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Abstract. Diverse neuropeptides participate in cell–cell communication to coordinate neuronal and
endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides
ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain,
stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique
neuropeptide sequences define their specific biological actions. Significantly, this review article discusses
how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based
neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of
neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-
spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrom-
etry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple
neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker
applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide
secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide
production, storage, and secretion. Furthermore, ongoing research in developing new computational
tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge
of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight
into regulatory mechanisms in health, disease, and therapeutics.

KEY WORDS: bioinformatics; cell–cell communication; mass spectrometry; neuropeptides;
neuropeptidomics; proteomics; secretory vesicle.

INTRODUCTION NEUROPEPTIDES FOR CELL–CELL
COMMUNICATION

Neuropeptides Regulate Neuronal and Endocrine Functions

Neuropeptides are required for physiological functions
as neurotransmitters in the nervous system and are

essential as peptide hormones for endocrine regulation of
target biological systems (Fig. 1). Thus, neuropeptides are
critical mediators of cell–cell communication in neuro-
endocrine systems. Such neuropeptides are composed of
diverse peptide sequences typically consisting of about 3–
40 residues. It is estimated that hundreds to thousands of
different neuropeptides may exist, with many yet to be
discovered.

Neuropeptides represent one of two main classes of
neurotransmitters. Prior to the discovery of the neuropep-
tides, classical neurotransmitters are known as key mediators
of cell–cell communication in the nervous system (1). The
“classical” neurotransmitters consist of small molecules such
as, for example, norepinephrine, serotonin, GABA, acetyl-
choline, and many others (1). The classical neurotransmitters
are synthesized by (a) modifications of single amino acids
such as, for example, norepinephrine synthesized from
tyrosine and serotonin synthesized from tryptophan or (b)
synthesized by enzymatic reactions such as, for example,
acetylcholine generated from choline and acetyl-CoA by the
choline acetyl transferase enzyme. The “peptide” and “clas-
sical” neurotransmitters together mediate neuronal cell–cell
communication.
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Among the neuropeptides, each of their unique primary
sequences defines selective and potent biological actions. The
same neuropeptide may participate in multiple regulatory
systems in the nervous system and endocrine systems
(Table I). For example, enkephalin neuropeptides function
as neurotransmitters in the brain for regulation of behavior
and pain and are also involved in peripheral actions including
regulation of intestinal motility and immune cell functions
(1,2). Adrenocorticotropin hormone (ACTH) is present in
brain where it functions as a neuromodulator; furthermore,
ACTH is a prominent peptide hormone released from the
pituitary gland for control of glucocorticoid production in the
adrenal cortex (3). Neuropeptides such as ß-endorphin,
neuropeptide Y (NPY), galanin, corticotropin-releasing fac-
tor (CRF), vasopressin, insulin, and numerous others mediate
diverse physiological functions that include analgesia, feeding
behavior and blood pressure regulation, cognition, stress,

water balance, and glucose metabolism, respectively (4,5).
These and other neuropeptides regulate physiological func-
tions in mammalian systems, as well as in invertebrate and
related organisms (6–8). Clearly, neuropeptides possess a
wide scope of diverse actions among numerous organisms.

Neuropeptides Generated by Proteolytic Processing
of Prohormones

Neuropeptides are derived from larger protein precur-
sors known as prohormones or proneuropeptides (9–11). The
term “prohormone” is most commonly used in the field. Such
protein precursors undergo proteolytic processing to generate
the smaller peptide neurotransmitters and hormones.

Prohormone precursors share distinct and common fea-
tures. Notably, the small active form of each neuropeptide is a
domain present within its prohormone protein. A prohormone

Fig. 1. Neuropeptides for neuronal and endocrine cell–cell communication. a Neuropeptides, peptide neurotransmitters, in the central nervous
system of brain. Brain neuropeptides function as peptide neurotransmitters to mediate chemical cell–cell communications among neurons.
Neuropeptides are synthesized within secretory vesicles that are transported from the neuronal cell body via the axon to nerve terminals. The
prohormone (also known as proneuropeptide) is packaged within the newly formed secretory vesicle in the cell body, and proteolytic processing
of the precursor protein occurs during axonal transport and maturation of the secretory vesicle. Mature processed neuropeptides are contained
within secretory vesicles at the synapse where activity-dependent, regulated secretion of neuropeptides occurs to mediate neurotransmission via
neuropeptide activation of peptidergic receptors. b Neuropeptides, peptide neurotransmitters and peptide hormones, in the peripheral nervous
system and endocrine systems for regulation of physiological organ functions. The peripheral nervous system regulates all organ systems, linking
the central nervous system of the brain with peripheral neuronal control of physiological functions. In the body, neuropeptides also function as
hormones that mediate endocrine cell–cell communication
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may contain one copy of the active neuropeptide, as represented
by pro-NPY, progalanin, and pro-vasoactive intestinal polypep-
tide (VIP; Fig. 2) (12–14). Alternatively, a precursor may
contain several related copies of the active neuropeptide. For
example, proenkephalin (PE) contains four copies of (Met)
enkephalin, one copy of the related (Leu)enkephalin, and one
copy each of the ME-Arg-Gly-Leu and ME-Arg-Phe (Fig. 2)
(15–17). Proteolysis of these precursors, especially tissue-specific
processing is required for biologically active neuropeptides to be
generated.

While each prohormone precursor possesses a distinct
primary sequence, proteolytic processing occurs at dibasic
residue sites that typically flank the NH2 and COOH termini
of neuropeptides within their precursors (Fig. 2) (9–11). The
dibasic residues Lys-Arg (KR) most often flank the neuro-
peptides; however, the dibasic sites Lys-Lys, Arg-Arg, and
sometimes Arg- Lys also occur. Processing sometimes occurs
at monobasic Arg sites as well as at multibasic residue sites.
Processing at nonbasic residues occurs occasionally. Signifi-
cantly, proteolytic processing is a key process required for the
biosynthesis of numerous active neuropeptides from inactive
precursors.

MASS SPECTROMETRY-BASED
NEUROPEPTIDOMICS FOR GLOBAL ANALYSES
OF DIVERSE PEPTIDES

Mass Spectrometry for Analyses of Multiple Neuropeptides

Multiple neuropeptides of unique sequences are
secreted and utilized for coordinate regulation of phys-
iological functions. A critical unmet need in the field is
global knowledge of the neuropeptide profiles utilized in

neuroendocrine control of cellular and biological func-
tions. It is likely that previously unidentified peptide
products exist that result from proteolytic processing of
prohormones. Exciting new approaches utilizing mass
spectrometry-based neuropeptidomics (18–22) to simulta-
neously identify neuropeptide profiles in a single bio-
logical event will open our understanding of how
multiple neuropeptides, rather than a single neuropep-
tide, are cosecreted for coregulation of key biological
functions.

For example, the stress response to the “fight or flight”
condition results in active secretion of multiple neuropeptides
and catecholamine neurotransmitters from the adrenal
medulla of the sympathetic nervous system. Stress induces
the secretion of enkephalins, catestatin, NPY, VIP, galanin,
and other neuropeptides (23–26). Pain involves the tachyki-
nins, notably substance P, for afferent transmission of pain to
spinal and brain neurons, with modulation of the spinal–brain
pain pathway by opioid neuropeptides including enkephalin
and dynorphins (27,28). Multiple vasoactive peptide hor-
mones including angiotensin (Ang), vasopressin, bradykinin
(BK), and others regulate blood pressure conditions including
hypertension (29–31). These examples illustrate that profiles
of neuropeptides participate in regulating specific physiolog-
ical functions.

Advantages of Mass Spectrometry-Based Neuropeptide
Analyses Compared to Traditional Radioimmunoassay
of Neuropeptides

The analysis of profiles of distinct groups of neuro-
peptides can be readily accomplished by mass spectrometry-
based neuropeptidomics. Liquid chromatography separation
of neuropeptides with online tandem mass spectrometry
allows identification of hundreds to thousands of peptides in
single experiments. In contrast, traditional antibody-based
detection of neuropeptides can only obtain information of
one neuropeptide in a single assay, resulting in lack of
knowledge of profiles of neuropeptides. A key limitation of
antibody-based radioimmunoassays (RIA) is that RIA detec-
tion of a peptide in the biological sample indicates that it is
“related” to the standard peptide, but the peptide sequence
structure of the detected peptide(s) is not defined by the RIA
method since antibodies can detect several related peptides.

Significantly, directed mass spectrometry of selected
neuropeptides provides definitive identification of the peptide
of interest. Relative quantitation of the peptide can be
achieved by “normalized spectral abundance” analyses or by
isotopic labeling approaches (29,32–34). Such directed “multi-
ple reaction monitoring” (MRM) of peptides is useful for
designated peptides of biological interest. These neuropepti-
domic and MRM mass spectrometry approaches provide
identification and quantitation of defined peptide species in
a single experiment, which is not possible with antibody-
based approaches. The mass spectrometry-based neuropepti-
domic approach provides knowledge of neuropeptide profiles
that participate in biological regulation.

Importantly, most neuropeptides are active at very low
concentrations in vivo (nanomolar range). Therefore, the
high sensitivity of the mass spectrometry approach is advanta-
geous for identifying neuropeptides. Application of mass

Table I. Neuropeptides in the Nervous and Endocrine Systems

Neuropeptides Physiological functions

(Met)enkephalin and (Leu)enkephalin Analgesia, pain relief
Beta-endorphin Analgesia, pain relief
Dynorphin Analgesia, pain relief
ACTH Steroid production
α-MSH Skin pigmentation, appetite
CRF ACTH secretion
Insulin Glucose metabolism
Glucagon Glucose metabolism
Galanin Cognition
NPY Obesity, blood pressure
Somatostatin Growth regulation
Vasopressin Water balance
Calcitonin Calcium regulation
Cholecystokinin Learning, memory, appetite
PACAP Neuronal differentiation

Peptide neurotransmitters and hormones are collectively termed
neuropeptides. Neuropeptides typically consist of small peptides of
approximately 3–40 residues. Examples of several neuropeptides and
their biological functions are listed
ACTH adrenocorticotropin hormone, α-MSH α-melanocyte-stimulat-
ing hormone, NPY neuropeptide Y, CRF corticotropin-releasing
factor
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spectrometry will likely lead to identification of numerous
peptides generated from respective prohormone precursors.
Subsequent biological analyses will then be needed to
determine active peptides or inactive peptide products.
Smaller inactive peptides may represent degradation of active
neuropeptides; the spectrum of degradative pathways to
inactivate neuropeptides has yet to be fully defined. Compar-
ison of neuropeptide profiles under different cellular con-
ditions in future studies can indicate how regulation of
neuropeptide forms participates in health, disease, and drug
treatment conditions.

NEUROPEPTIDOMICS DEMONSTRATE NOVEL
PEPTIDES GENERATED FROM PROENKEPHALIN
AND CHROMOGRANIN A IN DENSE CORE
SECRETORY VESICLES

Proenkephalin-Derived Neuropeptides

The active pentapeptides (Met)enkephalin (ME) and
(Leu)enkephalin (LE) are both derived from the proenke-

phalin (Fig. 2) precursor by proteolytic processing (9–
11,15,16). Each proenkephalin precursor yields four copies
of ME, one copy of LE, and the related peptides ME-Arg-
Gly-Leu and ME-Arg-Phe. Studies of these active peptides
have been based on their selection by bioassay and peptide
sequencing of purified (Met)enkephalin (35) and deduced
enkephalin-related peptides resulting from proteolytic pro-
cessing of proenkephalin at dibasic residues.

Neuropeptidomic analyses by nano-liquid chromatogra-
phy tandem mass spectrometry (LC-MS/MS) of neuropep-
tide-containing secretory vesicles isolated from a human
pheochromocytoma revealed new information of how pro-
enkephalin is processed (Fig. 3) (18). Peptides were analyzed
in a low molecular weight pool of peptides less than 10 kDa
(obtained by passage of the soluble fraction of isolated
secretory vesicles through a 10-kDa Millipore membrane).
Tandem mass spectrometry identified numerous extended
forms of (Met)enkephalin that included “intervening”
sequences of non-enkephalin domains. Also, intervening
peptide sequences that did not include enkephalin sequences
were identified. Yet, some intervening peptide domains were

Fig. 2. Prohormone precursors undergo proteolysis to generate active neuropeptides. Neuropeptides are
synthesized as inactive preprohormone precursors that undergo removal of the N-terminal signal peptide
sequence in the rough endoplasmic reticulum to generate the prohormone precursors (9–11). The
prohormones, also known as proneuropeptides, undergo proteolytic processing at dibasic and monobasic
cleavage sites to liberate the active neuropeptides. The precursor proteins may contain one copy of the
active neuropeptide, such as the proneuropeptides for NPY, galanin, CRF, and VIP. Some proneuropep-
tides such as proenkephalin contains multiple copies of the active neuropeptide; proenkephalin contains
four copies of (Met)enkephalin (ME), one copy of (Leu)enkephalin (L), and the related opioid peptides
ME-Arg-Phe (H) and ME-Arg-Gly-Cleu (O). Certain precursors contain different peptide hormones
within the same precursor, such as the POMC precursor which gives rise to the distinct peptide hormones
ACTH, α-MSH, and ß-endorphin. The presence of ACTH in anterior pituitary and the presence of α-
MSH and ß-endorphin in intermediate pituitary illustrate that tissue-specific processing of the POMC
prohormone occurs
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not detected (residues 145–161). These intervening peptide
sequences have never been observed in prior studies.

Chromogranin-A-Derived Neuropeptides

In secretory vesicles isolated from human pheochro-
mocytoma, the chromogranin A (CgA) precursor under-
goes proteolysis to generate an extensive group of peptide
products (Fig. 4) (18,36). Neuropeptidomic data identified
numerous CgA-derived peptide domains of catestatin,
vasostatin, parastatin, and related neuropeptides derived
by proteolytic processing of CgA (18). Interestingly, the
low molecular pool of peptides less than 10 kDa contained
several intervening peptides of CgA. But some intervening
peptide domains of CgA were not detected. Thus, similar
to peptides derived from proenkephalin, the presence of
intervening peptide domains indicates products derived
from proneuropeptide processing. In addition, the absence
of particular intervening peptide products may indicate
their presence only with the intact precursor or of high
molecular weight intermediate fragments larger than
10 kDa, or as peptide domains that may have undergone
extensive proteolysis.

These neuropeptidomic results demonstrate that global,
unbiased analyses of peptides by nano-LC-MS/MS indicates
multiple, diverse peptides generated from proenkephalin.
Ongoing (19–21) and future mass spectrometry analyses of

prohormone precursors will reveal a multitude of previously
unknown peptide products generated from such precursors.
The diversity of neuropeptides implicates their broad bio-
logical activities.

PROFILING OF VASOACTIVE PEPTIDE HORMONES
IN PLASMA BY MASS SPECTROMETRY REVEALS
NOVEL ANTIHYPERTENSIVE DRUG MECHANISMS

Secretion of active neuropeptides participates in peptide
hormone regulation of physiological systems in health and
disease conditions. Profiling changes in the levels of function-
ally related peptide hormones is critical to understanding the
effectiveness of therapeutic strategies. The high potency of
low concentrations of plasma peptide hormones indicates the
necessity for quantitative detection of low-abundance plasma
peptides, with the challenge of their high turnover and
regulated levels in physiological functions. Our recent studies
demonstrate the use of nano-LC-MS/MS with stable isotope
labeling and MRM analysis for measuring selected groups of
vasoactive peptides consisting of angiotensin, bradykinin, and
related peptide hormones (29). The effects of an inhibitor of
angiotensin-converting enzyme (ACE) on the profile of these
vasoactive peptides illustrated that the drug affects not only
its ACE target for angiotensin production but also results in
prominent alteration of the profiles of bradykinin and related
peptides that regulate blood pressure (Fig. 5) (29). The ACE

Fig. 3. Neuropeptidomic analyses of human proenkephalin-derived peptides in secretory vesicles. Neuropeptidomic studies investigated
endogenous peptides derived from human proenkephalin in chromaffin secretory vesicles. Endogenous peptides derived from human PE in
human adrenal medullary secretory vesicles (purified from human pheochromocytoma tissue) are illustrated with respect to their location within
PE. Peptides were identified by ion-trap and QTOF MS/MS, combined with InsPecT (Ins) and Spectrum Mill (SM) bioinformatic analyses of
MS/MS data at 1% false discovery rate (FDR; with the exception of (Leu)enkephalin that was indicated at 5% FDR) (18). Peptides identified
under each of these conditions were mapped to PE, illustrated by colored lines: QTOF MS/MS data analyzed by InsPect (Ins, orange) or
Spectrum Mill (SM, yellow) and ion-trap (Trap) analyzed by InsPect (Ins, green) or SM (olive). Within PE, the active enkephalin neuropeptides
sequences are shown in yellow. Dibasic cleavage sites are highlighted by boxes; in addition, monobasic residues within PE are shown. (Hyphens
at the end of some lines indicate peptides that were split between two lines in the figure.)
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inhibitor, captopril, reduced plasma levels of several angio-
tensin-related peptides, as expected. The drug also resulted in
substantial time-dependent increases in bradykinin and
kallidin. Thus, the drug has widespread effects on profiles of
vasoactive peptide hormones.

Clearly, targeted peptidomic analyses to profile related
peptides can enhance elucidation of the events regulating
complex and dynamic physiological processes responding to
therapeutic agents.

THE SECRETORY VESICLE PROTEOME
FOR BIOSYNTHESIS OF ITS NEUROPEPTIDOME

The “neuropeptidome,” representing the profile of
cellular neuropeptides, is produced from protein precursors
within regulated secretory vesicles of neurons and endo-
crine cells. The “proteome” of these secretory vesicles is
responsible for the biosynthesis, storage, and secretory
release of the cellular “neuropeptidome.” The key seg-
ments of the secretory vesicle proteome responsible for
biosynthesis of neuropeptidomes consist of the protease
pathways utilized to convert proneuropeptides into active

neuropeptides and protein systems required by secretory
vesicles for vesicular trafficking, neuropeptide biosynthesis,
signal transduction, and secretion of neuroeffectors.

Protease Pathways for Neuropeptidome Production

Chemical Biology for Activity-Based Identification of
Proteases by Mass Spectrometry. Recent achievements in
development of active site-directed affinity probes for
proteases and other enzyme classes provide direct
chemical labeling of proteases of interest in the biological
system (37–40). Such activity-based probes that selectively
label the main protease subclasses—cysteine, serine,
metallo, aspartic, and threonine—provide advantageous
chemical approaches for functional protease identification.
Such chemical probes directed to cysteine proteases
have been instrumental for identification of the new
cathepsin L cysteine protease pathway for neuropeptide
biosynthesis.

The activity probe DCG-04, the biotinylated form of
E64c that inhibits cysteine proteases, was utilized for
specific affinity labeling and mass spectrometry identifica-

Fig. 4. Neuropeptidomic analyses of human chromogranin-A-derived peptides in secretory vesicles. Neuropeptidomics studies investigated
endogenous peptides derived from human CgA in chromaffin secretory vesicles. CgA-derived peptides in human adrenal medullary secretory
vesicles (purified from human pheochromocytoma tissue) identified in neuropeptidomic studies are illustrated within the CgA precursor (18).
Peptides were identified (as described in legend of Fig. 3) by ion-trap and QTOF MS/MS, combined with InsPecT (Ins) bioinformatic analyses
of MS/MS data at 1% FDR. Peptides identified under each of these conditions were mapped to CgA, illustrated by colored lines: QTOF MS/MS
data analyzed by InsPect (Ins, purple) and ion-trap (Trap) MS/MS data analyzed by InsPect (Ins, olive green). Within CgA, names of known
peptide sequences are indicated. Dibasic cleavage sites are highlighted by boxes
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tion of the primary proenkephalin cleaving activity as
cathepsin L (41–44). Confirmation of the localization of
cathepsin L in neuropeptide-containing secretory vesicles
was demonstrated by immunofluorescence confocal micro-
scopy and immunoelectron microscopy (44–47). The key
role of cathepsin L for neuropeptide biosynthesis has been
illustrated by gene knockout, gene expression, and inhib-
itor studies. Results demonstrate the significant function of
cathepsin L for producing neuropeptides including enke-
phalin, beta-endorphin, dynorphin, ACTH, α-melanocyte-
stimulating hormone (α-MSH), cholecystokinin, NPY, and
others (41–47). These findings suggested a new biological
function for cathepsin L in secretory vesicles (in contrast to
its known role in lysosomes) for producing the enkephalin
and related neuropeptides.

Together with current knowledge in the field, prohor-
mone processing utilizes two distinct protease pathways
(Fig. 6) consisting of the cathepsin L cysteine protease
pathway that includes Arg/Lys aminopeptidase (aminopepti-
dase B) and the well-known proprotein convertase (PC)
family of subtilisin-like proteases (9–11) that process proneur-
opeptides with carboxypeptidase E. These protease pathways,
and possibly others, generate neuropeptidomes of neuro-
endocrine cells.

Proteomics of Secretory Vesicles for Neuropeptidome
Biosynthesis and Secretion

Proteomic studies of neuropeptide-containing secretory
vesicles can identify the functional protein categories in
secretory vesicles utilized for neuropeptide production and
secretion. Recent examination of proteins in model bovine
chromaffin secretory vesicles revealed multiple functional
protein categories that participate in secretory vesicle pro-
duction of neuropeptides and catecholamines for cell–cell
communication (Fig. 7) (48,49). Protein systems involved in
vesicular neuropeptide biosynthesis were examined in pro-
teomic studies of soluble and membrane fractions of dense
core secretory vesicles purified from chromaffin cells of the
sympathetic nervous system. Proteomic results revealed func-
tional categories of prohormones, proteases, catecholamine
neurotransmitter metabolism, protein folding, redox regula-
tion, ATPases, calcium regulation, signaling components,
exocytotic mechanisms, and related functions. Interestingly,
these secretory vesicles contained an extensive number of
GTP nucleotide-binding proteins related to Rab, Rho, and
Ras signaling molecules (50,51), together with SNARE-
related proteins and annexins that are involved in trafficking
and exocytosis of secretory vesicle components (52,53). These
vesicles also contain ATPases that regulate proton trans-
location (54), combined with components for signaling and
exocytosis of neuropeptides. It will be of interest to compare
the proteomics of neuropeptide secretory vesicles with that of
synaptic vesicles that secrete classic small-molecule neuro-
transmitters (55–57).

Overall, knowledge of secretory vesicle proteomes
provides novel insights into the biosynthesis and secretion of
neuropeptidomes.

ADVANCES IN COMPUTATIONAL MASS
SPECTROMETRY ARE NECESSARY FOR
NEUROPEPTIDOMIC AND PROTEOMIC
INVESTIGATIONS OF THE SYSTEMS BIOLOGY
OF CELL–CELL COMMUNICATION

Computational mass spectrometry for bioinformatic
analyses of mass spectrometry data is essential for identifica-
tion and organization of peptidomic and proteomic compo-
nents. Bioinformatics comprises the major effort for
understanding mass spectrometry information. Importantly,
analyses of neuropeptides and proteins subjected to mass
spectrometry analyses each requires different bioinformatic
approaches, as explained below.

Fig. 5. Multiple vasoactive peptide hormones regulated by ACE
inhibitor drug therapeutics. The effects of an ACE inhibitor,
captopril, on levels of plasma vasoactive peptides were analyzed in
time course studies by nano-LC-MS/MS with quantitation using
stable isotope-labeled internal peptide standards (29). ACE inhibitors
are utilized as antihypertensive drugs. Chromatographic separation of
target peptides and MRM provided quantitation of Ang I, Ang II,
Ang1–7, BK 1–8, BK 2–9, and kallidin (KD). Results show significant
reduction by the ACE inhibitor of the angiotensin peptides, with an
interesting concomitant increase in plasma bradykinins and kallidin
(potent vasodilators). The percent change in plasma concentration at
different times after drug administration is shown in the table below
the bar graph. Results illustrate the utility of simultaneous profiling of
multiple peptides using mass spectrometry analysis to monitor drug-
induced changes in vasoactive neuropeptides
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Bioinformatics for Peptidomics

Mass spectrometry data of neuropeptidomes utilize
bioinformatics that is distinguished from that used for protein
identification. Unique features of peptides, compared to
proteins, require distinct and appropriate bioinformatic tools
for several reasons. Mass spectrometry analyses of neuro-
peptides depend entirely on the successful identification of a
single peptide, which contrasts with protein identification by
several peptide fragments generated by protease (typically
trypsin) digestion. The neuropeptides of very short lengths of
three to seven residues or of long lengths of more than 15–20
residues will benefit from the design of new algorithms for
effective identification. Furthermore, whereas neuropeptides
are nontryptic, many bioinformatic programs are designed for
analyzing tryptic peptides for protein identification. Peptide
identifications by search of protein databases are difficult
because a substantial fraction of all short peptide sequences is
present in the database, thus essentially reducing the search
to de novo sequencing (a search in the space of all possible
peptide sequences). In this case, the difficulty is that database
search algorithms perform poorly whenever the database
contains a substantial fraction of all possible peptides. There-
fore, it will be necessary to improve search algorithms for
peptide identifications. In addition, if the sequence database
used is large, short peptides are likely to be present in the
corresponding decoy database simply by chance, thus making
peptide identification difficult. Significantly, structural com-

plexity of neuropeptides is represented by posttranslational
modifications including C-terminal amidation, acetylation,
phosphorylation, sulfation, and other modifications (6,58).
Thus, while some neuropeptides can be identified with
current bioinformatic tools, complete neuropeptidomics will
require the design of novel computational tools for identify-
ing small neuropeptides from mass spectrometry data.

Bioinformatic analyses of neuropeptide sequences
include genomic analyses for predictions of neuropeptide
genes and peptide products from prohormones (59–64).
Design of novel computational tools for predictions of
neuropeptides from combined genomic and peptidomic
sequences is an active area of algorithmic research in
biomedical research. Such new bioinformatics tools will
facilitate identification of neuropeptides by mass spectrome-
try, which will likely lead to discovery of previously unknown
neuropeptides.

Bioinformatics for Proteomics

Investigation of proteomic data of secretory vesicles
obtained from sympathoadrenal chromaffin cells has been
achieved in our studies with bioinformatic analyses of mass
spectrometry data by Spectrum Mill and Sequest (48,49). The
identified proteins comprising these data were clustered to
gain knowledge of the protein functional protein categories
present in secretory vesicles for neuropeptide biosynthesis
and regulated secretion, as illustrated in Fig. 7. These

Fig. 6. Protease pathways for neuropeptide production. Distinct cysteine protease and
subtilisin-like protease pathways participate in prohormone processing (9–11). The cysteine
protease cathepsin L in secretory vesicles functions as a processing enzyme for the
production of neuropeptides. Preference of cathepsin L to cleave at the NH2-terminal side
of dibasic residue processing sites yields peptide intermediates with NH2-terminal residues,
which are removed by Arg/Lys aminopeptidase that has been identified as aminopeptidase
B. Cathepsin L also cleaves between the dibasic residues, resulting in peptide intermediates
that then require both aminopeptidase and carboxypeptidase E to remove NH2-terminal
and C-terminal basic residues to generate active neuropeptides. The subtilisin-like protease
pathway involves the prohormone convertases PC1/3 and PC2. The PC enzymes
preferentially cleave at the COOH-terminal side of dibasic processing sites, which results
in peptide intermediates with basic residue extensions at their COOH termini that are
removed by carboxypeptidase E
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proteomic data indicate how these protein systems together
coordinate secretory vesicle functions for neuropeptide
production and release to mediate extracellular cell–cell
communication.

CONCLUSION: NEUROPEPTIDOMICS
AND PROTEOMICS FOR INVESTIGATION
OF THE REGULATION OF NEUROPEPTIDES
IN HEALTH, DISEASE, AND THERAPEUTICS

Regulation of brain and neuroendocrine functions uti-
lizes profiles of neuropeptides that together function to
mediate the complex cell–cell communication network among
organ systems. Changes in physiological functions are repre-
sented by alterations in profiles of neuropeptides that can be
investigated by neuropeptidomic approaches in health and
disease. Furthermore, neuropeptidomics will be used for

biomarker applications for monitoring disease status and the
effectiveness of therapeutic agents. Significantly, because the
secretory vesicle organelle produces neuropeptides, joint
proteomic studies of this organelle provide knowledge of
the key protein systems required for neuropeptide produc-
tion. Elucidation of the neuropeptidomic systems, and their
biosynthesis by the secretory vesicle proteome, can provide
insight into new drug targets for novel disease therapeutics.
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Fig. 7. The secretory vesicle proteome for neuropeptidome biosynthesis and secretion. Proteins of the secretory vesicle, known as the
neuroproteome, participate in the biosynthesis, storage, and regulated secretion of neuropeptides, known as the neuropeptidome. Thus, the
neuropeptidome is generated and secreted by the neuroproteome of regulated secretory vesicles. The neuroproteome consists of soluble and
membrane proteins that participate in secretory vesicle functions for providing neuropeptides for cell–cell communication in the nervous and
endocrine systems. Proteomic studies of the soluble and membrane fractions of neuropeptide secretory vesicles isolated from adrenal medullary
chromaffin cells of the sympathetic nervous system (bovine) indicate the protein systems participating in neuropeptide production and secretion
(illustrated in the pie charts) that include neuropeptides and neurohumoral factors, proteases, neurotransmitters enzymes and transporters,
receptors, enzymes, carbohydrate functions, lipids, reduction oxidation, ATPases and nucleotide metabolism, protein folding, signal transduction
and GTP-binding proteins, vesicular trafficking and exocytosis, structural proteins, and cell adhesion proteins (48,49)
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