies suggesting timescales of several minutes to hours [67, 108,
310, 216, 159]. Recent genome-wide studies have measured average nucleosome turnover
time to be approximately 1 hour in the fly and in yeast [67, 108]. Further, histone
modifications may modulate nucleosomal occupancy [29, 194, 171], and the half-life as
well as addition of these modifications can also span a broad range of timescales compatible
with bursting, from several minutes to days [41, 140, 155, 326, 17, 30, 126].

Once the chromatin is open, enhancers, DNA stretches containing transcription factor
binding sites and capable of contacting promoters to control gene expression, become ac-
cessible. Transcription factor binding recruits co-factors and general transcription factors
to the promoter, triggering the biochemical cascade that ultimately initiates transcription
[58]. While the resulting bursts of RNAP initiation last from a few minutes to hours (Fig-
ure 5.1A-D), single-molecule live imaging has shown that transcription factor binding is a
highly transient process, with residence times of 0.5-15 s [214, 212, 39, 220, 105, 206, 283,
328]. The vast majority of transcription factors bind DNA for seconds, but it is worth
noting that some transcription factors and chromatin proteins can bind DNA for minutes
[291].
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However, the binding of transcription factors, the general transcriptional machinery,
and RNAP to the DNA might be more complex than the simple cartoon picture of individ-
ual molecules engaging and disengaging from the DNA. For example, recent experiments
have revealed that both mediator and RNAP form transient clusters with relatively short
lifetimes in mammalian nuclei of 5-13 s 10 s, respectively [43, 42, 51, 40]. In addition,
it is demonstrated that transcription factors can also form clusters in vivo [212, 214].
However, how these cluster dynamics relate to transcriptional activity remains unclear.

Further, enhancers and promoters are often separated by kbp to even Mbp. The
mechanism by which enhancers find their target loci from such a large distance, and how
this contact triggers transcription, remain uncertain and are reviewed in [101]. In vivo
measurements of enhancer-promoter separation in the Drosophila embryo have shown
that this distance fluctuates with a timescale of tens of seconds to several minutes [38,
127, 184] —timescales strikingly similar to those of bursting. However, recent work has
cast doubt on the simple “lock and key” model of enhancer association (stable, direct
contact between enhancers and promoters triggers transcription), suggesting instead that
enhancers may activate cognate loci from afar and, in some cases, may activate multiple
target loci simultaneously [38, 98, 184, 101, 118, 10, 261]. Many important questions
remain about the nature of enhancer-driven activation and it remains to be seen whether
enhancer association dynamics are generic aspect of eukaryotic transcriptional regulation,
or whether they only pertain to a subset of organisms and genes.

A single transcriptional burst generally consists of multiple RNAP initiation events
(∼10-100 at a rate of 1/6-1/3 s when the promoter is ON in Drosophila, for instance)
[27, 165]. The transcriptional bursting cycle thus encompasses a smaller, faster biochem-
ical cycle in which RNAP molecules are repeatedly loaded and released by the general
transcription machinery. One interesting hypothesis for the molecular origin of transcrip-
tional bursting is that the OFF state between bursts is enacted by an RNAP molecule
that becomes paused at the promoter, effectively creating a traffic jam [151]. Live imaging
and genome-wide studies have shown that RNAP pausing before initiation is common in
eukaryotes [151, 53, 102, 8] and that its half-life of up to 20 min can be consistent with
transcriptional bursting [284, 130, 270, 163, 32, 150, 129, 66].

Although the dynamics of some of the molecular processes outlined above are com-
patible with the long timescales of transcriptional bursting, we still lack a holistic picture
of how these kinetics are integrated to realize transcriptional bursts and, ultimately, to
facilitate the regulation of gene expression by transcription factors.

We must also acknowledge that we still lie at the very beginning of a reckoning with
the dynamics of transcriptional processes as measurements for some molecular processes
results in a range of timescales that are difficult to reconcile. In particular, we still lack
solid dynamic measurements regarding the assembly of the transcription preinitiation
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complex. Yet, perhaps more egregious than the lack of any individual dynamical mea-
surement is the lack of a comprehensive, quantitative, and predictive understanding of
how these molecular processes interact with one another in time and space to give rise to
transcriptional bursting.

Table B.1: Literature summary of transcriptional bursting. We attempted to
summarize the duration of a single transcriptional burst from various organisms and
genes. In the cases where the single-cell data is not available, such as in data stemming
from smFISH experiments, we used population averaged TON and/or TOFF values instead
to give a sense on the timescales.

System Method Bursting Timescale Reference

Bacteria

in vitro
single-molecule
assay

5-8minutes [44]

Tet system MS2
TON ≈ 6minutes,
TOFF ≈ 37 minutes

[111]

Fruit fly embryo

even-skipped stripe 2 MS2 few minutes [165, 27]

even-skipped MS2 few minutes [12]

Notch signaling MS2 5-20 minutes [85]

snail, Krüpple MS2 5minutes [98]

gap genes: hunchback,
giant, Krüpple, knirps

smFISH
TON ≈ 3 minutes,
TOFF ≈ 6 minutes

[330]

hunchback MS2 few minutes [70]

even-skipped stripe 2 MS2 few minutes [27]

C. elegans

Notch signaling MS2 10-70 minutes [177]

Human, Mouse

TGF-β signaling luciferase assay few hours [217]

TFF-1 signaling MS2 few hours [251]

HIV-1 viral gene MS2 few minutes [290]

liver genes smFISH
TON ≈ 30 minutes -
2 hours

[121]
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mammalian genes luciferase assay few hours [287]

Amoeba

actin gene family RNA-seq few hours [297]

actin gene family MS2 10-15 minutes [55]
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Table B.2: Summary of measured timescales of underlying molecular processes as-
sociated with transcription. While the vast majority of transcription factors bind DNA for
seconds, it is worth noting that some transcription factors (e.g. TATA-binding protein) and
chromatin proteins (e.g. CTCF, Cohesin) can bind DNA for minutes. These outliers are not
included in Figure 5.1

System Organism Experimental method Timescale Reference

Nucleosomal DNA Wrapping/Unwrapping

Mononucleosomes In vitro reconstitution FRET 0.1-5 s [295]

Mononucleosomes In vitro reconstitution FRET 10-250ms [183]

Mononucleosomes In vitro reconstitution
Photochemical crosslink-
ing

<1 s [154]

Nucleosome Turnover

Histone H3.3 Drosophila cell Genome-wide profiling 1-1.5 h [67]

Histone H3 Yeast Genomic tiling arrays ∼1 h [108]

Histone H2B, H3, and
H4 tagged with GFP

Human cell FRAP several minutes [159]

Histone H1 tagged with
GFP

Human cell FRAP several minutes [216]

Histone H3 Plant cell (Alfalfa) Isotope labeling several hours [310]

Histone Modification

dCas9 inducible recruit-
ment

Mammalian cell Single-cell imaging several hours to days [30]

rTetR inducible recruit-
ment

Mammalian cell Single-cell imaging several hours to days [17]

Chemical-mediated
recruitment

Mammalian cell Chromatin in vivo assay several days [126]

Histone H3 Human cell

Liquid chromatography,
mass spectrometer and
heavy methyl-SILAC la-
beling

several hours to days
(half-maximal time
of methylation)

[326]

Targeted recruitment Yeast ChIP

5-8min (reversal of
targeted deacetyla-
tion) 1.5min(reversal
of targeted acetyla-
tion)

[155]

Histone H2a, H2b, H3,
and H4

Mammalian cell Isotope labeling
<15min (acetylation
half-life)

[41]
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Histone H2, H2a and
H2b

Mammalian cell Isotope labeling
∼3min (acetylation
half-life)

[140]
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Transcription Factor Binding

Bicoid Drosophila embryo SMT ∼2 s [214]

Bicoid Drosophila embryo SMT ∼1 s [212]

Zelda Drosophila embryo SMT ∼5 s [214]

Sox2 Mammalian cell SMT ∼12-15 s [39]

p53 Mammalian cell SMT ∼3.5 s [220]

p53 Mammalian cell SMT, FRAP, FCS ∼1.8 s [206]

Glucocorticoid receptor Mammalian cell SMT ∼8.1 s [220]

Glucocorticoid receptor Mammalian cell SMT ∼1.45 s [105]

STAT1 Mammalian cell SMT ∼0.5 s [283]

TFIIB In vitro reconstitution SMT ∼1.5 s [328]

TATA-binding protein Mammalian cell SMT 1.5-2min [291]

Chromatin Protein Binding

CTCF Mammalian cell SMT ∼1-2min [124]

Cohesin Mammalian cell SMT ∼22min [124]

Enhancer-Promoter Interaction

snail shadow enhancer Drosophila embryo MS2, PP7 labeling
∼10-40 s (fluctuation
cycle interval)

[127]

snail enhancer Drosophila embryo MS2, PP7 labeling several minutes [184]

endogenous even-skipped
locus with homie insula-
tor

Drosophila embryo MS2, PP7 labeling several minutes [38]

Transcription Initiation

even-skipped stripe 2 en-
hancer

Drosophila embryo MS2 labeling ∼3 s (promoter ON) [165]

HIV-1 promoter Mammalian cell MS2 labeling
∼4.1 s (promoter
ON)

[290]

hb P2 enhancer Drosophila embryo MS2 labeling ∼6 s [104]

RNAP Cluster Dynamics

RNAP tagged with Den-
dra2

Mammalian cell tcPALM
∼12.9 s (with small
fraction of stable
clusters)

[42]

RNAP tagged with Den-
dra2

Mammalian cell tcPALM ∼8.1 s [43]
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RNAP tagged with Den-
dra2

Human cell Bayesian nanoscopy several seconds [40]

RNAP tagged with Den-
dra2

Human cell tcPALM ∼5.1 s [51]

Mediator Cluster Dynamics

Mediator tagged with
Dendra2

Mammalian cell tcPALM ∼11.1 s [42]

Promoter-Proximal Pausing

RNAP tagged with GFP Human cell FRAP ∼40 s [284]

RNAP (genome-wide) Drosophila cell RNA sequencing ∼2-20min [130]

RNAP (genome-wide) Drosophila cell ChIP-nexus ∼5-20min [270]

RNAP (genome-wide) Drosophila cell
Genome-wide footprint-
ing

∼2.5-20min [163]

RNAP tagged with GFP
Intact Drosophila sali-
vary glands

∼5min [32]

RNAP (genome-wide) Mammalian cell GRO-seq ∼6.9min (average) [150]

RNAP (genome-wide) Drosophila cell scRNA-seq
15-20min (at genes
with low activity)

[129]

LacO-tagged minimal
CMV promoter

Human cell MS2 labeling, FRAP ∼4min [66]

SMT: Single-molecule tracking

FRAP: Fluorescence recovery after photobleaching

FCS: Fluorescence correlation spectroscopy

FRET: Fluorescence resonance energy transfer

ChIP: Chromatin immunoprecipitation

PALM: Photo-activated localization microscopy
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B.2 Two-state model calculations

As noted in the main text, the average initiation rate is equal to r times the fraction of time
the promoter spends in this ON state pon,〈

initiation rate
〉
= r pon. (B.1)

To predict the effect of bursting on transcription initiation, it is necessary to determine how
pon depends on the bursting parameters. In the mathematical realization of the two-state
model shown in Figure 5.2A, the temporal evolution of poff , the probability of being in the
OFF state, and pon is given by

dpoff
dt

= −kon poff + koff pon, (B.2)

and
dpon
dt

= kon poff − koff pon. (B.3)

To solve these equations, we make the simplifying assumption that our system is in steady
state such that pon and poff are constant in time. In this scenario, we can set the rates
dpoff/dt and dpon/dt to zero. We can then solve for koff in terms of kon resulting in

koff =
kon poff
pon

. (B.4)

Plugging in pon + poff = 1 gives us

koff =
kon (1− pon)

pon
, (B.5)

which can be solved in terms of kon, koff

pon =
kon

kon + koff
. (B.6)

B.3 Molecular model calculations

Here we provide a brief overview of the calculations relating to the three theoretical models
of transcription presented in Section 5.3: the independent binding model (Figure 5.3C), the
cooperative binding model (Figure 5.3E) and the rate-limiting step model (Figure 5.3G). We
also provide resources relating to the calculation of first-passage time distributions discussed
in section 5.4.
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B.3.1 Stochastic simulations

We make heavy use of stochastic simulations throughout this work. A custom-written imple-
mentation of the Gillespie Algorithm [110] was used to simulate trajectories for the various
models discussed in the main text. These simulated trajectories were used to generate the
activity trace plots in Figure 5.3D, F, and G, as well as the first-passage time distribu-
tions in Figure 5.4B-D. All code related to this project (including the Gillespie Algorithm
implementation for stochastic activity trace generation) can be accessed on GitHub.

B.3.2 Independent binding model

All calculations in this section pertain to the independent binding model presented in Fig-
ure 5.3C.

B.3.2.1 Calculating state probabilities

Calculating the probability of each activity state is central to determining a system’s overall
transcriptional behavior. Because our mathematical model is a linear chain with no cycles
(see Figure 5.3B), we can make progress towards calculating the state probabilities, pi, by
imposing detailed balance, which gives

pnk+(n) = pn+1k−(n+ 1), (B.7)

where k+ and k− are the effective rates of adding and subtracting a single activator molecule
that we define in Figure 5.3B. Plugging in Equation 5.5 and Equation 5.6 from the main
text results in

pn(N − n)kn,n+1 = pn+1(n+ 1)kn+1,n, (B.8)

where, the rates kn,n+1 and kn+1,n are the microscopic binding and unbinding rates defined
in Figure 5.3A, respectively. Now we make use of the fact that there are only two unique
microscopic rates in independent binding system: activator molecules bind at a rate kn,n+1 =
kb = kb

0[A], with [A] being the activator concentration and kb
0 the binding rate constant, and

unbind at a rate kn,n−1 = ku. Plugging these values into Equation B.8 and rearranging leads
to

pn+1 =
(N − n

n+ 1

)( kb

ku

)
pn. (B.9)

To further simplify the expression in Equation B.9, we write ku

kb
as a dissociation constant

(Kd), resulting in

pn+1 =
(N − n

n+ 1

) pn
Kd

, (B.10)

which has the form of a recursive formula for calculating state probabilities from their pre-
decessors. For instance, for the case where n = 0 we have

p1 = N
p0
Kd

. (B.11)

https://github.com/nlammers371/transcription_timescales_review.git
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We can extend this logic to calculate the probability of any state, n, as a function of p0,
leading to

pn =
N !

(N − n)!n!

p0
Kn

d

= W (n)
p0
Kn

d

, (B.12)

where the factorial terms captured by W (n) on the far right-hand side can be thought of
as accounting for the fact that a given number of activators bound, n, may correspond
to multiple microscopic binding configurations (compare Figure 5.3A and B). Note that
W (0) = 1, which means that Equation B.12 is valid even when n = 0. Finally, we impose
the normalization condition that the sum of the state probabilities should be equal to 1,
which leads to

pn =
p0W (n)K−n

d

p0
∑N

i=0W (i)K−i
d

. (B.13)

Canceling out the factors of p0 gives us our final expression for pn, namely

pn =
W (n)K−n

d∑N
i=0 W (i)K−i

d

=
W (n)K−n

d

Z
, (B.14)

where Z on the far righ-hand side indicates the sum of all state weights. Thus, given values
of the rates kb and ku, which define Kd, we can calculate the probability of the system being
in each binding state n. This probability is shown diagrammatically in the shading of the
different states in Figure 5.3C.

B.3.2.2 Independent binding cannot produce bimodal transcriptional output

A basic requirement for bimodal transcriptionl behavior is that p0 > p1 and pN > pN−1,
where N is the total number of binding sites. Couching this in terms of Equation B.14 leads
to

p0
p1

=
1

N
Kd > 1, (B.15)

which simplifies to
Kd > N (B.16)

for the low activity regime and

pN
pN−1

=
1

N

1

Kd

> 1, (B.17)

leading to

Kd <
1

N
(B.18)

for the high activity regime. Since Kd is set by the ratio ku

kb
, which is constant for all

states in the independent binding model, it is not possible for it to be simultaneously larger
(Equation B.16) and smaller (Equation B.18) than the number of binding sites N . We thus
conclude that independent binding is incompatible with bimodal transcription, regardless of
the number of binding sites N .
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B.3.2.3 Diffusion-limited binding

In the main text we state that we set kb = [A]kb
0 to 0.5 s−1 for the simulations shown in

Figure 5.3C. This is convenient because it leads to a model where half the available sites are
bound, on average. This choice is also physically reasonable. Bicoid concentrations in the
embryo in the region of hunchback expression are on the order of 10 nM ([A] ≈ 10 nM) [116],
so that kb ≈ 0.5 s−1 thus implies a kb

0 of approximately 0.05 nM−1s−1. This is comfortably
below the upper bound for kb

0 set by diffusion (0.1–10 nM−1s−1), which we take to be the
speed limit for independent binding [65].

B.3.3 Cooperative binding

All calculations in this section pertain to the independent binding model presented in Fig-
ure 5.3E.

B.3.3.1 Deriving cooperativity weights

In Equation 5.7 we incorporated cooperative binding by adding multiplicative weights, ω,
giving

ki,i+1 = kbωi. (B.19)

This functional form follows from the assumption that each bound activator increases kb by
a constant factor ω ≥ 1. This leads the expression for k+(n)

kcoop
+ (n) = (N − n)ωnkn,n+1, (B.20)

which is a nonlinear function of n. Now, in analogy to the calculations presented in B.3.2.1,
let’s re-derive our expressions for pn. To start, we have

pn+1 =
(N − n

n+ 1

)( kb

ku

)
ωnpn. (B.21)

Again expressing ku

kb
as a dissociation constant (Kd), we obtain

pn+1 =
(N − n

n+ 1

)ωnpn
Kd

. (B.22)

We can also extend this logic to calculate the probability of any state, n, as a function of
p0, leading to

pn =
N !

(N − n)!n!

ω
n(n−1)

2 p0
Kn

d

= W (n)
ω

n(n−1)
2 p0
Kn

d

. (B.23)

Finally, by requiring that all state probabilities sum to one, we obtain

pn =
W (n)ω

n(n−1)
2 K−n

d

Z
, (B.24)

where Z again denotes the sum of all state weights as in Equation B.14. We have used these
expressions to calculate the probability of each state shown using the shading in Figure 5.3E.
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B.3.3.2 Cooperativity permits bimodal expression

Now, let’s use Equation B.23 to examine how the addition of the cooperativity factor ω
makes bimodal bursting possible. Recall that bimodal expression requires that p0 > p1 and
pN > pN−1. For the low activity regime, cooperativity is not relevant and so the form of the
requirement remains the same, namely

p0
p1

=
1

N
Kd > 1. (B.25)

However, things change in the high activity regime. Here, we have

pN
pN−1

=
1

N

ωN−1

Kd

> 1. (B.26)

In stark contrast to the independent binding case, we see that the addition of ω makes
it possible to realize both conditions simultaneously, opening the door to bimodal burst
behaviors. Specifically, bimodality demands

Kd > N, (B.27)

and

ω > K
2

N−1

d (B.28)

to be true. Not only do these requirements demonstrate that cooperativity is required to
achieve bimodal bursting, they also indicate that Kd must be greater than the number of
binding sites in the model, which corresponds to a system where, absent cooperative effects,
activator binding is highly disfavored.

B.3.3.3 Cooperativity is necessary to simultaneously achieve kinetic trapping
at both ends of the chain

The reasoning here closely mirrors the discussion from the previous section. To achieve
kinetic trapping at both the high and low ends of the binding chain model simultaneously,
we require (at a minimum) that k−(1) > k+(1) and k−(N − 1) < k+(N − 1). We can use
Equation B.20 and Equation 5.6 to express these requirements in terms of system parameters.
For the low activity regime, we have

k−(1)

k+(1)
=

Kd

(N − 1)ω
> 1, (B.29)

and for the higher regime we obtain

k+(N − 1)

k−(N − 1)
=

ωN−1

(N − 1)Kd
> 1. (B.30)

We can simplify these requirements to obtain upper and lower bounds on ω, namely[
Kd(N − 1)

] 1
N−1

< ω <
Kd

N − 1
. (B.31)
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We see that Equation B.31 implies restrictions on the relationship between Kd and N .
Specifically, there must be a gap between the upper and lower bounds in Equation B.31 such
that there exist viable ω values. This means that[

Kd(N − 1)
] 1

N−1
<

Kd

N − 1
, (B.32)

must hold. Upon simplification, this gives

Kd > (N − 1)2. (B.33)

Equation B.33 tells us that the dissociation constant must be larger than one (indeed, it
must be larger than 25 for a 6 binding site system). This implies that the expression for the
lower ω bound on the left-hand side of Equation B.31 is guaranteed to be greater than one
as well, which indicates that cooperative interactions are necessary to realize kinetic traps
on both ends of the chain.

B.3.4 First-passage time calculations

In this Review we used stochastic simulations (briefly outlined in B.3.1) to arrive at ex-
pectations for the form of first-passage time distributions for the cooperative binding and
rate-limiting step models. All relevant scripts are available at GitHub. We also note that
the functional forms for waiting time distributions can be using analytical methods such as
Laplace Transforms. We do not provide the details for this approach here, but point the
reader to [260, 9], as well as the sources cited therein, for more information.

https://github.com/nlammers371/transcription_timescales_review.git
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Appendix C

SI for Competing constraints shape
the limits of gene regulation out of
thermodynamic equilibrium

C.1 Supplementary Figures

Figure C.1: Decision times for different gene circuit architectures. (A) Parameter
sweep results for equilibrium gene circuits with different numbers of activator binding sites.
Black dashed line indicates lower limit of the decision time and is a function of the form
⟨T⟩ = kN−2

B , where k is a proportionality constant. (B) Plot of range of achievable decision
times for non-equilibrium gene circuits with a single activator binding site (NB = 1) as a
function of the number of activation steps, NLC. The dashed line indicates the lower decision
time bound, and is a function of the form ⟨T⟩ = kN−1

LC. All results shown assume an error
probability of 32%.
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Figure C.2: Supplemental data for IR vs. w/c analyses. (A) Parameter sweep results
showing the range of achievable information rates as a function of w/c for equilibrium gene
circuits with 1-5 activator binding sites and one molecular activation step. (B) Sweep results
for non-equilibrium gene circuits with 1-4 molecular steps and a single activator binding
site. (C) Plot showing results of extrapolation analysis that uses numerical results for the
minimum decision times for equilibrium gene circuits with 1-5 binding sites to estimate
performance of larger models with may binding sites. Analysis indicates that at least 17
sites would be required to achieve plausible decision ties in the context of the mouse system.

Figure C.3: Supplemental results for main text Figure 6.5 (A) Non-equilibrium sharp-
ness and precision gains for IR-maximizing gene circuits with 2-5 locus conformations. (B
Plot showing range of achievable specificity and intrinsic sharpness values for non-equilibrium
gene circuits with with 2-5 locus conformations.
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Figure C.4: Additional experimental signature figures. (A) Predicted induction curves
for 50 near-optimal non-equilibrium gene circuits when w = 103c∗, as well as the true in-
duction curves for the sharpest achievable equilibrium curve (solid blue line) and the naive
sharpness limit when not accounting for w (dashed line). Note that red curves fall above the
true equilibrium limit but below the naive limit. (B) Predicted sharpness shift resulting from
a binding site perturbation for equilibrium gene circuits (blue squares) and IR-maximizing
non-equilibrium circuits (red circles). Non-equilibrium shift becomes markedly larger than
equilibrium limit when w/c > 103. (C) Predicted rate shift upon perturbing the activator
binding site. Non-equilibrium circuits are far more sensitive than equilibrium circuits when
w/c < 104. The shift becomes negligible at higher values.
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C.2 Appendices

C.2.1 Gaussian noise approximation

Throughout this work, we make the simplifying assumption that the intrinsic noise due in
accumulated mRNA levels due to transcriptional bursting is approximately Gaussian. In
this section, we use stochastic simulations to put this assumption to the quantitative test.
The Markov chain central limit theorem states that the distribution of a quantity that is a
function of a Markov chain (such as the transcription rate, r), will become approximately
Gaussian as the number of iterations becomes large [106].

The question, then, is we can expect the accumulated transcriptional output to approach
this limiting Gaussian distribution within timescales that are relevant to the decision times
discussed in this work. To determine this, we used stochastic simulations [110] to track the
distribution of the accumulated output 1,000 random realizations of the four state system
shown in Figure 6.1B for 10,000 burst cycles. Each realization had a unique set of transition
rates and, correspondingly, a unique average rate of transcription, r = ar0. For each model
realization, we ran 100 stochastic simulations and tracked the distribution of the apparent
average transcription rate for each, as function of accumulation time. Figure C.5A shows the
apparent mean rate across 100 simulations for a single illustrative gene circuit realization.
Inset histograms indicate distribution of apparent transcription rates at different time points.
As expected, we see that the apparent rates are initially highly dispersed; however, even
after 50 burst cycles, we see that p(r) has become a much narrower, roughly symmetrical
distribution that appears approximately Gaussian.

To systematically assess the rate of convergence to normality, we utilized the simple
One-sample Kolmogrov-Smirnov test (“kstest”, [205]), which tests the null hypothesis that
a vector of transcription outputs from realization i at time t, ri(t), is drawn from a normal
distribution. The test returns a p value corresponding to the probability of observing ri(t)
if the transcriptional output were truly Gaussian. In standard implementations p ≲ 0.05
is taken to constitute strong evidence that the output is not Gaussian. Thus, to assess
convergence to normality, we tracked this p value over time for each of the 1,000 gene circuit
realizations.

Figure C.5B shows the average kstest p-values across 10 different sets of gene circuits,
grouped by their average rate of transcription. In all cases, we see that noise profiles rapidly
converge towards normality, such that all systems cross the (relatively conservative) threshold
of p = 0.1 within 10 burst cycles (dashed line in Figure C.5B). Gene circuits near the tail
ends of the induction curve (r ≤ 0.1 and r ≥ 0.9) take the longest to converge, which is
likely because it takes longer for distributions near the boundaries to become symmetric
about their mean; yet even these converge rapidly.

The fastest decisions discussed in the main text (Figure 6.4D and E), and most deci-
sion times considered are significantly longer. Thus, we conclude that the Gaussian noise
approximation invoked throughout this work is justified.
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Figure C.5: Testing validity of the Gaussian noise approximation. (A) Illustra-
tive plot showing average transcription rate as a function of the averaging time across 100
stochastic simulations of one realization of the four state model gene circuit. Inset his-
tograms show distribution of apparent rates at three different time pints. We see that, as
the accumulation time increases, the distributions get tighter and appear more Gaussian in
shape. (B) Plot showing p-values of one-sample Kolmograv-Smirnov test. Different colors
indicate average trends for systems with different average transcription rates. We see that
systems near the low and high ends of the induction curve converge to Guassian form most
slowly, but even these cross the p = 0.1 line within about 10 burst cycle. Error bars indicate
bootstrap estimates of standard error calculated for each group.

C.2.2 Deriving the rate of information transmission for a gene
locus

Motivated by [274], we define the rate of information transmission as the time derivative of
the expected Kullback-Leibler (KL) Divergence between the two hypotheses (C = c0 and
C = c1), given some accumulated mRNA level m, such that

IR =
d

dt

〈
DKL

[
p(c1|m)||p(c0|m)

]〉
, (C.1)

where P(c0|m) and P(c1|m) indicate (respectively) the conditional likelihood that the true
value of C is c0 and c1 given the observed output m, and where the angled brackets indi-
cate that we are dealing with the expected value of DKL across many replicates. We refer
readers information theory reference materials for a formal definition of DKL (see, e.g., [61]);
however, at an intuitive level it can be regarded as measuring how different two probability
distributions are from one another. Thus, with Equation C.1, we define the rate of informa-
tion production as the rate at which the two possibilities (c1 or c0?) become distinguishable
from one another given the observed “evidence” (m).

We can write out the expected KL divergence from Equation C.1 more explicitly as the
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weighted sum of log probability ratios:

IR =
d

dt

(
p0

〈
ln

p(c0|m)

p(c1|m)

〉
0
+ p1

〈
ln

p(c1|m)

p(c0|m)

〉
1

)
, (C.2)

where ⟨...⟩i indicates the expectation taken assuming the true value of C to be ci and where
P0 and P1 indicate the priors on the true value of C, taken to be equal moving forward
(P1 = P0 = 1/2). This formulation provides a more concrete for the sense in which IR
is the information rate: as the conditional probabilities of the observed output given the
true (numerators) and false (denominators) hypotheses about C diverge in favor of the true
hypothesis, the log ratio terms will become large and positive. Thus a positive derivative
corresponds to positive information production.

However, here we must recall that our focus here is to understand how the molecular
architecture of gene loci impacts the transcriptional response and, ultimately, IR. Thus we
wish to work in terms of p(m|c)—the conditional distribution of observed mRNA outputs
given some input—rather than p(c|m). To do this, we make use of Bayes’ Theorem. We
have:

p(c0|m)

p(c1|m)

P (m)

P (m)
=

p(m|c0)
p(m|c1)

p(c0)

p(c1)
. (C.3)

This expression becomes an equality if we assumed equal prior probabilities for our two
hypotheses (p(c0) = p(c1)):

p(c0|m)

p(c1|m)
=

p(m|c0)
p(m|c1)

. (C.4)

Thus, we can use Equation C.4 to rewrite Equation C.2 as:

IR =
d

dt

1

2

(〈
ln

p(m|c0)
p(m|c1)

〉
0
+
〈
ln

p(m|c1)
p(m|c0)

〉
1

)
. (C.5)

We can think of the conditional probabilities, p(m|ci), in Equation C.5 as representing the
full stochastic transcriptional response to some input activator concentration ci. When these
are approximately Gaussian (a condition discussed above in Appendix C.2.1), it becomes a
straightforward exercise to solve for the expected log ratios in Equation C.5. We will solve
for the case when C = c1 in full. The c0 case proceeds in precisely the same fashion. To
start, we have〈

ln
p(m|c1)
p(m|c0)

〉
1
=

∫ ∞

0

p(m|c1) ln p(m|c1)dg −
∫ ∞

0

p(m|c1) ln p(m|c0)dg. (C.6)

Recall that g = rt is Gaussian with probability density function:

p(m|ci) =
e
−
(

m−m(ci)

2σ2(ci)

)2
√
2πσ2(ci)

. (C.7)

Plugging Equation C.7 in for ln p(m|c1) yields
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ln
p(m|c1)
p(m|c0)

〉
1
= −1

2
ln
(
2πσ2

m(c1)
)
− 1

2
−∫ ∞

0

p(m|c1)
[
− 1

2
ln
(
2πσ2

m(c0)
)
− 1

2

(m(c0)− g

σm(c0)

)2]
dm, (C.8)

where we’ve recognized that the first integral will simply yield the standard expression for the
entropy of a Gaussian random variable. Pulling constant factors out of the second integral
leads to 〈

ln
p(m|c1)
p(m|c0)

〉
1
= −1

2
ln
(
2πσ2

m(c1)
)
− 1

2
+

1

2
ln
(
2πσ2

m(c0)
)
+

1

2σ2
m(c0)

∫ ∞

0

p(m|c1)
[
m2(c0)− 2mm(c0) +m2

]
dm. (C.9)

Simplifying and recognizing that ⟨m2⟩1 = m2(c1) + σ2
m(c1) leads to:〈

ln
p(m|c1)
p(m|c0)

〉
1
=

1

2
ln

σ2
m(c1)

σ2
m(c0)

− 1

2
+

1

2σ2
m(c0)

[
m2(c0)− 2m(c0)m(c1) + σ2

m(c1)
2 +m2(c1)

2
]
.

(C.10)
Finally, we recall that m = rt and σ2

m = σ2t, obtaining

〈
ln

p(m|c1)
p(m|c0)

〉
1
=

1

2

[
ln

σ2
r(c0)

σ2
r(c1)

+ t

(
r(c1)− r(c0)

)2
σ2
r(c0)

+
σ2
r(c1)

σ2
r(c0)

− 1
]
. (C.11)

Performing the same procedure for the case where c = c0 yields:

〈
ln

p(m|c0)
p(m|c1)

〉
0
=

1

2

[
ln

σ2
r(c1)

σ2
r(c0)

+ t

(
r(c0)− r(c1)

)2
σ2
r(c1)

+
σ2
r(c0)

σ2
r(c1)

− 1
]
. (C.12)

Plugging Equation C.11 and Equation C.12 into Equation C.5 and taking the derivative
with respect to time yields

IR =
1

4

(
r(c1)− r(c0)

)2(
σ(c1)

2 + σ(c0)
2
)

σ(c0)2σ(c1)2
. (C.13)

Next, if we assume that the difference between c0 and c1 is small (as stipulated in the main
text), then σ(c0) ≈ σ(c1) ≈ σ2(c∗) and r(c1)− r(c0) ≈ δcdr/dc, leading to

IR =
1

2

(
δc
dr

dc

)2 1

σ(c∗)2
. (C.14)

Finally, we invoke the definitions of sharpness and precision given in Figure 6.1A, which
leads to Equation 6.2 from the main text:

IR =
1

2

(δc
c∗

)2
s2p2. (C.15)
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C.2.3 Poisson noise from mRNA synthesis is negligible relative
to noise from bursting

In this section, we provide support for the claim, made in the Section 6.3.2 of the main text,
that Poisson noise due to mRNA synthesis is negligible relative to noise from transcriptional
bursting. We take as our starting point Equation C.55 from Appendix C.2.10,

P =
a(1− a)

σ
, (C.16)

which relates the normalized precision, P, to the bursting noise, σ, and the fraction of time a
gene circuit spends in transcriptionally active states, a. From Figure 6.3A, we see that P ≤ 1
for the four state gene circuit shown in Figure 6.1B when the system is out of equilibrium,
which, from Equation C.16, implies that

σ2 ≥ a2(1− a)2 (C.17)

for the 4 state system.
Thus, Equation C.18 gives a lower bound for the intrinsic variance in gene expression that

arises due to transcriptional burst fluctuations at the gene locus. To see how to relate this
to noise from mNRA synthesis, we need to take two more steps. First, we must recall that
we are working in units of the burst cycle time, τb. Second, we must further recall that we
set the actual rate of mRNA synthesis, r0, equal to 1 throughout the main text. We must do
away with these simplifications in order to relate σ2 to synthesis noise. Accounting for these
simplifications, the full expression for the noise floor, in “real” time units and accounting for
the true rate of mRNA synthesis is

σ2
burst ≥ τbr

2
0a

2(1− a)2. (C.18)

Now, if we assume mRNA synthesis to be a Poisson process (following, e.g., [272]), we
have that this component of the variance is simply equal to

σ2
mRNA = r0a. (C.19)

The key thing to notice about Equation C.19 is that mRNA synthesis noise is independent of
the bursting timescale τb. Thus, as τb increases, σ

2
burst will increase in magnitude relative to

σ2
mRNA. Figure C.6A and B illustrate this fact, showing predicted bursting and mRNA

synthesis variance components, respectively, as a function of the bursting time scale τb
and the activity level (a). All calculations assume an mRNA synthesis rate of 20 mRNA
per minute, a rate based off of estimates from the fruit fly [168] and of consistent with
measurements from other systems [290]. From Figure C.6A, we see that σ2

burst peaks at
a = 0.5 and increases dramatically as we move rightward along the x axis. We emphasize
that this represents a lower bound for maximally precise non-equilibrium gene circuits; most
systems (including IR-optimized systems) will lie above this bound. In contrast Figure C.6B
shows that noise from mRNA synthesis scales linearly with a, and is constant in τb.
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Figure C.6: Testing contribution from mRNA synthesis noise. (A) Heatmap showing
lower bound of bursting component of variance for the non-equilibrium four state model
shown in Figure 6.1B as a function of the fraction of time spent in the active state (a) and
the burst cycle time (τb). (B) Heatmap showing predicted variance component arising from
mRNA synthesis. (C) Predicted relative contribution of mRNA synthesis noise to total
intrinsic noise levels in gene expression. Note that contribution is only significant for rapidly
bursting systems near the saturation point. (All calculations assume an mRNA synthesis
rate of 20 per minute, in keeping with estimates from [166])

The total gene expression noise level is given by

σ2
tot = σ2

mRNA + σ2
burst. (C.20)

We can use this expression to calculate a lower bound on the relative contribution of mRNA
synthesis noise to the overall intrinsic variance in gene expression. Figure C.6C shows the
results of this calculation. We see that, with the exception of rapidly bursting systems near
the saturation (a ≈ 1). Thus, we conclude that noise from transcriptional bursting consti-
tutes the dominant source of gene expression noise for the vast majority of the parameter
regimes relevant for the investigations in this paper, and that our decision to neglect Poisson
noise from mRNA synthesis is reasonable.

C.2.4 Analytic expressions for key gene circuit characteristics

This section lays out analytic expression for key quantities that play a central role in the
investigations undertaken over the course of the main text. We do not repeat derivations for
expressions that are treated separately elsewhere in these Appendices, and avoid re-deriving
expressions from scratch, unless they are novel to this work.

C.2.4.1 The transition rate matrix and activity vector

Consider a gene circuit g that has K different microscopic states. We assume that micro-
scopic transitions between the molecular states that make up g are Markovian, such that
our system can be modeled as a continuous time Markov chain (CTMC). It follows that the
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behavior of g is fully determined by two quantities: the transition rate matrix, Q and the
state activity vector, a.

Q is a K × K matrix with off-diagonal elements that encode the rates with which the
system switches between microscopic rates. For instance, qmn—the element in the mth row
and nth column of Q—gives the transition rate going from state n to state m. The diagonal
elements of Q are negative, and are scaled such that each column of Q sums to 0. The
activity vector a is a binary vector of length K that contains a “1” for each state that is
transcriptionally active, and a “0” for inactive states. We assume that both Q and a are
fixed in time.

C.2.4.2 State probabilities, transcription rate, and transcriptional noise

A first step to calculating virtually all other quantities of interest is to obtain the steady-state
vector, π, which is a vector of length K that gives the steady state probability of finding the
gene circuit of any one of the K microscopic states. Intuitively, we can obtain π by finding
the right eigenvalue of Q with an eigenvalue of 0,

Qv = 0, (C.21)

and imposing the additional constraint that the elements of π sum to 1, such that

π =
v∑K
i=1 vi

. (C.22)

This the steady state probability vector in hand, we can calculate the average transcrip-
tion rate by taking the dot product of a and π:

r = r0

K∑
i=0

aiπi︸ ︷︷ ︸
fraction of

time active (a)

, (C.23)

where we define the quantity indicated by the underbrace as the average fraction of time, a,
that the system spends in the active state. Throughout the course of this work, we assume
that r0 is held fixed, such that the transcriptional activator may only impact transcription
by altering microscopic transition rates in Q to alter π. Further, since we take Poisson noise
from mRNA synthesis to be negligible (see Appendix C.2.3), the absolute magnitude of r0
is unimportant, and we set it to 1 for simplicity.

Next, we turn to obtaining an expression for the variance (noise) in gene expression.
From Whitt 1992 [311], we have that

σ2 = 2
K∑
i=1

K∑
j=1

aiπizijaj, (C.24)

where zij is the element from ith row and jth column of what is known as the fundamental
matrix, Z of our transition rate matrix, Q. Z is a K × K matrix that plays an integral
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role in the calculation of many key behaviors of a Markov chain. Once again drawing from
Whitt, we can calculate Z using the formula

Z = (Π−Q)−1 −Π, (C.25)

where Π is a K ×K matrix with each row equal to π.

C.2.4.3 Using the fundamental matrix to calculate first passage times

First passage times provide a useful conceptual tool for connecting microscopic fluctuations,
which often are unobservable, with emergent dynamical behaviors, such as transcriptional
bursting. The fundamental matrix provides an invaluable tool for doing this in the context
of arbitrarily complex transcriptional systems. Once again, we start with an expression
from Whitt 1992 [311] that relates off-diagonal elements of Z to first passage times between
microscopic states:

zji = πi[ETei − ETij], i ̸= j. (C.26)

Here, ETij is the mean expected first passage time to from state j to state i and ETei the
first passage time to state i at equilibrium, defined as

ETei = πi

K∑
j=1

πjETij. (C.27)

Now, from [311] we also have that the diagonal elements of Z can be expressed as

zii = πiETei. (C.28)

We can now combine Equations C.26 and C.28 to solve for the first passage time from state
i to state j:

ETij =
zii − zji

πi

. (C.29)

C.2.4.4 Calculating the burst cycle time

First passage times are intimately related to a quantity of central importance throughout the
text: the burst cycle time, τb, defined as the average time required for a system to complete
one ON→OFF→ON cycle (Figure 6.1C). This is trivial in the case of a simple two state
system with a single OFF and ON state and rates kon and koff . In this case, the burst cycle
time is simply

τb =
kon + koff
konkoff

. (C.30)

The calculation becomes less trivial for systems with larger numbers of states, however.
Fortunately, the concepts outlined above provide us with the tools necessary to derive a
generic expression for τb that applies to systems of arbitrary complexity.
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The essence of the procedure lies in calculating effective off and on rates (k∗
off and k∗

on)
from Q using first passage times. We go through this procedure in detail for k∗

on and note
that the same approach applies for k∗

off . The activity vector a partitions our system into M
OFF states and N ON states. To calculate k∗

on, the first step is to estimate the expected
amount of time it will take for the system to reach an ON state (any ON state) from each
OFF state. We can do this defining a new transition rate matrix, QOFF, that has dimensions
M + 1 ×M + 1. The off-diagonal elements of the first M rows an M columns of QOFF are
simply equal to the microscopic rates from Q that connect the M OFF states in our gene
circuit.

The final row and column, however, are different and contain total fluxes into and out-of
all ON states from each OFF state. An element in the final row of QOFF is given by

qOFF
m+1,i =

K∑
j=1

ajqji, (C.31)

where aj is the jth element of the activity vector, qij is a microscopic rate from the original
transition rate matrix, and we assume the state i is in the set of OFF states. Thus, we
see that each element of the last row of QOFF gives the total flux from each OFF state to
all ON states in the gene circuit. The elements of the final column have a complementary
definition:

qOFF
i,m+1 =

K∑
j=1

ajqij. (C.32)

With our condensed transition rate matrix thus defined, we can use Equations C.21 and
C.22 to calculate πOFF and Equation C.25 to calculate ZOFF. Then, we can use Equa-
tion C.29 to obtain a vector etON of length M, where each element i is defined as the
expected first passage time from OFF state i back into any of the ON states. Specifically,
we have that each element, i, is given by

eti =
zOFF
m+1,m+1 − zOFF

i,m+1

πm+1

. (C.33)

Thus, we have obtained a vector,etON , of expected mean first passage times out of each
OFF state into the set of N active transcriptional states. But how do we weight the different
passage times in this vector to arrive at an overall average expectation for the amount of
time required for the system to turn back ON following a transition into an OFF state? It’s
tempting here to use the stead-state probabilities of each OFF state given by π, but this is
actually not correct.

Instead, the key is to recognize that each OFF state should be weighted by the rate at
which ON states switch into it. In other words, we weight OFF states by the probability
that they are the initial state the system reaches upon turning OFF; the gateway into the
OFF states. Mathematically, we encode these weights using the flux vector fOFF, which has
M elements, each defined as

fOFF
i =

K∑
j=1

ajqijπj. (C.34)
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Finally, we combine this expression with Equation C.33 to obtain an expression for the
average reactivation time as a flux-weighted average of the first passage times out of each
OFF state:

ETOFF→ON =
1

k∗
on

=

∑M
i=1 fieti∑M
i=1 fi

. (C.35)

As noted above, the calculations for k∗
off follow precisely the same logic, with the roles of the

OFF and ON states switched. After this is done, the total burst cycle time, τb, is simply

τb = ETOFF→ON + ETON→OFF. (C.36)

Equation C.35 is useful because it allows us to relate the (potentially quite complex)
microscopic dynamics of a transcriptional system to emergent bursting timescales observed in
live imaging experiments [166]. To our knowledge, we are the first to take this flux-weighted
first passage time approach to modeling burst dynamics. We hope that the expressions
provided here will prove useful to others seeking to pursue similar projects in the future.

A final useful feature of Equation C.35 is that the absolute size of τb scales inversely with
the microscopic rates in Q, such that we can decrease τb by a factor λ by simply multiplying
Q by λ. We use this trick to renormalize all time-dependent metrics calculated over the
course of our parameter sweeps to have units of burst cycle time. This is done by calculating
τb for each new model realization we generate, and then multiplying its transition rate matrix
by this quantity to generate a normalized rate matrix, namely

Q∗ = τbQ. (C.37)

The adjusted matrix, Q∗, is then used to calculate all relevant gene circuit characteristics.

C.2.4.5 A generic expression for the rate of energy dissipation

Equation 6.1 gives an expression for the rate of energy dissipation (also termed entropy
production), Φ, in the context of the four state model shown in Figure 6.1B. This is a special
case of a more general formula for Φ that applies to arbitrary molecular architectures. From
[169, 175], we have

Φ =
K∑
i=i

K∑
j ̸=i

πiqji ln
(qji
qij

)
. (C.38)

We use Equation C.38 to calculate all energy dissipation rates given throughout the main
text.

C.2.5 The Sequential Probability Ratio Test

Over half a century ago, Wald conceived of the Sequential Probability Ratio Test (SPRT)
as a solution to the problem of making accurate decisions between two hypotheses, H1 and
H0 in “real time” as relevant data is accruing [304]. Shortly thereafter, it was established
that SPRT represents the optimal approach to sequential decision problems involving binary
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decisions [305], meaning that it requires the fewest observations to achieve a desired level of
accuracy. In this framework, a downstream receiver (in our case, downstream genes or other
cellular processes) tracks the accrual of some signal (mRNA, and eventually protein) over
time and compares how likely this accrued signal is under the two hypotheses to be distin-
guished (e.g. high or low activator concentration). In this work, we use the optimal nature of
SPRT to set lower bounds on decision times that could be achieved given the transcriptional
output of model gene loci. The essence of the test lies in tracking the relative likelihoods of
our two hypotheses (C = c1 and C = c0) over time as more and more transcriptional output,
m, accrues:

P0

P1

=
P (c0|m)

P (c1|m)
(C.39)

Figure Figure C.7A shows a stochastic simulation of how this ratio evolves over time for the
output of a single model gene circuit. Although the true concentration in this case is c0, we
see that the two hypotheses are essentially indistinguishable early on. This is because the
range of possible outputs given high and low activator concentrations overlap significantly
early on (leftmost panel of Figure C.7B). However, as more and more time passes, the
expected outputs (m) given the two possible inputs (c1 and c0) start to separate. We see
that the ratio in their likelihoods diverges more and more in favor of c0 (P0/P1 >> 1),
corresponding to a higher and higher degree of certainty that c0 is the correct choice.

This divergence, however, is non-monotonic and noisy, which reflects the stochastic nature
of protein production at a single gene locus. It has been shown that the noisy divergence of
the log of the probability ratio (which we will call L) can modeled as a 1-D diffusive process
with average drift IR [274] given by

IR =
d

dt
⟨L⟩. (C.40)

In this framework, a “decision” is made when L crosses a so-called “decision boundary”
(horizontal dashed lines in Figure C.7A). Siggia et al showed that the Gaussian diffusion
approximation could be used to obtain an analytic expression for the expected time needed
to make a decision. From Equation 15 in the supplement of [274], we have that:

⟨T ⟩ = K

2V sinh V K
D

[
e

V K
D + e−

V K
D − 2

]
, (C.41)

where V is the same as IR from above (and in the main text) D encodes the diffusivity of
decision process (essentially, how large the fluctuations are about its mean drift trajectory),
and K is related to the log of the error tolerance parameter ϵ, such that

K = log
(1− ϵ

ϵ

)
. (C.42)

We note that Equation C.41 assumes equal priors regarding the likelihood of c1 and c0, and
also assumes equal error tolerances for choosing incorrectly in either case [69].
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If we take the accumulated transcriptional output of our gene circuit, m = rt, to be
approximately Gaussian (see Appendix C.2.1), then it can be shown that D has the form:

D =
(m0 −m1)

2(σ6
0 + σ6

1)

4σ4
0σ

4
1

, (C.43)

where mi and σi give the mean and variance in the accumulated transcriptional output,
given that C = ci. From Equation C.13 in Appendix C.2.2, we also have that

V = IR =
(m0 −m1)

2(σ2
0 + σ2

1)

4σ2
0σ

2
1

. (C.44)

In a different context (exponential distributions, rather than Gaussian), Desponds and col-
leagues [69] demonstrated that D ≈ V when the difference between hypothesis—δc/c∗ in our
case—is small. From Equations C.43 and C.44, we see that this also holds for the Gaussian
case: when c1 and c0 are sufficiently close, σ1 and σ0 will be approximately equal, such that:

D ≈ V ≈ (m0 −m1)
2

2σ2
. (C.45)

As demonstrated by [69], when D ≈ V , Equation C.41 simplifies dramatically, yielding

⟨T ⟩ = log
(1− ϵ

ϵ

)1− 2ϵ

IR
, (C.46)

which is Equation 6.3 from the main text. For correctness, we use the full expression
(Equation C.41) to calculate all decision time quantities shown in the main text. However,
since Equation C.46 holds quite well for the 10% concentration difference considered here,
we give the simpler expression in the main text to aid the reader’s intuition.

C.2.6 Implementation of parameter sweep algorithm

In this section, we describe the parameter sweep algorithm employed throughout this work
to enumerate the performance bounds of gene circuit models. We note that this approach
is based off of an algorithm previously employed by Eck & Liu et al [77] to explore the
behavior of non-equilibrium models of transcription. Figure C.8A illustrates the key steps
in this numerical procedure. First, an initial set of gene circuit realizations (typically com-
prised of 1,000 variants) is generated by sampling random values for each transition rate in
the system. We then calculate the performance metrics of interest (S and P for the exam-
ple in Figure C.8A) for each gene circuit realization. This defines an initial set of points
(Figure C.8A, Panel i) that collectively span some region in 2D parameter space with area
a1.

Next (Panel ii), we subdivide parameter space into N different bins along the X and Y
axes, with N dictated by the total number of points (10 ≤ N ≤ 50). We then calculate the
maximum and minimum point in each X and Y slice (Panel iii). We then randomly select
candidate gene circuit models from these boundary points and apply small perturbations to
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Figure C.7: The Sequential Probability Ratio Test. (A) Panels show stochastic tra-
jectory of the relative probabilities of c0 and c1 over time, given the observed output of some
gene circuit. (B) Panels illustrating expected distributions of outputs for each concentration
at different time points. Note how the distributions narrow and separate as time progresses.

each transition rate to generate a new set of random variants (iv). In general, these variants
will lie close to original model in 2D parameter space and, thus, close to the current outer
boundary of parameter space. The key to the algorithm’s success is that some of these
variants ill lie beyond the current boundary (blue points in Figure C.8A, Panel iv). This
has the effect of extending the boundary outward, leading to an increase in the surface area
spanned by our sample points (panel iv). As a result, cycling through steps ii-iv amounts
to a stochastic edge-finding algorithm that will iteratively expand the boundary spanned by
sample points outward in 2D parameter space until some analytic boundary is reached.

The panels in Figure C.8B show snapshots of the sweep algorithm’s progress exploring
sharpness vs. precision parameter space for non-equilibrium realizations of the four state
gene circuit (Figure 6.1B). Figure C.8C shows the total area spanned by the sample points for
this run as a function of sweep iteration. By eye it appears that most of salient parameter
space has been explored by step 10 of the algorithm, but we are quite strict with our
convergence criteria. We will only terminating a sweep at step t if (at − at−2)/at−2 ≤ 0.001
and (at−1 − at−3)/at−3 ≤ 0.001. In this case, this convergence criterion is met following step
25, leading to the final set of sample points shown in Figure C.8D. In general, we run all
sweeps until the above criterion is met or some pre-specified maximum number of iterations
(usually 50) is reached.
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Figure C.8: A simple edge-finding algorithm for numerical parameter sweeps. (A)
Schematic illustrating key steps in our parameter sweep approach (see text for details).
This panel has been adapted with permission from [77]. (B) Sequence of snapshots showing
progress of sweep algorithm across a single run for the case of normalized sharpness (S) versus
normalized precision (P). Circle color indicates the sweep step on which it was generated.
(C) Plot showing 2D surface area spanned by sample points over time. (E) Plot showing
final set of sample points obtained by the sweep algorithm.

C.2.6.1 Numeric vs. symbolic metric calculations

The algorithm outline in Figure C.8A depends requires the ability to rapidly calculate perfor-
mance metric quantities (e.g. S and IR) given a set of transition rate magnitudes. Wherever
possible, we use symbolic expressions to perform these calculations; however, this is only
feasible for the simple four and six state systems depicted in Figure 6.1B and Figure 6.4B.
For more complex models, it is infeasible to perform the symbolic operations required to ob-
tain closed-form symbolic expressions. As a results, we use numerical calculations to arrive
at performance metrics for all higher-order models.
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C.2.7 Testing the convergence characteristics of the parameter
sweep algorithm

Here, we discuss results from a series of tests designed to assess the convergence of our sweep
algorithm for key scenarios examined in the main text. This task is the most straight-forward
when the algorithm is employed for “two-boundary” sweeps, such as S vs. P (Figure 6.3A)
and S0 vs f (Figure 6.5B), where both parameters examined adhere to finite performance
bounds and, thus, where the 2D region of accessible parameter space has a finite area. In
this case, our general approach will be to assess whether independent runs of the algorithm
(i) converge prior to the 50 run limit and (ii) reach a consistent final estimate for the
area 2D space that is attainable for different model architectures. The task becomes more
complicated for “one-boundary” sweeps, such as IR vs. Φ (Figure 6.2A, C, and D) and
IR vs. w/c, where only a single parameter (IR in each case) has a finite upper bound and
the other (Φ and w/c) is limited only be bounds imposed externally as a part of sweep
specification. We will begin by assessing convergence for the simpler two-sided case, and
will turn thereafter to examining one-sided cases.

C.2.7.1 Sharpness vs. Precision sweeps

Figure 6.3A and Figure C.15A and B show results for parameter sweeps examining trade-
offs between normalized sharpness (S) and normalized precision (P) for systems with 1-5
binding sites and 2-5 locus conformations. We note that Figure 6.3C and Figure C.15C
also derive from these parameter sweep results. Across the board, we find that nearly all
independent runs of the sweep algorithm converge according to the definition laid out above
(Figure C.9A and B). Moreover, for simpler architectures, we find that all independent sweep
runs converge to essentially the same total area. For instance, Figure C.9B shows normalized
area as a function of sweep step for 500 non-equilibrium realizations of the baseline four state
model, indicating that all runs terminate near the global maximum found across all runs
(dashed line). We take this as strong evidence that the algorithm is consistently exploring
the full extend of 2D parameter space.

As might be expected, the task of exhaustively exploring parameter space becomes more
difficult as models become more complex. Note the larger spread in outcomes for the non-
equilibrium five binding site (NB = 5) and 5 locus conformation (NLC = 5) models in
FigureFigure C.9C and D, respectively. Nonetheless, we find that a significant number of
sweeps converge to a consistent maximum area, even for the most complex models considered.
Figure C.9E and F give the total fraction of sweeps having a final area within 95% of the
global maximum as a function of binding site number and locus conformation number,
respectively. First, we see that 100% sweeps for equilibrium models uniformly meet this
standard for all model architectures considered (squares in Figure C.9E and F). Second, our
analysis indicates that, even for the extrema (NB = 5 and NLC = 5), 13% and 36% of total
runs , respectively (67 and 179 sweeps), still achieve final areas comparable to the global
maximum, suggesting that the algorithm still does an adequate job of exploring parameter
space in these cases.
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Figure C.9: Convergence results for S vs. P parameter sweeps. (A-B) Plots show-
ing fraction of parameter sweep ones that met convergence criteria for multi-binding site
and multi-locus conformation models, respectively. Squares indicate results for equilibrium
models and circles indicate non-equilibrium models. (C-D) Plots of area vs. sweep step for
different model architectures. Note that the area corresponding to the first (iteration=1)
not recorded by the algorithm, and so has been estimated in each case via linear interpo-
lation. Staggered starts apparent for NB = 5 and NLC = 5 models indicate cases where
model initialization were aborted one or more times due to an insufficient number of gene
circuits meeting quality control criteria. (E-F) Fraction of parameter sweeps having a final
area within 95% of the global maximum for multi-binding site and multi-locus conformation
models, respectively. (All results were calculated using 500 independent runs of the sweep
algorithm for each model architecture.)
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C.2.7.2 Information vs. energy sweeps

Next, we turn to the one-sided sweeps. First, let’s consider the IR vs. Φ sweep results shown
in Figure 6.2A, C, and D. Because Φ has not natural barrier in parameter space, the con-
vergence metrics considered above do not provide reliable indicators of model convergence.
Instead, we make use of the fact that the IR vs. Φ and the S vs. P parameter sweeps should
function (either directly or indirectly) to uncover the maximum achievable non-equilibrium
information rate for each model architecture. Thus, as a basic test of sweep performance, we
checked for the consistency between IR estimates derived from these different sweep modal-
ities. As illustrated in Figure C.10A, we find excellent agreement between the maximum IR
values derived from the S vs. P (x axis) and IR vs. Φ (y axis) parameter sweeps for all
model architectures considered. This provides one indication the IR vs. Φ sweeps are fully
exploring the relevant parameter space.

As a second check, we compared the IR vs. Φ bounds derived for two separate rounds
of parameter sweeps (“round a” and “round b”) comprised of 200 and 500 independent
parameter sweeps, respectively. We reasoned that, if our algorithm is accurately recovering
the true IR vs. Φ bound for each model architecture, this bound (i) should be replicable
across different parameter sweep rounds and (ii) should be insensitive to the precise number
of sweep runs per round. For each model architecture, w e calculated the maximum IR value
returned by sweep rounds a and b for 30 different rates of energy dissipation ranging from
0.1kBT (close to equilibrium) to 5000kBT (upper limit of x axis in Figure 6.2D). Figure C.10B
and C show the results of this exercise for multi-binding site and multi-locus conformation
models, respectively, indicating excellent agreement between different sweep round for all
model architectures. This indicates that our information vs. energy bounds are highly
replicable across different rounds of sweeps. The consistency across round comprised of
significantly different numbers of runs provides further evidence that we are conducting a
sufficient number of independent sweeps (≥ 200) per run. Taken together, these results
and the results from the preceding paragraph provide strong evidence that our algorithm is
robustly recovering accurate IR vs. Φ bounds for all models considered.

C.2.7.3 Information vs. w/c sweeps

Finally, we turn to the parameter sweep results for information (and, correspondingly, de-
cision time) as a function of wrong-to-right activator concentration (w/c) shown in Fig-
ure 6.4C-E. We note that the results shown in Figure 6.5A and C are also derived from
these sweeps. Like Φ, w/c has no intrinsic boundary in parameter space and, thus, swept
area provides a poor indication of convergence. Fortunately, in addition to treating w/c as a
sweep parameter, we can also conduct 2D parameter sweeps where w/c is set at a constant
value (e.g. w/c = 1000 in Figure C.3B). These sweeps do converge, with an average of 87%
of runs reaching 95% of the global maximum. Thus we cross-validate the IR vs. w/c bounds
returned by the sweeps from Figure 6.4 by conducting separate sweeps of IR vs. r (the
transcription rate) at different w/c values (illustrated in Figure C.11A).

Figure C.11B and C show the results of this comparison for three different values of w/c:
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Figure C.10: Convergence results for IR vs. Φ parameter sweeps. (A) Scatter plot
comparing maximum information rate estimated from S vs. P and from IR vs. Φ sweeps.
(B-C) Scatter plots comparing results for the upper IR bound at different points along
the curves shown in Figure 6.2C and D from two independent rounds of parameter sweeps
comprising 200 and 500 separate runs, respectively. Points reflect IR maxima for Φ values
ranging from 0.1kBT to 5000kBT.

10, 102, and 103. We focus on the architectures depicted in Figure 6.4, namely equilibrium
systems with 1 to five binding sites and non-equilibrium systems with 2-5 locus conforma-
tions. In most cases, we find good agreement between the two methods, suggesting that the
IR vs. w/c sweeps are generally returning accurate estimates for the IR vs. w/c bound. We
do note, however, that IR vs. w/c sweeps appear to underestimate the upper IR bound to a
significant degree for the non-equilibrium model with 5 locus conformations when w/c = 10
(circle in upper right-hand corner of Figure C.11C). This indicates that the IR vs. w/c
sweep is performing sub-optimally in this case. However, since this deviation occurs in the
extreme low interference regime and our focus in Section 6.3.5 lies on model performance
at higher w/c levels (w/c ≳ 100), where our sweep algorithm performs reliably, it does not
impact any conclusions drawn throughout the course of the main text. Thus, we conclude
that the IR vs. w/c sweeps provide a viable basis for the investigations undertaken in this
study.

C.2.8 Estimating decision time ranges for different biological
systems

Caenorhabditis elegans decision time estimation

A recent study by Lee and colleagues [178] used live imaging to examine Notch-dependent
burst dynamics in the sygl-1 gene in the germ line of young adult nematodes. Their results
indicate that the gene exhibits burst cycle times ranging from 60.5 minutes up to 105.3
minutes (see Figure 2 E and F in [178]). Meanwhile, a review article indicated potential
values for the cell cycle time for adult germ-line cells in C. elegans as ranging from 16 to
24 hours [138]. A separate study examining nonsense-mediated mRNA decay in C. elegans
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Figure C.11: Convergence results for IR vs. w/c parameter sweeps. (A) Illustrative
scatter plot showing IR vs. r sweep results for the three binding site model at equilibrium for
three different values of w/c. Scatter plot comparing maximum information rate estimated
from S vs. P and from IR vs. Φ sweeps. (B-C) Scatter plots comparing results for the upper
IR bound at three different w/c levels (10, 102, and 103) derived from IR vs. r sweeps (x
axis) and IR vs. w/c sweeps (y axis) for equilibrium multi-binding site and non-equilibrium
multi-locus conformation models, respectively.

reported a half life of approximately 6 hours for the rpl-7A gene (Figure 4k in [282]). If we
take the cell cycle time as the upper time limit for cellular decision-making, this leads to an
estimate of 1440/60.5 = 23.8 burst cycles.

Mus musculus decision time estimation

Burst cycle time estimates were taken from Table A.1 in Appendix A of [166], which indicates
times ranging from 30 minutes to a “few hours”. mRNA half life estimates were taken from
Table 1 of [235], which indicates a range of 30 minutes to 30 hours for mouse cells. To
estimate the effective decision time corresponding to an mRNA half-life of 30 hours (1,800
minutes), we recognize that, once mRNA levels have reached a steady state, they will reflect
(in effect) an weighted average of preceding transcriptional activity, where weights moving
backward in time contribute

w(t) = e
− t

τmRNA , (C.47)

where t indicates temporal distance from the present and τmRNA is the exponential time
constant, given by τmRNA = t 1

2
/ ln(2). Integrating Equation C.47, we find that τmRNA time

steps are effective present in steady-state mRNA levels. Taking 30 minutes as the lower
bound for bursting timescales, this yields an upper bound of ((1800/ log 2)/30 = 86.6 burst
cycles. We note that this estimate is not materially different from the 60 cycle estimate that
would be obtained by simply dividing 1,800 by 30.
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Drosophila melanogaster decision time estimation

We take the duration of nuclear cycle 14, which follows the thirteenth (and final) round of
synchronous cellular divisions in early Drosophila melanogaster development, as the relevant
timescale for cellular decisions in early fruit fly development. Studies have found that the
duration of this developmental period varies along the embryo, with a minimum duration
of 65 minutes [90]. To estimate bursting timescales, we use burst inference results from our
previous work [168], which indicate a burst cycle time of approximately 2 minutes for the
even-skipped gene. Thus, we arrive at an upper limit of 65/2 = 32.5 cycles.

C.2.9 Higher-order molecular models

Here we provide an overview of key modeling assumptions underlying our approach to mod-
eling gene circuits with multiple activator binding sites or multiple locus conformations. For
simplicity, we assume that all activator bindings sites are identical. The case of multiple
locus conformations is slightly more subtle. Setting NLC > 2 is intended to reflect the reality
that multiple distinct molecular reactions—e.g. mediator engagement, PIC assembly, and
nucleosome displacement—are necessary preconditions for the onset of transcription. While,
in reality, these reactions are likely characterized by hetrogeneous dynamics (see, e.g., [166])
we once again make the simplifying assumption that all steps connecting different locus
conformations—referred to as “molecular steps” or “activation steps” are identical.

As a result, from the perspective of model behavior, it does not matter which binding
sites are bound or which molecular steps have been traversed, it matters only how many
activators are bound or, similarly, how many activation steps have been traversed. Math-
ematically, these assumptions mean that the reaction rates (ki) and interaction terms (ηij)
for all additional binding sites and locus conformations are identical with those shown in
Figure 6.1B, but that the presence of multiple bound activators of multiple engaged general
factors is felt via extra factors of ηij. For instance, if the basal activation rate is ka, then the
activation rate n activators bound will be kaη

n
ab. Similarly, if the basal activator unbinding

rate is k−, then the unbinding rate in the mth conformation is given by k−η
m−1
ua .

In all cases, we retain the same basic MWC-like architecture outlined above: no number
of bound activators is alone sufficient for mRNA production, but each contributes an extra
factor of ηab and ηib to impact locus activation dynamics (Figure 6.1B and C). In models that
feature NLC locus conformations (where 2 ≤ NLC ≤ 5), it is assumed that only the NLCth
conformation is transcriptionally active, in keeping with the nature of processes like medi-
ator engagement, PIC assembly, and nucleosome displacement; all of which are necessary
preconditions for the onset of transcription. This leads to models with multiple molecular
steps along the path toward transcriptional activation, with the kinetics of each conditioned
by the number of activators bound (as stipulated above) and, likewise, capable of impacting
activator binding dynamics via the parameters ηba and ηua.

Finally, to fully describe these higher-order models we require three additional param-
eters: one that captures cooperative interactions between bound activators (ηm), one for
cooperative interactions between general factors that are engaged with the locus (ηi), and
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one that captures the capacity for one engaged general factor to impact the recruitment of
another to the gene locus (ηa).

C.2.10 Deriving normalized sharpness and precision metrics

In Figure 6.1A, the transcriptional sharpness, s, is defined as the first derivative of the
transcriptional input-output function multiplied by the activator concentration, c∗, such
that

s =
dr

dc
c∗. (C.48)

The transcriptional precision, p, is defined as the inverse of the intrinsic noise in the tran-
scriptional input-output function:

p =
1

σ
, (C.49)

where σ is as defined in Equation C.24 in the main text. Under these definitions, a key
challenge in comparing sharpness and precision levels across different gene circuits is that
the upper bounds on both s and p depend not only on the microscopic transition rates within
a system, but also on the fraction of time the system spends in the transcriptionally active
state, a (defined in Equation C.23). Figure C.12A and B illustrate this a-dependence for
equilibrium and non-equilibrium realizations of the four state system defined in Figure 6.1A.
As an example: the equilibrium bound on s is 0.25 when a = 0.5, but only 0.09 when a = 0.1
(Figure C.12A). Since we allow gene circuits to take on different transcription rates (r = a r0
) at C = c∗, this a-dependence thus confounds our efforts to understand how the molecular
architecture of gene circuits—the number of binding sites, number of molecular steps, and
presence or absence of energy dissipation—dictates transcriptional performance.

To overcome this issue, we need to normalize s and p such that they are independent of
a. Focusing first on sharpness, we were inspired by previous works [82, 113] to leverage Hill
Function as a flexible conceptual tool for extracting generic sharpness measures. The Hill
function is defined as:

a =
cS

cS +KS
d

, (C.50)

where c is the activator concentration, S is the Hill coefficient, and Kd is a constant that
dictates the location of the function’s half-max point. In general, the input-output functions
generated by our model gene circuits will have more complex functional forms, but nonethe-
less, Equation C.50 indicates that we can relate these more complex functions to the Hill
function via the shared parameters a and c.

The sharpness of the Hill function has the form:

sH = S
cSKS

d

(cS +KS
d )

2
. (C.51)

To better relate this to our input-output function, we need to re-express Kd in terms of C
and a. Solving Equation C.50 for Kd yields

Kd = c
(1− a

a

) 1
S
. (C.52)
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Plugging this in to Equation C.51 we obtain, after simplification:

s = a(1− a)S. (C.53)

This expression tells us that the sharpness (s) of a Hill function with activity level a at
C = c∗ is equal to the Hill coefficient, S, multiplied by the term a(1 − a). By rearranging,
we can obtain the Hill coefficient as a function of s and a

S =
s

a(1− a)
. (C.54)

Thus, for a generic gene circuit input-output function with sharpness s and expression level
a at C = c∗ we can invoke Equation C.54 to calculate the Hill coefficient for the equivalently
sharp Hill function (Figure C.12C). This provides us with a generic measure of transcriptional
sharpness that is independent of a and thus can facilitate comparisons across gene circuits
that drive differing activity levels at C = c∗ (Figure C.12D). We refer to this independent
sharpness metric as the “normalized sharpness” in the main text, and denote it with the
variable S.

This leads us to the question of transcriptional precision. The two key considerations
in defining the normalized precision metric, P, is that (a) we want it to yield a quantity
proportional to the information rate (IR) when multiplied with S and (b) we want it to
adhere to constant bounds across the induction curve. There is only one definition that
satisfies the first constraint:

P = p
(
a(1− a)

)
=

a(1− a)

σ
. (C.55)

Happily, Equation C.55 exhibits consistent upper bounds for all a values, and thus satisfies
our second constraint (Figure C.12E).

C.2.11 Optimal equilibrium four state gene circuits behave like
effective two state systems

In this section, we calculate the normalized sharpness (S) and precision (P) for a simple 2
state gene circuit (Figure C.13A) with one ON state and one OFF state and two transition
rates, koff and kon. We assume that activator binding dictates fluctuations into and out of
the ON state, such that kon is proportional to c (kon = ck0

on). For this simple system, the
rate of transcription is given by

r = r0
ck0

on

ck0
on + koff

= r0a. (C.56)

Differentiating this expression with respect to c and setting r0 = 1 (as in main text), we find
that

s =
ck0

onkoff
(ck0

on + koff)2
. (C.57)
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Figure C.12: Defining normalized sharpness and precision. (A) Plot depicting the
upper sharpness limit for equilibrium (blue) and non-equilibrium (red) realizations of the
four state system depicted in Figure 6.1B. The upper limit depends on the fraction of time
spent in the active state, a. (B) Plot of precision as a function of the transcription rate. Here
again, the upper bounds depend on a. (C) Plot of normalized sharpness as a function of the
transcription rate. In the case, the upper limits are invariant. (D) Illustration of normalized
sharpness concept. For a given input-output curve, we identify normalized sharpness, S, as
the Hill coefficient of an equivalently sharp Hill function with the same expression level at
C = c∗. (E) On the other hand, the normalized precision, P, exhibits invariant performance
bounds.

Finally, dividing through by b = a(1 − a) yields the normalized sharpness, which is simply
given by

S = 1. (C.58)

Thus, we see that the two state model is constrained to a normalized sharpness level that
represents the upper performance limit for the four state model operating at equilibrium
(blue circles in Figure 6.3A).

Next, we turn to precision. From Equation C.24, we find that

σ2 =
2ck0

onkoff
(ck0

on + koff)3
. (C.59)
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Inverting and multiplying by b2 gives

P 2 =
ck0

on + koff
2(ck0

on + koff)
. (C.60)

Finally, multiplying through by τb (Equation C.30) and taking the square root gives

P =
1√
2
, (C.61)

which, again, is equivalent to the upper limit of the four state gene circuit at equilibrium
(Figure 6.3A).

Figure C.13: A simple 2 state model of transcription. (A) Cartoon of a simple 2 state
gene circuit model in which activator binding and unbinding dictate transitions into and out
of a transcriptionally active state.

C.2.12 Sharp and precise non-equilibrium networks exhibit
distinct and incompatible microscopic topologies

One simple way to probe the microscopic architectures of different gene circuits is to measure
the degree of heterogeneity (or dispersion) in (a) transition rates and (b) state probabilities.
We developed entropy-based dispersion metrics ranging from 0 to 1 to quantify how uniform
(0) or heterogeneous (1) transition rates and state probabilities were for different realizations
of the four state network shown in Figure 6.1A. While crude, these measures can provide
useful microscopic insights. For instance, in gene circuits with a state probability score of 0
each microscopic state must be equiprobable (p1 = p2 = p3 = p4 = 1/4), while those with
a 1 are maximally heterogeneous, with all probability concentrated in just two of the four
states. Identical considerations hold for the transition rate axis. We conducted parameter
sweeps to explore the space of achievable dispersion values for 10,000 non-equilibrium gene
circuits (gray circles in Figure C.14A). For simplicity, we focused on gene circuits at half-max
expression (a = 0.5).

From Figure C.14A, we can see immediately that precise and sharp gene circuits occupy
opposite extremes of dispersion space. Specifically, precise systems exhibit highly uniform
state probability and transition rate values, while sharp networks are highly heterogeneous,
both with respect to the fraction of time spent in each state and the relative magnitudes of
their transition rates. These stark differences, as well as the tight clustering of each motif,
suggest that sharpness and precision arise from distinct and non-overlapping microscopic
topologies.
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Detailed examination of maximally precise gene circuits from our parameter sweeps indi-
cated that these systems exhibit highly uniform molecular architectures wherein each micro-
scopic state is equiprobable, all clockwise transition rates are uniform, and all counterclock-
wise rates are negligible. This results in a “clock-like” system that maximizes the regularity
of molecular transitions. Maximally sharp gene circuits, on the other hand, exhibit an all-or-
none character, behaving as effective two state systems that spend most of their time either
activator-bound and active (0), or unbound and inactive (1), and which have effective ON
and OFF rates that are concentration-dependent (see Appendix C.2.13 for further details).

C.2.13 A hierarchy of microscopic transition rates underpins
non-equilibrium sharpness gain

Figure 6.3A shows that energy dissipation opens up a broad spectrum of S and P values that
are not attainable at equilibrium. It is difficult to formulate general statements that apply to
all gene circuit models inhabiting these spaces beyond the upper equilibrium limit; however,
we can learn much by examining the architecture of gene circuits lying at the outer limits
of non-equilibrium performance, since these systems tend to distil the logic underpinning of
non-equilibrium performance gains into relatively simple regulatory motifs.

Such is the case for the IR-optimized non-equilibrium four state systems depicted as
black circles in Figure 6.3A. In Section 6.3.4, we found that the driver of this IR is a
twofold increase in sharpness relative to the upper equilibrium limit. To realize this twofold
sharpness gain, we find that non-equilibrium driving is harnessed to facilitate effective one-
way transitions between the active and inactive conformations—specifically, from states 1
to 2 and 3 to 0 in Figure 6.1B—ensuring that the system will have a strong tendency to
complete transcriptional cycles in the clockwise direction (J > 0).

In addition to this non-equilibrium driving, sharpness maximization places strict con-
straints on the relative magnitudes of microscopic transition rates within the network. To
understand these constraints, it is instructive to consider a coarse-grained representation of
our network with a single ON state (2), a single OFF state (0). We can obtain expressions
for the two effective transition rates in the network by recognizing that they are equal to
the inverse of the mean first passage times between states 2 and 0, which we can calculate
using Equation C.29 from Appendix C.2.4.

If we neglect the energetically disfavored transitions from 2 to 1, the effective ON rate
(k∗

on in Figure 6.3D) takes on a relatively simple form

k∗
on =

[c]ki
+kaηab

[c]ki
+ + ηabka + k−

. (C.62)

From Equation C.62, we see that the effective ON rate becomes proportional to the concen-
tration, c, when the factor of [c]k+ becomes negligible in the denominator. The limit where
k− ≫ [c]k+, ηabka represents a scenario in which the activator Kd is large when the network
is in the inactive conformation such that the activator must bind multiple times (on average)
before it succeeds in driving the system into the active conformation. The other limit, when
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ηabka ≫ [c]k+, k−, corresponds to a system where locus activation happens rapidly upon
activator binding.

In similar fashion, the effective OFF rate can be expressed as the inverse of the first
passage time from 3 to 1

k∗
off =

ηuak−ki
ηba[c]k+ + ki + ηuak−

. (C.63)

Interestingly, we see that koff becomes inversely proportional to c when activator binding
rate exceeds both the unbinding rate and the rate of locus deactivation (ηba[c]k+ ≫ ka

−, k
−
off).

This imbalance causes the system to become kinetically trapped in the active conformation
for multiple cycles of activator unbinding and rebinding, with an average duration inversely
proportional to ηba[c]k+.

Thus, when the proper hierarchy of microscopic rates is realized, our four state net-
work behaves as though it were a two state system in which both the on and off rates are
concentration dependent, such that

r ≈ [c]k∗
on

[c]k∗
on +

1
[c]
k∗
off

. (C.64)

Repeating the calculations from Appendix C.2.11 for the above effective two state system
will yield an S value of 2 and a P value of 1, in agreement with our numerical results from
Figure 6.3A. We propose that this doubled concentration dependence can be conceptualized
as a kind of “on rate-mediated” proofreading. In contrast to classical kinetic proofreading,
which works by amplifying intrinsic differences in ligand off rates [136, 226], sharp networks
amplify the concentration-dependence carried by binding rates, effectively “checking” C
twice per cycle.

C.2.14 Non-equilibrium gains in sharpness drive IR increases in
more complex regulatory architectures

This appendix section contains additional discussion relating to sharpness-precision tradeoffs
for higher-order model architectures with multiple binding sites or multiple locus conforma-
tions.

Sharpness maximization remains optimal for systems with multiple binding
sites

To assess whether sharpness-maximization remain the optimal strategy for more complex
architectures featuring multiple activator binding sites, we employed parameters sweeps to
examine the space of achievable S and P values for gene circuits with 1-5 activator binding
sites (and NB fixed at 1). Figure C.15A shows the results of this analysis. For ease of
comparison across different models, we plot the relative gains in S and P for each model
with respect to their maximum equilibrium values. For instance, the maximum equilibrium
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Figure C.14: Sharp and precise non-equilibrium networks exhibit distinct and
incompatible microscopic topologies. (A) Plot showing dispersion scores for state
probabilities and transition rates for 10,000 non-equilibrium networks. Here, a score of 0
indicates maximal uniformity (all rates or probabilities are equal) and a 1 indicates maximal
heterogeneity. Green and pink circles indicate the scores for the 100 sharpest and most
precise gene circuits, respectively.

S value for the NB = 2 model is 2, so a non-equilibrium gene circuit model with two binding
sites that exhibits an S value of 2.5 will be calculated to have a sharpness gain of 2.5/2 = 1.25.

Figure C.15A reveals that the sharpness-precision tradeoff observed for the one-binding
site model persists and, indeed, becomes more severe for systems with additional activator
binding sites. We see that the non-equilibrium gain in S is fixed at approximately 2. And
while the non-equilibrium gain in P increases from

√
2 for NB = 1 to approximately 2.25

for NB = 5, these P maxima (peaks in the upper left quadrant of Figure C.15A) occur at
lower and lower values of S, which renders them more and more disadvantageous from an IR
perspective. As a result, when we plot IR-optimal gene circuits for each value of NB (colored
circles in Figure C.15A), we find that they are invariably located in regions where S/Seq ≈ 2
and P/Peq ≈ 1. These results demonstrate that spending energy to maximize sharpness
remains the key to maximizing transcriptional information transmission, irrespective of the
number of activator binding sites.

Multiple locus conformations increases upper sharpness bound away from
equilibrium

Figure C.15B shows the range of achievable non-equilibrium gains in S and P for systems with
2-5 locus conformations (and NB = 1). Once again we observe a strong tradeoff between
sharpness and precision, which suggests that this incompatibility is a general feature of
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transcriptional systems. And, once again, we find that IR-maximizing gene circuits (colored
circles) lie at or near the right-most edge of achievable parameter space, indicating that
dissipating energy to enhance transcriptional sharpness (rather than precision) remains the
best strategy for maximizing the information rate.

Yet unlike the systems examined in Figure C.15A, Figure C.15B reveals that the non-
equilibrium gain in transcriptional sharpness (S) is not fixed but, rather, increases with the
number of molecular steps from a factor of two when NLC = 1 to a factor of five when
NLC = 4. This indicates that increasing the number of dissipative molecular steps in the
activation pathway raises the upper limit on the sharpness of the transcriptional input-output
function, even when the number of binding sites is held constant.

Figure C.15: Tradeoffs between sharpness and precision persist for more complex
gene regulatory architectures. (A) Non-equilibrium gains in sharpness and precision
for gene circuits with different numbers of activator binding sites (NB) and two locus con-
formations. Shaded regions indicate achievable regimes for each system, as determined by
no fewer 10,000 unique simulated gene circuits. (B) Non-equilibrium gains in sharpness and
precision for gene circuits with different numbers of locus conformations (NLC) and one ac-
tivator binding site. (C) Scatter plots indicate sharpness levels for equilibrium gene circuits
as a function of the number of binding sites. Bounding line is for a function of the form
S = NB.

C.2.15 Specificity definitions and details

This Appendix Section uses a simple two state gene circuit model to compare and contrast
the specificity definition employed in this work, which focuses on cognate and non-cognate
factors competing to activate a single locus, and the definition employed in two recent works
[272, 113], which instead compare how a single factor activates two gene loci: a target locus
with specific binding sites, and a non-cognate locus that lacks binding sites.
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A detailed comparison of specificity definitions for a simple 2 state model of
transcription

Figure C.16A illustrates this scenario for the case of a simple two state network with a
single binding site and no possibility of a conformation change at the locus; however the
same idea applies equally well for the 4 state network we considered above, as well as more
complicated architectures. Here transcriptional specificity is then defined as the ratio of the
average steady state transcription rates at on- and off-target gene loci:

fp =
rr
rw

, (C.65)

where fp is the specificity under the parallel framing of the problem, and rr and rw indi-
cate the transcription rates at the cognate (right) and non-cognate (wrong) loci, respectively.
In [272], the authors show that specificity for the two state system shown in Figure C.16A
is given by:

fp =
αk− + [c]kon
k+ + [c]kon

. (C.66)

From Equation C.66, we see that the activator specificity is bounded from above by α.
Moreover, this upper performance limit is achieved only in an off rate-dominated regime
where k− >> [c]k+ , which the authors in [272] note leads to a runaway increase in tran-
scriptional noise with increasing specificity under the constraint that the mean transcription
rate must remain constant. As a result, the authors conclude that non-equilibrium network
architectures are necessary in order to improve specificity and minimize transcriptional noise
[272].

In analogy to the parallel case outlined above, we employ a “gene-centric” definition
(Figure C.16B), which takes specificity as the ratio of the average number of cognate and non-
cognate factors bound while the locus is in a transcriptionally productive state, normalized
by concentration:

f =
w

c

nc

nw

. (C.67)

In the case of the two state model shown in Figure C.16B, this is simply given by the ratio
of fractional occupancies of states 1 and 1∗:

f =
w

c

π2

π2∗
, (C.68)

which simplifies to
f = α. (C.69)

From Equation C.69, we see that f is simply equal to the binding specificity factor α for our
three state network, irrespective of binding kinetics. Thus, in contrast to [272], we find that
equilibrium gene circuits need not shift towards a noisy, off rate-dominated regime to achieve
maximum fidelity; indeed all systems necessarily achieve precisely f = α. Intuitively, this
difference stems from the fact that our model captures the effects of kinetic competition



APPENDIX C. SI FOR COMPETING CONSTRAINTS SHAPE THE LIMITS OF
GENE REGULATION OUT OF THERMODYNAMIC EQUILIBRIUM 284

between cognate and non-cognate activators: whenever the cognate activator (green square
in Figure C.16B) is bound, non-cognate factors cannot bind.

A key limitation of this approach is that it neglects the presence of non-specific stretches
of regulatory DNA, even at cognate gene enhancers. Thus, to more accurately reflect the
specificity challenges faced by real gene loci, a synthesis of the two approaches summarized
above will be necessary, which considers competition between cognate and non-cognate fac-
tors to bind and activate a gene locus that features both specific binding sites (which favor
the cognate activator) and neutral sites (to which all activator species bind non-specifically).
One expectation for such a scenario is that the simple equality stated in Equation C.69 will
no longer hold, and tradeoffs similar to those observed in [272] will again emerge; although,
this time, the severity of these tradeoffs will depend on w/c.

Figure C.16: Accounting for the influence of off-target activation. (A) An illus-
tration of the parallel definition of activation fidelity. This approach considers the relative
amounts of transcription driven by a transcriptional activator at its target locus and at an
off target locus. (B) Cartoon illustrating “gene-centric” specificity definition, which consid-
ers competition between cognate and non-cognate factors to bind and activate a single gene
locus.

C.2.16 Deriving non-equilibrium tradeoff bound between
intrinsic sharpness and specificity

In this section, we lay out the key steps in deriving the non-equilibrium tradeoff bound
between sharpness and specificity given in Equation 6.7 in the main text. To do so, we
make use of insights gained in Appendix C.2.13, where we use first passage times to examine
the key microscopic conditions for the twofold gain in sharpness away from equilibrium
observed in Figure 6.3A. Even for the simple six state system illustrated in Figure 6.4B,
our system has eight degrees of freedom when operating away from equilibrium. As such,
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a key part of our approach will be to first reduce this complexity as much as possible
while preserving the salient behaviors, namely the possibility for non-equilibrium gains in
sharpness and specificity. After this, we identify a tuning parameter, β, that can be used
to interpolate between maximally sharp to maximally specific non-equilibrium gene circuit
architectures. Since the expressions for non-equilibrium gene circuits are, in general, quite
complex, we sketch the key steps here and direct the reader to the Mathematica notebook
entitled “sharpness specificity bound derivation.nb” on the project git repository (https:
//github.com/nlammers371/noneq-gene-regulation.git) for additional details. Note
that we work in units of c throughout, such that c = 1.

To begin, we strip unnecessary dimensions from our system. We set ηibki and ka to the
same generic rate, k1. Next, we set ηabka, ηuak−, and k+ to a second rate parameter, k2.
Finally, we set ki equal to βηbsk+, where β is our interpolation parameter. This leaves us
with a system with five free parameters, rather than eight.

In Appendix C.2.13, we saw that maximally sharp non-equilibrium gene circuits (i) only
switch into the active transcriptional conformation when the activator is bound and (ii)
only switch out of the ON states when the activator is unbound. This amounts to effective
one-way transitions from states 1 → 2 (equivalently, 5 → 6) and 3 → 1. We impose this
condition by taking the limit where k1 → 0 . Next, we impose the condition uncovered by
examination of Equation C.62,

k− ≫ [c]k+, ηabka, (C.70)

by taking the limit where k− approaches infinity.
These limits lead to a further simplified system that can be used to investigate funda-

mental tradeoffs between intrinsic sharpness and specificity. For this stripped-down system,
we find that the expression for specificity, f , is quite simple:

f =
α(α + αβ + w)

α + β + w
, (C.71)

where we see that all dependence on microscopic transition rates has dropped out, with the
exception of our interpolation parameter, β. Furthermore, tuning β causes Equation C.71
to shift from equilibrium levels (f = α when β = 0) to the non-equilibrium limits revealed
by Figure 6.5B (f = α2 when β ≫ α,w).

The normalized sharpness, S, has a slightly more complicated functional form, given by

S =
α
[
α(k2 + (2 + β)ηbak+) + 2ηbak+w

]
α2(k2 + ηbak+ + βηbak+) + αw(k2 + 2ηbak+) + wηbak+(β + w)

. (C.72)

To obtain an expression for the intrinsic sharpness, S0, we divide through by the specificity
prefactor from Equation 6.7:

S0 =
f + w

f
S. (C.73)

Simplifying and applying the condition that k2 ≈ 0 leads to

S0 = 2− αβ

α + αβ + w
. (C.74)

https://github.com/nlammers371/noneq-gene-regulation.git
https://github.com/nlammers371/noneq-gene-regulation.git
https://github.com/nlammers371/noneq-gene-regulation.git
https://github.com/nlammers371/noneq-gene-regulation.git
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Here again, as with Equation C.71, we see that all dependence on rate parameters drops
away. Further, it is easy to see that this expression goes to 2 when β = 0 and 1 when
β ≫ α,w. Thus, when β is small, our system exhibits equilibrium levels of specificity and
non-equilibrium levels of intrinsic sharpness and, when β is large, it exhibits non-equilibrium
specificity and equilibrium sharpness levels. Thus, we have succeeded in our initial aim to
establish a simplified model that can capture the tradeoffs between sharpness and specificity
revealed by our numerical parameter sweeps (Figure 6.5B).

As a final step, we can solve Equation C.71 to obtain an expression for β in terms of f :

β =
(f − α)(α + w)

α2 − f
. (C.75)

Plugging this expression into Equation C.73 and simplifying yields an expression for S0 as
a function of f :

S0 =
α2 + αf − 2f

αf − f
, (C.76)

where we assume that α ≤ f ≤ α2. Thus, we have obtained the final S0 expression depicted in
Equation 6.7. Observe that S0 ≈ 2 when f = α and S0 ≈ 1 when f = α2. Equation C.76 gives
the dashed black curve bounding f vs. S0 sweep results shown in Figure 6.5B, confirming that
it represents the limiting behavior of intrinsic sharpness and specificity for non-equilibrium
realizations of the six state model from Figure 6.4B.
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Appendix D

SI for Fast, flexible inference of
transcriptional dynamics with MCMC

D.1 Defining the MS2 kernel, κ

If we define nMS2 = τMS2/∆τ as the number of time steps (not necessarily an integer)
necessary for transcribing the MS2 sequence, the mean fraction of the full MS2 stem loop
cassette transcribed by an elongating RNAP at the dth time step of the elongation window
will be given by

κ(d) =


1, if ⌈nMS2⌉ < d ≤ ⌈w⌉
d− nMS2 +

n2
MS2−(d−1)2

2nMS2
, if ⌊nMS2⌋ < d ≤ ⌈nMS2⌉

d−1/2
nMS2

, if 1 ≤ d ≤ ⌊nMS2⌋
(D.1)

where ⌈nMS2⌉ and ⌊nMS2⌋ are the ceiling and the floor of nMS2, respectively.

D.2 Sampling hidden promoter states

For a given set of model parameters, θk, we wish to obtain an estimate for the sequence of
promoter states, z, that corresponds to the observed MS2 trace, y. Unlike the algorithm
employed in Chapter 7, which estimated the probability of all possible promoter states at
each time step, burstMCMC works by sampling discrete promoter state values at each time
step, such that the final outcome is a single sequence of promoter states, zk, drawn from the
distribution p(z|θk,y). For each inference step, k, each of the T promoter states is updated
by drawing from zt ∈ {1, 2, ...K} based off of the marginal likelihood of each promoter
state value, conditioned on the system parameters (θk), the observed fluorescent values (y),
and the remainder of the hidden promoter state sequence (z∅t): p(zt|z∅t,v,A,y). We can
express this as the product of two terms, such that

p(zt = i|z∅t,v,A,y) = p(zt = i|z∅t,A)p(zt = i|z∅t,v, σ,y), (D.2)
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where the first term on the right-hand side captures the component of the probability derived
from promoter state transitions and the second term captures the component relating to the
fluorescent emission probabilities. It is helpful to consider these two components separately.

First, because of the Markovian nature of promoter switching, the transition component
of the likelihood (first term on the right-hand side of Equation D.2) depends only the pro-
moter states in the time points immediately preceding and following t. Thus, if zt−1 = j and
zt+1 = l, then we have that

p(zt = i|z∅t,A) = aijali, (D.3)

where amn denotes the probability of switching from state n to state m.
Next we turn to the fluorescence component of Equation D.2. The first step here is to

recognize that, by Bayes’ Theorem,

p(zt = i|z∅t,v, σ,y) ∝ p(y(i)|zt = i,v, σ). (D.4)

The right-hand side of this expression is straight-forward to calculate, so we will proceed with
it moving forward. Since the promoter state at time t impacts the predicted fluorescence,
ŷ, for time points up to and including t− ⌊nMS2⌋. In this case, we have

p(zt = i|z∅t,v, σ,y) ∝ (2πσ2)−
⌈w⌉
2

t+⌊w⌋∏
n=t

e−
(ŷn−yn)2

2σ2 . (D.5)

Plugging Equations D.3 and D.5 in Equation D.2 allows us to calculate the conditional
probability of each promoter state for a given time point t. We then update z by randomly
selecting time points without replacement from the set t ∈ {1, 2, ...T} and drawing a new
promoter state for each based off of Equation D.2.

D.3 Update expressions for model parameters

Once we have drawn a new sample promoter sequence, we can use this vector of hidden
states to sample the posterior distributions of our core model parameters, θ ∈ {A,v, σ}.
Here we quote well established update equations for each parameter. We direct readers to
the original sources cited along the way for more detailed derivations.

We begin with the transition probability matrix, A. As stipulated in the main text,
we assume that columns of A (ai) are Dirichlet-distributed. Given an inferred latent state
vector at iteration k, zk, the posterior distribution for each ai is simply:

p(ai
k+1|z)p0(ai) = Dir(ni

k +αi
0), (D.6)

where αi
0 is the vector of prior pseudo-counts, and ni

k is a vector of length K, where the
jth element indicates the number of transitions from state i to state j in the state vector
zk. From Equation D.6 it is easy to see how our prior factors into the posterior estimate:
if the number of elements in αi is much less than the number of transitions out of state
i, then our prior will have little impact, and the information gleaned from the data (the
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fluorescent trace), will dominate. Conversely, if the elements of αi are of order with (or
larger than) elements of ni, then our prior assumptions regarding the relative magnitudes of
the transition probabilities our of state i will strongly influence our final posterior estimate
of ai.

In developing update equations for the emission rate vector v and fluorescent noise param-
eter σ, we follow a similar path to that outlined in Appendix A.3.4. The first step is to cal-
culate F , a T×K matrix of counts that indicates the total number of time steps (potentially
a fractional quantity) of each z ∈ {1, 2, ...K} promoter state are reflected in the observed
fluorescence at each time point t. For instance, if w = 6 and states zi−5:i = {2, 1, 2, 1, 3, 2},
then (if we neglect τMS2), the ith row of F will read {2, 3, 1}. More generally, for some gene
with MS2 kernel κ, the jth column of F , f j, can be expressed as

f j = κ ∗ 1j(z), (D.7)

where 1j(z) is an indicator vector with T elements that are equal to 1 at time points when
zt = j and 0 otherwise. Given F , the problem of solving for v and σ can be framed as a
multivariate linear regression:

y = vF T + ϵ, (D.8)

where ϵ is a T -element noise vector distributed as N (0, σ).
Now, we are ready to examine the update expressions. We note that we simply quote

the results here. See Chapter 3 of [49] for further details. Let’s first examine the posterior
for the emission (slope) coefficients: p(v|y, z, σ). As stipulated above, we assume that v
follows the multivariate normal distribution:

p(v) ∼ N (v,Σ), (D.9)

such that we need to update both the mean vector (v) and covariance matrix (Σ). To
calculate these quantities, we need a helper matrix, M , given by

M = F T ∗ F ,

and a helper vector, b, given by
b = F T ∗ y.

Using these two quantities, we can calculate the update expression for Σ:

Σ = σ2
(
M +M0

−1
)
, (D.10)

where M0 is our prior on M , and is essentially an array of weights indicating confidence in
these prior guesses regarding the values of the emission rate vector v. In practice, we keep
these weights small, such that the influence of M0 is negligible¿ A key exception to this
rule is state 0, which we assume to be the OFF state. In this case, we set the first row and
column of M0 to 105, effectively fixing v(0) = 0.

Now, for v, we have that

v =
Σ

σ2
∗
(
M0

−1v0 + b
)
, (D.11)
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where v0 prior on the emission rate vector.
Moving on to σ, recall that we have assumed that this parameter follows the inverse

gamma distribution:
p(σ2) ∼ Inverse-Gamma(k, θ), (D.12)

where k is simply given by

k = k0 +
n

2
, (D.13)

with n being the number of observations in the sample used for inference. θ (or, rather, its
inverse) is given by

θ−1 = θ−1
0 +

1

2

(
y − ŷ)T (y − ŷ) +

1

2

(
v − v0)

TM−1
0 (v − v0). (D.14)
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